src/share/vm/c1/c1_Runtime1.cpp

Wed, 25 Aug 2010 05:27:54 -0700

author
twisti
date
Wed, 25 Aug 2010 05:27:54 -0700
changeset 2103
3e8fbc61cee8
parent 2036
126ea7725993
child 2138
d5d065957597
permissions
-rw-r--r--

6978355: renaming for 6961697
Summary: This is the renaming part of 6961697 to keep the actual changes small for review.
Reviewed-by: kvn, never

     1 /*
     2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Runtime1.cpp.incl"
    29 // Implementation of StubAssembler
    31 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    32   _name = name;
    33   _must_gc_arguments = false;
    34   _frame_size = no_frame_size;
    35   _num_rt_args = 0;
    36   _stub_id = stub_id;
    37 }
    40 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    41   _name = name;
    42   _must_gc_arguments = must_gc_arguments;
    43 }
    46 void StubAssembler::set_frame_size(int size) {
    47   if (_frame_size == no_frame_size) {
    48     _frame_size = size;
    49   }
    50   assert(_frame_size == size, "can't change the frame size");
    51 }
    54 void StubAssembler::set_num_rt_args(int args) {
    55   if (_num_rt_args == 0) {
    56     _num_rt_args = args;
    57   }
    58   assert(_num_rt_args == args, "can't change the number of args");
    59 }
    61 // Implementation of Runtime1
    63 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    64 const char *Runtime1::_blob_names[] = {
    65   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    66 };
    68 #ifndef PRODUCT
    69 // statistics
    70 int Runtime1::_generic_arraycopy_cnt = 0;
    71 int Runtime1::_primitive_arraycopy_cnt = 0;
    72 int Runtime1::_oop_arraycopy_cnt = 0;
    73 int Runtime1::_arraycopy_slowcase_cnt = 0;
    74 int Runtime1::_new_type_array_slowcase_cnt = 0;
    75 int Runtime1::_new_object_array_slowcase_cnt = 0;
    76 int Runtime1::_new_instance_slowcase_cnt = 0;
    77 int Runtime1::_new_multi_array_slowcase_cnt = 0;
    78 int Runtime1::_monitorenter_slowcase_cnt = 0;
    79 int Runtime1::_monitorexit_slowcase_cnt = 0;
    80 int Runtime1::_patch_code_slowcase_cnt = 0;
    81 int Runtime1::_throw_range_check_exception_count = 0;
    82 int Runtime1::_throw_index_exception_count = 0;
    83 int Runtime1::_throw_div0_exception_count = 0;
    84 int Runtime1::_throw_null_pointer_exception_count = 0;
    85 int Runtime1::_throw_class_cast_exception_count = 0;
    86 int Runtime1::_throw_incompatible_class_change_error_count = 0;
    87 int Runtime1::_throw_array_store_exception_count = 0;
    88 int Runtime1::_throw_count = 0;
    89 #endif
    91 // Simple helper to see if the caller of a runtime stub which
    92 // entered the VM has been deoptimized
    94 static bool caller_is_deopted() {
    95   JavaThread* thread = JavaThread::current();
    96   RegisterMap reg_map(thread, false);
    97   frame runtime_frame = thread->last_frame();
    98   frame caller_frame = runtime_frame.sender(&reg_map);
    99   assert(caller_frame.is_compiled_frame(), "must be compiled");
   100   return caller_frame.is_deoptimized_frame();
   101 }
   103 // Stress deoptimization
   104 static void deopt_caller() {
   105   if ( !caller_is_deopted()) {
   106     JavaThread* thread = JavaThread::current();
   107     RegisterMap reg_map(thread, false);
   108     frame runtime_frame = thread->last_frame();
   109     frame caller_frame = runtime_frame.sender(&reg_map);
   110     // bypass VM_DeoptimizeFrame and deoptimize the frame directly
   111     Deoptimization::deoptimize_frame(thread, caller_frame.id());
   112     assert(caller_is_deopted(), "Must be deoptimized");
   113   }
   114 }
   117 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
   118   assert(0 <= id && id < number_of_ids, "illegal stub id");
   119   ResourceMark rm;
   120   // create code buffer for code storage
   121   CodeBuffer code(buffer_blob);
   123   Compilation::setup_code_buffer(&code, 0);
   125   // create assembler for code generation
   126   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   127   // generate code for runtime stub
   128   OopMapSet* oop_maps;
   129   oop_maps = generate_code_for(id, sasm);
   130   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   131          "if stub has an oop map it must have a valid frame size");
   133 #ifdef ASSERT
   134   // Make sure that stubs that need oopmaps have them
   135   switch (id) {
   136     // These stubs don't need to have an oopmap
   137     case dtrace_object_alloc_id:
   138     case g1_pre_barrier_slow_id:
   139     case g1_post_barrier_slow_id:
   140     case slow_subtype_check_id:
   141     case fpu2long_stub_id:
   142     case unwind_exception_id:
   143 #ifndef TIERED
   144     case counter_overflow_id: // Not generated outside the tiered world
   145 #endif
   146 #if defined(SPARC) || defined(PPC)
   147     case handle_exception_nofpu_id:  // Unused on sparc
   148 #endif
   149       break;
   151     // All other stubs should have oopmaps
   152     default:
   153       assert(oop_maps != NULL, "must have an oopmap");
   154   }
   155 #endif
   157   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   158   sasm->align(BytesPerWord);
   159   // make sure all code is in code buffer
   160   sasm->flush();
   161   // create blob - distinguish a few special cases
   162   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   163                                                  &code,
   164                                                  CodeOffsets::frame_never_safe,
   165                                                  sasm->frame_size(),
   166                                                  oop_maps,
   167                                                  sasm->must_gc_arguments());
   168   // install blob
   169   assert(blob != NULL, "blob must exist");
   170   _blobs[id] = blob;
   171 }
   174 void Runtime1::initialize(BufferBlob* blob) {
   175   // platform-dependent initialization
   176   initialize_pd();
   177   // generate stubs
   178   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
   179   // printing
   180 #ifndef PRODUCT
   181   if (PrintSimpleStubs) {
   182     ResourceMark rm;
   183     for (int id = 0; id < number_of_ids; id++) {
   184       _blobs[id]->print();
   185       if (_blobs[id]->oop_maps() != NULL) {
   186         _blobs[id]->oop_maps()->print();
   187       }
   188     }
   189   }
   190 #endif
   191 }
   194 CodeBlob* Runtime1::blob_for(StubID id) {
   195   assert(0 <= id && id < number_of_ids, "illegal stub id");
   196   return _blobs[id];
   197 }
   200 const char* Runtime1::name_for(StubID id) {
   201   assert(0 <= id && id < number_of_ids, "illegal stub id");
   202   return _blob_names[id];
   203 }
   205 const char* Runtime1::name_for_address(address entry) {
   206   for (int id = 0; id < number_of_ids; id++) {
   207     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   208   }
   210 #define FUNCTION_CASE(a, f) \
   211   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   213   FUNCTION_CASE(entry, os::javaTimeMillis);
   214   FUNCTION_CASE(entry, os::javaTimeNanos);
   215   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   216   FUNCTION_CASE(entry, SharedRuntime::d2f);
   217   FUNCTION_CASE(entry, SharedRuntime::d2i);
   218   FUNCTION_CASE(entry, SharedRuntime::d2l);
   219   FUNCTION_CASE(entry, SharedRuntime::dcos);
   220   FUNCTION_CASE(entry, SharedRuntime::dexp);
   221   FUNCTION_CASE(entry, SharedRuntime::dlog);
   222   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   223   FUNCTION_CASE(entry, SharedRuntime::dpow);
   224   FUNCTION_CASE(entry, SharedRuntime::drem);
   225   FUNCTION_CASE(entry, SharedRuntime::dsin);
   226   FUNCTION_CASE(entry, SharedRuntime::dtan);
   227   FUNCTION_CASE(entry, SharedRuntime::f2i);
   228   FUNCTION_CASE(entry, SharedRuntime::f2l);
   229   FUNCTION_CASE(entry, SharedRuntime::frem);
   230   FUNCTION_CASE(entry, SharedRuntime::l2d);
   231   FUNCTION_CASE(entry, SharedRuntime::l2f);
   232   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   233   FUNCTION_CASE(entry, SharedRuntime::lmul);
   234   FUNCTION_CASE(entry, SharedRuntime::lrem);
   235   FUNCTION_CASE(entry, SharedRuntime::lrem);
   236   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   237   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   238   FUNCTION_CASE(entry, trace_block_entry);
   240 #undef FUNCTION_CASE
   242   // Soft float adds more runtime names.
   243   return pd_name_for_address(entry);
   244 }
   247 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   248   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   250   assert(oop(klass)->is_klass(), "not a class");
   251   instanceKlassHandle h(thread, klass);
   252   h->check_valid_for_instantiation(true, CHECK);
   253   // make sure klass is initialized
   254   h->initialize(CHECK);
   255   // allocate instance and return via TLS
   256   oop obj = h->allocate_instance(CHECK);
   257   thread->set_vm_result(obj);
   258 JRT_END
   261 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   262   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   263   // Note: no handle for klass needed since they are not used
   264   //       anymore after new_typeArray() and no GC can happen before.
   265   //       (This may have to change if this code changes!)
   266   assert(oop(klass)->is_klass(), "not a class");
   267   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   268   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   269   thread->set_vm_result(obj);
   270   // This is pretty rare but this runtime patch is stressful to deoptimization
   271   // if we deoptimize here so force a deopt to stress the path.
   272   if (DeoptimizeALot) {
   273     deopt_caller();
   274   }
   276 JRT_END
   279 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   280   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   282   // Note: no handle for klass needed since they are not used
   283   //       anymore after new_objArray() and no GC can happen before.
   284   //       (This may have to change if this code changes!)
   285   assert(oop(array_klass)->is_klass(), "not a class");
   286   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   287   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   288   thread->set_vm_result(obj);
   289   // This is pretty rare but this runtime patch is stressful to deoptimization
   290   // if we deoptimize here so force a deopt to stress the path.
   291   if (DeoptimizeALot) {
   292     deopt_caller();
   293   }
   294 JRT_END
   297 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   298   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   300   assert(oop(klass)->is_klass(), "not a class");
   301   assert(rank >= 1, "rank must be nonzero");
   302   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   303   thread->set_vm_result(obj);
   304 JRT_END
   307 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   308   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   309 JRT_END
   312 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
   313   THROW(vmSymbolHandles::java_lang_ArrayStoreException());
   314 JRT_END
   317 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   318   if (JvmtiExport::can_post_on_exceptions()) {
   319     vframeStream vfst(thread, true);
   320     address bcp = vfst.method()->bcp_from(vfst.bci());
   321     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   322   }
   323 JRT_END
   325 #ifdef TIERED
   326 JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
   327   RegisterMap map(thread, false);
   328   frame fr =  thread->last_frame().sender(&map);
   329   nmethod* nm = (nmethod*) fr.cb();
   330   assert(nm!= NULL && nm->is_nmethod(), "what?");
   331   methodHandle method(thread, nm->method());
   332   if (bci == 0) {
   333     // invocation counter overflow
   334     if (!Tier1CountOnly) {
   335       CompilationPolicy::policy()->method_invocation_event(method, CHECK);
   336     } else {
   337       method()->invocation_counter()->reset();
   338     }
   339   } else {
   340     if (!Tier1CountOnly) {
   341       // Twe have a bci but not the destination bci and besides a backedge
   342       // event is more for OSR which we don't want here.
   343       CompilationPolicy::policy()->method_invocation_event(method, CHECK);
   344     } else {
   345       method()->backedge_counter()->reset();
   346     }
   347   }
   348 JRT_END
   349 #endif // TIERED
   351 extern void vm_exit(int code);
   353 // Enter this method from compiled code handler below. This is where we transition
   354 // to VM mode. This is done as a helper routine so that the method called directly
   355 // from compiled code does not have to transition to VM. This allows the entry
   356 // method to see if the nmethod that we have just looked up a handler for has
   357 // been deoptimized while we were in the vm. This simplifies the assembly code
   358 // cpu directories.
   359 //
   360 // We are entering here from exception stub (via the entry method below)
   361 // If there is a compiled exception handler in this method, we will continue there;
   362 // otherwise we will unwind the stack and continue at the caller of top frame method
   363 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   364 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   365 // check to see if the handler we are going to return is now in a nmethod that has
   366 // been deoptimized. If that is the case we return the deopt blob
   367 // unpack_with_exception entry instead. This makes life for the exception blob easier
   368 // because making that same check and diverting is painful from assembly language.
   369 //
   372 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   374   Handle exception(thread, ex);
   375   nm = CodeCache::find_nmethod(pc);
   376   assert(nm != NULL, "this is not an nmethod");
   377   // Adjust the pc as needed/
   378   if (nm->is_deopt_pc(pc)) {
   379     RegisterMap map(thread, false);
   380     frame exception_frame = thread->last_frame().sender(&map);
   381     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   382     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   383     pc = exception_frame.pc();
   384   }
   385 #ifdef ASSERT
   386   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   387   assert(exception->is_oop(), "just checking");
   388   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   389   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
   390     if (ExitVMOnVerifyError) vm_exit(-1);
   391     ShouldNotReachHere();
   392   }
   393 #endif
   395   // Check the stack guard pages and reenable them if necessary and there is
   396   // enough space on the stack to do so.  Use fast exceptions only if the guard
   397   // pages are enabled.
   398   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   399   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   401   if (JvmtiExport::can_post_on_exceptions()) {
   402     // To ensure correct notification of exception catches and throws
   403     // we have to deoptimize here.  If we attempted to notify the
   404     // catches and throws during this exception lookup it's possible
   405     // we could deoptimize on the way out of the VM and end back in
   406     // the interpreter at the throw site.  This would result in double
   407     // notifications since the interpreter would also notify about
   408     // these same catches and throws as it unwound the frame.
   410     RegisterMap reg_map(thread);
   411     frame stub_frame = thread->last_frame();
   412     frame caller_frame = stub_frame.sender(&reg_map);
   414     // We don't really want to deoptimize the nmethod itself since we
   415     // can actually continue in the exception handler ourselves but I
   416     // don't see an easy way to have the desired effect.
   417     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   418     VMThread::execute(&deopt);
   420     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   421   }
   423   // ExceptionCache is used only for exceptions at call and not for implicit exceptions
   424   if (guard_pages_enabled) {
   425     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   426     if (fast_continuation != NULL) {
   427       if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
   428       return fast_continuation;
   429     }
   430   }
   432   // If the stack guard pages are enabled, check whether there is a handler in
   433   // the current method.  Otherwise (guard pages disabled), force an unwind and
   434   // skip the exception cache update (i.e., just leave continuation==NULL).
   435   address continuation = NULL;
   436   if (guard_pages_enabled) {
   438     // New exception handling mechanism can support inlined methods
   439     // with exception handlers since the mappings are from PC to PC
   441     // debugging support
   442     // tracing
   443     if (TraceExceptions) {
   444       ttyLocker ttyl;
   445       ResourceMark rm;
   446       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   447                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   448     }
   449     // for AbortVMOnException flag
   450     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   452     // Clear out the exception oop and pc since looking up an
   453     // exception handler can cause class loading, which might throw an
   454     // exception and those fields are expected to be clear during
   455     // normal bytecode execution.
   456     thread->set_exception_oop(NULL);
   457     thread->set_exception_pc(NULL);
   459     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   460     // If an exception was thrown during exception dispatch, the exception oop may have changed
   461     thread->set_exception_oop(exception());
   462     thread->set_exception_pc(pc);
   464     // the exception cache is used only by non-implicit exceptions
   465     if (continuation == NULL) {
   466       nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
   467     } else {
   468       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   469     }
   470   }
   472   thread->set_vm_result(exception());
   474   if (TraceExceptions) {
   475     ttyLocker ttyl;
   476     ResourceMark rm;
   477     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   478                   thread, continuation, pc);
   479   }
   481   return continuation;
   482 JRT_END
   484 // Enter this method from compiled code only if there is a Java exception handler
   485 // in the method handling the exception
   486 // We are entering here from exception stub. We don't do a normal VM transition here.
   487 // We do it in a helper. This is so we can check to see if the nmethod we have just
   488 // searched for an exception handler has been deoptimized in the meantime.
   489 address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
   490   oop exception = thread->exception_oop();
   491   address pc = thread->exception_pc();
   492   // Still in Java mode
   493   debug_only(ResetNoHandleMark rnhm);
   494   nmethod* nm = NULL;
   495   address continuation = NULL;
   496   {
   497     // Enter VM mode by calling the helper
   499     ResetNoHandleMark rnhm;
   500     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   501   }
   502   // Back in JAVA, use no oops DON'T safepoint
   504   // Now check to see if the nmethod we were called from is now deoptimized.
   505   // If so we must return to the deopt blob and deoptimize the nmethod
   507   if (nm != NULL && caller_is_deopted()) {
   508     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   509   }
   511   return continuation;
   512 }
   515 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   516   NOT_PRODUCT(_throw_range_check_exception_count++;)
   517   Events::log("throw_range_check");
   518   char message[jintAsStringSize];
   519   sprintf(message, "%d", index);
   520   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   521 JRT_END
   524 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   525   NOT_PRODUCT(_throw_index_exception_count++;)
   526   Events::log("throw_index");
   527   char message[16];
   528   sprintf(message, "%d", index);
   529   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   530 JRT_END
   533 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   534   NOT_PRODUCT(_throw_div0_exception_count++;)
   535   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   536 JRT_END
   539 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   540   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   541   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   542 JRT_END
   545 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   546   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   547   ResourceMark rm(thread);
   548   char* message = SharedRuntime::generate_class_cast_message(
   549     thread, Klass::cast(object->klass())->external_name());
   550   SharedRuntime::throw_and_post_jvmti_exception(
   551     thread, vmSymbols::java_lang_ClassCastException(), message);
   552 JRT_END
   555 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   556   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   557   ResourceMark rm(thread);
   558   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   559 JRT_END
   562 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   563   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   564   if (PrintBiasedLockingStatistics) {
   565     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   566   }
   567   Handle h_obj(thread, obj);
   568   assert(h_obj()->is_oop(), "must be NULL or an object");
   569   if (UseBiasedLocking) {
   570     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   571     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   572   } else {
   573     if (UseFastLocking) {
   574       // When using fast locking, the compiled code has already tried the fast case
   575       assert(obj == lock->obj(), "must match");
   576       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   577     } else {
   578       lock->set_obj(obj);
   579       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   580     }
   581   }
   582 JRT_END
   585 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   586   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   587   assert(thread == JavaThread::current(), "threads must correspond");
   588   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   589   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   590   EXCEPTION_MARK;
   592   oop obj = lock->obj();
   593   assert(obj->is_oop(), "must be NULL or an object");
   594   if (UseFastLocking) {
   595     // When using fast locking, the compiled code has already tried the fast case
   596     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   597   } else {
   598     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   599   }
   600 JRT_END
   603 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   604   Bytecode_field* field_access = Bytecode_field_at(caller, bci);
   605   // This can be static or non-static field access
   606   Bytecodes::Code code       = field_access->code();
   608   // We must load class, initialize class and resolvethe field
   609   FieldAccessInfo result; // initialize class if needed
   610   constantPoolHandle constants(THREAD, caller->constants());
   611   LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
   612   return result.klass()();
   613 }
   616 //
   617 // This routine patches sites where a class wasn't loaded or
   618 // initialized at the time the code was generated.  It handles
   619 // references to classes, fields and forcing of initialization.  Most
   620 // of the cases are straightforward and involving simply forcing
   621 // resolution of a class, rewriting the instruction stream with the
   622 // needed constant and replacing the call in this function with the
   623 // patched code.  The case for static field is more complicated since
   624 // the thread which is in the process of initializing a class can
   625 // access it's static fields but other threads can't so the code
   626 // either has to deoptimize when this case is detected or execute a
   627 // check that the current thread is the initializing thread.  The
   628 // current
   629 //
   630 // Patches basically look like this:
   631 //
   632 //
   633 // patch_site: jmp patch stub     ;; will be patched
   634 // continue:   ...
   635 //             ...
   636 //             ...
   637 //             ...
   638 //
   639 // They have a stub which looks like this:
   640 //
   641 //             ;; patch body
   642 //             movl <const>, reg           (for class constants)
   643 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   644 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   645 //             <being_init offset> <bytes to copy> <bytes to skip>
   646 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   647 //             jmp patch_site
   648 //
   649 //
   650 // A normal patch is done by rewriting the patch body, usually a move,
   651 // and then copying it into place over top of the jmp instruction
   652 // being careful to flush caches and doing it in an MP-safe way.  The
   653 // constants following the patch body are used to find various pieces
   654 // of the patch relative to the call site for Runtime1::patch_code.
   655 // The case for getstatic and putstatic is more complicated because
   656 // getstatic and putstatic have special semantics when executing while
   657 // the class is being initialized.  getstatic/putstatic on a class
   658 // which is being_initialized may be executed by the initializing
   659 // thread but other threads have to block when they execute it.  This
   660 // is accomplished in compiled code by executing a test of the current
   661 // thread against the initializing thread of the class.  It's emitted
   662 // as boilerplate in their stub which allows the patched code to be
   663 // executed before it's copied back into the main body of the nmethod.
   664 //
   665 // being_init: get_thread(<tmp reg>
   666 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   667 //             jne patch_stub
   668 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   669 //             movl reg, [reg1 + <const>]  (for field offsets)
   670 //             jmp continue
   671 //             <being_init offset> <bytes to copy> <bytes to skip>
   672 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   673 //             jmp patch_site
   674 //
   675 // If the class is being initialized the patch body is rewritten and
   676 // the patch site is rewritten to jump to being_init, instead of
   677 // patch_stub.  Whenever this code is executed it checks the current
   678 // thread against the intializing thread so other threads will enter
   679 // the runtime and end up blocked waiting the class to finish
   680 // initializing inside the calls to resolve_field below.  The
   681 // initializing class will continue on it's way.  Once the class is
   682 // fully_initialized, the intializing_thread of the class becomes
   683 // NULL, so the next thread to execute this code will fail the test,
   684 // call into patch_code and complete the patching process by copying
   685 // the patch body back into the main part of the nmethod and resume
   686 // executing.
   687 //
   688 //
   690 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   691   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   693   ResourceMark rm(thread);
   694   RegisterMap reg_map(thread, false);
   695   frame runtime_frame = thread->last_frame();
   696   frame caller_frame = runtime_frame.sender(&reg_map);
   698   // last java frame on stack
   699   vframeStream vfst(thread, true);
   700   assert(!vfst.at_end(), "Java frame must exist");
   702   methodHandle caller_method(THREAD, vfst.method());
   703   // Note that caller_method->code() may not be same as caller_code because of OSR's
   704   // Note also that in the presence of inlining it is not guaranteed
   705   // that caller_method() == caller_code->method()
   708   int bci = vfst.bci();
   710   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   712   Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
   714 #ifndef PRODUCT
   715   // this is used by assertions in the access_field_patching_id
   716   BasicType patch_field_type = T_ILLEGAL;
   717 #endif // PRODUCT
   718   bool deoptimize_for_volatile = false;
   719   int patch_field_offset = -1;
   720   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   721   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   722   if (stub_id == Runtime1::access_field_patching_id) {
   724     Bytecode_field* field_access = Bytecode_field_at(caller_method, bci);
   725     FieldAccessInfo result; // initialize class if needed
   726     Bytecodes::Code code = field_access->code();
   727     constantPoolHandle constants(THREAD, caller_method->constants());
   728     LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
   729     patch_field_offset = result.field_offset();
   731     // If we're patching a field which is volatile then at compile it
   732     // must not have been know to be volatile, so the generated code
   733     // isn't correct for a volatile reference.  The nmethod has to be
   734     // deoptimized so that the code can be regenerated correctly.
   735     // This check is only needed for access_field_patching since this
   736     // is the path for patching field offsets.  load_klass is only
   737     // used for patching references to oops which don't need special
   738     // handling in the volatile case.
   739     deoptimize_for_volatile = result.access_flags().is_volatile();
   741 #ifndef PRODUCT
   742     patch_field_type = result.field_type();
   743 #endif
   744   } else if (stub_id == Runtime1::load_klass_patching_id) {
   745     oop k;
   746     switch (code) {
   747       case Bytecodes::_putstatic:
   748       case Bytecodes::_getstatic:
   749         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   750           // Save a reference to the class that has to be checked for initialization
   751           init_klass = KlassHandle(THREAD, klass);
   752           k = klass;
   753         }
   754         break;
   755       case Bytecodes::_new:
   756         { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
   757           k = caller_method->constants()->klass_at(bnew->index(), CHECK);
   758         }
   759         break;
   760       case Bytecodes::_multianewarray:
   761         { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
   762           k = caller_method->constants()->klass_at(mna->index(), CHECK);
   763         }
   764         break;
   765       case Bytecodes::_instanceof:
   766         { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
   767           k = caller_method->constants()->klass_at(io->index(), CHECK);
   768         }
   769         break;
   770       case Bytecodes::_checkcast:
   771         { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
   772           k = caller_method->constants()->klass_at(cc->index(), CHECK);
   773         }
   774         break;
   775       case Bytecodes::_anewarray:
   776         { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
   777           klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
   778           k = Klass::cast(ek)->array_klass(CHECK);
   779         }
   780         break;
   781       case Bytecodes::_ldc:
   782       case Bytecodes::_ldc_w:
   783         {
   784           Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method, bci);
   785           k = cc->resolve_constant(CHECK);
   786           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
   787         }
   788         break;
   789       default: Unimplemented();
   790     }
   791     // convert to handle
   792     load_klass = Handle(THREAD, k);
   793   } else {
   794     ShouldNotReachHere();
   795   }
   797   if (deoptimize_for_volatile) {
   798     // At compile time we assumed the field wasn't volatile but after
   799     // loading it turns out it was volatile so we have to throw the
   800     // compiled code out and let it be regenerated.
   801     if (TracePatching) {
   802       tty->print_cr("Deoptimizing for patching volatile field reference");
   803     }
   804     // It's possible the nmethod was invalidated in the last
   805     // safepoint, but if it's still alive then make it not_entrant.
   806     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   807     if (nm != NULL) {
   808       nm->make_not_entrant();
   809     }
   811     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   812     VMThread::execute(&deopt);
   814     // Return to the now deoptimized frame.
   815   }
   817   // If we are patching in a non-perm oop, make sure the nmethod
   818   // is on the right list.
   819   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
   820     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
   821     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   822     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
   823     if (!nm->on_scavenge_root_list())
   824       CodeCache::add_scavenge_root_nmethod(nm);
   825   }
   827   // Now copy code back
   829   {
   830     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   831     //
   832     // Deoptimization may have happened while we waited for the lock.
   833     // In that case we don't bother to do any patching we just return
   834     // and let the deopt happen
   835     if (!caller_is_deopted()) {
   836       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   837       address instr_pc = jump->jump_destination();
   838       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   839       if (ni->is_jump() ) {
   840         // the jump has not been patched yet
   841         // The jump destination is slow case and therefore not part of the stubs
   842         // (stubs are only for StaticCalls)
   844         // format of buffer
   845         //    ....
   846         //    instr byte 0     <-- copy_buff
   847         //    instr byte 1
   848         //    ..
   849         //    instr byte n-1
   850         //      n
   851         //    ....             <-- call destination
   853         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   854         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   855         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   856         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   857         address copy_buff = stub_location - *byte_skip - *byte_count;
   858         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   859         if (TracePatching) {
   860           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   861                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   862           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   863           assert(caller_code != NULL, "nmethod not found");
   865           // NOTE we use pc() not original_pc() because we already know they are
   866           // identical otherwise we'd have never entered this block of code
   868           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   869           assert(map != NULL, "null check");
   870           map->print();
   871           tty->cr();
   873           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   874         }
   875         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   876         bool do_patch = true;
   877         if (stub_id == Runtime1::access_field_patching_id) {
   878           // The offset may not be correct if the class was not loaded at code generation time.
   879           // Set it now.
   880           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   881           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   882           assert(patch_field_offset >= 0, "illegal offset");
   883           n_move->add_offset_in_bytes(patch_field_offset);
   884         } else if (stub_id == Runtime1::load_klass_patching_id) {
   885           // If a getstatic or putstatic is referencing a klass which
   886           // isn't fully initialized, the patch body isn't copied into
   887           // place until initialization is complete.  In this case the
   888           // patch site is setup so that any threads besides the
   889           // initializing thread are forced to come into the VM and
   890           // block.
   891           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   892                      instanceKlass::cast(init_klass())->is_initialized();
   893           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   894           if (jump->jump_destination() == being_initialized_entry) {
   895             assert(do_patch == true, "initialization must be complete at this point");
   896           } else {
   897             // patch the instruction <move reg, klass>
   898             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   900             assert(n_copy->data() == 0 ||
   901                    n_copy->data() == (int)Universe::non_oop_word(),
   902                    "illegal init value");
   903             assert(load_klass() != NULL, "klass not set");
   904             n_copy->set_data((intx) (load_klass()));
   906             if (TracePatching) {
   907               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   908             }
   910 #if defined(SPARC) || defined(PPC)
   911             // Update the oop location in the nmethod with the proper
   912             // oop.  When the code was generated, a NULL was stuffed
   913             // in the oop table and that table needs to be update to
   914             // have the right value.  On intel the value is kept
   915             // directly in the instruction instead of in the oop
   916             // table, so set_data above effectively updated the value.
   917             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   918             assert(nm != NULL, "invalid nmethod_pc");
   919             RelocIterator oops(nm, copy_buff, copy_buff + 1);
   920             bool found = false;
   921             while (oops.next() && !found) {
   922               if (oops.type() == relocInfo::oop_type) {
   923                 oop_Relocation* r = oops.oop_reloc();
   924                 oop* oop_adr = r->oop_addr();
   925                 *oop_adr = load_klass();
   926                 r->fix_oop_relocation();
   927                 found = true;
   928               }
   929             }
   930             assert(found, "the oop must exist!");
   931 #endif
   933           }
   934         } else {
   935           ShouldNotReachHere();
   936         }
   937         if (do_patch) {
   938           // replace instructions
   939           // first replace the tail, then the call
   940 #ifdef ARM
   941           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
   942             copy_buff -= *byte_count;
   943             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
   944             n_copy2->set_data((intx) (load_klass()), instr_pc);
   945           }
   946 #endif
   948           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
   949             address ptr = copy_buff + i;
   950             int a_byte = (*ptr) & 0xFF;
   951             address dst = instr_pc + i;
   952             *(unsigned char*)dst = (unsigned char) a_byte;
   953           }
   954           ICache::invalidate_range(instr_pc, *byte_count);
   955           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
   957           if (stub_id == Runtime1::load_klass_patching_id) {
   958             // update relocInfo to oop
   959             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   960             assert(nm != NULL, "invalid nmethod_pc");
   962             // The old patch site is now a move instruction so update
   963             // the reloc info so that it will get updated during
   964             // future GCs.
   965             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
   966             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
   967                                                      relocInfo::none, relocInfo::oop_type);
   968 #ifdef SPARC
   969             // Sparc takes two relocations for an oop so update the second one.
   970             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
   971             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
   972             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
   973                                                      relocInfo::none, relocInfo::oop_type);
   974 #endif
   975 #ifdef PPC
   976           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
   977             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
   978             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
   979           }
   980 #endif
   981           }
   983         } else {
   984           ICache::invalidate_range(copy_buff, *byte_count);
   985           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
   986         }
   987       }
   988     }
   989   }
   990 JRT_END
   992 //
   993 // Entry point for compiled code. We want to patch a nmethod.
   994 // We don't do a normal VM transition here because we want to
   995 // know after the patching is complete and any safepoint(s) are taken
   996 // if the calling nmethod was deoptimized. We do this by calling a
   997 // helper method which does the normal VM transition and when it
   998 // completes we can check for deoptimization. This simplifies the
   999 // assembly code in the cpu directories.
  1000 //
  1001 int Runtime1::move_klass_patching(JavaThread* thread) {
  1002 //
  1003 // NOTE: we are still in Java
  1004 //
  1005   Thread* THREAD = thread;
  1006   debug_only(NoHandleMark nhm;)
  1008     // Enter VM mode
  1010     ResetNoHandleMark rnhm;
  1011     patch_code(thread, load_klass_patching_id);
  1013   // Back in JAVA, use no oops DON'T safepoint
  1015   // Return true if calling code is deoptimized
  1017   return caller_is_deopted();
  1020 //
  1021 // Entry point for compiled code. We want to patch a nmethod.
  1022 // We don't do a normal VM transition here because we want to
  1023 // know after the patching is complete and any safepoint(s) are taken
  1024 // if the calling nmethod was deoptimized. We do this by calling a
  1025 // helper method which does the normal VM transition and when it
  1026 // completes we can check for deoptimization. This simplifies the
  1027 // assembly code in the cpu directories.
  1028 //
  1030 int Runtime1::access_field_patching(JavaThread* thread) {
  1031 //
  1032 // NOTE: we are still in Java
  1033 //
  1034   Thread* THREAD = thread;
  1035   debug_only(NoHandleMark nhm;)
  1037     // Enter VM mode
  1039     ResetNoHandleMark rnhm;
  1040     patch_code(thread, access_field_patching_id);
  1042   // Back in JAVA, use no oops DON'T safepoint
  1044   // Return true if calling code is deoptimized
  1046   return caller_is_deopted();
  1047 JRT_END
  1050 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1051   // for now we just print out the block id
  1052   tty->print("%d ", block_id);
  1053 JRT_END
  1056 // Array copy return codes.
  1057 enum {
  1058   ac_failed = -1, // arraycopy failed
  1059   ac_ok = 0       // arraycopy succeeded
  1060 };
  1063 // Below length is the # elements copied.
  1064 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1065                                           oopDesc* dst, T* dst_addr,
  1066                                           int length) {
  1068   // For performance reasons, we assume we are using a card marking write
  1069   // barrier. The assert will fail if this is not the case.
  1070   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1071   BarrierSet* bs = Universe::heap()->barrier_set();
  1072   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1073   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1074   if (src == dst) {
  1075     // same object, no check
  1076     bs->write_ref_array_pre(dst_addr, length);
  1077     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1078     bs->write_ref_array((HeapWord*)dst_addr, length);
  1079     return ac_ok;
  1080   } else {
  1081     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1082     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1083     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1084       // Elements are guaranteed to be subtypes, so no check necessary
  1085       bs->write_ref_array_pre(dst_addr, length);
  1086       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1087       bs->write_ref_array((HeapWord*)dst_addr, length);
  1088       return ac_ok;
  1091   return ac_failed;
  1094 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1095 // and we did not copy anything
  1096 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1097 #ifndef PRODUCT
  1098   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1099 #endif
  1101   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1102   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1103   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1104   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1106   if (length == 0) return ac_ok;
  1107   if (src->is_typeArray()) {
  1108     const klassOop klass_oop = src->klass();
  1109     if (klass_oop != dst->klass()) return ac_failed;
  1110     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1111     const int l2es = klass->log2_element_size();
  1112     const int ihs = klass->array_header_in_bytes() / wordSize;
  1113     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1114     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1115     // Potential problem: memmove is not guaranteed to be word atomic
  1116     // Revisit in Merlin
  1117     memmove(dst_addr, src_addr, length << l2es);
  1118     return ac_ok;
  1119   } else if (src->is_objArray() && dst->is_objArray()) {
  1120     if (UseCompressedOops) {  // will need for tiered
  1121       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1122       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1123       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1124     } else {
  1125       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1126       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1127       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1130   return ac_failed;
  1131 JRT_END
  1134 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1135 #ifndef PRODUCT
  1136   _primitive_arraycopy_cnt++;
  1137 #endif
  1139   if (length == 0) return;
  1140   // Not guaranteed to be word atomic, but that doesn't matter
  1141   // for anything but an oop array, which is covered by oop_arraycopy.
  1142   Copy::conjoint_jbytes(src, dst, length);
  1143 JRT_END
  1145 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1146 #ifndef PRODUCT
  1147   _oop_arraycopy_cnt++;
  1148 #endif
  1150   if (num == 0) return;
  1151   BarrierSet* bs = Universe::heap()->barrier_set();
  1152   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
  1153   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
  1154   if (UseCompressedOops) {
  1155     bs->write_ref_array_pre((narrowOop*)dst, num);
  1156   } else {
  1157     bs->write_ref_array_pre((oop*)dst, num);
  1159   Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1160   bs->write_ref_array(dst, num);
  1161 JRT_END
  1164 #ifndef PRODUCT
  1165 void Runtime1::print_statistics() {
  1166   tty->print_cr("C1 Runtime statistics:");
  1167   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1168   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1169   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1170   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1171   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1172   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1173   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1174   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  1175   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1177   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1178   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1179   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1180   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1181   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1182   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1183   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1185   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1186   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1187   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1188   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1189   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1190   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1191   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1192   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1194   SharedRuntime::print_ic_miss_histogram();
  1195   tty->cr();
  1197 #endif // PRODUCT

mercurial