src/share/vm/memory/binaryTreeDictionary.cpp

Tue, 30 Oct 2012 10:23:55 -0700

author
jmasa
date
Tue, 30 Oct 2012 10:23:55 -0700
changeset 4234
3fadc0e8cffe
parent 4196
685df3c6f84b
child 4265
0400886d2613
permissions
-rw-r--r--

8000988: VM deadlock when running btree006 on windows-i586
Reviewed-by: johnc, jcoomes, ysr

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/allocationStats.hpp"
    27 #include "memory/binaryTreeDictionary.hpp"
    28 #include "memory/freeList.hpp"
    29 #include "memory/freeBlockDictionary.hpp"
    30 #include "memory/metablock.hpp"
    31 #include "memory/metachunk.hpp"
    32 #include "runtime/globals.hpp"
    33 #include "utilities/ostream.hpp"
    34 #ifndef SERIALGC
    35 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
    36 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    37 #include "gc_implementation/shared/spaceDecorator.hpp"
    38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    39 #endif // SERIALGC
    41 ////////////////////////////////////////////////////////////////////////////////
    42 // A binary tree based search structure for free blocks.
    43 // This is currently used in the Concurrent Mark&Sweep implementation.
    44 ////////////////////////////////////////////////////////////////////////////////
    46 template <class Chunk_t, template <class> class FreeList_t>
    47 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
    49 template <class Chunk_t, template <class> class FreeList_t>
    50 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
    51   // Do some assertion checking here.
    52   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
    53 }
    55 template <class Chunk_t, template <class> class FreeList_t>
    56 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
    57   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
    58   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    59     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    60               embedded_list()->right()  == NULL, "should be clear");
    61   }
    62   if (nextTC != NULL) {
    63     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    64     guarantee(nextTC->size() == size(), "wrong size");
    65     nextTC->verify_tree_chunk_list();
    66   }
    67 }
    69 template <class Chunk_t, template <class> class FreeList_t>
    70 TreeList<Chunk_t, FreeList_t>::TreeList() {}
    72 template <class Chunk_t, template <class> class FreeList_t>
    73 TreeList<Chunk_t, FreeList_t>*
    74 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
    75   // This first free chunk in the list will be the tree list.
    76   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
    77     "Chunk is too small for a TreeChunk");
    78   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
    79   tl->initialize();
    80   tc->set_list(tl);
    81   tl->set_size(tc->size());
    82   tl->link_head(tc);
    83   tl->link_tail(tc);
    84   tl->set_count(1);
    86   return tl;
    87 }
    90 template <class Chunk_t, template <class> class FreeList_t>
    91 TreeList<Chunk_t, FreeList_t>*
    92 get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
    93   FreeBlockDictionary<Chunk_t>::verify_par_locked();
    94   Chunk_t* res = get_chunk_from_tree(size, dither);
    95   assert(res == NULL || res->is_free(),
    96          "Should be returning a free chunk");
    97   assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
    98          res->size() == size, "Not correct size");
    99   return res;
   100 }
   102 template <class Chunk_t, template <class> class FreeList_t>
   103 TreeList<Chunk_t, FreeList_t>*
   104 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
   105   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
   106   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
   107     "Chunk is too small for a TreeChunk");
   108   // The space will have been mangled initially but
   109   // is not remangled when a Chunk_t is returned to the free list
   110   // (since it is used to maintain the chunk on the free list).
   111   tc->assert_is_mangled();
   112   tc->set_size(size);
   113   tc->link_prev(NULL);
   114   tc->link_next(NULL);
   115   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   116   return tl;
   117 }
   120 #ifndef SERIALGC
   121 // Specialize for AdaptiveFreeList which tries to avoid
   122 // splitting a chunk of a size that is under populated in favor of
   123 // an over populated size.  The general get_better_list() just returns
   124 // the current list.
   125 template <>
   126 TreeList<FreeChunk, AdaptiveFreeList>*
   127 TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
   128   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
   129   // A candidate chunk has been found.  If it is already under
   130   // populated, get a chunk associated with the hint for this
   131   // chunk.
   133   TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
   134   if (surplus() <= 0) {
   135     /* Use the hint to find a size with a surplus, and reset the hint. */
   136     TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
   137     while (hintTL->hint() != 0) {
   138       assert(hintTL->hint() > hintTL->size(),
   139         "hint points in the wrong direction");
   140       hintTL = dictionary->find_list(hintTL->hint());
   141       assert(curTL != hintTL, "Infinite loop");
   142       if (hintTL == NULL ||
   143           hintTL == curTL /* Should not happen but protect against it */ ) {
   144         // No useful hint.  Set the hint to NULL and go on.
   145         curTL->set_hint(0);
   146         break;
   147       }
   148       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
   149       if (hintTL->surplus() > 0) {
   150         // The hint led to a list that has a surplus.  Use it.
   151         // Set the hint for the candidate to an overpopulated
   152         // size.
   153         curTL->set_hint(hintTL->size());
   154         // Change the candidate.
   155         curTL = hintTL;
   156         break;
   157       }
   158     }
   159   }
   160   return curTL;
   161 }
   162 #endif // SERIALGC
   164 template <class Chunk_t, template <class> class FreeList_t>
   165 TreeList<Chunk_t, FreeList_t>*
   166 TreeList<Chunk_t, FreeList_t>::get_better_list(
   167   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
   168   return this;
   169 }
   171 template <class Chunk_t, template <class> class FreeList_t>
   172 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
   174   TreeList<Chunk_t, FreeList_t>* retTL = this;
   175   Chunk_t* list = head();
   176   assert(!list || list != list->next(), "Chunk on list twice");
   177   assert(tc != NULL, "Chunk being removed is NULL");
   178   assert(parent() == NULL || this == parent()->left() ||
   179     this == parent()->right(), "list is inconsistent");
   180   assert(tc->is_free(), "Header is not marked correctly");
   181   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   182   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   184   Chunk_t* prevFC = tc->prev();
   185   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
   186   assert(list != NULL, "should have at least the target chunk");
   188   // Is this the first item on the list?
   189   if (tc == list) {
   190     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
   191     // first chunk in the list unless it is the last chunk in the list
   192     // because the first chunk is also acting as the tree node.
   193     // When coalescing happens, however, the first chunk in the a tree
   194     // list can be the start of a free range.  Free ranges are removed
   195     // from the free lists so that they are not available to be
   196     // allocated when the sweeper yields (giving up the free list lock)
   197     // to allow mutator activity.  If this chunk is the first in the
   198     // list and is not the last in the list, do the work to copy the
   199     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
   200     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
   201     if (nextTC == NULL) {
   202       assert(prevFC == NULL, "Not last chunk in the list");
   203       set_tail(NULL);
   204       set_head(NULL);
   205     } else {
   206       // copy embedded list.
   207       nextTC->set_embedded_list(tc->embedded_list());
   208       retTL = nextTC->embedded_list();
   209       // Fix the pointer to the list in each chunk in the list.
   210       // This can be slow for a long list.  Consider having
   211       // an option that does not allow the first chunk on the
   212       // list to be coalesced.
   213       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
   214           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
   215         curTC->set_list(retTL);
   216       }
   217       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
   218       if (retTL->parent() != NULL) {
   219         if (this == retTL->parent()->left()) {
   220           retTL->parent()->set_left(retTL);
   221         } else {
   222           assert(this == retTL->parent()->right(), "Parent is incorrect");
   223           retTL->parent()->set_right(retTL);
   224         }
   225       }
   226       // Fix the children's parent pointers to point to the
   227       // new list.
   228       assert(right() == retTL->right(), "Should have been copied");
   229       if (retTL->right() != NULL) {
   230         retTL->right()->set_parent(retTL);
   231       }
   232       assert(left() == retTL->left(), "Should have been copied");
   233       if (retTL->left() != NULL) {
   234         retTL->left()->set_parent(retTL);
   235       }
   236       retTL->link_head(nextTC);
   237       assert(nextTC->is_free(), "Should be a free chunk");
   238     }
   239   } else {
   240     if (nextTC == NULL) {
   241       // Removing chunk at tail of list
   242       link_tail(prevFC);
   243     }
   244     // Chunk is interior to the list
   245     prevFC->link_after(nextTC);
   246   }
   248   // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
   249   // tree node may have changed. Don't use "this"
   250   // TreeList<Chunk_t, FreeList_t>*.
   251   // chunk should still be a free chunk (bit set in _prev)
   252   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   253     "Wrong sized chunk in list");
   254   debug_only(
   255     tc->link_prev(NULL);
   256     tc->link_next(NULL);
   257     tc->set_list(NULL);
   258     bool prev_found = false;
   259     bool next_found = false;
   260     for (Chunk_t* curFC = retTL->head();
   261          curFC != NULL; curFC = curFC->next()) {
   262       assert(curFC != tc, "Chunk is still in list");
   263       if (curFC == prevFC) {
   264         prev_found = true;
   265       }
   266       if (curFC == nextTC) {
   267         next_found = true;
   268       }
   269     }
   270     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   271     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   272     assert(retTL->parent() == NULL ||
   273            retTL == retTL->parent()->left() ||
   274            retTL == retTL->parent()->right(),
   275            "list is inconsistent");
   276   )
   277   retTL->decrement_count();
   279   assert(tc->is_free(), "Should still be a free chunk");
   280   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   281     "list invariant");
   282   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   283     "list invariant");
   284   return retTL;
   285 }
   287 template <class Chunk_t, template <class> class FreeList_t>
   288 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   289   assert(chunk != NULL, "returning NULL chunk");
   290   assert(chunk->list() == this, "list should be set for chunk");
   291   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   292   // which means that the list can never be empty.
   293   assert(!verify_chunk_in_free_list(chunk), "Double entry");
   294   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   295   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   297   Chunk_t* fc = tail();
   298   fc->link_after(chunk);
   299   link_tail(chunk);
   301   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   302   FreeList_t<Chunk_t>::increment_count();
   303   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   304   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   305   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   306 }
   308 // Add this chunk at the head of the list.  "At the head of the list"
   309 // is defined to be after the chunk pointer to by head().  This is
   310 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
   311 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
   312 template <class Chunk_t, template <class> class FreeList_t>
   313 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   314   assert(chunk->list() == this, "list should be set for chunk");
   315   assert(head() != NULL, "The tree list is embedded in the first chunk");
   316   assert(chunk != NULL, "returning NULL chunk");
   317   assert(!verify_chunk_in_free_list(chunk), "Double entry");
   318   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   319   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   321   Chunk_t* fc = head()->next();
   322   if (fc != NULL) {
   323     chunk->link_after(fc);
   324   } else {
   325     assert(tail() == NULL, "List is inconsistent");
   326     link_tail(chunk);
   327   }
   328   head()->link_after(chunk);
   329   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   330   FreeList_t<Chunk_t>::increment_count();
   331   debug_only(increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   332   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   333   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   334 }
   336 template <class Chunk_t, template <class> class FreeList_t>
   337 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
   338   assert((ZapUnusedHeapArea &&
   339           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
   340           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
   341           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
   342           (size() == 0 && prev() == NULL && next() == NULL),
   343     "Space should be clear or mangled");
   344 }
   346 template <class Chunk_t, template <class> class FreeList_t>
   347 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
   348   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
   349     "Wrong type of chunk?");
   350   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
   351 }
   353 template <class Chunk_t, template <class> class FreeList_t>
   354 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
   355   assert(head() != NULL, "The head of the list cannot be NULL");
   356   Chunk_t* fc = head()->next();
   357   TreeChunk<Chunk_t, FreeList_t>* retTC;
   358   if (fc == NULL) {
   359     retTC = head_as_TreeChunk();
   360   } else {
   361     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   362   }
   363   assert(retTC->list() == this, "Wrong type of chunk.");
   364   return retTC;
   365 }
   367 // Returns the block with the largest heap address amongst
   368 // those in the list for this size; potentially slow and expensive,
   369 // use with caution!
   370 template <class Chunk_t, template <class> class FreeList_t>
   371 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
   372   assert(head() != NULL, "The head of the list cannot be NULL");
   373   Chunk_t* fc = head()->next();
   374   TreeChunk<Chunk_t, FreeList_t>* retTC;
   375   if (fc == NULL) {
   376     retTC = head_as_TreeChunk();
   377   } else {
   378     // walk down the list and return the one with the highest
   379     // heap address among chunks of this size.
   380     Chunk_t* last = fc;
   381     while (fc->next() != NULL) {
   382       if ((HeapWord*)last < (HeapWord*)fc) {
   383         last = fc;
   384       }
   385       fc = fc->next();
   386     }
   387     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
   388   }
   389   assert(retTC->list() == this, "Wrong type of chunk.");
   390   return retTC;
   391 }
   393 template <class Chunk_t, template <class> class FreeList_t>
   394 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
   395   assert((mr.byte_size() > min_size()), "minimum chunk size");
   397   reset(mr);
   398   assert(root()->left() == NULL, "reset check failed");
   399   assert(root()->right() == NULL, "reset check failed");
   400   assert(root()->head()->next() == NULL, "reset check failed");
   401   assert(root()->head()->prev() == NULL, "reset check failed");
   402   assert(total_size() == root()->size(), "reset check failed");
   403   assert(total_free_blocks() == 1, "reset check failed");
   404 }
   406 template <class Chunk_t, template <class> class FreeList_t>
   407 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
   408   _total_size = _total_size + inc;
   409 }
   411 template <class Chunk_t, template <class> class FreeList_t>
   412 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
   413   _total_size = _total_size - dec;
   414 }
   416 template <class Chunk_t, template <class> class FreeList_t>
   417 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
   418   assert((mr.byte_size() > min_size()), "minimum chunk size");
   419   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
   420   set_total_size(mr.word_size());
   421   set_total_free_blocks(1);
   422 }
   424 template <class Chunk_t, template <class> class FreeList_t>
   425 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
   426   MemRegion mr(addr, heap_word_size(byte_size));
   427   reset(mr);
   428 }
   430 template <class Chunk_t, template <class> class FreeList_t>
   431 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
   432   set_root(NULL);
   433   set_total_size(0);
   434   set_total_free_blocks(0);
   435 }
   437 // Get a free block of size at least size from tree, or NULL.
   438 template <class Chunk_t, template <class> class FreeList_t>
   439 TreeChunk<Chunk_t, FreeList_t>*
   440 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
   441                               size_t size,
   442                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
   443 {
   444   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   445   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
   447   assert((size >= min_size()), "minimum chunk size");
   448   if (FLSVerifyDictionary) {
   449     verify_tree();
   450   }
   451   // starting at the root, work downwards trying to find match.
   452   // Remember the last node of size too great or too small.
   453   for (prevTL = curTL = root(); curTL != NULL;) {
   454     if (curTL->size() == size) {        // exact match
   455       break;
   456     }
   457     prevTL = curTL;
   458     if (curTL->size() < size) {        // proceed to right sub-tree
   459       curTL = curTL->right();
   460     } else {                           // proceed to left sub-tree
   461       assert(curTL->size() > size, "size inconsistency");
   462       curTL = curTL->left();
   463     }
   464   }
   465   if (curTL == NULL) { // couldn't find exact match
   467     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
   469     // try and find the next larger size by walking back up the search path
   470     for (curTL = prevTL; curTL != NULL;) {
   471       if (curTL->size() >= size) break;
   472       else curTL = curTL->parent();
   473     }
   474     assert(curTL == NULL || curTL->count() > 0,
   475       "An empty list should not be in the tree");
   476   }
   477   if (curTL != NULL) {
   478     assert(curTL->size() >= size, "size inconsistency");
   480     curTL = curTL->get_better_list(this);
   482     retTC = curTL->first_available();
   483     assert((retTC != NULL) && (curTL->count() > 0),
   484       "A list in the binary tree should not be NULL");
   485     assert(retTC->size() >= size,
   486       "A chunk of the wrong size was found");
   487     remove_chunk_from_tree(retTC);
   488     assert(retTC->is_free(), "Header is not marked correctly");
   489   }
   491   if (FLSVerifyDictionary) {
   492     verify();
   493   }
   494   return retTC;
   495 }
   497 template <class Chunk_t, template <class> class FreeList_t>
   498 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
   499   TreeList<Chunk_t, FreeList_t>* curTL;
   500   for (curTL = root(); curTL != NULL;) {
   501     if (curTL->size() == size) {        // exact match
   502       break;
   503     }
   505     if (curTL->size() < size) {        // proceed to right sub-tree
   506       curTL = curTL->right();
   507     } else {                           // proceed to left sub-tree
   508       assert(curTL->size() > size, "size inconsistency");
   509       curTL = curTL->left();
   510     }
   511   }
   512   return curTL;
   513 }
   516 template <class Chunk_t, template <class> class FreeList_t>
   517 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
   518   size_t size = tc->size();
   519   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
   520   if (tl == NULL) {
   521     return false;
   522   } else {
   523     return tl->verify_chunk_in_free_list(tc);
   524   }
   525 }
   527 template <class Chunk_t, template <class> class FreeList_t>
   528 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
   529   TreeList<Chunk_t, FreeList_t> *curTL = root();
   530   if (curTL != NULL) {
   531     while(curTL->right() != NULL) curTL = curTL->right();
   532     return curTL->largest_address();
   533   } else {
   534     return NULL;
   535   }
   536 }
   538 // Remove the current chunk from the tree.  If it is not the last
   539 // chunk in a list on a tree node, just unlink it.
   540 // If it is the last chunk in the list (the next link is NULL),
   541 // remove the node and repair the tree.
   542 template <class Chunk_t, template <class> class FreeList_t>
   543 TreeChunk<Chunk_t, FreeList_t>*
   544 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
   545   assert(tc != NULL, "Should not call with a NULL chunk");
   546   assert(tc->is_free(), "Header is not marked correctly");
   548   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
   549   TreeChunk<Chunk_t, FreeList_t>* retTC;
   550   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
   551   debug_only(
   552     bool removing_only_chunk = false;
   553     if (tl == _root) {
   554       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   555         if (_root->count() == 1) {
   556           assert(_root->head() == tc, "Should only be this one chunk");
   557           removing_only_chunk = true;
   558         }
   559       }
   560     }
   561   )
   562   assert(tl != NULL, "List should be set");
   563   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   564          tl == tl->parent()->right(), "list is inconsistent");
   566   bool complicated_splice = false;
   568   retTC = tc;
   569   // Removing this chunk can have the side effect of changing the node
   570   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
   571   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
   572   assert(tc->is_free(), "Chunk should still be free");
   573   assert(replacementTL->parent() == NULL ||
   574          replacementTL == replacementTL->parent()->left() ||
   575          replacementTL == replacementTL->parent()->right(),
   576          "list is inconsistent");
   577   if (tl == root()) {
   578     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   579     set_root(replacementTL);
   580   }
   581 #ifdef ASSERT
   582     if (tl != replacementTL) {
   583       assert(replacementTL->head() != NULL,
   584         "If the tree list was replaced, it should not be a NULL list");
   585       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
   586       TreeList<Chunk_t, FreeList_t>* rtl =
   587         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
   588       assert(rhl == replacementTL, "Broken head");
   589       assert(rtl == replacementTL, "Broken tail");
   590       assert(replacementTL->size() == tc->size(),  "Broken size");
   591     }
   592 #endif
   594   // Does the tree need to be repaired?
   595   if (replacementTL->count() == 0) {
   596     assert(replacementTL->head() == NULL &&
   597            replacementTL->tail() == NULL, "list count is incorrect");
   598     // Find the replacement node for the (soon to be empty) node being removed.
   599     // if we have a single (or no) child, splice child in our stead
   600     if (replacementTL->left() == NULL) {
   601       // left is NULL so pick right.  right may also be NULL.
   602       newTL = replacementTL->right();
   603       debug_only(replacementTL->clear_right();)
   604     } else if (replacementTL->right() == NULL) {
   605       // right is NULL
   606       newTL = replacementTL->left();
   607       debug_only(replacementTL->clear_left();)
   608     } else {  // we have both children, so, by patriarchal convention,
   609               // my replacement is least node in right sub-tree
   610       complicated_splice = true;
   611       newTL = remove_tree_minimum(replacementTL->right());
   612       assert(newTL != NULL && newTL->left() == NULL &&
   613              newTL->right() == NULL, "sub-tree minimum exists");
   614     }
   615     // newTL is the replacement for the (soon to be empty) node.
   616     // newTL may be NULL.
   617     // should verify; we just cleanly excised our replacement
   618     if (FLSVerifyDictionary) {
   619       verify_tree();
   620     }
   621     // first make newTL my parent's child
   622     if ((parentTL = replacementTL->parent()) == NULL) {
   623       // newTL should be root
   624       assert(tl == root(), "Incorrectly replacing root");
   625       set_root(newTL);
   626       if (newTL != NULL) {
   627         newTL->clear_parent();
   628       }
   629     } else if (parentTL->right() == replacementTL) {
   630       // replacementTL is a right child
   631       parentTL->set_right(newTL);
   632     } else {                                // replacementTL is a left child
   633       assert(parentTL->left() == replacementTL, "should be left child");
   634       parentTL->set_left(newTL);
   635     }
   636     debug_only(replacementTL->clear_parent();)
   637     if (complicated_splice) {  // we need newTL to get replacementTL's
   638                               // two children
   639       assert(newTL != NULL &&
   640              newTL->left() == NULL && newTL->right() == NULL,
   641             "newTL should not have encumbrances from the past");
   642       // we'd like to assert as below:
   643       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   644       //       "else !complicated_splice");
   645       // ... however, the above assertion is too strong because we aren't
   646       // guaranteed that replacementTL->right() is still NULL.
   647       // Recall that we removed
   648       // the right sub-tree minimum from replacementTL.
   649       // That may well have been its right
   650       // child! So we'll just assert half of the above:
   651       assert(replacementTL->left() != NULL, "else !complicated_splice");
   652       newTL->set_left(replacementTL->left());
   653       newTL->set_right(replacementTL->right());
   654       debug_only(
   655         replacementTL->clear_right();
   656         replacementTL->clear_left();
   657       )
   658     }
   659     assert(replacementTL->right() == NULL &&
   660            replacementTL->left() == NULL &&
   661            replacementTL->parent() == NULL,
   662         "delete without encumbrances");
   663   }
   665   assert(total_size() >= retTC->size(), "Incorrect total size");
   666   dec_total_size(retTC->size());     // size book-keeping
   667   assert(total_free_blocks() > 0, "Incorrect total count");
   668   set_total_free_blocks(total_free_blocks() - 1);
   670   assert(retTC != NULL, "null chunk?");
   671   assert(retTC->prev() == NULL && retTC->next() == NULL,
   672          "should return without encumbrances");
   673   if (FLSVerifyDictionary) {
   674     verify_tree();
   675   }
   676   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   677   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
   678 }
   680 // Remove the leftmost node (lm) in the tree and return it.
   681 // If lm has a right child, link it to the left node of
   682 // the parent of lm.
   683 template <class Chunk_t, template <class> class FreeList_t>
   684 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
   685   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   686   // locate the subtree minimum by walking down left branches
   687   TreeList<Chunk_t, FreeList_t>* curTL = tl;
   688   for (; curTL->left() != NULL; curTL = curTL->left());
   689   // obviously curTL now has at most one child, a right child
   690   if (curTL != root()) {  // Should this test just be removed?
   691     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
   692     if (parentTL->left() == curTL) { // curTL is a left child
   693       parentTL->set_left(curTL->right());
   694     } else {
   695       // If the list tl has no left child, then curTL may be
   696       // the right child of parentTL.
   697       assert(parentTL->right() == curTL, "should be a right child");
   698       parentTL->set_right(curTL->right());
   699     }
   700   } else {
   701     // The only use of this method would not pass the root of the
   702     // tree (as indicated by the assertion above that the tree list
   703     // has a parent) but the specification does not explicitly exclude the
   704     // passing of the root so accomodate it.
   705     set_root(NULL);
   706   }
   707   debug_only(
   708     curTL->clear_parent();  // Test if this needs to be cleared
   709     curTL->clear_right();    // recall, above, left child is already null
   710   )
   711   // we just excised a (non-root) node, we should still verify all tree invariants
   712   if (FLSVerifyDictionary) {
   713     verify_tree();
   714   }
   715   return curTL;
   716 }
   718 template <class Chunk_t, template <class> class FreeList_t>
   719 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
   720   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   721   size_t size = fc->size();
   723   assert((size >= min_size()),
   724     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
   725       size, min_size()));
   726   if (FLSVerifyDictionary) {
   727     verify_tree();
   728   }
   730   fc->clear_next();
   731   fc->link_prev(NULL);
   733   // work down from the _root, looking for insertion point
   734   for (prevTL = curTL = root(); curTL != NULL;) {
   735     if (curTL->size() == size)  // exact match
   736       break;
   737     prevTL = curTL;
   738     if (curTL->size() > size) { // follow left branch
   739       curTL = curTL->left();
   740     } else {                    // follow right branch
   741       assert(curTL->size() < size, "size inconsistency");
   742       curTL = curTL->right();
   743     }
   744   }
   745   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   746   // This chunk is being returned to the binary tree.  Its embedded
   747   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
   748   tc->initialize();
   749   if (curTL != NULL) {          // exact match
   750     tc->set_list(curTL);
   751     curTL->return_chunk_at_tail(tc);
   752   } else {                     // need a new node in tree
   753     tc->clear_next();
   754     tc->link_prev(NULL);
   755     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   756     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
   757       "List was not initialized correctly");
   758     if (prevTL == NULL) {      // we are the only tree node
   759       assert(root() == NULL, "control point invariant");
   760       set_root(newTL);
   761     } else {                   // insert under prevTL ...
   762       if (prevTL->size() < size) {   // am right child
   763         assert(prevTL->right() == NULL, "control point invariant");
   764         prevTL->set_right(newTL);
   765       } else {                       // am left child
   766         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   767         prevTL->set_left(newTL);
   768       }
   769     }
   770   }
   771   assert(tc->list() != NULL, "Tree list should be set");
   773   inc_total_size(size);
   774   // Method 'total_size_in_tree' walks through the every block in the
   775   // tree, so it can cause significant performance loss if there are
   776   // many blocks in the tree
   777   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
   778   set_total_free_blocks(total_free_blocks() + 1);
   779   if (FLSVerifyDictionary) {
   780     verify_tree();
   781   }
   782 }
   784 template <class Chunk_t, template <class> class FreeList_t>
   785 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
   786   FreeBlockDictionary<Chunk_t>::verify_par_locked();
   787   TreeList<Chunk_t, FreeList_t>* tc = root();
   788   if (tc == NULL) return 0;
   789   for (; tc->right() != NULL; tc = tc->right());
   790   return tc->size();
   791 }
   793 template <class Chunk_t, template <class> class FreeList_t>
   794 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
   795   size_t res;
   796   res = tl->count();
   797 #ifdef ASSERT
   798   size_t cnt;
   799   Chunk_t* tc = tl->head();
   800   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   801   assert(res == cnt, "The count is not being maintained correctly");
   802 #endif
   803   return res;
   804 }
   806 template <class Chunk_t, template <class> class FreeList_t>
   807 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   808   if (tl == NULL)
   809     return 0;
   810   return (tl->size() * total_list_length(tl)) +
   811          total_size_in_tree(tl->left())    +
   812          total_size_in_tree(tl->right());
   813 }
   815 template <class Chunk_t, template <class> class FreeList_t>
   816 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
   817   if (tl == NULL) {
   818     return 0.0;
   819   }
   820   double size = (double)(tl->size());
   821   double curr = size * size * total_list_length(tl);
   822   curr += sum_of_squared_block_sizes(tl->left());
   823   curr += sum_of_squared_block_sizes(tl->right());
   824   return curr;
   825 }
   827 template <class Chunk_t, template <class> class FreeList_t>
   828 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   829   if (tl == NULL)
   830     return 0;
   831   return total_list_length(tl) +
   832          total_free_blocks_in_tree(tl->left()) +
   833          total_free_blocks_in_tree(tl->right());
   834 }
   836 template <class Chunk_t, template <class> class FreeList_t>
   837 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
   838   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
   839          "_total_free_blocks inconsistency");
   840   return total_free_blocks();
   841 }
   843 template <class Chunk_t, template <class> class FreeList_t>
   844 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   845   if (tl == NULL)
   846     return 0;
   847   return 1 + MAX2(tree_height_helper(tl->left()),
   848                   tree_height_helper(tl->right()));
   849 }
   851 template <class Chunk_t, template <class> class FreeList_t>
   852 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
   853   return tree_height_helper(root());
   854 }
   856 template <class Chunk_t, template <class> class FreeList_t>
   857 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   858   if (tl == NULL) {
   859     return 0;
   860   }
   861   return 1 + total_nodes_helper(tl->left()) +
   862     total_nodes_helper(tl->right());
   863 }
   865 template <class Chunk_t, template <class> class FreeList_t>
   866 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   867   return total_nodes_helper(root());
   868 }
   870 template <class Chunk_t, template <class> class FreeList_t>
   871 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
   873 #ifndef SERIALGC
   874 template <>
   875 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::dict_census_update(size_t size, bool split, bool birth){
   876   TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
   877   if (nd) {
   878     if (split) {
   879       if (birth) {
   880         nd->increment_split_births();
   881         nd->increment_surplus();
   882       }  else {
   883         nd->increment_split_deaths();
   884         nd->decrement_surplus();
   885       }
   886     } else {
   887       if (birth) {
   888         nd->increment_coal_births();
   889         nd->increment_surplus();
   890       } else {
   891         nd->increment_coal_deaths();
   892         nd->decrement_surplus();
   893       }
   894     }
   895   }
   896   // A list for this size may not be found (nd == 0) if
   897   //   This is a death where the appropriate list is now
   898   //     empty and has been removed from the list.
   899   //   This is a birth associated with a LinAB.  The chunk
   900   //     for the LinAB is not in the dictionary.
   901 }
   902 #endif // SERIALGC
   904 template <class Chunk_t, template <class> class FreeList_t>
   905 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
   906   // For the general type of freelists, encourage coalescing by
   907   // returning true.
   908   return true;
   909 }
   911 #ifndef SERIALGC
   912 template <>
   913 bool BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::coal_dict_over_populated(size_t size) {
   914   if (FLSAlwaysCoalesceLarge) return true;
   916   TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
   917   // None of requested size implies overpopulated.
   918   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
   919          list_of_size->count() > list_of_size->coal_desired();
   920 }
   921 #endif  // SERIALGC
   923 // Closures for walking the binary tree.
   924 //   do_list() walks the free list in a node applying the closure
   925 //     to each free chunk in the list
   926 //   do_tree() walks the nodes in the binary tree applying do_list()
   927 //     to each list at each node.
   929 template <class Chunk_t, template <class> class FreeList_t>
   930 class TreeCensusClosure : public StackObj {
   931  protected:
   932   virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
   933  public:
   934   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
   935 };
   937 template <class Chunk_t, template <class> class FreeList_t>
   938 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   939  public:
   940   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   941     if (tl != NULL) {
   942       do_tree(tl->left());
   943       do_list(tl);
   944       do_tree(tl->right());
   945     }
   946   }
   947 };
   949 template <class Chunk_t, template <class> class FreeList_t>
   950 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   951  public:
   952   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   953     if (tl != NULL) {
   954       do_tree(tl->right());
   955       do_list(tl);
   956       do_tree(tl->left());
   957     }
   958   }
   959 };
   961 // For each list in the tree, calculate the desired, desired
   962 // coalesce, count before sweep, and surplus before sweep.
   963 template <class Chunk_t, template <class> class FreeList_t>
   964 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   965   double _percentage;
   966   float _inter_sweep_current;
   967   float _inter_sweep_estimate;
   968   float _intra_sweep_estimate;
   970  public:
   971   BeginSweepClosure(double p, float inter_sweep_current,
   972                               float inter_sweep_estimate,
   973                               float intra_sweep_estimate) :
   974    _percentage(p),
   975    _inter_sweep_current(inter_sweep_current),
   976    _inter_sweep_estimate(inter_sweep_estimate),
   977    _intra_sweep_estimate(intra_sweep_estimate) { }
   979   void do_list(FreeList<Chunk_t>* fl) {}
   981 #ifndef SERIALGC
   982   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
   983     double coalSurplusPercent = _percentage;
   984     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
   985     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   986     fl->set_before_sweep(fl->count());
   987     fl->set_bfr_surp(fl->surplus());
   988   }
   989 #endif // SERIALGC
   990 };
   992 // Used to search the tree until a condition is met.
   993 // Similar to TreeCensusClosure but searches the
   994 // tree and returns promptly when found.
   996 template <class Chunk_t, template <class> class FreeList_t>
   997 class TreeSearchClosure : public StackObj {
   998  protected:
   999   virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
  1000  public:
  1001   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
  1002 };
  1004 #if 0 //  Don't need this yet but here for symmetry.
  1005 template <class Chunk_t, template <class> class FreeList_t>
  1006 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
  1007  public:
  1008   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1009     if (tl != NULL) {
  1010       if (do_tree(tl->left())) return true;
  1011       if (do_list(tl)) return true;
  1012       if (do_tree(tl->right())) return true;
  1014     return false;
  1016 };
  1017 #endif
  1019 template <class Chunk_t, template <class> class FreeList_t>
  1020 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
  1021  public:
  1022   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1023     if (tl != NULL) {
  1024       if (do_tree(tl->right())) return true;
  1025       if (do_list(tl)) return true;
  1026       if (do_tree(tl->left())) return true;
  1028     return false;
  1030 };
  1032 // Searches the tree for a chunk that ends at the
  1033 // specified address.
  1034 template <class Chunk_t, template <class> class FreeList_t>
  1035 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
  1036   HeapWord* _target;
  1037   Chunk_t* _found;
  1039  public:
  1040   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  1041   bool do_list(FreeList_t<Chunk_t>* fl) {
  1042     Chunk_t* item = fl->head();
  1043     while (item != NULL) {
  1044       if (item->end() == (uintptr_t*) _target) {
  1045         _found = item;
  1046         return true;
  1048       item = item->next();
  1050     return false;
  1052   Chunk_t* found() { return _found; }
  1053 };
  1055 template <class Chunk_t, template <class> class FreeList_t>
  1056 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
  1057   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
  1058   bool found_target = etsc.do_tree(root());
  1059   assert(found_target || etsc.found() == NULL, "Consistency check");
  1060   assert(!found_target || etsc.found() != NULL, "Consistency check");
  1061   return etsc.found();
  1064 template <class Chunk_t, template <class> class FreeList_t>
  1065 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
  1066   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  1067   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
  1068                                             inter_sweep_estimate,
  1069                                             intra_sweep_estimate);
  1070   bsc.do_tree(root());
  1073 // Closures and methods for calculating total bytes returned to the
  1074 // free lists in the tree.
  1075 #ifndef PRODUCT
  1076 template <class Chunk_t, template <class> class FreeList_t>
  1077 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1078    public:
  1079   void do_list(FreeList_t<Chunk_t>* fl) {
  1080     fl->set_returned_bytes(0);
  1082 };
  1084 template <class Chunk_t, template <class> class FreeList_t>
  1085 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
  1086   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
  1087   idrb.do_tree(root());
  1090 template <class Chunk_t, template <class> class FreeList_t>
  1091 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1092   size_t _dict_returned_bytes;
  1093  public:
  1094   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
  1095   void do_list(FreeList_t<Chunk_t>* fl) {
  1096     _dict_returned_bytes += fl->returned_bytes();
  1098   size_t dict_returned_bytes() { return _dict_returned_bytes; }
  1099 };
  1101 template <class Chunk_t, template <class> class FreeList_t>
  1102 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
  1103   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
  1104   rbc.do_tree(root());
  1106   return rbc.dict_returned_bytes();
  1109 // Count the number of entries in the tree.
  1110 template <class Chunk_t, template <class> class FreeList_t>
  1111 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1112  public:
  1113   uint count;
  1114   treeCountClosure(uint c) { count = c; }
  1115   void do_list(FreeList_t<Chunk_t>* fl) {
  1116     count++;
  1118 };
  1120 template <class Chunk_t, template <class> class FreeList_t>
  1121 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
  1122   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
  1123   ctc.do_tree(root());
  1124   return ctc.count;
  1126 #endif // PRODUCT
  1128 // Calculate surpluses for the lists in the tree.
  1129 template <class Chunk_t, template <class> class FreeList_t>
  1130 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1131   double percentage;
  1132  public:
  1133   setTreeSurplusClosure(double v) { percentage = v; }
  1134   void do_list(FreeList<Chunk_t>* fl) {}
  1136 #ifndef SERIALGC
  1137   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1138     double splitSurplusPercent = percentage;
  1139     fl->set_surplus(fl->count() -
  1140                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1142 #endif // SERIALGC
  1143 };
  1145 template <class Chunk_t, template <class> class FreeList_t>
  1146 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
  1147   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
  1148   sts.do_tree(root());
  1151 // Set hints for the lists in the tree.
  1152 template <class Chunk_t, template <class> class FreeList_t>
  1153 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1154   size_t hint;
  1155  public:
  1156   setTreeHintsClosure(size_t v) { hint = v; }
  1157   void do_list(FreeList<Chunk_t>* fl) {}
  1159 #ifndef SERIALGC
  1160   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1161     fl->set_hint(hint);
  1162     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1163       "Current hint is inconsistent");
  1164     if (fl->surplus() > 0) {
  1165       hint = fl->size();
  1168 #endif // SERIALGC
  1169 };
  1171 template <class Chunk_t, template <class> class FreeList_t>
  1172 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
  1173   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
  1174   sth.do_tree(root());
  1177 // Save count before previous sweep and splits and coalesces.
  1178 template <class Chunk_t, template <class> class FreeList_t>
  1179 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1180   void do_list(FreeList<Chunk_t>* fl) {}
  1182 #ifndef SERIALGC
  1183   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1184     fl->set_prev_sweep(fl->count());
  1185     fl->set_coal_births(0);
  1186     fl->set_coal_deaths(0);
  1187     fl->set_split_births(0);
  1188     fl->set_split_deaths(0);
  1190 #endif  // SERIALGC
  1191 };
  1193 template <class Chunk_t, template <class> class FreeList_t>
  1194 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
  1195   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
  1196   ctc.do_tree(root());
  1199 // Do reporting and post sweep clean up.
  1200 template <class Chunk_t, template <class> class FreeList_t>
  1201 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
  1202   // Does walking the tree 3 times hurt?
  1203   set_tree_surplus(splitSurplusPercent);
  1204   set_tree_hints();
  1205   if (PrintGC && Verbose) {
  1206     report_statistics();
  1208   clear_tree_census();
  1211 // Print summary statistics
  1212 template <class Chunk_t, template <class> class FreeList_t>
  1213 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
  1214   FreeBlockDictionary<Chunk_t>::verify_par_locked();
  1215   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1216          "------------------------------------\n");
  1217   size_t total_size = total_chunk_size(debug_only(NULL));
  1218   size_t    free_blocks = num_free_blocks();
  1219   gclog_or_tty->print("Total Free Space: %d\n", total_size);
  1220   gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
  1221   gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
  1222   if (free_blocks > 0) {
  1223     gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
  1225   gclog_or_tty->print("Tree      Height: %d\n", tree_height());
  1228 // Print census information - counts, births, deaths, etc.
  1229 // for each list in the tree.  Also print some summary
  1230 // information.
  1231 template <class Chunk_t, template <class> class FreeList_t>
  1232 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1233   int _print_line;
  1234   size_t _total_free;
  1235   FreeList_t<Chunk_t> _total;
  1237  public:
  1238   PrintTreeCensusClosure() {
  1239     _print_line = 0;
  1240     _total_free = 0;
  1242   FreeList_t<Chunk_t>* total() { return &_total; }
  1243   size_t total_free() { return _total_free; }
  1244   void do_list(FreeList<Chunk_t>* fl) {
  1245     if (++_print_line >= 40) {
  1246       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1247       _print_line = 0;
  1249     fl->print_on(gclog_or_tty);
  1250     _total_free +=            fl->count()            * fl->size()        ;
  1251     total()->set_count(      total()->count()       + fl->count()      );
  1254 #ifndef SERIALGC
  1255   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1256     if (++_print_line >= 40) {
  1257       FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1258       _print_line = 0;
  1260     fl->print_on(gclog_or_tty);
  1261     _total_free +=           fl->count()             * fl->size()        ;
  1262     total()->set_count(      total()->count()        + fl->count()      );
  1263     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
  1264     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
  1265     total()->set_desired(    total()->desired()      + fl->desired()    );
  1266     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
  1267     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
  1268     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
  1269     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
  1270     total()->set_split_births(total()->split_births() + fl->split_births());
  1271     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
  1273 #endif  // SERIALGC
  1274 };
  1276 template <class Chunk_t, template <class> class FreeList_t>
  1277 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
  1279   gclog_or_tty->print("\nBinaryTree\n");
  1280   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  1281   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
  1282   ptc.do_tree(root());
  1284   FreeList_t<Chunk_t>* total = ptc.total();
  1285   FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
  1288 #ifndef SERIALGC
  1289 template <>
  1290 void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::print_dict_census(void) const {
  1292   gclog_or_tty->print("\nBinaryTree\n");
  1293   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
  1294   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
  1295   ptc.do_tree(root());
  1297   AdaptiveFreeList<FreeChunk>* total = ptc.total();
  1298   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
  1299   total->print_on(gclog_or_tty, "TOTAL\t");
  1300   gclog_or_tty->print(
  1301               "total_free(words): " SIZE_FORMAT_W(16)
  1302               " growth: %8.5f  deficit: %8.5f\n",
  1303               ptc.total_free(),
  1304               (double)(total->split_births() + total->coal_births()
  1305                      - total->split_deaths() - total->coal_deaths())
  1306               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
  1307              (double)(total->desired() - total->count())
  1308              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1310 #endif  // SERIALGC
  1312 template <class Chunk_t, template <class> class FreeList_t>
  1313 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1314   outputStream* _st;
  1315   int _print_line;
  1317  public:
  1318   PrintFreeListsClosure(outputStream* st) {
  1319     _st = st;
  1320     _print_line = 0;
  1322   void do_list(FreeList_t<Chunk_t>* fl) {
  1323     if (++_print_line >= 40) {
  1324       FreeList_t<Chunk_t>::print_labels_on(_st, "size");
  1325       _print_line = 0;
  1327     fl->print_on(gclog_or_tty);
  1328     size_t sz = fl->size();
  1329     for (Chunk_t* fc = fl->head(); fc != NULL;
  1330          fc = fc->next()) {
  1331       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
  1332                     fc, (HeapWord*)fc + sz,
  1333                     fc->cantCoalesce() ? "\t CC" : "");
  1336 };
  1338 template <class Chunk_t, template <class> class FreeList_t>
  1339 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
  1341   FreeList_t<Chunk_t>::print_labels_on(st, "size");
  1342   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
  1343   pflc.do_tree(root());
  1346 // Verify the following tree invariants:
  1347 // . _root has no parent
  1348 // . parent and child point to each other
  1349 // . each node's key correctly related to that of its child(ren)
  1350 template <class Chunk_t, template <class> class FreeList_t>
  1351 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
  1352   guarantee(root() == NULL || total_free_blocks() == 0 ||
  1353     total_size() != 0, "_total_size should't be 0?");
  1354   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1355   verify_tree_helper(root());
  1358 template <class Chunk_t, template <class> class FreeList_t>
  1359 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
  1360   size_t ct = 0;
  1361   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1362     ct++;
  1363     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
  1364       "Chunk should be free");
  1366   return ct;
  1369 // Note: this helper is recursive rather than iterative, so use with
  1370 // caution on very deep trees; and watch out for stack overflow errors;
  1371 // In general, to be used only for debugging.
  1372 template <class Chunk_t, template <class> class FreeList_t>
  1373 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  1374   if (tl == NULL)
  1375     return;
  1376   guarantee(tl->size() != 0, "A list must has a size");
  1377   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1378          "parent<-/->left");
  1379   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1380          "parent<-/->right");;
  1381   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1382          "parent !> left");
  1383   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1384          "parent !< left");
  1385   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
  1386   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1387     "list inconsistency");
  1388   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1389     "list count is inconsistent");
  1390   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1391     "list is incorrectly constructed");
  1392   size_t count = verify_prev_free_ptrs(tl);
  1393   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1394   if (tl->head() != NULL) {
  1395     tl->head_as_TreeChunk()->verify_tree_chunk_list();
  1397   verify_tree_helper(tl->left());
  1398   verify_tree_helper(tl->right());
  1401 template <class Chunk_t, template <class> class FreeList_t>
  1402 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
  1403   verify_tree();
  1404   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
  1407 template class TreeList<Metablock, FreeList>;
  1408 template class BinaryTreeDictionary<Metablock, FreeList>;
  1409 template class TreeChunk<Metablock, FreeList>;
  1411 template class TreeList<Metachunk, FreeList>;
  1412 template class BinaryTreeDictionary<Metachunk, FreeList>;
  1413 template class TreeChunk<Metachunk, FreeList>;
  1416 #ifndef SERIALGC
  1417 // Explicitly instantiate these types for FreeChunk.
  1418 template class TreeList<FreeChunk, AdaptiveFreeList>;
  1419 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
  1420 template class TreeChunk<FreeChunk, AdaptiveFreeList>;
  1422 #endif // SERIALGC

mercurial