src/share/vm/memory/collectorPolicy.cpp

Tue, 30 Oct 2012 10:23:55 -0700

author
jmasa
date
Tue, 30 Oct 2012 10:23:55 -0700
changeset 4234
3fadc0e8cffe
parent 4064
8da5e203b993
child 4299
f34d701e952e
permissions
-rw-r--r--

8000988: VM deadlock when running btree006 on windows-i586
Reviewed-by: johnc, jcoomes, ysr

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/vmThread.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_bsd
    51 # include "thread_bsd.inline.hpp"
    52 #endif
    53 #ifndef SERIALGC
    54 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    55 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    56 #endif
    58 // CollectorPolicy methods.
    60 void CollectorPolicy::initialize_flags() {
    61   if (MetaspaceSize > MaxMetaspaceSize) {
    62     MaxMetaspaceSize = MetaspaceSize;
    63   }
    64   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
    65   // Don't increase Metaspace size limit above specified.
    66   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
    67   if (MetaspaceSize > MaxMetaspaceSize) {
    68     MetaspaceSize = MaxMetaspaceSize;
    69   }
    71   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
    72   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
    74   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    76   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
    77   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
    78   if (MetaspaceSize < 256*K) {
    79     vm_exit_during_initialization("Too small initial Metaspace size");
    80   }
    81 }
    83 void CollectorPolicy::initialize_size_info() {
    84   // User inputs from -mx and ms are aligned
    85   set_initial_heap_byte_size(InitialHeapSize);
    86   if (initial_heap_byte_size() == 0) {
    87     set_initial_heap_byte_size(NewSize + OldSize);
    88   }
    89   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
    90                                            min_alignment()));
    92   set_min_heap_byte_size(Arguments::min_heap_size());
    93   if (min_heap_byte_size() == 0) {
    94     set_min_heap_byte_size(NewSize + OldSize);
    95   }
    96   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
    97                                        min_alignment()));
    99   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
   101   // Check heap parameter properties
   102   if (initial_heap_byte_size() < M) {
   103     vm_exit_during_initialization("Too small initial heap");
   104   }
   105   // Check heap parameter properties
   106   if (min_heap_byte_size() < M) {
   107     vm_exit_during_initialization("Too small minimum heap");
   108   }
   109   if (initial_heap_byte_size() <= NewSize) {
   110      // make sure there is at least some room in old space
   111     vm_exit_during_initialization("Too small initial heap for new size specified");
   112   }
   113   if (max_heap_byte_size() < min_heap_byte_size()) {
   114     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
   115   }
   116   if (initial_heap_byte_size() < min_heap_byte_size()) {
   117     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
   118   }
   119   if (max_heap_byte_size() < initial_heap_byte_size()) {
   120     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
   121   }
   123   if (PrintGCDetails && Verbose) {
   124     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
   125       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
   126       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   127   }
   128 }
   130 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   131   bool result = _should_clear_all_soft_refs;
   132   set_should_clear_all_soft_refs(false);
   133   return result;
   134 }
   136 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   137                                            int max_covered_regions) {
   138   switch (rem_set_name()) {
   139   case GenRemSet::CardTable: {
   140     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   141     return res;
   142   }
   143   default:
   144     guarantee(false, "unrecognized GenRemSet::Name");
   145     return NULL;
   146   }
   147 }
   149 void CollectorPolicy::cleared_all_soft_refs() {
   150   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   151   // have been cleared in the last collection but if the gc overhear
   152   // limit continues to be near, SoftRefs should still be cleared.
   153   if (size_policy() != NULL) {
   154     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   155   }
   156   _all_soft_refs_clear = true;
   157 }
   160 // GenCollectorPolicy methods.
   162 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   163   size_t x = base_size / (NewRatio+1);
   164   size_t new_gen_size = x > min_alignment() ?
   165                      align_size_down(x, min_alignment()) :
   166                      min_alignment();
   167   return new_gen_size;
   168 }
   170 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   171                                                  size_t maximum_size) {
   172   size_t alignment = min_alignment();
   173   size_t max_minus = maximum_size - alignment;
   174   return desired_size < max_minus ? desired_size : max_minus;
   175 }
   178 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   179                                                 size_t init_promo_size,
   180                                                 size_t init_survivor_size) {
   181   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   182   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   183                                         init_promo_size,
   184                                         init_survivor_size,
   185                                         max_gc_minor_pause_sec,
   186                                         GCTimeRatio);
   187 }
   189 size_t GenCollectorPolicy::compute_max_alignment() {
   190   // The card marking array and the offset arrays for old generations are
   191   // committed in os pages as well. Make sure they are entirely full (to
   192   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   193   // byte entry and the os page size is 4096, the maximum heap size should
   194   // be 512*4096 = 2MB aligned.
   195   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   197   // Parallel GC does its own alignment of the generations to avoid requiring a
   198   // large page (256M on some platforms) for the permanent generation.  The
   199   // other collectors should also be updated to do their own alignment and then
   200   // this use of lcm() should be removed.
   201   if (UseLargePages && !UseParallelGC) {
   202       // in presence of large pages we have to make sure that our
   203       // alignment is large page aware
   204       alignment = lcm(os::large_page_size(), alignment);
   205   }
   207   return alignment;
   208 }
   210 void GenCollectorPolicy::initialize_flags() {
   211   // All sizes must be multiples of the generation granularity.
   212   set_min_alignment((uintx) Generation::GenGrain);
   213   set_max_alignment(compute_max_alignment());
   214   assert(max_alignment() >= min_alignment() &&
   215          max_alignment() % min_alignment() == 0,
   216          "invalid alignment constraints");
   218   CollectorPolicy::initialize_flags();
   220   // All generational heaps have a youngest gen; handle those flags here.
   222   // Adjust max size parameters
   223   if (NewSize > MaxNewSize) {
   224     MaxNewSize = NewSize;
   225   }
   226   NewSize = align_size_down(NewSize, min_alignment());
   227   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   229   // Check validity of heap flags
   230   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   231   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   233   if (NewSize < 3*min_alignment()) {
   234      // make sure there room for eden and two survivor spaces
   235     vm_exit_during_initialization("Too small new size specified");
   236   }
   237   if (SurvivorRatio < 1 || NewRatio < 1) {
   238     vm_exit_during_initialization("Invalid heap ratio specified");
   239   }
   240 }
   242 void TwoGenerationCollectorPolicy::initialize_flags() {
   243   GenCollectorPolicy::initialize_flags();
   245   OldSize = align_size_down(OldSize, min_alignment());
   246   if (NewSize + OldSize > MaxHeapSize) {
   247     MaxHeapSize = NewSize + OldSize;
   248   }
   249   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   251   always_do_update_barrier = UseConcMarkSweepGC;
   253   // Check validity of heap flags
   254   assert(OldSize     % min_alignment() == 0, "old space alignment");
   255   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   256 }
   258 // Values set on the command line win over any ergonomically
   259 // set command line parameters.
   260 // Ergonomic choice of parameters are done before this
   261 // method is called.  Values for command line parameters such as NewSize
   262 // and MaxNewSize feed those ergonomic choices into this method.
   263 // This method makes the final generation sizings consistent with
   264 // themselves and with overall heap sizings.
   265 // In the absence of explicitly set command line flags, policies
   266 // such as the use of NewRatio are used to size the generation.
   267 void GenCollectorPolicy::initialize_size_info() {
   268   CollectorPolicy::initialize_size_info();
   270   // min_alignment() is used for alignment within a generation.
   271   // There is additional alignment done down stream for some
   272   // collectors that sometimes causes unwanted rounding up of
   273   // generations sizes.
   275   // Determine maximum size of gen0
   277   size_t max_new_size = 0;
   278   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   279     if (MaxNewSize < min_alignment()) {
   280       max_new_size = min_alignment();
   281     }
   282     if (MaxNewSize >= max_heap_byte_size()) {
   283       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   284                                      min_alignment());
   285       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   286         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   287         "new generation size of " SIZE_FORMAT "k will be used.",
   288         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   289     } else {
   290       max_new_size = align_size_down(MaxNewSize, min_alignment());
   291     }
   293   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   294   // specially at this point to just use an ergonomically set
   295   // MaxNewSize to set max_new_size.  For cases with small
   296   // heaps such a policy often did not work because the MaxNewSize
   297   // was larger than the entire heap.  The interpretation given
   298   // to ergonomically set flags is that the flags are set
   299   // by different collectors for their own special needs but
   300   // are not allowed to badly shape the heap.  This allows the
   301   // different collectors to decide what's best for themselves
   302   // without having to factor in the overall heap shape.  It
   303   // can be the case in the future that the collectors would
   304   // only make "wise" ergonomics choices and this policy could
   305   // just accept those choices.  The choices currently made are
   306   // not always "wise".
   307   } else {
   308     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   309     // Bound the maximum size by NewSize below (since it historically
   310     // would have been NewSize and because the NewRatio calculation could
   311     // yield a size that is too small) and bound it by MaxNewSize above.
   312     // Ergonomics plays here by previously calculating the desired
   313     // NewSize and MaxNewSize.
   314     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   315   }
   316   assert(max_new_size > 0, "All paths should set max_new_size");
   318   // Given the maximum gen0 size, determine the initial and
   319   // minimum gen0 sizes.
   321   if (max_heap_byte_size() == min_heap_byte_size()) {
   322     // The maximum and minimum heap sizes are the same so
   323     // the generations minimum and initial must be the
   324     // same as its maximum.
   325     set_min_gen0_size(max_new_size);
   326     set_initial_gen0_size(max_new_size);
   327     set_max_gen0_size(max_new_size);
   328   } else {
   329     size_t desired_new_size = 0;
   330     if (!FLAG_IS_DEFAULT(NewSize)) {
   331       // If NewSize is set ergonomically (for example by cms), it
   332       // would make sense to use it.  If it is used, also use it
   333       // to set the initial size.  Although there is no reason
   334       // the minimum size and the initial size have to be the same,
   335       // the current implementation gets into trouble during the calculation
   336       // of the tenured generation sizes if they are different.
   337       // Note that this makes the initial size and the minimum size
   338       // generally small compared to the NewRatio calculation.
   339       _min_gen0_size = NewSize;
   340       desired_new_size = NewSize;
   341       max_new_size = MAX2(max_new_size, NewSize);
   342     } else {
   343       // For the case where NewSize is the default, use NewRatio
   344       // to size the minimum and initial generation sizes.
   345       // Use the default NewSize as the floor for these values.  If
   346       // NewRatio is overly large, the resulting sizes can be too
   347       // small.
   348       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   349                           NewSize);
   350       desired_new_size =
   351         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   352              NewSize);
   353     }
   355     assert(_min_gen0_size > 0, "Sanity check");
   356     set_initial_gen0_size(desired_new_size);
   357     set_max_gen0_size(max_new_size);
   359     // At this point the desirable initial and minimum sizes have been
   360     // determined without regard to the maximum sizes.
   362     // Bound the sizes by the corresponding overall heap sizes.
   363     set_min_gen0_size(
   364       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   365     set_initial_gen0_size(
   366       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   367     set_max_gen0_size(
   368       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   370     // At this point all three sizes have been checked against the
   371     // maximum sizes but have not been checked for consistency
   372     // among the three.
   374     // Final check min <= initial <= max
   375     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   376     set_initial_gen0_size(
   377       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   378     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   379   }
   381   if (PrintGCDetails && Verbose) {
   382     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   383       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   384       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   385   }
   386 }
   388 // Call this method during the sizing of the gen1 to make
   389 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   390 // the most freedom in sizing because it is done before the
   391 // policy for gen1 is applied.  Once gen1 policies have been applied,
   392 // there may be conflicts in the shape of the heap and this method
   393 // is used to make the needed adjustments.  The application of the
   394 // policies could be more sophisticated (iterative for example) but
   395 // keeping it simple also seems a worthwhile goal.
   396 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   397                                                      size_t* gen1_size_ptr,
   398                                                      size_t heap_size,
   399                                                      size_t min_gen0_size) {
   400   bool result = false;
   401   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   402     if (((*gen0_size_ptr + OldSize) > heap_size) &&
   403        (heap_size - min_gen0_size) >= min_alignment()) {
   404       // Adjust gen0 down to accomodate OldSize
   405       *gen0_size_ptr = heap_size - min_gen0_size;
   406       *gen0_size_ptr =
   407         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   408              min_alignment());
   409       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   410       result = true;
   411     } else {
   412       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   413       *gen1_size_ptr =
   414         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   415                        min_alignment());
   416     }
   417   }
   418   return result;
   419 }
   421 // Minimum sizes of the generations may be different than
   422 // the initial sizes.  An inconsistently is permitted here
   423 // in the total size that can be specified explicitly by
   424 // command line specification of OldSize and NewSize and
   425 // also a command line specification of -Xms.  Issue a warning
   426 // but allow the values to pass.
   428 void TwoGenerationCollectorPolicy::initialize_size_info() {
   429   GenCollectorPolicy::initialize_size_info();
   431   // At this point the minimum, initial and maximum sizes
   432   // of the overall heap and of gen0 have been determined.
   433   // The maximum gen1 size can be determined from the maximum gen0
   434   // and maximum heap size since no explicit flags exits
   435   // for setting the gen1 maximum.
   436   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   437   _max_gen1_size =
   438     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   439          min_alignment());
   440   // If no explicit command line flag has been set for the
   441   // gen1 size, use what is left for gen1.
   442   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   443     // The user has not specified any value or ergonomics
   444     // has chosen a value (which may or may not be consistent
   445     // with the overall heap size).  In either case make
   446     // the minimum, maximum and initial sizes consistent
   447     // with the gen0 sizes and the overall heap sizes.
   448     assert(min_heap_byte_size() > _min_gen0_size,
   449       "gen0 has an unexpected minimum size");
   450     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   451     set_min_gen1_size(
   452       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   453            min_alignment()));
   454     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   455     set_initial_gen1_size(
   456       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   457            min_alignment()));
   459   } else {
   460     // It's been explicitly set on the command line.  Use the
   461     // OldSize and then determine the consequences.
   462     set_min_gen1_size(OldSize);
   463     set_initial_gen1_size(OldSize);
   465     // If the user has explicitly set an OldSize that is inconsistent
   466     // with other command line flags, issue a warning.
   467     // The generation minimums and the overall heap mimimum should
   468     // be within one heap alignment.
   469     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   470            min_heap_byte_size()) {
   471       warning("Inconsistency between minimum heap size and minimum "
   472           "generation sizes: using minimum heap = " SIZE_FORMAT,
   473           min_heap_byte_size());
   474     }
   475     if ((OldSize > _max_gen1_size)) {
   476       warning("Inconsistency between maximum heap size and maximum "
   477           "generation sizes: using maximum heap = " SIZE_FORMAT
   478           " -XX:OldSize flag is being ignored",
   479           max_heap_byte_size());
   480     }
   481     // If there is an inconsistency between the OldSize and the minimum and/or
   482     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   483     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   484                           min_heap_byte_size(), OldSize)) {
   485       if (PrintGCDetails && Verbose) {
   486         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   487               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   488               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   489       }
   490     }
   491     // Initial size
   492     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   493                          initial_heap_byte_size(), OldSize)) {
   494       if (PrintGCDetails && Verbose) {
   495         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   496           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   497           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   498       }
   499     }
   500   }
   501   // Enforce the maximum gen1 size.
   502   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   504   // Check that min gen1 <= initial gen1 <= max gen1
   505   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   506   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   508   if (PrintGCDetails && Verbose) {
   509     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   510       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   511       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   512   }
   513 }
   515 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   516                                         bool is_tlab,
   517                                         bool* gc_overhead_limit_was_exceeded) {
   518   GenCollectedHeap *gch = GenCollectedHeap::heap();
   520   debug_only(gch->check_for_valid_allocation_state());
   521   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   523   // In general gc_overhead_limit_was_exceeded should be false so
   524   // set it so here and reset it to true only if the gc time
   525   // limit is being exceeded as checked below.
   526   *gc_overhead_limit_was_exceeded = false;
   528   HeapWord* result = NULL;
   530   // Loop until the allocation is satisified,
   531   // or unsatisfied after GC.
   532   for (int try_count = 1; /* return or throw */; try_count += 1) {
   533     HandleMark hm; // discard any handles allocated in each iteration
   535     // First allocation attempt is lock-free.
   536     Generation *gen0 = gch->get_gen(0);
   537     assert(gen0->supports_inline_contig_alloc(),
   538       "Otherwise, must do alloc within heap lock");
   539     if (gen0->should_allocate(size, is_tlab)) {
   540       result = gen0->par_allocate(size, is_tlab);
   541       if (result != NULL) {
   542         assert(gch->is_in_reserved(result), "result not in heap");
   543         return result;
   544       }
   545     }
   546     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   547     {
   548       MutexLocker ml(Heap_lock);
   549       if (PrintGC && Verbose) {
   550         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   551                       " attempting locked slow path allocation");
   552       }
   553       // Note that only large objects get a shot at being
   554       // allocated in later generations.
   555       bool first_only = ! should_try_older_generation_allocation(size);
   557       result = gch->attempt_allocation(size, is_tlab, first_only);
   558       if (result != NULL) {
   559         assert(gch->is_in_reserved(result), "result not in heap");
   560         return result;
   561       }
   563       if (GC_locker::is_active_and_needs_gc()) {
   564         if (is_tlab) {
   565           return NULL;  // Caller will retry allocating individual object
   566         }
   567         if (!gch->is_maximal_no_gc()) {
   568           // Try and expand heap to satisfy request
   569           result = expand_heap_and_allocate(size, is_tlab);
   570           // result could be null if we are out of space
   571           if (result != NULL) {
   572             return result;
   573           }
   574         }
   576         // If this thread is not in a jni critical section, we stall
   577         // the requestor until the critical section has cleared and
   578         // GC allowed. When the critical section clears, a GC is
   579         // initiated by the last thread exiting the critical section; so
   580         // we retry the allocation sequence from the beginning of the loop,
   581         // rather than causing more, now probably unnecessary, GC attempts.
   582         JavaThread* jthr = JavaThread::current();
   583         if (!jthr->in_critical()) {
   584           MutexUnlocker mul(Heap_lock);
   585           // Wait for JNI critical section to be exited
   586           GC_locker::stall_until_clear();
   587           continue;
   588         } else {
   589           if (CheckJNICalls) {
   590             fatal("Possible deadlock due to allocating while"
   591                   " in jni critical section");
   592           }
   593           return NULL;
   594         }
   595       }
   597       // Read the gc count while the heap lock is held.
   598       gc_count_before = Universe::heap()->total_collections();
   599     }
   601     VM_GenCollectForAllocation op(size,
   602                                   is_tlab,
   603                                   gc_count_before);
   604     VMThread::execute(&op);
   605     if (op.prologue_succeeded()) {
   606       result = op.result();
   607       if (op.gc_locked()) {
   608          assert(result == NULL, "must be NULL if gc_locked() is true");
   609          continue;  // retry and/or stall as necessary
   610       }
   612       // Allocation has failed and a collection
   613       // has been done.  If the gc time limit was exceeded the
   614       // this time, return NULL so that an out-of-memory
   615       // will be thrown.  Clear gc_overhead_limit_exceeded
   616       // so that the overhead exceeded does not persist.
   618       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   619       const bool softrefs_clear = all_soft_refs_clear();
   620       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   621       if (limit_exceeded && softrefs_clear) {
   622         *gc_overhead_limit_was_exceeded = true;
   623         size_policy()->set_gc_overhead_limit_exceeded(false);
   624         if (op.result() != NULL) {
   625           CollectedHeap::fill_with_object(op.result(), size);
   626         }
   627         return NULL;
   628       }
   629       assert(result == NULL || gch->is_in_reserved(result),
   630              "result not in heap");
   631       return result;
   632     }
   634     // Give a warning if we seem to be looping forever.
   635     if ((QueuedAllocationWarningCount > 0) &&
   636         (try_count % QueuedAllocationWarningCount == 0)) {
   637           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   638                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   639     }
   640   }
   641 }
   643 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   644                                                        bool   is_tlab) {
   645   GenCollectedHeap *gch = GenCollectedHeap::heap();
   646   HeapWord* result = NULL;
   647   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   648     Generation *gen = gch->get_gen(i);
   649     if (gen->should_allocate(size, is_tlab)) {
   650       result = gen->expand_and_allocate(size, is_tlab);
   651     }
   652   }
   653   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   654   return result;
   655 }
   657 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   658                                                         bool   is_tlab) {
   659   GenCollectedHeap *gch = GenCollectedHeap::heap();
   660   GCCauseSetter x(gch, GCCause::_allocation_failure);
   661   HeapWord* result = NULL;
   663   assert(size != 0, "Precondition violated");
   664   if (GC_locker::is_active_and_needs_gc()) {
   665     // GC locker is active; instead of a collection we will attempt
   666     // to expand the heap, if there's room for expansion.
   667     if (!gch->is_maximal_no_gc()) {
   668       result = expand_heap_and_allocate(size, is_tlab);
   669     }
   670     return result;   // could be null if we are out of space
   671   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   672     // Do an incremental collection.
   673     gch->do_collection(false            /* full */,
   674                        false            /* clear_all_soft_refs */,
   675                        size             /* size */,
   676                        is_tlab          /* is_tlab */,
   677                        number_of_generations() - 1 /* max_level */);
   678   } else {
   679     if (Verbose && PrintGCDetails) {
   680       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   681     }
   682     // Try a full collection; see delta for bug id 6266275
   683     // for the original code and why this has been simplified
   684     // with from-space allocation criteria modified and
   685     // such allocation moved out of the safepoint path.
   686     gch->do_collection(true             /* full */,
   687                        false            /* clear_all_soft_refs */,
   688                        size             /* size */,
   689                        is_tlab          /* is_tlab */,
   690                        number_of_generations() - 1 /* max_level */);
   691   }
   693   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   695   if (result != NULL) {
   696     assert(gch->is_in_reserved(result), "result not in heap");
   697     return result;
   698   }
   700   // OK, collection failed, try expansion.
   701   result = expand_heap_and_allocate(size, is_tlab);
   702   if (result != NULL) {
   703     return result;
   704   }
   706   // If we reach this point, we're really out of memory. Try every trick
   707   // we can to reclaim memory. Force collection of soft references. Force
   708   // a complete compaction of the heap. Any additional methods for finding
   709   // free memory should be here, especially if they are expensive. If this
   710   // attempt fails, an OOM exception will be thrown.
   711   {
   712     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   714     gch->do_collection(true             /* full */,
   715                        true             /* clear_all_soft_refs */,
   716                        size             /* size */,
   717                        is_tlab          /* is_tlab */,
   718                        number_of_generations() - 1 /* max_level */);
   719   }
   721   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   722   if (result != NULL) {
   723     assert(gch->is_in_reserved(result), "result not in heap");
   724     return result;
   725   }
   727   assert(!should_clear_all_soft_refs(),
   728     "Flag should have been handled and cleared prior to this point");
   730   // What else?  We might try synchronous finalization later.  If the total
   731   // space available is large enough for the allocation, then a more
   732   // complete compaction phase than we've tried so far might be
   733   // appropriate.
   734   return NULL;
   735 }
   737 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   738                                                  ClassLoaderData* loader_data,
   739                                                  size_t word_size,
   740                                                  Metaspace::MetadataType mdtype) {
   741   uint loop_count = 0;
   742   uint gc_count = 0;
   743   uint full_gc_count = 0;
   745   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   747   do {
   748     MetaWord* result = NULL;
   749     if (GC_locker::is_active_and_needs_gc()) {
   750       // If the GC_locker is active, just expand and allocate.
   751       // If that does not succeed, wait if this thread is not
   752       // in a critical section itself.
   753       result =
   754         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   755                                                                mdtype);
   756       if (result != NULL) {
   757         return result;
   758       }
   759       JavaThread* jthr = JavaThread::current();
   760       if (!jthr->in_critical()) {
   761         // Wait for JNI critical section to be exited
   762         GC_locker::stall_until_clear();
   763         // The GC invoked by the last thread leaving the critical
   764         // section will be a young collection and a full collection
   765         // is (currently) needed for unloading classes so continue
   766         // to the next iteration to get a full GC.
   767         continue;
   768       } else {
   769         if (CheckJNICalls) {
   770           fatal("Possible deadlock due to allocating while"
   771                 " in jni critical section");
   772         }
   773         return NULL;
   774       }
   775     }
   777     {  // Need lock to get self consistent gc_count's
   778       MutexLocker ml(Heap_lock);
   779       gc_count      = Universe::heap()->total_collections();
   780       full_gc_count = Universe::heap()->total_full_collections();
   781     }
   783     // Generate a VM operation
   784     VM_CollectForMetadataAllocation op(loader_data,
   785                                        word_size,
   786                                        mdtype,
   787                                        gc_count,
   788                                        full_gc_count,
   789                                        GCCause::_metadata_GC_threshold);
   790     VMThread::execute(&op);
   791     if (op.prologue_succeeded()) {
   792       return op.result();
   793     }
   794     loop_count++;
   795     if ((QueuedAllocationWarningCount > 0) &&
   796         (loop_count % QueuedAllocationWarningCount == 0)) {
   797       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   798               " size=%d", loop_count, word_size);
   799     }
   800   } while (true);  // Until a GC is done
   801 }
   803 // Return true if any of the following is true:
   804 // . the allocation won't fit into the current young gen heap
   805 // . gc locker is occupied (jni critical section)
   806 // . heap memory is tight -- the most recent previous collection
   807 //   was a full collection because a partial collection (would
   808 //   have) failed and is likely to fail again
   809 bool GenCollectorPolicy::should_try_older_generation_allocation(
   810         size_t word_size) const {
   811   GenCollectedHeap* gch = GenCollectedHeap::heap();
   812   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   813   return    (word_size > heap_word_size(gen0_capacity))
   814          || GC_locker::is_active_and_needs_gc()
   815          || gch->incremental_collection_failed();
   816 }
   819 //
   820 // MarkSweepPolicy methods
   821 //
   823 MarkSweepPolicy::MarkSweepPolicy() {
   824   initialize_all();
   825 }
   827 void MarkSweepPolicy::initialize_generations() {
   828   _generations = new GenerationSpecPtr[number_of_generations()];
   829   if (_generations == NULL)
   830     vm_exit_during_initialization("Unable to allocate gen spec");
   832   if (UseParNewGC && ParallelGCThreads > 0) {
   833     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   834   } else {
   835     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   836   }
   837   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   839   if (_generations[0] == NULL || _generations[1] == NULL)
   840     vm_exit_during_initialization("Unable to allocate gen spec");
   841 }
   843 void MarkSweepPolicy::initialize_gc_policy_counters() {
   844   // initialize the policy counters - 2 collectors, 3 generations
   845   if (UseParNewGC && ParallelGCThreads > 0) {
   846     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   847   }
   848   else {
   849     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   850   }
   851 }

mercurial