src/share/vm/code/relocInfo.cpp

Wed, 25 Aug 2010 05:27:54 -0700

author
twisti
date
Wed, 25 Aug 2010 05:27:54 -0700
changeset 2103
3e8fbc61cee8
parent 1934
e9ff18c4ace7
child 2117
0878d7bae69f
permissions
-rw-r--r--

6978355: renaming for 6961697
Summary: This is the renaming part of 6961697 to keep the actual changes small for review.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_relocInfo.cpp.incl"
    29 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
    32 // Implementation of relocInfo
    34 #ifdef ASSERT
    35 relocInfo::relocInfo(relocType t, int off, int f) {
    36   assert(t != data_prefix_tag, "cannot build a prefix this way");
    37   assert((t & type_mask) == t, "wrong type");
    38   assert((f & format_mask) == f, "wrong format");
    39   assert(off >= 0 && off < offset_limit(), "offset out off bounds");
    40   assert((off & (offset_unit-1)) == 0, "misaligned offset");
    41   (*this) = relocInfo(t, RAW_BITS, off, f);
    42 }
    43 #endif
    45 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
    46   relocInfo* data = this+1;  // here's where the data might go
    47   dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
    48   reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
    49   relocInfo* data_limit = dest->locs_end();
    50   if (data_limit > data) {
    51     relocInfo suffix = (*this);
    52     data_limit = this->finish_prefix((short*) data_limit);
    53     // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
    54     *data_limit = suffix;
    55     dest->set_locs_end(data_limit+1);
    56   }
    57 }
    59 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
    60   assert(sizeof(relocInfo) == sizeof(short), "change this code");
    61   short* p = (short*)(this+1);
    62   assert(prefix_limit >= p, "must be a valid span of data");
    63   int plen = prefix_limit - p;
    64   if (plen == 0) {
    65     debug_only(_value = 0xFFFF);
    66     return this;                         // no data: remove self completely
    67   }
    68   if (plen == 1 && fits_into_immediate(p[0])) {
    69     (*this) = immediate_relocInfo(p[0]); // move data inside self
    70     return this+1;
    71   }
    72   // cannot compact, so just update the count and return the limit pointer
    73   (*this) = prefix_relocInfo(plen);   // write new datalen
    74   assert(data() + datalen() == prefix_limit, "pointers must line up");
    75   return (relocInfo*)prefix_limit;
    76 }
    79 void relocInfo::set_type(relocType t) {
    80   int old_offset = addr_offset();
    81   int old_format = format();
    82   (*this) = relocInfo(t, old_offset, old_format);
    83   assert(type()==(int)t, "sanity check");
    84   assert(addr_offset()==old_offset, "sanity check");
    85   assert(format()==old_format, "sanity check");
    86 }
    89 void relocInfo::set_format(int f) {
    90   int old_offset = addr_offset();
    91   assert((f & format_mask) == f, "wrong format");
    92   _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
    93   assert(addr_offset()==old_offset, "sanity check");
    94 }
    97 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
    98   bool found = false;
    99   while (itr->next() && !found) {
   100     if (itr->addr() == pc) {
   101       assert(itr->type()==old_type, "wrong relocInfo type found");
   102       itr->current()->set_type(new_type);
   103       found=true;
   104     }
   105   }
   106   assert(found, "no relocInfo found for pc");
   107 }
   110 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
   111   change_reloc_info_for_address(itr, pc, old_type, none);
   112 }
   115 // ----------------------------------------------------------------------------------------------------
   116 // Implementation of RelocIterator
   118 void RelocIterator::initialize(nmethod* nm, address begin, address limit) {
   119   initialize_misc();
   121   if (nm == NULL && begin != NULL) {
   122     // allow nmethod to be deduced from beginning address
   123     CodeBlob* cb = CodeCache::find_blob(begin);
   124     nm = cb->as_nmethod_or_null();
   125   }
   126   assert(nm != NULL, "must be able to deduce nmethod from other arguments");
   128   _code    = nm;
   129   _current = nm->relocation_begin() - 1;
   130   _end     = nm->relocation_end();
   131   _addr    = (address) nm->code_begin();
   133   assert(!has_current(), "just checking");
   134   assert(begin == NULL || begin >= nm->code_begin(), "in bounds");
   135   assert(limit == NULL || limit <= nm->code_end(),   "in bounds");
   136   set_limits(begin, limit);
   137 }
   140 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
   141   initialize_misc();
   143   _current = cs->locs_start()-1;
   144   _end     = cs->locs_end();
   145   _addr    = cs->start();
   146   _code    = NULL; // Not cb->blob();
   148   CodeBuffer* cb = cs->outer();
   149   assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
   150   for (int n = 0; n < (int)SECT_LIMIT; n++) {
   151     _section_start[n] = cb->code_section(n)->start();
   152   }
   154   assert(!has_current(), "just checking");
   156   assert(begin == NULL || begin >= cs->start(), "in bounds");
   157   assert(limit == NULL || limit <= cs->end(),   "in bounds");
   158   set_limits(begin, limit);
   159 }
   162 enum { indexCardSize = 128 };
   163 struct RelocIndexEntry {
   164   jint addr_offset;          // offset from header_end of an addr()
   165   jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
   166 };
   169 static inline int num_cards(int code_size) {
   170   return (code_size-1) / indexCardSize;
   171 }
   174 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
   175   if (!UseRelocIndex)  return locs_size;   // no index
   176   code_size = round_to(code_size, oopSize);
   177   locs_size = round_to(locs_size, oopSize);
   178   int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
   179   // format of indexed relocs:
   180   //   relocation_begin:   relocInfo ...
   181   //   index:              (addr,reloc#) ...
   182   //                       indexSize           :relocation_end
   183   return locs_size + index_size + BytesPerInt;
   184 }
   187 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
   188   address relocation_begin = (address)dest_begin;
   189   address relocation_end   = (address)dest_end;
   190   int     total_size       = relocation_end - relocation_begin;
   191   int     locs_size        = dest_count * sizeof(relocInfo);
   192   if (!UseRelocIndex) {
   193     Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
   194     return;
   195   }
   196   int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
   197   int     ncards           = index_size / sizeof(RelocIndexEntry);
   198   assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
   199   assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
   200   jint*   index_size_addr  = (jint*)relocation_end - 1;
   202   assert(sizeof(jint) == BytesPerInt, "change this code");
   204   *index_size_addr = index_size;
   205   if (index_size != 0) {
   206     assert(index_size > 0, "checkin'");
   208     RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
   209     assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
   211     // walk over the relocations, and fill in index entries as we go
   212     RelocIterator iter;
   213     const address    initial_addr    = NULL;
   214     relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
   216     iter._code    = NULL;
   217     iter._addr    = initial_addr;
   218     iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
   219     iter._current = initial_current;
   220     iter._end     = dest_begin + dest_count;
   222     int i = 0;
   223     address next_card_addr = (address)indexCardSize;
   224     int addr_offset = 0;
   225     int reloc_offset = 0;
   226     while (true) {
   227       // Checkpoint the iterator before advancing it.
   228       addr_offset  = iter._addr    - initial_addr;
   229       reloc_offset = iter._current - initial_current;
   230       if (!iter.next())  break;
   231       while (iter.addr() >= next_card_addr) {
   232         index[i].addr_offset  = addr_offset;
   233         index[i].reloc_offset = reloc_offset;
   234         i++;
   235         next_card_addr += indexCardSize;
   236       }
   237     }
   238     while (i < ncards) {
   239       index[i].addr_offset  = addr_offset;
   240       index[i].reloc_offset = reloc_offset;
   241       i++;
   242     }
   243   }
   244 }
   247 void RelocIterator::set_limits(address begin, address limit) {
   248   int index_size = 0;
   249   if (UseRelocIndex && _code != NULL) {
   250     index_size = ((jint*)_end)[-1];
   251     _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
   252   }
   254   _limit = limit;
   256   // the limit affects this next stuff:
   257   if (begin != NULL) {
   258 #ifdef ASSERT
   259     // In ASSERT mode we do not actually use the index, but simply
   260     // check that its contents would have led us to the right answer.
   261     address addrCheck = _addr;
   262     relocInfo* infoCheck = _current;
   263 #endif // ASSERT
   264     if (index_size > 0) {
   265       // skip ahead
   266       RelocIndexEntry* index       = (RelocIndexEntry*)_end;
   267       RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
   268       assert(_addr == _code->code_begin(), "_addr must be unadjusted");
   269       int card = (begin - _addr) / indexCardSize;
   270       if (card > 0) {
   271         if (index+card-1 < index_limit)  index += card-1;
   272         else                             index = index_limit - 1;
   273 #ifdef ASSERT
   274         addrCheck = _addr    + index->addr_offset;
   275         infoCheck = _current + index->reloc_offset;
   276 #else
   277         // Advance the iterator immediately to the last valid state
   278         // for the previous card.  Calling "next" will then advance
   279         // it to the first item on the required card.
   280         _addr    += index->addr_offset;
   281         _current += index->reloc_offset;
   282 #endif // ASSERT
   283       }
   284     }
   286     relocInfo* backup;
   287     address    backup_addr;
   288     while (true) {
   289       backup      = _current;
   290       backup_addr = _addr;
   291 #ifdef ASSERT
   292       if (backup == infoCheck) {
   293         assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
   294       } else {
   295         assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
   296       }
   297 #endif // ASSERT
   298       if (!next() || addr() >= begin) break;
   299     }
   300     assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
   301     assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
   302     // At this point, either we are at the first matching record,
   303     // or else there is no such record, and !has_current().
   304     // In either case, revert to the immediatly preceding state.
   305     _current = backup;
   306     _addr    = backup_addr;
   307     set_has_current(false);
   308   }
   309 }
   312 void RelocIterator::set_limit(address limit) {
   313   address code_end = (address)code() + code()->size();
   314   assert(limit == NULL || limit <= code_end, "in bounds");
   315   _limit = limit;
   316 }
   319 void PatchingRelocIterator:: prepass() {
   320   // turn breakpoints off during patching
   321   _init_state = (*this);        // save cursor
   322   while (next()) {
   323     if (type() == relocInfo::breakpoint_type) {
   324       breakpoint_reloc()->set_active(false);
   325     }
   326   }
   327   (RelocIterator&)(*this) = _init_state;        // reset cursor for client
   328 }
   331 void PatchingRelocIterator:: postpass() {
   332   // turn breakpoints back on after patching
   333   (RelocIterator&)(*this) = _init_state;        // reset cursor again
   334   while (next()) {
   335     if (type() == relocInfo::breakpoint_type) {
   336       breakpoint_Relocation* bpt = breakpoint_reloc();
   337       bpt->set_active(bpt->enabled());
   338     }
   339   }
   340 }
   343 // All the strange bit-encodings are in here.
   344 // The idea is to encode relocation data which are small integers
   345 // very efficiently (a single extra halfword).  Larger chunks of
   346 // relocation data need a halfword header to hold their size.
   347 void RelocIterator::advance_over_prefix() {
   348   if (_current->is_datalen()) {
   349     _data    = (short*) _current->data();
   350     _datalen =          _current->datalen();
   351     _current += _datalen + 1;   // skip the embedded data & header
   352   } else {
   353     _databuf = _current->immediate();
   354     _data = &_databuf;
   355     _datalen = 1;
   356     _current++;                 // skip the header
   357   }
   358   // The client will see the following relocInfo, whatever that is.
   359   // It is the reloc to which the preceding data applies.
   360 }
   363 address RelocIterator::compute_section_start(int n) const {
   364 // This routine not only computes a section start, but also
   365 // memoizes it for later.
   366 #define CACHE ((RelocIterator*)this)->_section_start[n]
   367   CodeBlob* cb = code();
   368   guarantee(cb != NULL, "must have a code blob");
   369   if (n == CodeBuffer::SECT_INSTS)
   370     return CACHE = cb->code_begin();
   371   assert(cb->is_nmethod(), "only nmethods have these sections");
   372   nmethod* nm = (nmethod*) cb;
   373   address res = NULL;
   374   switch (n) {
   375   case CodeBuffer::SECT_STUBS:
   376     res = nm->stub_begin();
   377     break;
   378   case CodeBuffer::SECT_CONSTS:
   379     res = nm->consts_begin();
   380     break;
   381   default:
   382     ShouldNotReachHere();
   383   }
   384   assert(nm->contains(res) || res == nm->code_end(), "tame pointer");
   385   CACHE = res;
   386   return res;
   387 #undef CACHE
   388 }
   391 Relocation* RelocIterator::reloc() {
   392   // (take the "switch" out-of-line)
   393   relocInfo::relocType t = type();
   394   if (false) {}
   395   #define EACH_TYPE(name)                             \
   396   else if (t == relocInfo::name##_type) {             \
   397     return name##_reloc();                            \
   398   }
   399   APPLY_TO_RELOCATIONS(EACH_TYPE);
   400   #undef EACH_TYPE
   401   assert(t == relocInfo::none, "must be padding");
   402   return new(_rh) Relocation();
   403 }
   406 //////// Methods for flyweight Relocation types
   409 RelocationHolder RelocationHolder::plus(int offset) const {
   410   if (offset != 0) {
   411     switch (type()) {
   412     case relocInfo::none:
   413       break;
   414     case relocInfo::oop_type:
   415       {
   416         oop_Relocation* r = (oop_Relocation*)reloc();
   417         return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
   418       }
   419     default:
   420       ShouldNotReachHere();
   421     }
   422   }
   423   return (*this);
   424 }
   427 void Relocation::guarantee_size() {
   428   guarantee(false, "Make _relocbuf bigger!");
   429 }
   431     // some relocations can compute their own values
   432 address Relocation::value() {
   433   ShouldNotReachHere();
   434   return NULL;
   435 }
   438 void Relocation::set_value(address x) {
   439   ShouldNotReachHere();
   440 }
   443 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
   444   if (rtype == relocInfo::none)  return RelocationHolder::none;
   445   relocInfo ri = relocInfo(rtype, 0);
   446   RelocIterator itr;
   447   itr.set_current(ri);
   448   itr.reloc();
   449   return itr._rh;
   450 }
   453 static inline bool is_index(intptr_t index) {
   454   return 0 < index && index < os::vm_page_size();
   455 }
   458 int32_t Relocation::runtime_address_to_index(address runtime_address) {
   459   assert(!is_index((intptr_t)runtime_address), "must not look like an index");
   461   if (runtime_address == NULL)  return 0;
   463   StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
   464   if (p != NULL && p->begin() == runtime_address) {
   465     assert(is_index(p->index()), "there must not be too many stubs");
   466     return (int32_t)p->index();
   467   } else {
   468     // Known "miscellaneous" non-stub pointers:
   469     // os::get_polling_page(), SafepointSynchronize::address_of_state()
   470     if (PrintRelocations) {
   471       tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
   472     }
   473 #ifndef _LP64
   474     return (int32_t) (intptr_t)runtime_address;
   475 #else
   476     // didn't fit return non-index
   477     return -1;
   478 #endif /* _LP64 */
   479   }
   480 }
   483 address Relocation::index_to_runtime_address(int32_t index) {
   484   if (index == 0)  return NULL;
   486   if (is_index(index)) {
   487     StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
   488     assert(p != NULL, "there must be a stub for this index");
   489     return p->begin();
   490   } else {
   491 #ifndef _LP64
   492     // this only works on 32bit machines
   493     return (address) ((intptr_t) index);
   494 #else
   495     fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
   496     return NULL;
   497 #endif /* _LP64 */
   498   }
   499 }
   501 address Relocation::old_addr_for(address newa,
   502                                  const CodeBuffer* src, CodeBuffer* dest) {
   503   int sect = dest->section_index_of(newa);
   504   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   505   address ostart = src->code_section(sect)->start();
   506   address nstart = dest->code_section(sect)->start();
   507   return ostart + (newa - nstart);
   508 }
   510 address Relocation::new_addr_for(address olda,
   511                                  const CodeBuffer* src, CodeBuffer* dest) {
   512   debug_only(const CodeBuffer* src0 = src);
   513   int sect = CodeBuffer::SECT_NONE;
   514   // Look for olda in the source buffer, and all previous incarnations
   515   // if the source buffer has been expanded.
   516   for (; src != NULL; src = src->before_expand()) {
   517     sect = src->section_index_of(olda);
   518     if (sect != CodeBuffer::SECT_NONE)  break;
   519   }
   520   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   521   address ostart = src->code_section(sect)->start();
   522   address nstart = dest->code_section(sect)->start();
   523   return nstart + (olda - ostart);
   524 }
   526 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
   527   address addr0 = addr;
   528   if (addr0 == NULL || dest->allocates2(addr0))  return;
   529   CodeBuffer* cb = dest->outer();
   530   addr = new_addr_for(addr0, cb, cb);
   531   assert(allow_other_sections || dest->contains2(addr),
   532          "addr must be in required section");
   533 }
   536 void CallRelocation::set_destination(address x) {
   537   pd_set_call_destination(x);
   538 }
   540 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   541   // Usually a self-relative reference to an external routine.
   542   // On some platforms, the reference is absolute (not self-relative).
   543   // The enhanced use of pd_call_destination sorts this all out.
   544   address orig_addr = old_addr_for(addr(), src, dest);
   545   address callee    = pd_call_destination(orig_addr);
   546   // Reassert the callee address, this time in the new copy of the code.
   547   pd_set_call_destination(callee);
   548 }
   551 //// pack/unpack methods
   553 void oop_Relocation::pack_data_to(CodeSection* dest) {
   554   short* p = (short*) dest->locs_end();
   555   p = pack_2_ints_to(p, _oop_index, _offset);
   556   dest->set_locs_end((relocInfo*) p);
   557 }
   560 void oop_Relocation::unpack_data() {
   561   unpack_2_ints(_oop_index, _offset);
   562 }
   565 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
   566   short*  p     = (short*) dest->locs_end();
   567   address point =          dest->locs_point();
   569   // Try to make a pointer NULL first.
   570   if (_oop_limit >= point &&
   571       _oop_limit <= point + NativeCall::instruction_size) {
   572     _oop_limit = NULL;
   573   }
   574   // If the _oop_limit is NULL, it "defaults" to the end of the call.
   575   // See ic_call_Relocation::oop_limit() below.
   577   normalize_address(_first_oop, dest);
   578   normalize_address(_oop_limit, dest);
   579   jint x0 = scaled_offset_null_special(_first_oop, point);
   580   jint x1 = scaled_offset_null_special(_oop_limit, point);
   581   p = pack_2_ints_to(p, x0, x1);
   582   dest->set_locs_end((relocInfo*) p);
   583 }
   586 void virtual_call_Relocation::unpack_data() {
   587   jint x0, x1; unpack_2_ints(x0, x1);
   588   address point = addr();
   589   _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
   590   _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
   591 }
   594 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
   595   short* p = (short*) dest->locs_end();
   596   CodeSection* insts = dest->outer()->insts();
   597   normalize_address(_static_call, insts);
   598   p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
   599   dest->set_locs_end((relocInfo*) p);
   600 }
   602 void static_stub_Relocation::unpack_data() {
   603   address base = binding()->section_start(CodeBuffer::SECT_INSTS);
   604   _static_call = address_from_scaled_offset(unpack_1_int(), base);
   605 }
   608 void external_word_Relocation::pack_data_to(CodeSection* dest) {
   609   short* p = (short*) dest->locs_end();
   610   int32_t index = runtime_address_to_index(_target);
   611 #ifndef _LP64
   612   p = pack_1_int_to(p, index);
   613 #else
   614   if (is_index(index)) {
   615     p = pack_2_ints_to(p, index, 0);
   616   } else {
   617     jlong t = (jlong) _target;
   618     int32_t lo = low(t);
   619     int32_t hi = high(t);
   620     p = pack_2_ints_to(p, lo, hi);
   621     DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
   622     assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
   623   }
   624 #endif /* _LP64 */
   625   dest->set_locs_end((relocInfo*) p);
   626 }
   629 void external_word_Relocation::unpack_data() {
   630 #ifndef _LP64
   631   _target = index_to_runtime_address(unpack_1_int());
   632 #else
   633   int32_t lo, hi;
   634   unpack_2_ints(lo, hi);
   635   jlong t = jlong_from(hi, lo);;
   636   if (is_index(t)) {
   637     _target = index_to_runtime_address(t);
   638   } else {
   639     _target = (address) t;
   640   }
   641 #endif /* _LP64 */
   642 }
   645 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
   646   short* p = (short*) dest->locs_end();
   647   normalize_address(_target, dest, true);
   649   // Check whether my target address is valid within this section.
   650   // If not, strengthen the relocation type to point to another section.
   651   int sindex = _section;
   652   if (sindex == CodeBuffer::SECT_NONE && _target != NULL
   653       && (!dest->allocates(_target) || _target == dest->locs_point())) {
   654     sindex = dest->outer()->section_index_of(_target);
   655     guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
   656     relocInfo* base = dest->locs_end() - 1;
   657     assert(base->type() == this->type(), "sanity");
   658     // Change the written type, to be section_word_type instead.
   659     base->set_type(relocInfo::section_word_type);
   660   }
   662   // Note: An internal_word relocation cannot refer to its own instruction,
   663   // because we reserve "0" to mean that the pointer itself is embedded
   664   // in the code stream.  We use a section_word relocation for such cases.
   666   if (sindex == CodeBuffer::SECT_NONE) {
   667     assert(type() == relocInfo::internal_word_type, "must be base class");
   668     guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
   669     jint x0 = scaled_offset_null_special(_target, dest->locs_point());
   670     assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
   671     p = pack_1_int_to(p, x0);
   672   } else {
   673     assert(_target != NULL, "sanity");
   674     CodeSection* sect = dest->outer()->code_section(sindex);
   675     guarantee(sect->allocates2(_target), "must be in correct section");
   676     address base = sect->start();
   677     jint offset = scaled_offset(_target, base);
   678     assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
   679     assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
   680     p = pack_1_int_to(p, (offset << section_width) | sindex);
   681   }
   683   dest->set_locs_end((relocInfo*) p);
   684 }
   687 void internal_word_Relocation::unpack_data() {
   688   jint x0 = unpack_1_int();
   689   _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
   690   _section = CodeBuffer::SECT_NONE;
   691 }
   694 void section_word_Relocation::unpack_data() {
   695   jint    x      = unpack_1_int();
   696   jint    offset = (x >> section_width);
   697   int     sindex = (x & ((1<<section_width)-1));
   698   address base   = binding()->section_start(sindex);
   700   _section = sindex;
   701   _target  = address_from_scaled_offset(offset, base);
   702 }
   705 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
   706   short* p = (short*) dest->locs_end();
   707   address point = dest->locs_point();
   709   *p++ = _bits;
   711   assert(_target != NULL, "sanity");
   713   if (internal())  normalize_address(_target, dest);
   715   jint target_bits =
   716     (jint)( internal() ? scaled_offset           (_target, point)
   717                        : runtime_address_to_index(_target) );
   718   if (settable()) {
   719     // save space for set_target later
   720     p = add_jint(p, target_bits);
   721   } else {
   722     p = add_var_int(p, target_bits);
   723   }
   725   for (int i = 0; i < instrlen(); i++) {
   726     // put placeholder words until bytes can be saved
   727     p = add_short(p, (short)0x7777);
   728   }
   730   dest->set_locs_end((relocInfo*) p);
   731 }
   734 void breakpoint_Relocation::unpack_data() {
   735   _bits = live_bits();
   737   int targetlen = datalen() - 1 - instrlen();
   738   jint target_bits = 0;
   739   if (targetlen == 0)       target_bits = 0;
   740   else if (targetlen == 1)  target_bits = *(data()+1);
   741   else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
   742   else                      { ShouldNotReachHere(); }
   744   _target = internal() ? address_from_scaled_offset(target_bits, addr())
   745                        : index_to_runtime_address  (target_bits);
   746 }
   749 //// miscellaneous methods
   750 oop* oop_Relocation::oop_addr() {
   751   int n = _oop_index;
   752   if (n == 0) {
   753     // oop is stored in the code stream
   754     return (oop*) pd_address_in_code();
   755   } else {
   756     // oop is stored in table at nmethod::oops_begin
   757     return code()->oop_addr_at(n);
   758   }
   759 }
   762 oop oop_Relocation::oop_value() {
   763   oop v = *oop_addr();
   764   // clean inline caches store a special pseudo-null
   765   if (v == (oop)Universe::non_oop_word())  v = NULL;
   766   return v;
   767 }
   770 void oop_Relocation::fix_oop_relocation() {
   771   if (!oop_is_immediate()) {
   772     // get the oop from the pool, and re-insert it into the instruction:
   773     set_value(value());
   774   }
   775 }
   778 RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop,
   779                                                 oop* &oop_addr, bool *is_optimized) {
   780   assert(ic_call != NULL, "ic_call address must be set");
   781   assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
   782   if (nm == NULL) {
   783     CodeBlob* code;
   784     if (ic_call != NULL) {
   785       code = CodeCache::find_blob(ic_call);
   786     } else if (first_oop != NULL) {
   787       code = CodeCache::find_blob(first_oop);
   788     }
   789     nm = code->as_nmethod_or_null();
   790     assert(nm != NULL, "address to parse must be in nmethod");
   791   }
   792   assert(ic_call   == NULL || nm->contains(ic_call),   "must be in nmethod");
   793   assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod");
   795   address oop_limit = NULL;
   797   if (ic_call != NULL) {
   798     // search for the ic_call at the given address
   799     RelocIterator iter(nm, ic_call, ic_call+1);
   800     bool ret = iter.next();
   801     assert(ret == true, "relocInfo must exist at this address");
   802     assert(iter.addr() == ic_call, "must find ic_call");
   803     if (iter.type() == relocInfo::virtual_call_type) {
   804       virtual_call_Relocation* r = iter.virtual_call_reloc();
   805       first_oop = r->first_oop();
   806       oop_limit = r->oop_limit();
   807       *is_optimized = false;
   808     } else {
   809       assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
   810       *is_optimized = true;
   811       oop_addr = NULL;
   812       first_oop = NULL;
   813       return iter;
   814     }
   815   }
   817   // search for the first_oop, to get its oop_addr
   818   RelocIterator all_oops(nm, first_oop);
   819   RelocIterator iter = all_oops;
   820   iter.set_limit(first_oop+1);
   821   bool found_oop = false;
   822   while (iter.next()) {
   823     if (iter.type() == relocInfo::oop_type) {
   824       assert(iter.addr() == first_oop, "must find first_oop");
   825       oop_addr = iter.oop_reloc()->oop_addr();
   826       found_oop = true;
   827       break;
   828     }
   829   }
   830   assert(found_oop, "must find first_oop");
   832   bool did_reset = false;
   833   while (ic_call == NULL) {
   834     // search forward for the ic_call matching the given first_oop
   835     while (iter.next()) {
   836       if (iter.type() == relocInfo::virtual_call_type) {
   837         virtual_call_Relocation* r = iter.virtual_call_reloc();
   838         if (r->first_oop() == first_oop) {
   839           ic_call   = r->addr();
   840           oop_limit = r->oop_limit();
   841           break;
   842         }
   843       }
   844     }
   845     guarantee(!did_reset, "cannot find ic_call");
   846     iter = RelocIterator(nm); // search the whole nmethod
   847     did_reset = true;
   848   }
   850   assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
   851   all_oops.set_limit(oop_limit);
   852   return all_oops;
   853 }
   856 address virtual_call_Relocation::first_oop() {
   857   assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
   858   return _first_oop;
   859 }
   862 address virtual_call_Relocation::oop_limit() {
   863   if (_oop_limit == NULL)
   864     return addr() + NativeCall::instruction_size;
   865   else
   866     return _oop_limit;
   867 }
   871 void virtual_call_Relocation::clear_inline_cache() {
   872   // No stubs for ICs
   873   // Clean IC
   874   ResourceMark rm;
   875   CompiledIC* icache = CompiledIC_at(this);
   876   icache->set_to_clean();
   877 }
   880 void opt_virtual_call_Relocation::clear_inline_cache() {
   881   // No stubs for ICs
   882   // Clean IC
   883   ResourceMark rm;
   884   CompiledIC* icache = CompiledIC_at(this);
   885   icache->set_to_clean();
   886 }
   889 address opt_virtual_call_Relocation::static_stub() {
   890   // search for the static stub who points back to this static call
   891   address static_call_addr = addr();
   892   RelocIterator iter(code());
   893   while (iter.next()) {
   894     if (iter.type() == relocInfo::static_stub_type) {
   895       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   896         return iter.addr();
   897       }
   898     }
   899   }
   900   return NULL;
   901 }
   904 void static_call_Relocation::clear_inline_cache() {
   905   // Safe call site info
   906   CompiledStaticCall* handler = compiledStaticCall_at(this);
   907   handler->set_to_clean();
   908 }
   911 address static_call_Relocation::static_stub() {
   912   // search for the static stub who points back to this static call
   913   address static_call_addr = addr();
   914   RelocIterator iter(code());
   915   while (iter.next()) {
   916     if (iter.type() == relocInfo::static_stub_type) {
   917       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   918         return iter.addr();
   919       }
   920     }
   921   }
   922   return NULL;
   923 }
   926 void static_stub_Relocation::clear_inline_cache() {
   927   // Call stub is only used when calling the interpreted code.
   928   // It does not really need to be cleared, except that we want to clean out the methodoop.
   929   CompiledStaticCall::set_stub_to_clean(this);
   930 }
   933 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   934   address target = _target;
   935   if (target == NULL) {
   936     // An absolute embedded reference to an external location,
   937     // which means there is nothing to fix here.
   938     return;
   939   }
   940   // Probably this reference is absolute, not relative, so the
   941   // following is probably a no-op.
   942   assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
   943   set_value(target);
   944 }
   947 address external_word_Relocation::target() {
   948   address target = _target;
   949   if (target == NULL) {
   950     target = pd_get_address_from_code();
   951   }
   952   return target;
   953 }
   956 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   957   address target = _target;
   958   if (target == NULL) {
   959     if (addr_in_const()) {
   960       target = new_addr_for(*(address*)addr(), src, dest);
   961     } else {
   962       target = new_addr_for(pd_get_address_from_code(), src, dest);
   963     }
   964   }
   965   set_value(target);
   966 }
   969 address internal_word_Relocation::target() {
   970   address target = _target;
   971   if (target == NULL) {
   972     target = pd_get_address_from_code();
   973   }
   974   return target;
   975 }
   978 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
   979   bool active    = false;
   980   bool enabled   = (kind == initialization);
   981   bool removable = (kind != safepoint);
   982   bool settable  = (target == NULL);
   984   int bits = kind;
   985   if (enabled)    bits |= enabled_state;
   986   if (internal)   bits |= internal_attr;
   987   if (removable)  bits |= removable_attr;
   988   if (settable)   bits |= settable_attr;
   990   _bits = bits | high_bit;
   991   _target = target;
   993   assert(this->kind()      == kind,      "kind encoded");
   994   assert(this->enabled()   == enabled,   "enabled encoded");
   995   assert(this->active()    == active,    "active encoded");
   996   assert(this->internal()  == internal,  "internal encoded");
   997   assert(this->removable() == removable, "removable encoded");
   998   assert(this->settable()  == settable,  "settable encoded");
   999 }
  1002 address breakpoint_Relocation::target() const {
  1003   return _target;
  1007 void breakpoint_Relocation::set_target(address x) {
  1008   assert(settable(), "must be settable");
  1009   jint target_bits =
  1010     (jint)(internal() ? scaled_offset           (x, addr())
  1011                       : runtime_address_to_index(x));
  1012   short* p = &live_bits() + 1;
  1013   p = add_jint(p, target_bits);
  1014   assert(p == instrs(), "new target must fit");
  1015   _target = x;
  1019 void breakpoint_Relocation::set_enabled(bool b) {
  1020   if (enabled() == b) return;
  1022   if (b) {
  1023     set_bits(bits() | enabled_state);
  1024   } else {
  1025     set_active(false);          // remove the actual breakpoint insn, if any
  1026     set_bits(bits() & ~enabled_state);
  1031 void breakpoint_Relocation::set_active(bool b) {
  1032   assert(!b || enabled(), "cannot activate a disabled breakpoint");
  1034   if (active() == b) return;
  1036   // %%% should probably seize a lock here (might not be the right lock)
  1037   //MutexLockerEx ml_patch(Patching_lock, true);
  1038   //if (active() == b)  return;         // recheck state after locking
  1040   if (b) {
  1041     set_bits(bits() | active_state);
  1042     if (instrlen() == 0)
  1043       fatal("breakpoints in original code must be undoable");
  1044     pd_swap_in_breakpoint (addr(), instrs(), instrlen());
  1045   } else {
  1046     set_bits(bits() & ~active_state);
  1047     pd_swap_out_breakpoint(addr(), instrs(), instrlen());
  1052 //---------------------------------------------------------------------------------
  1053 // Non-product code
  1055 #ifndef PRODUCT
  1057 static const char* reloc_type_string(relocInfo::relocType t) {
  1058   switch (t) {
  1059   #define EACH_CASE(name) \
  1060   case relocInfo::name##_type: \
  1061     return #name;
  1063   APPLY_TO_RELOCATIONS(EACH_CASE);
  1064   #undef EACH_CASE
  1066   case relocInfo::none:
  1067     return "none";
  1068   case relocInfo::data_prefix_tag:
  1069     return "prefix";
  1070   default:
  1071     return "UNKNOWN RELOC TYPE";
  1076 void RelocIterator::print_current() {
  1077   if (!has_current()) {
  1078     tty->print_cr("(no relocs)");
  1079     return;
  1081   tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
  1082              _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
  1083   if (current()->format() != 0)
  1084     tty->print(" format=%d", current()->format());
  1085   if (datalen() == 1) {
  1086     tty->print(" data=%d", data()[0]);
  1087   } else if (datalen() > 0) {
  1088     tty->print(" data={");
  1089     for (int i = 0; i < datalen(); i++) {
  1090       tty->print("%04x", data()[i] & 0xFFFF);
  1092     tty->print("}");
  1094   tty->print("]");
  1095   switch (type()) {
  1096   case relocInfo::oop_type:
  1098       oop_Relocation* r = oop_reloc();
  1099       oop* oop_addr  = NULL;
  1100       oop  raw_oop   = NULL;
  1101       oop  oop_value = NULL;
  1102       if (code() != NULL || r->oop_is_immediate()) {
  1103         oop_addr  = r->oop_addr();
  1104         raw_oop   = *oop_addr;
  1105         oop_value = r->oop_value();
  1107       tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
  1108                  oop_addr, (address)raw_oop, r->offset());
  1109       // Do not print the oop by default--we want this routine to
  1110       // work even during GC or other inconvenient times.
  1111       if (WizardMode && oop_value != NULL) {
  1112         tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
  1113         oop_value->print_value_on(tty);
  1115       break;
  1117   case relocInfo::external_word_type:
  1118   case relocInfo::internal_word_type:
  1119   case relocInfo::section_word_type:
  1121       DataRelocation* r = (DataRelocation*) reloc();
  1122       tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
  1123       break;
  1125   case relocInfo::static_call_type:
  1126   case relocInfo::runtime_call_type:
  1128       CallRelocation* r = (CallRelocation*) reloc();
  1129       tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
  1130       break;
  1132   case relocInfo::virtual_call_type:
  1134       virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
  1135       tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
  1136                  r->destination(), r->first_oop(), r->oop_limit());
  1137       break;
  1139   case relocInfo::static_stub_type:
  1141       static_stub_Relocation* r = (static_stub_Relocation*) reloc();
  1142       tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
  1143       break;
  1146   tty->cr();
  1150 void RelocIterator::print() {
  1151   RelocIterator save_this = (*this);
  1152   relocInfo* scan = _current;
  1153   if (!has_current())  scan += 1;  // nothing to scan here!
  1155   bool skip_next = has_current();
  1156   bool got_next;
  1157   while (true) {
  1158     got_next = (skip_next || next());
  1159     skip_next = false;
  1161     tty->print("         @" INTPTR_FORMAT ": ", scan);
  1162     relocInfo* newscan = _current+1;
  1163     if (!has_current())  newscan -= 1;  // nothing to scan here!
  1164     while (scan < newscan) {
  1165       tty->print("%04x", *(short*)scan & 0xFFFF);
  1166       scan++;
  1168     tty->cr();
  1170     if (!got_next)  break;
  1171     print_current();
  1174   (*this) = save_this;
  1177 // For the debugger:
  1178 extern "C"
  1179 void print_blob_locs(nmethod* nm) {
  1180   nm->print();
  1181   RelocIterator iter(nm);
  1182   iter.print();
  1184 extern "C"
  1185 void print_buf_locs(CodeBuffer* cb) {
  1186   FlagSetting fs(PrintRelocations, true);
  1187   cb->print();
  1189 #endif // !PRODUCT

mercurial