src/cpu/ppc/vm/macroAssembler_ppc.inline.hpp

Wed, 27 Nov 2013 16:16:21 -0800

author
goetz
date
Wed, 27 Nov 2013 16:16:21 -0800
changeset 6490
41b780b43b74
parent 6486
b0133e4187d3
child 6495
67fa91961822
permissions
-rw-r--r--

8029015: PPC64 (part 216): opto: trap based null and range checks
Summary: On PPC64 use tdi instruction that does a compare and raises SIGTRAP for NULL and range checks.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2002, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2013 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP
    27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP
    29 #include "asm/assembler.inline.hpp"
    30 #include "asm/macroAssembler.hpp"
    31 #include "asm/codeBuffer.hpp"
    32 #include "code/codeCache.hpp"
    34 inline bool MacroAssembler::is_ld_largeoffset(address a) {
    35   const int inst1 = *(int *)a;
    36   const int inst2 = *(int *)(a+4);
    37   return (is_ld(inst1)) ||
    38          (is_addis(inst1) && is_ld(inst2) && inv_ra_field(inst2) == inv_rt_field(inst1));
    39 }
    41 inline int MacroAssembler::get_ld_largeoffset_offset(address a) {
    42   assert(MacroAssembler::is_ld_largeoffset(a), "must be ld with large offset");
    44   const int inst1 = *(int *)a;
    45   if (is_ld(inst1)) {
    46     return inv_d1_field(inst1);
    47   } else {
    48     const int inst2 = *(int *)(a+4);
    49     return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2);
    50   }
    51 }
    53 inline void MacroAssembler::round_to(Register r, int modulus) {
    54   assert(is_power_of_2_long((jlong)modulus), "must be power of 2");
    55   addi(r, r, modulus-1);
    56   clrrdi(r, r, log2_long((jlong)modulus));
    57 }
    59 // Move register if destination register and target register are different.
    60 inline void MacroAssembler::mr_if_needed(Register rd, Register rs) {
    61   if(rs !=rd) mr(rd, rs);
    62 }
    64 // Address of the global TOC.
    65 inline address MacroAssembler::global_toc() {
    66   return CodeCache::low_bound();
    67 }
    69 // Offset of given address to the global TOC.
    70 inline int MacroAssembler::offset_to_global_toc(const address addr) {
    71   intptr_t offset = (intptr_t)addr - (intptr_t)MacroAssembler::global_toc();
    72   assert(Assembler::is_simm((long)offset, 31) && offset >= 0, "must be in range");
    73   return (int)offset;
    74 }
    76 // Address of current method's TOC.
    77 inline address MacroAssembler::method_toc() {
    78   return code()->consts()->start();
    79 }
    81 // Offset of given address to current method's TOC.
    82 inline int MacroAssembler::offset_to_method_toc(address addr) {
    83   intptr_t offset = (intptr_t)addr - (intptr_t)method_toc();
    84   assert(is_simm((long)offset, 31) && offset >= 0, "must be in range");
    85   return (int)offset;
    86 }
    88 inline bool MacroAssembler::is_calculate_address_from_global_toc_at(address a, address bound) {
    89   const address inst2_addr = a;
    90   const int inst2 = *(int *) a;
    92   // The relocation points to the second instruction, the addi.
    93   if (!is_addi(inst2)) return false;
    95   // The addi reads and writes the same register dst.
    96   const int dst = inv_rt_field(inst2);
    97   if (inv_ra_field(inst2) != dst) return false;
    99   // Now, find the preceding addis which writes to dst.
   100   int inst1 = 0;
   101   address inst1_addr = inst2_addr - BytesPerInstWord;
   102   while (inst1_addr >= bound) {
   103     inst1 = *(int *) inst1_addr;
   104     if (is_addis(inst1) && inv_rt_field(inst1) == dst) {
   105       // stop, found the addis which writes dst
   106       break;
   107     }
   108     inst1_addr -= BytesPerInstWord;
   109   }
   111   if (!(inst1 == 0 || inv_ra_field(inst1) == 29 /* R29 */)) return false;
   112   return is_addis(inst1);
   113 }
   115 #ifdef _LP64
   116 // Detect narrow oop constants.
   117 inline bool MacroAssembler::is_set_narrow_oop(address a, address bound) {
   118   const address inst2_addr = a;
   119   const int inst2 = *(int *)a;
   121   // The relocation points to the second instruction, the addi.
   122   if (!is_addi(inst2)) return false;
   124   // The addi reads and writes the same register dst.
   125   const int dst = inv_rt_field(inst2);
   126   if (inv_ra_field(inst2) != dst) return false;
   128   // Now, find the preceding addis which writes to dst.
   129   int inst1 = 0;
   130   address inst1_addr = inst2_addr - BytesPerInstWord;
   131   while (inst1_addr >= bound) {
   132     inst1 = *(int *) inst1_addr;
   133     if (is_lis(inst1) && inv_rs_field(inst1) == dst) return true;
   134     inst1_addr -= BytesPerInstWord;
   135   }
   136   return false;
   137 }
   138 #endif
   141 inline bool MacroAssembler::is_load_const_at(address a) {
   142   const int* p_inst = (int *) a;
   143   bool b = is_lis(*p_inst++);
   144   if (is_ori(*p_inst)) {
   145     p_inst++;
   146     b = b && is_rldicr(*p_inst++); // TODO: could be made more precise: `sldi'!
   147     b = b && is_oris(*p_inst++);
   148     b = b && is_ori(*p_inst);
   149   } else if (is_lis(*p_inst)) {
   150     p_inst++;
   151     b = b && is_ori(*p_inst++);
   152     b = b && is_ori(*p_inst);
   153     // TODO: could enhance reliability by adding is_insrdi
   154   } else return false;
   155   return b;
   156 }
   158 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   159   set_oop(constant_oop_address(obj), d);
   160 }
   162 inline void MacroAssembler::set_oop(AddressLiteral obj_addr, Register d) {
   163   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   164   load_const(d, obj_addr);
   165 }
   167 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
   168   jint& stub_inst = *(jint*) branch;
   169   stub_inst = patched_branch(target - branch, stub_inst, 0);
   170 }
   172 // Relocation of conditional far branches.
   173 inline bool MacroAssembler::is_bc_far_variant1_at(address instruction_addr) {
   174   // Variant 1, the 1st instruction contains the destination address:
   175   //
   176   //    bcxx  DEST
   177   //    endgroup
   178   //
   179   const int instruction_1 = *(int*)(instruction_addr);
   180   const int instruction_2 = *(int*)(instruction_addr + 4);
   181   return is_bcxx(instruction_1) &&
   182          (inv_bd_field(instruction_1, (intptr_t)instruction_addr) != (intptr_t)(instruction_addr + 2*4)) &&
   183          is_endgroup(instruction_2);
   184 }
   186 // Relocation of conditional far branches.
   187 inline bool MacroAssembler::is_bc_far_variant2_at(address instruction_addr) {
   188   // Variant 2, the 2nd instruction contains the destination address:
   189   //
   190   //    b!cxx SKIP
   191   //    bxx   DEST
   192   //  SKIP:
   193   //
   194   const int instruction_1 = *(int*)(instruction_addr);
   195   const int instruction_2 = *(int*)(instruction_addr + 4);
   196   return is_bcxx(instruction_1) &&
   197          (inv_bd_field(instruction_1, (intptr_t)instruction_addr) == (intptr_t)(instruction_addr + 2*4)) &&
   198          is_bxx(instruction_2);
   199 }
   201 // Relocation for conditional branches
   202 inline bool MacroAssembler::is_bc_far_variant3_at(address instruction_addr) {
   203   // Variant 3, far cond branch to the next instruction, already patched to nops:
   204   //
   205   //    nop
   206   //    endgroup
   207   //  SKIP/DEST:
   208   //
   209   const int instruction_1 = *(int*)(instruction_addr);
   210   const int instruction_2 = *(int*)(instruction_addr + 4);
   211   return is_nop(instruction_1) &&
   212          is_endgroup(instruction_2);
   213 }
   216 // Convenience bc_far versions
   217 inline void MacroAssembler::blt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, less), L, optimize); }
   218 inline void MacroAssembler::bgt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, greater), L, optimize); }
   219 inline void MacroAssembler::beq_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, equal), L, optimize); }
   220 inline void MacroAssembler::bso_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, summary_overflow), L, optimize); }
   221 inline void MacroAssembler::bge_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, less), L, optimize); }
   222 inline void MacroAssembler::ble_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, greater), L, optimize); }
   223 inline void MacroAssembler::bne_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, equal), L, optimize); }
   224 inline void MacroAssembler::bns_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, summary_overflow), L, optimize); }
   226 inline address MacroAssembler::call_stub(Register function_entry) {
   227   mtctr(function_entry);
   228   bctrl();
   229   return pc();
   230 }
   232 inline void MacroAssembler::call_stub_and_return_to(Register function_entry, Register return_pc) {
   233   assert_different_registers(function_entry, return_pc);
   234   mtlr(return_pc);
   235   mtctr(function_entry);
   236   bctr();
   237 }
   239 // Get the pc where the last emitted call will return to.
   240 inline address MacroAssembler::last_calls_return_pc() {
   241   return _last_calls_return_pc;
   242 }
   244 // Read from the polling page, its address is already in a register.
   245 inline void MacroAssembler::load_from_polling_page(Register polling_page_address, int offset) {
   246   ld(R0, offset, polling_page_address);
   247 }
   249 // Trap-instruction-based checks.
   251 inline void MacroAssembler::trap_null_check(Register a, trap_to_bits cmp) {
   252   assert(TrapBasedNullChecks, "sanity");
   253   tdi(cmp, a/*reg a*/, 0);
   254 }
   255 inline void MacroAssembler::trap_zombie_not_entrant() {
   256   tdi(traptoUnconditional, 0/*reg 0*/, 1);
   257 }
   258 inline void MacroAssembler::trap_should_not_reach_here() {
   259   tdi_unchecked(traptoUnconditional, 0/*reg 0*/, 2);
   260 }
   262 inline void MacroAssembler::trap_ic_miss_check(Register a, Register b) {
   263   td(traptoGreaterThanUnsigned | traptoLessThanUnsigned, a, b);
   264 }
   266 // Do an explicit null check if access to a+offset will not raise a SIGSEGV.
   267 // Either issue a trap instruction that raises SIGTRAP, or do a compare that
   268 // branches to exception_entry.
   269 // No support for compressed oops (base page of heap).  Does not distinguish
   270 // loads and stores.
   271 inline void MacroAssembler::null_check_throw(Register a, int offset, Register temp_reg, address exception_entry) {
   272   if (!ImplicitNullChecks || needs_explicit_null_check(offset) || !os::zero_page_read_protected()) {
   273     if (TrapBasedNullChecks) {
   274       assert(UseSIGTRAP, "sanity");
   275       trap_null_check(a);
   276     } else {
   277       Label ok;
   278       cmpdi(CCR0, a, 0);
   279       bne(CCR0, ok);
   280       load_const_optimized(temp_reg, exception_entry);
   281       mtctr(temp_reg);
   282       bctr();
   283       bind(ok);
   284     }
   285   }
   286 }
   288 inline void MacroAssembler::ld_with_trap_null_check(Register d, int si16, Register s1) {
   289   if (!os::zero_page_read_protected()) {
   290     if (TrapBasedNullChecks) {
   291       trap_null_check(s1);
   292     }
   293   }
   294   ld(d, si16, s1);
   295 }
   297 // Attention: No null check for loaded uncompressed OOP. Can be used for loading klass field.
   298 inline void MacroAssembler::load_heap_oop_with_trap_null_check(Register d, RegisterOrConstant si16,
   299                                                                    Register s1) {
   300   if ( !os::zero_page_read_protected()) {
   301     if (TrapBasedNullChecks) {
   302       trap_null_check(s1);
   303     }
   304   }
   305   load_heap_oop_not_null(d, si16, s1);
   306 }
   308 inline void MacroAssembler::load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1) {
   309   if (UseCompressedOops) {
   310     lwz(d, offs, s1);
   311     // Attention: no null check here!
   312     decode_heap_oop_not_null(d);
   313   } else {
   314     ld(d, offs, s1);
   315   }
   316 }
   318 inline void MacroAssembler::load_heap_oop(Register d, RegisterOrConstant offs, Register s1) {
   319   if (UseCompressedOops) {
   320     lwz(d, offs, s1);
   321     decode_heap_oop(d);
   322   } else {
   323     ld(d, offs, s1);
   324   }
   325 }
   327 inline void MacroAssembler::encode_heap_oop_not_null(Register d) {
   328   if (Universe::narrow_oop_base() != NULL) {
   329     sub(d, d, R30);
   330   }
   331   if (Universe::narrow_oop_shift() != 0) {
   332     srdi(d, d, LogMinObjAlignmentInBytes);
   333   }
   334 }
   336 inline void MacroAssembler::decode_heap_oop_not_null(Register d) {
   337   if (Universe::narrow_oop_shift() != 0) {
   338     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
   339     sldi(d, d, LogMinObjAlignmentInBytes);
   340   }
   341   if (Universe::narrow_oop_base() != NULL) {
   342     add(d, d, R30);
   343   }
   344 }
   346 inline void MacroAssembler::decode_heap_oop(Register d) {
   347   Label isNull;
   348   if (Universe::narrow_oop_base() != NULL) {
   349     cmpwi(CCR0, d, 0);
   350     beq(CCR0, isNull);
   351   }
   352   if (Universe::narrow_oop_shift() != 0) {
   353     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
   354     sldi(d, d, LogMinObjAlignmentInBytes);
   355   }
   356   if (Universe::narrow_oop_base() != NULL) {
   357     add(d, d, R30);
   358   }
   359   bind(isNull);
   360 }
   362 // SIGTRAP-based range checks for arrays.
   363 inline void MacroAssembler::trap_range_check_l(Register a, Register b) {
   364   tw (traptoLessThanUnsigned,                  a/*reg a*/, b/*reg b*/);
   365 }
   366 inline void MacroAssembler::trap_range_check_l(Register a, int si16) {
   367   twi(traptoLessThanUnsigned,                  a/*reg a*/, si16);
   368 }
   369 inline void MacroAssembler::trap_range_check_le(Register a, int si16) {
   370   twi(traptoEqual | traptoLessThanUnsigned,    a/*reg a*/, si16);
   371 }
   372 inline void MacroAssembler::trap_range_check_g(Register a, int si16) {
   373   twi(traptoGreaterThanUnsigned,               a/*reg a*/, si16);
   374 }
   375 inline void MacroAssembler::trap_range_check_ge(Register a, Register b) {
   376   tw (traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, b/*reg b*/);
   377 }
   378 inline void MacroAssembler::trap_range_check_ge(Register a, int si16) {
   379   twi(traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, si16);
   380 }
   382 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP

mercurial