src/share/vm/opto/library_call.cpp

Wed, 25 Aug 2010 05:27:54 -0700

author
twisti
date
Wed, 25 Aug 2010 05:27:54 -0700
changeset 2103
3e8fbc61cee8
parent 2101
4b29a725c43c
child 2199
75588558f1bf
permissions
-rw-r--r--

6978355: renaming for 6961697
Summary: This is the renaming part of 6961697 to keep the actual changes small for review.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_library_call.cpp.incl"
    28 class LibraryIntrinsic : public InlineCallGenerator {
    29   // Extend the set of intrinsics known to the runtime:
    30  public:
    31  private:
    32   bool             _is_virtual;
    33   vmIntrinsics::ID _intrinsic_id;
    35  public:
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    37     : InlineCallGenerator(m),
    38       _is_virtual(is_virtual),
    39       _intrinsic_id(id)
    40   {
    41   }
    42   virtual bool is_intrinsic() const { return true; }
    43   virtual bool is_virtual()   const { return _is_virtual; }
    44   virtual JVMState* generate(JVMState* jvms);
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    46 };
    49 // Local helper class for LibraryIntrinsic:
    50 class LibraryCallKit : public GraphKit {
    51  private:
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    54  public:
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    56     : GraphKit(caller),
    57       _intrinsic(intrinsic)
    58   {
    59   }
    61   ciMethod*         caller()    const    { return jvms()->method(); }
    62   int               bci()       const    { return jvms()->bci(); }
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
    66   ciSignature*      signature() const    { return callee()->signature(); }
    67   int               arg_size()  const    { return callee()->arg_size(); }
    69   bool try_to_inline();
    71   // Helper functions to inline natives
    72   void push_result(RegionNode* region, PhiNode* value);
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
    77                                 // resulting CastII of index:
    78                                 Node* *pos_index = NULL);
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    80                                    // resulting CastII of index:
    81                                    Node* *pos_index = NULL);
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    83                              Node* array_length,
    84                              RegionNode* region);
    85   Node* generate_current_thread(Node* &tls_output);
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
    87                               bool disjoint_bases, const char* &name);
    88   Node* load_mirror_from_klass(Node* klass);
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
    90                                       int nargs,
    91                                       RegionNode* region, int null_path,
    92                                       int offset);
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
    94                                RegionNode* region, int null_path) {
    95     int offset = java_lang_Class::klass_offset_in_bytes();
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
    97                                          region, null_path,
    98                                          offset);
    99   }
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   101                                      int nargs,
   102                                      RegionNode* region, int null_path) {
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   105                                          region, null_path,
   106                                          offset);
   107   }
   108   Node* generate_access_flags_guard(Node* kls,
   109                                     int modifier_mask, int modifier_bits,
   110                                     RegionNode* region);
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
   113     return generate_array_guard_common(kls, region, false, false);
   114   }
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   116     return generate_array_guard_common(kls, region, false, true);
   117   }
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   119     return generate_array_guard_common(kls, region, true, false);
   120   }
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   122     return generate_array_guard_common(kls, region, true, true);
   123   }
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   125                                     bool obj_array, bool not_array);
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   128                                      bool is_virtual = false, bool is_static = false);
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   130     return generate_method_call(method_id, false, true);
   131   }
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   133     return generate_method_call(method_id, true, false);
   134   }
   136   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   137   bool inline_string_compareTo();
   138   bool inline_string_indexOf();
   139   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   140   bool inline_string_equals();
   141   Node* pop_math_arg();
   142   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   143   bool inline_math_native(vmIntrinsics::ID id);
   144   bool inline_trig(vmIntrinsics::ID id);
   145   bool inline_trans(vmIntrinsics::ID id);
   146   bool inline_abs(vmIntrinsics::ID id);
   147   bool inline_sqrt(vmIntrinsics::ID id);
   148   bool inline_pow(vmIntrinsics::ID id);
   149   bool inline_exp(vmIntrinsics::ID id);
   150   bool inline_min_max(vmIntrinsics::ID id);
   151   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   152   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   153   int classify_unsafe_addr(Node* &base, Node* &offset);
   154   Node* make_unsafe_address(Node* base, Node* offset);
   155   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   156   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   157   bool inline_unsafe_allocate();
   158   bool inline_unsafe_copyMemory();
   159   bool inline_native_currentThread();
   160   bool inline_native_time_funcs(bool isNano);
   161   bool inline_native_isInterrupted();
   162   bool inline_native_Class_query(vmIntrinsics::ID id);
   163   bool inline_native_subtype_check();
   165   bool inline_native_newArray();
   166   bool inline_native_getLength();
   167   bool inline_array_copyOf(bool is_copyOfRange);
   168   bool inline_array_equals();
   169   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   170   bool inline_native_clone(bool is_virtual);
   171   bool inline_native_Reflection_getCallerClass();
   172   bool inline_native_AtomicLong_get();
   173   bool inline_native_AtomicLong_attemptUpdate();
   174   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   175   // Helper function for inlining native object hash method
   176   bool inline_native_hashcode(bool is_virtual, bool is_static);
   177   bool inline_native_getClass();
   179   // Helper functions for inlining arraycopy
   180   bool inline_arraycopy();
   181   void generate_arraycopy(const TypePtr* adr_type,
   182                           BasicType basic_elem_type,
   183                           Node* src,  Node* src_offset,
   184                           Node* dest, Node* dest_offset,
   185                           Node* copy_length,
   186                           bool disjoint_bases = false,
   187                           bool length_never_negative = false,
   188                           RegionNode* slow_region = NULL);
   189   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   190                                                 RegionNode* slow_region);
   191   void generate_clear_array(const TypePtr* adr_type,
   192                             Node* dest,
   193                             BasicType basic_elem_type,
   194                             Node* slice_off,
   195                             Node* slice_len,
   196                             Node* slice_end);
   197   bool generate_block_arraycopy(const TypePtr* adr_type,
   198                                 BasicType basic_elem_type,
   199                                 AllocateNode* alloc,
   200                                 Node* src,  Node* src_offset,
   201                                 Node* dest, Node* dest_offset,
   202                                 Node* dest_size);
   203   void generate_slow_arraycopy(const TypePtr* adr_type,
   204                                Node* src,  Node* src_offset,
   205                                Node* dest, Node* dest_offset,
   206                                Node* copy_length);
   207   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   208                                      Node* dest_elem_klass,
   209                                      Node* src,  Node* src_offset,
   210                                      Node* dest, Node* dest_offset,
   211                                      Node* copy_length);
   212   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   213                                    Node* src,  Node* src_offset,
   214                                    Node* dest, Node* dest_offset,
   215                                    Node* copy_length);
   216   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   217                                     BasicType basic_elem_type,
   218                                     bool disjoint_bases,
   219                                     Node* src,  Node* src_offset,
   220                                     Node* dest, Node* dest_offset,
   221                                     Node* copy_length);
   222   bool inline_unsafe_CAS(BasicType type);
   223   bool inline_unsafe_ordered_store(BasicType type);
   224   bool inline_fp_conversions(vmIntrinsics::ID id);
   225   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   226   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   227   bool inline_bitCount(vmIntrinsics::ID id);
   228   bool inline_reverseBytes(vmIntrinsics::ID id);
   229 };
   232 //---------------------------make_vm_intrinsic----------------------------
   233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   234   vmIntrinsics::ID id = m->intrinsic_id();
   235   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   237   if (DisableIntrinsic[0] != '\0'
   238       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   239     // disabled by a user request on the command line:
   240     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   241     return NULL;
   242   }
   244   if (!m->is_loaded()) {
   245     // do not attempt to inline unloaded methods
   246     return NULL;
   247   }
   249   // Only a few intrinsics implement a virtual dispatch.
   250   // They are expensive calls which are also frequently overridden.
   251   if (is_virtual) {
   252     switch (id) {
   253     case vmIntrinsics::_hashCode:
   254     case vmIntrinsics::_clone:
   255       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   256       break;
   257     default:
   258       return NULL;
   259     }
   260   }
   262   // -XX:-InlineNatives disables nearly all intrinsics:
   263   if (!InlineNatives) {
   264     switch (id) {
   265     case vmIntrinsics::_indexOf:
   266     case vmIntrinsics::_compareTo:
   267     case vmIntrinsics::_equals:
   268     case vmIntrinsics::_equalsC:
   269       break;  // InlineNatives does not control String.compareTo
   270     default:
   271       return NULL;
   272     }
   273   }
   275   switch (id) {
   276   case vmIntrinsics::_compareTo:
   277     if (!SpecialStringCompareTo)  return NULL;
   278     break;
   279   case vmIntrinsics::_indexOf:
   280     if (!SpecialStringIndexOf)  return NULL;
   281     break;
   282   case vmIntrinsics::_equals:
   283     if (!SpecialStringEquals)  return NULL;
   284     break;
   285   case vmIntrinsics::_equalsC:
   286     if (!SpecialArraysEquals)  return NULL;
   287     break;
   288   case vmIntrinsics::_arraycopy:
   289     if (!InlineArrayCopy)  return NULL;
   290     break;
   291   case vmIntrinsics::_copyMemory:
   292     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   293     if (!InlineArrayCopy)  return NULL;
   294     break;
   295   case vmIntrinsics::_hashCode:
   296     if (!InlineObjectHash)  return NULL;
   297     break;
   298   case vmIntrinsics::_clone:
   299   case vmIntrinsics::_copyOf:
   300   case vmIntrinsics::_copyOfRange:
   301     if (!InlineObjectCopy)  return NULL;
   302     // These also use the arraycopy intrinsic mechanism:
   303     if (!InlineArrayCopy)  return NULL;
   304     break;
   305   case vmIntrinsics::_checkIndex:
   306     // We do not intrinsify this.  The optimizer does fine with it.
   307     return NULL;
   309   case vmIntrinsics::_get_AtomicLong:
   310   case vmIntrinsics::_attemptUpdate:
   311     if (!InlineAtomicLong)  return NULL;
   312     break;
   314   case vmIntrinsics::_getCallerClass:
   315     if (!UseNewReflection)  return NULL;
   316     if (!InlineReflectionGetCallerClass)  return NULL;
   317     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   318     break;
   320   case vmIntrinsics::_bitCount_i:
   321   case vmIntrinsics::_bitCount_l:
   322     if (!UsePopCountInstruction)  return NULL;
   323     break;
   325  default:
   326     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   327     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   328     break;
   329   }
   331   // -XX:-InlineClassNatives disables natives from the Class class.
   332   // The flag applies to all reflective calls, notably Array.newArray
   333   // (visible to Java programmers as Array.newInstance).
   334   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   335       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   336     if (!InlineClassNatives)  return NULL;
   337   }
   339   // -XX:-InlineThreadNatives disables natives from the Thread class.
   340   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   341     if (!InlineThreadNatives)  return NULL;
   342   }
   344   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   345   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   346       m->holder()->name() == ciSymbol::java_lang_Float() ||
   347       m->holder()->name() == ciSymbol::java_lang_Double()) {
   348     if (!InlineMathNatives)  return NULL;
   349   }
   351   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   352   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   353     if (!InlineUnsafeOps)  return NULL;
   354   }
   356   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   357 }
   359 //----------------------register_library_intrinsics-----------------------
   360 // Initialize this file's data structures, for each Compile instance.
   361 void Compile::register_library_intrinsics() {
   362   // Nothing to do here.
   363 }
   365 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   366   LibraryCallKit kit(jvms, this);
   367   Compile* C = kit.C;
   368   int nodes = C->unique();
   369 #ifndef PRODUCT
   370   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   371     char buf[1000];
   372     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   373     tty->print_cr("Intrinsic %s", str);
   374   }
   375 #endif
   376   if (kit.try_to_inline()) {
   377     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   378       tty->print("Inlining intrinsic %s%s at bci:%d in",
   379                  vmIntrinsics::name_at(intrinsic_id()),
   380                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   381       kit.caller()->print_short_name(tty);
   382       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   383     }
   384     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   385     if (C->log()) {
   386       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   387                      vmIntrinsics::name_at(intrinsic_id()),
   388                      (is_virtual() ? " virtual='1'" : ""),
   389                      C->unique() - nodes);
   390     }
   391     return kit.transfer_exceptions_into_jvms();
   392   }
   394   if (PrintIntrinsics) {
   395     tty->print("Did not inline intrinsic %s%s at bci:%d in",
   396                vmIntrinsics::name_at(intrinsic_id()),
   397                (is_virtual() ? " (virtual)" : ""), kit.bci());
   398     kit.caller()->print_short_name(tty);
   399     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   400   }
   401   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   402   return NULL;
   403 }
   405 bool LibraryCallKit::try_to_inline() {
   406   // Handle symbolic names for otherwise undistinguished boolean switches:
   407   const bool is_store       = true;
   408   const bool is_native_ptr  = true;
   409   const bool is_static      = true;
   411   switch (intrinsic_id()) {
   412   case vmIntrinsics::_hashCode:
   413     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   414   case vmIntrinsics::_identityHashCode:
   415     return inline_native_hashcode(/*!virtual*/ false, is_static);
   416   case vmIntrinsics::_getClass:
   417     return inline_native_getClass();
   419   case vmIntrinsics::_dsin:
   420   case vmIntrinsics::_dcos:
   421   case vmIntrinsics::_dtan:
   422   case vmIntrinsics::_dabs:
   423   case vmIntrinsics::_datan2:
   424   case vmIntrinsics::_dsqrt:
   425   case vmIntrinsics::_dexp:
   426   case vmIntrinsics::_dlog:
   427   case vmIntrinsics::_dlog10:
   428   case vmIntrinsics::_dpow:
   429     return inline_math_native(intrinsic_id());
   431   case vmIntrinsics::_min:
   432   case vmIntrinsics::_max:
   433     return inline_min_max(intrinsic_id());
   435   case vmIntrinsics::_arraycopy:
   436     return inline_arraycopy();
   438   case vmIntrinsics::_compareTo:
   439     return inline_string_compareTo();
   440   case vmIntrinsics::_indexOf:
   441     return inline_string_indexOf();
   442   case vmIntrinsics::_equals:
   443     return inline_string_equals();
   445   case vmIntrinsics::_getObject:
   446     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   447   case vmIntrinsics::_getBoolean:
   448     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   449   case vmIntrinsics::_getByte:
   450     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   451   case vmIntrinsics::_getShort:
   452     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   453   case vmIntrinsics::_getChar:
   454     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   455   case vmIntrinsics::_getInt:
   456     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   457   case vmIntrinsics::_getLong:
   458     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   459   case vmIntrinsics::_getFloat:
   460     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   461   case vmIntrinsics::_getDouble:
   462     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   464   case vmIntrinsics::_putObject:
   465     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   466   case vmIntrinsics::_putBoolean:
   467     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   468   case vmIntrinsics::_putByte:
   469     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   470   case vmIntrinsics::_putShort:
   471     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   472   case vmIntrinsics::_putChar:
   473     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   474   case vmIntrinsics::_putInt:
   475     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   476   case vmIntrinsics::_putLong:
   477     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   478   case vmIntrinsics::_putFloat:
   479     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   480   case vmIntrinsics::_putDouble:
   481     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   483   case vmIntrinsics::_getByte_raw:
   484     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   485   case vmIntrinsics::_getShort_raw:
   486     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   487   case vmIntrinsics::_getChar_raw:
   488     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   489   case vmIntrinsics::_getInt_raw:
   490     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   491   case vmIntrinsics::_getLong_raw:
   492     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   493   case vmIntrinsics::_getFloat_raw:
   494     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   495   case vmIntrinsics::_getDouble_raw:
   496     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   497   case vmIntrinsics::_getAddress_raw:
   498     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   500   case vmIntrinsics::_putByte_raw:
   501     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   502   case vmIntrinsics::_putShort_raw:
   503     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   504   case vmIntrinsics::_putChar_raw:
   505     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   506   case vmIntrinsics::_putInt_raw:
   507     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   508   case vmIntrinsics::_putLong_raw:
   509     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   510   case vmIntrinsics::_putFloat_raw:
   511     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   512   case vmIntrinsics::_putDouble_raw:
   513     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   514   case vmIntrinsics::_putAddress_raw:
   515     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   517   case vmIntrinsics::_getObjectVolatile:
   518     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   519   case vmIntrinsics::_getBooleanVolatile:
   520     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   521   case vmIntrinsics::_getByteVolatile:
   522     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   523   case vmIntrinsics::_getShortVolatile:
   524     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   525   case vmIntrinsics::_getCharVolatile:
   526     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   527   case vmIntrinsics::_getIntVolatile:
   528     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   529   case vmIntrinsics::_getLongVolatile:
   530     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   531   case vmIntrinsics::_getFloatVolatile:
   532     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   533   case vmIntrinsics::_getDoubleVolatile:
   534     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   536   case vmIntrinsics::_putObjectVolatile:
   537     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   538   case vmIntrinsics::_putBooleanVolatile:
   539     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   540   case vmIntrinsics::_putByteVolatile:
   541     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   542   case vmIntrinsics::_putShortVolatile:
   543     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   544   case vmIntrinsics::_putCharVolatile:
   545     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   546   case vmIntrinsics::_putIntVolatile:
   547     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   548   case vmIntrinsics::_putLongVolatile:
   549     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   550   case vmIntrinsics::_putFloatVolatile:
   551     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   552   case vmIntrinsics::_putDoubleVolatile:
   553     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   555   case vmIntrinsics::_prefetchRead:
   556     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   557   case vmIntrinsics::_prefetchWrite:
   558     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   559   case vmIntrinsics::_prefetchReadStatic:
   560     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   561   case vmIntrinsics::_prefetchWriteStatic:
   562     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   564   case vmIntrinsics::_compareAndSwapObject:
   565     return inline_unsafe_CAS(T_OBJECT);
   566   case vmIntrinsics::_compareAndSwapInt:
   567     return inline_unsafe_CAS(T_INT);
   568   case vmIntrinsics::_compareAndSwapLong:
   569     return inline_unsafe_CAS(T_LONG);
   571   case vmIntrinsics::_putOrderedObject:
   572     return inline_unsafe_ordered_store(T_OBJECT);
   573   case vmIntrinsics::_putOrderedInt:
   574     return inline_unsafe_ordered_store(T_INT);
   575   case vmIntrinsics::_putOrderedLong:
   576     return inline_unsafe_ordered_store(T_LONG);
   578   case vmIntrinsics::_currentThread:
   579     return inline_native_currentThread();
   580   case vmIntrinsics::_isInterrupted:
   581     return inline_native_isInterrupted();
   583   case vmIntrinsics::_currentTimeMillis:
   584     return inline_native_time_funcs(false);
   585   case vmIntrinsics::_nanoTime:
   586     return inline_native_time_funcs(true);
   587   case vmIntrinsics::_allocateInstance:
   588     return inline_unsafe_allocate();
   589   case vmIntrinsics::_copyMemory:
   590     return inline_unsafe_copyMemory();
   591   case vmIntrinsics::_newArray:
   592     return inline_native_newArray();
   593   case vmIntrinsics::_getLength:
   594     return inline_native_getLength();
   595   case vmIntrinsics::_copyOf:
   596     return inline_array_copyOf(false);
   597   case vmIntrinsics::_copyOfRange:
   598     return inline_array_copyOf(true);
   599   case vmIntrinsics::_equalsC:
   600     return inline_array_equals();
   601   case vmIntrinsics::_clone:
   602     return inline_native_clone(intrinsic()->is_virtual());
   604   case vmIntrinsics::_isAssignableFrom:
   605     return inline_native_subtype_check();
   607   case vmIntrinsics::_isInstance:
   608   case vmIntrinsics::_getModifiers:
   609   case vmIntrinsics::_isInterface:
   610   case vmIntrinsics::_isArray:
   611   case vmIntrinsics::_isPrimitive:
   612   case vmIntrinsics::_getSuperclass:
   613   case vmIntrinsics::_getComponentType:
   614   case vmIntrinsics::_getClassAccessFlags:
   615     return inline_native_Class_query(intrinsic_id());
   617   case vmIntrinsics::_floatToRawIntBits:
   618   case vmIntrinsics::_floatToIntBits:
   619   case vmIntrinsics::_intBitsToFloat:
   620   case vmIntrinsics::_doubleToRawLongBits:
   621   case vmIntrinsics::_doubleToLongBits:
   622   case vmIntrinsics::_longBitsToDouble:
   623     return inline_fp_conversions(intrinsic_id());
   625   case vmIntrinsics::_numberOfLeadingZeros_i:
   626   case vmIntrinsics::_numberOfLeadingZeros_l:
   627     return inline_numberOfLeadingZeros(intrinsic_id());
   629   case vmIntrinsics::_numberOfTrailingZeros_i:
   630   case vmIntrinsics::_numberOfTrailingZeros_l:
   631     return inline_numberOfTrailingZeros(intrinsic_id());
   633   case vmIntrinsics::_bitCount_i:
   634   case vmIntrinsics::_bitCount_l:
   635     return inline_bitCount(intrinsic_id());
   637   case vmIntrinsics::_reverseBytes_i:
   638   case vmIntrinsics::_reverseBytes_l:
   639   case vmIntrinsics::_reverseBytes_s:
   640   case vmIntrinsics::_reverseBytes_c:
   641     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   643   case vmIntrinsics::_get_AtomicLong:
   644     return inline_native_AtomicLong_get();
   645   case vmIntrinsics::_attemptUpdate:
   646     return inline_native_AtomicLong_attemptUpdate();
   648   case vmIntrinsics::_getCallerClass:
   649     return inline_native_Reflection_getCallerClass();
   651   default:
   652     // If you get here, it may be that someone has added a new intrinsic
   653     // to the list in vmSymbols.hpp without implementing it here.
   654 #ifndef PRODUCT
   655     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   656       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   657                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   658     }
   659 #endif
   660     return false;
   661   }
   662 }
   664 //------------------------------push_result------------------------------
   665 // Helper function for finishing intrinsics.
   666 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   667   record_for_igvn(region);
   668   set_control(_gvn.transform(region));
   669   BasicType value_type = value->type()->basic_type();
   670   push_node(value_type, _gvn.transform(value));
   671 }
   673 //------------------------------generate_guard---------------------------
   674 // Helper function for generating guarded fast-slow graph structures.
   675 // The given 'test', if true, guards a slow path.  If the test fails
   676 // then a fast path can be taken.  (We generally hope it fails.)
   677 // In all cases, GraphKit::control() is updated to the fast path.
   678 // The returned value represents the control for the slow path.
   679 // The return value is never 'top'; it is either a valid control
   680 // or NULL if it is obvious that the slow path can never be taken.
   681 // Also, if region and the slow control are not NULL, the slow edge
   682 // is appended to the region.
   683 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   684   if (stopped()) {
   685     // Already short circuited.
   686     return NULL;
   687   }
   689   // Build an if node and its projections.
   690   // If test is true we take the slow path, which we assume is uncommon.
   691   if (_gvn.type(test) == TypeInt::ZERO) {
   692     // The slow branch is never taken.  No need to build this guard.
   693     return NULL;
   694   }
   696   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   698   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   699   if (if_slow == top()) {
   700     // The slow branch is never taken.  No need to build this guard.
   701     return NULL;
   702   }
   704   if (region != NULL)
   705     region->add_req(if_slow);
   707   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   708   set_control(if_fast);
   710   return if_slow;
   711 }
   713 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   714   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   715 }
   716 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   717   return generate_guard(test, region, PROB_FAIR);
   718 }
   720 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   721                                                      Node* *pos_index) {
   722   if (stopped())
   723     return NULL;                // already stopped
   724   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   725     return NULL;                // index is already adequately typed
   726   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   727   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   728   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   729   if (is_neg != NULL && pos_index != NULL) {
   730     // Emulate effect of Parse::adjust_map_after_if.
   731     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   732     ccast->set_req(0, control());
   733     (*pos_index) = _gvn.transform(ccast);
   734   }
   735   return is_neg;
   736 }
   738 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   739                                                         Node* *pos_index) {
   740   if (stopped())
   741     return NULL;                // already stopped
   742   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   743     return NULL;                // index is already adequately typed
   744   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   745   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   746   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   747   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   748   if (is_notp != NULL && pos_index != NULL) {
   749     // Emulate effect of Parse::adjust_map_after_if.
   750     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   751     ccast->set_req(0, control());
   752     (*pos_index) = _gvn.transform(ccast);
   753   }
   754   return is_notp;
   755 }
   757 // Make sure that 'position' is a valid limit index, in [0..length].
   758 // There are two equivalent plans for checking this:
   759 //   A. (offset + copyLength)  unsigned<=  arrayLength
   760 //   B. offset  <=  (arrayLength - copyLength)
   761 // We require that all of the values above, except for the sum and
   762 // difference, are already known to be non-negative.
   763 // Plan A is robust in the face of overflow, if offset and copyLength
   764 // are both hugely positive.
   765 //
   766 // Plan B is less direct and intuitive, but it does not overflow at
   767 // all, since the difference of two non-negatives is always
   768 // representable.  Whenever Java methods must perform the equivalent
   769 // check they generally use Plan B instead of Plan A.
   770 // For the moment we use Plan A.
   771 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   772                                                   Node* subseq_length,
   773                                                   Node* array_length,
   774                                                   RegionNode* region) {
   775   if (stopped())
   776     return NULL;                // already stopped
   777   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   778   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   779     return NULL;                // common case of whole-array copy
   780   Node* last = subseq_length;
   781   if (!zero_offset)             // last += offset
   782     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   783   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   784   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   785   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   786   return is_over;
   787 }
   790 //--------------------------generate_current_thread--------------------
   791 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   792   ciKlass*    thread_klass = env()->Thread_klass();
   793   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   794   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   795   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   796   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   797   tls_output = thread;
   798   return threadObj;
   799 }
   802 //------------------------------make_string_method_node------------------------
   803 // Helper method for String intrinsic finctions.
   804 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   805   const int value_offset  = java_lang_String::value_offset_in_bytes();
   806   const int count_offset  = java_lang_String::count_offset_in_bytes();
   807   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   809   Node* no_ctrl = NULL;
   811   ciInstanceKlass* klass = env()->String_klass();
   812   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   814   const TypeAryPtr* value_type =
   815         TypeAryPtr::make(TypePtr::NotNull,
   816                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   817                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   819   // Get start addr of string and substring
   820   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   821   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   822   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   823   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   824   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   826   // Pin loads from String::equals() argument since it could be NULL.
   827   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
   828   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   829   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   830   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   831   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   832   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   834   Node* result = NULL;
   835   switch (opcode) {
   836   case Op_StrIndexOf:
   837     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   838                                        str1_start, cnt1, str2_start, cnt2);
   839     break;
   840   case Op_StrComp:
   841     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   842                                     str1_start, cnt1, str2_start, cnt2);
   843     break;
   844   case Op_StrEquals:
   845     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   846                                       str1_start, str2_start, cnt1);
   847     break;
   848   default:
   849     ShouldNotReachHere();
   850     return NULL;
   851   }
   853   // All these intrinsics have checks.
   854   C->set_has_split_ifs(true); // Has chance for split-if optimization
   856   return _gvn.transform(result);
   857 }
   859 //------------------------------inline_string_compareTo------------------------
   860 bool LibraryCallKit::inline_string_compareTo() {
   862   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   864   const int value_offset = java_lang_String::value_offset_in_bytes();
   865   const int count_offset = java_lang_String::count_offset_in_bytes();
   866   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   868   _sp += 2;
   869   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   870   Node *receiver = pop();
   872   // Null check on self without removing any arguments.  The argument
   873   // null check technically happens in the wrong place, which can lead to
   874   // invalid stack traces when string compare is inlined into a method
   875   // which handles NullPointerExceptions.
   876   _sp += 2;
   877   receiver = do_null_check(receiver, T_OBJECT);
   878   argument = do_null_check(argument, T_OBJECT);
   879   _sp -= 2;
   880   if (stopped()) {
   881     return true;
   882   }
   884   ciInstanceKlass* klass = env()->String_klass();
   885   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   886   Node* no_ctrl = NULL;
   888   // Get counts for string and argument
   889   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   890   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   892   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   893   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   895   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   896   push(compare);
   897   return true;
   898 }
   900 //------------------------------inline_string_equals------------------------
   901 bool LibraryCallKit::inline_string_equals() {
   903   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   905   const int value_offset = java_lang_String::value_offset_in_bytes();
   906   const int count_offset = java_lang_String::count_offset_in_bytes();
   907   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   909   int nargs = 2;
   910   _sp += nargs;
   911   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   912   Node* receiver = pop();
   914   // Null check on self without removing any arguments.  The argument
   915   // null check technically happens in the wrong place, which can lead to
   916   // invalid stack traces when string compare is inlined into a method
   917   // which handles NullPointerExceptions.
   918   _sp += nargs;
   919   receiver = do_null_check(receiver, T_OBJECT);
   920   //should not do null check for argument for String.equals(), because spec
   921   //allows to specify NULL as argument.
   922   _sp -= nargs;
   924   if (stopped()) {
   925     return true;
   926   }
   928   // paths (plus control) merge
   929   RegionNode* region = new (C, 5) RegionNode(5);
   930   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   932   // does source == target string?
   933   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   934   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   936   Node* if_eq = generate_slow_guard(bol, NULL);
   937   if (if_eq != NULL) {
   938     // receiver == argument
   939     phi->init_req(2, intcon(1));
   940     region->init_req(2, if_eq);
   941   }
   943   // get String klass for instanceOf
   944   ciInstanceKlass* klass = env()->String_klass();
   946   if (!stopped()) {
   947     _sp += nargs;          // gen_instanceof might do an uncommon trap
   948     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   949     _sp -= nargs;
   950     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   951     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
   953     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
   954     //instanceOf == true, fallthrough
   956     if (inst_false != NULL) {
   957       phi->init_req(3, intcon(0));
   958       region->init_req(3, inst_false);
   959     }
   960   }
   962   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   964   Node* no_ctrl = NULL;
   965   Node* receiver_cnt;
   966   Node* argument_cnt;
   968   if (!stopped()) {
   969     // Properly cast the argument to String
   970     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
   972     // Get counts for string and argument
   973     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   974     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   976     // Pin load from argument string since it could be NULL.
   977     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   978     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   980     // Check for receiver count != argument count
   981     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
   982     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
   983     Node* if_ne = generate_slow_guard(bol, NULL);
   984     if (if_ne != NULL) {
   985       phi->init_req(4, intcon(0));
   986       region->init_req(4, if_ne);
   987     }
   988   }
   990   // Check for count == 0 is done by mach node StrEquals.
   992   if (!stopped()) {
   993     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
   994     phi->init_req(1, equals);
   995     region->init_req(1, control());
   996   }
   998   // post merge
   999   set_control(_gvn.transform(region));
  1000   record_for_igvn(region);
  1002   push(_gvn.transform(phi));
  1004   return true;
  1007 //------------------------------inline_array_equals----------------------------
  1008 bool LibraryCallKit::inline_array_equals() {
  1010   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1012   _sp += 2;
  1013   Node *argument2 = pop();
  1014   Node *argument1 = pop();
  1016   Node* equals =
  1017     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1018                                         argument1, argument2) );
  1019   push(equals);
  1020   return true;
  1023 // Java version of String.indexOf(constant string)
  1024 // class StringDecl {
  1025 //   StringDecl(char[] ca) {
  1026 //     offset = 0;
  1027 //     count = ca.length;
  1028 //     value = ca;
  1029 //   }
  1030 //   int offset;
  1031 //   int count;
  1032 //   char[] value;
  1033 // }
  1034 //
  1035 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1036 //                             int targetOffset, int cache_i, int md2) {
  1037 //   int cache = cache_i;
  1038 //   int sourceOffset = string_object.offset;
  1039 //   int sourceCount = string_object.count;
  1040 //   int targetCount = target_object.length;
  1041 //
  1042 //   int targetCountLess1 = targetCount - 1;
  1043 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1044 //
  1045 //   char[] source = string_object.value;
  1046 //   char[] target = target_object;
  1047 //   int lastChar = target[targetCountLess1];
  1048 //
  1049 //  outer_loop:
  1050 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1051 //     int src = source[i + targetCountLess1];
  1052 //     if (src == lastChar) {
  1053 //       // With random strings and a 4-character alphabet,
  1054 //       // reverse matching at this point sets up 0.8% fewer
  1055 //       // frames, but (paradoxically) makes 0.3% more probes.
  1056 //       // Since those probes are nearer the lastChar probe,
  1057 //       // there is may be a net D$ win with reverse matching.
  1058 //       // But, reversing loop inhibits unroll of inner loop
  1059 //       // for unknown reason.  So, does running outer loop from
  1060 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1061 //       for (int j = 0; j < targetCountLess1; j++) {
  1062 //         if (target[targetOffset + j] != source[i+j]) {
  1063 //           if ((cache & (1 << source[i+j])) == 0) {
  1064 //             if (md2 < j+1) {
  1065 //               i += j+1;
  1066 //               continue outer_loop;
  1067 //             }
  1068 //           }
  1069 //           i += md2;
  1070 //           continue outer_loop;
  1071 //         }
  1072 //       }
  1073 //       return i - sourceOffset;
  1074 //     }
  1075 //     if ((cache & (1 << src)) == 0) {
  1076 //       i += targetCountLess1;
  1077 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1078 //     i++;
  1079 //   }
  1080 //   return -1;
  1081 // }
  1083 //------------------------------string_indexOf------------------------
  1084 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1085                                      jint cache_i, jint md2_i) {
  1087   Node* no_ctrl  = NULL;
  1088   float likely   = PROB_LIKELY(0.9);
  1089   float unlikely = PROB_UNLIKELY(0.9);
  1091   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1092   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1093   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1095   ciInstanceKlass* klass = env()->String_klass();
  1096   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1097   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1099   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1100   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1101   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1102   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1103   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1104   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1106   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
  1107   jint target_length = target_array->length();
  1108   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1109   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1111   IdealKit kit(gvn(), control(), merged_memory(), false, true);
  1112 #define __ kit.
  1113   Node* zero             = __ ConI(0);
  1114   Node* one              = __ ConI(1);
  1115   Node* cache            = __ ConI(cache_i);
  1116   Node* md2              = __ ConI(md2_i);
  1117   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1118   Node* targetCount      = __ ConI(target_length);
  1119   Node* targetCountLess1 = __ ConI(target_length - 1);
  1120   Node* targetOffset     = __ ConI(targetOffset_i);
  1121   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1123   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1124   Node* outer_loop = __ make_label(2 /* goto */);
  1125   Node* return_    = __ make_label(1);
  1127   __ set(rtn,__ ConI(-1));
  1128   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
  1129        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1130        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1131        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1132        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1133          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
  1134               Node* tpj = __ AddI(targetOffset, __ value(j));
  1135               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1136               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1137               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1138               __ if_then(targ, BoolTest::ne, src2); {
  1139                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1140                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1141                     __ increment(i, __ AddI(__ value(j), one));
  1142                     __ goto_(outer_loop);
  1143                   } __ end_if(); __ dead(j);
  1144                 }__ end_if(); __ dead(j);
  1145                 __ increment(i, md2);
  1146                 __ goto_(outer_loop);
  1147               }__ end_if();
  1148               __ increment(j, one);
  1149          }__ end_loop(); __ dead(j);
  1150          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1151          __ goto_(return_);
  1152        }__ end_if();
  1153        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1154          __ increment(i, targetCountLess1);
  1155        }__ end_if();
  1156        __ increment(i, one);
  1157        __ bind(outer_loop);
  1158   }__ end_loop(); __ dead(i);
  1159   __ bind(return_);
  1161   // Final sync IdealKit and GraphKit.
  1162   sync_kit(kit);
  1163   Node* result = __ value(rtn);
  1164 #undef __
  1165   C->set_has_loops(true);
  1166   return result;
  1169 //------------------------------inline_string_indexOf------------------------
  1170 bool LibraryCallKit::inline_string_indexOf() {
  1172   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1173   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1174   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1176   _sp += 2;
  1177   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1178   Node *receiver = pop();
  1180   Node* result;
  1181   // Disable the use of pcmpestri until it can be guaranteed that
  1182   // the load doesn't cross into the uncommited space.
  1183   if (false && Matcher::has_match_rule(Op_StrIndexOf) &&
  1184       UseSSE42Intrinsics) {
  1185     // Generate SSE4.2 version of indexOf
  1186     // We currently only have match rules that use SSE4.2
  1188     // Null check on self without removing any arguments.  The argument
  1189     // null check technically happens in the wrong place, which can lead to
  1190     // invalid stack traces when string compare is inlined into a method
  1191     // which handles NullPointerExceptions.
  1192     _sp += 2;
  1193     receiver = do_null_check(receiver, T_OBJECT);
  1194     argument = do_null_check(argument, T_OBJECT);
  1195     _sp -= 2;
  1197     if (stopped()) {
  1198       return true;
  1201     // Make the merge point
  1202     RegionNode* result_rgn = new (C, 3) RegionNode(3);
  1203     Node*       result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
  1204     Node* no_ctrl  = NULL;
  1206     ciInstanceKlass* klass = env()->String_klass();
  1207     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1209     // Get counts for string and substr
  1210     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1211     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1213     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1214     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1216     // Check for substr count > string count
  1217     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1218     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1219     Node* if_gt = generate_slow_guard(bol, NULL);
  1220     if (if_gt != NULL) {
  1221       result_phi->init_req(2, intcon(-1));
  1222       result_rgn->init_req(2, if_gt);
  1225     if (!stopped()) {
  1226       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1227       result_phi->init_req(1, result);
  1228       result_rgn->init_req(1, control());
  1230     set_control(_gvn.transform(result_rgn));
  1231     record_for_igvn(result_rgn);
  1232     result = _gvn.transform(result_phi);
  1234   } else { //Use LibraryCallKit::string_indexOf
  1235     // don't intrinsify is argument isn't a constant string.
  1236     if (!argument->is_Con()) {
  1237      return false;
  1239     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1240     if (str_type == NULL) {
  1241       return false;
  1243     ciInstanceKlass* klass = env()->String_klass();
  1244     ciObject* str_const = str_type->const_oop();
  1245     if (str_const == NULL || str_const->klass() != klass) {
  1246       return false;
  1248     ciInstance* str = str_const->as_instance();
  1249     assert(str != NULL, "must be instance");
  1251     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1252     int       o = str->field_value_by_offset(offset_offset).as_int();
  1253     int       c = str->field_value_by_offset(count_offset).as_int();
  1254     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1256     // constant strings have no offset and count == length which
  1257     // simplifies the resulting code somewhat so lets optimize for that.
  1258     if (o != 0 || c != pat->length()) {
  1259      return false;
  1262     // Null check on self without removing any arguments.  The argument
  1263     // null check technically happens in the wrong place, which can lead to
  1264     // invalid stack traces when string compare is inlined into a method
  1265     // which handles NullPointerExceptions.
  1266     _sp += 2;
  1267     receiver = do_null_check(receiver, T_OBJECT);
  1268     // No null check on the argument is needed since it's a constant String oop.
  1269     _sp -= 2;
  1270     if (stopped()) {
  1271      return true;
  1274     // The null string as a pattern always returns 0 (match at beginning of string)
  1275     if (c == 0) {
  1276       push(intcon(0));
  1277       return true;
  1280     // Generate default indexOf
  1281     jchar lastChar = pat->char_at(o + (c - 1));
  1282     int cache = 0;
  1283     int i;
  1284     for (i = 0; i < c - 1; i++) {
  1285       assert(i < pat->length(), "out of range");
  1286       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1289     int md2 = c;
  1290     for (i = 0; i < c - 1; i++) {
  1291       assert(i < pat->length(), "out of range");
  1292       if (pat->char_at(o + i) == lastChar) {
  1293         md2 = (c - 1) - i;
  1297     result = string_indexOf(receiver, pat, o, cache, md2);
  1300   push(result);
  1301   return true;
  1304 //--------------------------pop_math_arg--------------------------------
  1305 // Pop a double argument to a math function from the stack
  1306 // rounding it if necessary.
  1307 Node * LibraryCallKit::pop_math_arg() {
  1308   Node *arg = pop_pair();
  1309   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1310     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1311   return arg;
  1314 //------------------------------inline_trig----------------------------------
  1315 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1316 // argument reduction which will turn into a fast/slow diamond.
  1317 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1318   _sp += arg_size();            // restore stack pointer
  1319   Node* arg = pop_math_arg();
  1320   Node* trig = NULL;
  1322   switch (id) {
  1323   case vmIntrinsics::_dsin:
  1324     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1325     break;
  1326   case vmIntrinsics::_dcos:
  1327     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1328     break;
  1329   case vmIntrinsics::_dtan:
  1330     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1331     break;
  1332   default:
  1333     assert(false, "bad intrinsic was passed in");
  1334     return false;
  1337   // Rounding required?  Check for argument reduction!
  1338   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1340     static const double     pi_4 =  0.7853981633974483;
  1341     static const double neg_pi_4 = -0.7853981633974483;
  1342     // pi/2 in 80-bit extended precision
  1343     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1344     // -pi/2 in 80-bit extended precision
  1345     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1346     // Cutoff value for using this argument reduction technique
  1347     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1348     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1350     // Pseudocode for sin:
  1351     // if (x <= Math.PI / 4.0) {
  1352     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1353     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1354     // } else {
  1355     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1356     // }
  1357     // return StrictMath.sin(x);
  1359     // Pseudocode for cos:
  1360     // if (x <= Math.PI / 4.0) {
  1361     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1362     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1363     // } else {
  1364     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1365     // }
  1366     // return StrictMath.cos(x);
  1368     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1369     // requires a special machine instruction to load it.  Instead we'll try
  1370     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1371     // probably do the math inside the SIN encoding.
  1373     // Make the merge point
  1374     RegionNode *r = new (C, 3) RegionNode(3);
  1375     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1377     // Flatten arg so we need only 1 test
  1378     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1379     // Node for PI/4 constant
  1380     Node *pi4 = makecon(TypeD::make(pi_4));
  1381     // Check PI/4 : abs(arg)
  1382     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1383     // Check: If PI/4 < abs(arg) then go slow
  1384     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1385     // Branch either way
  1386     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1387     set_control(opt_iff(r,iff));
  1389     // Set fast path result
  1390     phi->init_req(2,trig);
  1392     // Slow path - non-blocking leaf call
  1393     Node* call = NULL;
  1394     switch (id) {
  1395     case vmIntrinsics::_dsin:
  1396       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1397                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1398                                "Sin", NULL, arg, top());
  1399       break;
  1400     case vmIntrinsics::_dcos:
  1401       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1402                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1403                                "Cos", NULL, arg, top());
  1404       break;
  1405     case vmIntrinsics::_dtan:
  1406       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1407                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1408                                "Tan", NULL, arg, top());
  1409       break;
  1411     assert(control()->in(0) == call, "");
  1412     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1413     r->init_req(1,control());
  1414     phi->init_req(1,slow_result);
  1416     // Post-merge
  1417     set_control(_gvn.transform(r));
  1418     record_for_igvn(r);
  1419     trig = _gvn.transform(phi);
  1421     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1423   // Push result back on JVM stack
  1424   push_pair(trig);
  1425   return true;
  1428 //------------------------------inline_sqrt-------------------------------------
  1429 // Inline square root instruction, if possible.
  1430 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1431   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1432   _sp += arg_size();        // restore stack pointer
  1433   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1434   return true;
  1437 //------------------------------inline_abs-------------------------------------
  1438 // Inline absolute value instruction, if possible.
  1439 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1440   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1441   _sp += arg_size();        // restore stack pointer
  1442   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1443   return true;
  1446 //------------------------------inline_exp-------------------------------------
  1447 // Inline exp instructions, if possible.  The Intel hardware only misses
  1448 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1449 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1450   assert(id == vmIntrinsics::_dexp, "Not exp");
  1452   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1453   // every again.  NaN results requires StrictMath.exp handling.
  1454   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1456   // Do not intrinsify on older platforms which lack cmove.
  1457   if (ConditionalMoveLimit == 0)  return false;
  1459   _sp += arg_size();        // restore stack pointer
  1460   Node *x = pop_math_arg();
  1461   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1463   //-------------------
  1464   //result=(result.isNaN())? StrictMath::exp():result;
  1465   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1466   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1467   // Build the boolean node
  1468   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1470   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1471     // End the current control-flow path
  1472     push_pair(x);
  1473     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1474     // to handle.  Recompile without intrinsifying Math.exp
  1475     uncommon_trap(Deoptimization::Reason_intrinsic,
  1476                   Deoptimization::Action_make_not_entrant);
  1479   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1481   push_pair(result);
  1483   return true;
  1486 //------------------------------inline_pow-------------------------------------
  1487 // Inline power instructions, if possible.
  1488 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1489   assert(id == vmIntrinsics::_dpow, "Not pow");
  1491   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1492   // every again.  NaN results requires StrictMath.pow handling.
  1493   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1495   // Do not intrinsify on older platforms which lack cmove.
  1496   if (ConditionalMoveLimit == 0)  return false;
  1498   // Pseudocode for pow
  1499   // if (x <= 0.0) {
  1500   //   if ((double)((int)y)==y) { // if y is int
  1501   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1502   //   } else {
  1503   //     result = NaN;
  1504   //   }
  1505   // } else {
  1506   //   result = DPow(x,y);
  1507   // }
  1508   // if (result != result)?  {
  1509   //   uncommon_trap();
  1510   // }
  1511   // return result;
  1513   _sp += arg_size();        // restore stack pointer
  1514   Node* y = pop_math_arg();
  1515   Node* x = pop_math_arg();
  1517   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1519   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1520   // inside of something) then skip the fancy tests and just check for
  1521   // NaN result.
  1522   Node *result = NULL;
  1523   if( jvms()->depth() >= 1 ) {
  1524     result = fast_result;
  1525   } else {
  1527     // Set the merge point for If node with condition of (x <= 0.0)
  1528     // There are four possible paths to region node and phi node
  1529     RegionNode *r = new (C, 4) RegionNode(4);
  1530     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1532     // Build the first if node: if (x <= 0.0)
  1533     // Node for 0 constant
  1534     Node *zeronode = makecon(TypeD::ZERO);
  1535     // Check x:0
  1536     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1537     // Check: If (x<=0) then go complex path
  1538     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1539     // Branch either way
  1540     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1541     Node *opt_test = _gvn.transform(if1);
  1542     //assert( opt_test->is_If(), "Expect an IfNode");
  1543     IfNode *opt_if1 = (IfNode*)opt_test;
  1544     // Fast path taken; set region slot 3
  1545     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1546     r->init_req(3,fast_taken); // Capture fast-control
  1548     // Fast path not-taken, i.e. slow path
  1549     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1551     // Set fast path result
  1552     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1553     phi->init_req(3, fast_result);
  1555     // Complex path
  1556     // Build the second if node (if y is int)
  1557     // Node for (int)y
  1558     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1559     // Node for (double)((int) y)
  1560     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1561     // Check (double)((int) y) : y
  1562     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1563     // Check if (y isn't int) then go to slow path
  1565     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1566     // Branch either way
  1567     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1568     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1570     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1571     // Node for constant 1
  1572     Node *conone = intcon(1);
  1573     // 1& (int)y
  1574     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1575     // zero node
  1576     Node *conzero = intcon(0);
  1577     // Check (1&(int)y)==0?
  1578     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1579     // Check if (1&(int)y)!=0?, if so the result is negative
  1580     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1581     // abs(x)
  1582     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1583     // abs(x)^y
  1584     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1585     // -abs(x)^y
  1586     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1587     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1588     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1589     // Set complex path fast result
  1590     phi->init_req(2, signresult);
  1592     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1593     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1594     r->init_req(1,slow_path);
  1595     phi->init_req(1,slow_result);
  1597     // Post merge
  1598     set_control(_gvn.transform(r));
  1599     record_for_igvn(r);
  1600     result=_gvn.transform(phi);
  1603   //-------------------
  1604   //result=(result.isNaN())? uncommon_trap():result;
  1605   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1606   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1607   // Build the boolean node
  1608   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1610   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1611     // End the current control-flow path
  1612     push_pair(x);
  1613     push_pair(y);
  1614     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1615     // to handle.  Recompile without intrinsifying Math.pow.
  1616     uncommon_trap(Deoptimization::Reason_intrinsic,
  1617                   Deoptimization::Action_make_not_entrant);
  1620   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1622   push_pair(result);
  1624   return true;
  1627 //------------------------------inline_trans-------------------------------------
  1628 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1629 // these right, no funny corner cases missed.
  1630 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1631   _sp += arg_size();        // restore stack pointer
  1632   Node* arg = pop_math_arg();
  1633   Node* trans = NULL;
  1635   switch (id) {
  1636   case vmIntrinsics::_dlog:
  1637     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1638     break;
  1639   case vmIntrinsics::_dlog10:
  1640     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1641     break;
  1642   default:
  1643     assert(false, "bad intrinsic was passed in");
  1644     return false;
  1647   // Push result back on JVM stack
  1648   push_pair(trans);
  1649   return true;
  1652 //------------------------------runtime_math-----------------------------
  1653 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1654   Node* a = NULL;
  1655   Node* b = NULL;
  1657   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1658          "must be (DD)D or (D)D type");
  1660   // Inputs
  1661   _sp += arg_size();        // restore stack pointer
  1662   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1663     b = pop_math_arg();
  1665   a = pop_math_arg();
  1667   const TypePtr* no_memory_effects = NULL;
  1668   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1669                                  no_memory_effects,
  1670                                  a, top(), b, b ? top() : NULL);
  1671   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1672 #ifdef ASSERT
  1673   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1674   assert(value_top == top(), "second value must be top");
  1675 #endif
  1677   push_pair(value);
  1678   return true;
  1681 //------------------------------inline_math_native-----------------------------
  1682 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1683   switch (id) {
  1684     // These intrinsics are not properly supported on all hardware
  1685   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1686     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1687   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1688     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1689   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1690     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1692   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1693     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1694   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1695     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1697     // These intrinsics are supported on all hardware
  1698   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1699   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1701     // These intrinsics don't work on X86.  The ad implementation doesn't
  1702     // handle NaN's properly.  Instead of returning infinity, the ad
  1703     // implementation returns a NaN on overflow. See bug: 6304089
  1704     // Once the ad implementations are fixed, change the code below
  1705     // to match the intrinsics above
  1707   case vmIntrinsics::_dexp:  return
  1708     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1709   case vmIntrinsics::_dpow:  return
  1710     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1712    // These intrinsics are not yet correctly implemented
  1713   case vmIntrinsics::_datan2:
  1714     return false;
  1716   default:
  1717     ShouldNotReachHere();
  1718     return false;
  1722 static bool is_simple_name(Node* n) {
  1723   return (n->req() == 1         // constant
  1724           || (n->is_Type() && n->as_Type()->type()->singleton())
  1725           || n->is_Proj()       // parameter or return value
  1726           || n->is_Phi()        // local of some sort
  1727           );
  1730 //----------------------------inline_min_max-----------------------------------
  1731 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1732   push(generate_min_max(id, argument(0), argument(1)));
  1734   return true;
  1737 Node*
  1738 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1739   // These are the candidate return value:
  1740   Node* xvalue = x0;
  1741   Node* yvalue = y0;
  1743   if (xvalue == yvalue) {
  1744     return xvalue;
  1747   bool want_max = (id == vmIntrinsics::_max);
  1749   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1750   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1751   if (txvalue == NULL || tyvalue == NULL)  return top();
  1752   // This is not really necessary, but it is consistent with a
  1753   // hypothetical MaxINode::Value method:
  1754   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1756   // %%% This folding logic should (ideally) be in a different place.
  1757   // Some should be inside IfNode, and there to be a more reliable
  1758   // transformation of ?: style patterns into cmoves.  We also want
  1759   // more powerful optimizations around cmove and min/max.
  1761   // Try to find a dominating comparison of these guys.
  1762   // It can simplify the index computation for Arrays.copyOf
  1763   // and similar uses of System.arraycopy.
  1764   // First, compute the normalized version of CmpI(x, y).
  1765   int   cmp_op = Op_CmpI;
  1766   Node* xkey = xvalue;
  1767   Node* ykey = yvalue;
  1768   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1769   if (ideal_cmpxy->is_Cmp()) {
  1770     // E.g., if we have CmpI(length - offset, count),
  1771     // it might idealize to CmpI(length, count + offset)
  1772     cmp_op = ideal_cmpxy->Opcode();
  1773     xkey = ideal_cmpxy->in(1);
  1774     ykey = ideal_cmpxy->in(2);
  1777   // Start by locating any relevant comparisons.
  1778   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1779   Node* cmpxy = NULL;
  1780   Node* cmpyx = NULL;
  1781   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1782     Node* cmp = start_from->fast_out(k);
  1783     if (cmp->outcnt() > 0 &&            // must have prior uses
  1784         cmp->in(0) == NULL &&           // must be context-independent
  1785         cmp->Opcode() == cmp_op) {      // right kind of compare
  1786       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1787       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1791   const int NCMPS = 2;
  1792   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1793   int cmpn;
  1794   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1795     if (cmps[cmpn] != NULL)  break;     // find a result
  1797   if (cmpn < NCMPS) {
  1798     // Look for a dominating test that tells us the min and max.
  1799     int depth = 0;                // Limit search depth for speed
  1800     Node* dom = control();
  1801     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1802       if (++depth >= 100)  break;
  1803       Node* ifproj = dom;
  1804       if (!ifproj->is_Proj())  continue;
  1805       Node* iff = ifproj->in(0);
  1806       if (!iff->is_If())  continue;
  1807       Node* bol = iff->in(1);
  1808       if (!bol->is_Bool())  continue;
  1809       Node* cmp = bol->in(1);
  1810       if (cmp == NULL)  continue;
  1811       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1812         if (cmps[cmpn] == cmp)  break;
  1813       if (cmpn == NCMPS)  continue;
  1814       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1815       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1816       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1817       // At this point, we know that 'x btest y' is true.
  1818       switch (btest) {
  1819       case BoolTest::eq:
  1820         // They are proven equal, so we can collapse the min/max.
  1821         // Either value is the answer.  Choose the simpler.
  1822         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1823           return yvalue;
  1824         return xvalue;
  1825       case BoolTest::lt:          // x < y
  1826       case BoolTest::le:          // x <= y
  1827         return (want_max ? yvalue : xvalue);
  1828       case BoolTest::gt:          // x > y
  1829       case BoolTest::ge:          // x >= y
  1830         return (want_max ? xvalue : yvalue);
  1835   // We failed to find a dominating test.
  1836   // Let's pick a test that might GVN with prior tests.
  1837   Node*          best_bol   = NULL;
  1838   BoolTest::mask best_btest = BoolTest::illegal;
  1839   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1840     Node* cmp = cmps[cmpn];
  1841     if (cmp == NULL)  continue;
  1842     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1843       Node* bol = cmp->fast_out(j);
  1844       if (!bol->is_Bool())  continue;
  1845       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1846       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1847       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1848       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1849         best_bol   = bol->as_Bool();
  1850         best_btest = btest;
  1855   Node* answer_if_true  = NULL;
  1856   Node* answer_if_false = NULL;
  1857   switch (best_btest) {
  1858   default:
  1859     if (cmpxy == NULL)
  1860       cmpxy = ideal_cmpxy;
  1861     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1862     // and fall through:
  1863   case BoolTest::lt:          // x < y
  1864   case BoolTest::le:          // x <= y
  1865     answer_if_true  = (want_max ? yvalue : xvalue);
  1866     answer_if_false = (want_max ? xvalue : yvalue);
  1867     break;
  1868   case BoolTest::gt:          // x > y
  1869   case BoolTest::ge:          // x >= y
  1870     answer_if_true  = (want_max ? xvalue : yvalue);
  1871     answer_if_false = (want_max ? yvalue : xvalue);
  1872     break;
  1875   jint hi, lo;
  1876   if (want_max) {
  1877     // We can sharpen the minimum.
  1878     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1879     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1880   } else {
  1881     // We can sharpen the maximum.
  1882     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1883     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1886   // Use a flow-free graph structure, to avoid creating excess control edges
  1887   // which could hinder other optimizations.
  1888   // Since Math.min/max is often used with arraycopy, we want
  1889   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1890   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1891                                answer_if_false, answer_if_true,
  1892                                TypeInt::make(lo, hi, widen));
  1894   return _gvn.transform(cmov);
  1896   /*
  1897   // This is not as desirable as it may seem, since Min and Max
  1898   // nodes do not have a full set of optimizations.
  1899   // And they would interfere, anyway, with 'if' optimizations
  1900   // and with CMoveI canonical forms.
  1901   switch (id) {
  1902   case vmIntrinsics::_min:
  1903     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1904   case vmIntrinsics::_max:
  1905     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1906   default:
  1907     ShouldNotReachHere();
  1909   */
  1912 inline int
  1913 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1914   const TypePtr* base_type = TypePtr::NULL_PTR;
  1915   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1916   if (base_type == NULL) {
  1917     // Unknown type.
  1918     return Type::AnyPtr;
  1919   } else if (base_type == TypePtr::NULL_PTR) {
  1920     // Since this is a NULL+long form, we have to switch to a rawptr.
  1921     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1922     offset = MakeConX(0);
  1923     return Type::RawPtr;
  1924   } else if (base_type->base() == Type::RawPtr) {
  1925     return Type::RawPtr;
  1926   } else if (base_type->isa_oopptr()) {
  1927     // Base is never null => always a heap address.
  1928     if (base_type->ptr() == TypePtr::NotNull) {
  1929       return Type::OopPtr;
  1931     // Offset is small => always a heap address.
  1932     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1933     if (offset_type != NULL &&
  1934         base_type->offset() == 0 &&     // (should always be?)
  1935         offset_type->_lo >= 0 &&
  1936         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1937       return Type::OopPtr;
  1939     // Otherwise, it might either be oop+off or NULL+addr.
  1940     return Type::AnyPtr;
  1941   } else {
  1942     // No information:
  1943     return Type::AnyPtr;
  1947 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  1948   int kind = classify_unsafe_addr(base, offset);
  1949   if (kind == Type::RawPtr) {
  1950     return basic_plus_adr(top(), base, offset);
  1951   } else {
  1952     return basic_plus_adr(base, offset);
  1956 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  1957 // inline int Integer.numberOfLeadingZeros(int)
  1958 // inline int Long.numberOfLeadingZeros(long)
  1959 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  1960   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  1961   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  1962   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  1963   _sp += arg_size();  // restore stack pointer
  1964   switch (id) {
  1965   case vmIntrinsics::_numberOfLeadingZeros_i:
  1966     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  1967     break;
  1968   case vmIntrinsics::_numberOfLeadingZeros_l:
  1969     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  1970     break;
  1971   default:
  1972     ShouldNotReachHere();
  1974   return true;
  1977 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  1978 // inline int Integer.numberOfTrailingZeros(int)
  1979 // inline int Long.numberOfTrailingZeros(long)
  1980 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  1981   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  1982   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  1983   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  1984   _sp += arg_size();  // restore stack pointer
  1985   switch (id) {
  1986   case vmIntrinsics::_numberOfTrailingZeros_i:
  1987     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  1988     break;
  1989   case vmIntrinsics::_numberOfTrailingZeros_l:
  1990     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  1991     break;
  1992   default:
  1993     ShouldNotReachHere();
  1995   return true;
  1998 //----------------------------inline_bitCount_int/long-----------------------
  1999 // inline int Integer.bitCount(int)
  2000 // inline int Long.bitCount(long)
  2001 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2002   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2003   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2004   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2005   _sp += arg_size();  // restore stack pointer
  2006   switch (id) {
  2007   case vmIntrinsics::_bitCount_i:
  2008     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2009     break;
  2010   case vmIntrinsics::_bitCount_l:
  2011     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2012     break;
  2013   default:
  2014     ShouldNotReachHere();
  2016   return true;
  2019 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2020 // inline Integer.reverseBytes(int)
  2021 // inline Long.reverseBytes(long)
  2022 // inline Character.reverseBytes(char)
  2023 // inline Short.reverseBytes(short)
  2024 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2025   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2026          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2027          "not reverse Bytes");
  2028   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2029   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2030   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2031   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2032   _sp += arg_size();        // restore stack pointer
  2033   switch (id) {
  2034   case vmIntrinsics::_reverseBytes_i:
  2035     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2036     break;
  2037   case vmIntrinsics::_reverseBytes_l:
  2038     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2039     break;
  2040   case vmIntrinsics::_reverseBytes_c:
  2041     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2042     break;
  2043   case vmIntrinsics::_reverseBytes_s:
  2044     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2045     break;
  2046   default:
  2049   return true;
  2052 //----------------------------inline_unsafe_access----------------------------
  2054 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2056 // Interpret Unsafe.fieldOffset cookies correctly:
  2057 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2059 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2060   if (callee()->is_static())  return false;  // caller must have the capability!
  2062 #ifndef PRODUCT
  2064     ResourceMark rm;
  2065     // Check the signatures.
  2066     ciSignature* sig = signature();
  2067 #ifdef ASSERT
  2068     if (!is_store) {
  2069       // Object getObject(Object base, int/long offset), etc.
  2070       BasicType rtype = sig->return_type()->basic_type();
  2071       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2072           rtype = T_ADDRESS;  // it is really a C void*
  2073       assert(rtype == type, "getter must return the expected value");
  2074       if (!is_native_ptr) {
  2075         assert(sig->count() == 2, "oop getter has 2 arguments");
  2076         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2077         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2078       } else {
  2079         assert(sig->count() == 1, "native getter has 1 argument");
  2080         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2082     } else {
  2083       // void putObject(Object base, int/long offset, Object x), etc.
  2084       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2085       if (!is_native_ptr) {
  2086         assert(sig->count() == 3, "oop putter has 3 arguments");
  2087         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2088         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2089       } else {
  2090         assert(sig->count() == 2, "native putter has 2 arguments");
  2091         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2093       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2094       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2095         vtype = T_ADDRESS;  // it is really a C void*
  2096       assert(vtype == type, "putter must accept the expected value");
  2098 #endif // ASSERT
  2100 #endif //PRODUCT
  2102   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2104   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2106   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2107   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2109   debug_only(int saved_sp = _sp);
  2110   _sp += nargs;
  2112   Node* val;
  2113   debug_only(val = (Node*)(uintptr_t)-1);
  2116   if (is_store) {
  2117     // Get the value being stored.  (Pop it first; it was pushed last.)
  2118     switch (type) {
  2119     case T_DOUBLE:
  2120     case T_LONG:
  2121     case T_ADDRESS:
  2122       val = pop_pair();
  2123       break;
  2124     default:
  2125       val = pop();
  2129   // Build address expression.  See the code in inline_unsafe_prefetch.
  2130   Node *adr;
  2131   Node *heap_base_oop = top();
  2132   if (!is_native_ptr) {
  2133     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2134     Node* offset = pop_pair();
  2135     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2136     Node* base   = pop();
  2137     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2138     // to be plain byte offsets, which are also the same as those accepted
  2139     // by oopDesc::field_base.
  2140     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2141            "fieldOffset must be byte-scaled");
  2142     // 32-bit machines ignore the high half!
  2143     offset = ConvL2X(offset);
  2144     adr = make_unsafe_address(base, offset);
  2145     heap_base_oop = base;
  2146   } else {
  2147     Node* ptr = pop_pair();
  2148     // Adjust Java long to machine word:
  2149     ptr = ConvL2X(ptr);
  2150     adr = make_unsafe_address(NULL, ptr);
  2153   // Pop receiver last:  it was pushed first.
  2154   Node *receiver = pop();
  2156   assert(saved_sp == _sp, "must have correct argument count");
  2158   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2160   // First guess at the value type.
  2161   const Type *value_type = Type::get_const_basic_type(type);
  2163   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2164   // there was not enough information to nail it down.
  2165   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2166   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2168   // We will need memory barriers unless we can determine a unique
  2169   // alias category for this reference.  (Note:  If for some reason
  2170   // the barriers get omitted and the unsafe reference begins to "pollute"
  2171   // the alias analysis of the rest of the graph, either Compile::can_alias
  2172   // or Compile::must_alias will throw a diagnostic assert.)
  2173   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2175   if (!is_store && type == T_OBJECT) {
  2176     // Attempt to infer a sharper value type from the offset and base type.
  2177     ciKlass* sharpened_klass = NULL;
  2179     // See if it is an instance field, with an object type.
  2180     if (alias_type->field() != NULL) {
  2181       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2182       if (alias_type->field()->type()->is_klass()) {
  2183         sharpened_klass = alias_type->field()->type()->as_klass();
  2187     // See if it is a narrow oop array.
  2188     if (adr_type->isa_aryptr()) {
  2189       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2190         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2191         if (elem_type != NULL) {
  2192           sharpened_klass = elem_type->klass();
  2197     if (sharpened_klass != NULL) {
  2198       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2200       // Sharpen the value type.
  2201       value_type = tjp;
  2203 #ifndef PRODUCT
  2204       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2205         tty->print("  from base type:  ");   adr_type->dump();
  2206         tty->print("  sharpened value: "); value_type->dump();
  2208 #endif
  2212   // Null check on self without removing any arguments.  The argument
  2213   // null check technically happens in the wrong place, which can lead to
  2214   // invalid stack traces when the primitive is inlined into a method
  2215   // which handles NullPointerExceptions.
  2216   _sp += nargs;
  2217   do_null_check(receiver, T_OBJECT);
  2218   _sp -= nargs;
  2219   if (stopped()) {
  2220     return true;
  2222   // Heap pointers get a null-check from the interpreter,
  2223   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2224   // and it is not possible to fully distinguish unintended nulls
  2225   // from intended ones in this API.
  2227   if (is_volatile) {
  2228     // We need to emit leading and trailing CPU membars (see below) in
  2229     // addition to memory membars when is_volatile. This is a little
  2230     // too strong, but avoids the need to insert per-alias-type
  2231     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2232     // we cannot do effectively here because we probably only have a
  2233     // rough approximation of type.
  2234     need_mem_bar = true;
  2235     // For Stores, place a memory ordering barrier now.
  2236     if (is_store)
  2237       insert_mem_bar(Op_MemBarRelease);
  2240   // Memory barrier to prevent normal and 'unsafe' accesses from
  2241   // bypassing each other.  Happens after null checks, so the
  2242   // exception paths do not take memory state from the memory barrier,
  2243   // so there's no problems making a strong assert about mixing users
  2244   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2245   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2246   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2248   if (!is_store) {
  2249     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2250     // load value and push onto stack
  2251     switch (type) {
  2252     case T_BOOLEAN:
  2253     case T_CHAR:
  2254     case T_BYTE:
  2255     case T_SHORT:
  2256     case T_INT:
  2257     case T_FLOAT:
  2258     case T_OBJECT:
  2259       push( p );
  2260       break;
  2261     case T_ADDRESS:
  2262       // Cast to an int type.
  2263       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2264       p = ConvX2L(p);
  2265       push_pair(p);
  2266       break;
  2267     case T_DOUBLE:
  2268     case T_LONG:
  2269       push_pair( p );
  2270       break;
  2271     default: ShouldNotReachHere();
  2273   } else {
  2274     // place effect of store into memory
  2275     switch (type) {
  2276     case T_DOUBLE:
  2277       val = dstore_rounding(val);
  2278       break;
  2279     case T_ADDRESS:
  2280       // Repackage the long as a pointer.
  2281       val = ConvL2X(val);
  2282       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2283       break;
  2286     if (type != T_OBJECT ) {
  2287       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2288     } else {
  2289       // Possibly an oop being stored to Java heap or native memory
  2290       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2291         // oop to Java heap.
  2292         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2293       } else {
  2294         // We can't tell at compile time if we are storing in the Java heap or outside
  2295         // of it. So we need to emit code to conditionally do the proper type of
  2296         // store.
  2298         IdealKit ideal(gvn(), control(),  merged_memory());
  2299 #define __ ideal.
  2300         // QQQ who knows what probability is here??
  2301         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2302           // Sync IdealKit and graphKit.
  2303           set_all_memory( __ merged_memory());
  2304           set_control(__ ctrl());
  2305           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2306           // Update IdealKit memory.
  2307           __ set_all_memory(merged_memory());
  2308           __ set_ctrl(control());
  2309         } __ else_(); {
  2310           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2311         } __ end_if();
  2312         // Final sync IdealKit and GraphKit.
  2313         sync_kit(ideal);
  2314 #undef __
  2319   if (is_volatile) {
  2320     if (!is_store)
  2321       insert_mem_bar(Op_MemBarAcquire);
  2322     else
  2323       insert_mem_bar(Op_MemBarVolatile);
  2326   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2328   return true;
  2331 //----------------------------inline_unsafe_prefetch----------------------------
  2333 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2334 #ifndef PRODUCT
  2336     ResourceMark rm;
  2337     // Check the signatures.
  2338     ciSignature* sig = signature();
  2339 #ifdef ASSERT
  2340     // Object getObject(Object base, int/long offset), etc.
  2341     BasicType rtype = sig->return_type()->basic_type();
  2342     if (!is_native_ptr) {
  2343       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2344       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2345       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2346     } else {
  2347       assert(sig->count() == 1, "native prefetch has 1 argument");
  2348       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2350 #endif // ASSERT
  2352 #endif // !PRODUCT
  2354   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2356   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2357   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2359   debug_only(int saved_sp = _sp);
  2360   _sp += nargs;
  2362   // Build address expression.  See the code in inline_unsafe_access.
  2363   Node *adr;
  2364   if (!is_native_ptr) {
  2365     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2366     Node* offset = pop_pair();
  2367     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2368     Node* base   = pop();
  2369     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2370     // to be plain byte offsets, which are also the same as those accepted
  2371     // by oopDesc::field_base.
  2372     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2373            "fieldOffset must be byte-scaled");
  2374     // 32-bit machines ignore the high half!
  2375     offset = ConvL2X(offset);
  2376     adr = make_unsafe_address(base, offset);
  2377   } else {
  2378     Node* ptr = pop_pair();
  2379     // Adjust Java long to machine word:
  2380     ptr = ConvL2X(ptr);
  2381     adr = make_unsafe_address(NULL, ptr);
  2384   if (is_static) {
  2385     assert(saved_sp == _sp, "must have correct argument count");
  2386   } else {
  2387     // Pop receiver last:  it was pushed first.
  2388     Node *receiver = pop();
  2389     assert(saved_sp == _sp, "must have correct argument count");
  2391     // Null check on self without removing any arguments.  The argument
  2392     // null check technically happens in the wrong place, which can lead to
  2393     // invalid stack traces when the primitive is inlined into a method
  2394     // which handles NullPointerExceptions.
  2395     _sp += nargs;
  2396     do_null_check(receiver, T_OBJECT);
  2397     _sp -= nargs;
  2398     if (stopped()) {
  2399       return true;
  2403   // Generate the read or write prefetch
  2404   Node *prefetch;
  2405   if (is_store) {
  2406     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2407   } else {
  2408     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2410   prefetch->init_req(0, control());
  2411   set_i_o(_gvn.transform(prefetch));
  2413   return true;
  2416 //----------------------------inline_unsafe_CAS----------------------------
  2418 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2419   // This basic scheme here is the same as inline_unsafe_access, but
  2420   // differs in enough details that combining them would make the code
  2421   // overly confusing.  (This is a true fact! I originally combined
  2422   // them, but even I was confused by it!) As much code/comments as
  2423   // possible are retained from inline_unsafe_access though to make
  2424   // the correspondences clearer. - dl
  2426   if (callee()->is_static())  return false;  // caller must have the capability!
  2428 #ifndef PRODUCT
  2430     ResourceMark rm;
  2431     // Check the signatures.
  2432     ciSignature* sig = signature();
  2433 #ifdef ASSERT
  2434     BasicType rtype = sig->return_type()->basic_type();
  2435     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2436     assert(sig->count() == 4, "CAS has 4 arguments");
  2437     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2438     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2439 #endif // ASSERT
  2441 #endif //PRODUCT
  2443   // number of stack slots per value argument (1 or 2)
  2444   int type_words = type2size[type];
  2446   // Cannot inline wide CAS on machines that don't support it natively
  2447   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2448     return false;
  2450   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2452   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2453   int nargs = 1 + 1 + 2  + type_words + type_words;
  2455   // pop arguments: newval, oldval, offset, base, and receiver
  2456   debug_only(int saved_sp = _sp);
  2457   _sp += nargs;
  2458   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2459   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2460   Node *offset   = pop_pair();
  2461   Node *base     = pop();
  2462   Node *receiver = pop();
  2463   assert(saved_sp == _sp, "must have correct argument count");
  2465   //  Null check receiver.
  2466   _sp += nargs;
  2467   do_null_check(receiver, T_OBJECT);
  2468   _sp -= nargs;
  2469   if (stopped()) {
  2470     return true;
  2473   // Build field offset expression.
  2474   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2475   // to be plain byte offsets, which are also the same as those accepted
  2476   // by oopDesc::field_base.
  2477   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2478   // 32-bit machines ignore the high half of long offsets
  2479   offset = ConvL2X(offset);
  2480   Node* adr = make_unsafe_address(base, offset);
  2481   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2483   // (Unlike inline_unsafe_access, there seems no point in trying
  2484   // to refine types. Just use the coarse types here.
  2485   const Type *value_type = Type::get_const_basic_type(type);
  2486   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2487   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2488   int alias_idx = C->get_alias_index(adr_type);
  2490   // Memory-model-wise, a CAS acts like a little synchronized block,
  2491   // so needs barriers on each side.  These don't translate into
  2492   // actual barriers on most machines, but we still need rest of
  2493   // compiler to respect ordering.
  2495   insert_mem_bar(Op_MemBarRelease);
  2496   insert_mem_bar(Op_MemBarCPUOrder);
  2498   // 4984716: MemBars must be inserted before this
  2499   //          memory node in order to avoid a false
  2500   //          dependency which will confuse the scheduler.
  2501   Node *mem = memory(alias_idx);
  2503   // For now, we handle only those cases that actually exist: ints,
  2504   // longs, and Object. Adding others should be straightforward.
  2505   Node* cas;
  2506   switch(type) {
  2507   case T_INT:
  2508     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2509     break;
  2510   case T_LONG:
  2511     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2512     break;
  2513   case T_OBJECT:
  2514      // reference stores need a store barrier.
  2515     // (They don't if CAS fails, but it isn't worth checking.)
  2516     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
  2517 #ifdef _LP64
  2518     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2519       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2520       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2521       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2522                                                           newval_enc, oldval_enc));
  2523     } else
  2524 #endif
  2526       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2528     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2529     break;
  2530   default:
  2531     ShouldNotReachHere();
  2532     break;
  2535   // SCMemProjNodes represent the memory state of CAS. Their main
  2536   // role is to prevent CAS nodes from being optimized away when their
  2537   // results aren't used.
  2538   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2539   set_memory(proj, alias_idx);
  2541   // Add the trailing membar surrounding the access
  2542   insert_mem_bar(Op_MemBarCPUOrder);
  2543   insert_mem_bar(Op_MemBarAcquire);
  2545   push(cas);
  2546   return true;
  2549 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2550   // This is another variant of inline_unsafe_access, differing in
  2551   // that it always issues store-store ("release") barrier and ensures
  2552   // store-atomicity (which only matters for "long").
  2554   if (callee()->is_static())  return false;  // caller must have the capability!
  2556 #ifndef PRODUCT
  2558     ResourceMark rm;
  2559     // Check the signatures.
  2560     ciSignature* sig = signature();
  2561 #ifdef ASSERT
  2562     BasicType rtype = sig->return_type()->basic_type();
  2563     assert(rtype == T_VOID, "must return void");
  2564     assert(sig->count() == 3, "has 3 arguments");
  2565     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2566     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2567 #endif // ASSERT
  2569 #endif //PRODUCT
  2571   // number of stack slots per value argument (1 or 2)
  2572   int type_words = type2size[type];
  2574   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2576   // Argument words:  "this" plus oop plus offset plus value;
  2577   int nargs = 1 + 1 + 2 + type_words;
  2579   // pop arguments: val, offset, base, and receiver
  2580   debug_only(int saved_sp = _sp);
  2581   _sp += nargs;
  2582   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2583   Node *offset   = pop_pair();
  2584   Node *base     = pop();
  2585   Node *receiver = pop();
  2586   assert(saved_sp == _sp, "must have correct argument count");
  2588   //  Null check receiver.
  2589   _sp += nargs;
  2590   do_null_check(receiver, T_OBJECT);
  2591   _sp -= nargs;
  2592   if (stopped()) {
  2593     return true;
  2596   // Build field offset expression.
  2597   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2598   // 32-bit machines ignore the high half of long offsets
  2599   offset = ConvL2X(offset);
  2600   Node* adr = make_unsafe_address(base, offset);
  2601   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2602   const Type *value_type = Type::get_const_basic_type(type);
  2603   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2605   insert_mem_bar(Op_MemBarRelease);
  2606   insert_mem_bar(Op_MemBarCPUOrder);
  2607   // Ensure that the store is atomic for longs:
  2608   bool require_atomic_access = true;
  2609   Node* store;
  2610   if (type == T_OBJECT) // reference stores need a store barrier.
  2611     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2612   else {
  2613     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2615   insert_mem_bar(Op_MemBarCPUOrder);
  2616   return true;
  2619 bool LibraryCallKit::inline_unsafe_allocate() {
  2620   if (callee()->is_static())  return false;  // caller must have the capability!
  2621   int nargs = 1 + 1;
  2622   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2623   null_check_receiver(callee());  // check then ignore argument(0)
  2624   _sp += nargs;  // set original stack for use by uncommon_trap
  2625   Node* cls = do_null_check(argument(1), T_OBJECT);
  2626   _sp -= nargs;
  2627   if (stopped())  return true;
  2629   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2630   _sp += nargs;  // set original stack for use by uncommon_trap
  2631   kls = do_null_check(kls, T_OBJECT);
  2632   _sp -= nargs;
  2633   if (stopped())  return true;  // argument was like int.class
  2635   // Note:  The argument might still be an illegal value like
  2636   // Serializable.class or Object[].class.   The runtime will handle it.
  2637   // But we must make an explicit check for initialization.
  2638   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2639   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2640   Node* bits = intcon(instanceKlass::fully_initialized);
  2641   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2642   // The 'test' is non-zero if we need to take a slow path.
  2644   Node* obj = new_instance(kls, test);
  2645   push(obj);
  2647   return true;
  2650 //------------------------inline_native_time_funcs--------------
  2651 // inline code for System.currentTimeMillis() and System.nanoTime()
  2652 // these have the same type and signature
  2653 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2654   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2655                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2656   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2657   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2658   const TypePtr* no_memory_effects = NULL;
  2659   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2660   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2661 #ifdef ASSERT
  2662   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2663   assert(value_top == top(), "second value must be top");
  2664 #endif
  2665   push_pair(value);
  2666   return true;
  2669 //------------------------inline_native_currentThread------------------
  2670 bool LibraryCallKit::inline_native_currentThread() {
  2671   Node* junk = NULL;
  2672   push(generate_current_thread(junk));
  2673   return true;
  2676 //------------------------inline_native_isInterrupted------------------
  2677 bool LibraryCallKit::inline_native_isInterrupted() {
  2678   const int nargs = 1+1;  // receiver + boolean
  2679   assert(nargs == arg_size(), "sanity");
  2680   // Add a fast path to t.isInterrupted(clear_int):
  2681   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2682   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2683   // So, in the common case that the interrupt bit is false,
  2684   // we avoid making a call into the VM.  Even if the interrupt bit
  2685   // is true, if the clear_int argument is false, we avoid the VM call.
  2686   // However, if the receiver is not currentThread, we must call the VM,
  2687   // because there must be some locking done around the operation.
  2689   // We only go to the fast case code if we pass two guards.
  2690   // Paths which do not pass are accumulated in the slow_region.
  2691   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2692   record_for_igvn(slow_region);
  2693   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2694   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2695   enum { no_int_result_path   = 1,
  2696          no_clear_result_path = 2,
  2697          slow_result_path     = 3
  2698   };
  2700   // (a) Receiving thread must be the current thread.
  2701   Node* rec_thr = argument(0);
  2702   Node* tls_ptr = NULL;
  2703   Node* cur_thr = generate_current_thread(tls_ptr);
  2704   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2705   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2707   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2708   if (!known_current_thread)
  2709     generate_slow_guard(bol_thr, slow_region);
  2711   // (b) Interrupt bit on TLS must be false.
  2712   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2713   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2714   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2715   // Set the control input on the field _interrupted read to prevent it floating up.
  2716   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2717   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2718   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2720   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2722   // First fast path:  if (!TLS._interrupted) return false;
  2723   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2724   result_rgn->init_req(no_int_result_path, false_bit);
  2725   result_val->init_req(no_int_result_path, intcon(0));
  2727   // drop through to next case
  2728   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2730   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2731   Node* clr_arg = argument(1);
  2732   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2733   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2734   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2736   // Second fast path:  ... else if (!clear_int) return true;
  2737   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2738   result_rgn->init_req(no_clear_result_path, false_arg);
  2739   result_val->init_req(no_clear_result_path, intcon(1));
  2741   // drop through to next case
  2742   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2744   // (d) Otherwise, go to the slow path.
  2745   slow_region->add_req(control());
  2746   set_control( _gvn.transform(slow_region) );
  2748   if (stopped()) {
  2749     // There is no slow path.
  2750     result_rgn->init_req(slow_result_path, top());
  2751     result_val->init_req(slow_result_path, top());
  2752   } else {
  2753     // non-virtual because it is a private non-static
  2754     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2756     Node* slow_val = set_results_for_java_call(slow_call);
  2757     // this->control() comes from set_results_for_java_call
  2759     // If we know that the result of the slow call will be true, tell the optimizer!
  2760     if (known_current_thread)  slow_val = intcon(1);
  2762     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2763     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2764     // These two phis are pre-filled with copies of of the fast IO and Memory
  2765     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2766     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2768     result_rgn->init_req(slow_result_path, control());
  2769     io_phi    ->init_req(slow_result_path, i_o());
  2770     mem_phi   ->init_req(slow_result_path, reset_memory());
  2771     result_val->init_req(slow_result_path, slow_val);
  2773     set_all_memory( _gvn.transform(mem_phi) );
  2774     set_i_o(        _gvn.transform(io_phi) );
  2777   push_result(result_rgn, result_val);
  2778   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2780   return true;
  2783 //---------------------------load_mirror_from_klass----------------------------
  2784 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2785 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2786   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2787   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2790 //-----------------------load_klass_from_mirror_common-------------------------
  2791 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2792 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2793 // and branch to the given path on the region.
  2794 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2795 // compile for the non-null case.
  2796 // If the region is NULL, force never_see_null = true.
  2797 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2798                                                     bool never_see_null,
  2799                                                     int nargs,
  2800                                                     RegionNode* region,
  2801                                                     int null_path,
  2802                                                     int offset) {
  2803   if (region == NULL)  never_see_null = true;
  2804   Node* p = basic_plus_adr(mirror, offset);
  2805   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2806   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2807   _sp += nargs; // any deopt will start just before call to enclosing method
  2808   Node* null_ctl = top();
  2809   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2810   if (region != NULL) {
  2811     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2812     region->init_req(null_path, null_ctl);
  2813   } else {
  2814     assert(null_ctl == top(), "no loose ends");
  2816   _sp -= nargs;
  2817   return kls;
  2820 //--------------------(inline_native_Class_query helpers)---------------------
  2821 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2822 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2823 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2824   // Branch around if the given klass has the given modifier bit set.
  2825   // Like generate_guard, adds a new path onto the region.
  2826   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2827   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2828   Node* mask = intcon(modifier_mask);
  2829   Node* bits = intcon(modifier_bits);
  2830   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  2831   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  2832   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  2833   return generate_fair_guard(bol, region);
  2835 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  2836   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  2839 //-------------------------inline_native_Class_query-------------------
  2840 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  2841   int nargs = 1+0;  // just the Class mirror, in most cases
  2842   const Type* return_type = TypeInt::BOOL;
  2843   Node* prim_return_value = top();  // what happens if it's a primitive class?
  2844   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  2845   bool expect_prim = false;     // most of these guys expect to work on refs
  2847   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  2849   switch (id) {
  2850   case vmIntrinsics::_isInstance:
  2851     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  2852     // nothing is an instance of a primitive type
  2853     prim_return_value = intcon(0);
  2854     break;
  2855   case vmIntrinsics::_getModifiers:
  2856     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2857     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  2858     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  2859     break;
  2860   case vmIntrinsics::_isInterface:
  2861     prim_return_value = intcon(0);
  2862     break;
  2863   case vmIntrinsics::_isArray:
  2864     prim_return_value = intcon(0);
  2865     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  2866     break;
  2867   case vmIntrinsics::_isPrimitive:
  2868     prim_return_value = intcon(1);
  2869     expect_prim = true;  // obviously
  2870     break;
  2871   case vmIntrinsics::_getSuperclass:
  2872     prim_return_value = null();
  2873     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2874     break;
  2875   case vmIntrinsics::_getComponentType:
  2876     prim_return_value = null();
  2877     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  2878     break;
  2879   case vmIntrinsics::_getClassAccessFlags:
  2880     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  2881     return_type = TypeInt::INT;  // not bool!  6297094
  2882     break;
  2883   default:
  2884     ShouldNotReachHere();
  2887   Node* mirror =                      argument(0);
  2888   Node* obj    = (nargs <= 1)? top(): argument(1);
  2890   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  2891   if (mirror_con == NULL)  return false;  // cannot happen?
  2893 #ifndef PRODUCT
  2894   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2895     ciType* k = mirror_con->java_mirror_type();
  2896     if (k) {
  2897       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  2898       k->print_name();
  2899       tty->cr();
  2902 #endif
  2904   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  2905   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2906   record_for_igvn(region);
  2907   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  2909   // The mirror will never be null of Reflection.getClassAccessFlags, however
  2910   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  2911   // if it is. See bug 4774291.
  2913   // For Reflection.getClassAccessFlags(), the null check occurs in
  2914   // the wrong place; see inline_unsafe_access(), above, for a similar
  2915   // situation.
  2916   _sp += nargs;  // set original stack for use by uncommon_trap
  2917   mirror = do_null_check(mirror, T_OBJECT);
  2918   _sp -= nargs;
  2919   // If mirror or obj is dead, only null-path is taken.
  2920   if (stopped())  return true;
  2922   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  2924   // Now load the mirror's klass metaobject, and null-check it.
  2925   // Side-effects region with the control path if the klass is null.
  2926   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  2927                                      region, _prim_path);
  2928   // If kls is null, we have a primitive mirror.
  2929   phi->init_req(_prim_path, prim_return_value);
  2930   if (stopped()) { push_result(region, phi); return true; }
  2932   Node* p;  // handy temp
  2933   Node* null_ctl;
  2935   // Now that we have the non-null klass, we can perform the real query.
  2936   // For constant classes, the query will constant-fold in LoadNode::Value.
  2937   Node* query_value = top();
  2938   switch (id) {
  2939   case vmIntrinsics::_isInstance:
  2940     // nothing is an instance of a primitive type
  2941     _sp += nargs;          // gen_instanceof might do an uncommon trap
  2942     query_value = gen_instanceof(obj, kls);
  2943     _sp -= nargs;
  2944     break;
  2946   case vmIntrinsics::_getModifiers:
  2947     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  2948     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  2949     break;
  2951   case vmIntrinsics::_isInterface:
  2952     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2953     if (generate_interface_guard(kls, region) != NULL)
  2954       // A guard was added.  If the guard is taken, it was an interface.
  2955       phi->add_req(intcon(1));
  2956     // If we fall through, it's a plain class.
  2957     query_value = intcon(0);
  2958     break;
  2960   case vmIntrinsics::_isArray:
  2961     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  2962     if (generate_array_guard(kls, region) != NULL)
  2963       // A guard was added.  If the guard is taken, it was an array.
  2964       phi->add_req(intcon(1));
  2965     // If we fall through, it's a plain class.
  2966     query_value = intcon(0);
  2967     break;
  2969   case vmIntrinsics::_isPrimitive:
  2970     query_value = intcon(0); // "normal" path produces false
  2971     break;
  2973   case vmIntrinsics::_getSuperclass:
  2974     // The rules here are somewhat unfortunate, but we can still do better
  2975     // with random logic than with a JNI call.
  2976     // Interfaces store null or Object as _super, but must report null.
  2977     // Arrays store an intermediate super as _super, but must report Object.
  2978     // Other types can report the actual _super.
  2979     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  2980     if (generate_interface_guard(kls, region) != NULL)
  2981       // A guard was added.  If the guard is taken, it was an interface.
  2982       phi->add_req(null());
  2983     if (generate_array_guard(kls, region) != NULL)
  2984       // A guard was added.  If the guard is taken, it was an array.
  2985       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  2986     // If we fall through, it's a plain class.  Get its _super.
  2987     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  2988     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  2989     null_ctl = top();
  2990     kls = null_check_oop(kls, &null_ctl);
  2991     if (null_ctl != top()) {
  2992       // If the guard is taken, Object.superClass is null (both klass and mirror).
  2993       region->add_req(null_ctl);
  2994       phi   ->add_req(null());
  2996     if (!stopped()) {
  2997       query_value = load_mirror_from_klass(kls);
  2999     break;
  3001   case vmIntrinsics::_getComponentType:
  3002     if (generate_array_guard(kls, region) != NULL) {
  3003       // Be sure to pin the oop load to the guard edge just created:
  3004       Node* is_array_ctrl = region->in(region->req()-1);
  3005       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  3006       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3007       phi->add_req(cmo);
  3009     query_value = null();  // non-array case is null
  3010     break;
  3012   case vmIntrinsics::_getClassAccessFlags:
  3013     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  3014     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3015     break;
  3017   default:
  3018     ShouldNotReachHere();
  3021   // Fall-through is the normal case of a query to a real class.
  3022   phi->init_req(1, query_value);
  3023   region->init_req(1, control());
  3025   push_result(region, phi);
  3026   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3028   return true;
  3031 //--------------------------inline_native_subtype_check------------------------
  3032 // This intrinsic takes the JNI calls out of the heart of
  3033 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3034 bool LibraryCallKit::inline_native_subtype_check() {
  3035   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3037   // Pull both arguments off the stack.
  3038   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3039   args[0] = argument(0);
  3040   args[1] = argument(1);
  3041   Node* klasses[2];             // corresponding Klasses: superk, subk
  3042   klasses[0] = klasses[1] = top();
  3044   enum {
  3045     // A full decision tree on {superc is prim, subc is prim}:
  3046     _prim_0_path = 1,           // {P,N} => false
  3047                                 // {P,P} & superc!=subc => false
  3048     _prim_same_path,            // {P,P} & superc==subc => true
  3049     _prim_1_path,               // {N,P} => false
  3050     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3051     _both_ref_path,             // {N,N} & subtype check loses => false
  3052     PATH_LIMIT
  3053   };
  3055   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3056   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3057   record_for_igvn(region);
  3059   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3060   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3061   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3063   // First null-check both mirrors and load each mirror's klass metaobject.
  3064   int which_arg;
  3065   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3066     Node* arg = args[which_arg];
  3067     _sp += nargs;  // set original stack for use by uncommon_trap
  3068     arg = do_null_check(arg, T_OBJECT);
  3069     _sp -= nargs;
  3070     if (stopped())  break;
  3071     args[which_arg] = _gvn.transform(arg);
  3073     Node* p = basic_plus_adr(arg, class_klass_offset);
  3074     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3075     klasses[which_arg] = _gvn.transform(kls);
  3078   // Having loaded both klasses, test each for null.
  3079   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3080   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3081     Node* kls = klasses[which_arg];
  3082     Node* null_ctl = top();
  3083     _sp += nargs;  // set original stack for use by uncommon_trap
  3084     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3085     _sp -= nargs;
  3086     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3087     region->init_req(prim_path, null_ctl);
  3088     if (stopped())  break;
  3089     klasses[which_arg] = kls;
  3092   if (!stopped()) {
  3093     // now we have two reference types, in klasses[0..1]
  3094     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3095     Node* superk = klasses[0];  // the receiver
  3096     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3097     // now we have a successful reference subtype check
  3098     region->set_req(_ref_subtype_path, control());
  3101   // If both operands are primitive (both klasses null), then
  3102   // we must return true when they are identical primitives.
  3103   // It is convenient to test this after the first null klass check.
  3104   set_control(region->in(_prim_0_path)); // go back to first null check
  3105   if (!stopped()) {
  3106     // Since superc is primitive, make a guard for the superc==subc case.
  3107     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3108     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3109     generate_guard(bol_eq, region, PROB_FAIR);
  3110     if (region->req() == PATH_LIMIT+1) {
  3111       // A guard was added.  If the added guard is taken, superc==subc.
  3112       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3113       region->del_req(PATH_LIMIT);
  3115     region->set_req(_prim_0_path, control()); // Not equal after all.
  3118   // these are the only paths that produce 'true':
  3119   phi->set_req(_prim_same_path,   intcon(1));
  3120   phi->set_req(_ref_subtype_path, intcon(1));
  3122   // pull together the cases:
  3123   assert(region->req() == PATH_LIMIT, "sane region");
  3124   for (uint i = 1; i < region->req(); i++) {
  3125     Node* ctl = region->in(i);
  3126     if (ctl == NULL || ctl == top()) {
  3127       region->set_req(i, top());
  3128       phi   ->set_req(i, top());
  3129     } else if (phi->in(i) == NULL) {
  3130       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3134   set_control(_gvn.transform(region));
  3135   push(_gvn.transform(phi));
  3137   return true;
  3140 //---------------------generate_array_guard_common------------------------
  3141 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3142                                                   bool obj_array, bool not_array) {
  3143   // If obj_array/non_array==false/false:
  3144   // Branch around if the given klass is in fact an array (either obj or prim).
  3145   // If obj_array/non_array==false/true:
  3146   // Branch around if the given klass is not an array klass of any kind.
  3147   // If obj_array/non_array==true/true:
  3148   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3149   // If obj_array/non_array==true/false:
  3150   // Branch around if the kls is an oop array (Object[] or subtype)
  3151   //
  3152   // Like generate_guard, adds a new path onto the region.
  3153   jint  layout_con = 0;
  3154   Node* layout_val = get_layout_helper(kls, layout_con);
  3155   if (layout_val == NULL) {
  3156     bool query = (obj_array
  3157                   ? Klass::layout_helper_is_objArray(layout_con)
  3158                   : Klass::layout_helper_is_javaArray(layout_con));
  3159     if (query == not_array) {
  3160       return NULL;                       // never a branch
  3161     } else {                             // always a branch
  3162       Node* always_branch = control();
  3163       if (region != NULL)
  3164         region->add_req(always_branch);
  3165       set_control(top());
  3166       return always_branch;
  3169   // Now test the correct condition.
  3170   jint  nval = (obj_array
  3171                 ? ((jint)Klass::_lh_array_tag_type_value
  3172                    <<    Klass::_lh_array_tag_shift)
  3173                 : Klass::_lh_neutral_value);
  3174   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3175   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3176   // invert the test if we are looking for a non-array
  3177   if (not_array)  btest = BoolTest(btest).negate();
  3178   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3179   return generate_fair_guard(bol, region);
  3183 //-----------------------inline_native_newArray--------------------------
  3184 bool LibraryCallKit::inline_native_newArray() {
  3185   int nargs = 2;
  3186   Node* mirror    = argument(0);
  3187   Node* count_val = argument(1);
  3189   _sp += nargs;  // set original stack for use by uncommon_trap
  3190   mirror = do_null_check(mirror, T_OBJECT);
  3191   _sp -= nargs;
  3192   // If mirror or obj is dead, only null-path is taken.
  3193   if (stopped())  return true;
  3195   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3196   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3197   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3198                                                       TypeInstPtr::NOTNULL);
  3199   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3200   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3201                                                       TypePtr::BOTTOM);
  3203   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3204   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3205                                                   nargs,
  3206                                                   result_reg, _slow_path);
  3207   Node* normal_ctl   = control();
  3208   Node* no_array_ctl = result_reg->in(_slow_path);
  3210   // Generate code for the slow case.  We make a call to newArray().
  3211   set_control(no_array_ctl);
  3212   if (!stopped()) {
  3213     // Either the input type is void.class, or else the
  3214     // array klass has not yet been cached.  Either the
  3215     // ensuing call will throw an exception, or else it
  3216     // will cache the array klass for next time.
  3217     PreserveJVMState pjvms(this);
  3218     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3219     Node* slow_result = set_results_for_java_call(slow_call);
  3220     // this->control() comes from set_results_for_java_call
  3221     result_reg->set_req(_slow_path, control());
  3222     result_val->set_req(_slow_path, slow_result);
  3223     result_io ->set_req(_slow_path, i_o());
  3224     result_mem->set_req(_slow_path, reset_memory());
  3227   set_control(normal_ctl);
  3228   if (!stopped()) {
  3229     // Normal case:  The array type has been cached in the java.lang.Class.
  3230     // The following call works fine even if the array type is polymorphic.
  3231     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3232     Node* obj = new_array(klass_node, count_val, nargs);
  3233     result_reg->init_req(_normal_path, control());
  3234     result_val->init_req(_normal_path, obj);
  3235     result_io ->init_req(_normal_path, i_o());
  3236     result_mem->init_req(_normal_path, reset_memory());
  3239   // Return the combined state.
  3240   set_i_o(        _gvn.transform(result_io)  );
  3241   set_all_memory( _gvn.transform(result_mem) );
  3242   push_result(result_reg, result_val);
  3243   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3245   return true;
  3248 //----------------------inline_native_getLength--------------------------
  3249 bool LibraryCallKit::inline_native_getLength() {
  3250   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3252   int nargs = 1;
  3253   Node* array = argument(0);
  3255   _sp += nargs;  // set original stack for use by uncommon_trap
  3256   array = do_null_check(array, T_OBJECT);
  3257   _sp -= nargs;
  3259   // If array is dead, only null-path is taken.
  3260   if (stopped())  return true;
  3262   // Deoptimize if it is a non-array.
  3263   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3265   if (non_array != NULL) {
  3266     PreserveJVMState pjvms(this);
  3267     set_control(non_array);
  3268     _sp += nargs;  // push the arguments back on the stack
  3269     uncommon_trap(Deoptimization::Reason_intrinsic,
  3270                   Deoptimization::Action_maybe_recompile);
  3273   // If control is dead, only non-array-path is taken.
  3274   if (stopped())  return true;
  3276   // The works fine even if the array type is polymorphic.
  3277   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3278   push( load_array_length(array) );
  3280   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3282   return true;
  3285 //------------------------inline_array_copyOf----------------------------
  3286 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3287   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3289   // Restore the stack and pop off the arguments.
  3290   int nargs = 3 + (is_copyOfRange? 1: 0);
  3291   Node* original          = argument(0);
  3292   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3293   Node* end               = is_copyOfRange? argument(2): argument(1);
  3294   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3296   Node* newcopy;
  3298   //set the original stack and the reexecute bit for the interpreter to reexecute
  3299   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3300   { PreserveReexecuteState preexecs(this);
  3301     _sp += nargs;
  3302     jvms()->set_should_reexecute(true);
  3304     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3305     original          = do_null_check(original, T_OBJECT);
  3307     // Check if a null path was taken unconditionally.
  3308     if (stopped())  return true;
  3310     Node* orig_length = load_array_length(original);
  3312     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3313                                               NULL, 0);
  3314     klass_node = do_null_check(klass_node, T_OBJECT);
  3316     RegionNode* bailout = new (C, 1) RegionNode(1);
  3317     record_for_igvn(bailout);
  3319     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3320     // Bail out if that is so.
  3321     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3322     if (not_objArray != NULL) {
  3323       // Improve the klass node's type from the new optimistic assumption:
  3324       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3325       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3326       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3327       cast->init_req(0, control());
  3328       klass_node = _gvn.transform(cast);
  3331     // Bail out if either start or end is negative.
  3332     generate_negative_guard(start, bailout, &start);
  3333     generate_negative_guard(end,   bailout, &end);
  3335     Node* length = end;
  3336     if (_gvn.type(start) != TypeInt::ZERO) {
  3337       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3340     // Bail out if length is negative.
  3341     // ...Not needed, since the new_array will throw the right exception.
  3342     //generate_negative_guard(length, bailout, &length);
  3344     if (bailout->req() > 1) {
  3345       PreserveJVMState pjvms(this);
  3346       set_control( _gvn.transform(bailout) );
  3347       uncommon_trap(Deoptimization::Reason_intrinsic,
  3348                     Deoptimization::Action_maybe_recompile);
  3351     if (!stopped()) {
  3353       // How many elements will we copy from the original?
  3354       // The answer is MinI(orig_length - start, length).
  3355       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3356       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3358       const bool raw_mem_only = true;
  3359       newcopy = new_array(klass_node, length, 0, raw_mem_only);
  3361       // Generate a direct call to the right arraycopy function(s).
  3362       // We know the copy is disjoint but we might not know if the
  3363       // oop stores need checking.
  3364       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3365       // This will fail a store-check if x contains any non-nulls.
  3366       bool disjoint_bases = true;
  3367       bool length_never_negative = true;
  3368       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3369                          original, start, newcopy, intcon(0), moved,
  3370                          disjoint_bases, length_never_negative);
  3372   } //original reexecute and sp are set back here
  3374   if(!stopped()) {
  3375     push(newcopy);
  3378   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3380   return true;
  3384 //----------------------generate_virtual_guard---------------------------
  3385 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3386 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3387                                              RegionNode* slow_region) {
  3388   ciMethod* method = callee();
  3389   int vtable_index = method->vtable_index();
  3390   // Get the methodOop out of the appropriate vtable entry.
  3391   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3392                      vtable_index*vtableEntry::size()) * wordSize +
  3393                      vtableEntry::method_offset_in_bytes();
  3394   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3395   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3397   // Compare the target method with the expected method (e.g., Object.hashCode).
  3398   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3400   Node* native_call = makecon(native_call_addr);
  3401   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3402   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3404   return generate_slow_guard(test_native, slow_region);
  3407 //-----------------------generate_method_call----------------------------
  3408 // Use generate_method_call to make a slow-call to the real
  3409 // method if the fast path fails.  An alternative would be to
  3410 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3411 // This only works for expanding the current library call,
  3412 // not another intrinsic.  (E.g., don't use this for making an
  3413 // arraycopy call inside of the copyOf intrinsic.)
  3414 CallJavaNode*
  3415 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3416   // When compiling the intrinsic method itself, do not use this technique.
  3417   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3419   ciMethod* method = callee();
  3420   // ensure the JVMS we have will be correct for this call
  3421   guarantee(method_id == method->intrinsic_id(), "must match");
  3423   const TypeFunc* tf = TypeFunc::make(method);
  3424   int tfdc = tf->domain()->cnt();
  3425   CallJavaNode* slow_call;
  3426   if (is_static) {
  3427     assert(!is_virtual, "");
  3428     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3429                                 SharedRuntime::get_resolve_static_call_stub(),
  3430                                 method, bci());
  3431   } else if (is_virtual) {
  3432     null_check_receiver(method);
  3433     int vtable_index = methodOopDesc::invalid_vtable_index;
  3434     if (UseInlineCaches) {
  3435       // Suppress the vtable call
  3436     } else {
  3437       // hashCode and clone are not a miranda methods,
  3438       // so the vtable index is fixed.
  3439       // No need to use the linkResolver to get it.
  3440        vtable_index = method->vtable_index();
  3442     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3443                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3444                                 method, vtable_index, bci());
  3445   } else {  // neither virtual nor static:  opt_virtual
  3446     null_check_receiver(method);
  3447     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3448                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3449                                 method, bci());
  3450     slow_call->set_optimized_virtual(true);
  3452   set_arguments_for_java_call(slow_call);
  3453   set_edges_for_java_call(slow_call);
  3454   return slow_call;
  3458 //------------------------------inline_native_hashcode--------------------
  3459 // Build special case code for calls to hashCode on an object.
  3460 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3461   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3462   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3464   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3466   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3467   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3468                                                       TypeInt::INT);
  3469   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3470   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3471                                                       TypePtr::BOTTOM);
  3472   Node* obj = NULL;
  3473   if (!is_static) {
  3474     // Check for hashing null object
  3475     obj = null_check_receiver(callee());
  3476     if (stopped())  return true;        // unconditionally null
  3477     result_reg->init_req(_null_path, top());
  3478     result_val->init_req(_null_path, top());
  3479   } else {
  3480     // Do a null check, and return zero if null.
  3481     // System.identityHashCode(null) == 0
  3482     obj = argument(0);
  3483     Node* null_ctl = top();
  3484     obj = null_check_oop(obj, &null_ctl);
  3485     result_reg->init_req(_null_path, null_ctl);
  3486     result_val->init_req(_null_path, _gvn.intcon(0));
  3489   // Unconditionally null?  Then return right away.
  3490   if (stopped()) {
  3491     set_control( result_reg->in(_null_path) );
  3492     if (!stopped())
  3493       push(      result_val ->in(_null_path) );
  3494     return true;
  3497   // After null check, get the object's klass.
  3498   Node* obj_klass = load_object_klass(obj);
  3500   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3501   // For each case we generate slightly different code.
  3503   // We only go to the fast case code if we pass a number of guards.  The
  3504   // paths which do not pass are accumulated in the slow_region.
  3505   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3506   record_for_igvn(slow_region);
  3508   // If this is a virtual call, we generate a funny guard.  We pull out
  3509   // the vtable entry corresponding to hashCode() from the target object.
  3510   // If the target method which we are calling happens to be the native
  3511   // Object hashCode() method, we pass the guard.  We do not need this
  3512   // guard for non-virtual calls -- the caller is known to be the native
  3513   // Object hashCode().
  3514   if (is_virtual) {
  3515     generate_virtual_guard(obj_klass, slow_region);
  3518   // Get the header out of the object, use LoadMarkNode when available
  3519   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3520   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3522   // Test the header to see if it is unlocked.
  3523   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3524   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3525   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3526   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3527   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3529   generate_slow_guard(test_unlocked, slow_region);
  3531   // Get the hash value and check to see that it has been properly assigned.
  3532   // We depend on hash_mask being at most 32 bits and avoid the use of
  3533   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3534   // vm: see markOop.hpp.
  3535   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3536   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3537   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3538   // This hack lets the hash bits live anywhere in the mark object now, as long
  3539   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3540   // Java spec says that HashCode is an int so there's no point in capturing
  3541   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3542   hshifted_header      = ConvX2I(hshifted_header);
  3543   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3545   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3546   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3547   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3549   generate_slow_guard(test_assigned, slow_region);
  3551   Node* init_mem = reset_memory();
  3552   // fill in the rest of the null path:
  3553   result_io ->init_req(_null_path, i_o());
  3554   result_mem->init_req(_null_path, init_mem);
  3556   result_val->init_req(_fast_path, hash_val);
  3557   result_reg->init_req(_fast_path, control());
  3558   result_io ->init_req(_fast_path, i_o());
  3559   result_mem->init_req(_fast_path, init_mem);
  3561   // Generate code for the slow case.  We make a call to hashCode().
  3562   set_control(_gvn.transform(slow_region));
  3563   if (!stopped()) {
  3564     // No need for PreserveJVMState, because we're using up the present state.
  3565     set_all_memory(init_mem);
  3566     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3567     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3568     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3569     Node* slow_result = set_results_for_java_call(slow_call);
  3570     // this->control() comes from set_results_for_java_call
  3571     result_reg->init_req(_slow_path, control());
  3572     result_val->init_req(_slow_path, slow_result);
  3573     result_io  ->set_req(_slow_path, i_o());
  3574     result_mem ->set_req(_slow_path, reset_memory());
  3577   // Return the combined state.
  3578   set_i_o(        _gvn.transform(result_io)  );
  3579   set_all_memory( _gvn.transform(result_mem) );
  3580   push_result(result_reg, result_val);
  3582   return true;
  3585 //---------------------------inline_native_getClass----------------------------
  3586 // Build special case code for calls to getClass on an object.
  3587 bool LibraryCallKit::inline_native_getClass() {
  3588   Node* obj = null_check_receiver(callee());
  3589   if (stopped())  return true;
  3590   push( load_mirror_from_klass(load_object_klass(obj)) );
  3591   return true;
  3594 //-----------------inline_native_Reflection_getCallerClass---------------------
  3595 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3596 //
  3597 // NOTE that this code must perform the same logic as
  3598 // vframeStream::security_get_caller_frame in that it must skip
  3599 // Method.invoke() and auxiliary frames.
  3604 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3605   ciMethod*       method = callee();
  3607 #ifndef PRODUCT
  3608   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3609     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3611 #endif
  3613   debug_only(int saved_sp = _sp);
  3615   // Argument words:  (int depth)
  3616   int nargs = 1;
  3618   _sp += nargs;
  3619   Node* caller_depth_node = pop();
  3621   assert(saved_sp == _sp, "must have correct argument count");
  3623   // The depth value must be a constant in order for the runtime call
  3624   // to be eliminated.
  3625   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3626   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3627 #ifndef PRODUCT
  3628     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3629       tty->print_cr("  Bailing out because caller depth was not a constant");
  3631 #endif
  3632     return false;
  3634   // Note that the JVM state at this point does not include the
  3635   // getCallerClass() frame which we are trying to inline. The
  3636   // semantics of getCallerClass(), however, are that the "first"
  3637   // frame is the getCallerClass() frame, so we subtract one from the
  3638   // requested depth before continuing. We don't inline requests of
  3639   // getCallerClass(0).
  3640   int caller_depth = caller_depth_type->get_con() - 1;
  3641   if (caller_depth < 0) {
  3642 #ifndef PRODUCT
  3643     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3644       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3646 #endif
  3647     return false;
  3650   if (!jvms()->has_method()) {
  3651 #ifndef PRODUCT
  3652     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3653       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3655 #endif
  3656     return false;
  3658   int _depth = jvms()->depth();  // cache call chain depth
  3660   // Walk back up the JVM state to find the caller at the required
  3661   // depth. NOTE that this code must perform the same logic as
  3662   // vframeStream::security_get_caller_frame in that it must skip
  3663   // Method.invoke() and auxiliary frames. Note also that depth is
  3664   // 1-based (1 is the bottom of the inlining).
  3665   int inlining_depth = _depth;
  3666   JVMState* caller_jvms = NULL;
  3668   if (inlining_depth > 0) {
  3669     caller_jvms = jvms();
  3670     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3671     do {
  3672       // The following if-tests should be performed in this order
  3673       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3674         // Skip a Method.invoke() or auxiliary frame
  3675       } else if (caller_depth > 0) {
  3676         // Skip real frame
  3677         --caller_depth;
  3678       } else {
  3679         // We're done: reached desired caller after skipping.
  3680         break;
  3682       caller_jvms = caller_jvms->caller();
  3683       --inlining_depth;
  3684     } while (inlining_depth > 0);
  3687   if (inlining_depth == 0) {
  3688 #ifndef PRODUCT
  3689     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3690       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3691       tty->print_cr("  JVM state at this point:");
  3692       for (int i = _depth; i >= 1; i--) {
  3693         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3696 #endif
  3697     return false; // Reached end of inlining
  3700   // Acquire method holder as java.lang.Class
  3701   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3702   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3703   // Push this as a constant
  3704   push(makecon(TypeInstPtr::make(caller_mirror)));
  3705 #ifndef PRODUCT
  3706   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3707     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3708     tty->print_cr("  JVM state at this point:");
  3709     for (int i = _depth; i >= 1; i--) {
  3710       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3713 #endif
  3714   return true;
  3717 // Helper routine for above
  3718 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3719   ciMethod* method = jvms->method();
  3721   // Is this the Method.invoke method itself?
  3722   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3723     return true;
  3725   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3726   ciKlass* k = method->holder();
  3727   if (k->is_instance_klass()) {
  3728     ciInstanceKlass* ik = k->as_instance_klass();
  3729     for (; ik != NULL; ik = ik->super()) {
  3730       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3731           ik == env()->find_system_klass(ik->name())) {
  3732         return true;
  3736   else if (method->is_method_handle_adapter()) {
  3737     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3738     return true;
  3741   return false;
  3744 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3745                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3746                                      // computing it since there is no lookup field by name function in the
  3747                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3748                                      // Using a static variable here is safe even if we have multiple compilation
  3749                                      // threads because the offset is constant.  At worst the same offset will be
  3750                                      // computed and  stored multiple
  3752 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3753   // Restore the stack and pop off the argument
  3754   _sp+=1;
  3755   Node *obj = pop();
  3757   // get the offset of the "value" field. Since the CI interfaces
  3758   // does not provide a way to look up a field by name, we scan the bytecodes
  3759   // to get the field index.  We expect the first 2 instructions of the method
  3760   // to be:
  3761   //    0 aload_0
  3762   //    1 getfield "value"
  3763   ciMethod* method = callee();
  3764   if (value_field_offset == -1)
  3766     ciField* value_field;
  3767     ciBytecodeStream iter(method);
  3768     Bytecodes::Code bc = iter.next();
  3770     if ((bc != Bytecodes::_aload_0) &&
  3771               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3772       return false;
  3773     bc = iter.next();
  3774     if (bc != Bytecodes::_getfield)
  3775       return false;
  3776     bool ignore;
  3777     value_field = iter.get_field(ignore);
  3778     value_field_offset = value_field->offset_in_bytes();
  3781   // Null check without removing any arguments.
  3782   _sp++;
  3783   obj = do_null_check(obj, T_OBJECT);
  3784   _sp--;
  3785   // Check for locking null object
  3786   if (stopped()) return true;
  3788   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3789   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3790   int alias_idx = C->get_alias_index(adr_type);
  3792   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3794   push_pair(result);
  3796   return true;
  3799 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3800   // Restore the stack and pop off the arguments
  3801   _sp+=5;
  3802   Node *newVal = pop_pair();
  3803   Node *oldVal = pop_pair();
  3804   Node *obj = pop();
  3806   // we need the offset of the "value" field which was computed when
  3807   // inlining the get() method.  Give up if we don't have it.
  3808   if (value_field_offset == -1)
  3809     return false;
  3811   // Null check without removing any arguments.
  3812   _sp+=5;
  3813   obj = do_null_check(obj, T_OBJECT);
  3814   _sp-=5;
  3815   // Check for locking null object
  3816   if (stopped()) return true;
  3818   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3819   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3820   int alias_idx = C->get_alias_index(adr_type);
  3822   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3823   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3824   set_memory(store_proj, alias_idx);
  3825   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3827   Node *result;
  3828   // CMove node is not used to be able fold a possible check code
  3829   // after attemptUpdate() call. This code could be transformed
  3830   // into CMove node by loop optimizations.
  3832     RegionNode *r = new (C, 3) RegionNode(3);
  3833     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  3835     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  3836     Node *iftrue = opt_iff(r, iff);
  3837     r->init_req(1, iftrue);
  3838     result->init_req(1, intcon(1));
  3839     result->init_req(2, intcon(0));
  3841     set_control(_gvn.transform(r));
  3842     record_for_igvn(r);
  3844     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3847   push(_gvn.transform(result));
  3848   return true;
  3851 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3852   // restore the arguments
  3853   _sp += arg_size();
  3855   switch (id) {
  3856   case vmIntrinsics::_floatToRawIntBits:
  3857     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  3858     break;
  3860   case vmIntrinsics::_intBitsToFloat:
  3861     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  3862     break;
  3864   case vmIntrinsics::_doubleToRawLongBits:
  3865     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  3866     break;
  3868   case vmIntrinsics::_longBitsToDouble:
  3869     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  3870     break;
  3872   case vmIntrinsics::_doubleToLongBits: {
  3873     Node* value = pop_pair();
  3875     // two paths (plus control) merge in a wood
  3876     RegionNode *r = new (C, 3) RegionNode(3);
  3877     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  3879     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  3880     // Build the boolean node
  3881     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3883     // Branch either way.
  3884     // NaN case is less traveled, which makes all the difference.
  3885     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3886     Node *opt_isnan = _gvn.transform(ifisnan);
  3887     assert( opt_isnan->is_If(), "Expect an IfNode");
  3888     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3889     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3891     set_control(iftrue);
  3893     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3894     Node *slow_result = longcon(nan_bits); // return NaN
  3895     phi->init_req(1, _gvn.transform( slow_result ));
  3896     r->init_req(1, iftrue);
  3898     // Else fall through
  3899     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3900     set_control(iffalse);
  3902     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  3903     r->init_req(2, iffalse);
  3905     // Post merge
  3906     set_control(_gvn.transform(r));
  3907     record_for_igvn(r);
  3909     Node* result = _gvn.transform(phi);
  3910     assert(result->bottom_type()->isa_long(), "must be");
  3911     push_pair(result);
  3913     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3915     break;
  3918   case vmIntrinsics::_floatToIntBits: {
  3919     Node* value = pop();
  3921     // two paths (plus control) merge in a wood
  3922     RegionNode *r = new (C, 3) RegionNode(3);
  3923     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  3925     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  3926     // Build the boolean node
  3927     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  3929     // Branch either way.
  3930     // NaN case is less traveled, which makes all the difference.
  3931     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3932     Node *opt_isnan = _gvn.transform(ifisnan);
  3933     assert( opt_isnan->is_If(), "Expect an IfNode");
  3934     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3935     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  3937     set_control(iftrue);
  3939     static const jint nan_bits = 0x7fc00000;
  3940     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  3941     phi->init_req(1, _gvn.transform( slow_result ));
  3942     r->init_req(1, iftrue);
  3944     // Else fall through
  3945     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  3946     set_control(iffalse);
  3948     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  3949     r->init_req(2, iffalse);
  3951     // Post merge
  3952     set_control(_gvn.transform(r));
  3953     record_for_igvn(r);
  3955     Node* result = _gvn.transform(phi);
  3956     assert(result->bottom_type()->isa_int(), "must be");
  3957     push(result);
  3959     C->set_has_split_ifs(true); // Has chance for split-if optimization
  3961     break;
  3964   default:
  3965     ShouldNotReachHere();
  3968   return true;
  3971 #ifdef _LP64
  3972 #define XTOP ,top() /*additional argument*/
  3973 #else  //_LP64
  3974 #define XTOP        /*no additional argument*/
  3975 #endif //_LP64
  3977 //----------------------inline_unsafe_copyMemory-------------------------
  3978 bool LibraryCallKit::inline_unsafe_copyMemory() {
  3979   if (callee()->is_static())  return false;  // caller must have the capability!
  3980   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  3981   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  3982   null_check_receiver(callee());  // check then ignore argument(0)
  3983   if (stopped())  return true;
  3985   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3987   Node* src_ptr = argument(1);
  3988   Node* src_off = ConvL2X(argument(2));
  3989   assert(argument(3)->is_top(), "2nd half of long");
  3990   Node* dst_ptr = argument(4);
  3991   Node* dst_off = ConvL2X(argument(5));
  3992   assert(argument(6)->is_top(), "2nd half of long");
  3993   Node* size    = ConvL2X(argument(7));
  3994   assert(argument(8)->is_top(), "2nd half of long");
  3996   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  3997          "fieldOffset must be byte-scaled");
  3999   Node* src = make_unsafe_address(src_ptr, src_off);
  4000   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4002   // Conservatively insert a memory barrier on all memory slices.
  4003   // Do not let writes of the copy source or destination float below the copy.
  4004   insert_mem_bar(Op_MemBarCPUOrder);
  4006   // Call it.  Note that the length argument is not scaled.
  4007   make_runtime_call(RC_LEAF|RC_NO_FP,
  4008                     OptoRuntime::fast_arraycopy_Type(),
  4009                     StubRoutines::unsafe_arraycopy(),
  4010                     "unsafe_arraycopy",
  4011                     TypeRawPtr::BOTTOM,
  4012                     src, dst, size XTOP);
  4014   // Do not let reads of the copy destination float above the copy.
  4015   insert_mem_bar(Op_MemBarCPUOrder);
  4017   return true;
  4020 //------------------------clone_coping-----------------------------------
  4021 // Helper function for inline_native_clone.
  4022 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4023   assert(obj_size != NULL, "");
  4024   Node* raw_obj = alloc_obj->in(1);
  4025   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4027   if (ReduceBulkZeroing) {
  4028     // We will be completely responsible for initializing this object -
  4029     // mark Initialize node as complete.
  4030     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4031     // The object was just allocated - there should be no any stores!
  4032     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4035   // Copy the fastest available way.
  4036   // TODO: generate fields copies for small objects instead.
  4037   Node* src  = obj;
  4038   Node* dest = alloc_obj;
  4039   Node* size = _gvn.transform(obj_size);
  4041   // Exclude the header but include array length to copy by 8 bytes words.
  4042   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4043   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4044                             instanceOopDesc::base_offset_in_bytes();
  4045   // base_off:
  4046   // 8  - 32-bit VM
  4047   // 12 - 64-bit VM, compressed oops
  4048   // 16 - 64-bit VM, normal oops
  4049   if (base_off % BytesPerLong != 0) {
  4050     assert(UseCompressedOops, "");
  4051     if (is_array) {
  4052       // Exclude length to copy by 8 bytes words.
  4053       base_off += sizeof(int);
  4054     } else {
  4055       // Include klass to copy by 8 bytes words.
  4056       base_off = instanceOopDesc::klass_offset_in_bytes();
  4058     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4060   src  = basic_plus_adr(src,  base_off);
  4061   dest = basic_plus_adr(dest, base_off);
  4063   // Compute the length also, if needed:
  4064   Node* countx = size;
  4065   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4066   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4068   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4069   bool disjoint_bases = true;
  4070   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4071                                src, NULL, dest, NULL, countx);
  4073   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4074   if (card_mark) {
  4075     assert(!is_array, "");
  4076     // Put in store barrier for any and all oops we are sticking
  4077     // into this object.  (We could avoid this if we could prove
  4078     // that the object type contains no oop fields at all.)
  4079     Node* no_particular_value = NULL;
  4080     Node* no_particular_field = NULL;
  4081     int raw_adr_idx = Compile::AliasIdxRaw;
  4082     post_barrier(control(),
  4083                  memory(raw_adr_type),
  4084                  alloc_obj,
  4085                  no_particular_field,
  4086                  raw_adr_idx,
  4087                  no_particular_value,
  4088                  T_OBJECT,
  4089                  false);
  4092   // Do not let reads from the cloned object float above the arraycopy.
  4093   insert_mem_bar(Op_MemBarCPUOrder);
  4096 //------------------------inline_native_clone----------------------------
  4097 // Here are the simple edge cases:
  4098 //  null receiver => normal trap
  4099 //  virtual and clone was overridden => slow path to out-of-line clone
  4100 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4101 //
  4102 // The general case has two steps, allocation and copying.
  4103 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4104 //
  4105 // Copying also has two cases, oop arrays and everything else.
  4106 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4107 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4108 //
  4109 // These steps fold up nicely if and when the cloned object's klass
  4110 // can be sharply typed as an object array, a type array, or an instance.
  4111 //
  4112 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4113   int nargs = 1;
  4114   PhiNode* result_val;
  4116   //set the original stack and the reexecute bit for the interpreter to reexecute
  4117   //the bytecode that invokes Object.clone if deoptimization happens
  4118   { PreserveReexecuteState preexecs(this);
  4119     jvms()->set_should_reexecute(true);
  4121     //null_check_receiver will adjust _sp (push and pop)
  4122     Node* obj = null_check_receiver(callee());
  4123     if (stopped())  return true;
  4125     _sp += nargs;
  4127     Node* obj_klass = load_object_klass(obj);
  4128     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4129     const TypeOopPtr*   toop   = ((tklass != NULL)
  4130                                 ? tklass->as_instance_type()
  4131                                 : TypeInstPtr::NOTNULL);
  4133     // Conservatively insert a memory barrier on all memory slices.
  4134     // Do not let writes into the original float below the clone.
  4135     insert_mem_bar(Op_MemBarCPUOrder);
  4137     // paths into result_reg:
  4138     enum {
  4139       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4140       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4141       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4142       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4143       PATH_LIMIT
  4144     };
  4145     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4146     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4147                                                         TypeInstPtr::NOTNULL);
  4148     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4149     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4150                                                         TypePtr::BOTTOM);
  4151     record_for_igvn(result_reg);
  4153     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4154     int raw_adr_idx = Compile::AliasIdxRaw;
  4155     const bool raw_mem_only = true;
  4158     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4159     if (array_ctl != NULL) {
  4160       // It's an array.
  4161       PreserveJVMState pjvms(this);
  4162       set_control(array_ctl);
  4163       Node* obj_length = load_array_length(obj);
  4164       Node* obj_size  = NULL;
  4165       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
  4166                                   raw_mem_only, &obj_size);
  4168       if (!use_ReduceInitialCardMarks()) {
  4169         // If it is an oop array, it requires very special treatment,
  4170         // because card marking is required on each card of the array.
  4171         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4172         if (is_obja != NULL) {
  4173           PreserveJVMState pjvms2(this);
  4174           set_control(is_obja);
  4175           // Generate a direct call to the right arraycopy function(s).
  4176           bool disjoint_bases = true;
  4177           bool length_never_negative = true;
  4178           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4179                              obj, intcon(0), alloc_obj, intcon(0),
  4180                              obj_length,
  4181                              disjoint_bases, length_never_negative);
  4182           result_reg->init_req(_objArray_path, control());
  4183           result_val->init_req(_objArray_path, alloc_obj);
  4184           result_i_o ->set_req(_objArray_path, i_o());
  4185           result_mem ->set_req(_objArray_path, reset_memory());
  4188       // Otherwise, there are no card marks to worry about.
  4189       // (We can dispense with card marks if we know the allocation
  4190       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4191       //  causes the non-eden paths to take compensating steps to
  4192       //  simulate a fresh allocation, so that no further
  4193       //  card marks are required in compiled code to initialize
  4194       //  the object.)
  4196       if (!stopped()) {
  4197         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4199         // Present the results of the copy.
  4200         result_reg->init_req(_array_path, control());
  4201         result_val->init_req(_array_path, alloc_obj);
  4202         result_i_o ->set_req(_array_path, i_o());
  4203         result_mem ->set_req(_array_path, reset_memory());
  4207     // We only go to the instance fast case code if we pass a number of guards.
  4208     // The paths which do not pass are accumulated in the slow_region.
  4209     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4210     record_for_igvn(slow_region);
  4211     if (!stopped()) {
  4212       // It's an instance (we did array above).  Make the slow-path tests.
  4213       // If this is a virtual call, we generate a funny guard.  We grab
  4214       // the vtable entry corresponding to clone() from the target object.
  4215       // If the target method which we are calling happens to be the
  4216       // Object clone() method, we pass the guard.  We do not need this
  4217       // guard for non-virtual calls; the caller is known to be the native
  4218       // Object clone().
  4219       if (is_virtual) {
  4220         generate_virtual_guard(obj_klass, slow_region);
  4223       // The object must be cloneable and must not have a finalizer.
  4224       // Both of these conditions may be checked in a single test.
  4225       // We could optimize the cloneable test further, but we don't care.
  4226       generate_access_flags_guard(obj_klass,
  4227                                   // Test both conditions:
  4228                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4229                                   // Must be cloneable but not finalizer:
  4230                                   JVM_ACC_IS_CLONEABLE,
  4231                                   slow_region);
  4234     if (!stopped()) {
  4235       // It's an instance, and it passed the slow-path tests.
  4236       PreserveJVMState pjvms(this);
  4237       Node* obj_size  = NULL;
  4238       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
  4240       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4242       // Present the results of the slow call.
  4243       result_reg->init_req(_instance_path, control());
  4244       result_val->init_req(_instance_path, alloc_obj);
  4245       result_i_o ->set_req(_instance_path, i_o());
  4246       result_mem ->set_req(_instance_path, reset_memory());
  4249     // Generate code for the slow case.  We make a call to clone().
  4250     set_control(_gvn.transform(slow_region));
  4251     if (!stopped()) {
  4252       PreserveJVMState pjvms(this);
  4253       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4254       Node* slow_result = set_results_for_java_call(slow_call);
  4255       // this->control() comes from set_results_for_java_call
  4256       result_reg->init_req(_slow_path, control());
  4257       result_val->init_req(_slow_path, slow_result);
  4258       result_i_o ->set_req(_slow_path, i_o());
  4259       result_mem ->set_req(_slow_path, reset_memory());
  4262     // Return the combined state.
  4263     set_control(    _gvn.transform(result_reg) );
  4264     set_i_o(        _gvn.transform(result_i_o) );
  4265     set_all_memory( _gvn.transform(result_mem) );
  4266   } //original reexecute and sp are set back here
  4268   push(_gvn.transform(result_val));
  4270   return true;
  4274 // constants for computing the copy function
  4275 enum {
  4276   COPYFUNC_UNALIGNED = 0,
  4277   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
  4278   COPYFUNC_CONJOINT = 0,
  4279   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
  4280 };
  4282 // Note:  The condition "disjoint" applies also for overlapping copies
  4283 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
  4284 static address
  4285 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
  4286   int selector =
  4287     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
  4288     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
  4290 #define RETURN_STUB(xxx_arraycopy) { \
  4291   name = #xxx_arraycopy; \
  4292   return StubRoutines::xxx_arraycopy(); }
  4294   switch (t) {
  4295   case T_BYTE:
  4296   case T_BOOLEAN:
  4297     switch (selector) {
  4298     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
  4299     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
  4300     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
  4301     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
  4303   case T_CHAR:
  4304   case T_SHORT:
  4305     switch (selector) {
  4306     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
  4307     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
  4308     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
  4309     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
  4311   case T_INT:
  4312   case T_FLOAT:
  4313     switch (selector) {
  4314     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
  4315     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
  4316     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
  4317     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
  4319   case T_DOUBLE:
  4320   case T_LONG:
  4321     switch (selector) {
  4322     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
  4323     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
  4324     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
  4325     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
  4327   case T_ARRAY:
  4328   case T_OBJECT:
  4329     switch (selector) {
  4330     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
  4331     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
  4332     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
  4333     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
  4335   default:
  4336     ShouldNotReachHere();
  4337     return NULL;
  4340 #undef RETURN_STUB
  4343 //------------------------------basictype2arraycopy----------------------------
  4344 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4345                                             Node* src_offset,
  4346                                             Node* dest_offset,
  4347                                             bool disjoint_bases,
  4348                                             const char* &name) {
  4349   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4350   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4352   bool aligned = false;
  4353   bool disjoint = disjoint_bases;
  4355   // if the offsets are the same, we can treat the memory regions as
  4356   // disjoint, because either the memory regions are in different arrays,
  4357   // or they are identical (which we can treat as disjoint.)  We can also
  4358   // treat a copy with a destination index  less that the source index
  4359   // as disjoint since a low->high copy will work correctly in this case.
  4360   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4361       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4362     // both indices are constants
  4363     int s_offs = src_offset_inttype->get_con();
  4364     int d_offs = dest_offset_inttype->get_con();
  4365     int element_size = type2aelembytes(t);
  4366     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4367               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4368     if (s_offs >= d_offs)  disjoint = true;
  4369   } else if (src_offset == dest_offset && src_offset != NULL) {
  4370     // This can occur if the offsets are identical non-constants.
  4371     disjoint = true;
  4374   return select_arraycopy_function(t, aligned, disjoint, name);
  4378 //------------------------------inline_arraycopy-----------------------
  4379 bool LibraryCallKit::inline_arraycopy() {
  4380   // Restore the stack and pop off the arguments.
  4381   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4382   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4384   Node *src         = argument(0);
  4385   Node *src_offset  = argument(1);
  4386   Node *dest        = argument(2);
  4387   Node *dest_offset = argument(3);
  4388   Node *length      = argument(4);
  4390   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4391   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4392   // is.  The checks we choose to mandate at compile time are:
  4393   //
  4394   // (1) src and dest are arrays.
  4395   const Type* src_type = src->Value(&_gvn);
  4396   const Type* dest_type = dest->Value(&_gvn);
  4397   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4398   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4399   if (top_src  == NULL || top_src->klass()  == NULL ||
  4400       top_dest == NULL || top_dest->klass() == NULL) {
  4401     // Conservatively insert a memory barrier on all memory slices.
  4402     // Do not let writes into the source float below the arraycopy.
  4403     insert_mem_bar(Op_MemBarCPUOrder);
  4405     // Call StubRoutines::generic_arraycopy stub.
  4406     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4407                        src, src_offset, dest, dest_offset, length);
  4409     // Do not let reads from the destination float above the arraycopy.
  4410     // Since we cannot type the arrays, we don't know which slices
  4411     // might be affected.  We could restrict this barrier only to those
  4412     // memory slices which pertain to array elements--but don't bother.
  4413     if (!InsertMemBarAfterArraycopy)
  4414       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4415       insert_mem_bar(Op_MemBarCPUOrder);
  4416     return true;
  4419   // (2) src and dest arrays must have elements of the same BasicType
  4420   // Figure out the size and type of the elements we will be copying.
  4421   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4422   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4423   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4424   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4426   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4427     // The component types are not the same or are not recognized.  Punt.
  4428     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4429     generate_slow_arraycopy(TypePtr::BOTTOM,
  4430                             src, src_offset, dest, dest_offset, length);
  4431     return true;
  4434   //---------------------------------------------------------------------------
  4435   // We will make a fast path for this call to arraycopy.
  4437   // We have the following tests left to perform:
  4438   //
  4439   // (3) src and dest must not be null.
  4440   // (4) src_offset must not be negative.
  4441   // (5) dest_offset must not be negative.
  4442   // (6) length must not be negative.
  4443   // (7) src_offset + length must not exceed length of src.
  4444   // (8) dest_offset + length must not exceed length of dest.
  4445   // (9) each element of an oop array must be assignable
  4447   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4448   record_for_igvn(slow_region);
  4450   // (3) operands must not be null
  4451   // We currently perform our null checks with the do_null_check routine.
  4452   // This means that the null exceptions will be reported in the caller
  4453   // rather than (correctly) reported inside of the native arraycopy call.
  4454   // This should be corrected, given time.  We do our null check with the
  4455   // stack pointer restored.
  4456   _sp += nargs;
  4457   src  = do_null_check(src,  T_ARRAY);
  4458   dest = do_null_check(dest, T_ARRAY);
  4459   _sp -= nargs;
  4461   // (4) src_offset must not be negative.
  4462   generate_negative_guard(src_offset, slow_region);
  4464   // (5) dest_offset must not be negative.
  4465   generate_negative_guard(dest_offset, slow_region);
  4467   // (6) length must not be negative (moved to generate_arraycopy()).
  4468   // generate_negative_guard(length, slow_region);
  4470   // (7) src_offset + length must not exceed length of src.
  4471   generate_limit_guard(src_offset, length,
  4472                        load_array_length(src),
  4473                        slow_region);
  4475   // (8) dest_offset + length must not exceed length of dest.
  4476   generate_limit_guard(dest_offset, length,
  4477                        load_array_length(dest),
  4478                        slow_region);
  4480   // (9) each element of an oop array must be assignable
  4481   // The generate_arraycopy subroutine checks this.
  4483   // This is where the memory effects are placed:
  4484   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4485   generate_arraycopy(adr_type, dest_elem,
  4486                      src, src_offset, dest, dest_offset, length,
  4487                      false, false, slow_region);
  4489   return true;
  4492 //-----------------------------generate_arraycopy----------------------
  4493 // Generate an optimized call to arraycopy.
  4494 // Caller must guard against non-arrays.
  4495 // Caller must determine a common array basic-type for both arrays.
  4496 // Caller must validate offsets against array bounds.
  4497 // The slow_region has already collected guard failure paths
  4498 // (such as out of bounds length or non-conformable array types).
  4499 // The generated code has this shape, in general:
  4500 //
  4501 //     if (length == 0)  return   // via zero_path
  4502 //     slowval = -1
  4503 //     if (types unknown) {
  4504 //       slowval = call generic copy loop
  4505 //       if (slowval == 0)  return  // via checked_path
  4506 //     } else if (indexes in bounds) {
  4507 //       if ((is object array) && !(array type check)) {
  4508 //         slowval = call checked copy loop
  4509 //         if (slowval == 0)  return  // via checked_path
  4510 //       } else {
  4511 //         call bulk copy loop
  4512 //         return  // via fast_path
  4513 //       }
  4514 //     }
  4515 //     // adjust params for remaining work:
  4516 //     if (slowval != -1) {
  4517 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4518 //     }
  4519 //   slow_region:
  4520 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4521 //     return  // via slow_call_path
  4522 //
  4523 // This routine is used from several intrinsics:  System.arraycopy,
  4524 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4525 //
  4526 void
  4527 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4528                                    BasicType basic_elem_type,
  4529                                    Node* src,  Node* src_offset,
  4530                                    Node* dest, Node* dest_offset,
  4531                                    Node* copy_length,
  4532                                    bool disjoint_bases,
  4533                                    bool length_never_negative,
  4534                                    RegionNode* slow_region) {
  4536   if (slow_region == NULL) {
  4537     slow_region = new(C,1) RegionNode(1);
  4538     record_for_igvn(slow_region);
  4541   Node* original_dest      = dest;
  4542   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4543   bool  must_clear_dest    = false;
  4545   // See if this is the initialization of a newly-allocated array.
  4546   // If so, we will take responsibility here for initializing it to zero.
  4547   // (Note:  Because tightly_coupled_allocation performs checks on the
  4548   // out-edges of the dest, we need to avoid making derived pointers
  4549   // from it until we have checked its uses.)
  4550   if (ReduceBulkZeroing
  4551       && !ZeroTLAB              // pointless if already zeroed
  4552       && basic_elem_type != T_CONFLICT // avoid corner case
  4553       && !_gvn.eqv_uncast(src, dest)
  4554       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4555           != NULL)
  4556       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4557       && alloc->maybe_set_complete(&_gvn)) {
  4558     // "You break it, you buy it."
  4559     InitializeNode* init = alloc->initialization();
  4560     assert(init->is_complete(), "we just did this");
  4561     assert(dest->is_CheckCastPP(), "sanity");
  4562     assert(dest->in(0)->in(0) == init, "dest pinned");
  4563     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4564     // From this point on, every exit path is responsible for
  4565     // initializing any non-copied parts of the object to zero.
  4566     must_clear_dest = true;
  4567   } else {
  4568     // No zeroing elimination here.
  4569     alloc             = NULL;
  4570     //original_dest   = dest;
  4571     //must_clear_dest = false;
  4574   // Results are placed here:
  4575   enum { fast_path        = 1,  // normal void-returning assembly stub
  4576          checked_path     = 2,  // special assembly stub with cleanup
  4577          slow_call_path   = 3,  // something went wrong; call the VM
  4578          zero_path        = 4,  // bypass when length of copy is zero
  4579          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4580          PATH_LIMIT       = 6
  4581   };
  4582   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4583   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4584   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4585   record_for_igvn(result_region);
  4586   _gvn.set_type_bottom(result_i_o);
  4587   _gvn.set_type_bottom(result_memory);
  4588   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4590   // The slow_control path:
  4591   Node* slow_control;
  4592   Node* slow_i_o = i_o();
  4593   Node* slow_mem = memory(adr_type);
  4594   debug_only(slow_control = (Node*) badAddress);
  4596   // Checked control path:
  4597   Node* checked_control = top();
  4598   Node* checked_mem     = NULL;
  4599   Node* checked_i_o     = NULL;
  4600   Node* checked_value   = NULL;
  4602   if (basic_elem_type == T_CONFLICT) {
  4603     assert(!must_clear_dest, "");
  4604     Node* cv = generate_generic_arraycopy(adr_type,
  4605                                           src, src_offset, dest, dest_offset,
  4606                                           copy_length);
  4607     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4608     checked_control = control();
  4609     checked_i_o     = i_o();
  4610     checked_mem     = memory(adr_type);
  4611     checked_value   = cv;
  4612     set_control(top());         // no fast path
  4615   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4616   if (not_pos != NULL) {
  4617     PreserveJVMState pjvms(this);
  4618     set_control(not_pos);
  4620     // (6) length must not be negative.
  4621     if (!length_never_negative) {
  4622       generate_negative_guard(copy_length, slow_region);
  4625     // copy_length is 0.
  4626     if (!stopped() && must_clear_dest) {
  4627       Node* dest_length = alloc->in(AllocateNode::ALength);
  4628       if (_gvn.eqv_uncast(copy_length, dest_length)
  4629           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4630         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4631       } else {
  4632         // Clear the whole thing since there are no source elements to copy.
  4633         generate_clear_array(adr_type, dest, basic_elem_type,
  4634                              intcon(0), NULL,
  4635                              alloc->in(AllocateNode::AllocSize));
  4636         // Use a secondary InitializeNode as raw memory barrier.
  4637         // Currently it is needed only on this path since other
  4638         // paths have stub or runtime calls as raw memory barriers.
  4639         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4640                                                        Compile::AliasIdxRaw,
  4641                                                        top())->as_Initialize();
  4642         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4646     // Present the results of the fast call.
  4647     result_region->init_req(zero_path, control());
  4648     result_i_o   ->init_req(zero_path, i_o());
  4649     result_memory->init_req(zero_path, memory(adr_type));
  4652   if (!stopped() && must_clear_dest) {
  4653     // We have to initialize the *uncopied* part of the array to zero.
  4654     // The copy destination is the slice dest[off..off+len].  The other slices
  4655     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4656     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4657     Node* dest_length = alloc->in(AllocateNode::ALength);
  4658     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4659                                                           copy_length) );
  4661     // If there is a head section that needs zeroing, do it now.
  4662     if (find_int_con(dest_offset, -1) != 0) {
  4663       generate_clear_array(adr_type, dest, basic_elem_type,
  4664                            intcon(0), dest_offset,
  4665                            NULL);
  4668     // Next, perform a dynamic check on the tail length.
  4669     // It is often zero, and we can win big if we prove this.
  4670     // There are two wins:  Avoid generating the ClearArray
  4671     // with its attendant messy index arithmetic, and upgrade
  4672     // the copy to a more hardware-friendly word size of 64 bits.
  4673     Node* tail_ctl = NULL;
  4674     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4675       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4676       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4677       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4678       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4681     // At this point, let's assume there is no tail.
  4682     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4683       // There is no tail.  Try an upgrade to a 64-bit copy.
  4684       bool didit = false;
  4685       { PreserveJVMState pjvms(this);
  4686         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4687                                          src, src_offset, dest, dest_offset,
  4688                                          dest_size);
  4689         if (didit) {
  4690           // Present the results of the block-copying fast call.
  4691           result_region->init_req(bcopy_path, control());
  4692           result_i_o   ->init_req(bcopy_path, i_o());
  4693           result_memory->init_req(bcopy_path, memory(adr_type));
  4696       if (didit)
  4697         set_control(top());     // no regular fast path
  4700     // Clear the tail, if any.
  4701     if (tail_ctl != NULL) {
  4702       Node* notail_ctl = stopped() ? NULL : control();
  4703       set_control(tail_ctl);
  4704       if (notail_ctl == NULL) {
  4705         generate_clear_array(adr_type, dest, basic_elem_type,
  4706                              dest_tail, NULL,
  4707                              dest_size);
  4708       } else {
  4709         // Make a local merge.
  4710         Node* done_ctl = new(C,3) RegionNode(3);
  4711         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4712         done_ctl->init_req(1, notail_ctl);
  4713         done_mem->init_req(1, memory(adr_type));
  4714         generate_clear_array(adr_type, dest, basic_elem_type,
  4715                              dest_tail, NULL,
  4716                              dest_size);
  4717         done_ctl->init_req(2, control());
  4718         done_mem->init_req(2, memory(adr_type));
  4719         set_control( _gvn.transform(done_ctl) );
  4720         set_memory(  _gvn.transform(done_mem), adr_type );
  4725   BasicType copy_type = basic_elem_type;
  4726   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4727   if (!stopped() && copy_type == T_OBJECT) {
  4728     // If src and dest have compatible element types, we can copy bits.
  4729     // Types S[] and D[] are compatible if D is a supertype of S.
  4730     //
  4731     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4732     // which performs a fast optimistic per-oop check, and backs off
  4733     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4734     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4736     // Get the klassOop for both src and dest
  4737     Node* src_klass  = load_object_klass(src);
  4738     Node* dest_klass = load_object_klass(dest);
  4740     // Generate the subtype check.
  4741     // This might fold up statically, or then again it might not.
  4742     //
  4743     // Non-static example:  Copying List<String>.elements to a new String[].
  4744     // The backing store for a List<String> is always an Object[],
  4745     // but its elements are always type String, if the generic types
  4746     // are correct at the source level.
  4747     //
  4748     // Test S[] against D[], not S against D, because (probably)
  4749     // the secondary supertype cache is less busy for S[] than S.
  4750     // This usually only matters when D is an interface.
  4751     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4752     // Plug failing path into checked_oop_disjoint_arraycopy
  4753     if (not_subtype_ctrl != top()) {
  4754       PreserveJVMState pjvms(this);
  4755       set_control(not_subtype_ctrl);
  4756       // (At this point we can assume disjoint_bases, since types differ.)
  4757       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4758       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4759       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4760       Node* dest_elem_klass = _gvn.transform(n1);
  4761       Node* cv = generate_checkcast_arraycopy(adr_type,
  4762                                               dest_elem_klass,
  4763                                               src, src_offset, dest, dest_offset,
  4764                                               copy_length);
  4765       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4766       checked_control = control();
  4767       checked_i_o     = i_o();
  4768       checked_mem     = memory(adr_type);
  4769       checked_value   = cv;
  4771     // At this point we know we do not need type checks on oop stores.
  4773     // Let's see if we need card marks:
  4774     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4775       // If we do not need card marks, copy using the jint or jlong stub.
  4776       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4777       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4778              "sizes agree");
  4782   if (!stopped()) {
  4783     // Generate the fast path, if possible.
  4784     PreserveJVMState pjvms(this);
  4785     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4786                                  src, src_offset, dest, dest_offset,
  4787                                  ConvI2X(copy_length));
  4789     // Present the results of the fast call.
  4790     result_region->init_req(fast_path, control());
  4791     result_i_o   ->init_req(fast_path, i_o());
  4792     result_memory->init_req(fast_path, memory(adr_type));
  4795   // Here are all the slow paths up to this point, in one bundle:
  4796   slow_control = top();
  4797   if (slow_region != NULL)
  4798     slow_control = _gvn.transform(slow_region);
  4799   debug_only(slow_region = (RegionNode*)badAddress);
  4801   set_control(checked_control);
  4802   if (!stopped()) {
  4803     // Clean up after the checked call.
  4804     // The returned value is either 0 or -1^K,
  4805     // where K = number of partially transferred array elements.
  4806     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4807     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4808     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4810     // If it is 0, we are done, so transfer to the end.
  4811     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4812     result_region->init_req(checked_path, checks_done);
  4813     result_i_o   ->init_req(checked_path, checked_i_o);
  4814     result_memory->init_req(checked_path, checked_mem);
  4816     // If it is not zero, merge into the slow call.
  4817     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4818     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4819     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4820     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4821     record_for_igvn(slow_reg2);
  4822     slow_reg2  ->init_req(1, slow_control);
  4823     slow_i_o2  ->init_req(1, slow_i_o);
  4824     slow_mem2  ->init_req(1, slow_mem);
  4825     slow_reg2  ->init_req(2, control());
  4826     slow_i_o2  ->init_req(2, checked_i_o);
  4827     slow_mem2  ->init_req(2, checked_mem);
  4829     slow_control = _gvn.transform(slow_reg2);
  4830     slow_i_o     = _gvn.transform(slow_i_o2);
  4831     slow_mem     = _gvn.transform(slow_mem2);
  4833     if (alloc != NULL) {
  4834       // We'll restart from the very beginning, after zeroing the whole thing.
  4835       // This can cause double writes, but that's OK since dest is brand new.
  4836       // So we ignore the low 31 bits of the value returned from the stub.
  4837     } else {
  4838       // We must continue the copy exactly where it failed, or else
  4839       // another thread might see the wrong number of writes to dest.
  4840       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4841       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4842       slow_offset->init_req(1, intcon(0));
  4843       slow_offset->init_req(2, checked_offset);
  4844       slow_offset  = _gvn.transform(slow_offset);
  4846       // Adjust the arguments by the conditionally incoming offset.
  4847       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4848       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4849       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4851       // Tweak the node variables to adjust the code produced below:
  4852       src_offset  = src_off_plus;
  4853       dest_offset = dest_off_plus;
  4854       copy_length = length_minus;
  4858   set_control(slow_control);
  4859   if (!stopped()) {
  4860     // Generate the slow path, if needed.
  4861     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4863     set_memory(slow_mem, adr_type);
  4864     set_i_o(slow_i_o);
  4866     if (must_clear_dest) {
  4867       generate_clear_array(adr_type, dest, basic_elem_type,
  4868                            intcon(0), NULL,
  4869                            alloc->in(AllocateNode::AllocSize));
  4872     generate_slow_arraycopy(adr_type,
  4873                             src, src_offset, dest, dest_offset,
  4874                             copy_length);
  4876     result_region->init_req(slow_call_path, control());
  4877     result_i_o   ->init_req(slow_call_path, i_o());
  4878     result_memory->init_req(slow_call_path, memory(adr_type));
  4881   // Remove unused edges.
  4882   for (uint i = 1; i < result_region->req(); i++) {
  4883     if (result_region->in(i) == NULL)
  4884       result_region->init_req(i, top());
  4887   // Finished; return the combined state.
  4888   set_control( _gvn.transform(result_region) );
  4889   set_i_o(     _gvn.transform(result_i_o)    );
  4890   set_memory(  _gvn.transform(result_memory), adr_type );
  4892   // The memory edges above are precise in order to model effects around
  4893   // array copies accurately to allow value numbering of field loads around
  4894   // arraycopy.  Such field loads, both before and after, are common in Java
  4895   // collections and similar classes involving header/array data structures.
  4896   //
  4897   // But with low number of register or when some registers are used or killed
  4898   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4899   // The next memory barrier is added to avoid it. If the arraycopy can be
  4900   // optimized away (which it can, sometimes) then we can manually remove
  4901   // the membar also.
  4902   //
  4903   // Do not let reads from the cloned object float above the arraycopy.
  4904   if (InsertMemBarAfterArraycopy || alloc != NULL)
  4905     insert_mem_bar(Op_MemBarCPUOrder);
  4909 // Helper function which determines if an arraycopy immediately follows
  4910 // an allocation, with no intervening tests or other escapes for the object.
  4911 AllocateArrayNode*
  4912 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4913                                            RegionNode* slow_region) {
  4914   if (stopped())             return NULL;  // no fast path
  4915   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4917   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4918   if (alloc == NULL)  return NULL;
  4920   Node* rawmem = memory(Compile::AliasIdxRaw);
  4921   // Is the allocation's memory state untouched?
  4922   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4923     // Bail out if there have been raw-memory effects since the allocation.
  4924     // (Example:  There might have been a call or safepoint.)
  4925     return NULL;
  4927   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4928   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4929     return NULL;
  4932   // There must be no unexpected observers of this allocation.
  4933   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4934     Node* obs = ptr->fast_out(i);
  4935     if (obs != this->map()) {
  4936       return NULL;
  4940   // This arraycopy must unconditionally follow the allocation of the ptr.
  4941   Node* alloc_ctl = ptr->in(0);
  4942   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4944   Node* ctl = control();
  4945   while (ctl != alloc_ctl) {
  4946     // There may be guards which feed into the slow_region.
  4947     // Any other control flow means that we might not get a chance
  4948     // to finish initializing the allocated object.
  4949     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4950       IfNode* iff = ctl->in(0)->as_If();
  4951       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4952       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4953       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4954         ctl = iff->in(0);       // This test feeds the known slow_region.
  4955         continue;
  4957       // One more try:  Various low-level checks bottom out in
  4958       // uncommon traps.  If the debug-info of the trap omits
  4959       // any reference to the allocation, as we've already
  4960       // observed, then there can be no objection to the trap.
  4961       bool found_trap = false;
  4962       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  4963         Node* obs = not_ctl->fast_out(j);
  4964         if (obs->in(0) == not_ctl && obs->is_Call() &&
  4965             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  4966           found_trap = true; break;
  4969       if (found_trap) {
  4970         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  4971         continue;
  4974     return NULL;
  4977   // If we get this far, we have an allocation which immediately
  4978   // precedes the arraycopy, and we can take over zeroing the new object.
  4979   // The arraycopy will finish the initialization, and provide
  4980   // a new control state to which we will anchor the destination pointer.
  4982   return alloc;
  4985 // Helper for initialization of arrays, creating a ClearArray.
  4986 // It writes zero bits in [start..end), within the body of an array object.
  4987 // The memory effects are all chained onto the 'adr_type' alias category.
  4988 //
  4989 // Since the object is otherwise uninitialized, we are free
  4990 // to put a little "slop" around the edges of the cleared area,
  4991 // as long as it does not go back into the array's header,
  4992 // or beyond the array end within the heap.
  4993 //
  4994 // The lower edge can be rounded down to the nearest jint and the
  4995 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  4996 //
  4997 // Arguments:
  4998 //   adr_type           memory slice where writes are generated
  4999 //   dest               oop of the destination array
  5000 //   basic_elem_type    element type of the destination
  5001 //   slice_idx          array index of first element to store
  5002 //   slice_len          number of elements to store (or NULL)
  5003 //   dest_size          total size in bytes of the array object
  5004 //
  5005 // Exactly one of slice_len or dest_size must be non-NULL.
  5006 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5007 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5008 void
  5009 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5010                                      Node* dest,
  5011                                      BasicType basic_elem_type,
  5012                                      Node* slice_idx,
  5013                                      Node* slice_len,
  5014                                      Node* dest_size) {
  5015   // one or the other but not both of slice_len and dest_size:
  5016   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5017   if (slice_len == NULL)  slice_len = top();
  5018   if (dest_size == NULL)  dest_size = top();
  5020   // operate on this memory slice:
  5021   Node* mem = memory(adr_type); // memory slice to operate on
  5023   // scaling and rounding of indexes:
  5024   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5025   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5026   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5027   int bump_bit  = (-1 << scale) & BytesPerInt;
  5029   // determine constant starts and ends
  5030   const intptr_t BIG_NEG = -128;
  5031   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5032   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5033   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5034   if (slice_len_con == 0) {
  5035     return;                     // nothing to do here
  5037   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5038   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5039   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5040     assert(end_con < 0, "not two cons");
  5041     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5042                        BytesPerLong);
  5045   if (start_con >= 0 && end_con >= 0) {
  5046     // Constant start and end.  Simple.
  5047     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5048                                        start_con, end_con, &_gvn);
  5049   } else if (start_con >= 0 && dest_size != top()) {
  5050     // Constant start, pre-rounded end after the tail of the array.
  5051     Node* end = dest_size;
  5052     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5053                                        start_con, end, &_gvn);
  5054   } else if (start_con >= 0 && slice_len != top()) {
  5055     // Constant start, non-constant end.  End needs rounding up.
  5056     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5057     intptr_t end_base  = abase + (slice_idx_con << scale);
  5058     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5059     Node*    end       = ConvI2X(slice_len);
  5060     if (scale != 0)
  5061       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5062     end_base += end_round;
  5063     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5064     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5065     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5066                                        start_con, end, &_gvn);
  5067   } else if (start_con < 0 && dest_size != top()) {
  5068     // Non-constant start, pre-rounded end after the tail of the array.
  5069     // This is almost certainly a "round-to-end" operation.
  5070     Node* start = slice_idx;
  5071     start = ConvI2X(start);
  5072     if (scale != 0)
  5073       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5074     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5075     if ((bump_bit | clear_low) != 0) {
  5076       int to_clear = (bump_bit | clear_low);
  5077       // Align up mod 8, then store a jint zero unconditionally
  5078       // just before the mod-8 boundary.
  5079       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5080           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5081         bump_bit = 0;
  5082         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5083       } else {
  5084         // Bump 'start' up to (or past) the next jint boundary:
  5085         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5086         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5088       // Round bumped 'start' down to jlong boundary in body of array.
  5089       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5090       if (bump_bit != 0) {
  5091         // Store a zero to the immediately preceding jint:
  5092         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5093         Node* p1 = basic_plus_adr(dest, x1);
  5094         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5095         mem = _gvn.transform(mem);
  5098     Node* end = dest_size; // pre-rounded
  5099     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5100                                        start, end, &_gvn);
  5101   } else {
  5102     // Non-constant start, unrounded non-constant end.
  5103     // (Nobody zeroes a random midsection of an array using this routine.)
  5104     ShouldNotReachHere();       // fix caller
  5107   // Done.
  5108   set_memory(mem, adr_type);
  5112 bool
  5113 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5114                                          BasicType basic_elem_type,
  5115                                          AllocateNode* alloc,
  5116                                          Node* src,  Node* src_offset,
  5117                                          Node* dest, Node* dest_offset,
  5118                                          Node* dest_size) {
  5119   // See if there is an advantage from block transfer.
  5120   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5121   if (scale >= LogBytesPerLong)
  5122     return false;               // it is already a block transfer
  5124   // Look at the alignment of the starting offsets.
  5125   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5126   const intptr_t BIG_NEG = -128;
  5127   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5129   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
  5130   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
  5131   if (src_off < 0 || dest_off < 0)
  5132     // At present, we can only understand constants.
  5133     return false;
  5135   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5136     // Non-aligned; too bad.
  5137     // One more chance:  Pick off an initial 32-bit word.
  5138     // This is a common case, since abase can be odd mod 8.
  5139     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5140         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5141       Node* sptr = basic_plus_adr(src,  src_off);
  5142       Node* dptr = basic_plus_adr(dest, dest_off);
  5143       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5144       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5145       src_off += BytesPerInt;
  5146       dest_off += BytesPerInt;
  5147     } else {
  5148       return false;
  5151   assert(src_off % BytesPerLong == 0, "");
  5152   assert(dest_off % BytesPerLong == 0, "");
  5154   // Do this copy by giant steps.
  5155   Node* sptr  = basic_plus_adr(src,  src_off);
  5156   Node* dptr  = basic_plus_adr(dest, dest_off);
  5157   Node* countx = dest_size;
  5158   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5159   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5161   bool disjoint_bases = true;   // since alloc != NULL
  5162   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5163                                sptr, NULL, dptr, NULL, countx);
  5165   return true;
  5169 // Helper function; generates code for the slow case.
  5170 // We make a call to a runtime method which emulates the native method,
  5171 // but without the native wrapper overhead.
  5172 void
  5173 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5174                                         Node* src,  Node* src_offset,
  5175                                         Node* dest, Node* dest_offset,
  5176                                         Node* copy_length) {
  5177   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5178                                  OptoRuntime::slow_arraycopy_Type(),
  5179                                  OptoRuntime::slow_arraycopy_Java(),
  5180                                  "slow_arraycopy", adr_type,
  5181                                  src, src_offset, dest, dest_offset,
  5182                                  copy_length);
  5184   // Handle exceptions thrown by this fellow:
  5185   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5188 // Helper function; generates code for cases requiring runtime checks.
  5189 Node*
  5190 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5191                                              Node* dest_elem_klass,
  5192                                              Node* src,  Node* src_offset,
  5193                                              Node* dest, Node* dest_offset,
  5194                                              Node* copy_length) {
  5195   if (stopped())  return NULL;
  5197   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  5198   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5199     return NULL;
  5202   // Pick out the parameters required to perform a store-check
  5203   // for the target array.  This is an optimistic check.  It will
  5204   // look in each non-null element's class, at the desired klass's
  5205   // super_check_offset, for the desired klass.
  5206   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5207   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5208   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5209   Node* check_offset = _gvn.transform(n3);
  5210   Node* check_value  = dest_elem_klass;
  5212   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5213   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5215   // (We know the arrays are never conjoint, because their types differ.)
  5216   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5217                                  OptoRuntime::checkcast_arraycopy_Type(),
  5218                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5219                                  // five arguments, of which two are
  5220                                  // intptr_t (jlong in LP64)
  5221                                  src_start, dest_start,
  5222                                  copy_length XTOP,
  5223                                  check_offset XTOP,
  5224                                  check_value);
  5226   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5230 // Helper function; generates code for cases requiring runtime checks.
  5231 Node*
  5232 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5233                                            Node* src,  Node* src_offset,
  5234                                            Node* dest, Node* dest_offset,
  5235                                            Node* copy_length) {
  5236   if (stopped())  return NULL;
  5238   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5239   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5240     return NULL;
  5243   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5244                     OptoRuntime::generic_arraycopy_Type(),
  5245                     copyfunc_addr, "generic_arraycopy", adr_type,
  5246                     src, src_offset, dest, dest_offset, copy_length);
  5248   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5251 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5252 void
  5253 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5254                                              BasicType basic_elem_type,
  5255                                              bool disjoint_bases,
  5256                                              Node* src,  Node* src_offset,
  5257                                              Node* dest, Node* dest_offset,
  5258                                              Node* copy_length) {
  5259   if (stopped())  return;               // nothing to do
  5261   Node* src_start  = src;
  5262   Node* dest_start = dest;
  5263   if (src_offset != NULL || dest_offset != NULL) {
  5264     assert(src_offset != NULL && dest_offset != NULL, "");
  5265     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5266     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5269   // Figure out which arraycopy runtime method to call.
  5270   const char* copyfunc_name = "arraycopy";
  5271   address     copyfunc_addr =
  5272       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5273                           disjoint_bases, copyfunc_name);
  5275   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5276   make_runtime_call(RC_LEAF|RC_NO_FP,
  5277                     OptoRuntime::fast_arraycopy_Type(),
  5278                     copyfunc_addr, copyfunc_name, adr_type,
  5279                     src_start, dest_start, copy_length XTOP);

mercurial