src/share/vm/opto/compile.cpp

Fri, 15 Apr 2016 12:02:37 +0530

author
shshahma
date
Fri, 15 Apr 2016 12:02:37 +0530
changeset 8421
3e1cd663c2d3
parent 8316
626f594dffa6
child 8428
099bdbf208bc
child 8504
a96cf90239c6
permissions
-rw-r--r--

8055530: assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty()) failed: return value must be well defined
Summary: concurrent class loading causes return phi to become top
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "ci/ciReplay.hpp"
    29 #include "classfile/systemDictionary.hpp"
    30 #include "code/exceptionHandlerTable.hpp"
    31 #include "code/nmethod.hpp"
    32 #include "compiler/compileLog.hpp"
    33 #include "compiler/disassembler.hpp"
    34 #include "compiler/oopMap.hpp"
    35 #include "opto/addnode.hpp"
    36 #include "opto/block.hpp"
    37 #include "opto/c2compiler.hpp"
    38 #include "opto/callGenerator.hpp"
    39 #include "opto/callnode.hpp"
    40 #include "opto/cfgnode.hpp"
    41 #include "opto/chaitin.hpp"
    42 #include "opto/compile.hpp"
    43 #include "opto/connode.hpp"
    44 #include "opto/divnode.hpp"
    45 #include "opto/escape.hpp"
    46 #include "opto/idealGraphPrinter.hpp"
    47 #include "opto/loopnode.hpp"
    48 #include "opto/machnode.hpp"
    49 #include "opto/macro.hpp"
    50 #include "opto/matcher.hpp"
    51 #include "opto/mathexactnode.hpp"
    52 #include "opto/memnode.hpp"
    53 #include "opto/mulnode.hpp"
    54 #include "opto/node.hpp"
    55 #include "opto/opcodes.hpp"
    56 #include "opto/output.hpp"
    57 #include "opto/parse.hpp"
    58 #include "opto/phaseX.hpp"
    59 #include "opto/rootnode.hpp"
    60 #include "opto/runtime.hpp"
    61 #include "opto/stringopts.hpp"
    62 #include "opto/type.hpp"
    63 #include "opto/vectornode.hpp"
    64 #include "runtime/arguments.hpp"
    65 #include "runtime/signature.hpp"
    66 #include "runtime/stubRoutines.hpp"
    67 #include "runtime/timer.hpp"
    68 #include "trace/tracing.hpp"
    69 #include "utilities/copy.hpp"
    70 #if defined AD_MD_HPP
    71 # include AD_MD_HPP
    72 #elif defined TARGET_ARCH_MODEL_x86_32
    73 # include "adfiles/ad_x86_32.hpp"
    74 #elif defined TARGET_ARCH_MODEL_x86_64
    75 # include "adfiles/ad_x86_64.hpp"
    76 #elif defined TARGET_ARCH_MODEL_sparc
    77 # include "adfiles/ad_sparc.hpp"
    78 #elif defined TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #elif defined TARGET_ARCH_MODEL_ppc_64
    81 # include "adfiles/ad_ppc_64.hpp"
    82 #endif
    85 // -------------------- Compile::mach_constant_base_node -----------------------
    86 // Constant table base node singleton.
    87 MachConstantBaseNode* Compile::mach_constant_base_node() {
    88   if (_mach_constant_base_node == NULL) {
    89     _mach_constant_base_node = new (C) MachConstantBaseNode();
    90     _mach_constant_base_node->add_req(C->root());
    91   }
    92   return _mach_constant_base_node;
    93 }
    96 /// Support for intrinsics.
    98 // Return the index at which m must be inserted (or already exists).
    99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   101 #ifdef ASSERT
   102   for (int i = 1; i < _intrinsics->length(); i++) {
   103     CallGenerator* cg1 = _intrinsics->at(i-1);
   104     CallGenerator* cg2 = _intrinsics->at(i);
   105     assert(cg1->method() != cg2->method()
   106            ? cg1->method()     < cg2->method()
   107            : cg1->is_virtual() < cg2->is_virtual(),
   108            "compiler intrinsics list must stay sorted");
   109   }
   110 #endif
   111   // Binary search sorted list, in decreasing intervals [lo, hi].
   112   int lo = 0, hi = _intrinsics->length()-1;
   113   while (lo <= hi) {
   114     int mid = (uint)(hi + lo) / 2;
   115     ciMethod* mid_m = _intrinsics->at(mid)->method();
   116     if (m < mid_m) {
   117       hi = mid-1;
   118     } else if (m > mid_m) {
   119       lo = mid+1;
   120     } else {
   121       // look at minor sort key
   122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   123       if (is_virtual < mid_virt) {
   124         hi = mid-1;
   125       } else if (is_virtual > mid_virt) {
   126         lo = mid+1;
   127       } else {
   128         return mid;  // exact match
   129       }
   130     }
   131   }
   132   return lo;  // inexact match
   133 }
   135 void Compile::register_intrinsic(CallGenerator* cg) {
   136   if (_intrinsics == NULL) {
   137     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
   138   }
   139   // This code is stolen from ciObjectFactory::insert.
   140   // Really, GrowableArray should have methods for
   141   // insert_at, remove_at, and binary_search.
   142   int len = _intrinsics->length();
   143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   144   if (index == len) {
   145     _intrinsics->append(cg);
   146   } else {
   147 #ifdef ASSERT
   148     CallGenerator* oldcg = _intrinsics->at(index);
   149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   150 #endif
   151     _intrinsics->append(_intrinsics->at(len-1));
   152     int pos;
   153     for (pos = len-2; pos >= index; pos--) {
   154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   155     }
   156     _intrinsics->at_put(index, cg);
   157   }
   158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   159 }
   161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   162   assert(m->is_loaded(), "don't try this on unloaded methods");
   163   if (_intrinsics != NULL) {
   164     int index = intrinsic_insertion_index(m, is_virtual);
   165     if (index < _intrinsics->length()
   166         && _intrinsics->at(index)->method() == m
   167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   168       return _intrinsics->at(index);
   169     }
   170   }
   171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   172   if (m->intrinsic_id() != vmIntrinsics::_none &&
   173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   175     if (cg != NULL) {
   176       // Save it for next time:
   177       register_intrinsic(cg);
   178       return cg;
   179     } else {
   180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   181     }
   182   }
   183   return NULL;
   184 }
   186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   187 // in library_call.cpp.
   190 #ifndef PRODUCT
   191 // statistics gathering...
   193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   198   int oflags = _intrinsic_hist_flags[id];
   199   assert(flags != 0, "what happened?");
   200   if (is_virtual) {
   201     flags |= _intrinsic_virtual;
   202   }
   203   bool changed = (flags != oflags);
   204   if ((flags & _intrinsic_worked) != 0) {
   205     juint count = (_intrinsic_hist_count[id] += 1);
   206     if (count == 1) {
   207       changed = true;           // first time
   208     }
   209     // increment the overall count also:
   210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   211   }
   212   if (changed) {
   213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   214       // Something changed about the intrinsic's virtuality.
   215       if ((flags & _intrinsic_virtual) != 0) {
   216         // This is the first use of this intrinsic as a virtual call.
   217         if (oflags != 0) {
   218           // We already saw it as a non-virtual, so note both cases.
   219           flags |= _intrinsic_both;
   220         }
   221       } else if ((oflags & _intrinsic_both) == 0) {
   222         // This is the first use of this intrinsic as a non-virtual
   223         flags |= _intrinsic_both;
   224       }
   225     }
   226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   227   }
   228   // update the overall flags also:
   229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   230   return changed;
   231 }
   233 static char* format_flags(int flags, char* buf) {
   234   buf[0] = 0;
   235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   240   if (buf[0] == 0)  strcat(buf, ",");
   241   assert(buf[0] == ',', "must be");
   242   return &buf[1];
   243 }
   245 void Compile::print_intrinsic_statistics() {
   246   char flagsbuf[100];
   247   ttyLocker ttyl;
   248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   249   tty->print_cr("Compiler intrinsic usage:");
   250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   252   #define PRINT_STAT_LINE(name, c, f) \
   253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   256     int   flags = _intrinsic_hist_flags[id];
   257     juint count = _intrinsic_hist_count[id];
   258     if ((flags | count) != 0) {
   259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   260     }
   261   }
   262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   263   if (xtty != NULL)  xtty->tail("statistics");
   264 }
   266 void Compile::print_statistics() {
   267   { ttyLocker ttyl;
   268     if (xtty != NULL)  xtty->head("statistics type='opto'");
   269     Parse::print_statistics();
   270     PhaseCCP::print_statistics();
   271     PhaseRegAlloc::print_statistics();
   272     Scheduling::print_statistics();
   273     PhasePeephole::print_statistics();
   274     PhaseIdealLoop::print_statistics();
   275     if (xtty != NULL)  xtty->tail("statistics");
   276   }
   277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   278     // put this under its own <statistics> element.
   279     print_intrinsic_statistics();
   280   }
   281 }
   282 #endif //PRODUCT
   284 // Support for bundling info
   285 Bundle* Compile::node_bundling(const Node *n) {
   286   assert(valid_bundle_info(n), "oob");
   287   return &_node_bundling_base[n->_idx];
   288 }
   290 bool Compile::valid_bundle_info(const Node *n) {
   291   return (_node_bundling_limit > n->_idx);
   292 }
   295 void Compile::gvn_replace_by(Node* n, Node* nn) {
   296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   297     Node* use = n->last_out(i);
   298     bool is_in_table = initial_gvn()->hash_delete(use);
   299     uint uses_found = 0;
   300     for (uint j = 0; j < use->len(); j++) {
   301       if (use->in(j) == n) {
   302         if (j < use->req())
   303           use->set_req(j, nn);
   304         else
   305           use->set_prec(j, nn);
   306         uses_found++;
   307       }
   308     }
   309     if (is_in_table) {
   310       // reinsert into table
   311       initial_gvn()->hash_find_insert(use);
   312     }
   313     record_for_igvn(use);
   314     i -= uses_found;    // we deleted 1 or more copies of this edge
   315   }
   316 }
   319 static inline bool not_a_node(const Node* n) {
   320   if (n == NULL)                   return true;
   321   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
   322   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
   323   return false;
   324 }
   326 // Identify all nodes that are reachable from below, useful.
   327 // Use breadth-first pass that records state in a Unique_Node_List,
   328 // recursive traversal is slower.
   329 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   330   int estimated_worklist_size = live_nodes();
   331   useful.map( estimated_worklist_size, NULL );  // preallocate space
   333   // Initialize worklist
   334   if (root() != NULL)     { useful.push(root()); }
   335   // If 'top' is cached, declare it useful to preserve cached node
   336   if( cached_top_node() ) { useful.push(cached_top_node()); }
   338   // Push all useful nodes onto the list, breadthfirst
   339   for( uint next = 0; next < useful.size(); ++next ) {
   340     assert( next < unique(), "Unique useful nodes < total nodes");
   341     Node *n  = useful.at(next);
   342     uint max = n->len();
   343     for( uint i = 0; i < max; ++i ) {
   344       Node *m = n->in(i);
   345       if (not_a_node(m))  continue;
   346       useful.push(m);
   347     }
   348   }
   349 }
   351 // Update dead_node_list with any missing dead nodes using useful
   352 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
   353 void Compile::update_dead_node_list(Unique_Node_List &useful) {
   354   uint max_idx = unique();
   355   VectorSet& useful_node_set = useful.member_set();
   357   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
   358     // If node with index node_idx is not in useful set,
   359     // mark it as dead in dead node list.
   360     if (! useful_node_set.test(node_idx) ) {
   361       record_dead_node(node_idx);
   362     }
   363   }
   364 }
   366 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
   367   int shift = 0;
   368   for (int i = 0; i < inlines->length(); i++) {
   369     CallGenerator* cg = inlines->at(i);
   370     CallNode* call = cg->call_node();
   371     if (shift > 0) {
   372       inlines->at_put(i-shift, cg);
   373     }
   374     if (!useful.member(call)) {
   375       shift++;
   376     }
   377   }
   378   inlines->trunc_to(inlines->length()-shift);
   379 }
   381 // Disconnect all useless nodes by disconnecting those at the boundary.
   382 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   383   uint next = 0;
   384   while (next < useful.size()) {
   385     Node *n = useful.at(next++);
   386     if (n->is_SafePoint()) {
   387       // We're done with a parsing phase. Replaced nodes are not valid
   388       // beyond that point.
   389       n->as_SafePoint()->delete_replaced_nodes();
   390     }
   391     // Use raw traversal of out edges since this code removes out edges
   392     int max = n->outcnt();
   393     for (int j = 0; j < max; ++j) {
   394       Node* child = n->raw_out(j);
   395       if (! useful.member(child)) {
   396         assert(!child->is_top() || child != top(),
   397                "If top is cached in Compile object it is in useful list");
   398         // Only need to remove this out-edge to the useless node
   399         n->raw_del_out(j);
   400         --j;
   401         --max;
   402       }
   403     }
   404     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   405       record_for_igvn(n->unique_out());
   406     }
   407   }
   408   // Remove useless macro and predicate opaq nodes
   409   for (int i = C->macro_count()-1; i >= 0; i--) {
   410     Node* n = C->macro_node(i);
   411     if (!useful.member(n)) {
   412       remove_macro_node(n);
   413     }
   414   }
   415   // Remove useless CastII nodes with range check dependency
   416   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
   417     Node* cast = range_check_cast_node(i);
   418     if (!useful.member(cast)) {
   419       remove_range_check_cast(cast);
   420     }
   421   }
   422   // Remove useless expensive node
   423   for (int i = C->expensive_count()-1; i >= 0; i--) {
   424     Node* n = C->expensive_node(i);
   425     if (!useful.member(n)) {
   426       remove_expensive_node(n);
   427     }
   428   }
   429   // clean up the late inline lists
   430   remove_useless_late_inlines(&_string_late_inlines, useful);
   431   remove_useless_late_inlines(&_boxing_late_inlines, useful);
   432   remove_useless_late_inlines(&_late_inlines, useful);
   433   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   434 }
   436 //------------------------------frame_size_in_words-----------------------------
   437 // frame_slots in units of words
   438 int Compile::frame_size_in_words() const {
   439   // shift is 0 in LP32 and 1 in LP64
   440   const int shift = (LogBytesPerWord - LogBytesPerInt);
   441   int words = _frame_slots >> shift;
   442   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   443   return words;
   444 }
   446 // To bang the stack of this compiled method we use the stack size
   447 // that the interpreter would need in case of a deoptimization. This
   448 // removes the need to bang the stack in the deoptimization blob which
   449 // in turn simplifies stack overflow handling.
   450 int Compile::bang_size_in_bytes() const {
   451   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
   452 }
   454 // ============================================================================
   455 //------------------------------CompileWrapper---------------------------------
   456 class CompileWrapper : public StackObj {
   457   Compile *const _compile;
   458  public:
   459   CompileWrapper(Compile* compile);
   461   ~CompileWrapper();
   462 };
   464 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   465   // the Compile* pointer is stored in the current ciEnv:
   466   ciEnv* env = compile->env();
   467   assert(env == ciEnv::current(), "must already be a ciEnv active");
   468   assert(env->compiler_data() == NULL, "compile already active?");
   469   env->set_compiler_data(compile);
   470   assert(compile == Compile::current(), "sanity");
   472   compile->set_type_dict(NULL);
   473   compile->set_type_hwm(NULL);
   474   compile->set_type_last_size(0);
   475   compile->set_last_tf(NULL, NULL);
   476   compile->set_indexSet_arena(NULL);
   477   compile->set_indexSet_free_block_list(NULL);
   478   compile->init_type_arena();
   479   Type::Initialize(compile);
   480   _compile->set_scratch_buffer_blob(NULL);
   481   _compile->begin_method();
   482 }
   483 CompileWrapper::~CompileWrapper() {
   484   _compile->end_method();
   485   if (_compile->scratch_buffer_blob() != NULL)
   486     BufferBlob::free(_compile->scratch_buffer_blob());
   487   _compile->env()->set_compiler_data(NULL);
   488 }
   491 //----------------------------print_compile_messages---------------------------
   492 void Compile::print_compile_messages() {
   493 #ifndef PRODUCT
   494   // Check if recompiling
   495   if (_subsume_loads == false && PrintOpto) {
   496     // Recompiling without allowing machine instructions to subsume loads
   497     tty->print_cr("*********************************************************");
   498     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   499     tty->print_cr("*********************************************************");
   500   }
   501   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   502     // Recompiling without escape analysis
   503     tty->print_cr("*********************************************************");
   504     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   505     tty->print_cr("*********************************************************");
   506   }
   507   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
   508     // Recompiling without boxing elimination
   509     tty->print_cr("*********************************************************");
   510     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
   511     tty->print_cr("*********************************************************");
   512   }
   513   if (env()->break_at_compile()) {
   514     // Open the debugger when compiling this method.
   515     tty->print("### Breaking when compiling: ");
   516     method()->print_short_name();
   517     tty->cr();
   518     BREAKPOINT;
   519   }
   521   if( PrintOpto ) {
   522     if (is_osr_compilation()) {
   523       tty->print("[OSR]%3d", _compile_id);
   524     } else {
   525       tty->print("%3d", _compile_id);
   526     }
   527   }
   528 #endif
   529 }
   532 //-----------------------init_scratch_buffer_blob------------------------------
   533 // Construct a temporary BufferBlob and cache it for this compile.
   534 void Compile::init_scratch_buffer_blob(int const_size) {
   535   // If there is already a scratch buffer blob allocated and the
   536   // constant section is big enough, use it.  Otherwise free the
   537   // current and allocate a new one.
   538   BufferBlob* blob = scratch_buffer_blob();
   539   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   540     // Use the current blob.
   541   } else {
   542     if (blob != NULL) {
   543       BufferBlob::free(blob);
   544     }
   546     ResourceMark rm;
   547     _scratch_const_size = const_size;
   548     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   549     blob = BufferBlob::create("Compile::scratch_buffer", size);
   550     // Record the buffer blob for next time.
   551     set_scratch_buffer_blob(blob);
   552     // Have we run out of code space?
   553     if (scratch_buffer_blob() == NULL) {
   554       // Let CompilerBroker disable further compilations.
   555       record_failure("Not enough space for scratch buffer in CodeCache");
   556       return;
   557     }
   558   }
   560   // Initialize the relocation buffers
   561   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   562   set_scratch_locs_memory(locs_buf);
   563 }
   566 //-----------------------scratch_emit_size-------------------------------------
   567 // Helper function that computes size by emitting code
   568 uint Compile::scratch_emit_size(const Node* n) {
   569   // Start scratch_emit_size section.
   570   set_in_scratch_emit_size(true);
   572   // Emit into a trash buffer and count bytes emitted.
   573   // This is a pretty expensive way to compute a size,
   574   // but it works well enough if seldom used.
   575   // All common fixed-size instructions are given a size
   576   // method by the AD file.
   577   // Note that the scratch buffer blob and locs memory are
   578   // allocated at the beginning of the compile task, and
   579   // may be shared by several calls to scratch_emit_size.
   580   // The allocation of the scratch buffer blob is particularly
   581   // expensive, since it has to grab the code cache lock.
   582   BufferBlob* blob = this->scratch_buffer_blob();
   583   assert(blob != NULL, "Initialize BufferBlob at start");
   584   assert(blob->size() > MAX_inst_size, "sanity");
   585   relocInfo* locs_buf = scratch_locs_memory();
   586   address blob_begin = blob->content_begin();
   587   address blob_end   = (address)locs_buf;
   588   assert(blob->content_contains(blob_end), "sanity");
   589   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   590   buf.initialize_consts_size(_scratch_const_size);
   591   buf.initialize_stubs_size(MAX_stubs_size);
   592   assert(locs_buf != NULL, "sanity");
   593   int lsize = MAX_locs_size / 3;
   594   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   595   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   596   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   598   // Do the emission.
   600   Label fakeL; // Fake label for branch instructions.
   601   Label*   saveL = NULL;
   602   uint save_bnum = 0;
   603   bool is_branch = n->is_MachBranch();
   604   if (is_branch) {
   605     MacroAssembler masm(&buf);
   606     masm.bind(fakeL);
   607     n->as_MachBranch()->save_label(&saveL, &save_bnum);
   608     n->as_MachBranch()->label_set(&fakeL, 0);
   609   }
   610   n->emit(buf, this->regalloc());
   611   if (is_branch) // Restore label.
   612     n->as_MachBranch()->label_set(saveL, save_bnum);
   614   // End scratch_emit_size section.
   615   set_in_scratch_emit_size(false);
   617   return buf.insts_size();
   618 }
   621 // ============================================================================
   622 //------------------------------Compile standard-------------------------------
   623 debug_only( int Compile::_debug_idx = 100000; )
   625 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   626 // the continuation bci for on stack replacement.
   629 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
   630                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
   631                 : Phase(Compiler),
   632                   _env(ci_env),
   633                   _log(ci_env->log()),
   634                   _compile_id(ci_env->compile_id()),
   635                   _save_argument_registers(false),
   636                   _stub_name(NULL),
   637                   _stub_function(NULL),
   638                   _stub_entry_point(NULL),
   639                   _method(target),
   640                   _entry_bci(osr_bci),
   641                   _initial_gvn(NULL),
   642                   _for_igvn(NULL),
   643                   _warm_calls(NULL),
   644                   _subsume_loads(subsume_loads),
   645                   _do_escape_analysis(do_escape_analysis),
   646                   _eliminate_boxing(eliminate_boxing),
   647                   _failure_reason(NULL),
   648                   _code_buffer("Compile::Fill_buffer"),
   649                   _orig_pc_slot(0),
   650                   _orig_pc_slot_offset_in_bytes(0),
   651                   _has_method_handle_invokes(false),
   652                   _mach_constant_base_node(NULL),
   653                   _node_bundling_limit(0),
   654                   _node_bundling_base(NULL),
   655                   _java_calls(0),
   656                   _inner_loops(0),
   657                   _scratch_const_size(-1),
   658                   _in_scratch_emit_size(false),
   659                   _dead_node_list(comp_arena()),
   660                   _dead_node_count(0),
   661 #ifndef PRODUCT
   662                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   663                   _in_dump_cnt(0),
   664                   _printer(IdealGraphPrinter::printer()),
   665 #endif
   666                   _congraph(NULL),
   667                   _comp_arena(mtCompiler),
   668                   _node_arena(mtCompiler),
   669                   _old_arena(mtCompiler),
   670                   _Compile_types(mtCompiler),
   671                   _replay_inline_data(NULL),
   672                   _late_inlines(comp_arena(), 2, 0, NULL),
   673                   _string_late_inlines(comp_arena(), 2, 0, NULL),
   674                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
   675                   _late_inlines_pos(0),
   676                   _number_of_mh_late_inlines(0),
   677                   _inlining_progress(false),
   678                   _inlining_incrementally(false),
   679                   _print_inlining_list(NULL),
   680                   _print_inlining_idx(0),
   681                   _interpreter_frame_size(0),
   682                   _max_node_limit(MaxNodeLimit) {
   683   C = this;
   685   CompileWrapper cw(this);
   686 #ifndef PRODUCT
   687   if (TimeCompiler2) {
   688     tty->print(" ");
   689     target->holder()->name()->print();
   690     tty->print(".");
   691     target->print_short_name();
   692     tty->print("  ");
   693   }
   694   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   695   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   696   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   697   if (!print_opto_assembly) {
   698     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   699     if (print_assembly && !Disassembler::can_decode()) {
   700       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   701       print_opto_assembly = true;
   702     }
   703   }
   704   set_print_assembly(print_opto_assembly);
   705   set_parsed_irreducible_loop(false);
   707   if (method()->has_option("ReplayInline")) {
   708     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
   709   }
   710 #endif
   711   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
   712   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
   713   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
   715   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
   716     // Make sure the method being compiled gets its own MDO,
   717     // so we can at least track the decompile_count().
   718     // Need MDO to record RTM code generation state.
   719     method()->ensure_method_data();
   720   }
   722   Init(::AliasLevel);
   725   print_compile_messages();
   727   _ilt = InlineTree::build_inline_tree_root();
   729   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   730   assert(num_alias_types() >= AliasIdxRaw, "");
   732 #define MINIMUM_NODE_HASH  1023
   733   // Node list that Iterative GVN will start with
   734   Unique_Node_List for_igvn(comp_arena());
   735   set_for_igvn(&for_igvn);
   737   // GVN that will be run immediately on new nodes
   738   uint estimated_size = method()->code_size()*4+64;
   739   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   740   PhaseGVN gvn(node_arena(), estimated_size);
   741   set_initial_gvn(&gvn);
   743   if (print_inlining() || print_intrinsics()) {
   744     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
   745   }
   746   { // Scope for timing the parser
   747     TracePhase t3("parse", &_t_parser, true);
   749     // Put top into the hash table ASAP.
   750     initial_gvn()->transform_no_reclaim(top());
   752     // Set up tf(), start(), and find a CallGenerator.
   753     CallGenerator* cg = NULL;
   754     if (is_osr_compilation()) {
   755       const TypeTuple *domain = StartOSRNode::osr_domain();
   756       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   757       init_tf(TypeFunc::make(domain, range));
   758       StartNode* s = new (this) StartOSRNode(root(), domain);
   759       initial_gvn()->set_type_bottom(s);
   760       init_start(s);
   761       cg = CallGenerator::for_osr(method(), entry_bci());
   762     } else {
   763       // Normal case.
   764       init_tf(TypeFunc::make(method()));
   765       StartNode* s = new (this) StartNode(root(), tf()->domain());
   766       initial_gvn()->set_type_bottom(s);
   767       init_start(s);
   768       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
   769         // With java.lang.ref.reference.get() we must go through the
   770         // intrinsic when G1 is enabled - even when get() is the root
   771         // method of the compile - so that, if necessary, the value in
   772         // the referent field of the reference object gets recorded by
   773         // the pre-barrier code.
   774         // Specifically, if G1 is enabled, the value in the referent
   775         // field is recorded by the G1 SATB pre barrier. This will
   776         // result in the referent being marked live and the reference
   777         // object removed from the list of discovered references during
   778         // reference processing.
   779         cg = find_intrinsic(method(), false);
   780       }
   781       if (cg == NULL) {
   782         float past_uses = method()->interpreter_invocation_count();
   783         float expected_uses = past_uses;
   784         cg = CallGenerator::for_inline(method(), expected_uses);
   785       }
   786     }
   787     if (failing())  return;
   788     if (cg == NULL) {
   789       record_method_not_compilable_all_tiers("cannot parse method");
   790       return;
   791     }
   792     JVMState* jvms = build_start_state(start(), tf());
   793     if ((jvms = cg->generate(jvms)) == NULL) {
   794       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
   795         record_method_not_compilable("method parse failed");
   796       }
   797       return;
   798     }
   799     GraphKit kit(jvms);
   801     if (!kit.stopped()) {
   802       // Accept return values, and transfer control we know not where.
   803       // This is done by a special, unique ReturnNode bound to root.
   804       return_values(kit.jvms());
   805     }
   807     if (kit.has_exceptions()) {
   808       // Any exceptions that escape from this call must be rethrown
   809       // to whatever caller is dynamically above us on the stack.
   810       // This is done by a special, unique RethrowNode bound to root.
   811       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   812     }
   814     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
   816     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
   817       inline_string_calls(true);
   818     }
   820     if (failing())  return;
   822     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
   824     // Remove clutter produced by parsing.
   825     if (!failing()) {
   826       ResourceMark rm;
   827       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   828     }
   829   }
   831   // Note:  Large methods are capped off in do_one_bytecode().
   832   if (failing())  return;
   834   // After parsing, node notes are no longer automagic.
   835   // They must be propagated by register_new_node_with_optimizer(),
   836   // clone(), or the like.
   837   set_default_node_notes(NULL);
   839   for (;;) {
   840     int successes = Inline_Warm();
   841     if (failing())  return;
   842     if (successes == 0)  break;
   843   }
   845   // Drain the list.
   846   Finish_Warm();
   847 #ifndef PRODUCT
   848   if (_printer) {
   849     _printer->print_inlining(this);
   850   }
   851 #endif
   853   if (failing())  return;
   854   NOT_PRODUCT( verify_graph_edges(); )
   856   // Now optimize
   857   Optimize();
   858   if (failing())  return;
   859   NOT_PRODUCT( verify_graph_edges(); )
   861 #ifndef PRODUCT
   862   if (PrintIdeal) {
   863     ttyLocker ttyl;  // keep the following output all in one block
   864     // This output goes directly to the tty, not the compiler log.
   865     // To enable tools to match it up with the compilation activity,
   866     // be sure to tag this tty output with the compile ID.
   867     if (xtty != NULL) {
   868       xtty->head("ideal compile_id='%d'%s", compile_id(),
   869                  is_osr_compilation()    ? " compile_kind='osr'" :
   870                  "");
   871     }
   872     root()->dump(9999);
   873     if (xtty != NULL) {
   874       xtty->tail("ideal");
   875     }
   876   }
   877 #endif
   879   NOT_PRODUCT( verify_barriers(); )
   881   // Dump compilation data to replay it.
   882   if (method()->has_option("DumpReplay")) {
   883     env()->dump_replay_data(_compile_id);
   884   }
   885   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
   886     env()->dump_inline_data(_compile_id);
   887   }
   889   // Now that we know the size of all the monitors we can add a fixed slot
   890   // for the original deopt pc.
   892   _orig_pc_slot =  fixed_slots();
   893   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   894   set_fixed_slots(next_slot);
   896   // Compute when to use implicit null checks. Used by matching trap based
   897   // nodes and NullCheck optimization.
   898   set_allowed_deopt_reasons();
   900   // Now generate code
   901   Code_Gen();
   902   if (failing())  return;
   904   // Check if we want to skip execution of all compiled code.
   905   {
   906 #ifndef PRODUCT
   907     if (OptoNoExecute) {
   908       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   909       return;
   910     }
   911     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   912 #endif
   914     if (is_osr_compilation()) {
   915       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   916       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   917     } else {
   918       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   919       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   920     }
   922     env()->register_method(_method, _entry_bci,
   923                            &_code_offsets,
   924                            _orig_pc_slot_offset_in_bytes,
   925                            code_buffer(),
   926                            frame_size_in_words(), _oop_map_set,
   927                            &_handler_table, &_inc_table,
   928                            compiler,
   929                            env()->comp_level(),
   930                            has_unsafe_access(),
   931                            SharedRuntime::is_wide_vector(max_vector_size()),
   932                            rtm_state()
   933                            );
   935     if (log() != NULL) // Print code cache state into compiler log
   936       log()->code_cache_state();
   937   }
   938 }
   940 //------------------------------Compile----------------------------------------
   941 // Compile a runtime stub
   942 Compile::Compile( ciEnv* ci_env,
   943                   TypeFunc_generator generator,
   944                   address stub_function,
   945                   const char *stub_name,
   946                   int is_fancy_jump,
   947                   bool pass_tls,
   948                   bool save_arg_registers,
   949                   bool return_pc )
   950   : Phase(Compiler),
   951     _env(ci_env),
   952     _log(ci_env->log()),
   953     _compile_id(0),
   954     _save_argument_registers(save_arg_registers),
   955     _method(NULL),
   956     _stub_name(stub_name),
   957     _stub_function(stub_function),
   958     _stub_entry_point(NULL),
   959     _entry_bci(InvocationEntryBci),
   960     _initial_gvn(NULL),
   961     _for_igvn(NULL),
   962     _warm_calls(NULL),
   963     _orig_pc_slot(0),
   964     _orig_pc_slot_offset_in_bytes(0),
   965     _subsume_loads(true),
   966     _do_escape_analysis(false),
   967     _eliminate_boxing(false),
   968     _failure_reason(NULL),
   969     _code_buffer("Compile::Fill_buffer"),
   970     _has_method_handle_invokes(false),
   971     _mach_constant_base_node(NULL),
   972     _node_bundling_limit(0),
   973     _node_bundling_base(NULL),
   974     _java_calls(0),
   975     _inner_loops(0),
   976 #ifndef PRODUCT
   977     _trace_opto_output(TraceOptoOutput),
   978     _in_dump_cnt(0),
   979     _printer(NULL),
   980 #endif
   981     _comp_arena(mtCompiler),
   982     _node_arena(mtCompiler),
   983     _old_arena(mtCompiler),
   984     _Compile_types(mtCompiler),
   985     _dead_node_list(comp_arena()),
   986     _dead_node_count(0),
   987     _congraph(NULL),
   988     _replay_inline_data(NULL),
   989     _number_of_mh_late_inlines(0),
   990     _inlining_progress(false),
   991     _inlining_incrementally(false),
   992     _print_inlining_list(NULL),
   993     _print_inlining_idx(0),
   994     _allowed_reasons(0),
   995     _interpreter_frame_size(0),
   996     _max_node_limit(MaxNodeLimit) {
   997   C = this;
   999 #ifndef PRODUCT
  1000   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
  1001   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
  1002   set_print_assembly(PrintFrameConverterAssembly);
  1003   set_parsed_irreducible_loop(false);
  1004 #endif
  1005   set_has_irreducible_loop(false); // no loops
  1007   CompileWrapper cw(this);
  1008   Init(/*AliasLevel=*/ 0);
  1009   init_tf((*generator)());
  1012     // The following is a dummy for the sake of GraphKit::gen_stub
  1013     Unique_Node_List for_igvn(comp_arena());
  1014     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
  1015     PhaseGVN gvn(Thread::current()->resource_area(),255);
  1016     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
  1017     gvn.transform_no_reclaim(top());
  1019     GraphKit kit;
  1020     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
  1023   NOT_PRODUCT( verify_graph_edges(); )
  1024   Code_Gen();
  1025   if (failing())  return;
  1028   // Entry point will be accessed using compile->stub_entry_point();
  1029   if (code_buffer() == NULL) {
  1030     Matcher::soft_match_failure();
  1031   } else {
  1032     if (PrintAssembly && (WizardMode || Verbose))
  1033       tty->print_cr("### Stub::%s", stub_name);
  1035     if (!failing()) {
  1036       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
  1038       // Make the NMethod
  1039       // For now we mark the frame as never safe for profile stackwalking
  1040       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
  1041                                                       code_buffer(),
  1042                                                       CodeOffsets::frame_never_safe,
  1043                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
  1044                                                       frame_size_in_words(),
  1045                                                       _oop_map_set,
  1046                                                       save_arg_registers);
  1047       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
  1049       _stub_entry_point = rs->entry_point();
  1054 //------------------------------Init-------------------------------------------
  1055 // Prepare for a single compilation
  1056 void Compile::Init(int aliaslevel) {
  1057   _unique  = 0;
  1058   _regalloc = NULL;
  1060   _tf      = NULL;  // filled in later
  1061   _top     = NULL;  // cached later
  1062   _matcher = NULL;  // filled in later
  1063   _cfg     = NULL;  // filled in later
  1065   set_24_bit_selection_and_mode(Use24BitFP, false);
  1067   _node_note_array = NULL;
  1068   _default_node_notes = NULL;
  1070   _immutable_memory = NULL; // filled in at first inquiry
  1072   // Globally visible Nodes
  1073   // First set TOP to NULL to give safe behavior during creation of RootNode
  1074   set_cached_top_node(NULL);
  1075   set_root(new (this) RootNode());
  1076   // Now that you have a Root to point to, create the real TOP
  1077   set_cached_top_node( new (this) ConNode(Type::TOP) );
  1078   set_recent_alloc(NULL, NULL);
  1080   // Create Debug Information Recorder to record scopes, oopmaps, etc.
  1081   env()->set_oop_recorder(new OopRecorder(env()->arena()));
  1082   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
  1083   env()->set_dependencies(new Dependencies(env()));
  1085   _fixed_slots = 0;
  1086   set_has_split_ifs(false);
  1087   set_has_loops(has_method() && method()->has_loops()); // first approximation
  1088   set_has_stringbuilder(false);
  1089   set_has_boxed_value(false);
  1090   _trap_can_recompile = false;  // no traps emitted yet
  1091   _major_progress = true; // start out assuming good things will happen
  1092   set_has_unsafe_access(false);
  1093   set_max_vector_size(0);
  1094   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
  1095   set_decompile_count(0);
  1097   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
  1098   set_num_loop_opts(LoopOptsCount);
  1099   set_do_inlining(Inline);
  1100   set_max_inline_size(MaxInlineSize);
  1101   set_freq_inline_size(FreqInlineSize);
  1102   set_do_scheduling(OptoScheduling);
  1103   set_do_count_invocations(false);
  1104   set_do_method_data_update(false);
  1105   set_rtm_state(NoRTM); // No RTM lock eliding by default
  1106   method_has_option_value("MaxNodeLimit", _max_node_limit);
  1107 #if INCLUDE_RTM_OPT
  1108   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
  1109     int rtm_state = method()->method_data()->rtm_state();
  1110     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
  1111       // Don't generate RTM lock eliding code.
  1112       set_rtm_state(NoRTM);
  1113     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
  1114       // Generate RTM lock eliding code without abort ratio calculation code.
  1115       set_rtm_state(UseRTM);
  1116     } else if (UseRTMDeopt) {
  1117       // Generate RTM lock eliding code and include abort ratio calculation
  1118       // code if UseRTMDeopt is on.
  1119       set_rtm_state(ProfileRTM);
  1122 #endif
  1123   if (debug_info()->recording_non_safepoints()) {
  1124     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
  1125                         (comp_arena(), 8, 0, NULL));
  1126     set_default_node_notes(Node_Notes::make(this));
  1129   // // -- Initialize types before each compile --
  1130   // // Update cached type information
  1131   // if( _method && _method->constants() )
  1132   //   Type::update_loaded_types(_method, _method->constants());
  1134   // Init alias_type map.
  1135   if (!_do_escape_analysis && aliaslevel == 3)
  1136     aliaslevel = 2;  // No unique types without escape analysis
  1137   _AliasLevel = aliaslevel;
  1138   const int grow_ats = 16;
  1139   _max_alias_types = grow_ats;
  1140   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
  1141   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
  1142   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
  1144     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
  1146   // Initialize the first few types.
  1147   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
  1148   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
  1149   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
  1150   _num_alias_types = AliasIdxRaw+1;
  1151   // Zero out the alias type cache.
  1152   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
  1153   // A NULL adr_type hits in the cache right away.  Preload the right answer.
  1154   probe_alias_cache(NULL)->_index = AliasIdxTop;
  1156   _intrinsics = NULL;
  1157   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1158   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1159   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1160   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
  1161   register_library_intrinsics();
  1164 //---------------------------init_start----------------------------------------
  1165 // Install the StartNode on this compile object.
  1166 void Compile::init_start(StartNode* s) {
  1167   if (failing())
  1168     return; // already failing
  1169   assert(s == start(), "");
  1172 StartNode* Compile::start() const {
  1173   assert(!failing(), "");
  1174   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1175     Node* start = root()->fast_out(i);
  1176     if( start->is_Start() )
  1177       return start->as_Start();
  1179   fatal("Did not find Start node!");
  1180   return NULL;
  1183 //-------------------------------immutable_memory-------------------------------------
  1184 // Access immutable memory
  1185 Node* Compile::immutable_memory() {
  1186   if (_immutable_memory != NULL) {
  1187     return _immutable_memory;
  1189   StartNode* s = start();
  1190   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1191     Node *p = s->fast_out(i);
  1192     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1193       _immutable_memory = p;
  1194       return _immutable_memory;
  1197   ShouldNotReachHere();
  1198   return NULL;
  1201 //----------------------set_cached_top_node------------------------------------
  1202 // Install the cached top node, and make sure Node::is_top works correctly.
  1203 void Compile::set_cached_top_node(Node* tn) {
  1204   if (tn != NULL)  verify_top(tn);
  1205   Node* old_top = _top;
  1206   _top = tn;
  1207   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1208   // their _out arrays.
  1209   if (_top != NULL)     _top->setup_is_top();
  1210   if (old_top != NULL)  old_top->setup_is_top();
  1211   assert(_top == NULL || top()->is_top(), "");
  1214 #ifdef ASSERT
  1215 uint Compile::count_live_nodes_by_graph_walk() {
  1216   Unique_Node_List useful(comp_arena());
  1217   // Get useful node list by walking the graph.
  1218   identify_useful_nodes(useful);
  1219   return useful.size();
  1222 void Compile::print_missing_nodes() {
  1224   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
  1225   if ((_log == NULL) && (! PrintIdealNodeCount)) {
  1226     return;
  1229   // This is an expensive function. It is executed only when the user
  1230   // specifies VerifyIdealNodeCount option or otherwise knows the
  1231   // additional work that needs to be done to identify reachable nodes
  1232   // by walking the flow graph and find the missing ones using
  1233   // _dead_node_list.
  1235   Unique_Node_List useful(comp_arena());
  1236   // Get useful node list by walking the graph.
  1237   identify_useful_nodes(useful);
  1239   uint l_nodes = C->live_nodes();
  1240   uint l_nodes_by_walk = useful.size();
  1242   if (l_nodes != l_nodes_by_walk) {
  1243     if (_log != NULL) {
  1244       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
  1245       _log->stamp();
  1246       _log->end_head();
  1248     VectorSet& useful_member_set = useful.member_set();
  1249     int last_idx = l_nodes_by_walk;
  1250     for (int i = 0; i < last_idx; i++) {
  1251       if (useful_member_set.test(i)) {
  1252         if (_dead_node_list.test(i)) {
  1253           if (_log != NULL) {
  1254             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
  1256           if (PrintIdealNodeCount) {
  1257             // Print the log message to tty
  1258               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
  1259               useful.at(i)->dump();
  1263       else if (! _dead_node_list.test(i)) {
  1264         if (_log != NULL) {
  1265           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
  1267         if (PrintIdealNodeCount) {
  1268           // Print the log message to tty
  1269           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
  1273     if (_log != NULL) {
  1274       _log->tail("mismatched_nodes");
  1278 #endif
  1280 #ifndef PRODUCT
  1281 void Compile::verify_top(Node* tn) const {
  1282   if (tn != NULL) {
  1283     assert(tn->is_Con(), "top node must be a constant");
  1284     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1285     assert(tn->in(0) != NULL, "must have live top node");
  1288 #endif
  1291 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1293 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1294   guarantee(arr != NULL, "");
  1295   int num_blocks = arr->length();
  1296   if (grow_by < num_blocks)  grow_by = num_blocks;
  1297   int num_notes = grow_by * _node_notes_block_size;
  1298   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1299   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1300   while (num_notes > 0) {
  1301     arr->append(notes);
  1302     notes     += _node_notes_block_size;
  1303     num_notes -= _node_notes_block_size;
  1305   assert(num_notes == 0, "exact multiple, please");
  1308 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1309   if (source == NULL || dest == NULL)  return false;
  1311   if (dest->is_Con())
  1312     return false;               // Do not push debug info onto constants.
  1314 #ifdef ASSERT
  1315   // Leave a bread crumb trail pointing to the original node:
  1316   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1317     dest->set_debug_orig(source);
  1319 #endif
  1321   if (node_note_array() == NULL)
  1322     return false;               // Not collecting any notes now.
  1324   // This is a copy onto a pre-existing node, which may already have notes.
  1325   // If both nodes have notes, do not overwrite any pre-existing notes.
  1326   Node_Notes* source_notes = node_notes_at(source->_idx);
  1327   if (source_notes == NULL || source_notes->is_clear())  return false;
  1328   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1329   if (dest_notes == NULL || dest_notes->is_clear()) {
  1330     return set_node_notes_at(dest->_idx, source_notes);
  1333   Node_Notes merged_notes = (*source_notes);
  1334   // The order of operations here ensures that dest notes will win...
  1335   merged_notes.update_from(dest_notes);
  1336   return set_node_notes_at(dest->_idx, &merged_notes);
  1340 //--------------------------allow_range_check_smearing-------------------------
  1341 // Gating condition for coalescing similar range checks.
  1342 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1343 // single covering check that is at least as strong as any of them.
  1344 // If the optimization succeeds, the simplified (strengthened) range check
  1345 // will always succeed.  If it fails, we will deopt, and then give up
  1346 // on the optimization.
  1347 bool Compile::allow_range_check_smearing() const {
  1348   // If this method has already thrown a range-check,
  1349   // assume it was because we already tried range smearing
  1350   // and it failed.
  1351   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1352   return !already_trapped;
  1356 //------------------------------flatten_alias_type-----------------------------
  1357 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1358   int offset = tj->offset();
  1359   TypePtr::PTR ptr = tj->ptr();
  1361   // Known instance (scalarizable allocation) alias only with itself.
  1362   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1363                        tj->is_oopptr()->is_known_instance();
  1365   // Process weird unsafe references.
  1366   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1367     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1368     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1369     tj = TypeOopPtr::BOTTOM;
  1370     ptr = tj->ptr();
  1371     offset = tj->offset();
  1374   // Array pointers need some flattening
  1375   const TypeAryPtr *ta = tj->isa_aryptr();
  1376   if (ta && ta->is_stable()) {
  1377     // Erase stability property for alias analysis.
  1378     tj = ta = ta->cast_to_stable(false);
  1380   if( ta && is_known_inst ) {
  1381     if ( offset != Type::OffsetBot &&
  1382          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1383       offset = Type::OffsetBot; // Flatten constant access into array body only
  1384       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1386   } else if( ta && _AliasLevel >= 2 ) {
  1387     // For arrays indexed by constant indices, we flatten the alias
  1388     // space to include all of the array body.  Only the header, klass
  1389     // and array length can be accessed un-aliased.
  1390     if( offset != Type::OffsetBot ) {
  1391       if( ta->const_oop() ) { // MethodData* or Method*
  1392         offset = Type::OffsetBot;   // Flatten constant access into array body
  1393         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1394       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1395         // range is OK as-is.
  1396         tj = ta = TypeAryPtr::RANGE;
  1397       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1398         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1399         ta = TypeAryPtr::RANGE; // generic ignored junk
  1400         ptr = TypePtr::BotPTR;
  1401       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1402         tj = TypeInstPtr::MARK;
  1403         ta = TypeAryPtr::RANGE; // generic ignored junk
  1404         ptr = TypePtr::BotPTR;
  1405       } else {                  // Random constant offset into array body
  1406         offset = Type::OffsetBot;   // Flatten constant access into array body
  1407         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1410     // Arrays of fixed size alias with arrays of unknown size.
  1411     if (ta->size() != TypeInt::POS) {
  1412       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1413       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1415     // Arrays of known objects become arrays of unknown objects.
  1416     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1417       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1418       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1420     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1421       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1422       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1424     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1425     // cannot be distinguished by bytecode alone.
  1426     if (ta->elem() == TypeInt::BOOL) {
  1427       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1428       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1429       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1431     // During the 2nd round of IterGVN, NotNull castings are removed.
  1432     // Make sure the Bottom and NotNull variants alias the same.
  1433     // Also, make sure exact and non-exact variants alias the same.
  1434     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
  1435       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1439   // Oop pointers need some flattening
  1440   const TypeInstPtr *to = tj->isa_instptr();
  1441   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1442     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1443     if( ptr == TypePtr::Constant ) {
  1444       if (to->klass() != ciEnv::current()->Class_klass() ||
  1445           offset < k->size_helper() * wordSize) {
  1446         // No constant oop pointers (such as Strings); they alias with
  1447         // unknown strings.
  1448         assert(!is_known_inst, "not scalarizable allocation");
  1449         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1451     } else if( is_known_inst ) {
  1452       tj = to; // Keep NotNull and klass_is_exact for instance type
  1453     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1454       // During the 2nd round of IterGVN, NotNull castings are removed.
  1455       // Make sure the Bottom and NotNull variants alias the same.
  1456       // Also, make sure exact and non-exact variants alias the same.
  1457       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1459     if (to->speculative() != NULL) {
  1460       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
  1462     // Canonicalize the holder of this field
  1463     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1464       // First handle header references such as a LoadKlassNode, even if the
  1465       // object's klass is unloaded at compile time (4965979).
  1466       if (!is_known_inst) { // Do it only for non-instance types
  1467         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1469     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1470       // Static fields are in the space above the normal instance
  1471       // fields in the java.lang.Class instance.
  1472       if (to->klass() != ciEnv::current()->Class_klass()) {
  1473         to = NULL;
  1474         tj = TypeOopPtr::BOTTOM;
  1475         offset = tj->offset();
  1477     } else {
  1478       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1479       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1480         if( is_known_inst ) {
  1481           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1482         } else {
  1483           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1489   // Klass pointers to object array klasses need some flattening
  1490   const TypeKlassPtr *tk = tj->isa_klassptr();
  1491   if( tk ) {
  1492     // If we are referencing a field within a Klass, we need
  1493     // to assume the worst case of an Object.  Both exact and
  1494     // inexact types must flatten to the same alias class so
  1495     // use NotNull as the PTR.
  1496     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1498       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
  1499                                    TypeKlassPtr::OBJECT->klass(),
  1500                                    offset);
  1503     ciKlass* klass = tk->klass();
  1504     if( klass->is_obj_array_klass() ) {
  1505       ciKlass* k = TypeAryPtr::OOPS->klass();
  1506       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1507         k = TypeInstPtr::BOTTOM->klass();
  1508       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1511     // Check for precise loads from the primary supertype array and force them
  1512     // to the supertype cache alias index.  Check for generic array loads from
  1513     // the primary supertype array and also force them to the supertype cache
  1514     // alias index.  Since the same load can reach both, we need to merge
  1515     // these 2 disparate memories into the same alias class.  Since the
  1516     // primary supertype array is read-only, there's no chance of confusion
  1517     // where we bypass an array load and an array store.
  1518     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
  1519     if (offset == Type::OffsetBot ||
  1520         (offset >= primary_supers_offset &&
  1521          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
  1522         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
  1523       offset = in_bytes(Klass::secondary_super_cache_offset());
  1524       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1528   // Flatten all Raw pointers together.
  1529   if (tj->base() == Type::RawPtr)
  1530     tj = TypeRawPtr::BOTTOM;
  1532   if (tj->base() == Type::AnyPtr)
  1533     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1535   // Flatten all to bottom for now
  1536   switch( _AliasLevel ) {
  1537   case 0:
  1538     tj = TypePtr::BOTTOM;
  1539     break;
  1540   case 1:                       // Flatten to: oop, static, field or array
  1541     switch (tj->base()) {
  1542     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1543     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1544     case Type::AryPtr:   // do not distinguish arrays at all
  1545     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1546     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1547     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1548     default: ShouldNotReachHere();
  1550     break;
  1551   case 2:                       // No collapsing at level 2; keep all splits
  1552   case 3:                       // No collapsing at level 3; keep all splits
  1553     break;
  1554   default:
  1555     Unimplemented();
  1558   offset = tj->offset();
  1559   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1561   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1562           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1563           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1564           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1565           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1566           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1567           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1568           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1569   assert( tj->ptr() != TypePtr::TopPTR &&
  1570           tj->ptr() != TypePtr::AnyNull &&
  1571           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1572 //    assert( tj->ptr() != TypePtr::Constant ||
  1573 //            tj->base() == Type::RawPtr ||
  1574 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1576   return tj;
  1579 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1580   _index = i;
  1581   _adr_type = at;
  1582   _field = NULL;
  1583   _element = NULL;
  1584   _is_rewritable = true; // default
  1585   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1586   if (atoop != NULL && atoop->is_known_instance()) {
  1587     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1588     _general_index = Compile::current()->get_alias_index(gt);
  1589   } else {
  1590     _general_index = 0;
  1594 //---------------------------------print_on------------------------------------
  1595 #ifndef PRODUCT
  1596 void Compile::AliasType::print_on(outputStream* st) {
  1597   if (index() < 10)
  1598         st->print("@ <%d> ", index());
  1599   else  st->print("@ <%d>",  index());
  1600   st->print(is_rewritable() ? "   " : " RO");
  1601   int offset = adr_type()->offset();
  1602   if (offset == Type::OffsetBot)
  1603         st->print(" +any");
  1604   else  st->print(" +%-3d", offset);
  1605   st->print(" in ");
  1606   adr_type()->dump_on(st);
  1607   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1608   if (field() != NULL && tjp) {
  1609     if (tjp->klass()  != field()->holder() ||
  1610         tjp->offset() != field()->offset_in_bytes()) {
  1611       st->print(" != ");
  1612       field()->print();
  1613       st->print(" ***");
  1618 void print_alias_types() {
  1619   Compile* C = Compile::current();
  1620   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1621   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1622     C->alias_type(idx)->print_on(tty);
  1623     tty->cr();
  1626 #endif
  1629 //----------------------------probe_alias_cache--------------------------------
  1630 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1631   intptr_t key = (intptr_t) adr_type;
  1632   key ^= key >> logAliasCacheSize;
  1633   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1637 //-----------------------------grow_alias_types--------------------------------
  1638 void Compile::grow_alias_types() {
  1639   const int old_ats  = _max_alias_types; // how many before?
  1640   const int new_ats  = old_ats;          // how many more?
  1641   const int grow_ats = old_ats+new_ats;  // how many now?
  1642   _max_alias_types = grow_ats;
  1643   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1644   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1645   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1646   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1650 //--------------------------------find_alias_type------------------------------
  1651 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1652   if (_AliasLevel == 0)
  1653     return alias_type(AliasIdxBot);
  1655   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1656   if (ace->_adr_type == adr_type) {
  1657     return alias_type(ace->_index);
  1660   // Handle special cases.
  1661   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1662   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1664   // Do it the slow way.
  1665   const TypePtr* flat = flatten_alias_type(adr_type);
  1667 #ifdef ASSERT
  1668   assert(flat == flatten_alias_type(flat), "idempotent");
  1669   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1670   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1671     const TypeOopPtr* foop = flat->is_oopptr();
  1672     // Scalarizable allocations have exact klass always.
  1673     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1674     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1675     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1677   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1678 #endif
  1680   int idx = AliasIdxTop;
  1681   for (int i = 0; i < num_alias_types(); i++) {
  1682     if (alias_type(i)->adr_type() == flat) {
  1683       idx = i;
  1684       break;
  1688   if (idx == AliasIdxTop) {
  1689     if (no_create)  return NULL;
  1690     // Grow the array if necessary.
  1691     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1692     // Add a new alias type.
  1693     idx = _num_alias_types++;
  1694     _alias_types[idx]->Init(idx, flat);
  1695     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1696     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1697     if (flat->isa_instptr()) {
  1698       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1699           && flat->is_instptr()->klass() == env()->Class_klass())
  1700         alias_type(idx)->set_rewritable(false);
  1702     if (flat->isa_aryptr()) {
  1703 #ifdef ASSERT
  1704       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1705       // (T_BYTE has the weakest alignment and size restrictions...)
  1706       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
  1707 #endif
  1708       if (flat->offset() == TypePtr::OffsetBot) {
  1709         alias_type(idx)->set_element(flat->is_aryptr()->elem());
  1712     if (flat->isa_klassptr()) {
  1713       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
  1714         alias_type(idx)->set_rewritable(false);
  1715       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
  1716         alias_type(idx)->set_rewritable(false);
  1717       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
  1718         alias_type(idx)->set_rewritable(false);
  1719       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
  1720         alias_type(idx)->set_rewritable(false);
  1722     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1723     // but the base pointer type is not distinctive enough to identify
  1724     // references into JavaThread.)
  1726     // Check for final fields.
  1727     const TypeInstPtr* tinst = flat->isa_instptr();
  1728     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1729       ciField* field;
  1730       if (tinst->const_oop() != NULL &&
  1731           tinst->klass() == ciEnv::current()->Class_klass() &&
  1732           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1733         // static field
  1734         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1735         field = k->get_field_by_offset(tinst->offset(), true);
  1736       } else {
  1737         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1738         field = k->get_field_by_offset(tinst->offset(), false);
  1740       assert(field == NULL ||
  1741              original_field == NULL ||
  1742              (field->holder() == original_field->holder() &&
  1743               field->offset() == original_field->offset() &&
  1744               field->is_static() == original_field->is_static()), "wrong field?");
  1745       // Set field() and is_rewritable() attributes.
  1746       if (field != NULL)  alias_type(idx)->set_field(field);
  1750   // Fill the cache for next time.
  1751   ace->_adr_type = adr_type;
  1752   ace->_index    = idx;
  1753   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1755   // Might as well try to fill the cache for the flattened version, too.
  1756   AliasCacheEntry* face = probe_alias_cache(flat);
  1757   if (face->_adr_type == NULL) {
  1758     face->_adr_type = flat;
  1759     face->_index    = idx;
  1760     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1763   return alias_type(idx);
  1767 Compile::AliasType* Compile::alias_type(ciField* field) {
  1768   const TypeOopPtr* t;
  1769   if (field->is_static())
  1770     t = TypeInstPtr::make(field->holder()->java_mirror());
  1771   else
  1772     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1773   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1774   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
  1775   return atp;
  1779 //------------------------------have_alias_type--------------------------------
  1780 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1781   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1782   if (ace->_adr_type == adr_type) {
  1783     return true;
  1786   // Handle special cases.
  1787   if (adr_type == NULL)             return true;
  1788   if (adr_type == TypePtr::BOTTOM)  return true;
  1790   return find_alias_type(adr_type, true, NULL) != NULL;
  1793 //-----------------------------must_alias--------------------------------------
  1794 // True if all values of the given address type are in the given alias category.
  1795 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1796   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1797   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1798   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1799   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1801   // the only remaining possible overlap is identity
  1802   int adr_idx = get_alias_index(adr_type);
  1803   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1804   assert(adr_idx == alias_idx ||
  1805          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1806           && adr_type                       != TypeOopPtr::BOTTOM),
  1807          "should not be testing for overlap with an unsafe pointer");
  1808   return adr_idx == alias_idx;
  1811 //------------------------------can_alias--------------------------------------
  1812 // True if any values of the given address type are in the given alias category.
  1813 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1814   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1815   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1816   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1817   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1819   // the only remaining possible overlap is identity
  1820   int adr_idx = get_alias_index(adr_type);
  1821   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1822   return adr_idx == alias_idx;
  1827 //---------------------------pop_warm_call-------------------------------------
  1828 WarmCallInfo* Compile::pop_warm_call() {
  1829   WarmCallInfo* wci = _warm_calls;
  1830   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1831   return wci;
  1834 //----------------------------Inline_Warm--------------------------------------
  1835 int Compile::Inline_Warm() {
  1836   // If there is room, try to inline some more warm call sites.
  1837   // %%% Do a graph index compaction pass when we think we're out of space?
  1838   if (!InlineWarmCalls)  return 0;
  1840   int calls_made_hot = 0;
  1841   int room_to_grow   = NodeCountInliningCutoff - unique();
  1842   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1843   int amount_grown   = 0;
  1844   WarmCallInfo* call;
  1845   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1846     int est_size = (int)call->size();
  1847     if (est_size > (room_to_grow - amount_grown)) {
  1848       // This one won't fit anyway.  Get rid of it.
  1849       call->make_cold();
  1850       continue;
  1852     call->make_hot();
  1853     calls_made_hot++;
  1854     amount_grown   += est_size;
  1855     amount_to_grow -= est_size;
  1858   if (calls_made_hot > 0)  set_major_progress();
  1859   return calls_made_hot;
  1863 //----------------------------Finish_Warm--------------------------------------
  1864 void Compile::Finish_Warm() {
  1865   if (!InlineWarmCalls)  return;
  1866   if (failing())  return;
  1867   if (warm_calls() == NULL)  return;
  1869   // Clean up loose ends, if we are out of space for inlining.
  1870   WarmCallInfo* call;
  1871   while ((call = pop_warm_call()) != NULL) {
  1872     call->make_cold();
  1876 //---------------------cleanup_loop_predicates-----------------------
  1877 // Remove the opaque nodes that protect the predicates so that all unused
  1878 // checks and uncommon_traps will be eliminated from the ideal graph
  1879 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1880   if (predicate_count()==0) return;
  1881   for (int i = predicate_count(); i > 0; i--) {
  1882     Node * n = predicate_opaque1_node(i-1);
  1883     assert(n->Opcode() == Op_Opaque1, "must be");
  1884     igvn.replace_node(n, n->in(1));
  1886   assert(predicate_count()==0, "should be clean!");
  1889 void Compile::add_range_check_cast(Node* n) {
  1890   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
  1891   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
  1892   _range_check_casts->append(n);
  1895 // Remove all range check dependent CastIINodes.
  1896 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
  1897   for (int i = range_check_cast_count(); i > 0; i--) {
  1898     Node* cast = range_check_cast_node(i-1);
  1899     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
  1900     igvn.replace_node(cast, cast->in(1));
  1902   assert(range_check_cast_count() == 0, "should be empty");
  1905 // StringOpts and late inlining of string methods
  1906 void Compile::inline_string_calls(bool parse_time) {
  1908     // remove useless nodes to make the usage analysis simpler
  1909     ResourceMark rm;
  1910     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  1914     ResourceMark rm;
  1915     print_method(PHASE_BEFORE_STRINGOPTS, 3);
  1916     PhaseStringOpts pso(initial_gvn(), for_igvn());
  1917     print_method(PHASE_AFTER_STRINGOPTS, 3);
  1920   // now inline anything that we skipped the first time around
  1921   if (!parse_time) {
  1922     _late_inlines_pos = _late_inlines.length();
  1925   while (_string_late_inlines.length() > 0) {
  1926     CallGenerator* cg = _string_late_inlines.pop();
  1927     cg->do_late_inline();
  1928     if (failing())  return;
  1930   _string_late_inlines.trunc_to(0);
  1933 // Late inlining of boxing methods
  1934 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
  1935   if (_boxing_late_inlines.length() > 0) {
  1936     assert(has_boxed_value(), "inconsistent");
  1938     PhaseGVN* gvn = initial_gvn();
  1939     set_inlining_incrementally(true);
  1941     assert( igvn._worklist.size() == 0, "should be done with igvn" );
  1942     for_igvn()->clear();
  1943     gvn->replace_with(&igvn);
  1945     _late_inlines_pos = _late_inlines.length();
  1947     while (_boxing_late_inlines.length() > 0) {
  1948       CallGenerator* cg = _boxing_late_inlines.pop();
  1949       cg->do_late_inline();
  1950       if (failing())  return;
  1952     _boxing_late_inlines.trunc_to(0);
  1955       ResourceMark rm;
  1956       PhaseRemoveUseless pru(gvn, for_igvn());
  1959     igvn = PhaseIterGVN(gvn);
  1960     igvn.optimize();
  1962     set_inlining_progress(false);
  1963     set_inlining_incrementally(false);
  1967 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
  1968   assert(IncrementalInline, "incremental inlining should be on");
  1969   PhaseGVN* gvn = initial_gvn();
  1971   set_inlining_progress(false);
  1972   for_igvn()->clear();
  1973   gvn->replace_with(&igvn);
  1975   int i = 0;
  1977   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
  1978     CallGenerator* cg = _late_inlines.at(i);
  1979     _late_inlines_pos = i+1;
  1980     cg->do_late_inline();
  1981     if (failing())  return;
  1983   int j = 0;
  1984   for (; i < _late_inlines.length(); i++, j++) {
  1985     _late_inlines.at_put(j, _late_inlines.at(i));
  1987   _late_inlines.trunc_to(j);
  1990     ResourceMark rm;
  1991     PhaseRemoveUseless pru(gvn, for_igvn());
  1994   igvn = PhaseIterGVN(gvn);
  1997 // Perform incremental inlining until bound on number of live nodes is reached
  1998 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
  1999   PhaseGVN* gvn = initial_gvn();
  2001   set_inlining_incrementally(true);
  2002   set_inlining_progress(true);
  2003   uint low_live_nodes = 0;
  2005   while(inlining_progress() && _late_inlines.length() > 0) {
  2007     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  2008       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
  2009         // PhaseIdealLoop is expensive so we only try it once we are
  2010         // out of live nodes and we only try it again if the previous
  2011         // helped got the number of nodes down significantly
  2012         PhaseIdealLoop ideal_loop( igvn, false, true );
  2013         if (failing())  return;
  2014         low_live_nodes = live_nodes();
  2015         _major_progress = true;
  2018       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
  2019         break;
  2023     inline_incrementally_one(igvn);
  2025     if (failing())  return;
  2027     igvn.optimize();
  2029     if (failing())  return;
  2032   assert( igvn._worklist.size() == 0, "should be done with igvn" );
  2034   if (_string_late_inlines.length() > 0) {
  2035     assert(has_stringbuilder(), "inconsistent");
  2036     for_igvn()->clear();
  2037     initial_gvn()->replace_with(&igvn);
  2039     inline_string_calls(false);
  2041     if (failing())  return;
  2044       ResourceMark rm;
  2045       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
  2048     igvn = PhaseIterGVN(gvn);
  2050     igvn.optimize();
  2053   set_inlining_incrementally(false);
  2057 //------------------------------Optimize---------------------------------------
  2058 // Given a graph, optimize it.
  2059 void Compile::Optimize() {
  2060   TracePhase t1("optimizer", &_t_optimizer, true);
  2062 #ifndef PRODUCT
  2063   if (env()->break_at_compile()) {
  2064     BREAKPOINT;
  2067 #endif
  2069   ResourceMark rm;
  2070   int          loop_opts_cnt;
  2072   NOT_PRODUCT( verify_graph_edges(); )
  2074   print_method(PHASE_AFTER_PARSING);
  2077   // Iterative Global Value Numbering, including ideal transforms
  2078   // Initialize IterGVN with types and values from parse-time GVN
  2079   PhaseIterGVN igvn(initial_gvn());
  2081     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  2082     igvn.optimize();
  2085   print_method(PHASE_ITER_GVN1, 2);
  2087   if (failing())  return;
  2090     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2091     inline_incrementally(igvn);
  2094   print_method(PHASE_INCREMENTAL_INLINE, 2);
  2096   if (failing())  return;
  2098   if (eliminate_boxing()) {
  2099     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
  2100     // Inline valueOf() methods now.
  2101     inline_boxing_calls(igvn);
  2103     if (AlwaysIncrementalInline) {
  2104       inline_incrementally(igvn);
  2107     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
  2109     if (failing())  return;
  2112   // Remove the speculative part of types and clean up the graph from
  2113   // the extra CastPP nodes whose only purpose is to carry them. Do
  2114   // that early so that optimizations are not disrupted by the extra
  2115   // CastPP nodes.
  2116   remove_speculative_types(igvn);
  2118   // No more new expensive nodes will be added to the list from here
  2119   // so keep only the actual candidates for optimizations.
  2120   cleanup_expensive_nodes(igvn);
  2122   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
  2123     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
  2124     initial_gvn()->replace_with(&igvn);
  2125     for_igvn()->clear();
  2126     Unique_Node_List new_worklist(C->comp_arena());
  2128       ResourceMark rm;
  2129       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
  2131     set_for_igvn(&new_worklist);
  2132     igvn = PhaseIterGVN(initial_gvn());
  2133     igvn.optimize();
  2136   // Perform escape analysis
  2137   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  2138     if (has_loops()) {
  2139       // Cleanup graph (remove dead nodes).
  2140       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2141       PhaseIdealLoop ideal_loop( igvn, false, true );
  2142       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
  2143       if (failing())  return;
  2145     ConnectionGraph::do_analysis(this, &igvn);
  2147     if (failing())  return;
  2149     // Optimize out fields loads from scalar replaceable allocations.
  2150     igvn.optimize();
  2151     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
  2153     if (failing())  return;
  2155     if (congraph() != NULL && macro_count() > 0) {
  2156       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
  2157       PhaseMacroExpand mexp(igvn);
  2158       mexp.eliminate_macro_nodes();
  2159       igvn.set_delay_transform(false);
  2161       igvn.optimize();
  2162       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
  2164       if (failing())  return;
  2168   // Loop transforms on the ideal graph.  Range Check Elimination,
  2169   // peeling, unrolling, etc.
  2171   // Set loop opts counter
  2172   loop_opts_cnt = num_loop_opts();
  2173   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  2175       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2176       PhaseIdealLoop ideal_loop( igvn, true );
  2177       loop_opts_cnt--;
  2178       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
  2179       if (failing())  return;
  2181     // Loop opts pass if partial peeling occurred in previous pass
  2182     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  2183       TracePhase t3("idealLoop", &_t_idealLoop, true);
  2184       PhaseIdealLoop ideal_loop( igvn, false );
  2185       loop_opts_cnt--;
  2186       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
  2187       if (failing())  return;
  2189     // Loop opts pass for loop-unrolling before CCP
  2190     if(major_progress() && (loop_opts_cnt > 0)) {
  2191       TracePhase t4("idealLoop", &_t_idealLoop, true);
  2192       PhaseIdealLoop ideal_loop( igvn, false );
  2193       loop_opts_cnt--;
  2194       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
  2196     if (!failing()) {
  2197       // Verify that last round of loop opts produced a valid graph
  2198       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2199       PhaseIdealLoop::verify(igvn);
  2202   if (failing())  return;
  2204   // Conditional Constant Propagation;
  2205   PhaseCCP ccp( &igvn );
  2206   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  2208     TracePhase t2("ccp", &_t_ccp, true);
  2209     ccp.do_transform();
  2211   print_method(PHASE_CPP1, 2);
  2213   assert( true, "Break here to ccp.dump_old2new_map()");
  2215   // Iterative Global Value Numbering, including ideal transforms
  2217     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  2218     igvn = ccp;
  2219     igvn.optimize();
  2222   print_method(PHASE_ITER_GVN2, 2);
  2224   if (failing())  return;
  2226   // Loop transforms on the ideal graph.  Range Check Elimination,
  2227   // peeling, unrolling, etc.
  2228   if(loop_opts_cnt > 0) {
  2229     debug_only( int cnt = 0; );
  2230     while(major_progress() && (loop_opts_cnt > 0)) {
  2231       TracePhase t2("idealLoop", &_t_idealLoop, true);
  2232       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  2233       PhaseIdealLoop ideal_loop( igvn, true);
  2234       loop_opts_cnt--;
  2235       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
  2236       if (failing())  return;
  2241     // Verify that all previous optimizations produced a valid graph
  2242     // at least to this point, even if no loop optimizations were done.
  2243     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  2244     PhaseIdealLoop::verify(igvn);
  2247   if (range_check_cast_count() > 0) {
  2248     // No more loop optimizations. Remove all range check dependent CastIINodes.
  2249     C->remove_range_check_casts(igvn);
  2250     igvn.optimize();
  2254     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  2255     PhaseMacroExpand  mex(igvn);
  2256     if (mex.expand_macro_nodes()) {
  2257       assert(failing(), "must bail out w/ explicit message");
  2258       return;
  2262  } // (End scope of igvn; run destructor if necessary for asserts.)
  2264   dump_inlining();
  2265   // A method with only infinite loops has no edges entering loops from root
  2267     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  2268     if (final_graph_reshaping()) {
  2269       assert(failing(), "must bail out w/ explicit message");
  2270       return;
  2274   print_method(PHASE_OPTIMIZE_FINISHED, 2);
  2278 //------------------------------Code_Gen---------------------------------------
  2279 // Given a graph, generate code for it
  2280 void Compile::Code_Gen() {
  2281   if (failing()) {
  2282     return;
  2285   // Perform instruction selection.  You might think we could reclaim Matcher
  2286   // memory PDQ, but actually the Matcher is used in generating spill code.
  2287   // Internals of the Matcher (including some VectorSets) must remain live
  2288   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  2289   // set a bit in reclaimed memory.
  2291   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2292   // nodes.  Mapping is only valid at the root of each matched subtree.
  2293   NOT_PRODUCT( verify_graph_edges(); )
  2295   Matcher matcher;
  2296   _matcher = &matcher;
  2298     TracePhase t2("matcher", &_t_matcher, true);
  2299     matcher.match();
  2301   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  2302   // nodes.  Mapping is only valid at the root of each matched subtree.
  2303   NOT_PRODUCT( verify_graph_edges(); )
  2305   // If you have too many nodes, or if matching has failed, bail out
  2306   check_node_count(0, "out of nodes matching instructions");
  2307   if (failing()) {
  2308     return;
  2311   // Build a proper-looking CFG
  2312   PhaseCFG cfg(node_arena(), root(), matcher);
  2313   _cfg = &cfg;
  2315     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  2316     bool success = cfg.do_global_code_motion();
  2317     if (!success) {
  2318       return;
  2321     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
  2322     NOT_PRODUCT( verify_graph_edges(); )
  2323     debug_only( cfg.verify(); )
  2326   PhaseChaitin regalloc(unique(), cfg, matcher);
  2327   _regalloc = &regalloc;
  2329     TracePhase t2("regalloc", &_t_registerAllocation, true);
  2330     // Perform register allocation.  After Chaitin, use-def chains are
  2331     // no longer accurate (at spill code) and so must be ignored.
  2332     // Node->LRG->reg mappings are still accurate.
  2333     _regalloc->Register_Allocate();
  2335     // Bail out if the allocator builds too many nodes
  2336     if (failing()) {
  2337       return;
  2341   // Prior to register allocation we kept empty basic blocks in case the
  2342   // the allocator needed a place to spill.  After register allocation we
  2343   // are not adding any new instructions.  If any basic block is empty, we
  2344   // can now safely remove it.
  2346     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  2347     cfg.remove_empty_blocks();
  2348     if (do_freq_based_layout()) {
  2349       PhaseBlockLayout layout(cfg);
  2350     } else {
  2351       cfg.set_loop_alignment();
  2353     cfg.fixup_flow();
  2356   // Apply peephole optimizations
  2357   if( OptoPeephole ) {
  2358     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  2359     PhasePeephole peep( _regalloc, cfg);
  2360     peep.do_transform();
  2363   // Do late expand if CPU requires this.
  2364   if (Matcher::require_postalloc_expand) {
  2365     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
  2366     cfg.postalloc_expand(_regalloc);
  2369   // Convert Nodes to instruction bits in a buffer
  2371     // %%%% workspace merge brought two timers together for one job
  2372     TracePhase t2a("output", &_t_output, true);
  2373     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  2374     Output();
  2377   print_method(PHASE_FINAL_CODE);
  2379   // He's dead, Jim.
  2380   _cfg     = (PhaseCFG*)0xdeadbeef;
  2381   _regalloc = (PhaseChaitin*)0xdeadbeef;
  2385 //------------------------------dump_asm---------------------------------------
  2386 // Dump formatted assembly
  2387 #ifndef PRODUCT
  2388 void Compile::dump_asm(int *pcs, uint pc_limit) {
  2389   bool cut_short = false;
  2390   tty->print_cr("#");
  2391   tty->print("#  ");  _tf->dump();  tty->cr();
  2392   tty->print_cr("#");
  2394   // For all blocks
  2395   int pc = 0x0;                 // Program counter
  2396   char starts_bundle = ' ';
  2397   _regalloc->dump_frame();
  2399   Node *n = NULL;
  2400   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  2401     if (VMThread::should_terminate()) {
  2402       cut_short = true;
  2403       break;
  2405     Block* block = _cfg->get_block(i);
  2406     if (block->is_connector() && !Verbose) {
  2407       continue;
  2409     n = block->head();
  2410     if (pcs && n->_idx < pc_limit) {
  2411       tty->print("%3.3x   ", pcs[n->_idx]);
  2412     } else {
  2413       tty->print("      ");
  2415     block->dump_head(_cfg);
  2416     if (block->is_connector()) {
  2417       tty->print_cr("        # Empty connector block");
  2418     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  2419       tty->print_cr("        # Block is sole successor of call");
  2422     // For all instructions
  2423     Node *delay = NULL;
  2424     for (uint j = 0; j < block->number_of_nodes(); j++) {
  2425       if (VMThread::should_terminate()) {
  2426         cut_short = true;
  2427         break;
  2429       n = block->get_node(j);
  2430       if (valid_bundle_info(n)) {
  2431         Bundle* bundle = node_bundling(n);
  2432         if (bundle->used_in_unconditional_delay()) {
  2433           delay = n;
  2434           continue;
  2436         if (bundle->starts_bundle()) {
  2437           starts_bundle = '+';
  2441       if (WizardMode) {
  2442         n->dump();
  2445       if( !n->is_Region() &&    // Dont print in the Assembly
  2446           !n->is_Phi() &&       // a few noisely useless nodes
  2447           !n->is_Proj() &&
  2448           !n->is_MachTemp() &&
  2449           !n->is_SafePointScalarObject() &&
  2450           !n->is_Catch() &&     // Would be nice to print exception table targets
  2451           !n->is_MergeMem() &&  // Not very interesting
  2452           !n->is_top() &&       // Debug info table constants
  2453           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  2454           ) {
  2455         if (pcs && n->_idx < pc_limit)
  2456           tty->print("%3.3x", pcs[n->_idx]);
  2457         else
  2458           tty->print("   ");
  2459         tty->print(" %c ", starts_bundle);
  2460         starts_bundle = ' ';
  2461         tty->print("\t");
  2462         n->format(_regalloc, tty);
  2463         tty->cr();
  2466       // If we have an instruction with a delay slot, and have seen a delay,
  2467       // then back up and print it
  2468       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  2469         assert(delay != NULL, "no unconditional delay instruction");
  2470         if (WizardMode) delay->dump();
  2472         if (node_bundling(delay)->starts_bundle())
  2473           starts_bundle = '+';
  2474         if (pcs && n->_idx < pc_limit)
  2475           tty->print("%3.3x", pcs[n->_idx]);
  2476         else
  2477           tty->print("   ");
  2478         tty->print(" %c ", starts_bundle);
  2479         starts_bundle = ' ';
  2480         tty->print("\t");
  2481         delay->format(_regalloc, tty);
  2482         tty->cr();
  2483         delay = NULL;
  2486       // Dump the exception table as well
  2487       if( n->is_Catch() && (Verbose || WizardMode) ) {
  2488         // Print the exception table for this offset
  2489         _handler_table.print_subtable_for(pc);
  2493     if (pcs && n->_idx < pc_limit)
  2494       tty->print_cr("%3.3x", pcs[n->_idx]);
  2495     else
  2496       tty->cr();
  2498     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2500   } // End of per-block dump
  2501   tty->cr();
  2503   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2505 #endif
  2507 //------------------------------Final_Reshape_Counts---------------------------
  2508 // This class defines counters to help identify when a method
  2509 // may/must be executed using hardware with only 24-bit precision.
  2510 struct Final_Reshape_Counts : public StackObj {
  2511   int  _call_count;             // count non-inlined 'common' calls
  2512   int  _float_count;            // count float ops requiring 24-bit precision
  2513   int  _double_count;           // count double ops requiring more precision
  2514   int  _java_call_count;        // count non-inlined 'java' calls
  2515   int  _inner_loop_count;       // count loops which need alignment
  2516   VectorSet _visited;           // Visitation flags
  2517   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2519   Final_Reshape_Counts() :
  2520     _call_count(0), _float_count(0), _double_count(0),
  2521     _java_call_count(0), _inner_loop_count(0),
  2522     _visited( Thread::current()->resource_area() ) { }
  2524   void inc_call_count  () { _call_count  ++; }
  2525   void inc_float_count () { _float_count ++; }
  2526   void inc_double_count() { _double_count++; }
  2527   void inc_java_call_count() { _java_call_count++; }
  2528   void inc_inner_loop_count() { _inner_loop_count++; }
  2530   int  get_call_count  () const { return _call_count  ; }
  2531   int  get_float_count () const { return _float_count ; }
  2532   int  get_double_count() const { return _double_count; }
  2533   int  get_java_call_count() const { return _java_call_count; }
  2534   int  get_inner_loop_count() const { return _inner_loop_count; }
  2535 };
  2537 #ifdef ASSERT
  2538 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2539   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2540   // Make sure the offset goes inside the instance layout.
  2541   return k->contains_field_offset(tp->offset());
  2542   // Note that OffsetBot and OffsetTop are very negative.
  2544 #endif
  2546 // Eliminate trivially redundant StoreCMs and accumulate their
  2547 // precedence edges.
  2548 void Compile::eliminate_redundant_card_marks(Node* n) {
  2549   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
  2550   if (n->in(MemNode::Address)->outcnt() > 1) {
  2551     // There are multiple users of the same address so it might be
  2552     // possible to eliminate some of the StoreCMs
  2553     Node* mem = n->in(MemNode::Memory);
  2554     Node* adr = n->in(MemNode::Address);
  2555     Node* val = n->in(MemNode::ValueIn);
  2556     Node* prev = n;
  2557     bool done = false;
  2558     // Walk the chain of StoreCMs eliminating ones that match.  As
  2559     // long as it's a chain of single users then the optimization is
  2560     // safe.  Eliminating partially redundant StoreCMs would require
  2561     // cloning copies down the other paths.
  2562     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
  2563       if (adr == mem->in(MemNode::Address) &&
  2564           val == mem->in(MemNode::ValueIn)) {
  2565         // redundant StoreCM
  2566         if (mem->req() > MemNode::OopStore) {
  2567           // Hasn't been processed by this code yet.
  2568           n->add_prec(mem->in(MemNode::OopStore));
  2569         } else {
  2570           // Already converted to precedence edge
  2571           for (uint i = mem->req(); i < mem->len(); i++) {
  2572             // Accumulate any precedence edges
  2573             if (mem->in(i) != NULL) {
  2574               n->add_prec(mem->in(i));
  2577           // Everything above this point has been processed.
  2578           done = true;
  2580         // Eliminate the previous StoreCM
  2581         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2582         assert(mem->outcnt() == 0, "should be dead");
  2583         mem->disconnect_inputs(NULL, this);
  2584       } else {
  2585         prev = mem;
  2587       mem = prev->in(MemNode::Memory);
  2592 //------------------------------final_graph_reshaping_impl----------------------
  2593 // Implement items 1-5 from final_graph_reshaping below.
  2594 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
  2596   if ( n->outcnt() == 0 ) return; // dead node
  2597   uint nop = n->Opcode();
  2599   // Check for 2-input instruction with "last use" on right input.
  2600   // Swap to left input.  Implements item (2).
  2601   if( n->req() == 3 &&          // two-input instruction
  2602       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2603       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2604       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2605       !n->in(2)->is_Con() ) {   // right use is not a constant
  2606     // Check for commutative opcode
  2607     switch( nop ) {
  2608     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2609     case Op_MaxI:  case Op_MinI:
  2610     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2611     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2612     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2613       // Move "last use" input to left by swapping inputs
  2614       n->swap_edges(1, 2);
  2615       break;
  2617     default:
  2618       break;
  2622 #ifdef ASSERT
  2623   if( n->is_Mem() ) {
  2624     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
  2625     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2626             // oop will be recorded in oop map if load crosses safepoint
  2627             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2628                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2629             "raw memory operations should have control edge");
  2631 #endif
  2632   // Count FPU ops and common calls, implements item (3)
  2633   switch( nop ) {
  2634   // Count all float operations that may use FPU
  2635   case Op_AddF:
  2636   case Op_SubF:
  2637   case Op_MulF:
  2638   case Op_DivF:
  2639   case Op_NegF:
  2640   case Op_ModF:
  2641   case Op_ConvI2F:
  2642   case Op_ConF:
  2643   case Op_CmpF:
  2644   case Op_CmpF3:
  2645   // case Op_ConvL2F: // longs are split into 32-bit halves
  2646     frc.inc_float_count();
  2647     break;
  2649   case Op_ConvF2D:
  2650   case Op_ConvD2F:
  2651     frc.inc_float_count();
  2652     frc.inc_double_count();
  2653     break;
  2655   // Count all double operations that may use FPU
  2656   case Op_AddD:
  2657   case Op_SubD:
  2658   case Op_MulD:
  2659   case Op_DivD:
  2660   case Op_NegD:
  2661   case Op_ModD:
  2662   case Op_ConvI2D:
  2663   case Op_ConvD2I:
  2664   // case Op_ConvL2D: // handled by leaf call
  2665   // case Op_ConvD2L: // handled by leaf call
  2666   case Op_ConD:
  2667   case Op_CmpD:
  2668   case Op_CmpD3:
  2669     frc.inc_double_count();
  2670     break;
  2671   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2672   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2673   case Op_Opaque3:
  2674     n->subsume_by(n->in(1), this);
  2675     break;
  2676   case Op_CallStaticJava:
  2677   case Op_CallJava:
  2678   case Op_CallDynamicJava:
  2679     frc.inc_java_call_count(); // Count java call site;
  2680   case Op_CallRuntime:
  2681   case Op_CallLeaf:
  2682   case Op_CallLeafNoFP: {
  2683     assert( n->is_Call(), "" );
  2684     CallNode *call = n->as_Call();
  2685     // Count call sites where the FP mode bit would have to be flipped.
  2686     // Do not count uncommon runtime calls:
  2687     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2688     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2689     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2690       frc.inc_call_count();   // Count the call site
  2691     } else {                  // See if uncommon argument is shared
  2692       Node *n = call->in(TypeFunc::Parms);
  2693       int nop = n->Opcode();
  2694       // Clone shared simple arguments to uncommon calls, item (1).
  2695       if( n->outcnt() > 1 &&
  2696           !n->is_Proj() &&
  2697           nop != Op_CreateEx &&
  2698           nop != Op_CheckCastPP &&
  2699           nop != Op_DecodeN &&
  2700           nop != Op_DecodeNKlass &&
  2701           !n->is_Mem() ) {
  2702         Node *x = n->clone();
  2703         call->set_req( TypeFunc::Parms, x );
  2706     break;
  2709   case Op_StoreD:
  2710   case Op_LoadD:
  2711   case Op_LoadD_unaligned:
  2712     frc.inc_double_count();
  2713     goto handle_mem;
  2714   case Op_StoreF:
  2715   case Op_LoadF:
  2716     frc.inc_float_count();
  2717     goto handle_mem;
  2719   case Op_StoreCM:
  2721       // Convert OopStore dependence into precedence edge
  2722       Node* prec = n->in(MemNode::OopStore);
  2723       n->del_req(MemNode::OopStore);
  2724       n->add_prec(prec);
  2725       eliminate_redundant_card_marks(n);
  2728     // fall through
  2730   case Op_StoreB:
  2731   case Op_StoreC:
  2732   case Op_StorePConditional:
  2733   case Op_StoreI:
  2734   case Op_StoreL:
  2735   case Op_StoreIConditional:
  2736   case Op_StoreLConditional:
  2737   case Op_CompareAndSwapI:
  2738   case Op_CompareAndSwapL:
  2739   case Op_CompareAndSwapP:
  2740   case Op_CompareAndSwapN:
  2741   case Op_GetAndAddI:
  2742   case Op_GetAndAddL:
  2743   case Op_GetAndSetI:
  2744   case Op_GetAndSetL:
  2745   case Op_GetAndSetP:
  2746   case Op_GetAndSetN:
  2747   case Op_StoreP:
  2748   case Op_StoreN:
  2749   case Op_StoreNKlass:
  2750   case Op_LoadB:
  2751   case Op_LoadUB:
  2752   case Op_LoadUS:
  2753   case Op_LoadI:
  2754   case Op_LoadKlass:
  2755   case Op_LoadNKlass:
  2756   case Op_LoadL:
  2757   case Op_LoadL_unaligned:
  2758   case Op_LoadPLocked:
  2759   case Op_LoadP:
  2760   case Op_LoadN:
  2761   case Op_LoadRange:
  2762   case Op_LoadS: {
  2763   handle_mem:
  2764 #ifdef ASSERT
  2765     if( VerifyOptoOopOffsets ) {
  2766       assert( n->is_Mem(), "" );
  2767       MemNode *mem  = (MemNode*)n;
  2768       // Check to see if address types have grounded out somehow.
  2769       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2770       assert( !tp || oop_offset_is_sane(tp), "" );
  2772 #endif
  2773     break;
  2776   case Op_AddP: {               // Assert sane base pointers
  2777     Node *addp = n->in(AddPNode::Address);
  2778     assert( !addp->is_AddP() ||
  2779             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2780             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2781             "Base pointers must match" );
  2782 #ifdef _LP64
  2783     if ((UseCompressedOops || UseCompressedClassPointers) &&
  2784         addp->Opcode() == Op_ConP &&
  2785         addp == n->in(AddPNode::Base) &&
  2786         n->in(AddPNode::Offset)->is_Con()) {
  2787       // Use addressing with narrow klass to load with offset on x86.
  2788       // On sparc loading 32-bits constant and decoding it have less
  2789       // instructions (4) then load 64-bits constant (7).
  2790       // Do this transformation here since IGVN will convert ConN back to ConP.
  2791       const Type* t = addp->bottom_type();
  2792       if (t->isa_oopptr() || t->isa_klassptr()) {
  2793         Node* nn = NULL;
  2795         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
  2797         // Look for existing ConN node of the same exact type.
  2798         Node* r  = root();
  2799         uint cnt = r->outcnt();
  2800         for (uint i = 0; i < cnt; i++) {
  2801           Node* m = r->raw_out(i);
  2802           if (m!= NULL && m->Opcode() == op &&
  2803               m->bottom_type()->make_ptr() == t) {
  2804             nn = m;
  2805             break;
  2808         if (nn != NULL) {
  2809           // Decode a narrow oop to match address
  2810           // [R12 + narrow_oop_reg<<3 + offset]
  2811           if (t->isa_oopptr()) {
  2812             nn = new (this) DecodeNNode(nn, t);
  2813           } else {
  2814             nn = new (this) DecodeNKlassNode(nn, t);
  2816           n->set_req(AddPNode::Base, nn);
  2817           n->set_req(AddPNode::Address, nn);
  2818           if (addp->outcnt() == 0) {
  2819             addp->disconnect_inputs(NULL, this);
  2824 #endif
  2825     break;
  2828 #ifdef _LP64
  2829   case Op_CastPP:
  2830     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2831       Node* in1 = n->in(1);
  2832       const Type* t = n->bottom_type();
  2833       Node* new_in1 = in1->clone();
  2834       new_in1->as_DecodeN()->set_type(t);
  2836       if (!Matcher::narrow_oop_use_complex_address()) {
  2837         //
  2838         // x86, ARM and friends can handle 2 adds in addressing mode
  2839         // and Matcher can fold a DecodeN node into address by using
  2840         // a narrow oop directly and do implicit NULL check in address:
  2841         //
  2842         // [R12 + narrow_oop_reg<<3 + offset]
  2843         // NullCheck narrow_oop_reg
  2844         //
  2845         // On other platforms (Sparc) we have to keep new DecodeN node and
  2846         // use it to do implicit NULL check in address:
  2847         //
  2848         // decode_not_null narrow_oop_reg, base_reg
  2849         // [base_reg + offset]
  2850         // NullCheck base_reg
  2851         //
  2852         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2853         // to keep the information to which NULL check the new DecodeN node
  2854         // corresponds to use it as value in implicit_null_check().
  2855         //
  2856         new_in1->set_req(0, n->in(0));
  2859       n->subsume_by(new_in1, this);
  2860       if (in1->outcnt() == 0) {
  2861         in1->disconnect_inputs(NULL, this);
  2864     break;
  2866   case Op_CmpP:
  2867     // Do this transformation here to preserve CmpPNode::sub() and
  2868     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2869     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
  2870       Node* in1 = n->in(1);
  2871       Node* in2 = n->in(2);
  2872       if (!in1->is_DecodeNarrowPtr()) {
  2873         in2 = in1;
  2874         in1 = n->in(2);
  2876       assert(in1->is_DecodeNarrowPtr(), "sanity");
  2878       Node* new_in2 = NULL;
  2879       if (in2->is_DecodeNarrowPtr()) {
  2880         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
  2881         new_in2 = in2->in(1);
  2882       } else if (in2->Opcode() == Op_ConP) {
  2883         const Type* t = in2->bottom_type();
  2884         if (t == TypePtr::NULL_PTR) {
  2885           assert(in1->is_DecodeN(), "compare klass to null?");
  2886           // Don't convert CmpP null check into CmpN if compressed
  2887           // oops implicit null check is not generated.
  2888           // This will allow to generate normal oop implicit null check.
  2889           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2890             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
  2891           //
  2892           // This transformation together with CastPP transformation above
  2893           // will generated code for implicit NULL checks for compressed oops.
  2894           //
  2895           // The original code after Optimize()
  2896           //
  2897           //    LoadN memory, narrow_oop_reg
  2898           //    decode narrow_oop_reg, base_reg
  2899           //    CmpP base_reg, NULL
  2900           //    CastPP base_reg // NotNull
  2901           //    Load [base_reg + offset], val_reg
  2902           //
  2903           // after these transformations will be
  2904           //
  2905           //    LoadN memory, narrow_oop_reg
  2906           //    CmpN narrow_oop_reg, NULL
  2907           //    decode_not_null narrow_oop_reg, base_reg
  2908           //    Load [base_reg + offset], val_reg
  2909           //
  2910           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2911           // since narrow oops can be used in debug info now (see the code in
  2912           // final_graph_reshaping_walk()).
  2913           //
  2914           // At the end the code will be matched to
  2915           // on x86:
  2916           //
  2917           //    Load_narrow_oop memory, narrow_oop_reg
  2918           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2919           //    NullCheck narrow_oop_reg
  2920           //
  2921           // and on sparc:
  2922           //
  2923           //    Load_narrow_oop memory, narrow_oop_reg
  2924           //    decode_not_null narrow_oop_reg, base_reg
  2925           //    Load [base_reg + offset], val_reg
  2926           //    NullCheck base_reg
  2927           //
  2928         } else if (t->isa_oopptr()) {
  2929           new_in2 = ConNode::make(this, t->make_narrowoop());
  2930         } else if (t->isa_klassptr()) {
  2931           new_in2 = ConNode::make(this, t->make_narrowklass());
  2934       if (new_in2 != NULL) {
  2935         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
  2936         n->subsume_by(cmpN, this);
  2937         if (in1->outcnt() == 0) {
  2938           in1->disconnect_inputs(NULL, this);
  2940         if (in2->outcnt() == 0) {
  2941           in2->disconnect_inputs(NULL, this);
  2945     break;
  2947   case Op_DecodeN:
  2948   case Op_DecodeNKlass:
  2949     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
  2950     // DecodeN could be pinned when it can't be fold into
  2951     // an address expression, see the code for Op_CastPP above.
  2952     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
  2953     break;
  2955   case Op_EncodeP:
  2956   case Op_EncodePKlass: {
  2957     Node* in1 = n->in(1);
  2958     if (in1->is_DecodeNarrowPtr()) {
  2959       n->subsume_by(in1->in(1), this);
  2960     } else if (in1->Opcode() == Op_ConP) {
  2961       const Type* t = in1->bottom_type();
  2962       if (t == TypePtr::NULL_PTR) {
  2963         assert(t->isa_oopptr(), "null klass?");
  2964         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
  2965       } else if (t->isa_oopptr()) {
  2966         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
  2967       } else if (t->isa_klassptr()) {
  2968         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
  2971     if (in1->outcnt() == 0) {
  2972       in1->disconnect_inputs(NULL, this);
  2974     break;
  2977   case Op_Proj: {
  2978     if (OptimizeStringConcat) {
  2979       ProjNode* p = n->as_Proj();
  2980       if (p->_is_io_use) {
  2981         // Separate projections were used for the exception path which
  2982         // are normally removed by a late inline.  If it wasn't inlined
  2983         // then they will hang around and should just be replaced with
  2984         // the original one.
  2985         Node* proj = NULL;
  2986         // Replace with just one
  2987         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2988           Node *use = i.get();
  2989           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2990             proj = use;
  2991             break;
  2994         assert(proj != NULL, "must be found");
  2995         p->subsume_by(proj, this);
  2998     break;
  3001   case Op_Phi:
  3002     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
  3003       // The EncodeP optimization may create Phi with the same edges
  3004       // for all paths. It is not handled well by Register Allocator.
  3005       Node* unique_in = n->in(1);
  3006       assert(unique_in != NULL, "");
  3007       uint cnt = n->req();
  3008       for (uint i = 2; i < cnt; i++) {
  3009         Node* m = n->in(i);
  3010         assert(m != NULL, "");
  3011         if (unique_in != m)
  3012           unique_in = NULL;
  3014       if (unique_in != NULL) {
  3015         n->subsume_by(unique_in, this);
  3018     break;
  3020 #endif
  3022 #ifdef ASSERT
  3023   case Op_CastII:
  3024     // Verify that all range check dependent CastII nodes were removed.
  3025     if (n->isa_CastII()->has_range_check()) {
  3026       n->dump(3);
  3027       assert(false, "Range check dependent CastII node was not removed");
  3029     break;
  3030 #endif
  3032   case Op_ModI:
  3033     if (UseDivMod) {
  3034       // Check if a%b and a/b both exist
  3035       Node* d = n->find_similar(Op_DivI);
  3036       if (d) {
  3037         // Replace them with a fused divmod if supported
  3038         if (Matcher::has_match_rule(Op_DivModI)) {
  3039           DivModINode* divmod = DivModINode::make(this, n);
  3040           d->subsume_by(divmod->div_proj(), this);
  3041           n->subsume_by(divmod->mod_proj(), this);
  3042         } else {
  3043           // replace a%b with a-((a/b)*b)
  3044           Node* mult = new (this) MulINode(d, d->in(2));
  3045           Node* sub  = new (this) SubINode(d->in(1), mult);
  3046           n->subsume_by(sub, this);
  3050     break;
  3052   case Op_ModL:
  3053     if (UseDivMod) {
  3054       // Check if a%b and a/b both exist
  3055       Node* d = n->find_similar(Op_DivL);
  3056       if (d) {
  3057         // Replace them with a fused divmod if supported
  3058         if (Matcher::has_match_rule(Op_DivModL)) {
  3059           DivModLNode* divmod = DivModLNode::make(this, n);
  3060           d->subsume_by(divmod->div_proj(), this);
  3061           n->subsume_by(divmod->mod_proj(), this);
  3062         } else {
  3063           // replace a%b with a-((a/b)*b)
  3064           Node* mult = new (this) MulLNode(d, d->in(2));
  3065           Node* sub  = new (this) SubLNode(d->in(1), mult);
  3066           n->subsume_by(sub, this);
  3070     break;
  3072   case Op_LoadVector:
  3073   case Op_StoreVector:
  3074     break;
  3076   case Op_PackB:
  3077   case Op_PackS:
  3078   case Op_PackI:
  3079   case Op_PackF:
  3080   case Op_PackL:
  3081   case Op_PackD:
  3082     if (n->req()-1 > 2) {
  3083       // Replace many operand PackNodes with a binary tree for matching
  3084       PackNode* p = (PackNode*) n;
  3085       Node* btp = p->binary_tree_pack(this, 1, n->req());
  3086       n->subsume_by(btp, this);
  3088     break;
  3089   case Op_Loop:
  3090   case Op_CountedLoop:
  3091     if (n->as_Loop()->is_inner_loop()) {
  3092       frc.inc_inner_loop_count();
  3094     break;
  3095   case Op_LShiftI:
  3096   case Op_RShiftI:
  3097   case Op_URShiftI:
  3098   case Op_LShiftL:
  3099   case Op_RShiftL:
  3100   case Op_URShiftL:
  3101     if (Matcher::need_masked_shift_count) {
  3102       // The cpu's shift instructions don't restrict the count to the
  3103       // lower 5/6 bits. We need to do the masking ourselves.
  3104       Node* in2 = n->in(2);
  3105       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  3106       const TypeInt* t = in2->find_int_type();
  3107       if (t != NULL && t->is_con()) {
  3108         juint shift = t->get_con();
  3109         if (shift > mask) { // Unsigned cmp
  3110           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
  3112       } else {
  3113         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  3114           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
  3115           n->set_req(2, shift);
  3118       if (in2->outcnt() == 0) { // Remove dead node
  3119         in2->disconnect_inputs(NULL, this);
  3122     break;
  3123   case Op_MemBarStoreStore:
  3124   case Op_MemBarRelease:
  3125     // Break the link with AllocateNode: it is no longer useful and
  3126     // confuses register allocation.
  3127     if (n->req() > MemBarNode::Precedent) {
  3128       n->set_req(MemBarNode::Precedent, top());
  3130     break;
  3131   default:
  3132     assert( !n->is_Call(), "" );
  3133     assert( !n->is_Mem(), "" );
  3134     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
  3135     break;
  3138   // Collect CFG split points
  3139   if (n->is_MultiBranch())
  3140     frc._tests.push(n);
  3143 //------------------------------final_graph_reshaping_walk---------------------
  3144 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  3145 // requires that the walk visits a node's inputs before visiting the node.
  3146 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  3147   ResourceArea *area = Thread::current()->resource_area();
  3148   Unique_Node_List sfpt(area);
  3150   frc._visited.set(root->_idx); // first, mark node as visited
  3151   uint cnt = root->req();
  3152   Node *n = root;
  3153   uint  i = 0;
  3154   while (true) {
  3155     if (i < cnt) {
  3156       // Place all non-visited non-null inputs onto stack
  3157       Node* m = n->in(i);
  3158       ++i;
  3159       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  3160         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
  3161           // compute worst case interpreter size in case of a deoptimization
  3162           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
  3164           sfpt.push(m);
  3166         cnt = m->req();
  3167         nstack.push(n, i); // put on stack parent and next input's index
  3168         n = m;
  3169         i = 0;
  3171     } else {
  3172       // Now do post-visit work
  3173       final_graph_reshaping_impl( n, frc );
  3174       if (nstack.is_empty())
  3175         break;             // finished
  3176       n = nstack.node();   // Get node from stack
  3177       cnt = n->req();
  3178       i = nstack.index();
  3179       nstack.pop();        // Shift to the next node on stack
  3183   // Skip next transformation if compressed oops are not used.
  3184   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
  3185       (!UseCompressedOops && !UseCompressedClassPointers))
  3186     return;
  3188   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
  3189   // It could be done for an uncommon traps or any safepoints/calls
  3190   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
  3191   while (sfpt.size() > 0) {
  3192     n = sfpt.pop();
  3193     JVMState *jvms = n->as_SafePoint()->jvms();
  3194     assert(jvms != NULL, "sanity");
  3195     int start = jvms->debug_start();
  3196     int end   = n->req();
  3197     bool is_uncommon = (n->is_CallStaticJava() &&
  3198                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  3199     for (int j = start; j < end; j++) {
  3200       Node* in = n->in(j);
  3201       if (in->is_DecodeNarrowPtr()) {
  3202         bool safe_to_skip = true;
  3203         if (!is_uncommon ) {
  3204           // Is it safe to skip?
  3205           for (uint i = 0; i < in->outcnt(); i++) {
  3206             Node* u = in->raw_out(i);
  3207             if (!u->is_SafePoint() ||
  3208                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  3209               safe_to_skip = false;
  3213         if (safe_to_skip) {
  3214           n->set_req(j, in->in(1));
  3216         if (in->outcnt() == 0) {
  3217           in->disconnect_inputs(NULL, this);
  3224 //------------------------------final_graph_reshaping--------------------------
  3225 // Final Graph Reshaping.
  3226 //
  3227 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  3228 //     and not commoned up and forced early.  Must come after regular
  3229 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  3230 //     inputs to Loop Phis; these will be split by the allocator anyways.
  3231 //     Remove Opaque nodes.
  3232 // (2) Move last-uses by commutative operations to the left input to encourage
  3233 //     Intel update-in-place two-address operations and better register usage
  3234 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  3235 //     calls canonicalizing them back.
  3236 // (3) Count the number of double-precision FP ops, single-precision FP ops
  3237 //     and call sites.  On Intel, we can get correct rounding either by
  3238 //     forcing singles to memory (requires extra stores and loads after each
  3239 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  3240 //     clearing the mode bit around call sites).  The mode bit is only used
  3241 //     if the relative frequency of single FP ops to calls is low enough.
  3242 //     This is a key transform for SPEC mpeg_audio.
  3243 // (4) Detect infinite loops; blobs of code reachable from above but not
  3244 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  3245 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  3246 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  3247 //     Detection is by looking for IfNodes where only 1 projection is
  3248 //     reachable from below or CatchNodes missing some targets.
  3249 // (5) Assert for insane oop offsets in debug mode.
  3251 bool Compile::final_graph_reshaping() {
  3252   // an infinite loop may have been eliminated by the optimizer,
  3253   // in which case the graph will be empty.
  3254   if (root()->req() == 1) {
  3255     record_method_not_compilable("trivial infinite loop");
  3256     return true;
  3259   // Expensive nodes have their control input set to prevent the GVN
  3260   // from freely commoning them. There's no GVN beyond this point so
  3261   // no need to keep the control input. We want the expensive nodes to
  3262   // be freely moved to the least frequent code path by gcm.
  3263   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
  3264   for (int i = 0; i < expensive_count(); i++) {
  3265     _expensive_nodes->at(i)->set_req(0, NULL);
  3268   Final_Reshape_Counts frc;
  3270   // Visit everybody reachable!
  3271   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
  3272   Node_Stack nstack(live_nodes() >> 1);
  3273   final_graph_reshaping_walk(nstack, root(), frc);
  3275   // Check for unreachable (from below) code (i.e., infinite loops).
  3276   for( uint i = 0; i < frc._tests.size(); i++ ) {
  3277     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  3278     // Get number of CFG targets.
  3279     // Note that PCTables include exception targets after calls.
  3280     uint required_outcnt = n->required_outcnt();
  3281     if (n->outcnt() != required_outcnt) {
  3282       // Check for a few special cases.  Rethrow Nodes never take the
  3283       // 'fall-thru' path, so expected kids is 1 less.
  3284       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  3285         if (n->in(0)->in(0)->is_Call()) {
  3286           CallNode *call = n->in(0)->in(0)->as_Call();
  3287           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  3288             required_outcnt--;      // Rethrow always has 1 less kid
  3289           } else if (call->req() > TypeFunc::Parms &&
  3290                      call->is_CallDynamicJava()) {
  3291             // Check for null receiver. In such case, the optimizer has
  3292             // detected that the virtual call will always result in a null
  3293             // pointer exception. The fall-through projection of this CatchNode
  3294             // will not be populated.
  3295             Node *arg0 = call->in(TypeFunc::Parms);
  3296             if (arg0->is_Type() &&
  3297                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  3298               required_outcnt--;
  3300           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  3301                      call->req() > TypeFunc::Parms+1 &&
  3302                      call->is_CallStaticJava()) {
  3303             // Check for negative array length. In such case, the optimizer has
  3304             // detected that the allocation attempt will always result in an
  3305             // exception. There is no fall-through projection of this CatchNode .
  3306             Node *arg1 = call->in(TypeFunc::Parms+1);
  3307             if (arg1->is_Type() &&
  3308                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  3309               required_outcnt--;
  3314       // Recheck with a better notion of 'required_outcnt'
  3315       if (n->outcnt() != required_outcnt) {
  3316         record_method_not_compilable("malformed control flow");
  3317         return true;            // Not all targets reachable!
  3320     // Check that I actually visited all kids.  Unreached kids
  3321     // must be infinite loops.
  3322     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  3323       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  3324         record_method_not_compilable("infinite loop");
  3325         return true;            // Found unvisited kid; must be unreach
  3329   // If original bytecodes contained a mixture of floats and doubles
  3330   // check if the optimizer has made it homogenous, item (3).
  3331   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  3332       frc.get_float_count() > 32 &&
  3333       frc.get_double_count() == 0 &&
  3334       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  3335     set_24_bit_selection_and_mode( false,  true );
  3338   set_java_calls(frc.get_java_call_count());
  3339   set_inner_loops(frc.get_inner_loop_count());
  3341   // No infinite loops, no reason to bail out.
  3342   return false;
  3345 //-----------------------------too_many_traps----------------------------------
  3346 // Report if there are too many traps at the current method and bci.
  3347 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  3348 bool Compile::too_many_traps(ciMethod* method,
  3349                              int bci,
  3350                              Deoptimization::DeoptReason reason) {
  3351   ciMethodData* md = method->method_data();
  3352   if (md->is_empty()) {
  3353     // Assume the trap has not occurred, or that it occurred only
  3354     // because of a transient condition during start-up in the interpreter.
  3355     return false;
  3357   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
  3358   if (md->has_trap_at(bci, m, reason) != 0) {
  3359     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  3360     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3361     // assume the worst.
  3362     if (log())
  3363       log()->elem("observe trap='%s' count='%d'",
  3364                   Deoptimization::trap_reason_name(reason),
  3365                   md->trap_count(reason));
  3366     return true;
  3367   } else {
  3368     // Ignore method/bci and see if there have been too many globally.
  3369     return too_many_traps(reason, md);
  3373 // Less-accurate variant which does not require a method and bci.
  3374 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  3375                              ciMethodData* logmd) {
  3376   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
  3377     // Too many traps globally.
  3378     // Note that we use cumulative trap_count, not just md->trap_count.
  3379     if (log()) {
  3380       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  3381       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  3382                   Deoptimization::trap_reason_name(reason),
  3383                   mcount, trap_count(reason));
  3385     return true;
  3386   } else {
  3387     // The coast is clear.
  3388     return false;
  3392 //--------------------------too_many_recompiles--------------------------------
  3393 // Report if there are too many recompiles at the current method and bci.
  3394 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  3395 // Is not eager to return true, since this will cause the compiler to use
  3396 // Action_none for a trap point, to avoid too many recompilations.
  3397 bool Compile::too_many_recompiles(ciMethod* method,
  3398                                   int bci,
  3399                                   Deoptimization::DeoptReason reason) {
  3400   ciMethodData* md = method->method_data();
  3401   if (md->is_empty()) {
  3402     // Assume the trap has not occurred, or that it occurred only
  3403     // because of a transient condition during start-up in the interpreter.
  3404     return false;
  3406   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  3407   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  3408   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  3409   Deoptimization::DeoptReason per_bc_reason
  3410     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  3411   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
  3412   if ((per_bc_reason == Deoptimization::Reason_none
  3413        || md->has_trap_at(bci, m, reason) != 0)
  3414       // The trap frequency measure we care about is the recompile count:
  3415       && md->trap_recompiled_at(bci, m)
  3416       && md->overflow_recompile_count() >= bc_cutoff) {
  3417     // Do not emit a trap here if it has already caused recompilations.
  3418     // Also, if there are multiple reasons, or if there is no per-BCI record,
  3419     // assume the worst.
  3420     if (log())
  3421       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  3422                   Deoptimization::trap_reason_name(reason),
  3423                   md->trap_count(reason),
  3424                   md->overflow_recompile_count());
  3425     return true;
  3426   } else if (trap_count(reason) != 0
  3427              && decompile_count() >= m_cutoff) {
  3428     // Too many recompiles globally, and we have seen this sort of trap.
  3429     // Use cumulative decompile_count, not just md->decompile_count.
  3430     if (log())
  3431       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  3432                   Deoptimization::trap_reason_name(reason),
  3433                   md->trap_count(reason), trap_count(reason),
  3434                   md->decompile_count(), decompile_count());
  3435     return true;
  3436   } else {
  3437     // The coast is clear.
  3438     return false;
  3442 // Compute when not to trap. Used by matching trap based nodes and
  3443 // NullCheck optimization.
  3444 void Compile::set_allowed_deopt_reasons() {
  3445   _allowed_reasons = 0;
  3446   if (is_method_compilation()) {
  3447     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
  3448       assert(rs < BitsPerInt, "recode bit map");
  3449       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
  3450         _allowed_reasons |= nth_bit(rs);
  3456 #ifndef PRODUCT
  3457 //------------------------------verify_graph_edges---------------------------
  3458 // Walk the Graph and verify that there is a one-to-one correspondence
  3459 // between Use-Def edges and Def-Use edges in the graph.
  3460 void Compile::verify_graph_edges(bool no_dead_code) {
  3461   if (VerifyGraphEdges) {
  3462     ResourceArea *area = Thread::current()->resource_area();
  3463     Unique_Node_List visited(area);
  3464     // Call recursive graph walk to check edges
  3465     _root->verify_edges(visited);
  3466     if (no_dead_code) {
  3467       // Now make sure that no visited node is used by an unvisited node.
  3468       bool dead_nodes = 0;
  3469       Unique_Node_List checked(area);
  3470       while (visited.size() > 0) {
  3471         Node* n = visited.pop();
  3472         checked.push(n);
  3473         for (uint i = 0; i < n->outcnt(); i++) {
  3474           Node* use = n->raw_out(i);
  3475           if (checked.member(use))  continue;  // already checked
  3476           if (visited.member(use))  continue;  // already in the graph
  3477           if (use->is_Con())        continue;  // a dead ConNode is OK
  3478           // At this point, we have found a dead node which is DU-reachable.
  3479           if (dead_nodes++ == 0)
  3480             tty->print_cr("*** Dead nodes reachable via DU edges:");
  3481           use->dump(2);
  3482           tty->print_cr("---");
  3483           checked.push(use);  // No repeats; pretend it is now checked.
  3486       assert(dead_nodes == 0, "using nodes must be reachable from root");
  3491 // Verify GC barriers consistency
  3492 // Currently supported:
  3493 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
  3494 void Compile::verify_barriers() {
  3495   if (UseG1GC) {
  3496     // Verify G1 pre-barriers
  3497     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
  3499     ResourceArea *area = Thread::current()->resource_area();
  3500     Unique_Node_List visited(area);
  3501     Node_List worklist(area);
  3502     // We're going to walk control flow backwards starting from the Root
  3503     worklist.push(_root);
  3504     while (worklist.size() > 0) {
  3505       Node* x = worklist.pop();
  3506       if (x == NULL || x == top()) continue;
  3507       if (visited.member(x)) {
  3508         continue;
  3509       } else {
  3510         visited.push(x);
  3513       if (x->is_Region()) {
  3514         for (uint i = 1; i < x->req(); i++) {
  3515           worklist.push(x->in(i));
  3517       } else {
  3518         worklist.push(x->in(0));
  3519         // We are looking for the pattern:
  3520         //                            /->ThreadLocal
  3521         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
  3522         //              \->ConI(0)
  3523         // We want to verify that the If and the LoadB have the same control
  3524         // See GraphKit::g1_write_barrier_pre()
  3525         if (x->is_If()) {
  3526           IfNode *iff = x->as_If();
  3527           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
  3528             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
  3529             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
  3530                 && cmp->in(1)->is_Load()) {
  3531               LoadNode* load = cmp->in(1)->as_Load();
  3532               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
  3533                   && load->in(2)->in(3)->is_Con()
  3534                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
  3536                 Node* if_ctrl = iff->in(0);
  3537                 Node* load_ctrl = load->in(0);
  3539                 if (if_ctrl != load_ctrl) {
  3540                   // Skip possible CProj->NeverBranch in infinite loops
  3541                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
  3542                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
  3543                     if_ctrl = if_ctrl->in(0)->in(0);
  3546                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
  3556 #endif
  3558 // The Compile object keeps track of failure reasons separately from the ciEnv.
  3559 // This is required because there is not quite a 1-1 relation between the
  3560 // ciEnv and its compilation task and the Compile object.  Note that one
  3561 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  3562 // to backtrack and retry without subsuming loads.  Other than this backtracking
  3563 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  3564 // by the logic in C2Compiler.
  3565 void Compile::record_failure(const char* reason) {
  3566   if (log() != NULL) {
  3567     log()->elem("failure reason='%s' phase='compile'", reason);
  3569   if (_failure_reason == NULL) {
  3570     // Record the first failure reason.
  3571     _failure_reason = reason;
  3574   EventCompilerFailure event;
  3575   if (event.should_commit()) {
  3576     event.set_compileID(Compile::compile_id());
  3577     event.set_failure(reason);
  3578     event.commit();
  3581   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  3582     C->print_method(PHASE_FAILURE);
  3584   _root = NULL;  // flush the graph, too
  3587 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  3588   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
  3589     _phase_name(name), _dolog(dolog)
  3591   if (dolog) {
  3592     C = Compile::current();
  3593     _log = C->log();
  3594   } else {
  3595     C = NULL;
  3596     _log = NULL;
  3598   if (_log != NULL) {
  3599     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3600     _log->stamp();
  3601     _log->end_head();
  3605 Compile::TracePhase::~TracePhase() {
  3607   C = Compile::current();
  3608   if (_dolog) {
  3609     _log = C->log();
  3610   } else {
  3611     _log = NULL;
  3614 #ifdef ASSERT
  3615   if (PrintIdealNodeCount) {
  3616     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
  3617                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
  3620   if (VerifyIdealNodeCount) {
  3621     Compile::current()->print_missing_nodes();
  3623 #endif
  3625   if (_log != NULL) {
  3626     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
  3630 //=============================================================================
  3631 // Two Constant's are equal when the type and the value are equal.
  3632 bool Compile::Constant::operator==(const Constant& other) {
  3633   if (type()          != other.type()         )  return false;
  3634   if (can_be_reused() != other.can_be_reused())  return false;
  3635   // For floating point values we compare the bit pattern.
  3636   switch (type()) {
  3637   case T_FLOAT:   return (_v._value.i == other._v._value.i);
  3638   case T_LONG:
  3639   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
  3640   case T_OBJECT:
  3641   case T_ADDRESS: return (_v._value.l == other._v._value.l);
  3642   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
  3643   case T_METADATA: return (_v._metadata == other._v._metadata);
  3644   default: ShouldNotReachHere();
  3646   return false;
  3649 static int type_to_size_in_bytes(BasicType t) {
  3650   switch (t) {
  3651   case T_LONG:    return sizeof(jlong  );
  3652   case T_FLOAT:   return sizeof(jfloat );
  3653   case T_DOUBLE:  return sizeof(jdouble);
  3654   case T_METADATA: return sizeof(Metadata*);
  3655     // We use T_VOID as marker for jump-table entries (labels) which
  3656     // need an internal word relocation.
  3657   case T_VOID:
  3658   case T_ADDRESS:
  3659   case T_OBJECT:  return sizeof(jobject);
  3662   ShouldNotReachHere();
  3663   return -1;
  3666 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
  3667   // sort descending
  3668   if (a->freq() > b->freq())  return -1;
  3669   if (a->freq() < b->freq())  return  1;
  3670   return 0;
  3673 void Compile::ConstantTable::calculate_offsets_and_size() {
  3674   // First, sort the array by frequencies.
  3675   _constants.sort(qsort_comparator);
  3677 #ifdef ASSERT
  3678   // Make sure all jump-table entries were sorted to the end of the
  3679   // array (they have a negative frequency).
  3680   bool found_void = false;
  3681   for (int i = 0; i < _constants.length(); i++) {
  3682     Constant con = _constants.at(i);
  3683     if (con.type() == T_VOID)
  3684       found_void = true;  // jump-tables
  3685     else
  3686       assert(!found_void, "wrong sorting");
  3688 #endif
  3690   int offset = 0;
  3691   for (int i = 0; i < _constants.length(); i++) {
  3692     Constant* con = _constants.adr_at(i);
  3694     // Align offset for type.
  3695     int typesize = type_to_size_in_bytes(con->type());
  3696     offset = align_size_up(offset, typesize);
  3697     con->set_offset(offset);   // set constant's offset
  3699     if (con->type() == T_VOID) {
  3700       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
  3701       offset = offset + typesize * n->outcnt();  // expand jump-table
  3702     } else {
  3703       offset = offset + typesize;
  3707   // Align size up to the next section start (which is insts; see
  3708   // CodeBuffer::align_at_start).
  3709   assert(_size == -1, "already set?");
  3710   _size = align_size_up(offset, CodeEntryAlignment);
  3713 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3714   MacroAssembler _masm(&cb);
  3715   for (int i = 0; i < _constants.length(); i++) {
  3716     Constant con = _constants.at(i);
  3717     address constant_addr = NULL;
  3718     switch (con.type()) {
  3719     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3720     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3721     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3722     case T_OBJECT: {
  3723       jobject obj = con.get_jobject();
  3724       int oop_index = _masm.oop_recorder()->find_index(obj);
  3725       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3726       break;
  3728     case T_ADDRESS: {
  3729       address addr = (address) con.get_jobject();
  3730       constant_addr = _masm.address_constant(addr);
  3731       break;
  3733     // We use T_VOID as marker for jump-table entries (labels) which
  3734     // need an internal word relocation.
  3735     case T_VOID: {
  3736       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
  3737       // Fill the jump-table with a dummy word.  The real value is
  3738       // filled in later in fill_jump_table.
  3739       address dummy = (address) n;
  3740       constant_addr = _masm.address_constant(dummy);
  3741       // Expand jump-table
  3742       for (uint i = 1; i < n->outcnt(); i++) {
  3743         address temp_addr = _masm.address_constant(dummy + i);
  3744         assert(temp_addr, "consts section too small");
  3746       break;
  3748     case T_METADATA: {
  3749       Metadata* obj = con.get_metadata();
  3750       int metadata_index = _masm.oop_recorder()->find_index(obj);
  3751       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
  3752       break;
  3754     default: ShouldNotReachHere();
  3756     assert(constant_addr, "consts section too small");
  3757     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
  3758             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
  3762 int Compile::ConstantTable::find_offset(Constant& con) const {
  3763   int idx = _constants.find(con);
  3764   assert(idx != -1, "constant must be in constant table");
  3765   int offset = _constants.at(idx).offset();
  3766   assert(offset != -1, "constant table not emitted yet?");
  3767   return offset;
  3770 void Compile::ConstantTable::add(Constant& con) {
  3771   if (con.can_be_reused()) {
  3772     int idx = _constants.find(con);
  3773     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3774       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
  3775       return;
  3778   (void) _constants.append(con);
  3781 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
  3782   Block* b = Compile::current()->cfg()->get_block_for_node(n);
  3783   Constant con(type, value, b->_freq);
  3784   add(con);
  3785   return con;
  3788 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
  3789   Constant con(metadata);
  3790   add(con);
  3791   return con;
  3794 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
  3795   jvalue value;
  3796   BasicType type = oper->type()->basic_type();
  3797   switch (type) {
  3798   case T_LONG:    value.j = oper->constantL(); break;
  3799   case T_FLOAT:   value.f = oper->constantF(); break;
  3800   case T_DOUBLE:  value.d = oper->constantD(); break;
  3801   case T_OBJECT:
  3802   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3803   case T_METADATA: return add((Metadata*)oper->constant()); break;
  3804   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
  3806   return add(n, type, value);
  3809 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
  3810   jvalue value;
  3811   // We can use the node pointer here to identify the right jump-table
  3812   // as this method is called from Compile::Fill_buffer right before
  3813   // the MachNodes are emitted and the jump-table is filled (means the
  3814   // MachNode pointers do not change anymore).
  3815   value.l = (jobject) n;
  3816   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
  3817   add(con);
  3818   return con;
  3821 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3822   // If called from Compile::scratch_emit_size do nothing.
  3823   if (Compile::current()->in_scratch_emit_size())  return;
  3825   assert(labels.is_nonempty(), "must be");
  3826   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
  3828   // Since MachConstantNode::constant_offset() also contains
  3829   // table_base_offset() we need to subtract the table_base_offset()
  3830   // to get the plain offset into the constant table.
  3831   int offset = n->constant_offset() - table_base_offset();
  3833   MacroAssembler _masm(&cb);
  3834   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3836   for (uint i = 0; i < n->outcnt(); i++) {
  3837     address* constant_addr = &jump_table_base[i];
  3838     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
  3839     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3840     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
  3844 void Compile::dump_inlining() {
  3845   if (print_inlining() || print_intrinsics()) {
  3846     // Print inlining message for candidates that we couldn't inline
  3847     // for lack of space or non constant receiver
  3848     for (int i = 0; i < _late_inlines.length(); i++) {
  3849       CallGenerator* cg = _late_inlines.at(i);
  3850       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
  3852     Unique_Node_List useful;
  3853     useful.push(root());
  3854     for (uint next = 0; next < useful.size(); ++next) {
  3855       Node* n  = useful.at(next);
  3856       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
  3857         CallNode* call = n->as_Call();
  3858         CallGenerator* cg = call->generator();
  3859         cg->print_inlining_late("receiver not constant");
  3861       uint max = n->len();
  3862       for ( uint i = 0; i < max; ++i ) {
  3863         Node *m = n->in(i);
  3864         if ( m == NULL ) continue;
  3865         useful.push(m);
  3868     for (int i = 0; i < _print_inlining_list->length(); i++) {
  3869       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
  3874 // Dump inlining replay data to the stream.
  3875 // Don't change thread state and acquire any locks.
  3876 void Compile::dump_inline_data(outputStream* out) {
  3877   InlineTree* inl_tree = ilt();
  3878   if (inl_tree != NULL) {
  3879     out->print(" inline %d", inl_tree->count());
  3880     inl_tree->dump_replay_data(out);
  3884 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
  3885   if (n1->Opcode() < n2->Opcode())      return -1;
  3886   else if (n1->Opcode() > n2->Opcode()) return 1;
  3888   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
  3889   for (uint i = 1; i < n1->req(); i++) {
  3890     if (n1->in(i) < n2->in(i))      return -1;
  3891     else if (n1->in(i) > n2->in(i)) return 1;
  3894   return 0;
  3897 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
  3898   Node* n1 = *n1p;
  3899   Node* n2 = *n2p;
  3901   return cmp_expensive_nodes(n1, n2);
  3904 void Compile::sort_expensive_nodes() {
  3905   if (!expensive_nodes_sorted()) {
  3906     _expensive_nodes->sort(cmp_expensive_nodes);
  3910 bool Compile::expensive_nodes_sorted() const {
  3911   for (int i = 1; i < _expensive_nodes->length(); i++) {
  3912     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
  3913       return false;
  3916   return true;
  3919 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
  3920   if (_expensive_nodes->length() == 0) {
  3921     return false;
  3924   assert(OptimizeExpensiveOps, "optimization off?");
  3926   // Take this opportunity to remove dead nodes from the list
  3927   int j = 0;
  3928   for (int i = 0; i < _expensive_nodes->length(); i++) {
  3929     Node* n = _expensive_nodes->at(i);
  3930     if (!n->is_unreachable(igvn)) {
  3931       assert(n->is_expensive(), "should be expensive");
  3932       _expensive_nodes->at_put(j, n);
  3933       j++;
  3936   _expensive_nodes->trunc_to(j);
  3938   // Then sort the list so that similar nodes are next to each other
  3939   // and check for at least two nodes of identical kind with same data
  3940   // inputs.
  3941   sort_expensive_nodes();
  3943   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
  3944     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
  3945       return true;
  3949   return false;
  3952 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
  3953   if (_expensive_nodes->length() == 0) {
  3954     return;
  3957   assert(OptimizeExpensiveOps, "optimization off?");
  3959   // Sort to bring similar nodes next to each other and clear the
  3960   // control input of nodes for which there's only a single copy.
  3961   sort_expensive_nodes();
  3963   int j = 0;
  3964   int identical = 0;
  3965   int i = 0;
  3966   for (; i < _expensive_nodes->length()-1; i++) {
  3967     assert(j <= i, "can't write beyond current index");
  3968     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
  3969       identical++;
  3970       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3971       continue;
  3973     if (identical > 0) {
  3974       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3975       identical = 0;
  3976     } else {
  3977       Node* n = _expensive_nodes->at(i);
  3978       igvn.hash_delete(n);
  3979       n->set_req(0, NULL);
  3980       igvn.hash_insert(n);
  3983   if (identical > 0) {
  3984     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
  3985   } else if (_expensive_nodes->length() >= 1) {
  3986     Node* n = _expensive_nodes->at(i);
  3987     igvn.hash_delete(n);
  3988     n->set_req(0, NULL);
  3989     igvn.hash_insert(n);
  3991   _expensive_nodes->trunc_to(j);
  3994 void Compile::add_expensive_node(Node * n) {
  3995   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
  3996   assert(n->is_expensive(), "expensive nodes with non-null control here only");
  3997   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
  3998   if (OptimizeExpensiveOps) {
  3999     _expensive_nodes->append(n);
  4000   } else {
  4001     // Clear control input and let IGVN optimize expensive nodes if
  4002     // OptimizeExpensiveOps is off.
  4003     n->set_req(0, NULL);
  4007 /**
  4008  * Remove the speculative part of types and clean up the graph
  4009  */
  4010 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
  4011   if (UseTypeSpeculation) {
  4012     Unique_Node_List worklist;
  4013     worklist.push(root());
  4014     int modified = 0;
  4015     // Go over all type nodes that carry a speculative type, drop the
  4016     // speculative part of the type and enqueue the node for an igvn
  4017     // which may optimize it out.
  4018     for (uint next = 0; next < worklist.size(); ++next) {
  4019       Node *n  = worklist.at(next);
  4020       if (n->is_Type()) {
  4021         TypeNode* tn = n->as_Type();
  4022         const Type* t = tn->type();
  4023         const Type* t_no_spec = t->remove_speculative();
  4024         if (t_no_spec != t) {
  4025           bool in_hash = igvn.hash_delete(n);
  4026           assert(in_hash, "node should be in igvn hash table");
  4027           tn->set_type(t_no_spec);
  4028           igvn.hash_insert(n);
  4029           igvn._worklist.push(n); // give it a chance to go away
  4030           modified++;
  4033       uint max = n->len();
  4034       for( uint i = 0; i < max; ++i ) {
  4035         Node *m = n->in(i);
  4036         if (not_a_node(m))  continue;
  4037         worklist.push(m);
  4040     // Drop the speculative part of all types in the igvn's type table
  4041     igvn.remove_speculative_types();
  4042     if (modified > 0) {
  4043       igvn.optimize();
  4045 #ifdef ASSERT
  4046     // Verify that after the IGVN is over no speculative type has resurfaced
  4047     worklist.clear();
  4048     worklist.push(root());
  4049     for (uint next = 0; next < worklist.size(); ++next) {
  4050       Node *n  = worklist.at(next);
  4051       const Type* t = igvn.type_or_null(n);
  4052       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
  4053       if (n->is_Type()) {
  4054         t = n->as_Type()->type();
  4055         assert(t == t->remove_speculative(), "no more speculative types");
  4057       uint max = n->len();
  4058       for( uint i = 0; i < max; ++i ) {
  4059         Node *m = n->in(i);
  4060         if (not_a_node(m))  continue;
  4061         worklist.push(m);
  4064     igvn.check_no_speculative_types();
  4065 #endif
  4069 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
  4070 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
  4071   if (ctrl != NULL) {
  4072     // Express control dependency by a CastII node with a narrow type.
  4073     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
  4074     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
  4075     // node from floating above the range check during loop optimizations. Otherwise, the
  4076     // ConvI2L node may be eliminated independently of the range check, causing the data path
  4077     // to become TOP while the control path is still there (although it's unreachable).
  4078     value->set_req(0, ctrl);
  4079     // Save CastII node to remove it after loop optimizations.
  4080     phase->C->add_range_check_cast(value);
  4081     value = phase->transform(value);
  4083   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
  4084   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
  4087 // Auxiliary method to support randomized stressing/fuzzing.
  4088 //
  4089 // This method can be called the arbitrary number of times, with current count
  4090 // as the argument. The logic allows selecting a single candidate from the
  4091 // running list of candidates as follows:
  4092 //    int count = 0;
  4093 //    Cand* selected = null;
  4094 //    while(cand = cand->next()) {
  4095 //      if (randomized_select(++count)) {
  4096 //        selected = cand;
  4097 //      }
  4098 //    }
  4099 //
  4100 // Including count equalizes the chances any candidate is "selected".
  4101 // This is useful when we don't have the complete list of candidates to choose
  4102 // from uniformly. In this case, we need to adjust the randomicity of the
  4103 // selection, or else we will end up biasing the selection towards the latter
  4104 // candidates.
  4105 //
  4106 // Quick back-envelope calculation shows that for the list of n candidates
  4107 // the equal probability for the candidate to persist as "best" can be
  4108 // achieved by replacing it with "next" k-th candidate with the probability
  4109 // of 1/k. It can be easily shown that by the end of the run, the
  4110 // probability for any candidate is converged to 1/n, thus giving the
  4111 // uniform distribution among all the candidates.
  4112 //
  4113 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
  4114 #define RANDOMIZED_DOMAIN_POW 29
  4115 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
  4116 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
  4117 bool Compile::randomized_select(int count) {
  4118   assert(count > 0, "only positive");
  4119   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);

mercurial