src/share/vm/gc_implementation/g1/heapRegion.cpp

Wed, 11 Sep 2013 16:25:02 +0200

author
tschatzl
date
Wed, 11 Sep 2013 16:25:02 +0200
changeset 5701
40136aa2cdb1
parent 5646
84683e78e713
child 5784
190899198332
permissions
-rw-r--r--

8010722: assert: failed: heap size is too big for compressed oops
Summary: Use conservative assumptions of required alignment for the various garbage collector components into account when determining the maximum heap size that supports compressed oops. Using this conservative value avoids several circular dependencies in the calculation.
Reviewed-by: stefank, dholmes

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "memory/genOopClosures.inline.hpp"
    34 #include "memory/iterator.hpp"
    35 #include "oops/oop.inline.hpp"
    37 int    HeapRegion::LogOfHRGrainBytes = 0;
    38 int    HeapRegion::LogOfHRGrainWords = 0;
    39 size_t HeapRegion::GrainBytes        = 0;
    40 size_t HeapRegion::GrainWords        = 0;
    41 size_t HeapRegion::CardsPerRegion    = 0;
    43 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    44                                  HeapRegion* hr, ExtendedOopClosure* cl,
    45                                  CardTableModRefBS::PrecisionStyle precision,
    46                                  FilterKind fk) :
    47   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    48   _hr(hr), _fk(fk), _g1(g1) { }
    50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    51                                                    OopClosure* oc) :
    52   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    54 template<class ClosureType>
    55 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    56                                HeapRegion* hr,
    57                                HeapWord* cur, HeapWord* top) {
    58   oop cur_oop = oop(cur);
    59   int oop_size = cur_oop->size();
    60   HeapWord* next_obj = cur + oop_size;
    61   while (next_obj < top) {
    62     // Keep filtering the remembered set.
    63     if (!g1h->is_obj_dead(cur_oop, hr)) {
    64       // Bottom lies entirely below top, so we can call the
    65       // non-memRegion version of oop_iterate below.
    66       cur_oop->oop_iterate(cl);
    67     }
    68     cur = next_obj;
    69     cur_oop = oop(cur);
    70     oop_size = cur_oop->size();
    71     next_obj = cur + oop_size;
    72   }
    73   return cur;
    74 }
    76 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
    77                                               HeapWord* bottom,
    78                                               HeapWord* top,
    79                                               ExtendedOopClosure* cl) {
    80   G1CollectedHeap* g1h = _g1;
    81   int oop_size;
    82   ExtendedOopClosure* cl2 = NULL;
    84   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
    85   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
    87   switch (_fk) {
    88   case NoFilterKind:          cl2 = cl; break;
    89   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    90   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    91   default:                    ShouldNotReachHere();
    92   }
    94   // Start filtering what we add to the remembered set. If the object is
    95   // not considered dead, either because it is marked (in the mark bitmap)
    96   // or it was allocated after marking finished, then we add it. Otherwise
    97   // we can safely ignore the object.
    98   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
    99     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   100   } else {
   101     oop_size = oop(bottom)->size();
   102   }
   104   bottom += oop_size;
   106   if (bottom < top) {
   107     // We replicate the loop below for several kinds of possible filters.
   108     switch (_fk) {
   109     case NoFilterKind:
   110       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   111       break;
   113     case IntoCSFilterKind: {
   114       FilterIntoCSClosure filt(this, g1h, cl);
   115       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   116       break;
   117     }
   119     case OutOfRegionFilterKind: {
   120       FilterOutOfRegionClosure filt(_hr, cl);
   121       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   122       break;
   123     }
   125     default:
   126       ShouldNotReachHere();
   127     }
   129     // Last object. Need to do dead-obj filtering here too.
   130     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   131       oop(bottom)->oop_iterate(cl2, mr);
   132     }
   133   }
   134 }
   136 // Minimum region size; we won't go lower than that.
   137 // We might want to decrease this in the future, to deal with small
   138 // heaps a bit more efficiently.
   139 #define MIN_REGION_SIZE  (      1024 * 1024 )
   141 // Maximum region size; we don't go higher than that. There's a good
   142 // reason for having an upper bound. We don't want regions to get too
   143 // large, otherwise cleanup's effectiveness would decrease as there
   144 // will be fewer opportunities to find totally empty regions after
   145 // marking.
   146 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   148 // The automatic region size calculation will try to have around this
   149 // many regions in the heap (based on the min heap size).
   150 #define TARGET_REGION_NUMBER          2048
   152 size_t HeapRegion::max_region_size() {
   153   return (size_t)MAX_REGION_SIZE;
   154 }
   156 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   157   uintx region_size = G1HeapRegionSize;
   158   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   159     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   160     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   161                        (uintx) MIN_REGION_SIZE);
   162   }
   164   int region_size_log = log2_long((jlong) region_size);
   165   // Recalculate the region size to make sure it's a power of
   166   // 2. This means that region_size is the largest power of 2 that's
   167   // <= what we've calculated so far.
   168   region_size = ((uintx)1 << region_size_log);
   170   // Now make sure that we don't go over or under our limits.
   171   if (region_size < MIN_REGION_SIZE) {
   172     region_size = MIN_REGION_SIZE;
   173   } else if (region_size > MAX_REGION_SIZE) {
   174     region_size = MAX_REGION_SIZE;
   175   }
   177   if (region_size != G1HeapRegionSize) {
   178     // Update the flag to make sure that PrintFlagsFinal logs the correct value
   179     FLAG_SET_ERGO(uintx, G1HeapRegionSize, region_size);
   180   }
   182   // And recalculate the log.
   183   region_size_log = log2_long((jlong) region_size);
   185   // Now, set up the globals.
   186   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   187   LogOfHRGrainBytes = region_size_log;
   189   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   190   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   192   guarantee(GrainBytes == 0, "we should only set it once");
   193   // The cast to int is safe, given that we've bounded region_size by
   194   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   195   GrainBytes = (size_t)region_size;
   197   guarantee(GrainWords == 0, "we should only set it once");
   198   GrainWords = GrainBytes >> LogHeapWordSize;
   199   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   201   guarantee(CardsPerRegion == 0, "we should only set it once");
   202   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   203 }
   205 void HeapRegion::reset_after_compaction() {
   206   G1OffsetTableContigSpace::reset_after_compaction();
   207   // After a compaction the mark bitmap is invalid, so we must
   208   // treat all objects as being inside the unmarked area.
   209   zero_marked_bytes();
   210   init_top_at_mark_start();
   211 }
   213 void HeapRegion::hr_clear(bool par, bool clear_space) {
   214   assert(_humongous_type == NotHumongous,
   215          "we should have already filtered out humongous regions");
   216   assert(_humongous_start_region == NULL,
   217          "we should have already filtered out humongous regions");
   218   assert(_end == _orig_end,
   219          "we should have already filtered out humongous regions");
   221   _in_collection_set = false;
   223   set_young_index_in_cset(-1);
   224   uninstall_surv_rate_group();
   225   set_young_type(NotYoung);
   226   reset_pre_dummy_top();
   228   if (!par) {
   229     // If this is parallel, this will be done later.
   230     HeapRegionRemSet* hrrs = rem_set();
   231     hrrs->clear();
   232     _claimed = InitialClaimValue;
   233   }
   234   zero_marked_bytes();
   236   _offsets.resize(HeapRegion::GrainWords);
   237   init_top_at_mark_start();
   238   if (clear_space) clear(SpaceDecorator::Mangle);
   239 }
   241 void HeapRegion::par_clear() {
   242   assert(used() == 0, "the region should have been already cleared");
   243   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   244   HeapRegionRemSet* hrrs = rem_set();
   245   hrrs->clear();
   246   CardTableModRefBS* ct_bs =
   247                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   248   ct_bs->clear(MemRegion(bottom(), end()));
   249 }
   251 void HeapRegion::calc_gc_efficiency() {
   252   // GC efficiency is the ratio of how much space would be
   253   // reclaimed over how long we predict it would take to reclaim it.
   254   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   255   G1CollectorPolicy* g1p = g1h->g1_policy();
   257   // Retrieve a prediction of the elapsed time for this region for
   258   // a mixed gc because the region will only be evacuated during a
   259   // mixed gc.
   260   double region_elapsed_time_ms =
   261     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   262   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   263 }
   265 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   266   assert(!isHumongous(), "sanity / pre-condition");
   267   assert(end() == _orig_end,
   268          "Should be normal before the humongous object allocation");
   269   assert(top() == bottom(), "should be empty");
   270   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   272   _humongous_type = StartsHumongous;
   273   _humongous_start_region = this;
   275   set_end(new_end);
   276   _offsets.set_for_starts_humongous(new_top);
   277 }
   279 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   280   assert(!isHumongous(), "sanity / pre-condition");
   281   assert(end() == _orig_end,
   282          "Should be normal before the humongous object allocation");
   283   assert(top() == bottom(), "should be empty");
   284   assert(first_hr->startsHumongous(), "pre-condition");
   286   _humongous_type = ContinuesHumongous;
   287   _humongous_start_region = first_hr;
   288 }
   290 void HeapRegion::set_notHumongous() {
   291   assert(isHumongous(), "pre-condition");
   293   if (startsHumongous()) {
   294     assert(top() <= end(), "pre-condition");
   295     set_end(_orig_end);
   296     if (top() > end()) {
   297       // at least one "continues humongous" region after it
   298       set_top(end());
   299     }
   300   } else {
   301     // continues humongous
   302     assert(end() == _orig_end, "sanity");
   303   }
   305   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   306   _humongous_type = NotHumongous;
   307   _humongous_start_region = NULL;
   308 }
   310 bool HeapRegion::claimHeapRegion(jint claimValue) {
   311   jint current = _claimed;
   312   if (current != claimValue) {
   313     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   314     if (res == current) {
   315       return true;
   316     }
   317   }
   318   return false;
   319 }
   321 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   322   HeapWord* low = addr;
   323   HeapWord* high = end();
   324   while (low < high) {
   325     size_t diff = pointer_delta(high, low);
   326     // Must add one below to bias toward the high amount.  Otherwise, if
   327   // "high" were at the desired value, and "low" were one less, we
   328     // would not converge on "high".  This is not symmetric, because
   329     // we set "high" to a block start, which might be the right one,
   330     // which we don't do for "low".
   331     HeapWord* middle = low + (diff+1)/2;
   332     if (middle == high) return high;
   333     HeapWord* mid_bs = block_start_careful(middle);
   334     if (mid_bs < addr) {
   335       low = middle;
   336     } else {
   337       high = mid_bs;
   338     }
   339   }
   340   assert(low == high && low >= addr, "Didn't work.");
   341   return low;
   342 }
   344 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   345 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   346 #endif // _MSC_VER
   349 HeapRegion::HeapRegion(uint hrs_index,
   350                        G1BlockOffsetSharedArray* sharedOffsetArray,
   351                        MemRegion mr) :
   352     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   353     _hrs_index(hrs_index),
   354     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   355     _in_collection_set(false),
   356     _next_in_special_set(NULL), _orig_end(NULL),
   357     _claimed(InitialClaimValue), _evacuation_failed(false),
   358     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   359     _young_type(NotYoung), _next_young_region(NULL),
   360     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
   361 #ifdef ASSERT
   362     _containing_set(NULL),
   363 #endif // ASSERT
   364      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   365     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   366     _predicted_bytes_to_copy(0)
   367 {
   368   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   369   _orig_end = mr.end();
   370   // Note that initialize() will set the start of the unmarked area of the
   371   // region.
   372   hr_clear(false /*par*/, false /*clear_space*/);
   373   set_top(bottom());
   374   set_saved_mark();
   376   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   377 }
   379 CompactibleSpace* HeapRegion::next_compaction_space() const {
   380   // We're not using an iterator given that it will wrap around when
   381   // it reaches the last region and this is not what we want here.
   382   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   383   uint index = hrs_index() + 1;
   384   while (index < g1h->n_regions()) {
   385     HeapRegion* hr = g1h->region_at(index);
   386     if (!hr->isHumongous()) {
   387       return hr;
   388     }
   389     index += 1;
   390   }
   391   return NULL;
   392 }
   394 void HeapRegion::save_marks() {
   395   set_saved_mark();
   396 }
   398 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   399   HeapWord* p = mr.start();
   400   HeapWord* e = mr.end();
   401   oop obj;
   402   while (p < e) {
   403     obj = oop(p);
   404     p += obj->oop_iterate(cl);
   405   }
   406   assert(p == e, "bad memregion: doesn't end on obj boundary");
   407 }
   409 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   410 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   411   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   412 }
   413 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   416 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
   417   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   418 }
   420 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   421                                                     bool during_conc_mark) {
   422   // We always recreate the prev marking info and we'll explicitly
   423   // mark all objects we find to be self-forwarded on the prev
   424   // bitmap. So all objects need to be below PTAMS.
   425   _prev_top_at_mark_start = top();
   426   _prev_marked_bytes = 0;
   428   if (during_initial_mark) {
   429     // During initial-mark, we'll also explicitly mark all objects
   430     // we find to be self-forwarded on the next bitmap. So all
   431     // objects need to be below NTAMS.
   432     _next_top_at_mark_start = top();
   433     _next_marked_bytes = 0;
   434   } else if (during_conc_mark) {
   435     // During concurrent mark, all objects in the CSet (including
   436     // the ones we find to be self-forwarded) are implicitly live.
   437     // So all objects need to be above NTAMS.
   438     _next_top_at_mark_start = bottom();
   439     _next_marked_bytes = 0;
   440   }
   441 }
   443 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   444                                                   bool during_conc_mark,
   445                                                   size_t marked_bytes) {
   446   assert(0 <= marked_bytes && marked_bytes <= used(),
   447          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   448                  marked_bytes, used()));
   449   _prev_marked_bytes = marked_bytes;
   450 }
   452 HeapWord*
   453 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   454                                                  ObjectClosure* cl) {
   455   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   456   // We used to use "block_start_careful" here.  But we're actually happy
   457   // to update the BOT while we do this...
   458   HeapWord* cur = block_start(mr.start());
   459   mr = mr.intersection(used_region());
   460   if (mr.is_empty()) return NULL;
   461   // Otherwise, find the obj that extends onto mr.start().
   463   assert(cur <= mr.start()
   464          && (oop(cur)->klass_or_null() == NULL ||
   465              cur + oop(cur)->size() > mr.start()),
   466          "postcondition of block_start");
   467   oop obj;
   468   while (cur < mr.end()) {
   469     obj = oop(cur);
   470     if (obj->klass_or_null() == NULL) {
   471       // Ran into an unparseable point.
   472       return cur;
   473     } else if (!g1h->is_obj_dead(obj)) {
   474       cl->do_object(obj);
   475     }
   476     if (cl->abort()) return cur;
   477     // The check above must occur before the operation below, since an
   478     // abort might invalidate the "size" operation.
   479     cur += obj->size();
   480   }
   481   return NULL;
   482 }
   484 HeapWord*
   485 HeapRegion::
   486 oops_on_card_seq_iterate_careful(MemRegion mr,
   487                                  FilterOutOfRegionClosure* cl,
   488                                  bool filter_young,
   489                                  jbyte* card_ptr) {
   490   // Currently, we should only have to clean the card if filter_young
   491   // is true and vice versa.
   492   if (filter_young) {
   493     assert(card_ptr != NULL, "pre-condition");
   494   } else {
   495     assert(card_ptr == NULL, "pre-condition");
   496   }
   497   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   499   // If we're within a stop-world GC, then we might look at a card in a
   500   // GC alloc region that extends onto a GC LAB, which may not be
   501   // parseable.  Stop such at the "saved_mark" of the region.
   502   if (g1h->is_gc_active()) {
   503     mr = mr.intersection(used_region_at_save_marks());
   504   } else {
   505     mr = mr.intersection(used_region());
   506   }
   507   if (mr.is_empty()) return NULL;
   508   // Otherwise, find the obj that extends onto mr.start().
   510   // The intersection of the incoming mr (for the card) and the
   511   // allocated part of the region is non-empty. This implies that
   512   // we have actually allocated into this region. The code in
   513   // G1CollectedHeap.cpp that allocates a new region sets the
   514   // is_young tag on the region before allocating. Thus we
   515   // safely know if this region is young.
   516   if (is_young() && filter_young) {
   517     return NULL;
   518   }
   520   assert(!is_young(), "check value of filter_young");
   522   // We can only clean the card here, after we make the decision that
   523   // the card is not young. And we only clean the card if we have been
   524   // asked to (i.e., card_ptr != NULL).
   525   if (card_ptr != NULL) {
   526     *card_ptr = CardTableModRefBS::clean_card_val();
   527     // We must complete this write before we do any of the reads below.
   528     OrderAccess::storeload();
   529   }
   531   // Cache the boundaries of the memory region in some const locals
   532   HeapWord* const start = mr.start();
   533   HeapWord* const end = mr.end();
   535   // We used to use "block_start_careful" here.  But we're actually happy
   536   // to update the BOT while we do this...
   537   HeapWord* cur = block_start(start);
   538   assert(cur <= start, "Postcondition");
   540   oop obj;
   542   HeapWord* next = cur;
   543   while (next <= start) {
   544     cur = next;
   545     obj = oop(cur);
   546     if (obj->klass_or_null() == NULL) {
   547       // Ran into an unparseable point.
   548       return cur;
   549     }
   550     // Otherwise...
   551     next = (cur + obj->size());
   552   }
   554   // If we finish the above loop...We have a parseable object that
   555   // begins on or before the start of the memory region, and ends
   556   // inside or spans the entire region.
   558   assert(obj == oop(cur), "sanity");
   559   assert(cur <= start &&
   560          obj->klass_or_null() != NULL &&
   561          (cur + obj->size()) > start,
   562          "Loop postcondition");
   564   if (!g1h->is_obj_dead(obj)) {
   565     obj->oop_iterate(cl, mr);
   566   }
   568   while (cur < end) {
   569     obj = oop(cur);
   570     if (obj->klass_or_null() == NULL) {
   571       // Ran into an unparseable point.
   572       return cur;
   573     };
   575     // Otherwise:
   576     next = (cur + obj->size());
   578     if (!g1h->is_obj_dead(obj)) {
   579       if (next < end || !obj->is_objArray()) {
   580         // This object either does not span the MemRegion
   581         // boundary, or if it does it's not an array.
   582         // Apply closure to whole object.
   583         obj->oop_iterate(cl);
   584       } else {
   585         // This obj is an array that spans the boundary.
   586         // Stop at the boundary.
   587         obj->oop_iterate(cl, mr);
   588       }
   589     }
   590     cur = next;
   591   }
   592   return NULL;
   593 }
   595 // Code roots support
   597 void HeapRegion::add_strong_code_root(nmethod* nm) {
   598   HeapRegionRemSet* hrrs = rem_set();
   599   hrrs->add_strong_code_root(nm);
   600 }
   602 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   603   HeapRegionRemSet* hrrs = rem_set();
   604   hrrs->remove_strong_code_root(nm);
   605 }
   607 void HeapRegion::migrate_strong_code_roots() {
   608   assert(in_collection_set(), "only collection set regions");
   609   assert(!isHumongous(), "not humongous regions");
   611   HeapRegionRemSet* hrrs = rem_set();
   612   hrrs->migrate_strong_code_roots();
   613 }
   615 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   616   HeapRegionRemSet* hrrs = rem_set();
   617   hrrs->strong_code_roots_do(blk);
   618 }
   620 class VerifyStrongCodeRootOopClosure: public OopClosure {
   621   const HeapRegion* _hr;
   622   nmethod* _nm;
   623   bool _failures;
   624   bool _has_oops_in_region;
   626   template <class T> void do_oop_work(T* p) {
   627     T heap_oop = oopDesc::load_heap_oop(p);
   628     if (!oopDesc::is_null(heap_oop)) {
   629       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   631       // Note: not all the oops embedded in the nmethod are in the
   632       // current region. We only look at those which are.
   633       if (_hr->is_in(obj)) {
   634         // Object is in the region. Check that its less than top
   635         if (_hr->top() <= (HeapWord*)obj) {
   636           // Object is above top
   637           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   638                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   639                                  "top "PTR_FORMAT,
   640                                  obj, _hr->bottom(), _hr->end(), _hr->top());
   641           _failures = true;
   642           return;
   643         }
   644         // Nmethod has at least one oop in the current region
   645         _has_oops_in_region = true;
   646       }
   647     }
   648   }
   650 public:
   651   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   652     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   654   void do_oop(narrowOop* p) { do_oop_work(p); }
   655   void do_oop(oop* p)       { do_oop_work(p); }
   657   bool failures()           { return _failures; }
   658   bool has_oops_in_region() { return _has_oops_in_region; }
   659 };
   661 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   662   const HeapRegion* _hr;
   663   bool _failures;
   664 public:
   665   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   666     _hr(hr), _failures(false) {}
   668   void do_code_blob(CodeBlob* cb) {
   669     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   670     if (nm != NULL) {
   671       // Verify that the nemthod is live
   672       if (!nm->is_alive()) {
   673         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   674                                PTR_FORMAT" in its strong code roots",
   675                                _hr->bottom(), _hr->end(), nm);
   676         _failures = true;
   677       } else {
   678         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   679         nm->oops_do(&oop_cl);
   680         if (!oop_cl.has_oops_in_region()) {
   681           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   682                                  PTR_FORMAT" in its strong code roots "
   683                                  "with no pointers into region",
   684                                  _hr->bottom(), _hr->end(), nm);
   685           _failures = true;
   686         } else if (oop_cl.failures()) {
   687           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   688                                  "failures for nmethod "PTR_FORMAT,
   689                                  _hr->bottom(), _hr->end(), nm);
   690           _failures = true;
   691         }
   692       }
   693     }
   694   }
   696   bool failures()       { return _failures; }
   697 };
   699 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   700   if (!G1VerifyHeapRegionCodeRoots) {
   701     // We're not verifying code roots.
   702     return;
   703   }
   704   if (vo == VerifyOption_G1UseMarkWord) {
   705     // Marking verification during a full GC is performed after class
   706     // unloading, code cache unloading, etc so the strong code roots
   707     // attached to each heap region are in an inconsistent state. They won't
   708     // be consistent until the strong code roots are rebuilt after the
   709     // actual GC. Skip verifying the strong code roots in this particular
   710     // time.
   711     assert(VerifyDuringGC, "only way to get here");
   712     return;
   713   }
   715   HeapRegionRemSet* hrrs = rem_set();
   716   int strong_code_roots_length = hrrs->strong_code_roots_list_length();
   718   // if this region is empty then there should be no entries
   719   // on its strong code root list
   720   if (is_empty()) {
   721     if (strong_code_roots_length > 0) {
   722       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   723                              "but has "INT32_FORMAT" code root entries",
   724                              bottom(), end(), strong_code_roots_length);
   725       *failures = true;
   726     }
   727     return;
   728   }
   730   // An H-region should have an empty strong code root list
   731   if (isHumongous()) {
   732     if (strong_code_roots_length > 0) {
   733       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
   734                              "but has "INT32_FORMAT" code root entries",
   735                              bottom(), end(), strong_code_roots_length);
   736       *failures = true;
   737     }
   738     return;
   739   }
   741   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   742   strong_code_roots_do(&cb_cl);
   744   if (cb_cl.failures()) {
   745     *failures = true;
   746   }
   747 }
   749 void HeapRegion::print() const { print_on(gclog_or_tty); }
   750 void HeapRegion::print_on(outputStream* st) const {
   751   if (isHumongous()) {
   752     if (startsHumongous())
   753       st->print(" HS");
   754     else
   755       st->print(" HC");
   756   } else {
   757     st->print("   ");
   758   }
   759   if (in_collection_set())
   760     st->print(" CS");
   761   else
   762     st->print("   ");
   763   if (is_young())
   764     st->print(is_survivor() ? " SU" : " Y ");
   765   else
   766     st->print("   ");
   767   if (is_empty())
   768     st->print(" F");
   769   else
   770     st->print("  ");
   771   st->print(" TS %5d", _gc_time_stamp);
   772   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   773             prev_top_at_mark_start(), next_top_at_mark_start());
   774   G1OffsetTableContigSpace::print_on(st);
   775 }
   777 class VerifyLiveClosure: public OopClosure {
   778 private:
   779   G1CollectedHeap* _g1h;
   780   CardTableModRefBS* _bs;
   781   oop _containing_obj;
   782   bool _failures;
   783   int _n_failures;
   784   VerifyOption _vo;
   785 public:
   786   // _vo == UsePrevMarking -> use "prev" marking information,
   787   // _vo == UseNextMarking -> use "next" marking information,
   788   // _vo == UseMarkWord    -> use mark word from object header.
   789   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   790     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   791     _failures(false), _n_failures(0), _vo(vo)
   792   {
   793     BarrierSet* bs = _g1h->barrier_set();
   794     if (bs->is_a(BarrierSet::CardTableModRef))
   795       _bs = (CardTableModRefBS*)bs;
   796   }
   798   void set_containing_obj(oop obj) {
   799     _containing_obj = obj;
   800   }
   802   bool failures() { return _failures; }
   803   int n_failures() { return _n_failures; }
   805   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   806   virtual void do_oop(      oop* p) { do_oop_work(p); }
   808   void print_object(outputStream* out, oop obj) {
   809 #ifdef PRODUCT
   810     Klass* k = obj->klass();
   811     const char* class_name = InstanceKlass::cast(k)->external_name();
   812     out->print_cr("class name %s", class_name);
   813 #else // PRODUCT
   814     obj->print_on(out);
   815 #endif // PRODUCT
   816   }
   818   template <class T>
   819   void do_oop_work(T* p) {
   820     assert(_containing_obj != NULL, "Precondition");
   821     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   822            "Precondition");
   823     T heap_oop = oopDesc::load_heap_oop(p);
   824     if (!oopDesc::is_null(heap_oop)) {
   825       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   826       bool failed = false;
   827       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   828         MutexLockerEx x(ParGCRareEvent_lock,
   829                         Mutex::_no_safepoint_check_flag);
   831         if (!_failures) {
   832           gclog_or_tty->print_cr("");
   833           gclog_or_tty->print_cr("----------");
   834         }
   835         if (!_g1h->is_in_closed_subset(obj)) {
   836           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   837           gclog_or_tty->print_cr("Field "PTR_FORMAT
   838                                  " of live obj "PTR_FORMAT" in region "
   839                                  "["PTR_FORMAT", "PTR_FORMAT")",
   840                                  p, (void*) _containing_obj,
   841                                  from->bottom(), from->end());
   842           print_object(gclog_or_tty, _containing_obj);
   843           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   844                                  (void*) obj);
   845         } else {
   846           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   847           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   848           gclog_or_tty->print_cr("Field "PTR_FORMAT
   849                                  " of live obj "PTR_FORMAT" in region "
   850                                  "["PTR_FORMAT", "PTR_FORMAT")",
   851                                  p, (void*) _containing_obj,
   852                                  from->bottom(), from->end());
   853           print_object(gclog_or_tty, _containing_obj);
   854           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   855                                  "["PTR_FORMAT", "PTR_FORMAT")",
   856                                  (void*) obj, to->bottom(), to->end());
   857           print_object(gclog_or_tty, obj);
   858         }
   859         gclog_or_tty->print_cr("----------");
   860         gclog_or_tty->flush();
   861         _failures = true;
   862         failed = true;
   863         _n_failures++;
   864       }
   866       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   867         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   868         HeapRegion* to   = _g1h->heap_region_containing(obj);
   869         if (from != NULL && to != NULL &&
   870             from != to &&
   871             !to->isHumongous()) {
   872           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   873           jbyte cv_field = *_bs->byte_for_const(p);
   874           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   876           bool is_bad = !(from->is_young()
   877                           || to->rem_set()->contains_reference(p)
   878                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   879                               (_containing_obj->is_objArray() ?
   880                                   cv_field == dirty
   881                                : cv_obj == dirty || cv_field == dirty));
   882           if (is_bad) {
   883             MutexLockerEx x(ParGCRareEvent_lock,
   884                             Mutex::_no_safepoint_check_flag);
   886             if (!_failures) {
   887               gclog_or_tty->print_cr("");
   888               gclog_or_tty->print_cr("----------");
   889             }
   890             gclog_or_tty->print_cr("Missing rem set entry:");
   891             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   892                                    "of obj "PTR_FORMAT", "
   893                                    "in region "HR_FORMAT,
   894                                    p, (void*) _containing_obj,
   895                                    HR_FORMAT_PARAMS(from));
   896             _containing_obj->print_on(gclog_or_tty);
   897             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   898                                    "in region "HR_FORMAT,
   899                                    (void*) obj,
   900                                    HR_FORMAT_PARAMS(to));
   901             obj->print_on(gclog_or_tty);
   902             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   903                           cv_obj, cv_field);
   904             gclog_or_tty->print_cr("----------");
   905             gclog_or_tty->flush();
   906             _failures = true;
   907             if (!failed) _n_failures++;
   908           }
   909         }
   910       }
   911     }
   912   }
   913 };
   915 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   916 // We would need a mechanism to make that code skip dead objects.
   918 void HeapRegion::verify(VerifyOption vo,
   919                         bool* failures) const {
   920   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   921   *failures = false;
   922   HeapWord* p = bottom();
   923   HeapWord* prev_p = NULL;
   924   VerifyLiveClosure vl_cl(g1, vo);
   925   bool is_humongous = isHumongous();
   926   bool do_bot_verify = !is_young();
   927   size_t object_num = 0;
   928   while (p < top()) {
   929     oop obj = oop(p);
   930     size_t obj_size = obj->size();
   931     object_num += 1;
   933     if (is_humongous != g1->isHumongous(obj_size)) {
   934       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   935                              SIZE_FORMAT" words) in a %shumongous region",
   936                              p, g1->isHumongous(obj_size) ? "" : "non-",
   937                              obj_size, is_humongous ? "" : "non-");
   938        *failures = true;
   939        return;
   940     }
   942     // If it returns false, verify_for_object() will output the
   943     // appropriate messasge.
   944     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   945       *failures = true;
   946       return;
   947     }
   949     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   950       if (obj->is_oop()) {
   951         Klass* klass = obj->klass();
   952         if (!klass->is_metaspace_object()) {
   953           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   954                                  "not metadata", klass, obj);
   955           *failures = true;
   956           return;
   957         } else if (!klass->is_klass()) {
   958           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   959                                  "not a klass", klass, obj);
   960           *failures = true;
   961           return;
   962         } else {
   963           vl_cl.set_containing_obj(obj);
   964           obj->oop_iterate_no_header(&vl_cl);
   965           if (vl_cl.failures()) {
   966             *failures = true;
   967           }
   968           if (G1MaxVerifyFailures >= 0 &&
   969               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   970             return;
   971           }
   972         }
   973       } else {
   974         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
   975         *failures = true;
   976         return;
   977       }
   978     }
   979     prev_p = p;
   980     p += obj_size;
   981   }
   983   if (p != top()) {
   984     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   985                            "does not match top "PTR_FORMAT, p, top());
   986     *failures = true;
   987     return;
   988   }
   990   HeapWord* the_end = end();
   991   assert(p == top(), "it should still hold");
   992   // Do some extra BOT consistency checking for addresses in the
   993   // range [top, end). BOT look-ups in this range should yield
   994   // top. No point in doing that if top == end (there's nothing there).
   995   if (p < the_end) {
   996     // Look up top
   997     HeapWord* addr_1 = p;
   998     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   999     if (b_start_1 != p) {
  1000       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
  1001                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1002                              addr_1, b_start_1, p);
  1003       *failures = true;
  1004       return;
  1007     // Look up top + 1
  1008     HeapWord* addr_2 = p + 1;
  1009     if (addr_2 < the_end) {
  1010       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
  1011       if (b_start_2 != p) {
  1012         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
  1013                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1014                                addr_2, b_start_2, p);
  1015         *failures = true;
  1016         return;
  1020     // Look up an address between top and end
  1021     size_t diff = pointer_delta(the_end, p) / 2;
  1022     HeapWord* addr_3 = p + diff;
  1023     if (addr_3 < the_end) {
  1024       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
  1025       if (b_start_3 != p) {
  1026         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
  1027                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1028                                addr_3, b_start_3, p);
  1029         *failures = true;
  1030         return;
  1034     // Loook up end - 1
  1035     HeapWord* addr_4 = the_end - 1;
  1036     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1037     if (b_start_4 != p) {
  1038       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1039                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1040                              addr_4, b_start_4, p);
  1041       *failures = true;
  1042       return;
  1046   if (is_humongous && object_num > 1) {
  1047     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1048                            "but has "SIZE_FORMAT", objects",
  1049                            bottom(), end(), object_num);
  1050     *failures = true;
  1051     return;
  1054   verify_strong_code_roots(vo, failures);
  1057 void HeapRegion::verify() const {
  1058   bool dummy = false;
  1059   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1062 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1063 // away eventually.
  1065 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1066   ContiguousSpace::clear(mangle_space);
  1067   _offsets.zero_bottom_entry();
  1068   _offsets.initialize_threshold();
  1071 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1072   Space::set_bottom(new_bottom);
  1073   _offsets.set_bottom(new_bottom);
  1076 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1077   Space::set_end(new_end);
  1078   _offsets.resize(new_end - bottom());
  1081 void G1OffsetTableContigSpace::print() const {
  1082   print_short();
  1083   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1084                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1085                 bottom(), top(), _offsets.threshold(), end());
  1088 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1089   return _offsets.initialize_threshold();
  1092 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1093                                                     HeapWord* end) {
  1094   _offsets.alloc_block(start, end);
  1095   return _offsets.threshold();
  1098 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1099   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1100   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1101   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1102     return top();
  1103   else
  1104     return ContiguousSpace::saved_mark_word();
  1107 void G1OffsetTableContigSpace::set_saved_mark() {
  1108   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1109   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1111   if (_gc_time_stamp < curr_gc_time_stamp) {
  1112     // The order of these is important, as another thread might be
  1113     // about to start scanning this region. If it does so after
  1114     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1115     // will be false, and it will pick up top() as the high water mark
  1116     // of region. If it does so after _gc_time_stamp = ..., then it
  1117     // will pick up the right saved_mark_word() as the high water mark
  1118     // of the region. Either way, the behaviour will be correct.
  1119     ContiguousSpace::set_saved_mark();
  1120     OrderAccess::storestore();
  1121     _gc_time_stamp = curr_gc_time_stamp;
  1122     // No need to do another barrier to flush the writes above. If
  1123     // this is called in parallel with other threads trying to
  1124     // allocate into the region, the caller should call this while
  1125     // holding a lock and when the lock is released the writes will be
  1126     // flushed.
  1130 G1OffsetTableContigSpace::
  1131 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1132                          MemRegion mr) :
  1133   _offsets(sharedOffsetArray, mr),
  1134   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1135   _gc_time_stamp(0)
  1137   _offsets.set_space(this);
  1138   // false ==> we'll do the clearing if there's clearing to be done.
  1139   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1140   _offsets.zero_bottom_entry();
  1141   _offsets.initialize_threshold();

mercurial