src/cpu/x86/vm/assembler_x86.cpp

Wed, 27 Nov 2013 16:16:21 -0800

author
goetz
date
Wed, 27 Nov 2013 16:16:21 -0800
changeset 6490
41b780b43b74
parent 5997
59e8ad757e19
child 6378
8a8ff6b577ed
permissions
-rw-r--r--

8029015: PPC64 (part 216): opto: trap based null and range checks
Summary: On PPC64 use tdi instruction that does a compare and raises SIGTRAP for NULL and range checks.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "asm/assembler.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #include "utilities/macros.hpp"
    40 #if INCLUDE_ALL_GCS
    41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    43 #include "gc_implementation/g1/heapRegion.hpp"
    44 #endif // INCLUDE_ALL_GCS
    46 #ifdef PRODUCT
    47 #define BLOCK_COMMENT(str) /* nothing */
    48 #define STOP(error) stop(error)
    49 #else
    50 #define BLOCK_COMMENT(str) block_comment(str)
    51 #define STOP(error) block_comment(error); stop(error)
    52 #endif
    54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    55 // Implementation of AddressLiteral
    57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    58   _is_lval = false;
    59   _target = target;
    60   switch (rtype) {
    61   case relocInfo::oop_type:
    62   case relocInfo::metadata_type:
    63     // Oops are a special case. Normally they would be their own section
    64     // but in cases like icBuffer they are literals in the code stream that
    65     // we don't have a section for. We use none so that we get a literal address
    66     // which is always patchable.
    67     break;
    68   case relocInfo::external_word_type:
    69     _rspec = external_word_Relocation::spec(target);
    70     break;
    71   case relocInfo::internal_word_type:
    72     _rspec = internal_word_Relocation::spec(target);
    73     break;
    74   case relocInfo::opt_virtual_call_type:
    75     _rspec = opt_virtual_call_Relocation::spec();
    76     break;
    77   case relocInfo::static_call_type:
    78     _rspec = static_call_Relocation::spec();
    79     break;
    80   case relocInfo::runtime_call_type:
    81     _rspec = runtime_call_Relocation::spec();
    82     break;
    83   case relocInfo::poll_type:
    84   case relocInfo::poll_return_type:
    85     _rspec = Relocation::spec_simple(rtype);
    86     break;
    87   case relocInfo::none:
    88     break;
    89   default:
    90     ShouldNotReachHere();
    91     break;
    92   }
    93 }
    95 // Implementation of Address
    97 #ifdef _LP64
    99 Address Address::make_array(ArrayAddress adr) {
   100   // Not implementable on 64bit machines
   101   // Should have been handled higher up the call chain.
   102   ShouldNotReachHere();
   103   return Address();
   104 }
   106 // exceedingly dangerous constructor
   107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
   108   _base  = noreg;
   109   _index = noreg;
   110   _scale = no_scale;
   111   _disp  = disp;
   112   switch (rtype) {
   113     case relocInfo::external_word_type:
   114       _rspec = external_word_Relocation::spec(loc);
   115       break;
   116     case relocInfo::internal_word_type:
   117       _rspec = internal_word_Relocation::spec(loc);
   118       break;
   119     case relocInfo::runtime_call_type:
   120       // HMM
   121       _rspec = runtime_call_Relocation::spec();
   122       break;
   123     case relocInfo::poll_type:
   124     case relocInfo::poll_return_type:
   125       _rspec = Relocation::spec_simple(rtype);
   126       break;
   127     case relocInfo::none:
   128       break;
   129     default:
   130       ShouldNotReachHere();
   131   }
   132 }
   133 #else // LP64
   135 Address Address::make_array(ArrayAddress adr) {
   136   AddressLiteral base = adr.base();
   137   Address index = adr.index();
   138   assert(index._disp == 0, "must not have disp"); // maybe it can?
   139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   140   array._rspec = base._rspec;
   141   return array;
   142 }
   144 // exceedingly dangerous constructor
   145 Address::Address(address loc, RelocationHolder spec) {
   146   _base  = noreg;
   147   _index = noreg;
   148   _scale = no_scale;
   149   _disp  = (intptr_t) loc;
   150   _rspec = spec;
   151 }
   153 #endif // _LP64
   157 // Convert the raw encoding form into the form expected by the constructor for
   158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   159 // that to noreg for the Address constructor.
   160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
   161   RelocationHolder rspec;
   162   if (disp_reloc != relocInfo::none) {
   163     rspec = Relocation::spec_simple(disp_reloc);
   164   }
   165   bool valid_index = index != rsp->encoding();
   166   if (valid_index) {
   167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   168     madr._rspec = rspec;
   169     return madr;
   170   } else {
   171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   172     madr._rspec = rspec;
   173     return madr;
   174   }
   175 }
   177 // Implementation of Assembler
   179 int AbstractAssembler::code_fill_byte() {
   180   return (u_char)'\xF4'; // hlt
   181 }
   183 // make this go away someday
   184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   185   if (rtype == relocInfo::none)
   186         emit_int32(data);
   187   else  emit_data(data, Relocation::spec_simple(rtype), format);
   188 }
   190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   191   assert(imm_operand == 0, "default format must be immediate in this file");
   192   assert(inst_mark() != NULL, "must be inside InstructionMark");
   193   if (rspec.type() !=  relocInfo::none) {
   194     #ifdef ASSERT
   195       check_relocation(rspec, format);
   196     #endif
   197     // Do not use AbstractAssembler::relocate, which is not intended for
   198     // embedded words.  Instead, relocate to the enclosing instruction.
   200     // hack. call32 is too wide for mask so use disp32
   201     if (format == call32_operand)
   202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   203     else
   204       code_section()->relocate(inst_mark(), rspec, format);
   205   }
   206   emit_int32(data);
   207 }
   209 static int encode(Register r) {
   210   int enc = r->encoding();
   211   if (enc >= 8) {
   212     enc -= 8;
   213   }
   214   return enc;
   215 }
   217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   218   assert(dst->has_byte_register(), "must have byte register");
   219   assert(isByte(op1) && isByte(op2), "wrong opcode");
   220   assert(isByte(imm8), "not a byte");
   221   assert((op1 & 0x01) == 0, "should be 8bit operation");
   222   emit_int8(op1);
   223   emit_int8(op2 | encode(dst));
   224   emit_int8(imm8);
   225 }
   228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   229   assert(isByte(op1) && isByte(op2), "wrong opcode");
   230   assert((op1 & 0x01) == 1, "should be 32bit operation");
   231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   232   if (is8bit(imm32)) {
   233     emit_int8(op1 | 0x02); // set sign bit
   234     emit_int8(op2 | encode(dst));
   235     emit_int8(imm32 & 0xFF);
   236   } else {
   237     emit_int8(op1);
   238     emit_int8(op2 | encode(dst));
   239     emit_int32(imm32);
   240   }
   241 }
   243 // Force generation of a 4 byte immediate value even if it fits into 8bit
   244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
   245   assert(isByte(op1) && isByte(op2), "wrong opcode");
   246   assert((op1 & 0x01) == 1, "should be 32bit operation");
   247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   248   emit_int8(op1);
   249   emit_int8(op2 | encode(dst));
   250   emit_int32(imm32);
   251 }
   253 // immediate-to-memory forms
   254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   255   assert((op1 & 0x01) == 1, "should be 32bit operation");
   256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   257   if (is8bit(imm32)) {
   258     emit_int8(op1 | 0x02); // set sign bit
   259     emit_operand(rm, adr, 1);
   260     emit_int8(imm32 & 0xFF);
   261   } else {
   262     emit_int8(op1);
   263     emit_operand(rm, adr, 4);
   264     emit_int32(imm32);
   265   }
   266 }
   269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   270   assert(isByte(op1) && isByte(op2), "wrong opcode");
   271   emit_int8(op1);
   272   emit_int8(op2 | encode(dst) << 3 | encode(src));
   273 }
   276 void Assembler::emit_operand(Register reg, Register base, Register index,
   277                              Address::ScaleFactor scale, int disp,
   278                              RelocationHolder const& rspec,
   279                              int rip_relative_correction) {
   280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   282   // Encode the registers as needed in the fields they are used in
   284   int regenc = encode(reg) << 3;
   285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   286   int baseenc = base->is_valid() ? encode(base) : 0;
   288   if (base->is_valid()) {
   289     if (index->is_valid()) {
   290       assert(scale != Address::no_scale, "inconsistent address");
   291       // [base + index*scale + disp]
   292       if (disp == 0 && rtype == relocInfo::none  &&
   293           base != rbp LP64_ONLY(&& base != r13)) {
   294         // [base + index*scale]
   295         // [00 reg 100][ss index base]
   296         assert(index != rsp, "illegal addressing mode");
   297         emit_int8(0x04 | regenc);
   298         emit_int8(scale << 6 | indexenc | baseenc);
   299       } else if (is8bit(disp) && rtype == relocInfo::none) {
   300         // [base + index*scale + imm8]
   301         // [01 reg 100][ss index base] imm8
   302         assert(index != rsp, "illegal addressing mode");
   303         emit_int8(0x44 | regenc);
   304         emit_int8(scale << 6 | indexenc | baseenc);
   305         emit_int8(disp & 0xFF);
   306       } else {
   307         // [base + index*scale + disp32]
   308         // [10 reg 100][ss index base] disp32
   309         assert(index != rsp, "illegal addressing mode");
   310         emit_int8(0x84 | regenc);
   311         emit_int8(scale << 6 | indexenc | baseenc);
   312         emit_data(disp, rspec, disp32_operand);
   313       }
   314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   315       // [rsp + disp]
   316       if (disp == 0 && rtype == relocInfo::none) {
   317         // [rsp]
   318         // [00 reg 100][00 100 100]
   319         emit_int8(0x04 | regenc);
   320         emit_int8(0x24);
   321       } else if (is8bit(disp) && rtype == relocInfo::none) {
   322         // [rsp + imm8]
   323         // [01 reg 100][00 100 100] disp8
   324         emit_int8(0x44 | regenc);
   325         emit_int8(0x24);
   326         emit_int8(disp & 0xFF);
   327       } else {
   328         // [rsp + imm32]
   329         // [10 reg 100][00 100 100] disp32
   330         emit_int8(0x84 | regenc);
   331         emit_int8(0x24);
   332         emit_data(disp, rspec, disp32_operand);
   333       }
   334     } else {
   335       // [base + disp]
   336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   337       if (disp == 0 && rtype == relocInfo::none &&
   338           base != rbp LP64_ONLY(&& base != r13)) {
   339         // [base]
   340         // [00 reg base]
   341         emit_int8(0x00 | regenc | baseenc);
   342       } else if (is8bit(disp) && rtype == relocInfo::none) {
   343         // [base + disp8]
   344         // [01 reg base] disp8
   345         emit_int8(0x40 | regenc | baseenc);
   346         emit_int8(disp & 0xFF);
   347       } else {
   348         // [base + disp32]
   349         // [10 reg base] disp32
   350         emit_int8(0x80 | regenc | baseenc);
   351         emit_data(disp, rspec, disp32_operand);
   352       }
   353     }
   354   } else {
   355     if (index->is_valid()) {
   356       assert(scale != Address::no_scale, "inconsistent address");
   357       // [index*scale + disp]
   358       // [00 reg 100][ss index 101] disp32
   359       assert(index != rsp, "illegal addressing mode");
   360       emit_int8(0x04 | regenc);
   361       emit_int8(scale << 6 | indexenc | 0x05);
   362       emit_data(disp, rspec, disp32_operand);
   363     } else if (rtype != relocInfo::none ) {
   364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   365       // [00 000 101] disp32
   367       emit_int8(0x05 | regenc);
   368       // Note that the RIP-rel. correction applies to the generated
   369       // disp field, but _not_ to the target address in the rspec.
   371       // disp was created by converting the target address minus the pc
   372       // at the start of the instruction. That needs more correction here.
   373       // intptr_t disp = target - next_ip;
   374       assert(inst_mark() != NULL, "must be inside InstructionMark");
   375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   376       int64_t adjusted = disp;
   377       // Do rip-rel adjustment for 64bit
   378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   379       assert(is_simm32(adjusted),
   380              "must be 32bit offset (RIP relative address)");
   381       emit_data((int32_t) adjusted, rspec, disp32_operand);
   383     } else {
   384       // 32bit never did this, did everything as the rip-rel/disp code above
   385       // [disp] ABSOLUTE
   386       // [00 reg 100][00 100 101] disp32
   387       emit_int8(0x04 | regenc);
   388       emit_int8(0x25);
   389       emit_data(disp, rspec, disp32_operand);
   390     }
   391   }
   392 }
   394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   395                              Address::ScaleFactor scale, int disp,
   396                              RelocationHolder const& rspec) {
   397   emit_operand((Register)reg, base, index, scale, disp, rspec);
   398 }
   400 // Secret local extension to Assembler::WhichOperand:
   401 #define end_pc_operand (_WhichOperand_limit)
   403 address Assembler::locate_operand(address inst, WhichOperand which) {
   404   // Decode the given instruction, and return the address of
   405   // an embedded 32-bit operand word.
   407   // If "which" is disp32_operand, selects the displacement portion
   408   // of an effective address specifier.
   409   // If "which" is imm64_operand, selects the trailing immediate constant.
   410   // If "which" is call32_operand, selects the displacement of a call or jump.
   411   // Caller is responsible for ensuring that there is such an operand,
   412   // and that it is 32/64 bits wide.
   414   // If "which" is end_pc_operand, find the end of the instruction.
   416   address ip = inst;
   417   bool is_64bit = false;
   419   debug_only(bool has_disp32 = false);
   420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   422   again_after_prefix:
   423   switch (0xFF & *ip++) {
   425   // These convenience macros generate groups of "case" labels for the switch.
   426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   429 #define REP16(x) REP8((x)+0): \
   430               case REP8((x)+8)
   432   case CS_segment:
   433   case SS_segment:
   434   case DS_segment:
   435   case ES_segment:
   436   case FS_segment:
   437   case GS_segment:
   438     // Seems dubious
   439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   440     assert(ip == inst+1, "only one prefix allowed");
   441     goto again_after_prefix;
   443   case 0x67:
   444   case REX:
   445   case REX_B:
   446   case REX_X:
   447   case REX_XB:
   448   case REX_R:
   449   case REX_RB:
   450   case REX_RX:
   451   case REX_RXB:
   452     NOT_LP64(assert(false, "64bit prefixes"));
   453     goto again_after_prefix;
   455   case REX_W:
   456   case REX_WB:
   457   case REX_WX:
   458   case REX_WXB:
   459   case REX_WR:
   460   case REX_WRB:
   461   case REX_WRX:
   462   case REX_WRXB:
   463     NOT_LP64(assert(false, "64bit prefixes"));
   464     is_64bit = true;
   465     goto again_after_prefix;
   467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   468   case 0x88: // movb a, r
   469   case 0x89: // movl a, r
   470   case 0x8A: // movb r, a
   471   case 0x8B: // movl r, a
   472   case 0x8F: // popl a
   473     debug_only(has_disp32 = true);
   474     break;
   476   case 0x68: // pushq #32
   477     if (which == end_pc_operand) {
   478       return ip + 4;
   479     }
   480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   481     return ip;                  // not produced by emit_operand
   483   case 0x66: // movw ... (size prefix)
   484     again_after_size_prefix2:
   485     switch (0xFF & *ip++) {
   486     case REX:
   487     case REX_B:
   488     case REX_X:
   489     case REX_XB:
   490     case REX_R:
   491     case REX_RB:
   492     case REX_RX:
   493     case REX_RXB:
   494     case REX_W:
   495     case REX_WB:
   496     case REX_WX:
   497     case REX_WXB:
   498     case REX_WR:
   499     case REX_WRB:
   500     case REX_WRX:
   501     case REX_WRXB:
   502       NOT_LP64(assert(false, "64bit prefix found"));
   503       goto again_after_size_prefix2;
   504     case 0x8B: // movw r, a
   505     case 0x89: // movw a, r
   506       debug_only(has_disp32 = true);
   507       break;
   508     case 0xC7: // movw a, #16
   509       debug_only(has_disp32 = true);
   510       tail_size = 2;  // the imm16
   511       break;
   512     case 0x0F: // several SSE/SSE2 variants
   513       ip--;    // reparse the 0x0F
   514       goto again_after_prefix;
   515     default:
   516       ShouldNotReachHere();
   517     }
   518     break;
   520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   522     // these asserts are somewhat nonsensical
   523 #ifndef _LP64
   524     assert(which == imm_operand || which == disp32_operand,
   525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   526 #else
   527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   528            which == narrow_oop_operand && !is_64bit,
   529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, ip));
   530 #endif // _LP64
   531     return ip;
   533   case 0x69: // imul r, a, #32
   534   case 0xC7: // movl a, #32(oop?)
   535     tail_size = 4;
   536     debug_only(has_disp32 = true); // has both kinds of operands!
   537     break;
   539   case 0x0F: // movx..., etc.
   540     switch (0xFF & *ip++) {
   541     case 0x3A: // pcmpestri
   542       tail_size = 1;
   543     case 0x38: // ptest, pmovzxbw
   544       ip++; // skip opcode
   545       debug_only(has_disp32 = true); // has both kinds of operands!
   546       break;
   548     case 0x70: // pshufd r, r/a, #8
   549       debug_only(has_disp32 = true); // has both kinds of operands!
   550     case 0x73: // psrldq r, #8
   551       tail_size = 1;
   552       break;
   554     case 0x12: // movlps
   555     case 0x28: // movaps
   556     case 0x2E: // ucomiss
   557     case 0x2F: // comiss
   558     case 0x54: // andps
   559     case 0x55: // andnps
   560     case 0x56: // orps
   561     case 0x57: // xorps
   562     case 0x6E: // movd
   563     case 0x7E: // movd
   564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
   565       debug_only(has_disp32 = true);
   566       break;
   568     case 0xAD: // shrd r, a, %cl
   569     case 0xAF: // imul r, a
   570     case 0xBE: // movsbl r, a (movsxb)
   571     case 0xBF: // movswl r, a (movsxw)
   572     case 0xB6: // movzbl r, a (movzxb)
   573     case 0xB7: // movzwl r, a (movzxw)
   574     case REP16(0x40): // cmovl cc, r, a
   575     case 0xB0: // cmpxchgb
   576     case 0xB1: // cmpxchg
   577     case 0xC1: // xaddl
   578     case 0xC7: // cmpxchg8
   579     case REP16(0x90): // setcc a
   580       debug_only(has_disp32 = true);
   581       // fall out of the switch to decode the address
   582       break;
   584     case 0xC4: // pinsrw r, a, #8
   585       debug_only(has_disp32 = true);
   586     case 0xC5: // pextrw r, r, #8
   587       tail_size = 1;  // the imm8
   588       break;
   590     case 0xAC: // shrd r, a, #8
   591       debug_only(has_disp32 = true);
   592       tail_size = 1;  // the imm8
   593       break;
   595     case REP16(0x80): // jcc rdisp32
   596       if (which == end_pc_operand)  return ip + 4;
   597       assert(which == call32_operand, "jcc has no disp32 or imm");
   598       return ip;
   599     default:
   600       ShouldNotReachHere();
   601     }
   602     break;
   604   case 0x81: // addl a, #32; addl r, #32
   605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   606     // on 32bit in the case of cmpl, the imm might be an oop
   607     tail_size = 4;
   608     debug_only(has_disp32 = true); // has both kinds of operands!
   609     break;
   611   case 0x83: // addl a, #8; addl r, #8
   612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   613     debug_only(has_disp32 = true); // has both kinds of operands!
   614     tail_size = 1;
   615     break;
   617   case 0x9B:
   618     switch (0xFF & *ip++) {
   619     case 0xD9: // fnstcw a
   620       debug_only(has_disp32 = true);
   621       break;
   622     default:
   623       ShouldNotReachHere();
   624     }
   625     break;
   627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   628   case REP4(0x10): // adc...
   629   case REP4(0x20): // and...
   630   case REP4(0x30): // xor...
   631   case REP4(0x08): // or...
   632   case REP4(0x18): // sbb...
   633   case REP4(0x28): // sub...
   634   case 0xF7: // mull a
   635   case 0x8D: // lea r, a
   636   case 0x87: // xchg r, a
   637   case REP4(0x38): // cmp...
   638   case 0x85: // test r, a
   639     debug_only(has_disp32 = true); // has both kinds of operands!
   640     break;
   642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   643   case 0xC6: // movb a, #8
   644   case 0x80: // cmpb a, #8
   645   case 0x6B: // imul r, a, #8
   646     debug_only(has_disp32 = true); // has both kinds of operands!
   647     tail_size = 1; // the imm8
   648     break;
   650   case 0xC4: // VEX_3bytes
   651   case 0xC5: // VEX_2bytes
   652     assert((UseAVX > 0), "shouldn't have VEX prefix");
   653     assert(ip == inst+1, "no prefixes allowed");
   654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
   655     // but they have prefix 0x0F and processed when 0x0F processed above.
   656     //
   657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
   658     // instructions (these instructions are not supported in 64-bit mode).
   659     // To distinguish them bits [7:6] are set in the VEX second byte since
   660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
   661     // those VEX bits REX and vvvv bits are inverted.
   662     //
   663     // Fortunately C2 doesn't generate these instructions so we don't need
   664     // to check for them in product version.
   666     // Check second byte
   667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
   669     // First byte
   670     if ((0xFF & *inst) == VEX_3bytes) {
   671       ip++; // third byte
   672       is_64bit = ((VEX_W & *ip) == VEX_W);
   673     }
   674     ip++; // opcode
   675     // To find the end of instruction (which == end_pc_operand).
   676     switch (0xFF & *ip) {
   677     case 0x61: // pcmpestri r, r/a, #8
   678     case 0x70: // pshufd r, r/a, #8
   679     case 0x73: // psrldq r, #8
   680       tail_size = 1;  // the imm8
   681       break;
   682     default:
   683       break;
   684     }
   685     ip++; // skip opcode
   686     debug_only(has_disp32 = true); // has both kinds of operands!
   687     break;
   689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   692   case 0xDD: // fld_d a; fst_d a; fstp_d a
   693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   694   case 0xDF: // fild_d a; fistp_d a
   695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   698     debug_only(has_disp32 = true);
   699     break;
   701   case 0xE8: // call rdisp32
   702   case 0xE9: // jmp  rdisp32
   703     if (which == end_pc_operand)  return ip + 4;
   704     assert(which == call32_operand, "call has no disp32 or imm");
   705     return ip;
   707   case 0xF0:                    // Lock
   708     assert(os::is_MP(), "only on MP");
   709     goto again_after_prefix;
   711   case 0xF3:                    // For SSE
   712   case 0xF2:                    // For SSE2
   713     switch (0xFF & *ip++) {
   714     case REX:
   715     case REX_B:
   716     case REX_X:
   717     case REX_XB:
   718     case REX_R:
   719     case REX_RB:
   720     case REX_RX:
   721     case REX_RXB:
   722     case REX_W:
   723     case REX_WB:
   724     case REX_WX:
   725     case REX_WXB:
   726     case REX_WR:
   727     case REX_WRB:
   728     case REX_WRX:
   729     case REX_WRXB:
   730       NOT_LP64(assert(false, "found 64bit prefix"));
   731       ip++;
   732     default:
   733       ip++;
   734     }
   735     debug_only(has_disp32 = true); // has both kinds of operands!
   736     break;
   738   default:
   739     ShouldNotReachHere();
   741 #undef REP8
   742 #undef REP16
   743   }
   745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   746 #ifdef _LP64
   747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   748 #else
   749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   751 #endif // LP64
   752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   754   // parse the output of emit_operand
   755   int op2 = 0xFF & *ip++;
   756   int base = op2 & 0x07;
   757   int op3 = -1;
   758   const int b100 = 4;
   759   const int b101 = 5;
   760   if (base == b100 && (op2 >> 6) != 3) {
   761     op3 = 0xFF & *ip++;
   762     base = op3 & 0x07;   // refetch the base
   763   }
   764   // now ip points at the disp (if any)
   766   switch (op2 >> 6) {
   767   case 0:
   768     // [00 reg  100][ss index base]
   769     // [00 reg  100][00   100  esp]
   770     // [00 reg base]
   771     // [00 reg  100][ss index  101][disp32]
   772     // [00 reg  101]               [disp32]
   774     if (base == b101) {
   775       if (which == disp32_operand)
   776         return ip;              // caller wants the disp32
   777       ip += 4;                  // skip the disp32
   778     }
   779     break;
   781   case 1:
   782     // [01 reg  100][ss index base][disp8]
   783     // [01 reg  100][00   100  esp][disp8]
   784     // [01 reg base]               [disp8]
   785     ip += 1;                    // skip the disp8
   786     break;
   788   case 2:
   789     // [10 reg  100][ss index base][disp32]
   790     // [10 reg  100][00   100  esp][disp32]
   791     // [10 reg base]               [disp32]
   792     if (which == disp32_operand)
   793       return ip;                // caller wants the disp32
   794     ip += 4;                    // skip the disp32
   795     break;
   797   case 3:
   798     // [11 reg base]  (not a memory addressing mode)
   799     break;
   800   }
   802   if (which == end_pc_operand) {
   803     return ip + tail_size;
   804   }
   806 #ifdef _LP64
   807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   808 #else
   809   assert(which == imm_operand, "instruction has only an imm field");
   810 #endif // LP64
   811   return ip;
   812 }
   814 address Assembler::locate_next_instruction(address inst) {
   815   // Secretly share code with locate_operand:
   816   return locate_operand(inst, end_pc_operand);
   817 }
   820 #ifdef ASSERT
   821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   822   address inst = inst_mark();
   823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   824   address opnd;
   826   Relocation* r = rspec.reloc();
   827   if (r->type() == relocInfo::none) {
   828     return;
   829   } else if (r->is_call() || format == call32_operand) {
   830     // assert(format == imm32_operand, "cannot specify a nonzero format");
   831     opnd = locate_operand(inst, call32_operand);
   832   } else if (r->is_data()) {
   833     assert(format == imm_operand || format == disp32_operand
   834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   835     opnd = locate_operand(inst, (WhichOperand)format);
   836   } else {
   837     assert(format == imm_operand, "cannot specify a format");
   838     return;
   839   }
   840   assert(opnd == pc(), "must put operand where relocs can find it");
   841 }
   842 #endif // ASSERT
   844 void Assembler::emit_operand32(Register reg, Address adr) {
   845   assert(reg->encoding() < 8, "no extended registers");
   846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   848                adr._rspec);
   849 }
   851 void Assembler::emit_operand(Register reg, Address adr,
   852                              int rip_relative_correction) {
   853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   854                adr._rspec,
   855                rip_relative_correction);
   856 }
   858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   860                adr._rspec);
   861 }
   863 // MMX operations
   864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   867 }
   869 // work around gcc (3.2.1-7a) bug
   870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   873 }
   876 void Assembler::emit_farith(int b1, int b2, int i) {
   877   assert(isByte(b1) && isByte(b2), "wrong opcode");
   878   assert(0 <= i &&  i < 8, "illegal stack offset");
   879   emit_int8(b1);
   880   emit_int8(b2 + i);
   881 }
   884 // Now the Assembler instructions (identical for 32/64 bits)
   886 void Assembler::adcl(Address dst, int32_t imm32) {
   887   InstructionMark im(this);
   888   prefix(dst);
   889   emit_arith_operand(0x81, rdx, dst, imm32);
   890 }
   892 void Assembler::adcl(Address dst, Register src) {
   893   InstructionMark im(this);
   894   prefix(dst, src);
   895   emit_int8(0x11);
   896   emit_operand(src, dst);
   897 }
   899 void Assembler::adcl(Register dst, int32_t imm32) {
   900   prefix(dst);
   901   emit_arith(0x81, 0xD0, dst, imm32);
   902 }
   904 void Assembler::adcl(Register dst, Address src) {
   905   InstructionMark im(this);
   906   prefix(src, dst);
   907   emit_int8(0x13);
   908   emit_operand(dst, src);
   909 }
   911 void Assembler::adcl(Register dst, Register src) {
   912   (void) prefix_and_encode(dst->encoding(), src->encoding());
   913   emit_arith(0x13, 0xC0, dst, src);
   914 }
   916 void Assembler::addl(Address dst, int32_t imm32) {
   917   InstructionMark im(this);
   918   prefix(dst);
   919   emit_arith_operand(0x81, rax, dst, imm32);
   920 }
   922 void Assembler::addl(Address dst, Register src) {
   923   InstructionMark im(this);
   924   prefix(dst, src);
   925   emit_int8(0x01);
   926   emit_operand(src, dst);
   927 }
   929 void Assembler::addl(Register dst, int32_t imm32) {
   930   prefix(dst);
   931   emit_arith(0x81, 0xC0, dst, imm32);
   932 }
   934 void Assembler::addl(Register dst, Address src) {
   935   InstructionMark im(this);
   936   prefix(src, dst);
   937   emit_int8(0x03);
   938   emit_operand(dst, src);
   939 }
   941 void Assembler::addl(Register dst, Register src) {
   942   (void) prefix_and_encode(dst->encoding(), src->encoding());
   943   emit_arith(0x03, 0xC0, dst, src);
   944 }
   946 void Assembler::addr_nop_4() {
   947   assert(UseAddressNop, "no CPU support");
   948   // 4 bytes: NOP DWORD PTR [EAX+0]
   949   emit_int8(0x0F);
   950   emit_int8(0x1F);
   951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   952   emit_int8(0);    // 8-bits offset (1 byte)
   953 }
   955 void Assembler::addr_nop_5() {
   956   assert(UseAddressNop, "no CPU support");
   957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   958   emit_int8(0x0F);
   959   emit_int8(0x1F);
   960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   962   emit_int8(0);    // 8-bits offset (1 byte)
   963 }
   965 void Assembler::addr_nop_7() {
   966   assert(UseAddressNop, "no CPU support");
   967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   968   emit_int8(0x0F);
   969   emit_int8(0x1F);
   970   emit_int8((unsigned char)0x80);
   971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   972   emit_int32(0);   // 32-bits offset (4 bytes)
   973 }
   975 void Assembler::addr_nop_8() {
   976   assert(UseAddressNop, "no CPU support");
   977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   978   emit_int8(0x0F);
   979   emit_int8(0x1F);
   980   emit_int8((unsigned char)0x84);
   981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   983   emit_int32(0);   // 32-bits offset (4 bytes)
   984 }
   986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   989 }
   991 void Assembler::addsd(XMMRegister dst, Address src) {
   992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
   994 }
   996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
   999 }
  1001 void Assembler::addss(XMMRegister dst, Address src) {
  1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
  1006 void Assembler::aesdec(XMMRegister dst, Address src) {
  1007   assert(VM_Version::supports_aes(), "");
  1008   InstructionMark im(this);
  1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1010   emit_int8((unsigned char)0xDE);
  1011   emit_operand(dst, src);
  1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
  1015   assert(VM_Version::supports_aes(), "");
  1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1017   emit_int8((unsigned char)0xDE);
  1018   emit_int8(0xC0 | encode);
  1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
  1022   assert(VM_Version::supports_aes(), "");
  1023   InstructionMark im(this);
  1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1025   emit_int8((unsigned char)0xDF);
  1026   emit_operand(dst, src);
  1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
  1030   assert(VM_Version::supports_aes(), "");
  1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1032   emit_int8((unsigned char)0xDF);
  1033   emit_int8((unsigned char)(0xC0 | encode));
  1036 void Assembler::aesenc(XMMRegister dst, Address src) {
  1037   assert(VM_Version::supports_aes(), "");
  1038   InstructionMark im(this);
  1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1040   emit_int8((unsigned char)0xDC);
  1041   emit_operand(dst, src);
  1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
  1045   assert(VM_Version::supports_aes(), "");
  1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1047   emit_int8((unsigned char)0xDC);
  1048   emit_int8(0xC0 | encode);
  1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
  1052   assert(VM_Version::supports_aes(), "");
  1053   InstructionMark im(this);
  1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1055   emit_int8((unsigned char)0xDD);
  1056   emit_operand(dst, src);
  1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
  1060   assert(VM_Version::supports_aes(), "");
  1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  1062   emit_int8((unsigned char)0xDD);
  1063   emit_int8((unsigned char)(0xC0 | encode));
  1067 void Assembler::andl(Address dst, int32_t imm32) {
  1068   InstructionMark im(this);
  1069   prefix(dst);
  1070   emit_int8((unsigned char)0x81);
  1071   emit_operand(rsp, dst, 4);
  1072   emit_int32(imm32);
  1075 void Assembler::andl(Register dst, int32_t imm32) {
  1076   prefix(dst);
  1077   emit_arith(0x81, 0xE0, dst, imm32);
  1080 void Assembler::andl(Register dst, Address src) {
  1081   InstructionMark im(this);
  1082   prefix(src, dst);
  1083   emit_int8(0x23);
  1084   emit_operand(dst, src);
  1087 void Assembler::andl(Register dst, Register src) {
  1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1089   emit_arith(0x23, 0xC0, dst, src);
  1092 void Assembler::bsfl(Register dst, Register src) {
  1093   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1094   emit_int8(0x0F);
  1095   emit_int8((unsigned char)0xBC);
  1096   emit_int8((unsigned char)(0xC0 | encode));
  1099 void Assembler::bsrl(Register dst, Register src) {
  1100   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  1101   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1102   emit_int8(0x0F);
  1103   emit_int8((unsigned char)0xBD);
  1104   emit_int8((unsigned char)(0xC0 | encode));
  1107 void Assembler::bswapl(Register reg) { // bswap
  1108   int encode = prefix_and_encode(reg->encoding());
  1109   emit_int8(0x0F);
  1110   emit_int8((unsigned char)(0xC8 | encode));
  1113 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1114   // suspect disp32 is always good
  1115   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1117   if (L.is_bound()) {
  1118     const int long_size = 5;
  1119     int offs = (int)( target(L) - pc() );
  1120     assert(offs <= 0, "assembler error");
  1121     InstructionMark im(this);
  1122     // 1110 1000 #32-bit disp
  1123     emit_int8((unsigned char)0xE8);
  1124     emit_data(offs - long_size, rtype, operand);
  1125   } else {
  1126     InstructionMark im(this);
  1127     // 1110 1000 #32-bit disp
  1128     L.add_patch_at(code(), locator());
  1130     emit_int8((unsigned char)0xE8);
  1131     emit_data(int(0), rtype, operand);
  1135 void Assembler::call(Register dst) {
  1136   int encode = prefix_and_encode(dst->encoding());
  1137   emit_int8((unsigned char)0xFF);
  1138   emit_int8((unsigned char)(0xD0 | encode));
  1142 void Assembler::call(Address adr) {
  1143   InstructionMark im(this);
  1144   prefix(adr);
  1145   emit_int8((unsigned char)0xFF);
  1146   emit_operand(rdx, adr);
  1149 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1150   assert(entry != NULL, "call most probably wrong");
  1151   InstructionMark im(this);
  1152   emit_int8((unsigned char)0xE8);
  1153   intptr_t disp = entry - (pc() + sizeof(int32_t));
  1154   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1155   // Technically, should use call32_operand, but this format is
  1156   // implied by the fact that we're emitting a call instruction.
  1158   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1159   emit_data((int) disp, rspec, operand);
  1162 void Assembler::cdql() {
  1163   emit_int8((unsigned char)0x99);
  1166 void Assembler::cld() {
  1167   emit_int8((unsigned char)0xFC);
  1170 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1171   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1172   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1173   emit_int8(0x0F);
  1174   emit_int8(0x40 | cc);
  1175   emit_int8((unsigned char)(0xC0 | encode));
  1179 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1180   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1181   prefix(src, dst);
  1182   emit_int8(0x0F);
  1183   emit_int8(0x40 | cc);
  1184   emit_operand(dst, src);
  1187 void Assembler::cmpb(Address dst, int imm8) {
  1188   InstructionMark im(this);
  1189   prefix(dst);
  1190   emit_int8((unsigned char)0x80);
  1191   emit_operand(rdi, dst, 1);
  1192   emit_int8(imm8);
  1195 void Assembler::cmpl(Address dst, int32_t imm32) {
  1196   InstructionMark im(this);
  1197   prefix(dst);
  1198   emit_int8((unsigned char)0x81);
  1199   emit_operand(rdi, dst, 4);
  1200   emit_int32(imm32);
  1203 void Assembler::cmpl(Register dst, int32_t imm32) {
  1204   prefix(dst);
  1205   emit_arith(0x81, 0xF8, dst, imm32);
  1208 void Assembler::cmpl(Register dst, Register src) {
  1209   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1210   emit_arith(0x3B, 0xC0, dst, src);
  1214 void Assembler::cmpl(Register dst, Address  src) {
  1215   InstructionMark im(this);
  1216   prefix(src, dst);
  1217   emit_int8((unsigned char)0x3B);
  1218   emit_operand(dst, src);
  1221 void Assembler::cmpw(Address dst, int imm16) {
  1222   InstructionMark im(this);
  1223   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1224   emit_int8(0x66);
  1225   emit_int8((unsigned char)0x81);
  1226   emit_operand(rdi, dst, 2);
  1227   emit_int16(imm16);
  1230 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1231 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1232 // The ZF is set if the compared values were equal, and cleared otherwise.
  1233 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1234   InstructionMark im(this);
  1235   prefix(adr, reg);
  1236   emit_int8(0x0F);
  1237   emit_int8((unsigned char)0xB1);
  1238   emit_operand(reg, adr);
  1241 void Assembler::comisd(XMMRegister dst, Address src) {
  1242   // NOTE: dbx seems to decode this as comiss even though the
  1243   // 0x66 is there. Strangly ucomisd comes out correct
  1244   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1245   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1248 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
  1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1250   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
  1253 void Assembler::comiss(XMMRegister dst, Address src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1255   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1258 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
  1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1260   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
  1263 void Assembler::cpuid() {
  1264   emit_int8(0x0F);
  1265   emit_int8((unsigned char)0xA2);
  1268 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1270   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
  1273 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1275   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
  1278 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1279   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1280   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1283 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
  1284   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1285   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
  1288 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1289   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1290   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
  1291   emit_int8(0x2A);
  1292   emit_int8((unsigned char)(0xC0 | encode));
  1295 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
  1296   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1297   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
  1300 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1301   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1302   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
  1303   emit_int8(0x2A);
  1304   emit_int8((unsigned char)(0xC0 | encode));
  1307 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
  1308   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1309   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
  1312 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1313   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1314   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1317 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
  1318   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1319   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
  1323 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1324   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1325   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
  1326   emit_int8(0x2C);
  1327   emit_int8((unsigned char)(0xC0 | encode));
  1330 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1331   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1332   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
  1333   emit_int8(0x2C);
  1334   emit_int8((unsigned char)(0xC0 | encode));
  1337 void Assembler::decl(Address dst) {
  1338   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1339   InstructionMark im(this);
  1340   prefix(dst);
  1341   emit_int8((unsigned char)0xFF);
  1342   emit_operand(rcx, dst);
  1345 void Assembler::divsd(XMMRegister dst, Address src) {
  1346   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1347   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1350 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1352   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
  1355 void Assembler::divss(XMMRegister dst, Address src) {
  1356   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1357   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1360 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1362   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
  1365 void Assembler::emms() {
  1366   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1367   emit_int8(0x0F);
  1368   emit_int8(0x77);
  1371 void Assembler::hlt() {
  1372   emit_int8((unsigned char)0xF4);
  1375 void Assembler::idivl(Register src) {
  1376   int encode = prefix_and_encode(src->encoding());
  1377   emit_int8((unsigned char)0xF7);
  1378   emit_int8((unsigned char)(0xF8 | encode));
  1381 void Assembler::divl(Register src) { // Unsigned
  1382   int encode = prefix_and_encode(src->encoding());
  1383   emit_int8((unsigned char)0xF7);
  1384   emit_int8((unsigned char)(0xF0 | encode));
  1387 void Assembler::imull(Register dst, Register src) {
  1388   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1389   emit_int8(0x0F);
  1390   emit_int8((unsigned char)0xAF);
  1391   emit_int8((unsigned char)(0xC0 | encode));
  1395 void Assembler::imull(Register dst, Register src, int value) {
  1396   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1397   if (is8bit(value)) {
  1398     emit_int8(0x6B);
  1399     emit_int8((unsigned char)(0xC0 | encode));
  1400     emit_int8(value & 0xFF);
  1401   } else {
  1402     emit_int8(0x69);
  1403     emit_int8((unsigned char)(0xC0 | encode));
  1404     emit_int32(value);
  1408 void Assembler::imull(Register dst, Address src) {
  1409   InstructionMark im(this);
  1410   prefix(src, dst);
  1411   emit_int8(0x0F);
  1412   emit_int8((unsigned char) 0xAF);
  1413   emit_operand(dst, src);
  1417 void Assembler::incl(Address dst) {
  1418   // Don't use it directly. Use MacroAssembler::increment() instead.
  1419   InstructionMark im(this);
  1420   prefix(dst);
  1421   emit_int8((unsigned char)0xFF);
  1422   emit_operand(rax, dst);
  1425 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
  1426   InstructionMark im(this);
  1427   assert((0 <= cc) && (cc < 16), "illegal cc");
  1428   if (L.is_bound()) {
  1429     address dst = target(L);
  1430     assert(dst != NULL, "jcc most probably wrong");
  1432     const int short_size = 2;
  1433     const int long_size = 6;
  1434     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
  1435     if (maybe_short && is8bit(offs - short_size)) {
  1436       // 0111 tttn #8-bit disp
  1437       emit_int8(0x70 | cc);
  1438       emit_int8((offs - short_size) & 0xFF);
  1439     } else {
  1440       // 0000 1111 1000 tttn #32-bit disp
  1441       assert(is_simm32(offs - long_size),
  1442              "must be 32bit offset (call4)");
  1443       emit_int8(0x0F);
  1444       emit_int8((unsigned char)(0x80 | cc));
  1445       emit_int32(offs - long_size);
  1447   } else {
  1448     // Note: could eliminate cond. jumps to this jump if condition
  1449     //       is the same however, seems to be rather unlikely case.
  1450     // Note: use jccb() if label to be bound is very close to get
  1451     //       an 8-bit displacement
  1452     L.add_patch_at(code(), locator());
  1453     emit_int8(0x0F);
  1454     emit_int8((unsigned char)(0x80 | cc));
  1455     emit_int32(0);
  1459 void Assembler::jccb(Condition cc, Label& L) {
  1460   if (L.is_bound()) {
  1461     const int short_size = 2;
  1462     address entry = target(L);
  1463 #ifdef ASSERT
  1464     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1465     intptr_t delta = short_branch_delta();
  1466     if (delta != 0) {
  1467       dist += (dist < 0 ? (-delta) :delta);
  1469     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1470 #endif
  1471     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
  1472     // 0111 tttn #8-bit disp
  1473     emit_int8(0x70 | cc);
  1474     emit_int8((offs - short_size) & 0xFF);
  1475   } else {
  1476     InstructionMark im(this);
  1477     L.add_patch_at(code(), locator());
  1478     emit_int8(0x70 | cc);
  1479     emit_int8(0);
  1483 void Assembler::jmp(Address adr) {
  1484   InstructionMark im(this);
  1485   prefix(adr);
  1486   emit_int8((unsigned char)0xFF);
  1487   emit_operand(rsp, adr);
  1490 void Assembler::jmp(Label& L, bool maybe_short) {
  1491   if (L.is_bound()) {
  1492     address entry = target(L);
  1493     assert(entry != NULL, "jmp most probably wrong");
  1494     InstructionMark im(this);
  1495     const int short_size = 2;
  1496     const int long_size = 5;
  1497     intptr_t offs = entry - pc();
  1498     if (maybe_short && is8bit(offs - short_size)) {
  1499       emit_int8((unsigned char)0xEB);
  1500       emit_int8((offs - short_size) & 0xFF);
  1501     } else {
  1502       emit_int8((unsigned char)0xE9);
  1503       emit_int32(offs - long_size);
  1505   } else {
  1506     // By default, forward jumps are always 32-bit displacements, since
  1507     // we can't yet know where the label will be bound.  If you're sure that
  1508     // the forward jump will not run beyond 256 bytes, use jmpb to
  1509     // force an 8-bit displacement.
  1510     InstructionMark im(this);
  1511     L.add_patch_at(code(), locator());
  1512     emit_int8((unsigned char)0xE9);
  1513     emit_int32(0);
  1517 void Assembler::jmp(Register entry) {
  1518   int encode = prefix_and_encode(entry->encoding());
  1519   emit_int8((unsigned char)0xFF);
  1520   emit_int8((unsigned char)(0xE0 | encode));
  1523 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1524   InstructionMark im(this);
  1525   emit_int8((unsigned char)0xE9);
  1526   assert(dest != NULL, "must have a target");
  1527   intptr_t disp = dest - (pc() + sizeof(int32_t));
  1528   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1529   emit_data(disp, rspec.reloc(), call32_operand);
  1532 void Assembler::jmpb(Label& L) {
  1533   if (L.is_bound()) {
  1534     const int short_size = 2;
  1535     address entry = target(L);
  1536     assert(entry != NULL, "jmp most probably wrong");
  1537 #ifdef ASSERT
  1538     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
  1539     intptr_t delta = short_branch_delta();
  1540     if (delta != 0) {
  1541       dist += (dist < 0 ? (-delta) :delta);
  1543     assert(is8bit(dist), "Dispacement too large for a short jmp");
  1544 #endif
  1545     intptr_t offs = entry - pc();
  1546     emit_int8((unsigned char)0xEB);
  1547     emit_int8((offs - short_size) & 0xFF);
  1548   } else {
  1549     InstructionMark im(this);
  1550     L.add_patch_at(code(), locator());
  1551     emit_int8((unsigned char)0xEB);
  1552     emit_int8(0);
  1556 void Assembler::ldmxcsr( Address src) {
  1557   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1558   InstructionMark im(this);
  1559   prefix(src);
  1560   emit_int8(0x0F);
  1561   emit_int8((unsigned char)0xAE);
  1562   emit_operand(as_Register(2), src);
  1565 void Assembler::leal(Register dst, Address src) {
  1566   InstructionMark im(this);
  1567 #ifdef _LP64
  1568   emit_int8(0x67); // addr32
  1569   prefix(src, dst);
  1570 #endif // LP64
  1571   emit_int8((unsigned char)0x8D);
  1572   emit_operand(dst, src);
  1575 void Assembler::lfence() {
  1576   emit_int8(0x0F);
  1577   emit_int8((unsigned char)0xAE);
  1578   emit_int8((unsigned char)0xE8);
  1581 void Assembler::lock() {
  1582   emit_int8((unsigned char)0xF0);
  1585 void Assembler::lzcntl(Register dst, Register src) {
  1586   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1587   emit_int8((unsigned char)0xF3);
  1588   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1589   emit_int8(0x0F);
  1590   emit_int8((unsigned char)0xBD);
  1591   emit_int8((unsigned char)(0xC0 | encode));
  1594 // Emit mfence instruction
  1595 void Assembler::mfence() {
  1596   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1597   emit_int8(0x0F);
  1598   emit_int8((unsigned char)0xAE);
  1599   emit_int8((unsigned char)0xF0);
  1602 void Assembler::mov(Register dst, Register src) {
  1603   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1606 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1607   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1608   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
  1611 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1612   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1613   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
  1616 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
  1617   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1618   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
  1619   emit_int8(0x16);
  1620   emit_int8((unsigned char)(0xC0 | encode));
  1623 void Assembler::movb(Register dst, Address src) {
  1624   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1625   InstructionMark im(this);
  1626   prefix(src, dst, true);
  1627   emit_int8((unsigned char)0x8A);
  1628   emit_operand(dst, src);
  1632 void Assembler::movb(Address dst, int imm8) {
  1633   InstructionMark im(this);
  1634    prefix(dst);
  1635   emit_int8((unsigned char)0xC6);
  1636   emit_operand(rax, dst, 1);
  1637   emit_int8(imm8);
  1641 void Assembler::movb(Address dst, Register src) {
  1642   assert(src->has_byte_register(), "must have byte register");
  1643   InstructionMark im(this);
  1644   prefix(dst, src, true);
  1645   emit_int8((unsigned char)0x88);
  1646   emit_operand(src, dst);
  1649 void Assembler::movdl(XMMRegister dst, Register src) {
  1650   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1651   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
  1652   emit_int8(0x6E);
  1653   emit_int8((unsigned char)(0xC0 | encode));
  1656 void Assembler::movdl(Register dst, XMMRegister src) {
  1657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1658   // swap src/dst to get correct prefix
  1659   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
  1660   emit_int8(0x7E);
  1661   emit_int8((unsigned char)(0xC0 | encode));
  1664 void Assembler::movdl(XMMRegister dst, Address src) {
  1665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1666   InstructionMark im(this);
  1667   simd_prefix(dst, src, VEX_SIMD_66);
  1668   emit_int8(0x6E);
  1669   emit_operand(dst, src);
  1672 void Assembler::movdl(Address dst, XMMRegister src) {
  1673   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1674   InstructionMark im(this);
  1675   simd_prefix(dst, src, VEX_SIMD_66);
  1676   emit_int8(0x7E);
  1677   emit_operand(src, dst);
  1680 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1682   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1685 void Assembler::movdqa(XMMRegister dst, Address src) {
  1686   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1687   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
  1690 void Assembler::movdqu(XMMRegister dst, Address src) {
  1691   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1692   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1695 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1697   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
  1700 void Assembler::movdqu(Address dst, XMMRegister src) {
  1701   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1702   InstructionMark im(this);
  1703   simd_prefix(dst, src, VEX_SIMD_F3);
  1704   emit_int8(0x7F);
  1705   emit_operand(src, dst);
  1708 // Move Unaligned 256bit Vector
  1709 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
  1710   assert(UseAVX, "");
  1711   bool vector256 = true;
  1712   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1713   emit_int8(0x6F);
  1714   emit_int8((unsigned char)(0xC0 | encode));
  1717 void Assembler::vmovdqu(XMMRegister dst, Address src) {
  1718   assert(UseAVX, "");
  1719   InstructionMark im(this);
  1720   bool vector256 = true;
  1721   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
  1722   emit_int8(0x6F);
  1723   emit_operand(dst, src);
  1726 void Assembler::vmovdqu(Address dst, XMMRegister src) {
  1727   assert(UseAVX, "");
  1728   InstructionMark im(this);
  1729   bool vector256 = true;
  1730   // swap src<->dst for encoding
  1731   assert(src != xnoreg, "sanity");
  1732   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
  1733   emit_int8(0x7F);
  1734   emit_operand(src, dst);
  1737 // Uses zero extension on 64bit
  1739 void Assembler::movl(Register dst, int32_t imm32) {
  1740   int encode = prefix_and_encode(dst->encoding());
  1741   emit_int8((unsigned char)(0xB8 | encode));
  1742   emit_int32(imm32);
  1745 void Assembler::movl(Register dst, Register src) {
  1746   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1747   emit_int8((unsigned char)0x8B);
  1748   emit_int8((unsigned char)(0xC0 | encode));
  1751 void Assembler::movl(Register dst, Address src) {
  1752   InstructionMark im(this);
  1753   prefix(src, dst);
  1754   emit_int8((unsigned char)0x8B);
  1755   emit_operand(dst, src);
  1758 void Assembler::movl(Address dst, int32_t imm32) {
  1759   InstructionMark im(this);
  1760   prefix(dst);
  1761   emit_int8((unsigned char)0xC7);
  1762   emit_operand(rax, dst, 4);
  1763   emit_int32(imm32);
  1766 void Assembler::movl(Address dst, Register src) {
  1767   InstructionMark im(this);
  1768   prefix(dst, src);
  1769   emit_int8((unsigned char)0x89);
  1770   emit_operand(src, dst);
  1773 // New cpus require to use movsd and movss to avoid partial register stall
  1774 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1775 // The selection is done in MacroAssembler::movdbl() and movflt().
  1776 void Assembler::movlpd(XMMRegister dst, Address src) {
  1777   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1778   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
  1781 void Assembler::movq( MMXRegister dst, Address src ) {
  1782   assert( VM_Version::supports_mmx(), "" );
  1783   emit_int8(0x0F);
  1784   emit_int8(0x6F);
  1785   emit_operand(dst, src);
  1788 void Assembler::movq( Address dst, MMXRegister src ) {
  1789   assert( VM_Version::supports_mmx(), "" );
  1790   emit_int8(0x0F);
  1791   emit_int8(0x7F);
  1792   // workaround gcc (3.2.1-7a) bug
  1793   // In that version of gcc with only an emit_operand(MMX, Address)
  1794   // gcc will tail jump and try and reverse the parameters completely
  1795   // obliterating dst in the process. By having a version available
  1796   // that doesn't need to swap the args at the tail jump the bug is
  1797   // avoided.
  1798   emit_operand(dst, src);
  1801 void Assembler::movq(XMMRegister dst, Address src) {
  1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1803   InstructionMark im(this);
  1804   simd_prefix(dst, src, VEX_SIMD_F3);
  1805   emit_int8(0x7E);
  1806   emit_operand(dst, src);
  1809 void Assembler::movq(Address dst, XMMRegister src) {
  1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1811   InstructionMark im(this);
  1812   simd_prefix(dst, src, VEX_SIMD_66);
  1813   emit_int8((unsigned char)0xD6);
  1814   emit_operand(src, dst);
  1817 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1818   InstructionMark im(this);
  1819   prefix(src, dst);
  1820   emit_int8(0x0F);
  1821   emit_int8((unsigned char)0xBE);
  1822   emit_operand(dst, src);
  1825 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1826   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1827   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1828   emit_int8(0x0F);
  1829   emit_int8((unsigned char)0xBE);
  1830   emit_int8((unsigned char)(0xC0 | encode));
  1833 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1834   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1835   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
  1838 void Assembler::movsd(XMMRegister dst, Address src) {
  1839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1840   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
  1843 void Assembler::movsd(Address dst, XMMRegister src) {
  1844   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1845   InstructionMark im(this);
  1846   simd_prefix(dst, src, VEX_SIMD_F2);
  1847   emit_int8(0x11);
  1848   emit_operand(src, dst);
  1851 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1852   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1853   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
  1856 void Assembler::movss(XMMRegister dst, Address src) {
  1857   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1858   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
  1861 void Assembler::movss(Address dst, XMMRegister src) {
  1862   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1863   InstructionMark im(this);
  1864   simd_prefix(dst, src, VEX_SIMD_F3);
  1865   emit_int8(0x11);
  1866   emit_operand(src, dst);
  1869 void Assembler::movswl(Register dst, Address src) { // movsxw
  1870   InstructionMark im(this);
  1871   prefix(src, dst);
  1872   emit_int8(0x0F);
  1873   emit_int8((unsigned char)0xBF);
  1874   emit_operand(dst, src);
  1877 void Assembler::movswl(Register dst, Register src) { // movsxw
  1878   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1879   emit_int8(0x0F);
  1880   emit_int8((unsigned char)0xBF);
  1881   emit_int8((unsigned char)(0xC0 | encode));
  1884 void Assembler::movw(Address dst, int imm16) {
  1885   InstructionMark im(this);
  1887   emit_int8(0x66); // switch to 16-bit mode
  1888   prefix(dst);
  1889   emit_int8((unsigned char)0xC7);
  1890   emit_operand(rax, dst, 2);
  1891   emit_int16(imm16);
  1894 void Assembler::movw(Register dst, Address src) {
  1895   InstructionMark im(this);
  1896   emit_int8(0x66);
  1897   prefix(src, dst);
  1898   emit_int8((unsigned char)0x8B);
  1899   emit_operand(dst, src);
  1902 void Assembler::movw(Address dst, Register src) {
  1903   InstructionMark im(this);
  1904   emit_int8(0x66);
  1905   prefix(dst, src);
  1906   emit_int8((unsigned char)0x89);
  1907   emit_operand(src, dst);
  1910 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1911   InstructionMark im(this);
  1912   prefix(src, dst);
  1913   emit_int8(0x0F);
  1914   emit_int8((unsigned char)0xB6);
  1915   emit_operand(dst, src);
  1918 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1919   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1920   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1921   emit_int8(0x0F);
  1922   emit_int8((unsigned char)0xB6);
  1923   emit_int8(0xC0 | encode);
  1926 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1927   InstructionMark im(this);
  1928   prefix(src, dst);
  1929   emit_int8(0x0F);
  1930   emit_int8((unsigned char)0xB7);
  1931   emit_operand(dst, src);
  1934 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1935   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1936   emit_int8(0x0F);
  1937   emit_int8((unsigned char)0xB7);
  1938   emit_int8(0xC0 | encode);
  1941 void Assembler::mull(Address src) {
  1942   InstructionMark im(this);
  1943   prefix(src);
  1944   emit_int8((unsigned char)0xF7);
  1945   emit_operand(rsp, src);
  1948 void Assembler::mull(Register src) {
  1949   int encode = prefix_and_encode(src->encoding());
  1950   emit_int8((unsigned char)0xF7);
  1951   emit_int8((unsigned char)(0xE0 | encode));
  1954 void Assembler::mulsd(XMMRegister dst, Address src) {
  1955   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1956   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1959 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1960   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1961   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
  1964 void Assembler::mulss(XMMRegister dst, Address src) {
  1965   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1966   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1969 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1970   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1971   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
  1974 void Assembler::negl(Register dst) {
  1975   int encode = prefix_and_encode(dst->encoding());
  1976   emit_int8((unsigned char)0xF7);
  1977   emit_int8((unsigned char)(0xD8 | encode));
  1980 void Assembler::nop(int i) {
  1981 #ifdef ASSERT
  1982   assert(i > 0, " ");
  1983   // The fancy nops aren't currently recognized by debuggers making it a
  1984   // pain to disassemble code while debugging. If asserts are on clearly
  1985   // speed is not an issue so simply use the single byte traditional nop
  1986   // to do alignment.
  1988   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
  1989   return;
  1991 #endif // ASSERT
  1993   if (UseAddressNop && VM_Version::is_intel()) {
  1994     //
  1995     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1996     //  1: 0x90
  1997     //  2: 0x66 0x90
  1998     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1999     //  4: 0x0F 0x1F 0x40 0x00
  2000     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2001     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2002     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2003     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2004     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2005     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2006     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2008     // The rest coding is Intel specific - don't use consecutive address nops
  2010     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2011     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2012     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2013     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2015     while(i >= 15) {
  2016       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2017       i -= 15;
  2018       emit_int8(0x66);   // size prefix
  2019       emit_int8(0x66);   // size prefix
  2020       emit_int8(0x66);   // size prefix
  2021       addr_nop_8();
  2022       emit_int8(0x66);   // size prefix
  2023       emit_int8(0x66);   // size prefix
  2024       emit_int8(0x66);   // size prefix
  2025       emit_int8((unsigned char)0x90);
  2026                          // nop
  2028     switch (i) {
  2029       case 14:
  2030         emit_int8(0x66); // size prefix
  2031       case 13:
  2032         emit_int8(0x66); // size prefix
  2033       case 12:
  2034         addr_nop_8();
  2035         emit_int8(0x66); // size prefix
  2036         emit_int8(0x66); // size prefix
  2037         emit_int8(0x66); // size prefix
  2038         emit_int8((unsigned char)0x90);
  2039                          // nop
  2040         break;
  2041       case 11:
  2042         emit_int8(0x66); // size prefix
  2043       case 10:
  2044         emit_int8(0x66); // size prefix
  2045       case 9:
  2046         emit_int8(0x66); // size prefix
  2047       case 8:
  2048         addr_nop_8();
  2049         break;
  2050       case 7:
  2051         addr_nop_7();
  2052         break;
  2053       case 6:
  2054         emit_int8(0x66); // size prefix
  2055       case 5:
  2056         addr_nop_5();
  2057         break;
  2058       case 4:
  2059         addr_nop_4();
  2060         break;
  2061       case 3:
  2062         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2063         emit_int8(0x66); // size prefix
  2064       case 2:
  2065         emit_int8(0x66); // size prefix
  2066       case 1:
  2067         emit_int8((unsigned char)0x90);
  2068                          // nop
  2069         break;
  2070       default:
  2071         assert(i == 0, " ");
  2073     return;
  2075   if (UseAddressNop && VM_Version::is_amd()) {
  2076     //
  2077     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2078     //  1: 0x90
  2079     //  2: 0x66 0x90
  2080     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2081     //  4: 0x0F 0x1F 0x40 0x00
  2082     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2083     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2084     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2085     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2086     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2087     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2088     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2090     // The rest coding is AMD specific - use consecutive address nops
  2092     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2093     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2094     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2095     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2096     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2097     //     Size prefixes (0x66) are added for larger sizes
  2099     while(i >= 22) {
  2100       i -= 11;
  2101       emit_int8(0x66); // size prefix
  2102       emit_int8(0x66); // size prefix
  2103       emit_int8(0x66); // size prefix
  2104       addr_nop_8();
  2106     // Generate first nop for size between 21-12
  2107     switch (i) {
  2108       case 21:
  2109         i -= 1;
  2110         emit_int8(0x66); // size prefix
  2111       case 20:
  2112       case 19:
  2113         i -= 1;
  2114         emit_int8(0x66); // size prefix
  2115       case 18:
  2116       case 17:
  2117         i -= 1;
  2118         emit_int8(0x66); // size prefix
  2119       case 16:
  2120       case 15:
  2121         i -= 8;
  2122         addr_nop_8();
  2123         break;
  2124       case 14:
  2125       case 13:
  2126         i -= 7;
  2127         addr_nop_7();
  2128         break;
  2129       case 12:
  2130         i -= 6;
  2131         emit_int8(0x66); // size prefix
  2132         addr_nop_5();
  2133         break;
  2134       default:
  2135         assert(i < 12, " ");
  2138     // Generate second nop for size between 11-1
  2139     switch (i) {
  2140       case 11:
  2141         emit_int8(0x66); // size prefix
  2142       case 10:
  2143         emit_int8(0x66); // size prefix
  2144       case 9:
  2145         emit_int8(0x66); // size prefix
  2146       case 8:
  2147         addr_nop_8();
  2148         break;
  2149       case 7:
  2150         addr_nop_7();
  2151         break;
  2152       case 6:
  2153         emit_int8(0x66); // size prefix
  2154       case 5:
  2155         addr_nop_5();
  2156         break;
  2157       case 4:
  2158         addr_nop_4();
  2159         break;
  2160       case 3:
  2161         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2162         emit_int8(0x66); // size prefix
  2163       case 2:
  2164         emit_int8(0x66); // size prefix
  2165       case 1:
  2166         emit_int8((unsigned char)0x90);
  2167                          // nop
  2168         break;
  2169       default:
  2170         assert(i == 0, " ");
  2172     return;
  2175   // Using nops with size prefixes "0x66 0x90".
  2176   // From AMD Optimization Guide:
  2177   //  1: 0x90
  2178   //  2: 0x66 0x90
  2179   //  3: 0x66 0x66 0x90
  2180   //  4: 0x66 0x66 0x66 0x90
  2181   //  5: 0x66 0x66 0x90 0x66 0x90
  2182   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2183   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2184   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2185   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2186   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2187   //
  2188   while(i > 12) {
  2189     i -= 4;
  2190     emit_int8(0x66); // size prefix
  2191     emit_int8(0x66);
  2192     emit_int8(0x66);
  2193     emit_int8((unsigned char)0x90);
  2194                      // nop
  2196   // 1 - 12 nops
  2197   if(i > 8) {
  2198     if(i > 9) {
  2199       i -= 1;
  2200       emit_int8(0x66);
  2202     i -= 3;
  2203     emit_int8(0x66);
  2204     emit_int8(0x66);
  2205     emit_int8((unsigned char)0x90);
  2207   // 1 - 8 nops
  2208   if(i > 4) {
  2209     if(i > 6) {
  2210       i -= 1;
  2211       emit_int8(0x66);
  2213     i -= 3;
  2214     emit_int8(0x66);
  2215     emit_int8(0x66);
  2216     emit_int8((unsigned char)0x90);
  2218   switch (i) {
  2219     case 4:
  2220       emit_int8(0x66);
  2221     case 3:
  2222       emit_int8(0x66);
  2223     case 2:
  2224       emit_int8(0x66);
  2225     case 1:
  2226       emit_int8((unsigned char)0x90);
  2227       break;
  2228     default:
  2229       assert(i == 0, " ");
  2233 void Assembler::notl(Register dst) {
  2234   int encode = prefix_and_encode(dst->encoding());
  2235   emit_int8((unsigned char)0xF7);
  2236   emit_int8((unsigned char)(0xD0 | encode));
  2239 void Assembler::orl(Address dst, int32_t imm32) {
  2240   InstructionMark im(this);
  2241   prefix(dst);
  2242   emit_arith_operand(0x81, rcx, dst, imm32);
  2245 void Assembler::orl(Register dst, int32_t imm32) {
  2246   prefix(dst);
  2247   emit_arith(0x81, 0xC8, dst, imm32);
  2250 void Assembler::orl(Register dst, Address src) {
  2251   InstructionMark im(this);
  2252   prefix(src, dst);
  2253   emit_int8(0x0B);
  2254   emit_operand(dst, src);
  2257 void Assembler::orl(Register dst, Register src) {
  2258   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2259   emit_arith(0x0B, 0xC0, dst, src);
  2262 void Assembler::packuswb(XMMRegister dst, Address src) {
  2263   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2264   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2265   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2268 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
  2269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2270   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
  2273 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2274   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  2275   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
  2278 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
  2279   assert(VM_Version::supports_avx2(), "");
  2280   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
  2281   emit_int8(0x00);
  2282   emit_int8(0xC0 | encode);
  2283   emit_int8(imm8);
  2286 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2287   assert(VM_Version::supports_sse4_2(), "");
  2288   InstructionMark im(this);
  2289   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2290   emit_int8(0x61);
  2291   emit_operand(dst, src);
  2292   emit_int8(imm8);
  2295 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2296   assert(VM_Version::supports_sse4_2(), "");
  2297   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
  2298   emit_int8(0x61);
  2299   emit_int8((unsigned char)(0xC0 | encode));
  2300   emit_int8(imm8);
  2303 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
  2304   assert(VM_Version::supports_sse4_1(), "");
  2305   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2306   emit_int8(0x16);
  2307   emit_int8((unsigned char)(0xC0 | encode));
  2308   emit_int8(imm8);
  2311 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
  2312   assert(VM_Version::supports_sse4_1(), "");
  2313   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2314   emit_int8(0x16);
  2315   emit_int8((unsigned char)(0xC0 | encode));
  2316   emit_int8(imm8);
  2319 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
  2320   assert(VM_Version::supports_sse4_1(), "");
  2321   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
  2322   emit_int8(0x22);
  2323   emit_int8((unsigned char)(0xC0 | encode));
  2324   emit_int8(imm8);
  2327 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
  2328   assert(VM_Version::supports_sse4_1(), "");
  2329   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
  2330   emit_int8(0x22);
  2331   emit_int8((unsigned char)(0xC0 | encode));
  2332   emit_int8(imm8);
  2335 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
  2336   assert(VM_Version::supports_sse4_1(), "");
  2337   InstructionMark im(this);
  2338   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2339   emit_int8(0x30);
  2340   emit_operand(dst, src);
  2343 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
  2344   assert(VM_Version::supports_sse4_1(), "");
  2345   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2346   emit_int8(0x30);
  2347   emit_int8((unsigned char)(0xC0 | encode));
  2350 // generic
  2351 void Assembler::pop(Register dst) {
  2352   int encode = prefix_and_encode(dst->encoding());
  2353   emit_int8(0x58 | encode);
  2356 void Assembler::popcntl(Register dst, Address src) {
  2357   assert(VM_Version::supports_popcnt(), "must support");
  2358   InstructionMark im(this);
  2359   emit_int8((unsigned char)0xF3);
  2360   prefix(src, dst);
  2361   emit_int8(0x0F);
  2362   emit_int8((unsigned char)0xB8);
  2363   emit_operand(dst, src);
  2366 void Assembler::popcntl(Register dst, Register src) {
  2367   assert(VM_Version::supports_popcnt(), "must support");
  2368   emit_int8((unsigned char)0xF3);
  2369   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2370   emit_int8(0x0F);
  2371   emit_int8((unsigned char)0xB8);
  2372   emit_int8((unsigned char)(0xC0 | encode));
  2375 void Assembler::popf() {
  2376   emit_int8((unsigned char)0x9D);
  2379 #ifndef _LP64 // no 32bit push/pop on amd64
  2380 void Assembler::popl(Address dst) {
  2381   // NOTE: this will adjust stack by 8byte on 64bits
  2382   InstructionMark im(this);
  2383   prefix(dst);
  2384   emit_int8((unsigned char)0x8F);
  2385   emit_operand(rax, dst);
  2387 #endif
  2389 void Assembler::prefetch_prefix(Address src) {
  2390   prefix(src);
  2391   emit_int8(0x0F);
  2394 void Assembler::prefetchnta(Address src) {
  2395   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2396   InstructionMark im(this);
  2397   prefetch_prefix(src);
  2398   emit_int8(0x18);
  2399   emit_operand(rax, src); // 0, src
  2402 void Assembler::prefetchr(Address src) {
  2403   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2404   InstructionMark im(this);
  2405   prefetch_prefix(src);
  2406   emit_int8(0x0D);
  2407   emit_operand(rax, src); // 0, src
  2410 void Assembler::prefetcht0(Address src) {
  2411   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2412   InstructionMark im(this);
  2413   prefetch_prefix(src);
  2414   emit_int8(0x18);
  2415   emit_operand(rcx, src); // 1, src
  2418 void Assembler::prefetcht1(Address src) {
  2419   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2420   InstructionMark im(this);
  2421   prefetch_prefix(src);
  2422   emit_int8(0x18);
  2423   emit_operand(rdx, src); // 2, src
  2426 void Assembler::prefetcht2(Address src) {
  2427   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2428   InstructionMark im(this);
  2429   prefetch_prefix(src);
  2430   emit_int8(0x18);
  2431   emit_operand(rbx, src); // 3, src
  2434 void Assembler::prefetchw(Address src) {
  2435   assert(VM_Version::supports_3dnow_prefetch(), "must support");
  2436   InstructionMark im(this);
  2437   prefetch_prefix(src);
  2438   emit_int8(0x0D);
  2439   emit_operand(rcx, src); // 1, src
  2442 void Assembler::prefix(Prefix p) {
  2443   emit_int8(p);
  2446 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
  2447   assert(VM_Version::supports_ssse3(), "");
  2448   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2449   emit_int8(0x00);
  2450   emit_int8((unsigned char)(0xC0 | encode));
  2453 void Assembler::pshufb(XMMRegister dst, Address src) {
  2454   assert(VM_Version::supports_ssse3(), "");
  2455   InstructionMark im(this);
  2456   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2457   emit_int8(0x00);
  2458   emit_operand(dst, src);
  2461 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2462   assert(isByte(mode), "invalid value");
  2463   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2464   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
  2465   emit_int8(mode & 0xFF);
  2469 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2470   assert(isByte(mode), "invalid value");
  2471   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2472   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2473   InstructionMark im(this);
  2474   simd_prefix(dst, src, VEX_SIMD_66);
  2475   emit_int8(0x70);
  2476   emit_operand(dst, src);
  2477   emit_int8(mode & 0xFF);
  2480 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2481   assert(isByte(mode), "invalid value");
  2482   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2483   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
  2484   emit_int8(mode & 0xFF);
  2487 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2488   assert(isByte(mode), "invalid value");
  2489   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2490   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2491   InstructionMark im(this);
  2492   simd_prefix(dst, src, VEX_SIMD_F2);
  2493   emit_int8(0x70);
  2494   emit_operand(dst, src);
  2495   emit_int8(mode & 0xFF);
  2498 void Assembler::psrldq(XMMRegister dst, int shift) {
  2499   // Shift 128 bit value in xmm register by number of bytes.
  2500   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2501   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
  2502   emit_int8(0x73);
  2503   emit_int8((unsigned char)(0xC0 | encode));
  2504   emit_int8(shift);
  2507 void Assembler::ptest(XMMRegister dst, Address src) {
  2508   assert(VM_Version::supports_sse4_1(), "");
  2509   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2510   InstructionMark im(this);
  2511   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2512   emit_int8(0x17);
  2513   emit_operand(dst, src);
  2516 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2517   assert(VM_Version::supports_sse4_1(), "");
  2518   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  2519   emit_int8(0x17);
  2520   emit_int8((unsigned char)(0xC0 | encode));
  2523 void Assembler::vptest(XMMRegister dst, Address src) {
  2524   assert(VM_Version::supports_avx(), "");
  2525   InstructionMark im(this);
  2526   bool vector256 = true;
  2527   assert(dst != xnoreg, "sanity");
  2528   int dst_enc = dst->encoding();
  2529   // swap src<->dst for encoding
  2530   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  2531   emit_int8(0x17);
  2532   emit_operand(dst, src);
  2535 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
  2536   assert(VM_Version::supports_avx(), "");
  2537   bool vector256 = true;
  2538   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  2539   emit_int8(0x17);
  2540   emit_int8((unsigned char)(0xC0 | encode));
  2543 void Assembler::punpcklbw(XMMRegister dst, Address src) {
  2544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2545   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2546   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2549 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2550   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2551   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
  2554 void Assembler::punpckldq(XMMRegister dst, Address src) {
  2555   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2556   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
  2557   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2560 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
  2561   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2562   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
  2565 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
  2566   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2567   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
  2570 void Assembler::push(int32_t imm32) {
  2571   // in 64bits we push 64bits onto the stack but only
  2572   // take a 32bit immediate
  2573   emit_int8(0x68);
  2574   emit_int32(imm32);
  2577 void Assembler::push(Register src) {
  2578   int encode = prefix_and_encode(src->encoding());
  2580   emit_int8(0x50 | encode);
  2583 void Assembler::pushf() {
  2584   emit_int8((unsigned char)0x9C);
  2587 #ifndef _LP64 // no 32bit push/pop on amd64
  2588 void Assembler::pushl(Address src) {
  2589   // Note this will push 64bit on 64bit
  2590   InstructionMark im(this);
  2591   prefix(src);
  2592   emit_int8((unsigned char)0xFF);
  2593   emit_operand(rsi, src);
  2595 #endif
  2597 void Assembler::rcll(Register dst, int imm8) {
  2598   assert(isShiftCount(imm8), "illegal shift count");
  2599   int encode = prefix_and_encode(dst->encoding());
  2600   if (imm8 == 1) {
  2601     emit_int8((unsigned char)0xD1);
  2602     emit_int8((unsigned char)(0xD0 | encode));
  2603   } else {
  2604     emit_int8((unsigned char)0xC1);
  2605     emit_int8((unsigned char)0xD0 | encode);
  2606     emit_int8(imm8);
  2610 // copies data from [esi] to [edi] using rcx pointer sized words
  2611 // generic
  2612 void Assembler::rep_mov() {
  2613   emit_int8((unsigned char)0xF3);
  2614   // MOVSQ
  2615   LP64_ONLY(prefix(REX_W));
  2616   emit_int8((unsigned char)0xA5);
  2619 // sets rcx bytes with rax, value at [edi]
  2620 void Assembler::rep_stosb() {
  2621   emit_int8((unsigned char)0xF3); // REP
  2622   LP64_ONLY(prefix(REX_W));
  2623   emit_int8((unsigned char)0xAA); // STOSB
  2626 // sets rcx pointer sized words with rax, value at [edi]
  2627 // generic
  2628 void Assembler::rep_stos() {
  2629   emit_int8((unsigned char)0xF3); // REP
  2630   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
  2631   emit_int8((unsigned char)0xAB);
  2634 // scans rcx pointer sized words at [edi] for occurance of rax,
  2635 // generic
  2636 void Assembler::repne_scan() { // repne_scan
  2637   emit_int8((unsigned char)0xF2);
  2638   // SCASQ
  2639   LP64_ONLY(prefix(REX_W));
  2640   emit_int8((unsigned char)0xAF);
  2643 #ifdef _LP64
  2644 // scans rcx 4 byte words at [edi] for occurance of rax,
  2645 // generic
  2646 void Assembler::repne_scanl() { // repne_scan
  2647   emit_int8((unsigned char)0xF2);
  2648   // SCASL
  2649   emit_int8((unsigned char)0xAF);
  2651 #endif
  2653 void Assembler::ret(int imm16) {
  2654   if (imm16 == 0) {
  2655     emit_int8((unsigned char)0xC3);
  2656   } else {
  2657     emit_int8((unsigned char)0xC2);
  2658     emit_int16(imm16);
  2662 void Assembler::sahf() {
  2663 #ifdef _LP64
  2664   // Not supported in 64bit mode
  2665   ShouldNotReachHere();
  2666 #endif
  2667   emit_int8((unsigned char)0x9E);
  2670 void Assembler::sarl(Register dst, int imm8) {
  2671   int encode = prefix_and_encode(dst->encoding());
  2672   assert(isShiftCount(imm8), "illegal shift count");
  2673   if (imm8 == 1) {
  2674     emit_int8((unsigned char)0xD1);
  2675     emit_int8((unsigned char)(0xF8 | encode));
  2676   } else {
  2677     emit_int8((unsigned char)0xC1);
  2678     emit_int8((unsigned char)(0xF8 | encode));
  2679     emit_int8(imm8);
  2683 void Assembler::sarl(Register dst) {
  2684   int encode = prefix_and_encode(dst->encoding());
  2685   emit_int8((unsigned char)0xD3);
  2686   emit_int8((unsigned char)(0xF8 | encode));
  2689 void Assembler::sbbl(Address dst, int32_t imm32) {
  2690   InstructionMark im(this);
  2691   prefix(dst);
  2692   emit_arith_operand(0x81, rbx, dst, imm32);
  2695 void Assembler::sbbl(Register dst, int32_t imm32) {
  2696   prefix(dst);
  2697   emit_arith(0x81, 0xD8, dst, imm32);
  2701 void Assembler::sbbl(Register dst, Address src) {
  2702   InstructionMark im(this);
  2703   prefix(src, dst);
  2704   emit_int8(0x1B);
  2705   emit_operand(dst, src);
  2708 void Assembler::sbbl(Register dst, Register src) {
  2709   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2710   emit_arith(0x1B, 0xC0, dst, src);
  2713 void Assembler::setb(Condition cc, Register dst) {
  2714   assert(0 <= cc && cc < 16, "illegal cc");
  2715   int encode = prefix_and_encode(dst->encoding(), true);
  2716   emit_int8(0x0F);
  2717   emit_int8((unsigned char)0x90 | cc);
  2718   emit_int8((unsigned char)(0xC0 | encode));
  2721 void Assembler::shll(Register dst, int imm8) {
  2722   assert(isShiftCount(imm8), "illegal shift count");
  2723   int encode = prefix_and_encode(dst->encoding());
  2724   if (imm8 == 1 ) {
  2725     emit_int8((unsigned char)0xD1);
  2726     emit_int8((unsigned char)(0xE0 | encode));
  2727   } else {
  2728     emit_int8((unsigned char)0xC1);
  2729     emit_int8((unsigned char)(0xE0 | encode));
  2730     emit_int8(imm8);
  2734 void Assembler::shll(Register dst) {
  2735   int encode = prefix_and_encode(dst->encoding());
  2736   emit_int8((unsigned char)0xD3);
  2737   emit_int8((unsigned char)(0xE0 | encode));
  2740 void Assembler::shrl(Register dst, int imm8) {
  2741   assert(isShiftCount(imm8), "illegal shift count");
  2742   int encode = prefix_and_encode(dst->encoding());
  2743   emit_int8((unsigned char)0xC1);
  2744   emit_int8((unsigned char)(0xE8 | encode));
  2745   emit_int8(imm8);
  2748 void Assembler::shrl(Register dst) {
  2749   int encode = prefix_and_encode(dst->encoding());
  2750   emit_int8((unsigned char)0xD3);
  2751   emit_int8((unsigned char)(0xE8 | encode));
  2754 // copies a single word from [esi] to [edi]
  2755 void Assembler::smovl() {
  2756   emit_int8((unsigned char)0xA5);
  2759 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2761   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2764 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2766   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
  2769 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2770   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2771   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2774 void Assembler::std() {
  2775   emit_int8((unsigned char)0xFD);
  2778 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2779   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2780   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
  2783 void Assembler::stmxcsr( Address dst) {
  2784   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2785   InstructionMark im(this);
  2786   prefix(dst);
  2787   emit_int8(0x0F);
  2788   emit_int8((unsigned char)0xAE);
  2789   emit_operand(as_Register(3), dst);
  2792 void Assembler::subl(Address dst, int32_t imm32) {
  2793   InstructionMark im(this);
  2794   prefix(dst);
  2795   emit_arith_operand(0x81, rbp, dst, imm32);
  2798 void Assembler::subl(Address dst, Register src) {
  2799   InstructionMark im(this);
  2800   prefix(dst, src);
  2801   emit_int8(0x29);
  2802   emit_operand(src, dst);
  2805 void Assembler::subl(Register dst, int32_t imm32) {
  2806   prefix(dst);
  2807   emit_arith(0x81, 0xE8, dst, imm32);
  2810 // Force generation of a 4 byte immediate value even if it fits into 8bit
  2811 void Assembler::subl_imm32(Register dst, int32_t imm32) {
  2812   prefix(dst);
  2813   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  2816 void Assembler::subl(Register dst, Address src) {
  2817   InstructionMark im(this);
  2818   prefix(src, dst);
  2819   emit_int8(0x2B);
  2820   emit_operand(dst, src);
  2823 void Assembler::subl(Register dst, Register src) {
  2824   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2825   emit_arith(0x2B, 0xC0, dst, src);
  2828 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2829   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2830   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2833 void Assembler::subsd(XMMRegister dst, Address src) {
  2834   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2835   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
  2838 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2839   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2840   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2843 void Assembler::subss(XMMRegister dst, Address src) {
  2844   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2845   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
  2848 void Assembler::testb(Register dst, int imm8) {
  2849   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2850   (void) prefix_and_encode(dst->encoding(), true);
  2851   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2854 void Assembler::testl(Register dst, int32_t imm32) {
  2855   // not using emit_arith because test
  2856   // doesn't support sign-extension of
  2857   // 8bit operands
  2858   int encode = dst->encoding();
  2859   if (encode == 0) {
  2860     emit_int8((unsigned char)0xA9);
  2861   } else {
  2862     encode = prefix_and_encode(encode);
  2863     emit_int8((unsigned char)0xF7);
  2864     emit_int8((unsigned char)(0xC0 | encode));
  2866   emit_int32(imm32);
  2869 void Assembler::testl(Register dst, Register src) {
  2870   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2871   emit_arith(0x85, 0xC0, dst, src);
  2874 void Assembler::testl(Register dst, Address  src) {
  2875   InstructionMark im(this);
  2876   prefix(src, dst);
  2877   emit_int8((unsigned char)0x85);
  2878   emit_operand(dst, src);
  2881 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2882   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2883   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2886 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2888   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
  2891 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2892   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2893   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2896 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2897   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2898   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
  2902 void Assembler::xaddl(Address dst, Register src) {
  2903   InstructionMark im(this);
  2904   prefix(dst, src);
  2905   emit_int8(0x0F);
  2906   emit_int8((unsigned char)0xC1);
  2907   emit_operand(src, dst);
  2910 void Assembler::xchgl(Register dst, Address src) { // xchg
  2911   InstructionMark im(this);
  2912   prefix(src, dst);
  2913   emit_int8((unsigned char)0x87);
  2914   emit_operand(dst, src);
  2917 void Assembler::xchgl(Register dst, Register src) {
  2918   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2919   emit_int8((unsigned char)0x87);
  2920   emit_int8((unsigned char)(0xC0 | encode));
  2923 void Assembler::xgetbv() {
  2924   emit_int8(0x0F);
  2925   emit_int8(0x01);
  2926   emit_int8((unsigned char)0xD0);
  2929 void Assembler::xorl(Register dst, int32_t imm32) {
  2930   prefix(dst);
  2931   emit_arith(0x81, 0xF0, dst, imm32);
  2934 void Assembler::xorl(Register dst, Address src) {
  2935   InstructionMark im(this);
  2936   prefix(src, dst);
  2937   emit_int8(0x33);
  2938   emit_operand(dst, src);
  2941 void Assembler::xorl(Register dst, Register src) {
  2942   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2943   emit_arith(0x33, 0xC0, dst, src);
  2947 // AVX 3-operands scalar float-point arithmetic instructions
  2949 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
  2950   assert(VM_Version::supports_avx(), "");
  2951   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2954 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2955   assert(VM_Version::supports_avx(), "");
  2956   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2959 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
  2960   assert(VM_Version::supports_avx(), "");
  2961   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2964 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2965   assert(VM_Version::supports_avx(), "");
  2966   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2969 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
  2970   assert(VM_Version::supports_avx(), "");
  2971   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2974 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2975   assert(VM_Version::supports_avx(), "");
  2976   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2979 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
  2980   assert(VM_Version::supports_avx(), "");
  2981   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2984 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2985   assert(VM_Version::supports_avx(), "");
  2986   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  2989 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
  2990   assert(VM_Version::supports_avx(), "");
  2991   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2994 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2995   assert(VM_Version::supports_avx(), "");
  2996   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  2999 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
  3000   assert(VM_Version::supports_avx(), "");
  3001   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3004 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3005   assert(VM_Version::supports_avx(), "");
  3006   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3009 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
  3010   assert(VM_Version::supports_avx(), "");
  3011   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3014 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3015   assert(VM_Version::supports_avx(), "");
  3016   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
  3019 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
  3020   assert(VM_Version::supports_avx(), "");
  3021   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3024 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3025   assert(VM_Version::supports_avx(), "");
  3026   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
  3029 //====================VECTOR ARITHMETIC=====================================
  3031 // Float-point vector arithmetic
  3033 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
  3034   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3035   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
  3038 void Assembler::addps(XMMRegister dst, XMMRegister src) {
  3039   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3040   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
  3043 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3044   assert(VM_Version::supports_avx(), "");
  3045   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3048 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3049   assert(VM_Version::supports_avx(), "");
  3050   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3053 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3054   assert(VM_Version::supports_avx(), "");
  3055   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
  3058 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3059   assert(VM_Version::supports_avx(), "");
  3060   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
  3063 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
  3064   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3065   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
  3068 void Assembler::subps(XMMRegister dst, XMMRegister src) {
  3069   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3070   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
  3073 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3074   assert(VM_Version::supports_avx(), "");
  3075   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3078 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3079   assert(VM_Version::supports_avx(), "");
  3080   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3083 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3084   assert(VM_Version::supports_avx(), "");
  3085   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
  3088 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3089   assert(VM_Version::supports_avx(), "");
  3090   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
  3093 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
  3094   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3095   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
  3098 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
  3099   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3100   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
  3103 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3104   assert(VM_Version::supports_avx(), "");
  3105   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3108 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3109   assert(VM_Version::supports_avx(), "");
  3110   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3113 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3114   assert(VM_Version::supports_avx(), "");
  3115   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
  3118 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3119   assert(VM_Version::supports_avx(), "");
  3120   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
  3123 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
  3124   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3125   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
  3128 void Assembler::divps(XMMRegister dst, XMMRegister src) {
  3129   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3130   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
  3133 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3134   assert(VM_Version::supports_avx(), "");
  3135   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3138 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3139   assert(VM_Version::supports_avx(), "");
  3140   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3143 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3144   assert(VM_Version::supports_avx(), "");
  3145   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
  3148 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3149   assert(VM_Version::supports_avx(), "");
  3150   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
  3153 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
  3154   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3155   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3158 void Assembler::andps(XMMRegister dst, XMMRegister src) {
  3159   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3160   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3163 void Assembler::andps(XMMRegister dst, Address src) {
  3164   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3165   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
  3168 void Assembler::andpd(XMMRegister dst, Address src) {
  3169   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3170   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
  3173 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3174   assert(VM_Version::supports_avx(), "");
  3175   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3178 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3179   assert(VM_Version::supports_avx(), "");
  3180   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3183 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3184   assert(VM_Version::supports_avx(), "");
  3185   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
  3188 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3189   assert(VM_Version::supports_avx(), "");
  3190   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
  3193 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  3194   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3195   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3198 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  3199   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3200   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3203 void Assembler::xorpd(XMMRegister dst, Address src) {
  3204   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3205   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
  3208 void Assembler::xorps(XMMRegister dst, Address src) {
  3209   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3210   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
  3213 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3214   assert(VM_Version::supports_avx(), "");
  3215   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3218 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3219   assert(VM_Version::supports_avx(), "");
  3220   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3223 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3224   assert(VM_Version::supports_avx(), "");
  3225   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
  3228 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3229   assert(VM_Version::supports_avx(), "");
  3230   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
  3234 // Integer vector arithmetic
  3235 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
  3236   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3237   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
  3240 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
  3241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3242   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
  3245 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
  3246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3247   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
  3250 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
  3251   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3252   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
  3255 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3256   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3257   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3260 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3261   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3262   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3265 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3266   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3267   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3270 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3271   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3272   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3275 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3276   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3277   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
  3280 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3281   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3282   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
  3285 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3286   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3287   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
  3290 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3291   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3292   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
  3295 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
  3296   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3297   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
  3300 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
  3301   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3302   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
  3305 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
  3306   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3307   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
  3310 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
  3311   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3312   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
  3315 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3316   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3317   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3320 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3321   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3322   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3325 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3326   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3327   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3330 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3331   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3332   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3335 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3336   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3337   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
  3340 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3341   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3342   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
  3345 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3346   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3347   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
  3350 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3351   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3352   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
  3355 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
  3356   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3357   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
  3360 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
  3361   assert(VM_Version::supports_sse4_1(), "");
  3362   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
  3363   emit_int8(0x40);
  3364   emit_int8((unsigned char)(0xC0 | encode));
  3367 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3368   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3369   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3372 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3373   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3374   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3375   emit_int8(0x40);
  3376   emit_int8((unsigned char)(0xC0 | encode));
  3379 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3380   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3381   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
  3384 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3385   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3386   InstructionMark im(this);
  3387   int dst_enc = dst->encoding();
  3388   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  3389   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
  3390   emit_int8(0x40);
  3391   emit_operand(dst, src);
  3394 // Shift packed integers left by specified number of bits.
  3395 void Assembler::psllw(XMMRegister dst, int shift) {
  3396   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3397   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3398   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3399   emit_int8(0x71);
  3400   emit_int8((unsigned char)(0xC0 | encode));
  3401   emit_int8(shift & 0xFF);
  3404 void Assembler::pslld(XMMRegister dst, int shift) {
  3405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3406   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3407   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3408   emit_int8(0x72);
  3409   emit_int8((unsigned char)(0xC0 | encode));
  3410   emit_int8(shift & 0xFF);
  3413 void Assembler::psllq(XMMRegister dst, int shift) {
  3414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3415   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3416   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
  3417   emit_int8(0x73);
  3418   emit_int8((unsigned char)(0xC0 | encode));
  3419   emit_int8(shift & 0xFF);
  3422 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
  3423   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3424   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
  3427 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
  3428   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3429   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
  3432 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
  3433   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3434   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
  3437 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3438   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3439   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
  3440   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
  3441   emit_int8(shift & 0xFF);
  3444 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3445   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3446   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
  3447   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
  3448   emit_int8(shift & 0xFF);
  3451 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3452   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3453   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
  3454   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
  3455   emit_int8(shift & 0xFF);
  3458 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3459   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3460   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
  3463 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3464   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3465   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
  3468 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3469   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3470   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
  3473 // Shift packed integers logically right by specified number of bits.
  3474 void Assembler::psrlw(XMMRegister dst, int shift) {
  3475   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3476   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
  3477   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3478   emit_int8(0x71);
  3479   emit_int8((unsigned char)(0xC0 | encode));
  3480   emit_int8(shift & 0xFF);
  3483 void Assembler::psrld(XMMRegister dst, int shift) {
  3484   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3485   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
  3486   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3487   emit_int8(0x72);
  3488   emit_int8((unsigned char)(0xC0 | encode));
  3489   emit_int8(shift & 0xFF);
  3492 void Assembler::psrlq(XMMRegister dst, int shift) {
  3493   // Do not confuse it with psrldq SSE2 instruction which
  3494   // shifts 128 bit value in xmm register by number of bytes.
  3495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3496   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3497   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
  3498   emit_int8(0x73);
  3499   emit_int8((unsigned char)(0xC0 | encode));
  3500   emit_int8(shift & 0xFF);
  3503 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
  3504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3505   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
  3508 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
  3509   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3510   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
  3513 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
  3514   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3515   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
  3518 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3519   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3520   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3521   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
  3522   emit_int8(shift & 0xFF);
  3525 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3526   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3527   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3528   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
  3529   emit_int8(shift & 0xFF);
  3532 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3533   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3534   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
  3535   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
  3536   emit_int8(shift & 0xFF);
  3539 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3540   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3541   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
  3544 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3545   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3546   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
  3549 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3550   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3551   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
  3554 // Shift packed integers arithmetically right by specified number of bits.
  3555 void Assembler::psraw(XMMRegister dst, int shift) {
  3556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3557   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3558   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3559   emit_int8(0x71);
  3560   emit_int8((unsigned char)(0xC0 | encode));
  3561   emit_int8(shift & 0xFF);
  3564 void Assembler::psrad(XMMRegister dst, int shift) {
  3565   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3566   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
  3567   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
  3568   emit_int8(0x72);
  3569   emit_int8((unsigned char)(0xC0 | encode));
  3570   emit_int8(shift & 0xFF);
  3573 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
  3574   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3575   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
  3578 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
  3579   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3580   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
  3583 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3584   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3585   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3586   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
  3587   emit_int8(shift & 0xFF);
  3590 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
  3591   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3592   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
  3593   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
  3594   emit_int8(shift & 0xFF);
  3597 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3598   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3599   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
  3602 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
  3603   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3604   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
  3608 // AND packed integers
  3609 void Assembler::pand(XMMRegister dst, XMMRegister src) {
  3610   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3611   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
  3614 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3615   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3616   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3619 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3620   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3621   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
  3624 void Assembler::por(XMMRegister dst, XMMRegister src) {
  3625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3626   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
  3629 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3630   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3631   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3634 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3635   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3636   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
  3639 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  3640   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3641   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
  3644 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  3645   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3646   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3649 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  3650   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
  3651   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
  3655 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3656   assert(VM_Version::supports_avx(), "");
  3657   bool vector256 = true;
  3658   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3659   emit_int8(0x18);
  3660   emit_int8((unsigned char)(0xC0 | encode));
  3661   // 0x00 - insert into lower 128 bits
  3662   // 0x01 - insert into upper 128 bits
  3663   emit_int8(0x01);
  3666 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
  3667   assert(VM_Version::supports_avx(), "");
  3668   InstructionMark im(this);
  3669   bool vector256 = true;
  3670   assert(dst != xnoreg, "sanity");
  3671   int dst_enc = dst->encoding();
  3672   // swap src<->dst for encoding
  3673   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3674   emit_int8(0x18);
  3675   emit_operand(dst, src);
  3676   // 0x01 - insert into upper 128 bits
  3677   emit_int8(0x01);
  3680 void Assembler::vextractf128h(Address dst, XMMRegister src) {
  3681   assert(VM_Version::supports_avx(), "");
  3682   InstructionMark im(this);
  3683   bool vector256 = true;
  3684   assert(src != xnoreg, "sanity");
  3685   int src_enc = src->encoding();
  3686   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3687   emit_int8(0x19);
  3688   emit_operand(src, dst);
  3689   // 0x01 - extract from upper 128 bits
  3690   emit_int8(0x01);
  3693 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  3694   assert(VM_Version::supports_avx2(), "");
  3695   bool vector256 = true;
  3696   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3697   emit_int8(0x38);
  3698   emit_int8((unsigned char)(0xC0 | encode));
  3699   // 0x00 - insert into lower 128 bits
  3700   // 0x01 - insert into upper 128 bits
  3701   emit_int8(0x01);
  3704 void Assembler::vinserti128h(XMMRegister dst, Address src) {
  3705   assert(VM_Version::supports_avx2(), "");
  3706   InstructionMark im(this);
  3707   bool vector256 = true;
  3708   assert(dst != xnoreg, "sanity");
  3709   int dst_enc = dst->encoding();
  3710   // swap src<->dst for encoding
  3711   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3712   emit_int8(0x38);
  3713   emit_operand(dst, src);
  3714   // 0x01 - insert into upper 128 bits
  3715   emit_int8(0x01);
  3718 void Assembler::vextracti128h(Address dst, XMMRegister src) {
  3719   assert(VM_Version::supports_avx2(), "");
  3720   InstructionMark im(this);
  3721   bool vector256 = true;
  3722   assert(src != xnoreg, "sanity");
  3723   int src_enc = src->encoding();
  3724   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
  3725   emit_int8(0x39);
  3726   emit_operand(src, dst);
  3727   // 0x01 - extract from upper 128 bits
  3728   emit_int8(0x01);
  3731 // duplicate 4-bytes integer data from src into 8 locations in dest
  3732 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
  3733   assert(VM_Version::supports_avx2(), "");
  3734   bool vector256 = true;
  3735   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
  3736   emit_int8(0x58);
  3737   emit_int8((unsigned char)(0xC0 | encode));
  3740 // Carry-Less Multiplication Quadword
  3741 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
  3742   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
  3743   bool vector256 = false;
  3744   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
  3745   emit_int8(0x44);
  3746   emit_int8((unsigned char)(0xC0 | encode));
  3747   emit_int8((unsigned char)mask);
  3750 void Assembler::vzeroupper() {
  3751   assert(VM_Version::supports_avx(), "");
  3752   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
  3753   emit_int8(0x77);
  3757 #ifndef _LP64
  3758 // 32bit only pieces of the assembler
  3760 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  3761   // NO PREFIX AS NEVER 64BIT
  3762   InstructionMark im(this);
  3763   emit_int8((unsigned char)0x81);
  3764   emit_int8((unsigned char)(0xF8 | src1->encoding()));
  3765   emit_data(imm32, rspec, 0);
  3768 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  3769   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  3770   InstructionMark im(this);
  3771   emit_int8((unsigned char)0x81);
  3772   emit_operand(rdi, src1);
  3773   emit_data(imm32, rspec, 0);
  3776 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  3777 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  3778 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  3779 void Assembler::cmpxchg8(Address adr) {
  3780   InstructionMark im(this);
  3781   emit_int8(0x0F);
  3782   emit_int8((unsigned char)0xC7);
  3783   emit_operand(rcx, adr);
  3786 void Assembler::decl(Register dst) {
  3787   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3788  emit_int8(0x48 | dst->encoding());
  3791 #endif // _LP64
  3793 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  3795 void Assembler::fabs() {
  3796   emit_int8((unsigned char)0xD9);
  3797   emit_int8((unsigned char)0xE1);
  3800 void Assembler::fadd(int i) {
  3801   emit_farith(0xD8, 0xC0, i);
  3804 void Assembler::fadd_d(Address src) {
  3805   InstructionMark im(this);
  3806   emit_int8((unsigned char)0xDC);
  3807   emit_operand32(rax, src);
  3810 void Assembler::fadd_s(Address src) {
  3811   InstructionMark im(this);
  3812   emit_int8((unsigned char)0xD8);
  3813   emit_operand32(rax, src);
  3816 void Assembler::fadda(int i) {
  3817   emit_farith(0xDC, 0xC0, i);
  3820 void Assembler::faddp(int i) {
  3821   emit_farith(0xDE, 0xC0, i);
  3824 void Assembler::fchs() {
  3825   emit_int8((unsigned char)0xD9);
  3826   emit_int8((unsigned char)0xE0);
  3829 void Assembler::fcom(int i) {
  3830   emit_farith(0xD8, 0xD0, i);
  3833 void Assembler::fcomp(int i) {
  3834   emit_farith(0xD8, 0xD8, i);
  3837 void Assembler::fcomp_d(Address src) {
  3838   InstructionMark im(this);
  3839   emit_int8((unsigned char)0xDC);
  3840   emit_operand32(rbx, src);
  3843 void Assembler::fcomp_s(Address src) {
  3844   InstructionMark im(this);
  3845   emit_int8((unsigned char)0xD8);
  3846   emit_operand32(rbx, src);
  3849 void Assembler::fcompp() {
  3850   emit_int8((unsigned char)0xDE);
  3851   emit_int8((unsigned char)0xD9);
  3854 void Assembler::fcos() {
  3855   emit_int8((unsigned char)0xD9);
  3856   emit_int8((unsigned char)0xFF);
  3859 void Assembler::fdecstp() {
  3860   emit_int8((unsigned char)0xD9);
  3861   emit_int8((unsigned char)0xF6);
  3864 void Assembler::fdiv(int i) {
  3865   emit_farith(0xD8, 0xF0, i);
  3868 void Assembler::fdiv_d(Address src) {
  3869   InstructionMark im(this);
  3870   emit_int8((unsigned char)0xDC);
  3871   emit_operand32(rsi, src);
  3874 void Assembler::fdiv_s(Address src) {
  3875   InstructionMark im(this);
  3876   emit_int8((unsigned char)0xD8);
  3877   emit_operand32(rsi, src);
  3880 void Assembler::fdiva(int i) {
  3881   emit_farith(0xDC, 0xF8, i);
  3884 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3885 //       is erroneous for some of the floating-point instructions below.
  3887 void Assembler::fdivp(int i) {
  3888   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3891 void Assembler::fdivr(int i) {
  3892   emit_farith(0xD8, 0xF8, i);
  3895 void Assembler::fdivr_d(Address src) {
  3896   InstructionMark im(this);
  3897   emit_int8((unsigned char)0xDC);
  3898   emit_operand32(rdi, src);
  3901 void Assembler::fdivr_s(Address src) {
  3902   InstructionMark im(this);
  3903   emit_int8((unsigned char)0xD8);
  3904   emit_operand32(rdi, src);
  3907 void Assembler::fdivra(int i) {
  3908   emit_farith(0xDC, 0xF0, i);
  3911 void Assembler::fdivrp(int i) {
  3912   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3915 void Assembler::ffree(int i) {
  3916   emit_farith(0xDD, 0xC0, i);
  3919 void Assembler::fild_d(Address adr) {
  3920   InstructionMark im(this);
  3921   emit_int8((unsigned char)0xDF);
  3922   emit_operand32(rbp, adr);
  3925 void Assembler::fild_s(Address adr) {
  3926   InstructionMark im(this);
  3927   emit_int8((unsigned char)0xDB);
  3928   emit_operand32(rax, adr);
  3931 void Assembler::fincstp() {
  3932   emit_int8((unsigned char)0xD9);
  3933   emit_int8((unsigned char)0xF7);
  3936 void Assembler::finit() {
  3937   emit_int8((unsigned char)0x9B);
  3938   emit_int8((unsigned char)0xDB);
  3939   emit_int8((unsigned char)0xE3);
  3942 void Assembler::fist_s(Address adr) {
  3943   InstructionMark im(this);
  3944   emit_int8((unsigned char)0xDB);
  3945   emit_operand32(rdx, adr);
  3948 void Assembler::fistp_d(Address adr) {
  3949   InstructionMark im(this);
  3950   emit_int8((unsigned char)0xDF);
  3951   emit_operand32(rdi, adr);
  3954 void Assembler::fistp_s(Address adr) {
  3955   InstructionMark im(this);
  3956   emit_int8((unsigned char)0xDB);
  3957   emit_operand32(rbx, adr);
  3960 void Assembler::fld1() {
  3961   emit_int8((unsigned char)0xD9);
  3962   emit_int8((unsigned char)0xE8);
  3965 void Assembler::fld_d(Address adr) {
  3966   InstructionMark im(this);
  3967   emit_int8((unsigned char)0xDD);
  3968   emit_operand32(rax, adr);
  3971 void Assembler::fld_s(Address adr) {
  3972   InstructionMark im(this);
  3973   emit_int8((unsigned char)0xD9);
  3974   emit_operand32(rax, adr);
  3978 void Assembler::fld_s(int index) {
  3979   emit_farith(0xD9, 0xC0, index);
  3982 void Assembler::fld_x(Address adr) {
  3983   InstructionMark im(this);
  3984   emit_int8((unsigned char)0xDB);
  3985   emit_operand32(rbp, adr);
  3988 void Assembler::fldcw(Address src) {
  3989   InstructionMark im(this);
  3990   emit_int8((unsigned char)0xD9);
  3991   emit_operand32(rbp, src);
  3994 void Assembler::fldenv(Address src) {
  3995   InstructionMark im(this);
  3996   emit_int8((unsigned char)0xD9);
  3997   emit_operand32(rsp, src);
  4000 void Assembler::fldlg2() {
  4001   emit_int8((unsigned char)0xD9);
  4002   emit_int8((unsigned char)0xEC);
  4005 void Assembler::fldln2() {
  4006   emit_int8((unsigned char)0xD9);
  4007   emit_int8((unsigned char)0xED);
  4010 void Assembler::fldz() {
  4011   emit_int8((unsigned char)0xD9);
  4012   emit_int8((unsigned char)0xEE);
  4015 void Assembler::flog() {
  4016   fldln2();
  4017   fxch();
  4018   fyl2x();
  4021 void Assembler::flog10() {
  4022   fldlg2();
  4023   fxch();
  4024   fyl2x();
  4027 void Assembler::fmul(int i) {
  4028   emit_farith(0xD8, 0xC8, i);
  4031 void Assembler::fmul_d(Address src) {
  4032   InstructionMark im(this);
  4033   emit_int8((unsigned char)0xDC);
  4034   emit_operand32(rcx, src);
  4037 void Assembler::fmul_s(Address src) {
  4038   InstructionMark im(this);
  4039   emit_int8((unsigned char)0xD8);
  4040   emit_operand32(rcx, src);
  4043 void Assembler::fmula(int i) {
  4044   emit_farith(0xDC, 0xC8, i);
  4047 void Assembler::fmulp(int i) {
  4048   emit_farith(0xDE, 0xC8, i);
  4051 void Assembler::fnsave(Address dst) {
  4052   InstructionMark im(this);
  4053   emit_int8((unsigned char)0xDD);
  4054   emit_operand32(rsi, dst);
  4057 void Assembler::fnstcw(Address src) {
  4058   InstructionMark im(this);
  4059   emit_int8((unsigned char)0x9B);
  4060   emit_int8((unsigned char)0xD9);
  4061   emit_operand32(rdi, src);
  4064 void Assembler::fnstsw_ax() {
  4065   emit_int8((unsigned char)0xDF);
  4066   emit_int8((unsigned char)0xE0);
  4069 void Assembler::fprem() {
  4070   emit_int8((unsigned char)0xD9);
  4071   emit_int8((unsigned char)0xF8);
  4074 void Assembler::fprem1() {
  4075   emit_int8((unsigned char)0xD9);
  4076   emit_int8((unsigned char)0xF5);
  4079 void Assembler::frstor(Address src) {
  4080   InstructionMark im(this);
  4081   emit_int8((unsigned char)0xDD);
  4082   emit_operand32(rsp, src);
  4085 void Assembler::fsin() {
  4086   emit_int8((unsigned char)0xD9);
  4087   emit_int8((unsigned char)0xFE);
  4090 void Assembler::fsqrt() {
  4091   emit_int8((unsigned char)0xD9);
  4092   emit_int8((unsigned char)0xFA);
  4095 void Assembler::fst_d(Address adr) {
  4096   InstructionMark im(this);
  4097   emit_int8((unsigned char)0xDD);
  4098   emit_operand32(rdx, adr);
  4101 void Assembler::fst_s(Address adr) {
  4102   InstructionMark im(this);
  4103   emit_int8((unsigned char)0xD9);
  4104   emit_operand32(rdx, adr);
  4107 void Assembler::fstp_d(Address adr) {
  4108   InstructionMark im(this);
  4109   emit_int8((unsigned char)0xDD);
  4110   emit_operand32(rbx, adr);
  4113 void Assembler::fstp_d(int index) {
  4114   emit_farith(0xDD, 0xD8, index);
  4117 void Assembler::fstp_s(Address adr) {
  4118   InstructionMark im(this);
  4119   emit_int8((unsigned char)0xD9);
  4120   emit_operand32(rbx, adr);
  4123 void Assembler::fstp_x(Address adr) {
  4124   InstructionMark im(this);
  4125   emit_int8((unsigned char)0xDB);
  4126   emit_operand32(rdi, adr);
  4129 void Assembler::fsub(int i) {
  4130   emit_farith(0xD8, 0xE0, i);
  4133 void Assembler::fsub_d(Address src) {
  4134   InstructionMark im(this);
  4135   emit_int8((unsigned char)0xDC);
  4136   emit_operand32(rsp, src);
  4139 void Assembler::fsub_s(Address src) {
  4140   InstructionMark im(this);
  4141   emit_int8((unsigned char)0xD8);
  4142   emit_operand32(rsp, src);
  4145 void Assembler::fsuba(int i) {
  4146   emit_farith(0xDC, 0xE8, i);
  4149 void Assembler::fsubp(int i) {
  4150   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  4153 void Assembler::fsubr(int i) {
  4154   emit_farith(0xD8, 0xE8, i);
  4157 void Assembler::fsubr_d(Address src) {
  4158   InstructionMark im(this);
  4159   emit_int8((unsigned char)0xDC);
  4160   emit_operand32(rbp, src);
  4163 void Assembler::fsubr_s(Address src) {
  4164   InstructionMark im(this);
  4165   emit_int8((unsigned char)0xD8);
  4166   emit_operand32(rbp, src);
  4169 void Assembler::fsubra(int i) {
  4170   emit_farith(0xDC, 0xE0, i);
  4173 void Assembler::fsubrp(int i) {
  4174   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  4177 void Assembler::ftan() {
  4178   emit_int8((unsigned char)0xD9);
  4179   emit_int8((unsigned char)0xF2);
  4180   emit_int8((unsigned char)0xDD);
  4181   emit_int8((unsigned char)0xD8);
  4184 void Assembler::ftst() {
  4185   emit_int8((unsigned char)0xD9);
  4186   emit_int8((unsigned char)0xE4);
  4189 void Assembler::fucomi(int i) {
  4190   // make sure the instruction is supported (introduced for P6, together with cmov)
  4191   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4192   emit_farith(0xDB, 0xE8, i);
  4195 void Assembler::fucomip(int i) {
  4196   // make sure the instruction is supported (introduced for P6, together with cmov)
  4197   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  4198   emit_farith(0xDF, 0xE8, i);
  4201 void Assembler::fwait() {
  4202   emit_int8((unsigned char)0x9B);
  4205 void Assembler::fxch(int i) {
  4206   emit_farith(0xD9, 0xC8, i);
  4209 void Assembler::fyl2x() {
  4210   emit_int8((unsigned char)0xD9);
  4211   emit_int8((unsigned char)0xF1);
  4214 void Assembler::frndint() {
  4215   emit_int8((unsigned char)0xD9);
  4216   emit_int8((unsigned char)0xFC);
  4219 void Assembler::f2xm1() {
  4220   emit_int8((unsigned char)0xD9);
  4221   emit_int8((unsigned char)0xF0);
  4224 void Assembler::fldl2e() {
  4225   emit_int8((unsigned char)0xD9);
  4226   emit_int8((unsigned char)0xEA);
  4229 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
  4230 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
  4231 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
  4232 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
  4234 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
  4235 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4236   if (pre > 0) {
  4237     emit_int8(simd_pre[pre]);
  4239   if (rex_w) {
  4240     prefixq(adr, xreg);
  4241   } else {
  4242     prefix(adr, xreg);
  4244   if (opc > 0) {
  4245     emit_int8(0x0F);
  4246     int opc2 = simd_opc[opc];
  4247     if (opc2 > 0) {
  4248       emit_int8(opc2);
  4253 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
  4254   if (pre > 0) {
  4255     emit_int8(simd_pre[pre]);
  4257   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
  4258                           prefix_and_encode(dst_enc, src_enc);
  4259   if (opc > 0) {
  4260     emit_int8(0x0F);
  4261     int opc2 = simd_opc[opc];
  4262     if (opc2 > 0) {
  4263       emit_int8(opc2);
  4266   return encode;
  4270 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
  4271   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
  4272     prefix(VEX_3bytes);
  4274     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
  4275     byte1 = (~byte1) & 0xE0;
  4276     byte1 |= opc;
  4277     emit_int8(byte1);
  4279     int byte2 = ((~nds_enc) & 0xf) << 3;
  4280     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
  4281     emit_int8(byte2);
  4282   } else {
  4283     prefix(VEX_2bytes);
  4285     int byte1 = vex_r ? VEX_R : 0;
  4286     byte1 = (~byte1) & 0x80;
  4287     byte1 |= ((~nds_enc) & 0xf) << 3;
  4288     byte1 |= (vector256 ? 4 : 0) | pre;
  4289     emit_int8(byte1);
  4293 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
  4294   bool vex_r = (xreg_enc >= 8);
  4295   bool vex_b = adr.base_needs_rex();
  4296   bool vex_x = adr.index_needs_rex();
  4297   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4300 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
  4301   bool vex_r = (dst_enc >= 8);
  4302   bool vex_b = (src_enc >= 8);
  4303   bool vex_x = false;
  4304   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
  4305   return (((dst_enc & 7) << 3) | (src_enc & 7));
  4309 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4310   if (UseAVX > 0) {
  4311     int xreg_enc = xreg->encoding();
  4312     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4313     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
  4314   } else {
  4315     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
  4316     rex_prefix(adr, xreg, pre, opc, rex_w);
  4320 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
  4321   int dst_enc = dst->encoding();
  4322   int src_enc = src->encoding();
  4323   if (UseAVX > 0) {
  4324     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
  4325     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
  4326   } else {
  4327     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
  4328     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
  4332 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4333   InstructionMark im(this);
  4334   simd_prefix(dst, dst, src, pre);
  4335   emit_int8(opcode);
  4336   emit_operand(dst, src);
  4339 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4340   int encode = simd_prefix_and_encode(dst, dst, src, pre);
  4341   emit_int8(opcode);
  4342   emit_int8((unsigned char)(0xC0 | encode));
  4345 // Versions with no second source register (non-destructive source).
  4346 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
  4347   InstructionMark im(this);
  4348   simd_prefix(dst, xnoreg, src, pre);
  4349   emit_int8(opcode);
  4350   emit_operand(dst, src);
  4353 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
  4354   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
  4355   emit_int8(opcode);
  4356   emit_int8((unsigned char)(0xC0 | encode));
  4359 // 3-operands AVX instructions
  4360 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4361                                Address src, VexSimdPrefix pre, bool vector256) {
  4362   InstructionMark im(this);
  4363   vex_prefix(dst, nds, src, pre, vector256);
  4364   emit_int8(opcode);
  4365   emit_operand(dst, src);
  4368 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
  4369                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
  4370   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
  4371   emit_int8(opcode);
  4372   emit_int8((unsigned char)(0xC0 | encode));
  4375 #ifndef _LP64
  4377 void Assembler::incl(Register dst) {
  4378   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4379   emit_int8(0x40 | dst->encoding());
  4382 void Assembler::lea(Register dst, Address src) {
  4383   leal(dst, src);
  4386 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4387   InstructionMark im(this);
  4388   emit_int8((unsigned char)0xC7);
  4389   emit_operand(rax, dst);
  4390   emit_data((int)imm32, rspec, 0);
  4393 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4394   InstructionMark im(this);
  4395   int encode = prefix_and_encode(dst->encoding());
  4396   emit_int8((unsigned char)(0xB8 | encode));
  4397   emit_data((int)imm32, rspec, 0);
  4400 void Assembler::popa() { // 32bit
  4401   emit_int8(0x61);
  4404 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  4405   InstructionMark im(this);
  4406   emit_int8(0x68);
  4407   emit_data(imm32, rspec, 0);
  4410 void Assembler::pusha() { // 32bit
  4411   emit_int8(0x60);
  4414 void Assembler::set_byte_if_not_zero(Register dst) {
  4415   emit_int8(0x0F);
  4416   emit_int8((unsigned char)0x95);
  4417   emit_int8((unsigned char)(0xE0 | dst->encoding()));
  4420 void Assembler::shldl(Register dst, Register src) {
  4421   emit_int8(0x0F);
  4422   emit_int8((unsigned char)0xA5);
  4423   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4426 void Assembler::shrdl(Register dst, Register src) {
  4427   emit_int8(0x0F);
  4428   emit_int8((unsigned char)0xAD);
  4429   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
  4432 #else // LP64
  4434 void Assembler::set_byte_if_not_zero(Register dst) {
  4435   int enc = prefix_and_encode(dst->encoding(), true);
  4436   emit_int8(0x0F);
  4437   emit_int8((unsigned char)0x95);
  4438   emit_int8((unsigned char)(0xE0 | enc));
  4441 // 64bit only pieces of the assembler
  4442 // This should only be used by 64bit instructions that can use rip-relative
  4443 // it cannot be used by instructions that want an immediate value.
  4445 bool Assembler::reachable(AddressLiteral adr) {
  4446   int64_t disp;
  4447   // None will force a 64bit literal to the code stream. Likely a placeholder
  4448   // for something that will be patched later and we need to certain it will
  4449   // always be reachable.
  4450   if (adr.reloc() == relocInfo::none) {
  4451     return false;
  4453   if (adr.reloc() == relocInfo::internal_word_type) {
  4454     // This should be rip relative and easily reachable.
  4455     return true;
  4457   if (adr.reloc() == relocInfo::virtual_call_type ||
  4458       adr.reloc() == relocInfo::opt_virtual_call_type ||
  4459       adr.reloc() == relocInfo::static_call_type ||
  4460       adr.reloc() == relocInfo::static_stub_type ) {
  4461     // This should be rip relative within the code cache and easily
  4462     // reachable until we get huge code caches. (At which point
  4463     // ic code is going to have issues).
  4464     return true;
  4466   if (adr.reloc() != relocInfo::external_word_type &&
  4467       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  4468       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  4469       adr.reloc() != relocInfo::runtime_call_type ) {
  4470     return false;
  4473   // Stress the correction code
  4474   if (ForceUnreachable) {
  4475     // Must be runtimecall reloc, see if it is in the codecache
  4476     // Flipping stuff in the codecache to be unreachable causes issues
  4477     // with things like inline caches where the additional instructions
  4478     // are not handled.
  4479     if (CodeCache::find_blob(adr._target) == NULL) {
  4480       return false;
  4483   // For external_word_type/runtime_call_type if it is reachable from where we
  4484   // are now (possibly a temp buffer) and where we might end up
  4485   // anywhere in the codeCache then we are always reachable.
  4486   // This would have to change if we ever save/restore shared code
  4487   // to be more pessimistic.
  4488   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  4489   if (!is_simm32(disp)) return false;
  4490   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  4491   if (!is_simm32(disp)) return false;
  4493   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
  4495   // Because rip relative is a disp + address_of_next_instruction and we
  4496   // don't know the value of address_of_next_instruction we apply a fudge factor
  4497   // to make sure we will be ok no matter the size of the instruction we get placed into.
  4498   // We don't have to fudge the checks above here because they are already worst case.
  4500   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  4501   // + 4 because better safe than sorry.
  4502   const int fudge = 12 + 4;
  4503   if (disp < 0) {
  4504     disp -= fudge;
  4505   } else {
  4506     disp += fudge;
  4508   return is_simm32(disp);
  4511 // Check if the polling page is not reachable from the code cache using rip-relative
  4512 // addressing.
  4513 bool Assembler::is_polling_page_far() {
  4514   intptr_t addr = (intptr_t)os::get_polling_page();
  4515   return ForceUnreachable ||
  4516          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  4517          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  4520 void Assembler::emit_data64(jlong data,
  4521                             relocInfo::relocType rtype,
  4522                             int format) {
  4523   if (rtype == relocInfo::none) {
  4524     emit_int64(data);
  4525   } else {
  4526     emit_data64(data, Relocation::spec_simple(rtype), format);
  4530 void Assembler::emit_data64(jlong data,
  4531                             RelocationHolder const& rspec,
  4532                             int format) {
  4533   assert(imm_operand == 0, "default format must be immediate in this file");
  4534   assert(imm_operand == format, "must be immediate");
  4535   assert(inst_mark() != NULL, "must be inside InstructionMark");
  4536   // Do not use AbstractAssembler::relocate, which is not intended for
  4537   // embedded words.  Instead, relocate to the enclosing instruction.
  4538   code_section()->relocate(inst_mark(), rspec, format);
  4539 #ifdef ASSERT
  4540   check_relocation(rspec, format);
  4541 #endif
  4542   emit_int64(data);
  4545 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  4546   if (reg_enc >= 8) {
  4547     prefix(REX_B);
  4548     reg_enc -= 8;
  4549   } else if (byteinst && reg_enc >= 4) {
  4550     prefix(REX);
  4552   return reg_enc;
  4555 int Assembler::prefixq_and_encode(int reg_enc) {
  4556   if (reg_enc < 8) {
  4557     prefix(REX_W);
  4558   } else {
  4559     prefix(REX_WB);
  4560     reg_enc -= 8;
  4562   return reg_enc;
  4565 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  4566   if (dst_enc < 8) {
  4567     if (src_enc >= 8) {
  4568       prefix(REX_B);
  4569       src_enc -= 8;
  4570     } else if (byteinst && src_enc >= 4) {
  4571       prefix(REX);
  4573   } else {
  4574     if (src_enc < 8) {
  4575       prefix(REX_R);
  4576     } else {
  4577       prefix(REX_RB);
  4578       src_enc -= 8;
  4580     dst_enc -= 8;
  4582   return dst_enc << 3 | src_enc;
  4585 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  4586   if (dst_enc < 8) {
  4587     if (src_enc < 8) {
  4588       prefix(REX_W);
  4589     } else {
  4590       prefix(REX_WB);
  4591       src_enc -= 8;
  4593   } else {
  4594     if (src_enc < 8) {
  4595       prefix(REX_WR);
  4596     } else {
  4597       prefix(REX_WRB);
  4598       src_enc -= 8;
  4600     dst_enc -= 8;
  4602   return dst_enc << 3 | src_enc;
  4605 void Assembler::prefix(Register reg) {
  4606   if (reg->encoding() >= 8) {
  4607     prefix(REX_B);
  4611 void Assembler::prefix(Address adr) {
  4612   if (adr.base_needs_rex()) {
  4613     if (adr.index_needs_rex()) {
  4614       prefix(REX_XB);
  4615     } else {
  4616       prefix(REX_B);
  4618   } else {
  4619     if (adr.index_needs_rex()) {
  4620       prefix(REX_X);
  4625 void Assembler::prefixq(Address adr) {
  4626   if (adr.base_needs_rex()) {
  4627     if (adr.index_needs_rex()) {
  4628       prefix(REX_WXB);
  4629     } else {
  4630       prefix(REX_WB);
  4632   } else {
  4633     if (adr.index_needs_rex()) {
  4634       prefix(REX_WX);
  4635     } else {
  4636       prefix(REX_W);
  4642 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  4643   if (reg->encoding() < 8) {
  4644     if (adr.base_needs_rex()) {
  4645       if (adr.index_needs_rex()) {
  4646         prefix(REX_XB);
  4647       } else {
  4648         prefix(REX_B);
  4650     } else {
  4651       if (adr.index_needs_rex()) {
  4652         prefix(REX_X);
  4653       } else if (byteinst && reg->encoding() >= 4 ) {
  4654         prefix(REX);
  4657   } else {
  4658     if (adr.base_needs_rex()) {
  4659       if (adr.index_needs_rex()) {
  4660         prefix(REX_RXB);
  4661       } else {
  4662         prefix(REX_RB);
  4664     } else {
  4665       if (adr.index_needs_rex()) {
  4666         prefix(REX_RX);
  4667       } else {
  4668         prefix(REX_R);
  4674 void Assembler::prefixq(Address adr, Register src) {
  4675   if (src->encoding() < 8) {
  4676     if (adr.base_needs_rex()) {
  4677       if (adr.index_needs_rex()) {
  4678         prefix(REX_WXB);
  4679       } else {
  4680         prefix(REX_WB);
  4682     } else {
  4683       if (adr.index_needs_rex()) {
  4684         prefix(REX_WX);
  4685       } else {
  4686         prefix(REX_W);
  4689   } else {
  4690     if (adr.base_needs_rex()) {
  4691       if (adr.index_needs_rex()) {
  4692         prefix(REX_WRXB);
  4693       } else {
  4694         prefix(REX_WRB);
  4696     } else {
  4697       if (adr.index_needs_rex()) {
  4698         prefix(REX_WRX);
  4699       } else {
  4700         prefix(REX_WR);
  4706 void Assembler::prefix(Address adr, XMMRegister reg) {
  4707   if (reg->encoding() < 8) {
  4708     if (adr.base_needs_rex()) {
  4709       if (adr.index_needs_rex()) {
  4710         prefix(REX_XB);
  4711       } else {
  4712         prefix(REX_B);
  4714     } else {
  4715       if (adr.index_needs_rex()) {
  4716         prefix(REX_X);
  4719   } else {
  4720     if (adr.base_needs_rex()) {
  4721       if (adr.index_needs_rex()) {
  4722         prefix(REX_RXB);
  4723       } else {
  4724         prefix(REX_RB);
  4726     } else {
  4727       if (adr.index_needs_rex()) {
  4728         prefix(REX_RX);
  4729       } else {
  4730         prefix(REX_R);
  4736 void Assembler::prefixq(Address adr, XMMRegister src) {
  4737   if (src->encoding() < 8) {
  4738     if (adr.base_needs_rex()) {
  4739       if (adr.index_needs_rex()) {
  4740         prefix(REX_WXB);
  4741       } else {
  4742         prefix(REX_WB);
  4744     } else {
  4745       if (adr.index_needs_rex()) {
  4746         prefix(REX_WX);
  4747       } else {
  4748         prefix(REX_W);
  4751   } else {
  4752     if (adr.base_needs_rex()) {
  4753       if (adr.index_needs_rex()) {
  4754         prefix(REX_WRXB);
  4755       } else {
  4756         prefix(REX_WRB);
  4758     } else {
  4759       if (adr.index_needs_rex()) {
  4760         prefix(REX_WRX);
  4761       } else {
  4762         prefix(REX_WR);
  4768 void Assembler::adcq(Register dst, int32_t imm32) {
  4769   (void) prefixq_and_encode(dst->encoding());
  4770   emit_arith(0x81, 0xD0, dst, imm32);
  4773 void Assembler::adcq(Register dst, Address src) {
  4774   InstructionMark im(this);
  4775   prefixq(src, dst);
  4776   emit_int8(0x13);
  4777   emit_operand(dst, src);
  4780 void Assembler::adcq(Register dst, Register src) {
  4781   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4782   emit_arith(0x13, 0xC0, dst, src);
  4785 void Assembler::addq(Address dst, int32_t imm32) {
  4786   InstructionMark im(this);
  4787   prefixq(dst);
  4788   emit_arith_operand(0x81, rax, dst,imm32);
  4791 void Assembler::addq(Address dst, Register src) {
  4792   InstructionMark im(this);
  4793   prefixq(dst, src);
  4794   emit_int8(0x01);
  4795   emit_operand(src, dst);
  4798 void Assembler::addq(Register dst, int32_t imm32) {
  4799   (void) prefixq_and_encode(dst->encoding());
  4800   emit_arith(0x81, 0xC0, dst, imm32);
  4803 void Assembler::addq(Register dst, Address src) {
  4804   InstructionMark im(this);
  4805   prefixq(src, dst);
  4806   emit_int8(0x03);
  4807   emit_operand(dst, src);
  4810 void Assembler::addq(Register dst, Register src) {
  4811   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4812   emit_arith(0x03, 0xC0, dst, src);
  4815 void Assembler::andq(Address dst, int32_t imm32) {
  4816   InstructionMark im(this);
  4817   prefixq(dst);
  4818   emit_int8((unsigned char)0x81);
  4819   emit_operand(rsp, dst, 4);
  4820   emit_int32(imm32);
  4823 void Assembler::andq(Register dst, int32_t imm32) {
  4824   (void) prefixq_and_encode(dst->encoding());
  4825   emit_arith(0x81, 0xE0, dst, imm32);
  4828 void Assembler::andq(Register dst, Address src) {
  4829   InstructionMark im(this);
  4830   prefixq(src, dst);
  4831   emit_int8(0x23);
  4832   emit_operand(dst, src);
  4835 void Assembler::andq(Register dst, Register src) {
  4836   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4837   emit_arith(0x23, 0xC0, dst, src);
  4840 void Assembler::bsfq(Register dst, Register src) {
  4841   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4842   emit_int8(0x0F);
  4843   emit_int8((unsigned char)0xBC);
  4844   emit_int8((unsigned char)(0xC0 | encode));
  4847 void Assembler::bsrq(Register dst, Register src) {
  4848   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  4849   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4850   emit_int8(0x0F);
  4851   emit_int8((unsigned char)0xBD);
  4852   emit_int8((unsigned char)(0xC0 | encode));
  4855 void Assembler::bswapq(Register reg) {
  4856   int encode = prefixq_and_encode(reg->encoding());
  4857   emit_int8(0x0F);
  4858   emit_int8((unsigned char)(0xC8 | encode));
  4861 void Assembler::cdqq() {
  4862   prefix(REX_W);
  4863   emit_int8((unsigned char)0x99);
  4866 void Assembler::clflush(Address adr) {
  4867   prefix(adr);
  4868   emit_int8(0x0F);
  4869   emit_int8((unsigned char)0xAE);
  4870   emit_operand(rdi, adr);
  4873 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  4874   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4875   emit_int8(0x0F);
  4876   emit_int8(0x40 | cc);
  4877   emit_int8((unsigned char)(0xC0 | encode));
  4880 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  4881   InstructionMark im(this);
  4882   prefixq(src, dst);
  4883   emit_int8(0x0F);
  4884   emit_int8(0x40 | cc);
  4885   emit_operand(dst, src);
  4888 void Assembler::cmpq(Address dst, int32_t imm32) {
  4889   InstructionMark im(this);
  4890   prefixq(dst);
  4891   emit_int8((unsigned char)0x81);
  4892   emit_operand(rdi, dst, 4);
  4893   emit_int32(imm32);
  4896 void Assembler::cmpq(Register dst, int32_t imm32) {
  4897   (void) prefixq_and_encode(dst->encoding());
  4898   emit_arith(0x81, 0xF8, dst, imm32);
  4901 void Assembler::cmpq(Address dst, Register src) {
  4902   InstructionMark im(this);
  4903   prefixq(dst, src);
  4904   emit_int8(0x3B);
  4905   emit_operand(src, dst);
  4908 void Assembler::cmpq(Register dst, Register src) {
  4909   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4910   emit_arith(0x3B, 0xC0, dst, src);
  4913 void Assembler::cmpq(Register dst, Address  src) {
  4914   InstructionMark im(this);
  4915   prefixq(src, dst);
  4916   emit_int8(0x3B);
  4917   emit_operand(dst, src);
  4920 void Assembler::cmpxchgq(Register reg, Address adr) {
  4921   InstructionMark im(this);
  4922   prefixq(adr, reg);
  4923   emit_int8(0x0F);
  4924   emit_int8((unsigned char)0xB1);
  4925   emit_operand(reg, adr);
  4928 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  4929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4930   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
  4931   emit_int8(0x2A);
  4932   emit_int8((unsigned char)(0xC0 | encode));
  4935 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
  4936   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4937   InstructionMark im(this);
  4938   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
  4939   emit_int8(0x2A);
  4940   emit_operand(dst, src);
  4943 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  4944   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4945   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
  4946   emit_int8(0x2A);
  4947   emit_int8((unsigned char)(0xC0 | encode));
  4950 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
  4951   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4952   InstructionMark im(this);
  4953   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
  4954   emit_int8(0x2A);
  4955   emit_operand(dst, src);
  4958 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  4959   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4960   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
  4961   emit_int8(0x2C);
  4962   emit_int8((unsigned char)(0xC0 | encode));
  4965 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  4966   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  4967   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
  4968   emit_int8(0x2C);
  4969   emit_int8((unsigned char)(0xC0 | encode));
  4972 void Assembler::decl(Register dst) {
  4973   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  4974   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  4975   int encode = prefix_and_encode(dst->encoding());
  4976   emit_int8((unsigned char)0xFF);
  4977   emit_int8((unsigned char)(0xC8 | encode));
  4980 void Assembler::decq(Register dst) {
  4981   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4982   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4983   int encode = prefixq_and_encode(dst->encoding());
  4984   emit_int8((unsigned char)0xFF);
  4985   emit_int8(0xC8 | encode);
  4988 void Assembler::decq(Address dst) {
  4989   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  4990   InstructionMark im(this);
  4991   prefixq(dst);
  4992   emit_int8((unsigned char)0xFF);
  4993   emit_operand(rcx, dst);
  4996 void Assembler::fxrstor(Address src) {
  4997   prefixq(src);
  4998   emit_int8(0x0F);
  4999   emit_int8((unsigned char)0xAE);
  5000   emit_operand(as_Register(1), src);
  5003 void Assembler::fxsave(Address dst) {
  5004   prefixq(dst);
  5005   emit_int8(0x0F);
  5006   emit_int8((unsigned char)0xAE);
  5007   emit_operand(as_Register(0), dst);
  5010 void Assembler::idivq(Register src) {
  5011   int encode = prefixq_and_encode(src->encoding());
  5012   emit_int8((unsigned char)0xF7);
  5013   emit_int8((unsigned char)(0xF8 | encode));
  5016 void Assembler::imulq(Register dst, Register src) {
  5017   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5018   emit_int8(0x0F);
  5019   emit_int8((unsigned char)0xAF);
  5020   emit_int8((unsigned char)(0xC0 | encode));
  5023 void Assembler::imulq(Register dst, Register src, int value) {
  5024   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5025   if (is8bit(value)) {
  5026     emit_int8(0x6B);
  5027     emit_int8((unsigned char)(0xC0 | encode));
  5028     emit_int8(value & 0xFF);
  5029   } else {
  5030     emit_int8(0x69);
  5031     emit_int8((unsigned char)(0xC0 | encode));
  5032     emit_int32(value);
  5036 void Assembler::imulq(Register dst, Address src) {
  5037   InstructionMark im(this);
  5038   prefixq(src, dst);
  5039   emit_int8(0x0F);
  5040   emit_int8((unsigned char) 0xAF);
  5041   emit_operand(dst, src);
  5044 void Assembler::incl(Register dst) {
  5045   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  5046   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5047   int encode = prefix_and_encode(dst->encoding());
  5048   emit_int8((unsigned char)0xFF);
  5049   emit_int8((unsigned char)(0xC0 | encode));
  5052 void Assembler::incq(Register dst) {
  5053   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5054   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  5055   int encode = prefixq_and_encode(dst->encoding());
  5056   emit_int8((unsigned char)0xFF);
  5057   emit_int8((unsigned char)(0xC0 | encode));
  5060 void Assembler::incq(Address dst) {
  5061   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  5062   InstructionMark im(this);
  5063   prefixq(dst);
  5064   emit_int8((unsigned char)0xFF);
  5065   emit_operand(rax, dst);
  5068 void Assembler::lea(Register dst, Address src) {
  5069   leaq(dst, src);
  5072 void Assembler::leaq(Register dst, Address src) {
  5073   InstructionMark im(this);
  5074   prefixq(src, dst);
  5075   emit_int8((unsigned char)0x8D);
  5076   emit_operand(dst, src);
  5079 void Assembler::mov64(Register dst, int64_t imm64) {
  5080   InstructionMark im(this);
  5081   int encode = prefixq_and_encode(dst->encoding());
  5082   emit_int8((unsigned char)(0xB8 | encode));
  5083   emit_int64(imm64);
  5086 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  5087   InstructionMark im(this);
  5088   int encode = prefixq_and_encode(dst->encoding());
  5089   emit_int8(0xB8 | encode);
  5090   emit_data64(imm64, rspec);
  5093 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  5094   InstructionMark im(this);
  5095   int encode = prefix_and_encode(dst->encoding());
  5096   emit_int8((unsigned char)(0xB8 | encode));
  5097   emit_data((int)imm32, rspec, narrow_oop_operand);
  5100 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  5101   InstructionMark im(this);
  5102   prefix(dst);
  5103   emit_int8((unsigned char)0xC7);
  5104   emit_operand(rax, dst, 4);
  5105   emit_data((int)imm32, rspec, narrow_oop_operand);
  5108 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  5109   InstructionMark im(this);
  5110   int encode = prefix_and_encode(src1->encoding());
  5111   emit_int8((unsigned char)0x81);
  5112   emit_int8((unsigned char)(0xF8 | encode));
  5113   emit_data((int)imm32, rspec, narrow_oop_operand);
  5116 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  5117   InstructionMark im(this);
  5118   prefix(src1);
  5119   emit_int8((unsigned char)0x81);
  5120   emit_operand(rax, src1, 4);
  5121   emit_data((int)imm32, rspec, narrow_oop_operand);
  5124 void Assembler::lzcntq(Register dst, Register src) {
  5125   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  5126   emit_int8((unsigned char)0xF3);
  5127   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5128   emit_int8(0x0F);
  5129   emit_int8((unsigned char)0xBD);
  5130   emit_int8((unsigned char)(0xC0 | encode));
  5133 void Assembler::movdq(XMMRegister dst, Register src) {
  5134   // table D-1 says MMX/SSE2
  5135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5136   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
  5137   emit_int8(0x6E);
  5138   emit_int8((unsigned char)(0xC0 | encode));
  5141 void Assembler::movdq(Register dst, XMMRegister src) {
  5142   // table D-1 says MMX/SSE2
  5143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  5144   // swap src/dst to get correct prefix
  5145   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
  5146   emit_int8(0x7E);
  5147   emit_int8((unsigned char)(0xC0 | encode));
  5150 void Assembler::movq(Register dst, Register src) {
  5151   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5152   emit_int8((unsigned char)0x8B);
  5153   emit_int8((unsigned char)(0xC0 | encode));
  5156 void Assembler::movq(Register dst, Address src) {
  5157   InstructionMark im(this);
  5158   prefixq(src, dst);
  5159   emit_int8((unsigned char)0x8B);
  5160   emit_operand(dst, src);
  5163 void Assembler::movq(Address dst, Register src) {
  5164   InstructionMark im(this);
  5165   prefixq(dst, src);
  5166   emit_int8((unsigned char)0x89);
  5167   emit_operand(src, dst);
  5170 void Assembler::movsbq(Register dst, Address src) {
  5171   InstructionMark im(this);
  5172   prefixq(src, dst);
  5173   emit_int8(0x0F);
  5174   emit_int8((unsigned char)0xBE);
  5175   emit_operand(dst, src);
  5178 void Assembler::movsbq(Register dst, Register src) {
  5179   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5180   emit_int8(0x0F);
  5181   emit_int8((unsigned char)0xBE);
  5182   emit_int8((unsigned char)(0xC0 | encode));
  5185 void Assembler::movslq(Register dst, int32_t imm32) {
  5186   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  5187   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  5188   // as a result we shouldn't use until tested at runtime...
  5189   ShouldNotReachHere();
  5190   InstructionMark im(this);
  5191   int encode = prefixq_and_encode(dst->encoding());
  5192   emit_int8((unsigned char)(0xC7 | encode));
  5193   emit_int32(imm32);
  5196 void Assembler::movslq(Address dst, int32_t imm32) {
  5197   assert(is_simm32(imm32), "lost bits");
  5198   InstructionMark im(this);
  5199   prefixq(dst);
  5200   emit_int8((unsigned char)0xC7);
  5201   emit_operand(rax, dst, 4);
  5202   emit_int32(imm32);
  5205 void Assembler::movslq(Register dst, Address src) {
  5206   InstructionMark im(this);
  5207   prefixq(src, dst);
  5208   emit_int8(0x63);
  5209   emit_operand(dst, src);
  5212 void Assembler::movslq(Register dst, Register src) {
  5213   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5214   emit_int8(0x63);
  5215   emit_int8((unsigned char)(0xC0 | encode));
  5218 void Assembler::movswq(Register dst, Address src) {
  5219   InstructionMark im(this);
  5220   prefixq(src, dst);
  5221   emit_int8(0x0F);
  5222   emit_int8((unsigned char)0xBF);
  5223   emit_operand(dst, src);
  5226 void Assembler::movswq(Register dst, Register src) {
  5227   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5228   emit_int8((unsigned char)0x0F);
  5229   emit_int8((unsigned char)0xBF);
  5230   emit_int8((unsigned char)(0xC0 | encode));
  5233 void Assembler::movzbq(Register dst, Address src) {
  5234   InstructionMark im(this);
  5235   prefixq(src, dst);
  5236   emit_int8((unsigned char)0x0F);
  5237   emit_int8((unsigned char)0xB6);
  5238   emit_operand(dst, src);
  5241 void Assembler::movzbq(Register dst, Register src) {
  5242   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5243   emit_int8(0x0F);
  5244   emit_int8((unsigned char)0xB6);
  5245   emit_int8(0xC0 | encode);
  5248 void Assembler::movzwq(Register dst, Address src) {
  5249   InstructionMark im(this);
  5250   prefixq(src, dst);
  5251   emit_int8((unsigned char)0x0F);
  5252   emit_int8((unsigned char)0xB7);
  5253   emit_operand(dst, src);
  5256 void Assembler::movzwq(Register dst, Register src) {
  5257   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5258   emit_int8((unsigned char)0x0F);
  5259   emit_int8((unsigned char)0xB7);
  5260   emit_int8((unsigned char)(0xC0 | encode));
  5263 void Assembler::negq(Register dst) {
  5264   int encode = prefixq_and_encode(dst->encoding());
  5265   emit_int8((unsigned char)0xF7);
  5266   emit_int8((unsigned char)(0xD8 | encode));
  5269 void Assembler::notq(Register dst) {
  5270   int encode = prefixq_and_encode(dst->encoding());
  5271   emit_int8((unsigned char)0xF7);
  5272   emit_int8((unsigned char)(0xD0 | encode));
  5275 void Assembler::orq(Address dst, int32_t imm32) {
  5276   InstructionMark im(this);
  5277   prefixq(dst);
  5278   emit_int8((unsigned char)0x81);
  5279   emit_operand(rcx, dst, 4);
  5280   emit_int32(imm32);
  5283 void Assembler::orq(Register dst, int32_t imm32) {
  5284   (void) prefixq_and_encode(dst->encoding());
  5285   emit_arith(0x81, 0xC8, dst, imm32);
  5288 void Assembler::orq(Register dst, Address src) {
  5289   InstructionMark im(this);
  5290   prefixq(src, dst);
  5291   emit_int8(0x0B);
  5292   emit_operand(dst, src);
  5295 void Assembler::orq(Register dst, Register src) {
  5296   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5297   emit_arith(0x0B, 0xC0, dst, src);
  5300 void Assembler::popa() { // 64bit
  5301   movq(r15, Address(rsp, 0));
  5302   movq(r14, Address(rsp, wordSize));
  5303   movq(r13, Address(rsp, 2 * wordSize));
  5304   movq(r12, Address(rsp, 3 * wordSize));
  5305   movq(r11, Address(rsp, 4 * wordSize));
  5306   movq(r10, Address(rsp, 5 * wordSize));
  5307   movq(r9,  Address(rsp, 6 * wordSize));
  5308   movq(r8,  Address(rsp, 7 * wordSize));
  5309   movq(rdi, Address(rsp, 8 * wordSize));
  5310   movq(rsi, Address(rsp, 9 * wordSize));
  5311   movq(rbp, Address(rsp, 10 * wordSize));
  5312   // skip rsp
  5313   movq(rbx, Address(rsp, 12 * wordSize));
  5314   movq(rdx, Address(rsp, 13 * wordSize));
  5315   movq(rcx, Address(rsp, 14 * wordSize));
  5316   movq(rax, Address(rsp, 15 * wordSize));
  5318   addq(rsp, 16 * wordSize);
  5321 void Assembler::popcntq(Register dst, Address src) {
  5322   assert(VM_Version::supports_popcnt(), "must support");
  5323   InstructionMark im(this);
  5324   emit_int8((unsigned char)0xF3);
  5325   prefixq(src, dst);
  5326   emit_int8((unsigned char)0x0F);
  5327   emit_int8((unsigned char)0xB8);
  5328   emit_operand(dst, src);
  5331 void Assembler::popcntq(Register dst, Register src) {
  5332   assert(VM_Version::supports_popcnt(), "must support");
  5333   emit_int8((unsigned char)0xF3);
  5334   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5335   emit_int8((unsigned char)0x0F);
  5336   emit_int8((unsigned char)0xB8);
  5337   emit_int8((unsigned char)(0xC0 | encode));
  5340 void Assembler::popq(Address dst) {
  5341   InstructionMark im(this);
  5342   prefixq(dst);
  5343   emit_int8((unsigned char)0x8F);
  5344   emit_operand(rax, dst);
  5347 void Assembler::pusha() { // 64bit
  5348   // we have to store original rsp.  ABI says that 128 bytes
  5349   // below rsp are local scratch.
  5350   movq(Address(rsp, -5 * wordSize), rsp);
  5352   subq(rsp, 16 * wordSize);
  5354   movq(Address(rsp, 15 * wordSize), rax);
  5355   movq(Address(rsp, 14 * wordSize), rcx);
  5356   movq(Address(rsp, 13 * wordSize), rdx);
  5357   movq(Address(rsp, 12 * wordSize), rbx);
  5358   // skip rsp
  5359   movq(Address(rsp, 10 * wordSize), rbp);
  5360   movq(Address(rsp, 9 * wordSize), rsi);
  5361   movq(Address(rsp, 8 * wordSize), rdi);
  5362   movq(Address(rsp, 7 * wordSize), r8);
  5363   movq(Address(rsp, 6 * wordSize), r9);
  5364   movq(Address(rsp, 5 * wordSize), r10);
  5365   movq(Address(rsp, 4 * wordSize), r11);
  5366   movq(Address(rsp, 3 * wordSize), r12);
  5367   movq(Address(rsp, 2 * wordSize), r13);
  5368   movq(Address(rsp, wordSize), r14);
  5369   movq(Address(rsp, 0), r15);
  5372 void Assembler::pushq(Address src) {
  5373   InstructionMark im(this);
  5374   prefixq(src);
  5375   emit_int8((unsigned char)0xFF);
  5376   emit_operand(rsi, src);
  5379 void Assembler::rclq(Register dst, int imm8) {
  5380   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5381   int encode = prefixq_and_encode(dst->encoding());
  5382   if (imm8 == 1) {
  5383     emit_int8((unsigned char)0xD1);
  5384     emit_int8((unsigned char)(0xD0 | encode));
  5385   } else {
  5386     emit_int8((unsigned char)0xC1);
  5387     emit_int8((unsigned char)(0xD0 | encode));
  5388     emit_int8(imm8);
  5391 void Assembler::sarq(Register dst, int imm8) {
  5392   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5393   int encode = prefixq_and_encode(dst->encoding());
  5394   if (imm8 == 1) {
  5395     emit_int8((unsigned char)0xD1);
  5396     emit_int8((unsigned char)(0xF8 | encode));
  5397   } else {
  5398     emit_int8((unsigned char)0xC1);
  5399     emit_int8((unsigned char)(0xF8 | encode));
  5400     emit_int8(imm8);
  5404 void Assembler::sarq(Register dst) {
  5405   int encode = prefixq_and_encode(dst->encoding());
  5406   emit_int8((unsigned char)0xD3);
  5407   emit_int8((unsigned char)(0xF8 | encode));
  5410 void Assembler::sbbq(Address dst, int32_t imm32) {
  5411   InstructionMark im(this);
  5412   prefixq(dst);
  5413   emit_arith_operand(0x81, rbx, dst, imm32);
  5416 void Assembler::sbbq(Register dst, int32_t imm32) {
  5417   (void) prefixq_and_encode(dst->encoding());
  5418   emit_arith(0x81, 0xD8, dst, imm32);
  5421 void Assembler::sbbq(Register dst, Address src) {
  5422   InstructionMark im(this);
  5423   prefixq(src, dst);
  5424   emit_int8(0x1B);
  5425   emit_operand(dst, src);
  5428 void Assembler::sbbq(Register dst, Register src) {
  5429   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5430   emit_arith(0x1B, 0xC0, dst, src);
  5433 void Assembler::shlq(Register dst, int imm8) {
  5434   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5435   int encode = prefixq_and_encode(dst->encoding());
  5436   if (imm8 == 1) {
  5437     emit_int8((unsigned char)0xD1);
  5438     emit_int8((unsigned char)(0xE0 | encode));
  5439   } else {
  5440     emit_int8((unsigned char)0xC1);
  5441     emit_int8((unsigned char)(0xE0 | encode));
  5442     emit_int8(imm8);
  5446 void Assembler::shlq(Register dst) {
  5447   int encode = prefixq_and_encode(dst->encoding());
  5448   emit_int8((unsigned char)0xD3);
  5449   emit_int8((unsigned char)(0xE0 | encode));
  5452 void Assembler::shrq(Register dst, int imm8) {
  5453   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  5454   int encode = prefixq_and_encode(dst->encoding());
  5455   emit_int8((unsigned char)0xC1);
  5456   emit_int8((unsigned char)(0xE8 | encode));
  5457   emit_int8(imm8);
  5460 void Assembler::shrq(Register dst) {
  5461   int encode = prefixq_and_encode(dst->encoding());
  5462   emit_int8((unsigned char)0xD3);
  5463   emit_int8(0xE8 | encode);
  5466 void Assembler::subq(Address dst, int32_t imm32) {
  5467   InstructionMark im(this);
  5468   prefixq(dst);
  5469   emit_arith_operand(0x81, rbp, dst, imm32);
  5472 void Assembler::subq(Address dst, Register src) {
  5473   InstructionMark im(this);
  5474   prefixq(dst, src);
  5475   emit_int8(0x29);
  5476   emit_operand(src, dst);
  5479 void Assembler::subq(Register dst, int32_t imm32) {
  5480   (void) prefixq_and_encode(dst->encoding());
  5481   emit_arith(0x81, 0xE8, dst, imm32);
  5484 // Force generation of a 4 byte immediate value even if it fits into 8bit
  5485 void Assembler::subq_imm32(Register dst, int32_t imm32) {
  5486   (void) prefixq_and_encode(dst->encoding());
  5487   emit_arith_imm32(0x81, 0xE8, dst, imm32);
  5490 void Assembler::subq(Register dst, Address src) {
  5491   InstructionMark im(this);
  5492   prefixq(src, dst);
  5493   emit_int8(0x2B);
  5494   emit_operand(dst, src);
  5497 void Assembler::subq(Register dst, Register src) {
  5498   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5499   emit_arith(0x2B, 0xC0, dst, src);
  5502 void Assembler::testq(Register dst, int32_t imm32) {
  5503   // not using emit_arith because test
  5504   // doesn't support sign-extension of
  5505   // 8bit operands
  5506   int encode = dst->encoding();
  5507   if (encode == 0) {
  5508     prefix(REX_W);
  5509     emit_int8((unsigned char)0xA9);
  5510   } else {
  5511     encode = prefixq_and_encode(encode);
  5512     emit_int8((unsigned char)0xF7);
  5513     emit_int8((unsigned char)(0xC0 | encode));
  5515   emit_int32(imm32);
  5518 void Assembler::testq(Register dst, Register src) {
  5519   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5520   emit_arith(0x85, 0xC0, dst, src);
  5523 void Assembler::xaddq(Address dst, Register src) {
  5524   InstructionMark im(this);
  5525   prefixq(dst, src);
  5526   emit_int8(0x0F);
  5527   emit_int8((unsigned char)0xC1);
  5528   emit_operand(src, dst);
  5531 void Assembler::xchgq(Register dst, Address src) {
  5532   InstructionMark im(this);
  5533   prefixq(src, dst);
  5534   emit_int8((unsigned char)0x87);
  5535   emit_operand(dst, src);
  5538 void Assembler::xchgq(Register dst, Register src) {
  5539   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  5540   emit_int8((unsigned char)0x87);
  5541   emit_int8((unsigned char)(0xc0 | encode));
  5544 void Assembler::xorq(Register dst, Register src) {
  5545   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  5546   emit_arith(0x33, 0xC0, dst, src);
  5549 void Assembler::xorq(Register dst, Address src) {
  5550   InstructionMark im(this);
  5551   prefixq(src, dst);
  5552   emit_int8(0x33);
  5553   emit_operand(dst, src);
  5556 #endif // !LP64

mercurial