src/share/vm/opto/node.hpp

Wed, 27 Nov 2013 16:16:21 -0800

author
goetz
date
Wed, 27 Nov 2013 16:16:21 -0800
changeset 6490
41b780b43b74
parent 6488
4cdf4f71177d
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8029015: PPC64 (part 216): opto: trap based null and range checks
Summary: On PPC64 use tdi instruction that does a compare and raises SIGTRAP for NULL and range checks.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_NODE_HPP
    26 #define SHARE_VM_OPTO_NODE_HPP
    28 #include "libadt/port.hpp"
    29 #include "libadt/vectset.hpp"
    30 #include "opto/compile.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 // Optimization - Graph Style
    38 class AbstractLockNode;
    39 class AddNode;
    40 class AddPNode;
    41 class AliasInfo;
    42 class AllocateArrayNode;
    43 class AllocateNode;
    44 class Block;
    45 class BoolNode;
    46 class BoxLockNode;
    47 class CMoveNode;
    48 class CallDynamicJavaNode;
    49 class CallJavaNode;
    50 class CallLeafNode;
    51 class CallNode;
    52 class CallRuntimeNode;
    53 class CallStaticJavaNode;
    54 class CatchNode;
    55 class CatchProjNode;
    56 class CheckCastPPNode;
    57 class ClearArrayNode;
    58 class CmpNode;
    59 class CodeBuffer;
    60 class ConstraintCastNode;
    61 class ConNode;
    62 class CountedLoopNode;
    63 class CountedLoopEndNode;
    64 class DecodeNarrowPtrNode;
    65 class DecodeNNode;
    66 class DecodeNKlassNode;
    67 class EncodeNarrowPtrNode;
    68 class EncodePNode;
    69 class EncodePKlassNode;
    70 class FastLockNode;
    71 class FastUnlockNode;
    72 class FlagsProjNode;
    73 class IfNode;
    74 class IfFalseNode;
    75 class IfTrueNode;
    76 class InitializeNode;
    77 class JVMState;
    78 class JumpNode;
    79 class JumpProjNode;
    80 class LoadNode;
    81 class LoadStoreNode;
    82 class LockNode;
    83 class LoopNode;
    84 class MachBranchNode;
    85 class MachCallDynamicJavaNode;
    86 class MachCallJavaNode;
    87 class MachCallLeafNode;
    88 class MachCallNode;
    89 class MachCallRuntimeNode;
    90 class MachCallStaticJavaNode;
    91 class MachConstantBaseNode;
    92 class MachConstantNode;
    93 class MachGotoNode;
    94 class MachIfNode;
    95 class MachNode;
    96 class MachNullCheckNode;
    97 class MachProjNode;
    98 class MachReturnNode;
    99 class MachSafePointNode;
   100 class MachSpillCopyNode;
   101 class MachTempNode;
   102 class Matcher;
   103 class MathExactNode;
   104 class MemBarNode;
   105 class MemBarStoreStoreNode;
   106 class MemNode;
   107 class MergeMemNode;
   108 class MulNode;
   109 class MultiNode;
   110 class MultiBranchNode;
   111 class NeverBranchNode;
   112 class Node;
   113 class Node_Array;
   114 class Node_List;
   115 class Node_Stack;
   116 class NullCheckNode;
   117 class OopMap;
   118 class ParmNode;
   119 class PCTableNode;
   120 class PhaseCCP;
   121 class PhaseGVN;
   122 class PhaseIterGVN;
   123 class PhaseRegAlloc;
   124 class PhaseTransform;
   125 class PhaseValues;
   126 class PhiNode;
   127 class Pipeline;
   128 class ProjNode;
   129 class RegMask;
   130 class RegionNode;
   131 class RootNode;
   132 class SafePointNode;
   133 class SafePointScalarObjectNode;
   134 class StartNode;
   135 class State;
   136 class StoreNode;
   137 class SubNode;
   138 class Type;
   139 class TypeNode;
   140 class UnlockNode;
   141 class VectorNode;
   142 class LoadVectorNode;
   143 class StoreVectorNode;
   144 class VectorSet;
   145 typedef void (*NFunc)(Node&,void*);
   146 extern "C" {
   147   typedef int (*C_sort_func_t)(const void *, const void *);
   148 }
   150 // The type of all node counts and indexes.
   151 // It must hold at least 16 bits, but must also be fast to load and store.
   152 // This type, if less than 32 bits, could limit the number of possible nodes.
   153 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.)
   154 typedef unsigned int node_idx_t;
   157 #ifndef OPTO_DU_ITERATOR_ASSERT
   158 #ifdef ASSERT
   159 #define OPTO_DU_ITERATOR_ASSERT 1
   160 #else
   161 #define OPTO_DU_ITERATOR_ASSERT 0
   162 #endif
   163 #endif //OPTO_DU_ITERATOR_ASSERT
   165 #if OPTO_DU_ITERATOR_ASSERT
   166 class DUIterator;
   167 class DUIterator_Fast;
   168 class DUIterator_Last;
   169 #else
   170 typedef uint   DUIterator;
   171 typedef Node** DUIterator_Fast;
   172 typedef Node** DUIterator_Last;
   173 #endif
   175 // Node Sentinel
   176 #define NodeSentinel (Node*)-1
   178 // Unknown count frequency
   179 #define COUNT_UNKNOWN (-1.0f)
   181 //------------------------------Node-------------------------------------------
   182 // Nodes define actions in the program.  They create values, which have types.
   183 // They are both vertices in a directed graph and program primitives.  Nodes
   184 // are labeled; the label is the "opcode", the primitive function in the lambda
   185 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
   186 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
   187 // the Node's function.  These inputs also define a Type equation for the Node.
   188 // Solving these Type equations amounts to doing dataflow analysis.
   189 // Control and data are uniformly represented in the graph.  Finally, Nodes
   190 // have a unique dense integer index which is used to index into side arrays
   191 // whenever I have phase-specific information.
   193 class Node {
   194   friend class VMStructs;
   196   // Lots of restrictions on cloning Nodes
   197   Node(const Node&);            // not defined; linker error to use these
   198   Node &operator=(const Node &rhs);
   200 public:
   201   friend class Compile;
   202   #if OPTO_DU_ITERATOR_ASSERT
   203   friend class DUIterator_Common;
   204   friend class DUIterator;
   205   friend class DUIterator_Fast;
   206   friend class DUIterator_Last;
   207   #endif
   209   // Because Nodes come and go, I define an Arena of Node structures to pull
   210   // from.  This should allow fast access to node creation & deletion.  This
   211   // field is a local cache of a value defined in some "program fragment" for
   212   // which these Nodes are just a part of.
   214   // New Operator that takes a Compile pointer, this will eventually
   215   // be the "new" New operator.
   216   inline void* operator new( size_t x, Compile* C) throw() {
   217     Node* n = (Node*)C->node_arena()->Amalloc_D(x);
   218 #ifdef ASSERT
   219     n->_in = (Node**)n; // magic cookie for assertion check
   220 #endif
   221     n->_out = (Node**)C;
   222     return (void*)n;
   223   }
   225   // Delete is a NOP
   226   void operator delete( void *ptr ) {}
   227   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
   228   void destruct();
   230   // Create a new Node.  Required is the number is of inputs required for
   231   // semantic correctness.
   232   Node( uint required );
   234   // Create a new Node with given input edges.
   235   // This version requires use of the "edge-count" new.
   236   // E.g.  new (C,3) FooNode( C, NULL, left, right );
   237   Node( Node *n0 );
   238   Node( Node *n0, Node *n1 );
   239   Node( Node *n0, Node *n1, Node *n2 );
   240   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
   241   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
   242   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
   243   Node( Node *n0, Node *n1, Node *n2, Node *n3,
   244             Node *n4, Node *n5, Node *n6 );
   246   // Clone an inherited Node given only the base Node type.
   247   Node* clone() const;
   249   // Clone a Node, immediately supplying one or two new edges.
   250   // The first and second arguments, if non-null, replace in(1) and in(2),
   251   // respectively.
   252   Node* clone_with_data_edge(Node* in1, Node* in2 = NULL) const {
   253     Node* nn = clone();
   254     if (in1 != NULL)  nn->set_req(1, in1);
   255     if (in2 != NULL)  nn->set_req(2, in2);
   256     return nn;
   257   }
   259 private:
   260   // Shared setup for the above constructors.
   261   // Handles all interactions with Compile::current.
   262   // Puts initial values in all Node fields except _idx.
   263   // Returns the initial value for _idx, which cannot
   264   // be initialized by assignment.
   265   inline int Init(int req, Compile* C);
   267 //----------------- input edge handling
   268 protected:
   269   friend class PhaseCFG;        // Access to address of _in array elements
   270   Node **_in;                   // Array of use-def references to Nodes
   271   Node **_out;                  // Array of def-use references to Nodes
   273   // Input edges are split into two categories.  Required edges are required
   274   // for semantic correctness; order is important and NULLs are allowed.
   275   // Precedence edges are used to help determine execution order and are
   276   // added, e.g., for scheduling purposes.  They are unordered and not
   277   // duplicated; they have no embedded NULLs.  Edges from 0 to _cnt-1
   278   // are required, from _cnt to _max-1 are precedence edges.
   279   node_idx_t _cnt;              // Total number of required Node inputs.
   281   node_idx_t _max;              // Actual length of input array.
   283   // Output edges are an unordered list of def-use edges which exactly
   284   // correspond to required input edges which point from other nodes
   285   // to this one.  Thus the count of the output edges is the number of
   286   // users of this node.
   287   node_idx_t _outcnt;           // Total number of Node outputs.
   289   node_idx_t _outmax;           // Actual length of output array.
   291   // Grow the actual input array to the next larger power-of-2 bigger than len.
   292   void grow( uint len );
   293   // Grow the output array to the next larger power-of-2 bigger than len.
   294   void out_grow( uint len );
   296  public:
   297   // Each Node is assigned a unique small/dense number.  This number is used
   298   // to index into auxiliary arrays of data and bitvectors.
   299   // It is declared const to defend against inadvertant assignment,
   300   // since it is used by clients as a naked field.
   301   const node_idx_t _idx;
   303   // Get the (read-only) number of input edges
   304   uint req() const { return _cnt; }
   305   uint len() const { return _max; }
   306   // Get the (read-only) number of output edges
   307   uint outcnt() const { return _outcnt; }
   309 #if OPTO_DU_ITERATOR_ASSERT
   310   // Iterate over the out-edges of this node.  Deletions are illegal.
   311   inline DUIterator outs() const;
   312   // Use this when the out array might have changed to suppress asserts.
   313   inline DUIterator& refresh_out_pos(DUIterator& i) const;
   314   // Does the node have an out at this position?  (Used for iteration.)
   315   inline bool has_out(DUIterator& i) const;
   316   inline Node*    out(DUIterator& i) const;
   317   // Iterate over the out-edges of this node.  All changes are illegal.
   318   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
   319   inline Node*    fast_out(DUIterator_Fast& i) const;
   320   // Iterate over the out-edges of this node, deleting one at a time.
   321   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
   322   inline Node*    last_out(DUIterator_Last& i) const;
   323   // The inline bodies of all these methods are after the iterator definitions.
   324 #else
   325   // Iterate over the out-edges of this node.  Deletions are illegal.
   326   // This iteration uses integral indexes, to decouple from array reallocations.
   327   DUIterator outs() const  { return 0; }
   328   // Use this when the out array might have changed to suppress asserts.
   329   DUIterator refresh_out_pos(DUIterator i) const { return i; }
   331   // Reference to the i'th output Node.  Error if out of bounds.
   332   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
   333   // Does the node have an out at this position?  (Used for iteration.)
   334   bool has_out(DUIterator i) const { return i < _outcnt; }
   336   // Iterate over the out-edges of this node.  All changes are illegal.
   337   // This iteration uses a pointer internal to the out array.
   338   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
   339     Node** out = _out;
   340     // Assign a limit pointer to the reference argument:
   341     max = out + (ptrdiff_t)_outcnt;
   342     // Return the base pointer:
   343     return out;
   344   }
   345   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
   346   // Iterate over the out-edges of this node, deleting one at a time.
   347   // This iteration uses a pointer internal to the out array.
   348   DUIterator_Last last_outs(DUIterator_Last& min) const {
   349     Node** out = _out;
   350     // Assign a limit pointer to the reference argument:
   351     min = out;
   352     // Return the pointer to the start of the iteration:
   353     return out + (ptrdiff_t)_outcnt - 1;
   354   }
   355   Node*    last_out(DUIterator_Last i) const  { return *i; }
   356 #endif
   358   // Reference to the i'th input Node.  Error if out of bounds.
   359   Node* in(uint i) const { assert(i < _max, err_msg_res("oob: i=%d, _max=%d", i, _max)); return _in[i]; }
   360   // Reference to the i'th input Node.  NULL if out of bounds.
   361   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : NULL); }
   362   // Reference to the i'th output Node.  Error if out of bounds.
   363   // Use this accessor sparingly.  We are going trying to use iterators instead.
   364   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
   365   // Return the unique out edge.
   366   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
   367   // Delete out edge at position 'i' by moving last out edge to position 'i'
   368   void  raw_del_out(uint i) {
   369     assert(i < _outcnt,"oob");
   370     assert(_outcnt > 0,"oob");
   371     #if OPTO_DU_ITERATOR_ASSERT
   372     // Record that a change happened here.
   373     debug_only(_last_del = _out[i]; ++_del_tick);
   374     #endif
   375     _out[i] = _out[--_outcnt];
   376     // Smash the old edge so it can't be used accidentally.
   377     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   378   }
   380 #ifdef ASSERT
   381   bool is_dead() const;
   382 #define is_not_dead(n) ((n) == NULL || !VerifyIterativeGVN || !((n)->is_dead()))
   383 #endif
   384   // Check whether node has become unreachable
   385   bool is_unreachable(PhaseIterGVN &igvn) const;
   387   // Set a required input edge, also updates corresponding output edge
   388   void add_req( Node *n ); // Append a NEW required input
   389   void add_req( Node *n0, Node *n1 ) {
   390     add_req(n0); add_req(n1); }
   391   void add_req( Node *n0, Node *n1, Node *n2 ) {
   392     add_req(n0); add_req(n1); add_req(n2); }
   393   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
   394   void del_req( uint idx ); // Delete required edge & compact
   395   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
   396   void ins_req( uint i, Node *n ); // Insert a NEW required input
   397   void set_req( uint i, Node *n ) {
   398     assert( is_not_dead(n), "can not use dead node");
   399     assert( i < _cnt, err_msg_res("oob: i=%d, _cnt=%d", i, _cnt));
   400     assert( !VerifyHashTableKeys || _hash_lock == 0,
   401             "remove node from hash table before modifying it");
   402     Node** p = &_in[i];    // cache this._in, across the del_out call
   403     if (*p != NULL)  (*p)->del_out((Node *)this);
   404     (*p) = n;
   405     if (n != NULL)      n->add_out((Node *)this);
   406   }
   407   // Light version of set_req() to init inputs after node creation.
   408   void init_req( uint i, Node *n ) {
   409     assert( i == 0 && this == n ||
   410             is_not_dead(n), "can not use dead node");
   411     assert( i < _cnt, "oob");
   412     assert( !VerifyHashTableKeys || _hash_lock == 0,
   413             "remove node from hash table before modifying it");
   414     assert( _in[i] == NULL, "sanity");
   415     _in[i] = n;
   416     if (n != NULL)      n->add_out((Node *)this);
   417   }
   418   // Find first occurrence of n among my edges:
   419   int find_edge(Node* n);
   420   int replace_edge(Node* old, Node* neww);
   421   int replace_edges_in_range(Node* old, Node* neww, int start, int end);
   422   // NULL out all inputs to eliminate incoming Def-Use edges.
   423   // Return the number of edges between 'n' and 'this'
   424   int  disconnect_inputs(Node *n, Compile *c);
   426   // Quickly, return true if and only if I am Compile::current()->top().
   427   bool is_top() const {
   428     assert((this == (Node*) Compile::current()->top()) == (_out == NULL), "");
   429     return (_out == NULL);
   430   }
   431   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
   432   void setup_is_top();
   434   // Strip away casting.  (It is depth-limited.)
   435   Node* uncast() const;
   436   // Return whether two Nodes are equivalent, after stripping casting.
   437   bool eqv_uncast(const Node* n) const {
   438     return (this->uncast() == n->uncast());
   439   }
   441 private:
   442   static Node* uncast_helper(const Node* n);
   444   // Add an output edge to the end of the list
   445   void add_out( Node *n ) {
   446     if (is_top())  return;
   447     if( _outcnt == _outmax ) out_grow(_outcnt);
   448     _out[_outcnt++] = n;
   449   }
   450   // Delete an output edge
   451   void del_out( Node *n ) {
   452     if (is_top())  return;
   453     Node** outp = &_out[_outcnt];
   454     // Find and remove n
   455     do {
   456       assert(outp > _out, "Missing Def-Use edge");
   457     } while (*--outp != n);
   458     *outp = _out[--_outcnt];
   459     // Smash the old edge so it can't be used accidentally.
   460     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
   461     // Record that a change happened here.
   462     #if OPTO_DU_ITERATOR_ASSERT
   463     debug_only(_last_del = n; ++_del_tick);
   464     #endif
   465   }
   467 public:
   468   // Globally replace this node by a given new node, updating all uses.
   469   void replace_by(Node* new_node);
   470   // Globally replace this node by a given new node, updating all uses
   471   // and cutting input edges of old node.
   472   void subsume_by(Node* new_node, Compile* c) {
   473     replace_by(new_node);
   474     disconnect_inputs(NULL, c);
   475   }
   476   void set_req_X( uint i, Node *n, PhaseIterGVN *igvn );
   477   // Find the one non-null required input.  RegionNode only
   478   Node *nonnull_req() const;
   479   // Add or remove precedence edges
   480   void add_prec( Node *n );
   481   void rm_prec( uint i );
   482   void set_prec( uint i, Node *n ) {
   483     assert( is_not_dead(n), "can not use dead node");
   484     assert( i >= _cnt, "not a precedence edge");
   485     if (_in[i] != NULL) _in[i]->del_out((Node *)this);
   486     _in[i] = n;
   487     if (n != NULL) n->add_out((Node *)this);
   488   }
   489   // Set this node's index, used by cisc_version to replace current node
   490   void set_idx(uint new_idx) {
   491     const node_idx_t* ref = &_idx;
   492     *(node_idx_t*)ref = new_idx;
   493   }
   494   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
   495   void swap_edges(uint i1, uint i2) {
   496     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   497     // Def-Use info is unchanged
   498     Node* n1 = in(i1);
   499     Node* n2 = in(i2);
   500     _in[i1] = n2;
   501     _in[i2] = n1;
   502     // If this node is in the hash table, make sure it doesn't need a rehash.
   503     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
   504   }
   506   // Iterators over input Nodes for a Node X are written as:
   507   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
   508   // NOTE: Required edges can contain embedded NULL pointers.
   510 //----------------- Other Node Properties
   512   // Generate class id for some ideal nodes to avoid virtual query
   513   // methods is_<Node>().
   514   // Class id is the set of bits corresponded to the node class and all its
   515   // super classes so that queries for super classes are also valid.
   516   // Subclasses of the same super class have different assigned bit
   517   // (the third parameter in the macro DEFINE_CLASS_ID).
   518   // Classes with deeper hierarchy are declared first.
   519   // Classes with the same hierarchy depth are sorted by usage frequency.
   520   //
   521   // The query method masks the bits to cut off bits of subclasses
   522   // and then compare the result with the class id
   523   // (see the macro DEFINE_CLASS_QUERY below).
   524   //
   525   //  Class_MachCall=30, ClassMask_MachCall=31
   526   // 12               8               4               0
   527   //  0   0   0   0   0   0   0   0   1   1   1   1   0
   528   //                                  |   |   |   |
   529   //                                  |   |   |   Bit_Mach=2
   530   //                                  |   |   Bit_MachReturn=4
   531   //                                  |   Bit_MachSafePoint=8
   532   //                                  Bit_MachCall=16
   533   //
   534   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
   535   // 12               8               4               0
   536   //  0   0   0   0   0   0   0   1   1   1   0   0   0
   537   //                              |   |   |
   538   //                              |   |   Bit_Region=8
   539   //                              |   Bit_Loop=16
   540   //                              Bit_CountedLoop=32
   542   #define DEFINE_CLASS_ID(cl, supcl, subn) \
   543   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
   544   Class_##cl = Class_##supcl + Bit_##cl , \
   545   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
   547   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
   548   // so that it's values fits into 16 bits.
   549   enum NodeClasses {
   550     Bit_Node   = 0x0000,
   551     Class_Node = 0x0000,
   552     ClassMask_Node = 0xFFFF,
   554     DEFINE_CLASS_ID(Multi, Node, 0)
   555       DEFINE_CLASS_ID(SafePoint, Multi, 0)
   556         DEFINE_CLASS_ID(Call,      SafePoint, 0)
   557           DEFINE_CLASS_ID(CallJava,         Call, 0)
   558             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
   559             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
   560           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
   561             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
   562           DEFINE_CLASS_ID(Allocate,         Call, 2)
   563             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
   564           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
   565             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
   566             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
   567       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
   568         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
   569           DEFINE_CLASS_ID(Catch,       PCTable, 0)
   570           DEFINE_CLASS_ID(Jump,        PCTable, 1)
   571         DEFINE_CLASS_ID(If,          MultiBranch, 1)
   572           DEFINE_CLASS_ID(CountedLoopEnd, If, 0)
   573         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
   574       DEFINE_CLASS_ID(Start,       Multi, 2)
   575       DEFINE_CLASS_ID(MemBar,      Multi, 3)
   576         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
   577         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
   578       DEFINE_CLASS_ID(MathExact,   Multi, 4)
   580     DEFINE_CLASS_ID(Mach,  Node, 1)
   581       DEFINE_CLASS_ID(MachReturn, Mach, 0)
   582         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
   583           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
   584             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
   585               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
   586               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
   587             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
   588               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
   589       DEFINE_CLASS_ID(MachBranch, Mach, 1)
   590         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
   591         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
   592         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
   593       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
   594       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
   595       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
   596       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
   598     DEFINE_CLASS_ID(Type,  Node, 2)
   599       DEFINE_CLASS_ID(Phi,   Type, 0)
   600       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
   601       DEFINE_CLASS_ID(CheckCastPP, Type, 2)
   602       DEFINE_CLASS_ID(CMove, Type, 3)
   603       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
   604       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
   605         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
   606         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
   607       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
   608         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
   609         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
   611     DEFINE_CLASS_ID(Proj,  Node, 3)
   612       DEFINE_CLASS_ID(CatchProj, Proj, 0)
   613       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
   614       DEFINE_CLASS_ID(IfTrue,    Proj, 2)
   615       DEFINE_CLASS_ID(IfFalse,   Proj, 3)
   616       DEFINE_CLASS_ID(Parm,      Proj, 4)
   617       DEFINE_CLASS_ID(MachProj,  Proj, 5)
   619     DEFINE_CLASS_ID(Mem,   Node, 4)
   620       DEFINE_CLASS_ID(Load,  Mem, 0)
   621         DEFINE_CLASS_ID(LoadVector,  Load, 0)
   622       DEFINE_CLASS_ID(Store, Mem, 1)
   623         DEFINE_CLASS_ID(StoreVector, Store, 0)
   624       DEFINE_CLASS_ID(LoadStore, Mem, 2)
   626     DEFINE_CLASS_ID(Region, Node, 5)
   627       DEFINE_CLASS_ID(Loop, Region, 0)
   628         DEFINE_CLASS_ID(Root,        Loop, 0)
   629         DEFINE_CLASS_ID(CountedLoop, Loop, 1)
   631     DEFINE_CLASS_ID(Sub,   Node, 6)
   632       DEFINE_CLASS_ID(Cmp,   Sub, 0)
   633         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
   634         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
   635         DEFINE_CLASS_ID(FlagsProj, Cmp, 2)
   637     DEFINE_CLASS_ID(MergeMem, Node, 7)
   638     DEFINE_CLASS_ID(Bool,     Node, 8)
   639     DEFINE_CLASS_ID(AddP,     Node, 9)
   640     DEFINE_CLASS_ID(BoxLock,  Node, 10)
   641     DEFINE_CLASS_ID(Add,      Node, 11)
   642     DEFINE_CLASS_ID(Mul,      Node, 12)
   643     DEFINE_CLASS_ID(Vector,   Node, 13)
   644     DEFINE_CLASS_ID(ClearArray, Node, 14)
   646     _max_classes  = ClassMask_ClearArray
   647   };
   648   #undef DEFINE_CLASS_ID
   650   // Flags are sorted by usage frequency.
   651   enum NodeFlags {
   652     Flag_is_Copy             = 0x01, // should be first bit to avoid shift
   653     Flag_rematerialize       = Flag_is_Copy << 1,
   654     Flag_needs_anti_dependence_check = Flag_rematerialize << 1,
   655     Flag_is_macro            = Flag_needs_anti_dependence_check << 1,
   656     Flag_is_Con              = Flag_is_macro << 1,
   657     Flag_is_cisc_alternate   = Flag_is_Con << 1,
   658     Flag_is_dead_loop_safe   = Flag_is_cisc_alternate << 1,
   659     Flag_may_be_short_branch = Flag_is_dead_loop_safe << 1,
   660     Flag_avoid_back_to_back  = Flag_may_be_short_branch << 1,
   661     Flag_has_call            = Flag_avoid_back_to_back << 1,
   662     Flag_is_expensive        = Flag_has_call << 1,
   663     _max_flags = (Flag_is_expensive << 1) - 1 // allow flags combination
   664   };
   666 private:
   667   jushort _class_id;
   668   jushort _flags;
   670 protected:
   671   // These methods should be called from constructors only.
   672   void init_class_id(jushort c) {
   673     assert(c <= _max_classes, "invalid node class");
   674     _class_id = c; // cast out const
   675   }
   676   void init_flags(jushort fl) {
   677     assert(fl <= _max_flags, "invalid node flag");
   678     _flags |= fl;
   679   }
   680   void clear_flag(jushort fl) {
   681     assert(fl <= _max_flags, "invalid node flag");
   682     _flags &= ~fl;
   683   }
   685 public:
   686   const jushort class_id() const { return _class_id; }
   688   const jushort flags() const { return _flags; }
   690   // Return a dense integer opcode number
   691   virtual int Opcode() const;
   693   // Virtual inherited Node size
   694   virtual uint size_of() const;
   696   // Other interesting Node properties
   697   #define DEFINE_CLASS_QUERY(type)                           \
   698   bool is_##type() const {                                   \
   699     return ((_class_id & ClassMask_##type) == Class_##type); \
   700   }                                                          \
   701   type##Node *as_##type() const {                            \
   702     assert(is_##type(), "invalid node class");               \
   703     return (type##Node*)this;                                \
   704   }                                                          \
   705   type##Node* isa_##type() const {                           \
   706     return (is_##type()) ? as_##type() : NULL;               \
   707   }
   709   DEFINE_CLASS_QUERY(AbstractLock)
   710   DEFINE_CLASS_QUERY(Add)
   711   DEFINE_CLASS_QUERY(AddP)
   712   DEFINE_CLASS_QUERY(Allocate)
   713   DEFINE_CLASS_QUERY(AllocateArray)
   714   DEFINE_CLASS_QUERY(Bool)
   715   DEFINE_CLASS_QUERY(BoxLock)
   716   DEFINE_CLASS_QUERY(Call)
   717   DEFINE_CLASS_QUERY(CallDynamicJava)
   718   DEFINE_CLASS_QUERY(CallJava)
   719   DEFINE_CLASS_QUERY(CallLeaf)
   720   DEFINE_CLASS_QUERY(CallRuntime)
   721   DEFINE_CLASS_QUERY(CallStaticJava)
   722   DEFINE_CLASS_QUERY(Catch)
   723   DEFINE_CLASS_QUERY(CatchProj)
   724   DEFINE_CLASS_QUERY(CheckCastPP)
   725   DEFINE_CLASS_QUERY(ConstraintCast)
   726   DEFINE_CLASS_QUERY(ClearArray)
   727   DEFINE_CLASS_QUERY(CMove)
   728   DEFINE_CLASS_QUERY(Cmp)
   729   DEFINE_CLASS_QUERY(CountedLoop)
   730   DEFINE_CLASS_QUERY(CountedLoopEnd)
   731   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
   732   DEFINE_CLASS_QUERY(DecodeN)
   733   DEFINE_CLASS_QUERY(DecodeNKlass)
   734   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
   735   DEFINE_CLASS_QUERY(EncodeP)
   736   DEFINE_CLASS_QUERY(EncodePKlass)
   737   DEFINE_CLASS_QUERY(FastLock)
   738   DEFINE_CLASS_QUERY(FastUnlock)
   739   DEFINE_CLASS_QUERY(FlagsProj)
   740   DEFINE_CLASS_QUERY(If)
   741   DEFINE_CLASS_QUERY(IfFalse)
   742   DEFINE_CLASS_QUERY(IfTrue)
   743   DEFINE_CLASS_QUERY(Initialize)
   744   DEFINE_CLASS_QUERY(Jump)
   745   DEFINE_CLASS_QUERY(JumpProj)
   746   DEFINE_CLASS_QUERY(Load)
   747   DEFINE_CLASS_QUERY(LoadStore)
   748   DEFINE_CLASS_QUERY(Lock)
   749   DEFINE_CLASS_QUERY(Loop)
   750   DEFINE_CLASS_QUERY(Mach)
   751   DEFINE_CLASS_QUERY(MachBranch)
   752   DEFINE_CLASS_QUERY(MachCall)
   753   DEFINE_CLASS_QUERY(MachCallDynamicJava)
   754   DEFINE_CLASS_QUERY(MachCallJava)
   755   DEFINE_CLASS_QUERY(MachCallLeaf)
   756   DEFINE_CLASS_QUERY(MachCallRuntime)
   757   DEFINE_CLASS_QUERY(MachCallStaticJava)
   758   DEFINE_CLASS_QUERY(MachConstantBase)
   759   DEFINE_CLASS_QUERY(MachConstant)
   760   DEFINE_CLASS_QUERY(MachGoto)
   761   DEFINE_CLASS_QUERY(MachIf)
   762   DEFINE_CLASS_QUERY(MachNullCheck)
   763   DEFINE_CLASS_QUERY(MachProj)
   764   DEFINE_CLASS_QUERY(MachReturn)
   765   DEFINE_CLASS_QUERY(MachSafePoint)
   766   DEFINE_CLASS_QUERY(MachSpillCopy)
   767   DEFINE_CLASS_QUERY(MachTemp)
   768   DEFINE_CLASS_QUERY(MathExact)
   769   DEFINE_CLASS_QUERY(Mem)
   770   DEFINE_CLASS_QUERY(MemBar)
   771   DEFINE_CLASS_QUERY(MemBarStoreStore)
   772   DEFINE_CLASS_QUERY(MergeMem)
   773   DEFINE_CLASS_QUERY(Mul)
   774   DEFINE_CLASS_QUERY(Multi)
   775   DEFINE_CLASS_QUERY(MultiBranch)
   776   DEFINE_CLASS_QUERY(Parm)
   777   DEFINE_CLASS_QUERY(PCTable)
   778   DEFINE_CLASS_QUERY(Phi)
   779   DEFINE_CLASS_QUERY(Proj)
   780   DEFINE_CLASS_QUERY(Region)
   781   DEFINE_CLASS_QUERY(Root)
   782   DEFINE_CLASS_QUERY(SafePoint)
   783   DEFINE_CLASS_QUERY(SafePointScalarObject)
   784   DEFINE_CLASS_QUERY(Start)
   785   DEFINE_CLASS_QUERY(Store)
   786   DEFINE_CLASS_QUERY(Sub)
   787   DEFINE_CLASS_QUERY(Type)
   788   DEFINE_CLASS_QUERY(Vector)
   789   DEFINE_CLASS_QUERY(LoadVector)
   790   DEFINE_CLASS_QUERY(StoreVector)
   791   DEFINE_CLASS_QUERY(Unlock)
   793   #undef DEFINE_CLASS_QUERY
   795   // duplicate of is_MachSpillCopy()
   796   bool is_SpillCopy () const {
   797     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
   798   }
   800   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
   801   // The data node which is safe to leave in dead loop during IGVN optimization.
   802   bool is_dead_loop_safe() const {
   803     return is_Phi() || (is_Proj() && in(0) == NULL) ||
   804            ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0 &&
   805             (!is_Proj() || !in(0)->is_Allocate()));
   806   }
   808   // is_Copy() returns copied edge index (0 or 1)
   809   uint is_Copy() const { return (_flags & Flag_is_Copy); }
   811   virtual bool is_CFG() const { return false; }
   813   // If this node is control-dependent on a test, can it be
   814   // rerouted to a dominating equivalent test?  This is usually
   815   // true of non-CFG nodes, but can be false for operations which
   816   // depend for their correct sequencing on more than one test.
   817   // (In that case, hoisting to a dominating test may silently
   818   // skip some other important test.)
   819   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
   821   // When building basic blocks, I need to have a notion of block beginning
   822   // Nodes, next block selector Nodes (block enders), and next block
   823   // projections.  These calls need to work on their machine equivalents.  The
   824   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
   825   bool is_block_start() const {
   826     if ( is_Region() )
   827       return this == (const Node*)in(0);
   828     else
   829       return is_Start();
   830   }
   832   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
   833   // Goto and Return.  This call also returns the block ending Node.
   834   virtual const Node *is_block_proj() const;
   836   // The node is a "macro" node which needs to be expanded before matching
   837   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
   838   // The node is expensive: the best control is set during loop opts
   839   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != NULL; }
   841 //----------------- Optimization
   843   // Get the worst-case Type output for this Node.
   844   virtual const class Type *bottom_type() const;
   846   // If we find a better type for a node, try to record it permanently.
   847   // Return true if this node actually changed.
   848   // Be sure to do the hash_delete game in the "rehash" variant.
   849   void raise_bottom_type(const Type* new_type);
   851   // Get the address type with which this node uses and/or defs memory,
   852   // or NULL if none.  The address type is conservatively wide.
   853   // Returns non-null for calls, membars, loads, stores, etc.
   854   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
   855   virtual const class TypePtr *adr_type() const { return NULL; }
   857   // Return an existing node which computes the same function as this node.
   858   // The optimistic combined algorithm requires this to return a Node which
   859   // is a small number of steps away (e.g., one of my inputs).
   860   virtual Node *Identity( PhaseTransform *phase );
   862   // Return the set of values this Node can take on at runtime.
   863   virtual const Type *Value( PhaseTransform *phase ) const;
   865   // Return a node which is more "ideal" than the current node.
   866   // The invariants on this call are subtle.  If in doubt, read the
   867   // treatise in node.cpp above the default implemention AND TEST WITH
   868   // +VerifyIterativeGVN!
   869   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   871   // Some nodes have specific Ideal subgraph transformations only if they are
   872   // unique users of specific nodes. Such nodes should be put on IGVN worklist
   873   // for the transformations to happen.
   874   bool has_special_unique_user() const;
   876   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
   877   Node* find_exact_control(Node* ctrl);
   879   // Check if 'this' node dominates or equal to 'sub'.
   880   bool dominates(Node* sub, Node_List &nlist);
   882 protected:
   883   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
   884 public:
   886   // Idealize graph, using DU info.  Done after constant propagation
   887   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
   889   // See if there is valid pipeline info
   890   static  const Pipeline *pipeline_class();
   891   virtual const Pipeline *pipeline() const;
   893   // Compute the latency from the def to this instruction of the ith input node
   894   uint latency(uint i);
   896   // Hash & compare functions, for pessimistic value numbering
   898   // If the hash function returns the special sentinel value NO_HASH,
   899   // the node is guaranteed never to compare equal to any other node.
   900   // If we accidentally generate a hash with value NO_HASH the node
   901   // won't go into the table and we'll lose a little optimization.
   902   enum { NO_HASH = 0 };
   903   virtual uint hash() const;
   904   virtual uint cmp( const Node &n ) const;
   906   // Operation appears to be iteratively computed (such as an induction variable)
   907   // It is possible for this operation to return false for a loop-varying
   908   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
   909   bool is_iteratively_computed();
   911   // Determine if a node is Counted loop induction variable.
   912   // The method is defined in loopnode.cpp.
   913   const Node* is_loop_iv() const;
   915   // Return a node with opcode "opc" and same inputs as "this" if one can
   916   // be found; Otherwise return NULL;
   917   Node* find_similar(int opc);
   919   // Return the unique control out if only one. Null if none or more than one.
   920   Node* unique_ctrl_out();
   922 //----------------- Code Generation
   924   // Ideal register class for Matching.  Zero means unmatched instruction
   925   // (these are cloned instead of converted to machine nodes).
   926   virtual uint ideal_reg() const;
   928   static const uint NotAMachineReg;   // must be > max. machine register
   930   // Do we Match on this edge index or not?  Generally false for Control
   931   // and true for everything else.  Weird for calls & returns.
   932   virtual uint match_edge(uint idx) const;
   934   // Register class output is returned in
   935   virtual const RegMask &out_RegMask() const;
   936   // Register class input is expected in
   937   virtual const RegMask &in_RegMask(uint) const;
   938   // Should we clone rather than spill this instruction?
   939   bool rematerialize() const;
   941   // Return JVM State Object if this Node carries debug info, or NULL otherwise
   942   virtual JVMState* jvms() const;
   944   // Print as assembly
   945   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
   946   // Emit bytes starting at parameter 'ptr'
   947   // Bump 'ptr' by the number of output bytes
   948   virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;
   949   // Size of instruction in bytes
   950   virtual uint size(PhaseRegAlloc *ra_) const;
   952   // Convenience function to extract an integer constant from a node.
   953   // If it is not an integer constant (either Con, CastII, or Mach),
   954   // return value_if_unknown.
   955   jint find_int_con(jint value_if_unknown) const {
   956     const TypeInt* t = find_int_type();
   957     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   958   }
   959   // Return the constant, knowing it is an integer constant already
   960   jint get_int() const {
   961     const TypeInt* t = find_int_type();
   962     guarantee(t != NULL, "must be con");
   963     return t->get_con();
   964   }
   965   // Here's where the work is done.  Can produce non-constant int types too.
   966   const TypeInt* find_int_type() const;
   968   // Same thing for long (and intptr_t, via type.hpp):
   969   jlong get_long() const {
   970     const TypeLong* t = find_long_type();
   971     guarantee(t != NULL, "must be con");
   972     return t->get_con();
   973   }
   974   jlong find_long_con(jint value_if_unknown) const {
   975     const TypeLong* t = find_long_type();
   976     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
   977   }
   978   const TypeLong* find_long_type() const;
   980   const TypePtr* get_ptr_type() const;
   982   // These guys are called by code generated by ADLC:
   983   intptr_t get_ptr() const;
   984   intptr_t get_narrowcon() const;
   985   jdouble getd() const;
   986   jfloat getf() const;
   988   // Nodes which are pinned into basic blocks
   989   virtual bool pinned() const { return false; }
   991   // Nodes which use memory without consuming it, hence need antidependences
   992   // More specifically, needs_anti_dependence_check returns true iff the node
   993   // (a) does a load, and (b) does not perform a store (except perhaps to a
   994   // stack slot or some other unaliased location).
   995   bool needs_anti_dependence_check() const;
   997   // Return which operand this instruction may cisc-spill. In other words,
   998   // return operand position that can convert from reg to memory access
   999   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
  1000   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
  1002 //----------------- Graph walking
  1003 public:
  1004   // Walk and apply member functions recursively.
  1005   // Supplied (this) pointer is root.
  1006   void walk(NFunc pre, NFunc post, void *env);
  1007   static void nop(Node &, void*); // Dummy empty function
  1008   static void packregion( Node &n, void* );
  1009 private:
  1010   void walk_(NFunc pre, NFunc post, void *env, VectorSet &visited);
  1012 //----------------- Printing, etc
  1013 public:
  1014 #ifndef PRODUCT
  1015   Node* find(int idx) const;         // Search the graph for the given idx.
  1016   Node* find_ctrl(int idx) const;    // Search control ancestors for the given idx.
  1017   void dump() const { dump("\n"); }  // Print this node.
  1018   void dump(const char* suffix, outputStream *st = tty) const;// Print this node.
  1019   void dump(int depth) const;        // Print this node, recursively to depth d
  1020   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
  1021   virtual void dump_req(outputStream *st = tty) const;     // Print required-edge info
  1022   virtual void dump_prec(outputStream *st = tty) const;    // Print precedence-edge info
  1023   virtual void dump_out(outputStream *st = tty) const;     // Print the output edge info
  1024   virtual void dump_spec(outputStream *st) const {}; // Print per-node info
  1025   void verify_edges(Unique_Node_List &visited); // Verify bi-directional edges
  1026   void verify() const;               // Check Def-Use info for my subgraph
  1027   static void verify_recur(const Node *n, int verify_depth, VectorSet &old_space, VectorSet &new_space);
  1029   // This call defines a class-unique string used to identify class instances
  1030   virtual const char *Name() const;
  1032   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
  1033   // RegMask Print Functions
  1034   void dump_in_regmask(int idx) { in_RegMask(idx).dump(); }
  1035   void dump_out_regmask() { out_RegMask().dump(); }
  1036   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; }
  1037   void fast_dump() const {
  1038     tty->print("%4d: %-17s", _idx, Name());
  1039     for (uint i = 0; i < len(); i++)
  1040       if (in(i))
  1041         tty->print(" %4d", in(i)->_idx);
  1042       else
  1043         tty->print(" NULL");
  1044     tty->print("\n");
  1046 #endif
  1047 #ifdef ASSERT
  1048   void verify_construction();
  1049   bool verify_jvms(const JVMState* jvms) const;
  1050   int  _debug_idx;                     // Unique value assigned to every node.
  1051   int   debug_idx() const              { return _debug_idx; }
  1052   void  set_debug_idx( int debug_idx ) { _debug_idx = debug_idx; }
  1054   Node* _debug_orig;                   // Original version of this, if any.
  1055   Node*  debug_orig() const            { return _debug_orig; }
  1056   void   set_debug_orig(Node* orig);   // _debug_orig = orig
  1058   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
  1059   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
  1060   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
  1062   static void init_NodeProperty();
  1064   #if OPTO_DU_ITERATOR_ASSERT
  1065   const Node* _last_del;               // The last deleted node.
  1066   uint        _del_tick;               // Bumped when a deletion happens..
  1067   #endif
  1068 #endif
  1069 };
  1071 //-----------------------------------------------------------------------------
  1072 // Iterators over DU info, and associated Node functions.
  1074 #if OPTO_DU_ITERATOR_ASSERT
  1076 // Common code for assertion checking on DU iterators.
  1077 class DUIterator_Common VALUE_OBJ_CLASS_SPEC {
  1078 #ifdef ASSERT
  1079  protected:
  1080   bool         _vdui;               // cached value of VerifyDUIterators
  1081   const Node*  _node;               // the node containing the _out array
  1082   uint         _outcnt;             // cached node->_outcnt
  1083   uint         _del_tick;           // cached node->_del_tick
  1084   Node*        _last;               // last value produced by the iterator
  1086   void sample(const Node* node);    // used by c'tor to set up for verifies
  1087   void verify(const Node* node, bool at_end_ok = false);
  1088   void verify_resync();
  1089   void reset(const DUIterator_Common& that);
  1091 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
  1092   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
  1093 #else
  1094   #define I_VDUI_ONLY(i,x) { }
  1095 #endif //ASSERT
  1096 };
  1098 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
  1100 // Default DU iterator.  Allows appends onto the out array.
  1101 // Allows deletion from the out array only at the current point.
  1102 // Usage:
  1103 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
  1104 //    Node* y = x->out(i);
  1105 //    ...
  1106 //  }
  1107 // Compiles in product mode to a unsigned integer index, which indexes
  1108 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
  1109 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
  1110 // before continuing the loop.  You must delete only the last-produced
  1111 // edge.  You must delete only a single copy of the last-produced edge,
  1112 // or else you must delete all copies at once (the first time the edge
  1113 // is produced by the iterator).
  1114 class DUIterator : public DUIterator_Common {
  1115   friend class Node;
  1117   // This is the index which provides the product-mode behavior.
  1118   // Whatever the product-mode version of the system does to the
  1119   // DUI index is done to this index.  All other fields in
  1120   // this class are used only for assertion checking.
  1121   uint         _idx;
  1123   #ifdef ASSERT
  1124   uint         _refresh_tick;    // Records the refresh activity.
  1126   void sample(const Node* node); // Initialize _refresh_tick etc.
  1127   void verify(const Node* node, bool at_end_ok = false);
  1128   void verify_increment();       // Verify an increment operation.
  1129   void verify_resync();          // Verify that we can back up over a deletion.
  1130   void verify_finish();          // Verify that the loop terminated properly.
  1131   void refresh();                // Resample verification info.
  1132   void reset(const DUIterator& that);  // Resample after assignment.
  1133   #endif
  1135   DUIterator(const Node* node, int dummy_to_avoid_conversion)
  1136     { _idx = 0;                         debug_only(sample(node)); }
  1138  public:
  1139   // initialize to garbage; clear _vdui to disable asserts
  1140   DUIterator()
  1141     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1143   void operator++(int dummy_to_specify_postfix_op)
  1144     { _idx++;                           VDUI_ONLY(verify_increment()); }
  1146   void operator--()
  1147     { VDUI_ONLY(verify_resync());       --_idx; }
  1149   ~DUIterator()
  1150     { VDUI_ONLY(verify_finish()); }
  1152   void operator=(const DUIterator& that)
  1153     { _idx = that._idx;                 debug_only(reset(that)); }
  1154 };
  1156 DUIterator Node::outs() const
  1157   { return DUIterator(this, 0); }
  1158 DUIterator& Node::refresh_out_pos(DUIterator& i) const
  1159   { I_VDUI_ONLY(i, i.refresh());        return i; }
  1160 bool Node::has_out(DUIterator& i) const
  1161   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
  1162 Node*    Node::out(DUIterator& i) const
  1163   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
  1166 // Faster DU iterator.  Disallows insertions into the out array.
  1167 // Allows deletion from the out array only at the current point.
  1168 // Usage:
  1169 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
  1170 //    Node* y = x->fast_out(i);
  1171 //    ...
  1172 //  }
  1173 // Compiles in product mode to raw Node** pointer arithmetic, with
  1174 // no reloading of pointers from the original node x.  If you delete,
  1175 // you must perform "--i; --imax" just before continuing the loop.
  1176 // If you delete multiple copies of the same edge, you must decrement
  1177 // imax, but not i, multiple times:  "--i, imax -= num_edges".
  1178 class DUIterator_Fast : public DUIterator_Common {
  1179   friend class Node;
  1180   friend class DUIterator_Last;
  1182   // This is the pointer which provides the product-mode behavior.
  1183   // Whatever the product-mode version of the system does to the
  1184   // DUI pointer is done to this pointer.  All other fields in
  1185   // this class are used only for assertion checking.
  1186   Node**       _outp;
  1188   #ifdef ASSERT
  1189   void verify(const Node* node, bool at_end_ok = false);
  1190   void verify_limit();
  1191   void verify_resync();
  1192   void verify_relimit(uint n);
  1193   void reset(const DUIterator_Fast& that);
  1194   #endif
  1196   // Note:  offset must be signed, since -1 is sometimes passed
  1197   DUIterator_Fast(const Node* node, ptrdiff_t offset)
  1198     { _outp = node->_out + offset;      debug_only(sample(node)); }
  1200  public:
  1201   // initialize to garbage; clear _vdui to disable asserts
  1202   DUIterator_Fast()
  1203     { /*initialize to garbage*/         debug_only(_vdui = false); }
  1205   void operator++(int dummy_to_specify_postfix_op)
  1206     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
  1208   void operator--()
  1209     { VDUI_ONLY(verify_resync());       --_outp; }
  1211   void operator-=(uint n)   // applied to the limit only
  1212     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
  1214   bool operator<(DUIterator_Fast& limit) {
  1215     I_VDUI_ONLY(*this, this->verify(_node, true));
  1216     I_VDUI_ONLY(limit, limit.verify_limit());
  1217     return _outp < limit._outp;
  1220   void operator=(const DUIterator_Fast& that)
  1221     { _outp = that._outp;               debug_only(reset(that)); }
  1222 };
  1224 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
  1225   // Assign a limit pointer to the reference argument:
  1226   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
  1227   // Return the base pointer:
  1228   return DUIterator_Fast(this, 0);
  1230 Node* Node::fast_out(DUIterator_Fast& i) const {
  1231   I_VDUI_ONLY(i, i.verify(this));
  1232   return debug_only(i._last=) *i._outp;
  1236 // Faster DU iterator.  Requires each successive edge to be removed.
  1237 // Does not allow insertion of any edges.
  1238 // Usage:
  1239 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
  1240 //    Node* y = x->last_out(i);
  1241 //    ...
  1242 //  }
  1243 // Compiles in product mode to raw Node** pointer arithmetic, with
  1244 // no reloading of pointers from the original node x.
  1245 class DUIterator_Last : private DUIterator_Fast {
  1246   friend class Node;
  1248   #ifdef ASSERT
  1249   void verify(const Node* node, bool at_end_ok = false);
  1250   void verify_limit();
  1251   void verify_step(uint num_edges);
  1252   #endif
  1254   // Note:  offset must be signed, since -1 is sometimes passed
  1255   DUIterator_Last(const Node* node, ptrdiff_t offset)
  1256     : DUIterator_Fast(node, offset) { }
  1258   void operator++(int dummy_to_specify_postfix_op) {} // do not use
  1259   void operator<(int)                              {} // do not use
  1261  public:
  1262   DUIterator_Last() { }
  1263   // initialize to garbage
  1265   void operator--()
  1266     { _outp--;              VDUI_ONLY(verify_step(1));  }
  1268   void operator-=(uint n)
  1269     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
  1271   bool operator>=(DUIterator_Last& limit) {
  1272     I_VDUI_ONLY(*this, this->verify(_node, true));
  1273     I_VDUI_ONLY(limit, limit.verify_limit());
  1274     return _outp >= limit._outp;
  1277   void operator=(const DUIterator_Last& that)
  1278     { DUIterator_Fast::operator=(that); }
  1279 };
  1281 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
  1282   // Assign a limit pointer to the reference argument:
  1283   imin = DUIterator_Last(this, 0);
  1284   // Return the initial pointer:
  1285   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
  1287 Node* Node::last_out(DUIterator_Last& i) const {
  1288   I_VDUI_ONLY(i, i.verify(this));
  1289   return debug_only(i._last=) *i._outp;
  1292 #endif //OPTO_DU_ITERATOR_ASSERT
  1294 #undef I_VDUI_ONLY
  1295 #undef VDUI_ONLY
  1297 // An Iterator that truly follows the iterator pattern.  Doesn't
  1298 // support deletion but could be made to.
  1299 //
  1300 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
  1301 //     Node* m = i.get();
  1302 //
  1303 class SimpleDUIterator : public StackObj {
  1304  private:
  1305   Node* node;
  1306   DUIterator_Fast i;
  1307   DUIterator_Fast imax;
  1308  public:
  1309   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
  1310   bool has_next() { return i < imax; }
  1311   void next() { i++; }
  1312   Node* get() { return node->fast_out(i); }
  1313 };
  1316 //-----------------------------------------------------------------------------
  1317 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
  1318 // Abstractly provides an infinite array of Node*'s, initialized to NULL.
  1319 // Note that the constructor just zeros things, and since I use Arena
  1320 // allocation I do not need a destructor to reclaim storage.
  1321 class Node_Array : public ResourceObj {
  1322   friend class VMStructs;
  1323 protected:
  1324   Arena *_a;                    // Arena to allocate in
  1325   uint   _max;
  1326   Node **_nodes;
  1327   void   grow( uint i );        // Grow array node to fit
  1328 public:
  1329   Node_Array(Arena *a) : _a(a), _max(OptoNodeListSize) {
  1330     _nodes = NEW_ARENA_ARRAY( a, Node *, OptoNodeListSize );
  1331     for( int i = 0; i < OptoNodeListSize; i++ ) {
  1332       _nodes[i] = NULL;
  1336   Node_Array(Node_Array *na) : _a(na->_a), _max(na->_max), _nodes(na->_nodes) {}
  1337   Node *operator[] ( uint i ) const // Lookup, or NULL for not mapped
  1338   { return (i<_max) ? _nodes[i] : (Node*)NULL; }
  1339   Node *at( uint i ) const { assert(i<_max,"oob"); return _nodes[i]; }
  1340   Node **adr() { return _nodes; }
  1341   // Extend the mapping: index i maps to Node *n.
  1342   void map( uint i, Node *n ) { if( i>=_max ) grow(i); _nodes[i] = n; }
  1343   void insert( uint i, Node *n );
  1344   void remove( uint i );        // Remove, preserving order
  1345   void sort( C_sort_func_t func);
  1346   void reset( Arena *new_a );   // Zap mapping to empty; reclaim storage
  1347   void clear();                 // Set all entries to NULL, keep storage
  1348   uint Size() const { return _max; }
  1349   void dump() const;
  1350 };
  1352 class Node_List : public Node_Array {
  1353   friend class VMStructs;
  1354   uint _cnt;
  1355 public:
  1356   Node_List() : Node_Array(Thread::current()->resource_area()), _cnt(0) {}
  1357   Node_List(Arena *a) : Node_Array(a), _cnt(0) {}
  1358   bool contains(const Node* n) const {
  1359     for (uint e = 0; e < size(); e++) {
  1360       if (at(e) == n) return true;
  1362     return false;
  1364   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
  1365   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
  1366   void push( Node *b ) { map(_cnt++,b); }
  1367   void yank( Node *n );         // Find and remove
  1368   Node *pop() { return _nodes[--_cnt]; }
  1369   Node *rpop() { Node *b = _nodes[0]; _nodes[0]=_nodes[--_cnt]; return b;}
  1370   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
  1371   uint size() const { return _cnt; }
  1372   void dump() const;
  1373 };
  1375 //------------------------------Unique_Node_List-------------------------------
  1376 class Unique_Node_List : public Node_List {
  1377   friend class VMStructs;
  1378   VectorSet _in_worklist;
  1379   uint _clock_index;            // Index in list where to pop from next
  1380 public:
  1381   Unique_Node_List() : Node_List(), _in_worklist(Thread::current()->resource_area()), _clock_index(0) {}
  1382   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
  1384   void remove( Node *n );
  1385   bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; }
  1386   VectorSet &member_set(){ return _in_worklist; }
  1388   void push( Node *b ) {
  1389     if( !_in_worklist.test_set(b->_idx) )
  1390       Node_List::push(b);
  1392   Node *pop() {
  1393     if( _clock_index >= size() ) _clock_index = 0;
  1394     Node *b = at(_clock_index);
  1395     map( _clock_index, Node_List::pop());
  1396     if (size() != 0) _clock_index++; // Always start from 0
  1397     _in_worklist >>= b->_idx;
  1398     return b;
  1400   Node *remove( uint i ) {
  1401     Node *b = Node_List::at(i);
  1402     _in_worklist >>= b->_idx;
  1403     map(i,Node_List::pop());
  1404     return b;
  1406   void yank( Node *n ) { _in_worklist >>= n->_idx; Node_List::yank(n); }
  1407   void  clear() {
  1408     _in_worklist.Clear();        // Discards storage but grows automatically
  1409     Node_List::clear();
  1410     _clock_index = 0;
  1413   // Used after parsing to remove useless nodes before Iterative GVN
  1414   void remove_useless_nodes(VectorSet &useful);
  1416 #ifndef PRODUCT
  1417   void print_set() const { _in_worklist.print(); }
  1418 #endif
  1419 };
  1421 // Inline definition of Compile::record_for_igvn must be deferred to this point.
  1422 inline void Compile::record_for_igvn(Node* n) {
  1423   _for_igvn->push(n);
  1426 //------------------------------Node_Stack-------------------------------------
  1427 class Node_Stack {
  1428   friend class VMStructs;
  1429 protected:
  1430   struct INode {
  1431     Node *node; // Processed node
  1432     uint  indx; // Index of next node's child
  1433   };
  1434   INode *_inode_top; // tos, stack grows up
  1435   INode *_inode_max; // End of _inodes == _inodes + _max
  1436   INode *_inodes;    // Array storage for the stack
  1437   Arena *_a;         // Arena to allocate in
  1438   void grow();
  1439 public:
  1440   Node_Stack(int size) {
  1441     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1442     _a = Thread::current()->resource_area();
  1443     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1444     _inode_max = _inodes + max;
  1445     _inode_top = _inodes - 1; // stack is empty
  1448   Node_Stack(Arena *a, int size) : _a(a) {
  1449     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
  1450     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
  1451     _inode_max = _inodes + max;
  1452     _inode_top = _inodes - 1; // stack is empty
  1455   void pop() {
  1456     assert(_inode_top >= _inodes, "node stack underflow");
  1457     --_inode_top;
  1459   void push(Node *n, uint i) {
  1460     ++_inode_top;
  1461     if (_inode_top >= _inode_max) grow();
  1462     INode *top = _inode_top; // optimization
  1463     top->node = n;
  1464     top->indx = i;
  1466   Node *node() const {
  1467     return _inode_top->node;
  1469   Node* node_at(uint i) const {
  1470     assert(_inodes + i <= _inode_top, "in range");
  1471     return _inodes[i].node;
  1473   uint index() const {
  1474     return _inode_top->indx;
  1476   uint index_at(uint i) const {
  1477     assert(_inodes + i <= _inode_top, "in range");
  1478     return _inodes[i].indx;
  1480   void set_node(Node *n) {
  1481     _inode_top->node = n;
  1483   void set_index(uint i) {
  1484     _inode_top->indx = i;
  1486   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
  1487   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
  1488   bool is_nonempty() const { return (_inode_top >= _inodes); }
  1489   bool is_empty() const { return (_inode_top < _inodes); }
  1490   void clear() { _inode_top = _inodes - 1; } // retain storage
  1492   // Node_Stack is used to map nodes.
  1493   Node* find(uint idx) const;
  1494 };
  1497 //-----------------------------Node_Notes--------------------------------------
  1498 // Debugging or profiling annotations loosely and sparsely associated
  1499 // with some nodes.  See Compile::node_notes_at for the accessor.
  1500 class Node_Notes VALUE_OBJ_CLASS_SPEC {
  1501   friend class VMStructs;
  1502   JVMState* _jvms;
  1504 public:
  1505   Node_Notes(JVMState* jvms = NULL) {
  1506     _jvms = jvms;
  1509   JVMState* jvms()            { return _jvms; }
  1510   void  set_jvms(JVMState* x) {        _jvms = x; }
  1512   // True if there is nothing here.
  1513   bool is_clear() {
  1514     return (_jvms == NULL);
  1517   // Make there be nothing here.
  1518   void clear() {
  1519     _jvms = NULL;
  1522   // Make a new, clean node notes.
  1523   static Node_Notes* make(Compile* C) {
  1524     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1525     nn->clear();
  1526     return nn;
  1529   Node_Notes* clone(Compile* C) {
  1530     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
  1531     (*nn) = (*this);
  1532     return nn;
  1535   // Absorb any information from source.
  1536   bool update_from(Node_Notes* source) {
  1537     bool changed = false;
  1538     if (source != NULL) {
  1539       if (source->jvms() != NULL) {
  1540         set_jvms(source->jvms());
  1541         changed = true;
  1544     return changed;
  1546 };
  1548 // Inlined accessors for Compile::node_nodes that require the preceding class:
  1549 inline Node_Notes*
  1550 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
  1551                            int idx, bool can_grow) {
  1552   assert(idx >= 0, "oob");
  1553   int block_idx = (idx >> _log2_node_notes_block_size);
  1554   int grow_by = (block_idx - (arr == NULL? 0: arr->length()));
  1555   if (grow_by >= 0) {
  1556     if (!can_grow)  return NULL;
  1557     grow_node_notes(arr, grow_by + 1);
  1559   // (Every element of arr is a sub-array of length _node_notes_block_size.)
  1560   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
  1563 inline bool
  1564 Compile::set_node_notes_at(int idx, Node_Notes* value) {
  1565   if (value == NULL || value->is_clear())
  1566     return false;  // nothing to write => write nothing
  1567   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
  1568   assert(loc != NULL, "");
  1569   return loc->update_from(value);
  1573 //------------------------------TypeNode---------------------------------------
  1574 // Node with a Type constant.
  1575 class TypeNode : public Node {
  1576 protected:
  1577   virtual uint hash() const;    // Check the type
  1578   virtual uint cmp( const Node &n ) const;
  1579   virtual uint size_of() const; // Size is bigger
  1580   const Type* const _type;
  1581 public:
  1582   void set_type(const Type* t) {
  1583     assert(t != NULL, "sanity");
  1584     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
  1585     *(const Type**)&_type = t;   // cast away const-ness
  1586     // If this node is in the hash table, make sure it doesn't need a rehash.
  1587     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
  1589   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
  1590   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
  1591     init_class_id(Class_Type);
  1593   virtual const Type *Value( PhaseTransform *phase ) const;
  1594   virtual const Type *bottom_type() const;
  1595   virtual       uint  ideal_reg() const;
  1596 #ifndef PRODUCT
  1597   virtual void dump_spec(outputStream *st) const;
  1598 #endif
  1599 };
  1601 #endif // SHARE_VM_OPTO_NODE_HPP

mercurial