src/cpu/sparc/vm/sparc.ad

Thu, 07 Oct 2010 15:12:57 -0400

author
bobv
date
Thu, 07 Oct 2010 15:12:57 -0400
changeset 2223
3dc12ef8735e
parent 2103
3e8fbc61cee8
child 2269
ae065c367d93
permissions
-rw-r--r--

6989297: Integrate additional portability improvements
Reviewed-by: vladidan, dholmes

     1 //
     2 // Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20 // or visit www.oracle.com if you need additional information or have any
    21 // questions.
    22 //
    23 //
    25 // SPARC Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    31 register %{
    32 //----------Architecture Description Register Definitions----------------------
    33 // General Registers
    34 // "reg_def"  name ( register save type, C convention save type,
    35 //                   ideal register type, encoding, vm name );
    36 // Register Save Types:
    37 //
    38 // NS  = No-Save:       The register allocator assumes that these registers
    39 //                      can be used without saving upon entry to the method, &
    40 //                      that they do not need to be saved at call sites.
    41 //
    42 // SOC = Save-On-Call:  The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method,
    44 //                      but that they must be saved at call sites.
    45 //
    46 // SOE = Save-On-Entry: The register allocator assumes that these registers
    47 //                      must be saved before using them upon entry to the
    48 //                      method, but they do not need to be saved at call
    49 //                      sites.
    50 //
    51 // AS  = Always-Save:   The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, & that they must be saved at call sites.
    54 //
    55 // Ideal Register Type is used to determine how to save & restore a
    56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    58 //
    59 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // ----------------------------
    63 // Integer/Long Registers
    64 // ----------------------------
    66 // Need to expose the hi/lo aspect of 64-bit registers
    67 // This register set is used for both the 64-bit build and
    68 // the 32-bit build with 1-register longs.
    70 // Global Registers 0-7
    71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
    72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
    73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
    74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
    75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
    76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
    77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
    78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
    79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
    80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
    81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
    82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
    83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
    84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
    85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
    86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
    88 // Output Registers 0-7
    89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
    90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
    91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
    92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
    93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
    94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
    95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
    96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
    97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
    98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
    99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
   100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
   101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
   102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
   103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
   104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
   106 // Local Registers 0-7
   107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
   108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
   109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
   110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
   111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
   112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
   113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
   114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
   115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
   116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
   117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
   118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
   119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
   120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
   121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
   122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
   124 // Input Registers 0-7
   125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
   126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
   127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
   128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
   129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
   130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
   131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
   132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
   133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
   134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
   135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
   136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
   137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
   138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
   139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
   140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
   142 // ----------------------------
   143 // Float/Double Registers
   144 // ----------------------------
   146 // Float Registers
   147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
   148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
   149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
   150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
   151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
   152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
   153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
   154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
   155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
   156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
   157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
   158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
   159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
   160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
   161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
   162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
   163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
   164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
   165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
   166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
   167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
   168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
   169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
   170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
   171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
   172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
   173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
   174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
   175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
   176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
   177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
   178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
   180 // Double Registers
   181 // The rules of ADL require that double registers be defined in pairs.
   182 // Each pair must be two 32-bit values, but not necessarily a pair of
   183 // single float registers.  In each pair, ADLC-assigned register numbers
   184 // must be adjacent, with the lower number even.  Finally, when the
   185 // CPU stores such a register pair to memory, the word associated with
   186 // the lower ADLC-assigned number must be stored to the lower address.
   188 // These definitions specify the actual bit encodings of the sparc
   189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
   190 // wants 0-63, so we have to convert every time we want to use fp regs
   191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
   192 // 255 is a flag meaning "don't go here".
   193 // I believe we can't handle callee-save doubles D32 and up until
   194 // the place in the sparc stack crawler that asserts on the 255 is
   195 // fixed up.
   196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
   197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
   198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
   199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
   200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
   201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
   202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
   203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
   204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
   205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
   206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
   207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
   208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
   209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
   210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
   211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
   212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
   213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
   214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
   215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
   216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
   217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
   218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
   219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
   220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
   221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
   222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
   223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
   224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
   225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
   226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
   227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
   230 // ----------------------------
   231 // Special Registers
   232 // Condition Codes Flag Registers
   233 // I tried to break out ICC and XCC but it's not very pretty.
   234 // Every Sparc instruction which defs/kills one also kills the other.
   235 // Hence every compare instruction which defs one kind of flags ends
   236 // up needing a kill of the other.
   237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
   240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
   241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
   242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
   244 // ----------------------------
   245 // Specify the enum values for the registers.  These enums are only used by the
   246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
   247 // for visibility to the rest of the vm. The order of this enum influences the
   248 // register allocator so having the freedom to set this order and not be stuck
   249 // with the order that is natural for the rest of the vm is worth it.
   250 alloc_class chunk0(
   251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
   252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
   253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
   254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
   256 // Note that a register is not allocatable unless it is also mentioned
   257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
   259 alloc_class chunk1(
   260   // The first registers listed here are those most likely to be used
   261   // as temporaries.  We move F0..F7 away from the front of the list,
   262   // to reduce the likelihood of interferences with parameters and
   263   // return values.  Likewise, we avoid using F0/F1 for parameters,
   264   // since they are used for return values.
   265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
   266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
   268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
   269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
   270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
   271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
   273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
   275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
   277 //----------Architecture Description Register Classes--------------------------
   278 // Several register classes are automatically defined based upon information in
   279 // this architecture description.
   280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // G0 is not included in integer class since it has special meaning.
   286 reg_class g0_reg(R_G0);
   288 // ----------------------------
   289 // Integer Register Classes
   290 // ----------------------------
   291 // Exclusions from i_reg:
   292 // R_G0: hardwired zero
   293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
   294 // R_G6: reserved by Solaris ABI to tools
   295 // R_G7: reserved by Solaris ABI to libthread
   296 // R_O7: Used as a temp in many encodings
   297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   299 // Class for all integer registers, except the G registers.  This is used for
   300 // encodings which use G registers as temps.  The regular inputs to such
   301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
   302 // will not put an input into a temp register.
   303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   305 reg_class g1_regI(R_G1);
   306 reg_class g3_regI(R_G3);
   307 reg_class g4_regI(R_G4);
   308 reg_class o0_regI(R_O0);
   309 reg_class o7_regI(R_O7);
   311 // ----------------------------
   312 // Pointer Register Classes
   313 // ----------------------------
   314 #ifdef _LP64
   315 // 64-bit build means 64-bit pointers means hi/lo pairs
   316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   320 // Lock encodings use G3 and G4 internally
   321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
   322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
   323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
   325 // Special class for storeP instructions, which can store SP or RPC to TLS.
   326 // It is also used for memory addressing, allowing direct TLS addressing.
   327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
   328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
   329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
   330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
   331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   332 // We use it to save R_G2 across calls out of Java.
   333 reg_class l7_regP(R_L7H,R_L7);
   335 // Other special pointer regs
   336 reg_class g1_regP(R_G1H,R_G1);
   337 reg_class g2_regP(R_G2H,R_G2);
   338 reg_class g3_regP(R_G3H,R_G3);
   339 reg_class g4_regP(R_G4H,R_G4);
   340 reg_class g5_regP(R_G5H,R_G5);
   341 reg_class i0_regP(R_I0H,R_I0);
   342 reg_class o0_regP(R_O0H,R_O0);
   343 reg_class o1_regP(R_O1H,R_O1);
   344 reg_class o2_regP(R_O2H,R_O2);
   345 reg_class o7_regP(R_O7H,R_O7);
   347 #else // _LP64
   348 // 32-bit build means 32-bit pointers means 1 register.
   349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
   350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   353 // Lock encodings use G3 and G4 internally
   354 reg_class lock_ptr_reg(R_G1,               R_G5,
   355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
   356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
   358 // Special class for storeP instructions, which can store SP or RPC to TLS.
   359 // It is also used for memory addressing, allowing direct TLS addressing.
   360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
   361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
   362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
   363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
   364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
   365 // We use it to save R_G2 across calls out of Java.
   366 reg_class l7_regP(R_L7);
   368 // Other special pointer regs
   369 reg_class g1_regP(R_G1);
   370 reg_class g2_regP(R_G2);
   371 reg_class g3_regP(R_G3);
   372 reg_class g4_regP(R_G4);
   373 reg_class g5_regP(R_G5);
   374 reg_class i0_regP(R_I0);
   375 reg_class o0_regP(R_O0);
   376 reg_class o1_regP(R_O1);
   377 reg_class o2_regP(R_O2);
   378 reg_class o7_regP(R_O7);
   379 #endif // _LP64
   382 // ----------------------------
   383 // Long Register Classes
   384 // ----------------------------
   385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
   386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
   387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
   388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
   389 #ifdef _LP64
   390 // 64-bit, longs in 1 register: use all 64-bit integer registers
   391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
   392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
   393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
   394 #endif // _LP64
   395                   );
   397 reg_class g1_regL(R_G1H,R_G1);
   398 reg_class g3_regL(R_G3H,R_G3);
   399 reg_class o2_regL(R_O2H,R_O2);
   400 reg_class o7_regL(R_O7H,R_O7);
   402 // ----------------------------
   403 // Special Class for Condition Code Flags Register
   404 reg_class int_flags(CCR);
   405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
   406 reg_class float_flag0(FCC0);
   409 // ----------------------------
   410 // Float Point Register Classes
   411 // ----------------------------
   412 // Skip F30/F31, they are reserved for mem-mem copies
   413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
   415 // Paired floating point registers--they show up in the same order as the floats,
   416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
   419                    /* Use extra V9 double registers; this AD file does not support V8 */
   420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
   421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
   422                    );
   424 // Paired floating point registers--they show up in the same order as the floats,
   425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
   426 // This class is usable for mis-aligned loads as happen in I2C adapters.
   427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
   428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31 );
   429 %}
   431 //----------DEFINITION BLOCK---------------------------------------------------
   432 // Define name --> value mappings to inform the ADLC of an integer valued name
   433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   434 // Format:
   435 //        int_def  <name>         ( <int_value>, <expression>);
   436 // Generated Code in ad_<arch>.hpp
   437 //        #define  <name>   (<expression>)
   438 //        // value == <int_value>
   439 // Generated code in ad_<arch>.cpp adlc_verification()
   440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   441 //
   442 definitions %{
   443 // The default cost (of an ALU instruction).
   444   int_def DEFAULT_COST      (    100,     100);
   445   int_def HUGE_COST         (1000000, 1000000);
   447 // Memory refs are twice as expensive as run-of-the-mill.
   448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
   450 // Branches are even more expensive.
   451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
   452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
   453 %}
   456 //----------SOURCE BLOCK-------------------------------------------------------
   457 // This is a block of C++ code which provides values, functions, and
   458 // definitions necessary in the rest of the architecture description
   459 source_hpp %{
   460 // Must be visible to the DFA in dfa_sparc.cpp
   461 extern bool can_branch_register( Node *bol, Node *cmp );
   463 // Macros to extract hi & lo halves from a long pair.
   464 // G0 is not part of any long pair, so assert on that.
   465 // Prevents accidentally using G1 instead of G0.
   466 #define LONG_HI_REG(x) (x)
   467 #define LONG_LO_REG(x) (x)
   469 %}
   471 source %{
   472 #define __ _masm.
   474 // Block initializing store
   475 #define ASI_BLK_INIT_QUAD_LDD_P    0xE2
   477 // tertiary op of a LoadP or StoreP encoding
   478 #define REGP_OP true
   480 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
   481 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
   482 static Register reg_to_register_object(int register_encoding);
   484 // Used by the DFA in dfa_sparc.cpp.
   485 // Check for being able to use a V9 branch-on-register.  Requires a
   486 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
   487 // extended.  Doesn't work following an integer ADD, for example, because of
   488 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
   489 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
   490 // replace them with zero, which could become sign-extension in a different OS
   491 // release.  There's no obvious reason why an interrupt will ever fill these
   492 // bits with non-zero junk (the registers are reloaded with standard LD
   493 // instructions which either zero-fill or sign-fill).
   494 bool can_branch_register( Node *bol, Node *cmp ) {
   495   if( !BranchOnRegister ) return false;
   496 #ifdef _LP64
   497   if( cmp->Opcode() == Op_CmpP )
   498     return true;  // No problems with pointer compares
   499 #endif
   500   if( cmp->Opcode() == Op_CmpL )
   501     return true;  // No problems with long compares
   503   if( !SparcV9RegsHiBitsZero ) return false;
   504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
   505       bol->as_Bool()->_test._test != BoolTest::eq )
   506      return false;
   508   // Check for comparing against a 'safe' value.  Any operation which
   509   // clears out the high word is safe.  Thus, loads and certain shifts
   510   // are safe, as are non-negative constants.  Any operation which
   511   // preserves zero bits in the high word is safe as long as each of its
   512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
   513   // inputs are safe.  At present, the only important case to recognize
   514   // seems to be loads.  Constants should fold away, and shifts &
   515   // logicals can use the 'cc' forms.
   516   Node *x = cmp->in(1);
   517   if( x->is_Load() ) return true;
   518   if( x->is_Phi() ) {
   519     for( uint i = 1; i < x->req(); i++ )
   520       if( !x->in(i)->is_Load() )
   521         return false;
   522     return true;
   523   }
   524   return false;
   525 }
   527 // ****************************************************************************
   529 // REQUIRED FUNCTIONALITY
   531 // !!!!! Special hack to get all type of calls to specify the byte offset
   532 //       from the start of the call to the point where the return address
   533 //       will point.
   534 //       The "return address" is the address of the call instruction, plus 8.
   536 int MachCallStaticJavaNode::ret_addr_offset() {
   537   int offset = NativeCall::instruction_size;  // call; delay slot
   538   if (_method_handle_invoke)
   539     offset += 4;  // restore SP
   540   return offset;
   541 }
   543 int MachCallDynamicJavaNode::ret_addr_offset() {
   544   int vtable_index = this->_vtable_index;
   545   if (vtable_index < 0) {
   546     // must be invalid_vtable_index, not nonvirtual_vtable_index
   547     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
   548     return (NativeMovConstReg::instruction_size +
   549            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
   550   } else {
   551     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
   552     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
   553     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
   554     int klass_load_size;
   555     if (UseCompressedOops) {
   556       assert(Universe::heap() != NULL, "java heap should be initialized");
   557       if (Universe::narrow_oop_base() == NULL)
   558         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
   559       else
   560         klass_load_size = 3*BytesPerInstWord;
   561     } else {
   562       klass_load_size = 1*BytesPerInstWord;
   563     }
   564     if( Assembler::is_simm13(v_off) ) {
   565       return klass_load_size +
   566              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
   567              NativeCall::instruction_size);  // call; delay slot
   568     } else {
   569       return klass_load_size +
   570              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
   571              NativeCall::instruction_size);  // call; delay slot
   572     }
   573   }
   574 }
   576 int MachCallRuntimeNode::ret_addr_offset() {
   577 #ifdef _LP64
   578   return NativeFarCall::instruction_size;  // farcall; delay slot
   579 #else
   580   return NativeCall::instruction_size;  // call; delay slot
   581 #endif
   582 }
   584 // Indicate if the safepoint node needs the polling page as an input.
   585 // Since Sparc does not have absolute addressing, it does.
   586 bool SafePointNode::needs_polling_address_input() {
   587   return true;
   588 }
   590 // emit an interrupt that is caught by the debugger (for debugging compiler)
   591 void emit_break(CodeBuffer &cbuf) {
   592   MacroAssembler _masm(&cbuf);
   593   __ breakpoint_trap();
   594 }
   596 #ifndef PRODUCT
   597 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
   598   st->print("TA");
   599 }
   600 #endif
   602 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
   603   emit_break(cbuf);
   604 }
   606 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
   607   return MachNode::size(ra_);
   608 }
   610 // Traceable jump
   611 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
   612   MacroAssembler _masm(&cbuf);
   613   Register rdest = reg_to_register_object(jump_target);
   614   __ JMP(rdest, 0);
   615   __ delayed()->nop();
   616 }
   618 // Traceable jump and set exception pc
   619 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
   620   MacroAssembler _masm(&cbuf);
   621   Register rdest = reg_to_register_object(jump_target);
   622   __ JMP(rdest, 0);
   623   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
   624 }
   626 void emit_nop(CodeBuffer &cbuf) {
   627   MacroAssembler _masm(&cbuf);
   628   __ nop();
   629 }
   631 void emit_illtrap(CodeBuffer &cbuf) {
   632   MacroAssembler _masm(&cbuf);
   633   __ illtrap(0);
   634 }
   637 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
   638   assert(n->rule() != loadUB_rule, "");
   640   intptr_t offset = 0;
   641   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
   642   const Node* addr = n->get_base_and_disp(offset, adr_type);
   643   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
   644   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
   645   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   646   atype = atype->add_offset(offset);
   647   assert(disp32 == offset, "wrong disp32");
   648   return atype->_offset;
   649 }
   652 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
   653   assert(n->rule() != loadUB_rule, "");
   655   intptr_t offset = 0;
   656   Node* addr = n->in(2);
   657   assert(addr->bottom_type()->isa_oopptr() == atype, "");
   658   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
   659     Node* a = addr->in(2/*AddPNode::Address*/);
   660     Node* o = addr->in(3/*AddPNode::Offset*/);
   661     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
   662     atype = a->bottom_type()->is_ptr()->add_offset(offset);
   663     assert(atype->isa_oop_ptr(), "still an oop");
   664   }
   665   offset = atype->is_ptr()->_offset;
   666   if (offset != Type::OffsetBot)  offset += disp32;
   667   return offset;
   668 }
   670 // Standard Sparc opcode form2 field breakdown
   671 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
   672   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
   673   int op = (f30 << 30) |
   674            (f29 << 29) |
   675            (f25 << 25) |
   676            (f22 << 22) |
   677            (f20 << 20) |
   678            (f19 << 19) |
   679            (f0  <<  0);
   680   cbuf.insts()->emit_int32(op);
   681 }
   683 // Standard Sparc opcode form2 field breakdown
   684 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
   685   f0 >>= 10;           // Drop 10 bits
   686   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
   687   int op = (f30 << 30) |
   688            (f25 << 25) |
   689            (f22 << 22) |
   690            (f0  <<  0);
   691   cbuf.insts()->emit_int32(op);
   692 }
   694 // Standard Sparc opcode form3 field breakdown
   695 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
   696   int op = (f30 << 30) |
   697            (f25 << 25) |
   698            (f19 << 19) |
   699            (f14 << 14) |
   700            (f5  <<  5) |
   701            (f0  <<  0);
   702   cbuf.insts()->emit_int32(op);
   703 }
   705 // Standard Sparc opcode form3 field breakdown
   706 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
   707   simm13 &= (1<<13)-1; // Mask to 13 bits
   708   int op = (f30 << 30) |
   709            (f25 << 25) |
   710            (f19 << 19) |
   711            (f14 << 14) |
   712            (1   << 13) | // bit to indicate immediate-mode
   713            (simm13<<0);
   714   cbuf.insts()->emit_int32(op);
   715 }
   717 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
   718   simm10 &= (1<<10)-1; // Mask to 10 bits
   719   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
   720 }
   722 #ifdef ASSERT
   723 // Helper function for VerifyOops in emit_form3_mem_reg
   724 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
   725   warning("VerifyOops encountered unexpected instruction:");
   726   n->dump(2);
   727   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
   728 }
   729 #endif
   732 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
   733                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
   735 #ifdef ASSERT
   736   // The following code implements the +VerifyOops feature.
   737   // It verifies oop values which are loaded into or stored out of
   738   // the current method activation.  +VerifyOops complements techniques
   739   // like ScavengeALot, because it eagerly inspects oops in transit,
   740   // as they enter or leave the stack, as opposed to ScavengeALot,
   741   // which inspects oops "at rest", in the stack or heap, at safepoints.
   742   // For this reason, +VerifyOops can sometimes detect bugs very close
   743   // to their point of creation.  It can also serve as a cross-check
   744   // on the validity of oop maps, when used toegether with ScavengeALot.
   746   // It would be good to verify oops at other points, especially
   747   // when an oop is used as a base pointer for a load or store.
   748   // This is presently difficult, because it is hard to know when
   749   // a base address is biased or not.  (If we had such information,
   750   // it would be easy and useful to make a two-argument version of
   751   // verify_oop which unbiases the base, and performs verification.)
   753   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
   754   bool is_verified_oop_base  = false;
   755   bool is_verified_oop_load  = false;
   756   bool is_verified_oop_store = false;
   757   int tmp_enc = -1;
   758   if (VerifyOops && src1_enc != R_SP_enc) {
   759     // classify the op, mainly for an assert check
   760     int st_op = 0, ld_op = 0;
   761     switch (primary) {
   762     case Assembler::stb_op3:  st_op = Op_StoreB; break;
   763     case Assembler::sth_op3:  st_op = Op_StoreC; break;
   764     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
   765     case Assembler::stw_op3:  st_op = Op_StoreI; break;
   766     case Assembler::std_op3:  st_op = Op_StoreL; break;
   767     case Assembler::stf_op3:  st_op = Op_StoreF; break;
   768     case Assembler::stdf_op3: st_op = Op_StoreD; break;
   770     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
   771     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
   772     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
   773     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
   774     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
   775     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
   776     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
   777     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
   778     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
   779     case Assembler::ldub_op3: ld_op = Op_LoadB; break;
   780     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
   782     default: ShouldNotReachHere();
   783     }
   784     if (tertiary == REGP_OP) {
   785       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
   786       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
   787       else                          ShouldNotReachHere();
   788       if (st_op) {
   789         // a store
   790         // inputs are (0:control, 1:memory, 2:address, 3:value)
   791         Node* n2 = n->in(3);
   792         if (n2 != NULL) {
   793           const Type* t = n2->bottom_type();
   794           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   795         }
   796       } else {
   797         // a load
   798         const Type* t = n->bottom_type();
   799         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
   800       }
   801     }
   803     if (ld_op) {
   804       // a Load
   805       // inputs are (0:control, 1:memory, 2:address)
   806       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
   807           !(n->ideal_Opcode()==Op_LoadLLocked && ld_op==Op_LoadI) &&
   808           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
   809           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
   810           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
   811           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
   812           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
   813           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
   814           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
   815           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
   816           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
   817           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
   818           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
   819           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
   820           !(n->ideal_Opcode()==Op_Load2I    && ld_op==Op_LoadD) &&
   821           !(n->ideal_Opcode()==Op_Load4C    && ld_op==Op_LoadD) &&
   822           !(n->ideal_Opcode()==Op_Load4S    && ld_op==Op_LoadD) &&
   823           !(n->ideal_Opcode()==Op_Load8B    && ld_op==Op_LoadD) &&
   824           !(n->rule() == loadUB_rule)) {
   825         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
   826       }
   827     } else if (st_op) {
   828       // a Store
   829       // inputs are (0:control, 1:memory, 2:address, 3:value)
   830       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
   831           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
   832           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
   833           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
   834           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
   835           !(n->ideal_Opcode()==Op_Store2I && st_op==Op_StoreD) &&
   836           !(n->ideal_Opcode()==Op_Store4C && st_op==Op_StoreD) &&
   837           !(n->ideal_Opcode()==Op_Store8B && st_op==Op_StoreD) &&
   838           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
   839         verify_oops_warning(n, n->ideal_Opcode(), st_op);
   840       }
   841     }
   843     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
   844       Node* addr = n->in(2);
   845       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
   846         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
   847         if (atype != NULL) {
   848           intptr_t offset = get_offset_from_base(n, atype, disp32);
   849           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
   850           if (offset != offset_2) {
   851             get_offset_from_base(n, atype, disp32);
   852             get_offset_from_base_2(n, atype, disp32);
   853           }
   854           assert(offset == offset_2, "different offsets");
   855           if (offset == disp32) {
   856             // we now know that src1 is a true oop pointer
   857             is_verified_oop_base = true;
   858             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
   859               if( primary == Assembler::ldd_op3 ) {
   860                 is_verified_oop_base = false; // Cannot 'ldd' into O7
   861               } else {
   862                 tmp_enc = dst_enc;
   863                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
   864                 assert(src1_enc != dst_enc, "");
   865               }
   866             }
   867           }
   868           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
   869                        || offset == oopDesc::mark_offset_in_bytes())) {
   870                       // loading the mark should not be allowed either, but
   871                       // we don't check this since it conflicts with InlineObjectHash
   872                       // usage of LoadINode to get the mark. We could keep the
   873                       // check if we create a new LoadMarkNode
   874             // but do not verify the object before its header is initialized
   875             ShouldNotReachHere();
   876           }
   877         }
   878       }
   879     }
   880   }
   881 #endif
   883   uint instr;
   884   instr = (Assembler::ldst_op << 30)
   885         | (dst_enc        << 25)
   886         | (primary        << 19)
   887         | (src1_enc       << 14);
   889   uint index = src2_enc;
   890   int disp = disp32;
   892   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
   893     disp += STACK_BIAS;
   895   // We should have a compiler bailout here rather than a guarantee.
   896   // Better yet would be some mechanism to handle variable-size matches correctly.
   897   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
   899   if( disp == 0 ) {
   900     // use reg-reg form
   901     // bit 13 is already zero
   902     instr |= index;
   903   } else {
   904     // use reg-imm form
   905     instr |= 0x00002000;          // set bit 13 to one
   906     instr |= disp & 0x1FFF;
   907   }
   909   cbuf.insts()->emit_int32(instr);
   911 #ifdef ASSERT
   912   {
   913     MacroAssembler _masm(&cbuf);
   914     if (is_verified_oop_base) {
   915       __ verify_oop(reg_to_register_object(src1_enc));
   916     }
   917     if (is_verified_oop_store) {
   918       __ verify_oop(reg_to_register_object(dst_enc));
   919     }
   920     if (tmp_enc != -1) {
   921       __ mov(O7, reg_to_register_object(tmp_enc));
   922     }
   923     if (is_verified_oop_load) {
   924       __ verify_oop(reg_to_register_object(dst_enc));
   925     }
   926   }
   927 #endif
   928 }
   930 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false, bool force_far_call = false) {
   931   // The method which records debug information at every safepoint
   932   // expects the call to be the first instruction in the snippet as
   933   // it creates a PcDesc structure which tracks the offset of a call
   934   // from the start of the codeBlob. This offset is computed as
   935   // code_end() - code_begin() of the code which has been emitted
   936   // so far.
   937   // In this particular case we have skirted around the problem by
   938   // putting the "mov" instruction in the delay slot but the problem
   939   // may bite us again at some other point and a cleaner/generic
   940   // solution using relocations would be needed.
   941   MacroAssembler _masm(&cbuf);
   942   __ set_inst_mark();
   944   // We flush the current window just so that there is a valid stack copy
   945   // the fact that the current window becomes active again instantly is
   946   // not a problem there is nothing live in it.
   948 #ifdef ASSERT
   949   int startpos = __ offset();
   950 #endif /* ASSERT */
   952 #ifdef _LP64
   953   // Calls to the runtime or native may not be reachable from compiled code,
   954   // so we generate the far call sequence on 64 bit sparc.
   955   // This code sequence is relocatable to any address, even on LP64.
   956   if ( force_far_call ) {
   957     __ relocate(rtype);
   958     AddressLiteral dest(entry_point);
   959     __ jumpl_to(dest, O7, O7);
   960   }
   961   else
   962 #endif
   963   {
   964      __ call((address)entry_point, rtype);
   965   }
   967   if (preserve_g2)   __ delayed()->mov(G2, L7);
   968   else __ delayed()->nop();
   970   if (preserve_g2)   __ mov(L7, G2);
   972 #ifdef ASSERT
   973   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
   974 #ifdef _LP64
   975     // Trash argument dump slots.
   976     __ set(0xb0b8ac0db0b8ac0d, G1);
   977     __ mov(G1, G5);
   978     __ stx(G1, SP, STACK_BIAS + 0x80);
   979     __ stx(G1, SP, STACK_BIAS + 0x88);
   980     __ stx(G1, SP, STACK_BIAS + 0x90);
   981     __ stx(G1, SP, STACK_BIAS + 0x98);
   982     __ stx(G1, SP, STACK_BIAS + 0xA0);
   983     __ stx(G1, SP, STACK_BIAS + 0xA8);
   984 #else // _LP64
   985     // this is also a native call, so smash the first 7 stack locations,
   986     // and the various registers
   988     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
   989     // while [SP+0x44..0x58] are the argument dump slots.
   990     __ set((intptr_t)0xbaadf00d, G1);
   991     __ mov(G1, G5);
   992     __ sllx(G1, 32, G1);
   993     __ or3(G1, G5, G1);
   994     __ mov(G1, G5);
   995     __ stx(G1, SP, 0x40);
   996     __ stx(G1, SP, 0x48);
   997     __ stx(G1, SP, 0x50);
   998     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
   999 #endif // _LP64
  1001 #endif /*ASSERT*/
  1004 //=============================================================================
  1005 // REQUIRED FUNCTIONALITY for encoding
  1006 void emit_lo(CodeBuffer &cbuf, int val) {  }
  1007 void emit_hi(CodeBuffer &cbuf, int val) {  }
  1010 //=============================================================================
  1012 #ifndef PRODUCT
  1013 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1014   Compile* C = ra_->C;
  1016   for (int i = 0; i < OptoPrologueNops; i++) {
  1017     st->print_cr("NOP"); st->print("\t");
  1020   if( VerifyThread ) {
  1021     st->print_cr("Verify_Thread"); st->print("\t");
  1024   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1026   // Calls to C2R adapters often do not accept exceptional returns.
  1027   // We require that their callers must bang for them.  But be careful, because
  1028   // some VM calls (such as call site linkage) can use several kilobytes of
  1029   // stack.  But the stack safety zone should account for that.
  1030   // See bugs 4446381, 4468289, 4497237.
  1031   if (C->need_stack_bang(framesize)) {
  1032     st->print_cr("! stack bang"); st->print("\t");
  1035   if (Assembler::is_simm13(-framesize)) {
  1036     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
  1037   } else {
  1038     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
  1039     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
  1040     st->print   ("SAVE   R_SP,R_G3,R_SP");
  1044 #endif
  1046 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1047   Compile* C = ra_->C;
  1048   MacroAssembler _masm(&cbuf);
  1050   for (int i = 0; i < OptoPrologueNops; i++) {
  1051     __ nop();
  1054   __ verify_thread();
  1056   size_t framesize = C->frame_slots() << LogBytesPerInt;
  1057   assert(framesize >= 16*wordSize, "must have room for reg. save area");
  1058   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
  1060   // Calls to C2R adapters often do not accept exceptional returns.
  1061   // We require that their callers must bang for them.  But be careful, because
  1062   // some VM calls (such as call site linkage) can use several kilobytes of
  1063   // stack.  But the stack safety zone should account for that.
  1064   // See bugs 4446381, 4468289, 4497237.
  1065   if (C->need_stack_bang(framesize)) {
  1066     __ generate_stack_overflow_check(framesize);
  1069   if (Assembler::is_simm13(-framesize)) {
  1070     __ save(SP, -framesize, SP);
  1071   } else {
  1072     __ sethi(-framesize & ~0x3ff, G3);
  1073     __ add(G3, -framesize & 0x3ff, G3);
  1074     __ save(SP, G3, SP);
  1076   C->set_frame_complete( __ offset() );
  1079 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1080   return MachNode::size(ra_);
  1083 int MachPrologNode::reloc() const {
  1084   return 10; // a large enough number
  1087 //=============================================================================
  1088 #ifndef PRODUCT
  1089 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1090   Compile* C = ra_->C;
  1092   if( do_polling() && ra_->C->is_method_compilation() ) {
  1093     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
  1094 #ifdef _LP64
  1095     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
  1096 #else
  1097     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
  1098 #endif
  1101   if( do_polling() )
  1102     st->print("RET\n\t");
  1104   st->print("RESTORE");
  1106 #endif
  1108 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1109   MacroAssembler _masm(&cbuf);
  1110   Compile* C = ra_->C;
  1112   __ verify_thread();
  1114   // If this does safepoint polling, then do it here
  1115   if( do_polling() && ra_->C->is_method_compilation() ) {
  1116     AddressLiteral polling_page(os::get_polling_page());
  1117     __ sethi(polling_page, L0);
  1118     __ relocate(relocInfo::poll_return_type);
  1119     __ ld_ptr( L0, 0, G0 );
  1122   // If this is a return, then stuff the restore in the delay slot
  1123   if( do_polling() ) {
  1124     __ ret();
  1125     __ delayed()->restore();
  1126   } else {
  1127     __ restore();
  1131 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1132   return MachNode::size(ra_);
  1135 int MachEpilogNode::reloc() const {
  1136   return 16; // a large enough number
  1139 const Pipeline * MachEpilogNode::pipeline() const {
  1140   return MachNode::pipeline_class();
  1143 int MachEpilogNode::safepoint_offset() const {
  1144   assert( do_polling(), "no return for this epilog node");
  1145   return MacroAssembler::size_of_sethi(os::get_polling_page());
  1148 //=============================================================================
  1150 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
  1151 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1152 static enum RC rc_class( OptoReg::Name reg ) {
  1153   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1154   if (OptoReg::is_stack(reg)) return rc_stack;
  1155   VMReg r = OptoReg::as_VMReg(reg);
  1156   if (r->is_Register()) return rc_int;
  1157   assert(r->is_FloatRegister(), "must be");
  1158   return rc_float;
  1161 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
  1162   if( cbuf ) {
  1163     // Better yet would be some mechanism to handle variable-size matches correctly
  1164     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
  1165       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
  1166     } else {
  1167       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
  1170 #ifndef PRODUCT
  1171   else if( !do_size ) {
  1172     if( size != 0 ) st->print("\n\t");
  1173     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
  1174     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
  1176 #endif
  1177   return size+4;
  1180 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
  1181   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
  1182 #ifndef PRODUCT
  1183   else if( !do_size ) {
  1184     if( size != 0 ) st->print("\n\t");
  1185     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
  1187 #endif
  1188   return size+4;
  1191 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
  1192                                         PhaseRegAlloc *ra_,
  1193                                         bool do_size,
  1194                                         outputStream* st ) const {
  1195   // Get registers to move
  1196   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1197   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1198   OptoReg::Name dst_second = ra_->get_reg_second(this );
  1199   OptoReg::Name dst_first = ra_->get_reg_first(this );
  1201   enum RC src_second_rc = rc_class(src_second);
  1202   enum RC src_first_rc = rc_class(src_first);
  1203   enum RC dst_second_rc = rc_class(dst_second);
  1204   enum RC dst_first_rc = rc_class(dst_first);
  1206   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
  1208   // Generate spill code!
  1209   int size = 0;
  1211   if( src_first == dst_first && src_second == dst_second )
  1212     return size;            // Self copy, no move
  1214   // --------------------------------------
  1215   // Check for mem-mem move.  Load into unused float registers and fall into
  1216   // the float-store case.
  1217   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
  1218     int offset = ra_->reg2offset(src_first);
  1219     // Further check for aligned-adjacent pair, so we can use a double load
  1220     if( (src_first&1)==0 && src_first+1 == src_second ) {
  1221       src_second    = OptoReg::Name(R_F31_num);
  1222       src_second_rc = rc_float;
  1223       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
  1224     } else {
  1225       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
  1227     src_first    = OptoReg::Name(R_F30_num);
  1228     src_first_rc = rc_float;
  1231   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
  1232     int offset = ra_->reg2offset(src_second);
  1233     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
  1234     src_second    = OptoReg::Name(R_F31_num);
  1235     src_second_rc = rc_float;
  1238   // --------------------------------------
  1239   // Check for float->int copy; requires a trip through memory
  1240   if( src_first_rc == rc_float && dst_first_rc == rc_int ) {
  1241     int offset = frame::register_save_words*wordSize;
  1242     if( cbuf ) {
  1243       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
  1244       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1245       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1246       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
  1248 #ifndef PRODUCT
  1249     else if( !do_size ) {
  1250       if( size != 0 ) st->print("\n\t");
  1251       st->print(  "SUB    R_SP,16,R_SP\n");
  1252       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1253       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1254       st->print("\tADD    R_SP,16,R_SP\n");
  1256 #endif
  1257     size += 16;
  1260   // --------------------------------------
  1261   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
  1262   // In such cases, I have to do the big-endian swap.  For aligned targets, the
  1263   // hardware does the flop for me.  Doubles are always aligned, so no problem
  1264   // there.  Misaligned sources only come from native-long-returns (handled
  1265   // special below).
  1266 #ifndef _LP64
  1267   if( src_first_rc == rc_int &&     // source is already big-endian
  1268       src_second_rc != rc_bad &&    // 64-bit move
  1269       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
  1270     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
  1271     // Do the big-endian flop.
  1272     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
  1273     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
  1275 #endif
  1277   // --------------------------------------
  1278   // Check for integer reg-reg copy
  1279   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
  1280 #ifndef _LP64
  1281     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
  1282       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1283       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1284       //       operand contains the least significant word of the 64-bit value and vice versa.
  1285       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
  1286       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
  1287       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
  1288       if( cbuf ) {
  1289         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
  1290         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
  1291         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
  1292 #ifndef PRODUCT
  1293       } else if( !do_size ) {
  1294         if( size != 0 ) st->print("\n\t");
  1295         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
  1296         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
  1297         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
  1298 #endif
  1300       return size+12;
  1302     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
  1303       // returning a long value in I0/I1
  1304       // a SpillCopy must be able to target a return instruction's reg_class
  1305       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
  1306       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
  1307       //       operand contains the least significant word of the 64-bit value and vice versa.
  1308       OptoReg::Name tdest = dst_first;
  1310       if (src_first == dst_first) {
  1311         tdest = OptoReg::Name(R_O7_num);
  1312         size += 4;
  1315       if( cbuf ) {
  1316         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
  1317         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
  1318         // ShrL_reg_imm6
  1319         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
  1320         // ShrR_reg_imm6  src, 0, dst
  1321         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
  1322         if (tdest != dst_first) {
  1323           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
  1326 #ifndef PRODUCT
  1327       else if( !do_size ) {
  1328         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
  1329         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
  1330         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
  1331         if (tdest != dst_first) {
  1332           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
  1335 #endif // PRODUCT
  1336       return size+8;
  1338 #endif // !_LP64
  1339     // Else normal reg-reg copy
  1340     assert( src_second != dst_first, "smashed second before evacuating it" );
  1341     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
  1342     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
  1343     // This moves an aligned adjacent pair.
  1344     // See if we are done.
  1345     if( src_first+1 == src_second && dst_first+1 == dst_second )
  1346       return size;
  1349   // Check for integer store
  1350   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
  1351     int offset = ra_->reg2offset(dst_first);
  1352     // Further check for aligned-adjacent pair, so we can use a double store
  1353     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1354       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
  1355     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
  1358   // Check for integer load
  1359   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
  1360     int offset = ra_->reg2offset(src_first);
  1361     // Further check for aligned-adjacent pair, so we can use a double load
  1362     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1363       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
  1364     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
  1367   // Check for float reg-reg copy
  1368   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
  1369     // Further check for aligned-adjacent pair, so we can use a double move
  1370     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1371       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
  1372     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
  1375   // Check for float store
  1376   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
  1377     int offset = ra_->reg2offset(dst_first);
  1378     // Further check for aligned-adjacent pair, so we can use a double store
  1379     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1380       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
  1381     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
  1384   // Check for float load
  1385   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
  1386     int offset = ra_->reg2offset(src_first);
  1387     // Further check for aligned-adjacent pair, so we can use a double load
  1388     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
  1389       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
  1390     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
  1393   // --------------------------------------------------------------------
  1394   // Check for hi bits still needing moving.  Only happens for misaligned
  1395   // arguments to native calls.
  1396   if( src_second == dst_second )
  1397     return size;               // Self copy; no move
  1398   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
  1400 #ifndef _LP64
  1401   // In the LP64 build, all registers can be moved as aligned/adjacent
  1402   // pairs, so there's never any need to move the high bits separately.
  1403   // The 32-bit builds have to deal with the 32-bit ABI which can force
  1404   // all sorts of silly alignment problems.
  1406   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
  1407   // 32-bits of a 64-bit register, but are needed in low bits of another
  1408   // register (else it's a hi-bits-to-hi-bits copy which should have
  1409   // happened already as part of a 64-bit move)
  1410   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
  1411     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
  1412     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
  1413     // Shift src_second down to dst_second's low bits.
  1414     if( cbuf ) {
  1415       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1416 #ifndef PRODUCT
  1417     } else if( !do_size ) {
  1418       if( size != 0 ) st->print("\n\t");
  1419       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
  1420 #endif
  1422     return size+4;
  1425   // Check for high word integer store.  Must down-shift the hi bits
  1426   // into a temp register, then fall into the case of storing int bits.
  1427   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
  1428     // Shift src_second down to dst_second's low bits.
  1429     if( cbuf ) {
  1430       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
  1431 #ifndef PRODUCT
  1432     } else if( !do_size ) {
  1433       if( size != 0 ) st->print("\n\t");
  1434       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
  1435 #endif
  1437     size+=4;
  1438     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
  1441   // Check for high word integer load
  1442   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
  1443     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
  1445   // Check for high word integer store
  1446   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
  1447     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
  1449   // Check for high word float store
  1450   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
  1451     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
  1453 #endif // !_LP64
  1455   Unimplemented();
  1458 #ifndef PRODUCT
  1459 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1460   implementation( NULL, ra_, false, st );
  1462 #endif
  1464 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1465   implementation( &cbuf, ra_, false, NULL );
  1468 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1469   return implementation( NULL, ra_, true, NULL );
  1472 //=============================================================================
  1473 #ifndef PRODUCT
  1474 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
  1475   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
  1477 #endif
  1479 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
  1480   MacroAssembler _masm(&cbuf);
  1481   for(int i = 0; i < _count; i += 1) {
  1482     __ nop();
  1486 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1487   return 4 * _count;
  1491 //=============================================================================
  1492 #ifndef PRODUCT
  1493 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1494   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1495   int reg = ra_->get_reg_first(this);
  1496   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
  1498 #endif
  1500 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1501   MacroAssembler _masm(&cbuf);
  1502   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
  1503   int reg = ra_->get_encode(this);
  1505   if (Assembler::is_simm13(offset)) {
  1506      __ add(SP, offset, reg_to_register_object(reg));
  1507   } else {
  1508      __ set(offset, O7);
  1509      __ add(SP, O7, reg_to_register_object(reg));
  1513 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1514   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
  1515   assert(ra_ == ra_->C->regalloc(), "sanity");
  1516   return ra_->C->scratch_emit_size(this);
  1519 //=============================================================================
  1521 // emit call stub, compiled java to interpretor
  1522 void emit_java_to_interp(CodeBuffer &cbuf ) {
  1524   // Stub is fixed up when the corresponding call is converted from calling
  1525   // compiled code to calling interpreted code.
  1526   // set (empty), G5
  1527   // jmp -1
  1529   address mark = cbuf.insts_mark();  // get mark within main instrs section
  1531   MacroAssembler _masm(&cbuf);
  1533   address base =
  1534   __ start_a_stub(Compile::MAX_stubs_size);
  1535   if (base == NULL)  return;  // CodeBuffer::expand failed
  1537   // static stub relocation stores the instruction address of the call
  1538   __ relocate(static_stub_Relocation::spec(mark));
  1540   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
  1542   __ set_inst_mark();
  1543   AddressLiteral addrlit(-1);
  1544   __ JUMP(addrlit, G3, 0);
  1546   __ delayed()->nop();
  1548   // Update current stubs pointer and restore code_end.
  1549   __ end_a_stub();
  1552 // size of call stub, compiled java to interpretor
  1553 uint size_java_to_interp() {
  1554   // This doesn't need to be accurate but it must be larger or equal to
  1555   // the real size of the stub.
  1556   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
  1557           NativeJump::instruction_size + // sethi; jmp; nop
  1558           (TraceJumps ? 20 * BytesPerInstWord : 0) );
  1560 // relocation entries for call stub, compiled java to interpretor
  1561 uint reloc_java_to_interp() {
  1562   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
  1566 //=============================================================================
  1567 #ifndef PRODUCT
  1568 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
  1569   st->print_cr("\nUEP:");
  1570 #ifdef    _LP64
  1571   if (UseCompressedOops) {
  1572     assert(Universe::heap() != NULL, "java heap should be initialized");
  1573     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
  1574     st->print_cr("\tSLL    R_G5,3,R_G5");
  1575     if (Universe::narrow_oop_base() != NULL)
  1576       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
  1577   } else {
  1578     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1580   st->print_cr("\tCMP    R_G5,R_G3" );
  1581   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1582 #else  // _LP64
  1583   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
  1584   st->print_cr("\tCMP    R_G5,R_G3" );
  1585   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
  1586 #endif // _LP64
  1588 #endif
  1590 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1591   MacroAssembler _masm(&cbuf);
  1592   Label L;
  1593   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
  1594   Register temp_reg   = G3;
  1595   assert( G5_ic_reg != temp_reg, "conflicting registers" );
  1597   // Load klass from receiver
  1598   __ load_klass(O0, temp_reg);
  1599   // Compare against expected klass
  1600   __ cmp(temp_reg, G5_ic_reg);
  1601   // Branch to miss code, checks xcc or icc depending
  1602   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
  1605 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  1606   return MachNode::size(ra_);
  1610 //=============================================================================
  1612 uint size_exception_handler() {
  1613   if (TraceJumps) {
  1614     return (400); // just a guess
  1616   return ( NativeJump::instruction_size ); // sethi;jmp;nop
  1619 uint size_deopt_handler() {
  1620   if (TraceJumps) {
  1621     return (400); // just a guess
  1623   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
  1626 // Emit exception handler code.
  1627 int emit_exception_handler(CodeBuffer& cbuf) {
  1628   Register temp_reg = G3;
  1629   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
  1630   MacroAssembler _masm(&cbuf);
  1632   address base =
  1633   __ start_a_stub(size_exception_handler());
  1634   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1636   int offset = __ offset();
  1638   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
  1639   __ delayed()->nop();
  1641   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1643   __ end_a_stub();
  1645   return offset;
  1648 int emit_deopt_handler(CodeBuffer& cbuf) {
  1649   // Can't use any of the current frame's registers as we may have deopted
  1650   // at a poll and everything (including G3) can be live.
  1651   Register temp_reg = L0;
  1652   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
  1653   MacroAssembler _masm(&cbuf);
  1655   address base =
  1656   __ start_a_stub(size_deopt_handler());
  1657   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1659   int offset = __ offset();
  1660   __ save_frame(0);
  1661   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
  1662   __ delayed()->restore();
  1664   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1666   __ end_a_stub();
  1667   return offset;
  1671 // Given a register encoding, produce a Integer Register object
  1672 static Register reg_to_register_object(int register_encoding) {
  1673   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
  1674   return as_Register(register_encoding);
  1677 // Given a register encoding, produce a single-precision Float Register object
  1678 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
  1679   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
  1680   return as_SingleFloatRegister(register_encoding);
  1683 // Given a register encoding, produce a double-precision Float Register object
  1684 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
  1685   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
  1686   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
  1687   return as_DoubleFloatRegister(register_encoding);
  1690 const bool Matcher::match_rule_supported(int opcode) {
  1691   if (!has_match_rule(opcode))
  1692     return false;
  1694   switch (opcode) {
  1695   case Op_CountLeadingZerosI:
  1696   case Op_CountLeadingZerosL:
  1697   case Op_CountTrailingZerosI:
  1698   case Op_CountTrailingZerosL:
  1699     if (!UsePopCountInstruction)
  1700       return false;
  1701     break;
  1704   return true;  // Per default match rules are supported.
  1707 int Matcher::regnum_to_fpu_offset(int regnum) {
  1708   return regnum - 32; // The FP registers are in the second chunk
  1711 #ifdef ASSERT
  1712 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
  1713 #endif
  1715 // Vector width in bytes
  1716 const uint Matcher::vector_width_in_bytes(void) {
  1717   return 8;
  1720 // Vector ideal reg
  1721 const uint Matcher::vector_ideal_reg(void) {
  1722   return Op_RegD;
  1725 // USII supports fxtof through the whole range of number, USIII doesn't
  1726 const bool Matcher::convL2FSupported(void) {
  1727   return VM_Version::has_fast_fxtof();
  1730 // Is this branch offset short enough that a short branch can be used?
  1731 //
  1732 // NOTE: If the platform does not provide any short branch variants, then
  1733 //       this method should return false for offset 0.
  1734 bool Matcher::is_short_branch_offset(int rule, int offset) {
  1735   return false;
  1738 const bool Matcher::isSimpleConstant64(jlong value) {
  1739   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  1740   // Depends on optimizations in MacroAssembler::setx.
  1741   int hi = (int)(value >> 32);
  1742   int lo = (int)(value & ~0);
  1743   return (hi == 0) || (hi == -1) || (lo == 0);
  1746 // No scaling for the parameter the ClearArray node.
  1747 const bool Matcher::init_array_count_is_in_bytes = true;
  1749 // Threshold size for cleararray.
  1750 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  1752 // Should the Matcher clone shifts on addressing modes, expecting them to
  1753 // be subsumed into complex addressing expressions or compute them into
  1754 // registers?  True for Intel but false for most RISCs
  1755 const bool Matcher::clone_shift_expressions = false;
  1757 bool Matcher::narrow_oop_use_complex_address() {
  1758   NOT_LP64(ShouldNotCallThis());
  1759   assert(UseCompressedOops, "only for compressed oops code");
  1760   return false;
  1763 // Is it better to copy float constants, or load them directly from memory?
  1764 // Intel can load a float constant from a direct address, requiring no
  1765 // extra registers.  Most RISCs will have to materialize an address into a
  1766 // register first, so they would do better to copy the constant from stack.
  1767 const bool Matcher::rematerialize_float_constants = false;
  1769 // If CPU can load and store mis-aligned doubles directly then no fixup is
  1770 // needed.  Else we split the double into 2 integer pieces and move it
  1771 // piece-by-piece.  Only happens when passing doubles into C code as the
  1772 // Java calling convention forces doubles to be aligned.
  1773 #ifdef _LP64
  1774 const bool Matcher::misaligned_doubles_ok = true;
  1775 #else
  1776 const bool Matcher::misaligned_doubles_ok = false;
  1777 #endif
  1779 // No-op on SPARC.
  1780 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  1783 // Advertise here if the CPU requires explicit rounding operations
  1784 // to implement the UseStrictFP mode.
  1785 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  1787 // Are floats conerted to double when stored to stack during deoptimization?
  1788 // Sparc does not handle callee-save floats.
  1789 bool Matcher::float_in_double() { return false; }
  1791 // Do ints take an entire long register or just half?
  1792 // Note that we if-def off of _LP64.
  1793 // The relevant question is how the int is callee-saved.  In _LP64
  1794 // the whole long is written but de-opt'ing will have to extract
  1795 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
  1796 #ifdef _LP64
  1797 const bool Matcher::int_in_long = true;
  1798 #else
  1799 const bool Matcher::int_in_long = false;
  1800 #endif
  1802 // Return whether or not this register is ever used as an argument.  This
  1803 // function is used on startup to build the trampoline stubs in generateOptoStub.
  1804 // Registers not mentioned will be killed by the VM call in the trampoline, and
  1805 // arguments in those registers not be available to the callee.
  1806 bool Matcher::can_be_java_arg( int reg ) {
  1807   // Standard sparc 6 args in registers
  1808   if( reg == R_I0_num ||
  1809       reg == R_I1_num ||
  1810       reg == R_I2_num ||
  1811       reg == R_I3_num ||
  1812       reg == R_I4_num ||
  1813       reg == R_I5_num ) return true;
  1814 #ifdef _LP64
  1815   // 64-bit builds can pass 64-bit pointers and longs in
  1816   // the high I registers
  1817   if( reg == R_I0H_num ||
  1818       reg == R_I1H_num ||
  1819       reg == R_I2H_num ||
  1820       reg == R_I3H_num ||
  1821       reg == R_I4H_num ||
  1822       reg == R_I5H_num ) return true;
  1824   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
  1825     return true;
  1828 #else
  1829   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
  1830   // Longs cannot be passed in O regs, because O regs become I regs
  1831   // after a 'save' and I regs get their high bits chopped off on
  1832   // interrupt.
  1833   if( reg == R_G1H_num || reg == R_G1_num ) return true;
  1834   if( reg == R_G4H_num || reg == R_G4_num ) return true;
  1835 #endif
  1836   // A few float args in registers
  1837   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
  1839   return false;
  1842 bool Matcher::is_spillable_arg( int reg ) {
  1843   return can_be_java_arg(reg);
  1846 // Register for DIVI projection of divmodI
  1847 RegMask Matcher::divI_proj_mask() {
  1848   ShouldNotReachHere();
  1849   return RegMask();
  1852 // Register for MODI projection of divmodI
  1853 RegMask Matcher::modI_proj_mask() {
  1854   ShouldNotReachHere();
  1855   return RegMask();
  1858 // Register for DIVL projection of divmodL
  1859 RegMask Matcher::divL_proj_mask() {
  1860   ShouldNotReachHere();
  1861   return RegMask();
  1864 // Register for MODL projection of divmodL
  1865 RegMask Matcher::modL_proj_mask() {
  1866   ShouldNotReachHere();
  1867   return RegMask();
  1870 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  1871   return L7_REGP_mask;
  1874 %}
  1877 // The intptr_t operand types, defined by textual substitution.
  1878 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
  1879 #ifdef _LP64
  1880 #define immX      immL
  1881 #define immX13    immL13
  1882 #define immX13m7  immL13m7
  1883 #define iRegX     iRegL
  1884 #define g1RegX    g1RegL
  1885 #else
  1886 #define immX      immI
  1887 #define immX13    immI13
  1888 #define immX13m7  immI13m7
  1889 #define iRegX     iRegI
  1890 #define g1RegX    g1RegI
  1891 #endif
  1893 //----------ENCODING BLOCK-----------------------------------------------------
  1894 // This block specifies the encoding classes used by the compiler to output
  1895 // byte streams.  Encoding classes are parameterized macros used by
  1896 // Machine Instruction Nodes in order to generate the bit encoding of the
  1897 // instruction.  Operands specify their base encoding interface with the
  1898 // interface keyword.  There are currently supported four interfaces,
  1899 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
  1900 // operand to generate a function which returns its register number when
  1901 // queried.   CONST_INTER causes an operand to generate a function which
  1902 // returns the value of the constant when queried.  MEMORY_INTER causes an
  1903 // operand to generate four functions which return the Base Register, the
  1904 // Index Register, the Scale Value, and the Offset Value of the operand when
  1905 // queried.  COND_INTER causes an operand to generate six functions which
  1906 // return the encoding code (ie - encoding bits for the instruction)
  1907 // associated with each basic boolean condition for a conditional instruction.
  1908 //
  1909 // Instructions specify two basic values for encoding.  Again, a function
  1910 // is available to check if the constant displacement is an oop. They use the
  1911 // ins_encode keyword to specify their encoding classes (which must be
  1912 // a sequence of enc_class names, and their parameters, specified in
  1913 // the encoding block), and they use the
  1914 // opcode keyword to specify, in order, their primary, secondary, and
  1915 // tertiary opcode.  Only the opcode sections which a particular instruction
  1916 // needs for encoding need to be specified.
  1917 encode %{
  1918   enc_class enc_untested %{
  1919 #ifdef ASSERT
  1920     MacroAssembler _masm(&cbuf);
  1921     __ untested("encoding");
  1922 #endif
  1923   %}
  1925   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
  1926     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
  1927                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1928   %}
  1930   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
  1931     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1932                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
  1933   %}
  1935   enc_class form3_mem_prefetch_read( memory mem ) %{
  1936     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1937                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
  1938   %}
  1940   enc_class form3_mem_prefetch_write( memory mem ) %{
  1941     emit_form3_mem_reg(cbuf, this, $primary, -1,
  1942                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
  1943   %}
  1945   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
  1946     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1947     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1948     guarantee($mem$$index == R_G0_enc, "double index?");
  1949     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
  1950     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
  1951     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
  1952     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
  1953   %}
  1955   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
  1956     assert( Assembler::is_simm13($mem$$disp  ), "need disp and disp+4" );
  1957     assert( Assembler::is_simm13($mem$$disp+4), "need disp and disp+4" );
  1958     guarantee($mem$$index == R_G0_enc, "double index?");
  1959     // Load long with 2 instructions
  1960     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
  1961     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
  1962   %}
  1964   //%%% form3_mem_plus_4_reg is a hack--get rid of it
  1965   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
  1966     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
  1967     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
  1968   %}
  1970   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
  1971     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1972     if( $rs2$$reg != $rd$$reg )
  1973       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
  1974   %}
  1976   // Target lo half of long
  1977   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
  1978     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1979     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
  1980       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
  1981   %}
  1983   // Source lo half of long
  1984   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
  1985     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  1986     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
  1987       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
  1988   %}
  1990   // Target hi half of long
  1991   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
  1992     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
  1993   %}
  1995   // Source lo half of long, and leave it sign extended.
  1996   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
  1997     // Sign extend low half
  1998     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
  1999   %}
  2001   // Source hi half of long, and leave it sign extended.
  2002   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
  2003     // Shift high half to low half
  2004     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
  2005   %}
  2007   // Source hi half of long
  2008   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
  2009     // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2010     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
  2011       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
  2012   %}
  2014   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
  2015     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
  2016   %}
  2018   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
  2019     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
  2020     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
  2021   %}
  2023   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
  2024     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
  2025     // clear if nothing else is happening
  2026     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
  2027     // blt,a,pn done
  2028     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
  2029     // mov dst,-1 in delay slot
  2030     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2031   %}
  2033   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
  2034     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
  2035   %}
  2037   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
  2038     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
  2039   %}
  2041   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
  2042     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
  2043   %}
  2045   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
  2046     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
  2047   %}
  2049   enc_class move_return_pc_to_o1() %{
  2050     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
  2051   %}
  2053 #ifdef _LP64
  2054   /* %%% merge with enc_to_bool */
  2055   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
  2056     MacroAssembler _masm(&cbuf);
  2058     Register   src_reg = reg_to_register_object($src$$reg);
  2059     Register   dst_reg = reg_to_register_object($dst$$reg);
  2060     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
  2061   %}
  2062 #endif
  2064   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
  2065     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
  2066     MacroAssembler _masm(&cbuf);
  2068     Register   p_reg = reg_to_register_object($p$$reg);
  2069     Register   q_reg = reg_to_register_object($q$$reg);
  2070     Register   y_reg = reg_to_register_object($y$$reg);
  2071     Register tmp_reg = reg_to_register_object($tmp$$reg);
  2073     __ subcc( p_reg, q_reg,   p_reg );
  2074     __ add  ( p_reg, y_reg, tmp_reg );
  2075     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
  2076   %}
  2078   enc_class form_d2i_helper(regD src, regF dst) %{
  2079     // fcmp %fcc0,$src,$src
  2080     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2081     // branch %fcc0 not-nan, predict taken
  2082     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2083     // fdtoi $src,$dst
  2084     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
  2085     // fitos $dst,$dst (if nan)
  2086     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2087     // clear $dst (if nan)
  2088     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2089     // carry on here...
  2090   %}
  2092   enc_class form_d2l_helper(regD src, regD dst) %{
  2093     // fcmp %fcc0,$src,$src  check for NAN
  2094     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
  2095     // branch %fcc0 not-nan, predict taken
  2096     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2097     // fdtox $src,$dst   convert in delay slot
  2098     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
  2099     // fxtod $dst,$dst  (if nan)
  2100     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2101     // clear $dst (if nan)
  2102     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2103     // carry on here...
  2104   %}
  2106   enc_class form_f2i_helper(regF src, regF dst) %{
  2107     // fcmps %fcc0,$src,$src
  2108     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2109     // branch %fcc0 not-nan, predict taken
  2110     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2111     // fstoi $src,$dst
  2112     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
  2113     // fitos $dst,$dst (if nan)
  2114     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
  2115     // clear $dst (if nan)
  2116     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
  2117     // carry on here...
  2118   %}
  2120   enc_class form_f2l_helper(regF src, regD dst) %{
  2121     // fcmps %fcc0,$src,$src
  2122     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
  2123     // branch %fcc0 not-nan, predict taken
  2124     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
  2125     // fstox $src,$dst
  2126     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
  2127     // fxtod $dst,$dst (if nan)
  2128     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
  2129     // clear $dst (if nan)
  2130     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
  2131     // carry on here...
  2132   %}
  2134   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2135   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2136   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2137   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2139   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
  2141   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
  2142   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
  2144   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
  2145     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2146   %}
  2148   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
  2149     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2150   %}
  2152   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
  2153     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2154   %}
  2156   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
  2157     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
  2158   %}
  2160   enc_class form3_convI2F(regF rs2, regF rd) %{
  2161     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
  2162   %}
  2164   // Encloding class for traceable jumps
  2165   enc_class form_jmpl(g3RegP dest) %{
  2166     emit_jmpl(cbuf, $dest$$reg);
  2167   %}
  2169   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
  2170     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
  2171   %}
  2173   enc_class form2_nop() %{
  2174     emit_nop(cbuf);
  2175   %}
  2177   enc_class form2_illtrap() %{
  2178     emit_illtrap(cbuf);
  2179   %}
  2182   // Compare longs and convert into -1, 0, 1.
  2183   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
  2184     // CMP $src1,$src2
  2185     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
  2186     // blt,a,pn done
  2187     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
  2188     // mov dst,-1 in delay slot
  2189     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
  2190     // bgt,a,pn done
  2191     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
  2192     // mov dst,1 in delay slot
  2193     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
  2194     // CLR    $dst
  2195     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
  2196   %}
  2198   enc_class enc_PartialSubtypeCheck() %{
  2199     MacroAssembler _masm(&cbuf);
  2200     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
  2201     __ delayed()->nop();
  2202   %}
  2204   enc_class enc_bp( Label labl, cmpOp cmp, flagsReg cc ) %{
  2205     MacroAssembler _masm(&cbuf);
  2206     Label &L = *($labl$$label);
  2207     Assembler::Predict predict_taken =
  2208       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2210     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, L);
  2211     __ delayed()->nop();
  2212   %}
  2214   enc_class enc_bpl( Label labl, cmpOp cmp, flagsRegL cc ) %{
  2215     MacroAssembler _masm(&cbuf);
  2216     Label &L = *($labl$$label);
  2217     Assembler::Predict predict_taken =
  2218       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2220     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, L);
  2221     __ delayed()->nop();
  2222   %}
  2224   enc_class enc_bpx( Label labl, cmpOp cmp, flagsRegP cc ) %{
  2225     MacroAssembler _masm(&cbuf);
  2226     Label &L = *($labl$$label);
  2227     Assembler::Predict predict_taken =
  2228       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2230     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, L);
  2231     __ delayed()->nop();
  2232   %}
  2234   enc_class enc_fbp( Label labl, cmpOpF cmp, flagsRegF cc ) %{
  2235     MacroAssembler _masm(&cbuf);
  2236     Label &L = *($labl$$label);
  2237     Assembler::Predict predict_taken =
  2238       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2240     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($cc$$reg), predict_taken, L);
  2241     __ delayed()->nop();
  2242   %}
  2244   enc_class jump_enc( iRegX switch_val, o7RegI table) %{
  2245     MacroAssembler _masm(&cbuf);
  2247     Register switch_reg       = as_Register($switch_val$$reg);
  2248     Register table_reg        = O7;
  2250     address table_base = __ address_table_constant(_index2label);
  2251     RelocationHolder rspec = internal_word_Relocation::spec(table_base);
  2253     // Move table address into a register.
  2254     __ set(table_base, table_reg, rspec);
  2256     // Jump to base address + switch value
  2257     __ ld_ptr(table_reg, switch_reg, table_reg);
  2258     __ jmp(table_reg, G0);
  2259     __ delayed()->nop();
  2261   %}
  2263   enc_class enc_ba( Label labl ) %{
  2264     MacroAssembler _masm(&cbuf);
  2265     Label &L = *($labl$$label);
  2266     __ ba(false, L);
  2267     __ delayed()->nop();
  2268   %}
  2270   enc_class enc_bpr( Label labl, cmpOp_reg cmp, iRegI op1 ) %{
  2271     MacroAssembler _masm(&cbuf);
  2272     Label &L = *$labl$$label;
  2273     Assembler::Predict predict_taken =
  2274       cbuf.is_backward_branch(L) ? Assembler::pt : Assembler::pn;
  2276     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), L);
  2277     __ delayed()->nop();
  2278   %}
  2280   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
  2281     int op = (Assembler::arith_op << 30) |
  2282              ($dst$$reg << 25) |
  2283              (Assembler::movcc_op3 << 19) |
  2284              (1 << 18) |                    // cc2 bit for 'icc'
  2285              ($cmp$$cmpcode << 14) |
  2286              (0 << 13) |                    // select register move
  2287              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
  2288              ($src$$reg << 0);
  2289     cbuf.insts()->emit_int32(op);
  2290   %}
  2292   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
  2293     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2294     int op = (Assembler::arith_op << 30) |
  2295              ($dst$$reg << 25) |
  2296              (Assembler::movcc_op3 << 19) |
  2297              (1 << 18) |                    // cc2 bit for 'icc'
  2298              ($cmp$$cmpcode << 14) |
  2299              (1 << 13) |                    // select immediate move
  2300              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
  2301              (simm11 << 0);
  2302     cbuf.insts()->emit_int32(op);
  2303   %}
  2305   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
  2306     int op = (Assembler::arith_op << 30) |
  2307              ($dst$$reg << 25) |
  2308              (Assembler::movcc_op3 << 19) |
  2309              (0 << 18) |                    // cc2 bit for 'fccX'
  2310              ($cmp$$cmpcode << 14) |
  2311              (0 << 13) |                    // select register move
  2312              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2313              ($src$$reg << 0);
  2314     cbuf.insts()->emit_int32(op);
  2315   %}
  2317   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
  2318     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
  2319     int op = (Assembler::arith_op << 30) |
  2320              ($dst$$reg << 25) |
  2321              (Assembler::movcc_op3 << 19) |
  2322              (0 << 18) |                    // cc2 bit for 'fccX'
  2323              ($cmp$$cmpcode << 14) |
  2324              (1 << 13) |                    // select immediate move
  2325              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
  2326              (simm11 << 0);
  2327     cbuf.insts()->emit_int32(op);
  2328   %}
  2330   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
  2331     int op = (Assembler::arith_op << 30) |
  2332              ($dst$$reg << 25) |
  2333              (Assembler::fpop2_op3 << 19) |
  2334              (0 << 18) |
  2335              ($cmp$$cmpcode << 14) |
  2336              (1 << 13) |                    // select register move
  2337              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
  2338              ($primary << 5) |              // select single, double or quad
  2339              ($src$$reg << 0);
  2340     cbuf.insts()->emit_int32(op);
  2341   %}
  2343   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
  2344     int op = (Assembler::arith_op << 30) |
  2345              ($dst$$reg << 25) |
  2346              (Assembler::fpop2_op3 << 19) |
  2347              (0 << 18) |
  2348              ($cmp$$cmpcode << 14) |
  2349              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
  2350              ($primary << 5) |              // select single, double or quad
  2351              ($src$$reg << 0);
  2352     cbuf.insts()->emit_int32(op);
  2353   %}
  2355   // Used by the MIN/MAX encodings.  Same as a CMOV, but
  2356   // the condition comes from opcode-field instead of an argument.
  2357   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
  2358     int op = (Assembler::arith_op << 30) |
  2359              ($dst$$reg << 25) |
  2360              (Assembler::movcc_op3 << 19) |
  2361              (1 << 18) |                    // cc2 bit for 'icc'
  2362              ($primary << 14) |
  2363              (0 << 13) |                    // select register move
  2364              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2365              ($src$$reg << 0);
  2366     cbuf.insts()->emit_int32(op);
  2367   %}
  2369   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
  2370     int op = (Assembler::arith_op << 30) |
  2371              ($dst$$reg << 25) |
  2372              (Assembler::movcc_op3 << 19) |
  2373              (6 << 16) |                    // cc2 bit for 'xcc'
  2374              ($primary << 14) |
  2375              (0 << 13) |                    // select register move
  2376              (0 << 11) |                    // cc1, cc0 bits for 'icc'
  2377              ($src$$reg << 0);
  2378     cbuf.insts()->emit_int32(op);
  2379   %}
  2381   // Utility encoding for loading a 64 bit Pointer into a register
  2382   // The 64 bit pointer is stored in the generated code stream
  2383   enc_class SetPtr( immP src, iRegP rd ) %{
  2384     Register dest = reg_to_register_object($rd$$reg);
  2385     MacroAssembler _masm(&cbuf);
  2386     // [RGV] This next line should be generated from ADLC
  2387     if ( _opnds[1]->constant_is_oop() ) {
  2388       intptr_t val = $src$$constant;
  2389       __ set_oop_constant((jobject)val, dest);
  2390     } else {          // non-oop pointers, e.g. card mark base, heap top
  2391       __ set($src$$constant, dest);
  2393   %}
  2395   enc_class Set13( immI13 src, iRegI rd ) %{
  2396     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
  2397   %}
  2399   enc_class SetHi22( immI src, iRegI rd ) %{
  2400     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
  2401   %}
  2403   enc_class Set32( immI src, iRegI rd ) %{
  2404     MacroAssembler _masm(&cbuf);
  2405     __ set($src$$constant, reg_to_register_object($rd$$reg));
  2406   %}
  2408   enc_class SetNull( iRegI rd ) %{
  2409     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0 );
  2410   %}
  2412   enc_class call_epilog %{
  2413     if( VerifyStackAtCalls ) {
  2414       MacroAssembler _masm(&cbuf);
  2415       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
  2416       Register temp_reg = G3;
  2417       __ add(SP, framesize, temp_reg);
  2418       __ cmp(temp_reg, FP);
  2419       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
  2421   %}
  2423   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
  2424   // to G1 so the register allocator will not have to deal with the misaligned register
  2425   // pair.
  2426   enc_class adjust_long_from_native_call %{
  2427 #ifndef _LP64
  2428     if (returns_long()) {
  2429       //    sllx  O0,32,O0
  2430       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
  2431       //    srl   O1,0,O1
  2432       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
  2433       //    or    O0,O1,G1
  2434       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
  2436 #endif
  2437   %}
  2439   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
  2440     // CALL directly to the runtime
  2441     // The user of this is responsible for ensuring that R_L7 is empty (killed).
  2442     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
  2443                     /*preserve_g2=*/true, /*force far call*/true);
  2444   %}
  2446   enc_class preserve_SP %{
  2447     MacroAssembler _masm(&cbuf);
  2448     __ mov(SP, L7_mh_SP_save);
  2449   %}
  2451   enc_class restore_SP %{
  2452     MacroAssembler _masm(&cbuf);
  2453     __ mov(L7_mh_SP_save, SP);
  2454   %}
  2456   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
  2457     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2458     // who we intended to call.
  2459     if ( !_method ) {
  2460       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
  2461     } else if (_optimized_virtual) {
  2462       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
  2463     } else {
  2464       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
  2466     if( _method ) {  // Emit stub for static call
  2467       emit_java_to_interp(cbuf);
  2469   %}
  2471   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
  2472     MacroAssembler _masm(&cbuf);
  2473     __ set_inst_mark();
  2474     int vtable_index = this->_vtable_index;
  2475     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
  2476     if (vtable_index < 0) {
  2477       // must be invalid_vtable_index, not nonvirtual_vtable_index
  2478       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
  2479       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2480       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
  2481       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
  2482       // !!!!!
  2483       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
  2484       // emit_call_dynamic_prologue( cbuf );
  2485       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
  2487       address  virtual_call_oop_addr = __ inst_mark();
  2488       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2489       // who we intended to call.
  2490       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  2491       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
  2492     } else {
  2493       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  2494       // Just go thru the vtable
  2495       // get receiver klass (receiver already checked for non-null)
  2496       // If we end up going thru a c2i adapter interpreter expects method in G5
  2497       int off = __ offset();
  2498       __ load_klass(O0, G3_scratch);
  2499       int klass_load_size;
  2500       if (UseCompressedOops) {
  2501         assert(Universe::heap() != NULL, "java heap should be initialized");
  2502         if (Universe::narrow_oop_base() == NULL)
  2503           klass_load_size = 2*BytesPerInstWord;
  2504         else
  2505           klass_load_size = 3*BytesPerInstWord;
  2506       } else {
  2507         klass_load_size = 1*BytesPerInstWord;
  2509       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
  2510       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
  2511       if( __ is_simm13(v_off) ) {
  2512         __ ld_ptr(G3, v_off, G5_method);
  2513       } else {
  2514         // Generate 2 instructions
  2515         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
  2516         __ or3(G5_method, v_off & 0x3ff, G5_method);
  2517         // ld_ptr, set_hi, set
  2518         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
  2519                "Unexpected instruction size(s)");
  2520         __ ld_ptr(G3, G5_method, G5_method);
  2522       // NOTE: for vtable dispatches, the vtable entry will never be null.
  2523       // However it may very well end up in handle_wrong_method if the
  2524       // method is abstract for the particular class.
  2525       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
  2526       // jump to target (either compiled code or c2iadapter)
  2527       __ jmpl(G3_scratch, G0, O7);
  2528       __ delayed()->nop();
  2530   %}
  2532   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
  2533     MacroAssembler _masm(&cbuf);
  2535     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
  2536     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
  2537                               // we might be calling a C2I adapter which needs it.
  2539     assert(temp_reg != G5_ic_reg, "conflicting registers");
  2540     // Load nmethod
  2541     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
  2543     // CALL to compiled java, indirect the contents of G3
  2544     __ set_inst_mark();
  2545     __ callr(temp_reg, G0);
  2546     __ delayed()->nop();
  2547   %}
  2549 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
  2550     MacroAssembler _masm(&cbuf);
  2551     Register Rdividend = reg_to_register_object($src1$$reg);
  2552     Register Rdivisor = reg_to_register_object($src2$$reg);
  2553     Register Rresult = reg_to_register_object($dst$$reg);
  2555     __ sra(Rdivisor, 0, Rdivisor);
  2556     __ sra(Rdividend, 0, Rdividend);
  2557     __ sdivx(Rdividend, Rdivisor, Rresult);
  2558 %}
  2560 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
  2561     MacroAssembler _masm(&cbuf);
  2563     Register Rdividend = reg_to_register_object($src1$$reg);
  2564     int divisor = $imm$$constant;
  2565     Register Rresult = reg_to_register_object($dst$$reg);
  2567     __ sra(Rdividend, 0, Rdividend);
  2568     __ sdivx(Rdividend, divisor, Rresult);
  2569 %}
  2571 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
  2572     MacroAssembler _masm(&cbuf);
  2573     Register Rsrc1 = reg_to_register_object($src1$$reg);
  2574     Register Rsrc2 = reg_to_register_object($src2$$reg);
  2575     Register Rdst  = reg_to_register_object($dst$$reg);
  2577     __ sra( Rsrc1, 0, Rsrc1 );
  2578     __ sra( Rsrc2, 0, Rsrc2 );
  2579     __ mulx( Rsrc1, Rsrc2, Rdst );
  2580     __ srlx( Rdst, 32, Rdst );
  2581 %}
  2583 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
  2584     MacroAssembler _masm(&cbuf);
  2585     Register Rdividend = reg_to_register_object($src1$$reg);
  2586     Register Rdivisor = reg_to_register_object($src2$$reg);
  2587     Register Rresult = reg_to_register_object($dst$$reg);
  2588     Register Rscratch = reg_to_register_object($scratch$$reg);
  2590     assert(Rdividend != Rscratch, "");
  2591     assert(Rdivisor  != Rscratch, "");
  2593     __ sra(Rdividend, 0, Rdividend);
  2594     __ sra(Rdivisor, 0, Rdivisor);
  2595     __ sdivx(Rdividend, Rdivisor, Rscratch);
  2596     __ mulx(Rscratch, Rdivisor, Rscratch);
  2597     __ sub(Rdividend, Rscratch, Rresult);
  2598 %}
  2600 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
  2601     MacroAssembler _masm(&cbuf);
  2603     Register Rdividend = reg_to_register_object($src1$$reg);
  2604     int divisor = $imm$$constant;
  2605     Register Rresult = reg_to_register_object($dst$$reg);
  2606     Register Rscratch = reg_to_register_object($scratch$$reg);
  2608     assert(Rdividend != Rscratch, "");
  2610     __ sra(Rdividend, 0, Rdividend);
  2611     __ sdivx(Rdividend, divisor, Rscratch);
  2612     __ mulx(Rscratch, divisor, Rscratch);
  2613     __ sub(Rdividend, Rscratch, Rresult);
  2614 %}
  2616 enc_class fabss (sflt_reg dst, sflt_reg src) %{
  2617     MacroAssembler _masm(&cbuf);
  2619     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2620     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2622     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
  2623 %}
  2625 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
  2626     MacroAssembler _masm(&cbuf);
  2628     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2629     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2631     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
  2632 %}
  2634 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
  2635     MacroAssembler _masm(&cbuf);
  2637     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2638     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2640     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
  2641 %}
  2643 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
  2644     MacroAssembler _masm(&cbuf);
  2646     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2647     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2649     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
  2650 %}
  2652 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
  2653     MacroAssembler _masm(&cbuf);
  2655     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2656     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2658     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
  2659 %}
  2661 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
  2662     MacroAssembler _masm(&cbuf);
  2664     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
  2665     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
  2667     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
  2668 %}
  2670 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
  2671     MacroAssembler _masm(&cbuf);
  2673     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
  2674     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
  2676     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
  2677 %}
  2679 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2680     MacroAssembler _masm(&cbuf);
  2682     Register Roop  = reg_to_register_object($oop$$reg);
  2683     Register Rbox  = reg_to_register_object($box$$reg);
  2684     Register Rscratch = reg_to_register_object($scratch$$reg);
  2685     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2687     assert(Roop  != Rscratch, "");
  2688     assert(Roop  != Rmark, "");
  2689     assert(Rbox  != Rscratch, "");
  2690     assert(Rbox  != Rmark, "");
  2692     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
  2693 %}
  2695 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
  2696     MacroAssembler _masm(&cbuf);
  2698     Register Roop  = reg_to_register_object($oop$$reg);
  2699     Register Rbox  = reg_to_register_object($box$$reg);
  2700     Register Rscratch = reg_to_register_object($scratch$$reg);
  2701     Register Rmark =    reg_to_register_object($scratch2$$reg);
  2703     assert(Roop  != Rscratch, "");
  2704     assert(Roop  != Rmark, "");
  2705     assert(Rbox  != Rscratch, "");
  2706     assert(Rbox  != Rmark, "");
  2708     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
  2709   %}
  2711   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
  2712     MacroAssembler _masm(&cbuf);
  2713     Register Rmem = reg_to_register_object($mem$$reg);
  2714     Register Rold = reg_to_register_object($old$$reg);
  2715     Register Rnew = reg_to_register_object($new$$reg);
  2717     // casx_under_lock picks 1 of 3 encodings:
  2718     // For 32-bit pointers you get a 32-bit CAS
  2719     // For 64-bit pointers you get a 64-bit CASX
  2720     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
  2721     __ cmp( Rold, Rnew );
  2722   %}
  2724   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
  2725     Register Rmem = reg_to_register_object($mem$$reg);
  2726     Register Rold = reg_to_register_object($old$$reg);
  2727     Register Rnew = reg_to_register_object($new$$reg);
  2729     MacroAssembler _masm(&cbuf);
  2730     __ mov(Rnew, O7);
  2731     __ casx(Rmem, Rold, O7);
  2732     __ cmp( Rold, O7 );
  2733   %}
  2735   // raw int cas, used for compareAndSwap
  2736   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
  2737     Register Rmem = reg_to_register_object($mem$$reg);
  2738     Register Rold = reg_to_register_object($old$$reg);
  2739     Register Rnew = reg_to_register_object($new$$reg);
  2741     MacroAssembler _masm(&cbuf);
  2742     __ mov(Rnew, O7);
  2743     __ cas(Rmem, Rold, O7);
  2744     __ cmp( Rold, O7 );
  2745   %}
  2747   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
  2748     Register Rres = reg_to_register_object($res$$reg);
  2750     MacroAssembler _masm(&cbuf);
  2751     __ mov(1, Rres);
  2752     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
  2753   %}
  2755   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
  2756     Register Rres = reg_to_register_object($res$$reg);
  2758     MacroAssembler _masm(&cbuf);
  2759     __ mov(1, Rres);
  2760     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
  2761   %}
  2763   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
  2764     MacroAssembler _masm(&cbuf);
  2765     Register Rdst = reg_to_register_object($dst$$reg);
  2766     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
  2767                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
  2768     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
  2769                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
  2771     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
  2772     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
  2773   %}
  2775   enc_class LdImmL (immL src, iRegL dst, o7RegL tmp) %{   // Load Immediate
  2776     MacroAssembler _masm(&cbuf);
  2777     Register dest = reg_to_register_object($dst$$reg);
  2778     Register temp = reg_to_register_object($tmp$$reg);
  2779     __ set64( $src$$constant, dest, temp );
  2780   %}
  2782   enc_class LdReplImmI(immI src, regD dst, o7RegP tmp, int count, int width) %{
  2783     // Load a constant replicated "count" times with width "width"
  2784     int bit_width = $width$$constant * 8;
  2785     jlong elt_val = $src$$constant;
  2786     elt_val  &= (((jlong)1) << bit_width) - 1; // mask off sign bits
  2787     jlong val = elt_val;
  2788     for (int i = 0; i < $count$$constant - 1; i++) {
  2789         val <<= bit_width;
  2790         val |= elt_val;
  2792     jdouble dval = *(jdouble*)&val; // coerce to double type
  2793     MacroAssembler _masm(&cbuf);
  2794     address double_address = __ double_constant(dval);
  2795     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  2796     AddressLiteral addrlit(double_address, rspec);
  2798     __ sethi(addrlit, $tmp$$Register);
  2799     // XXX This is a quick fix for 6833573.
  2800     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  2801     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  2802   %}
  2804   // Compiler ensures base is doubleword aligned and cnt is count of doublewords
  2805   enc_class enc_Clear_Array(iRegX cnt, iRegP base, iRegX temp) %{
  2806     MacroAssembler _masm(&cbuf);
  2807     Register    nof_bytes_arg   = reg_to_register_object($cnt$$reg);
  2808     Register    nof_bytes_tmp    = reg_to_register_object($temp$$reg);
  2809     Register    base_pointer_arg = reg_to_register_object($base$$reg);
  2811     Label loop;
  2812     __ mov(nof_bytes_arg, nof_bytes_tmp);
  2814     // Loop and clear, walking backwards through the array.
  2815     // nof_bytes_tmp (if >0) is always the number of bytes to zero
  2816     __ bind(loop);
  2817     __ deccc(nof_bytes_tmp, 8);
  2818     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
  2819     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
  2820     // %%%% this mini-loop must not cross a cache boundary!
  2821   %}
  2824   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
  2825     Label Ldone, Lloop;
  2826     MacroAssembler _masm(&cbuf);
  2828     Register   str1_reg = reg_to_register_object($str1$$reg);
  2829     Register   str2_reg = reg_to_register_object($str2$$reg);
  2830     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
  2831     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
  2832     Register result_reg = reg_to_register_object($result$$reg);
  2834     assert(result_reg != str1_reg &&
  2835            result_reg != str2_reg &&
  2836            result_reg != cnt1_reg &&
  2837            result_reg != cnt2_reg ,
  2838            "need different registers");
  2840     // Compute the minimum of the string lengths(str1_reg) and the
  2841     // difference of the string lengths (stack)
  2843     // See if the lengths are different, and calculate min in str1_reg.
  2844     // Stash diff in O7 in case we need it for a tie-breaker.
  2845     Label Lskip;
  2846     __ subcc(cnt1_reg, cnt2_reg, O7);
  2847     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2848     __ br(Assembler::greater, true, Assembler::pt, Lskip);
  2849     // cnt2 is shorter, so use its count:
  2850     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
  2851     __ bind(Lskip);
  2853     // reallocate cnt1_reg, cnt2_reg, result_reg
  2854     // Note:  limit_reg holds the string length pre-scaled by 2
  2855     Register limit_reg =   cnt1_reg;
  2856     Register  chr2_reg =   cnt2_reg;
  2857     Register  chr1_reg = result_reg;
  2858     // str{12} are the base pointers
  2860     // Is the minimum length zero?
  2861     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
  2862     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2863     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2865     // Load first characters
  2866     __ lduh(str1_reg, 0, chr1_reg);
  2867     __ lduh(str2_reg, 0, chr2_reg);
  2869     // Compare first characters
  2870     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2871     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
  2872     assert(chr1_reg == result_reg, "result must be pre-placed");
  2873     __ delayed()->nop();
  2876       // Check after comparing first character to see if strings are equivalent
  2877       Label LSkip2;
  2878       // Check if the strings start at same location
  2879       __ cmp(str1_reg, str2_reg);
  2880       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
  2881       __ delayed()->nop();
  2883       // Check if the length difference is zero (in O7)
  2884       __ cmp(G0, O7);
  2885       __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2886       __ delayed()->mov(G0, result_reg);  // result is zero
  2888       // Strings might not be equal
  2889       __ bind(LSkip2);
  2892     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
  2893     __ br(Assembler::equal, true, Assembler::pn, Ldone);
  2894     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
  2896     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
  2897     __ add(str1_reg, limit_reg, str1_reg);
  2898     __ add(str2_reg, limit_reg, str2_reg);
  2899     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
  2901     // Compare the rest of the characters
  2902     __ lduh(str1_reg, limit_reg, chr1_reg);
  2903     __ bind(Lloop);
  2904     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2905     __ lduh(str2_reg, limit_reg, chr2_reg);
  2906     __ subcc(chr1_reg, chr2_reg, chr1_reg);
  2907     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
  2908     assert(chr1_reg == result_reg, "result must be pre-placed");
  2909     __ delayed()->inccc(limit_reg, sizeof(jchar));
  2910     // annul LDUH if branch is not taken to prevent access past end of string
  2911     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
  2912     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2914     // If strings are equal up to min length, return the length difference.
  2915     __ mov(O7, result_reg);
  2917     // Otherwise, return the difference between the first mismatched chars.
  2918     __ bind(Ldone);
  2919   %}
  2921 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
  2922     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
  2923     MacroAssembler _masm(&cbuf);
  2925     Register   str1_reg = reg_to_register_object($str1$$reg);
  2926     Register   str2_reg = reg_to_register_object($str2$$reg);
  2927     Register    cnt_reg = reg_to_register_object($cnt$$reg);
  2928     Register   tmp1_reg = O7;
  2929     Register result_reg = reg_to_register_object($result$$reg);
  2931     assert(result_reg != str1_reg &&
  2932            result_reg != str2_reg &&
  2933            result_reg !=  cnt_reg &&
  2934            result_reg != tmp1_reg ,
  2935            "need different registers");
  2937     __ cmp(str1_reg, str2_reg); //same char[] ?
  2938     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  2939     __ delayed()->add(G0, 1, result_reg);
  2941     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, cnt_reg, Ldone);
  2942     __ delayed()->add(G0, 1, result_reg); // count == 0
  2944     //rename registers
  2945     Register limit_reg =    cnt_reg;
  2946     Register  chr1_reg = result_reg;
  2947     Register  chr2_reg =   tmp1_reg;
  2949     //check for alignment and position the pointers to the ends
  2950     __ or3(str1_reg, str2_reg, chr1_reg);
  2951     __ andcc(chr1_reg, 0x3, chr1_reg);
  2952     // notZero means at least one not 4-byte aligned.
  2953     // We could optimize the case when both arrays are not aligned
  2954     // but it is not frequent case and it requires additional checks.
  2955     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
  2956     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
  2958     // Compare char[] arrays aligned to 4 bytes.
  2959     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
  2960                           chr1_reg, chr2_reg, Ldone);
  2961     __ ba(false,Ldone);
  2962     __ delayed()->add(G0, 1, result_reg);
  2964     // char by char compare
  2965     __ bind(Lchar);
  2966     __ add(str1_reg, limit_reg, str1_reg);
  2967     __ add(str2_reg, limit_reg, str2_reg);
  2968     __ neg(limit_reg); //negate count
  2970     __ lduh(str1_reg, limit_reg, chr1_reg);
  2971     // Lchar_loop
  2972     __ bind(Lchar_loop);
  2973     __ lduh(str2_reg, limit_reg, chr2_reg);
  2974     __ cmp(chr1_reg, chr2_reg);
  2975     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
  2976     __ delayed()->mov(G0, result_reg); //not equal
  2977     __ inccc(limit_reg, sizeof(jchar));
  2978     // annul LDUH if branch is not taken to prevent access past end of string
  2979     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
  2980     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
  2982     __ add(G0, 1, result_reg);  //equal
  2984     __ bind(Ldone);
  2985   %}
  2987 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
  2988     Label Lvector, Ldone, Lloop;
  2989     MacroAssembler _masm(&cbuf);
  2991     Register   ary1_reg = reg_to_register_object($ary1$$reg);
  2992     Register   ary2_reg = reg_to_register_object($ary2$$reg);
  2993     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
  2994     Register   tmp2_reg = O7;
  2995     Register result_reg = reg_to_register_object($result$$reg);
  2997     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  2998     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3000     // return true if the same array
  3001     __ cmp(ary1_reg, ary2_reg);
  3002     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
  3003     __ delayed()->add(G0, 1, result_reg); // equal
  3005     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
  3006     __ delayed()->mov(G0, result_reg);    // not equal
  3008     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
  3009     __ delayed()->mov(G0, result_reg);    // not equal
  3011     //load the lengths of arrays
  3012     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
  3013     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
  3015     // return false if the two arrays are not equal length
  3016     __ cmp(tmp1_reg, tmp2_reg);
  3017     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
  3018     __ delayed()->mov(G0, result_reg);     // not equal
  3020     __ br_on_reg_cond(Assembler::rc_z, true, Assembler::pn, tmp1_reg, Ldone);
  3021     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
  3023     // load array addresses
  3024     __ add(ary1_reg, base_offset, ary1_reg);
  3025     __ add(ary2_reg, base_offset, ary2_reg);
  3027     // renaming registers
  3028     Register chr1_reg  =  result_reg; // for characters in ary1
  3029     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
  3030     Register limit_reg =  tmp1_reg;   // length
  3032     // set byte count
  3033     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
  3035     // Compare char[] arrays aligned to 4 bytes.
  3036     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
  3037                           chr1_reg, chr2_reg, Ldone);
  3038     __ add(G0, 1, result_reg); // equals
  3040     __ bind(Ldone);
  3041   %}
  3043   enc_class enc_rethrow() %{
  3044     cbuf.set_insts_mark();
  3045     Register temp_reg = G3;
  3046     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
  3047     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
  3048     MacroAssembler _masm(&cbuf);
  3049 #ifdef ASSERT
  3050     __ save_frame(0);
  3051     AddressLiteral last_rethrow_addrlit(&last_rethrow);
  3052     __ sethi(last_rethrow_addrlit, L1);
  3053     Address addr(L1, last_rethrow_addrlit.low10());
  3054     __ get_pc(L2);
  3055     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
  3056     __ st_ptr(L2, addr);
  3057     __ restore();
  3058 #endif
  3059     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
  3060     __ delayed()->nop();
  3061   %}
  3063   enc_class emit_mem_nop() %{
  3064     // Generates the instruction LDUXA [o6,g0],#0x82,g0
  3065     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
  3066   %}
  3068   enc_class emit_fadd_nop() %{
  3069     // Generates the instruction FMOVS f31,f31
  3070     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
  3071   %}
  3073   enc_class emit_br_nop() %{
  3074     // Generates the instruction BPN,PN .
  3075     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
  3076   %}
  3078   enc_class enc_membar_acquire %{
  3079     MacroAssembler _masm(&cbuf);
  3080     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
  3081   %}
  3083   enc_class enc_membar_release %{
  3084     MacroAssembler _masm(&cbuf);
  3085     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
  3086   %}
  3088   enc_class enc_membar_volatile %{
  3089     MacroAssembler _masm(&cbuf);
  3090     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3091   %}
  3093   enc_class enc_repl8b( iRegI src, iRegL dst ) %{
  3094     MacroAssembler _masm(&cbuf);
  3095     Register src_reg = reg_to_register_object($src$$reg);
  3096     Register dst_reg = reg_to_register_object($dst$$reg);
  3097     __ sllx(src_reg, 56, dst_reg);
  3098     __ srlx(dst_reg,  8, O7);
  3099     __ or3 (dst_reg, O7, dst_reg);
  3100     __ srlx(dst_reg, 16, O7);
  3101     __ or3 (dst_reg, O7, dst_reg);
  3102     __ srlx(dst_reg, 32, O7);
  3103     __ or3 (dst_reg, O7, dst_reg);
  3104   %}
  3106   enc_class enc_repl4b( iRegI src, iRegL dst ) %{
  3107     MacroAssembler _masm(&cbuf);
  3108     Register src_reg = reg_to_register_object($src$$reg);
  3109     Register dst_reg = reg_to_register_object($dst$$reg);
  3110     __ sll(src_reg, 24, dst_reg);
  3111     __ srl(dst_reg,  8, O7);
  3112     __ or3(dst_reg, O7, dst_reg);
  3113     __ srl(dst_reg, 16, O7);
  3114     __ or3(dst_reg, O7, dst_reg);
  3115   %}
  3117   enc_class enc_repl4s( iRegI src, iRegL dst ) %{
  3118     MacroAssembler _masm(&cbuf);
  3119     Register src_reg = reg_to_register_object($src$$reg);
  3120     Register dst_reg = reg_to_register_object($dst$$reg);
  3121     __ sllx(src_reg, 48, dst_reg);
  3122     __ srlx(dst_reg, 16, O7);
  3123     __ or3 (dst_reg, O7, dst_reg);
  3124     __ srlx(dst_reg, 32, O7);
  3125     __ or3 (dst_reg, O7, dst_reg);
  3126   %}
  3128   enc_class enc_repl2i( iRegI src, iRegL dst ) %{
  3129     MacroAssembler _masm(&cbuf);
  3130     Register src_reg = reg_to_register_object($src$$reg);
  3131     Register dst_reg = reg_to_register_object($dst$$reg);
  3132     __ sllx(src_reg, 32, dst_reg);
  3133     __ srlx(dst_reg, 32, O7);
  3134     __ or3 (dst_reg, O7, dst_reg);
  3135   %}
  3137 %}
  3139 //----------FRAME--------------------------------------------------------------
  3140 // Definition of frame structure and management information.
  3141 //
  3142 //  S T A C K   L A Y O U T    Allocators stack-slot number
  3143 //                             |   (to get allocators register number
  3144 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
  3145 //  r   CALLER     |        |
  3146 //  o     |        +--------+      pad to even-align allocators stack-slot
  3147 //  w     V        |  pad0  |        numbers; owned by CALLER
  3148 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  3149 //  h     ^        |   in   |  5
  3150 //        |        |  args  |  4   Holes in incoming args owned by SELF
  3151 //  |     |        |        |  3
  3152 //  |     |        +--------+
  3153 //  V     |        | old out|      Empty on Intel, window on Sparc
  3154 //        |    old |preserve|      Must be even aligned.
  3155 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
  3156 //        |        |   in   |  3   area for Intel ret address
  3157 //     Owned by    |preserve|      Empty on Sparc.
  3158 //       SELF      +--------+
  3159 //        |        |  pad2  |  2   pad to align old SP
  3160 //        |        +--------+  1
  3161 //        |        | locks  |  0
  3162 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
  3163 //        |        |  pad1  | 11   pad to align new SP
  3164 //        |        +--------+
  3165 //        |        |        | 10
  3166 //        |        | spills |  9   spills
  3167 //        V        |        |  8   (pad0 slot for callee)
  3168 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  3169 //        ^        |  out   |  7
  3170 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  3171 //     Owned by    +--------+
  3172 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  3173 //        |    new |preserve|      Must be even-aligned.
  3174 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  3175 //        |        |        |
  3176 //
  3177 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  3178 //         known from SELF's arguments and the Java calling convention.
  3179 //         Region 6-7 is determined per call site.
  3180 // Note 2: If the calling convention leaves holes in the incoming argument
  3181 //         area, those holes are owned by SELF.  Holes in the outgoing area
  3182 //         are owned by the CALLEE.  Holes should not be nessecary in the
  3183 //         incoming area, as the Java calling convention is completely under
  3184 //         the control of the AD file.  Doubles can be sorted and packed to
  3185 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  3186 //         varargs C calling conventions.
  3187 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  3188 //         even aligned with pad0 as needed.
  3189 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  3190 //         region 6-11 is even aligned; it may be padded out more so that
  3191 //         the region from SP to FP meets the minimum stack alignment.
  3193 frame %{
  3194   // What direction does stack grow in (assumed to be same for native & Java)
  3195   stack_direction(TOWARDS_LOW);
  3197   // These two registers define part of the calling convention
  3198   // between compiled code and the interpreter.
  3199   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
  3200   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
  3202   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
  3203   cisc_spilling_operand_name(indOffset);
  3205   // Number of stack slots consumed by a Monitor enter
  3206 #ifdef _LP64
  3207   sync_stack_slots(2);
  3208 #else
  3209   sync_stack_slots(1);
  3210 #endif
  3212   // Compiled code's Frame Pointer
  3213   frame_pointer(R_SP);
  3215   // Stack alignment requirement
  3216   stack_alignment(StackAlignmentInBytes);
  3217   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
  3218   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
  3220   // Number of stack slots between incoming argument block and the start of
  3221   // a new frame.  The PROLOG must add this many slots to the stack.  The
  3222   // EPILOG must remove this many slots.
  3223   in_preserve_stack_slots(0);
  3225   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  3226   // for calls to C.  Supports the var-args backing area for register parms.
  3227   // ADLC doesn't support parsing expressions, so I folded the math by hand.
  3228 #ifdef _LP64
  3229   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
  3230   varargs_C_out_slots_killed(12);
  3231 #else
  3232   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
  3233   varargs_C_out_slots_killed( 7);
  3234 #endif
  3236   // The after-PROLOG location of the return address.  Location of
  3237   // return address specifies a type (REG or STACK) and a number
  3238   // representing the register number (i.e. - use a register name) or
  3239   // stack slot.
  3240   return_addr(REG R_I7);          // Ret Addr is in register I7
  3242   // Body of function which returns an OptoRegs array locating
  3243   // arguments either in registers or in stack slots for calling
  3244   // java
  3245   calling_convention %{
  3246     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
  3248   %}
  3250   // Body of function which returns an OptoRegs array locating
  3251   // arguments either in registers or in stack slots for callin
  3252   // C.
  3253   c_calling_convention %{
  3254     // This is obviously always outgoing
  3255     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  3256   %}
  3258   // Location of native (C/C++) and interpreter return values.  This is specified to
  3259   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
  3260   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
  3261   // to and from the register pairs is done by the appropriate call and epilog
  3262   // opcodes.  This simplifies the register allocator.
  3263   c_return_value %{
  3264     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3265 #ifdef     _LP64
  3266     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3267     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3268     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3269     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3270 #else  // !_LP64
  3271     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3272     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3273     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3274     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
  3275 #endif
  3276     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3277                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3278   %}
  3280   // Location of compiled Java return values.  Same as C
  3281   return_value %{
  3282     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
  3283 #ifdef     _LP64
  3284     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
  3285     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
  3286     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
  3287     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
  3288 #else  // !_LP64
  3289     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3290     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3291     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
  3292     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
  3293 #endif
  3294     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
  3295                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
  3296   %}
  3298 %}
  3301 //----------ATTRIBUTES---------------------------------------------------------
  3302 //----------Operand Attributes-------------------------------------------------
  3303 op_attrib op_cost(1);          // Required cost attribute
  3305 //----------Instruction Attributes---------------------------------------------
  3306 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
  3307 ins_attrib ins_size(32);       // Required size attribute (in bits)
  3308 ins_attrib ins_pc_relative(0); // Required PC Relative flag
  3309 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
  3310                                 // non-matching short branch variant of some
  3311                                                             // long branch?
  3313 //----------OPERANDS-----------------------------------------------------------
  3314 // Operand definitions must precede instruction definitions for correct parsing
  3315 // in the ADLC because operands constitute user defined types which are used in
  3316 // instruction definitions.
  3318 //----------Simple Operands----------------------------------------------------
  3319 // Immediate Operands
  3320 // Integer Immediate: 32-bit
  3321 operand immI() %{
  3322   match(ConI);
  3324   op_cost(0);
  3325   // formats are generated automatically for constants and base registers
  3326   format %{ %}
  3327   interface(CONST_INTER);
  3328 %}
  3330 // Integer Immediate: 8-bit
  3331 operand immI8() %{
  3332   predicate(Assembler::is_simm(n->get_int(), 8));
  3333   match(ConI);
  3334   op_cost(0);
  3335   format %{ %}
  3336   interface(CONST_INTER);
  3337 %}
  3339 // Integer Immediate: 13-bit
  3340 operand immI13() %{
  3341   predicate(Assembler::is_simm13(n->get_int()));
  3342   match(ConI);
  3343   op_cost(0);
  3345   format %{ %}
  3346   interface(CONST_INTER);
  3347 %}
  3349 // Integer Immediate: 13-bit minus 7
  3350 operand immI13m7() %{
  3351   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
  3352   match(ConI);
  3353   op_cost(0);
  3355   format %{ %}
  3356   interface(CONST_INTER);
  3357 %}
  3359 // Integer Immediate: 16-bit
  3360 operand immI16() %{
  3361   predicate(Assembler::is_simm(n->get_int(), 16));
  3362   match(ConI);
  3363   op_cost(0);
  3364   format %{ %}
  3365   interface(CONST_INTER);
  3366 %}
  3368 // Unsigned (positive) Integer Immediate: 13-bit
  3369 operand immU13() %{
  3370   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
  3371   match(ConI);
  3372   op_cost(0);
  3374   format %{ %}
  3375   interface(CONST_INTER);
  3376 %}
  3378 // Integer Immediate: 6-bit
  3379 operand immU6() %{
  3380   predicate(n->get_int() >= 0 && n->get_int() <= 63);
  3381   match(ConI);
  3382   op_cost(0);
  3383   format %{ %}
  3384   interface(CONST_INTER);
  3385 %}
  3387 // Integer Immediate: 11-bit
  3388 operand immI11() %{
  3389   predicate(Assembler::is_simm(n->get_int(),11));
  3390   match(ConI);
  3391   op_cost(0);
  3392   format %{ %}
  3393   interface(CONST_INTER);
  3394 %}
  3396 // Integer Immediate: 0-bit
  3397 operand immI0() %{
  3398   predicate(n->get_int() == 0);
  3399   match(ConI);
  3400   op_cost(0);
  3402   format %{ %}
  3403   interface(CONST_INTER);
  3404 %}
  3406 // Integer Immediate: the value 10
  3407 operand immI10() %{
  3408   predicate(n->get_int() == 10);
  3409   match(ConI);
  3410   op_cost(0);
  3412   format %{ %}
  3413   interface(CONST_INTER);
  3414 %}
  3416 // Integer Immediate: the values 0-31
  3417 operand immU5() %{
  3418   predicate(n->get_int() >= 0 && n->get_int() <= 31);
  3419   match(ConI);
  3420   op_cost(0);
  3422   format %{ %}
  3423   interface(CONST_INTER);
  3424 %}
  3426 // Integer Immediate: the values 1-31
  3427 operand immI_1_31() %{
  3428   predicate(n->get_int() >= 1 && n->get_int() <= 31);
  3429   match(ConI);
  3430   op_cost(0);
  3432   format %{ %}
  3433   interface(CONST_INTER);
  3434 %}
  3436 // Integer Immediate: the values 32-63
  3437 operand immI_32_63() %{
  3438   predicate(n->get_int() >= 32 && n->get_int() <= 63);
  3439   match(ConI);
  3440   op_cost(0);
  3442   format %{ %}
  3443   interface(CONST_INTER);
  3444 %}
  3446 // Immediates for special shifts (sign extend)
  3448 // Integer Immediate: the value 16
  3449 operand immI_16() %{
  3450   predicate(n->get_int() == 16);
  3451   match(ConI);
  3452   op_cost(0);
  3454   format %{ %}
  3455   interface(CONST_INTER);
  3456 %}
  3458 // Integer Immediate: the value 24
  3459 operand immI_24() %{
  3460   predicate(n->get_int() == 24);
  3461   match(ConI);
  3462   op_cost(0);
  3464   format %{ %}
  3465   interface(CONST_INTER);
  3466 %}
  3468 // Integer Immediate: the value 255
  3469 operand immI_255() %{
  3470   predicate( n->get_int() == 255 );
  3471   match(ConI);
  3472   op_cost(0);
  3474   format %{ %}
  3475   interface(CONST_INTER);
  3476 %}
  3478 // Integer Immediate: the value 65535
  3479 operand immI_65535() %{
  3480   predicate(n->get_int() == 65535);
  3481   match(ConI);
  3482   op_cost(0);
  3484   format %{ %}
  3485   interface(CONST_INTER);
  3486 %}
  3488 // Long Immediate: the value FF
  3489 operand immL_FF() %{
  3490   predicate( n->get_long() == 0xFFL );
  3491   match(ConL);
  3492   op_cost(0);
  3494   format %{ %}
  3495   interface(CONST_INTER);
  3496 %}
  3498 // Long Immediate: the value FFFF
  3499 operand immL_FFFF() %{
  3500   predicate( n->get_long() == 0xFFFFL );
  3501   match(ConL);
  3502   op_cost(0);
  3504   format %{ %}
  3505   interface(CONST_INTER);
  3506 %}
  3508 // Pointer Immediate: 32 or 64-bit
  3509 operand immP() %{
  3510   match(ConP);
  3512   op_cost(5);
  3513   // formats are generated automatically for constants and base registers
  3514   format %{ %}
  3515   interface(CONST_INTER);
  3516 %}
  3518 operand immP13() %{
  3519   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
  3520   match(ConP);
  3521   op_cost(0);
  3523   format %{ %}
  3524   interface(CONST_INTER);
  3525 %}
  3527 operand immP0() %{
  3528   predicate(n->get_ptr() == 0);
  3529   match(ConP);
  3530   op_cost(0);
  3532   format %{ %}
  3533   interface(CONST_INTER);
  3534 %}
  3536 operand immP_poll() %{
  3537   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
  3538   match(ConP);
  3540   // formats are generated automatically for constants and base registers
  3541   format %{ %}
  3542   interface(CONST_INTER);
  3543 %}
  3545 // Pointer Immediate
  3546 operand immN()
  3547 %{
  3548   match(ConN);
  3550   op_cost(10);
  3551   format %{ %}
  3552   interface(CONST_INTER);
  3553 %}
  3555 // NULL Pointer Immediate
  3556 operand immN0()
  3557 %{
  3558   predicate(n->get_narrowcon() == 0);
  3559   match(ConN);
  3561   op_cost(0);
  3562   format %{ %}
  3563   interface(CONST_INTER);
  3564 %}
  3566 operand immL() %{
  3567   match(ConL);
  3568   op_cost(40);
  3569   // formats are generated automatically for constants and base registers
  3570   format %{ %}
  3571   interface(CONST_INTER);
  3572 %}
  3574 operand immL0() %{
  3575   predicate(n->get_long() == 0L);
  3576   match(ConL);
  3577   op_cost(0);
  3578   // formats are generated automatically for constants and base registers
  3579   format %{ %}
  3580   interface(CONST_INTER);
  3581 %}
  3583 // Long Immediate: 13-bit
  3584 operand immL13() %{
  3585   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
  3586   match(ConL);
  3587   op_cost(0);
  3589   format %{ %}
  3590   interface(CONST_INTER);
  3591 %}
  3593 // Long Immediate: 13-bit minus 7
  3594 operand immL13m7() %{
  3595   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
  3596   match(ConL);
  3597   op_cost(0);
  3599   format %{ %}
  3600   interface(CONST_INTER);
  3601 %}
  3603 // Long Immediate: low 32-bit mask
  3604 operand immL_32bits() %{
  3605   predicate(n->get_long() == 0xFFFFFFFFL);
  3606   match(ConL);
  3607   op_cost(0);
  3609   format %{ %}
  3610   interface(CONST_INTER);
  3611 %}
  3613 // Double Immediate
  3614 operand immD() %{
  3615   match(ConD);
  3617   op_cost(40);
  3618   format %{ %}
  3619   interface(CONST_INTER);
  3620 %}
  3622 operand immD0() %{
  3623 #ifdef _LP64
  3624   // on 64-bit architectures this comparision is faster
  3625   predicate(jlong_cast(n->getd()) == 0);
  3626 #else
  3627   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
  3628 #endif
  3629   match(ConD);
  3631   op_cost(0);
  3632   format %{ %}
  3633   interface(CONST_INTER);
  3634 %}
  3636 // Float Immediate
  3637 operand immF() %{
  3638   match(ConF);
  3640   op_cost(20);
  3641   format %{ %}
  3642   interface(CONST_INTER);
  3643 %}
  3645 // Float Immediate: 0
  3646 operand immF0() %{
  3647   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
  3648   match(ConF);
  3650   op_cost(0);
  3651   format %{ %}
  3652   interface(CONST_INTER);
  3653 %}
  3655 // Integer Register Operands
  3656 // Integer Register
  3657 operand iRegI() %{
  3658   constraint(ALLOC_IN_RC(int_reg));
  3659   match(RegI);
  3661   match(notemp_iRegI);
  3662   match(g1RegI);
  3663   match(o0RegI);
  3664   match(iRegIsafe);
  3666   format %{ %}
  3667   interface(REG_INTER);
  3668 %}
  3670 operand notemp_iRegI() %{
  3671   constraint(ALLOC_IN_RC(notemp_int_reg));
  3672   match(RegI);
  3674   match(o0RegI);
  3676   format %{ %}
  3677   interface(REG_INTER);
  3678 %}
  3680 operand o0RegI() %{
  3681   constraint(ALLOC_IN_RC(o0_regI));
  3682   match(iRegI);
  3684   format %{ %}
  3685   interface(REG_INTER);
  3686 %}
  3688 // Pointer Register
  3689 operand iRegP() %{
  3690   constraint(ALLOC_IN_RC(ptr_reg));
  3691   match(RegP);
  3693   match(lock_ptr_RegP);
  3694   match(g1RegP);
  3695   match(g2RegP);
  3696   match(g3RegP);
  3697   match(g4RegP);
  3698   match(i0RegP);
  3699   match(o0RegP);
  3700   match(o1RegP);
  3701   match(l7RegP);
  3703   format %{ %}
  3704   interface(REG_INTER);
  3705 %}
  3707 operand sp_ptr_RegP() %{
  3708   constraint(ALLOC_IN_RC(sp_ptr_reg));
  3709   match(RegP);
  3710   match(iRegP);
  3712   format %{ %}
  3713   interface(REG_INTER);
  3714 %}
  3716 operand lock_ptr_RegP() %{
  3717   constraint(ALLOC_IN_RC(lock_ptr_reg));
  3718   match(RegP);
  3719   match(i0RegP);
  3720   match(o0RegP);
  3721   match(o1RegP);
  3722   match(l7RegP);
  3724   format %{ %}
  3725   interface(REG_INTER);
  3726 %}
  3728 operand g1RegP() %{
  3729   constraint(ALLOC_IN_RC(g1_regP));
  3730   match(iRegP);
  3732   format %{ %}
  3733   interface(REG_INTER);
  3734 %}
  3736 operand g2RegP() %{
  3737   constraint(ALLOC_IN_RC(g2_regP));
  3738   match(iRegP);
  3740   format %{ %}
  3741   interface(REG_INTER);
  3742 %}
  3744 operand g3RegP() %{
  3745   constraint(ALLOC_IN_RC(g3_regP));
  3746   match(iRegP);
  3748   format %{ %}
  3749   interface(REG_INTER);
  3750 %}
  3752 operand g1RegI() %{
  3753   constraint(ALLOC_IN_RC(g1_regI));
  3754   match(iRegI);
  3756   format %{ %}
  3757   interface(REG_INTER);
  3758 %}
  3760 operand g3RegI() %{
  3761   constraint(ALLOC_IN_RC(g3_regI));
  3762   match(iRegI);
  3764   format %{ %}
  3765   interface(REG_INTER);
  3766 %}
  3768 operand g4RegI() %{
  3769   constraint(ALLOC_IN_RC(g4_regI));
  3770   match(iRegI);
  3772   format %{ %}
  3773   interface(REG_INTER);
  3774 %}
  3776 operand g4RegP() %{
  3777   constraint(ALLOC_IN_RC(g4_regP));
  3778   match(iRegP);
  3780   format %{ %}
  3781   interface(REG_INTER);
  3782 %}
  3784 operand i0RegP() %{
  3785   constraint(ALLOC_IN_RC(i0_regP));
  3786   match(iRegP);
  3788   format %{ %}
  3789   interface(REG_INTER);
  3790 %}
  3792 operand o0RegP() %{
  3793   constraint(ALLOC_IN_RC(o0_regP));
  3794   match(iRegP);
  3796   format %{ %}
  3797   interface(REG_INTER);
  3798 %}
  3800 operand o1RegP() %{
  3801   constraint(ALLOC_IN_RC(o1_regP));
  3802   match(iRegP);
  3804   format %{ %}
  3805   interface(REG_INTER);
  3806 %}
  3808 operand o2RegP() %{
  3809   constraint(ALLOC_IN_RC(o2_regP));
  3810   match(iRegP);
  3812   format %{ %}
  3813   interface(REG_INTER);
  3814 %}
  3816 operand o7RegP() %{
  3817   constraint(ALLOC_IN_RC(o7_regP));
  3818   match(iRegP);
  3820   format %{ %}
  3821   interface(REG_INTER);
  3822 %}
  3824 operand l7RegP() %{
  3825   constraint(ALLOC_IN_RC(l7_regP));
  3826   match(iRegP);
  3828   format %{ %}
  3829   interface(REG_INTER);
  3830 %}
  3832 operand o7RegI() %{
  3833   constraint(ALLOC_IN_RC(o7_regI));
  3834   match(iRegI);
  3836   format %{ %}
  3837   interface(REG_INTER);
  3838 %}
  3840 operand iRegN() %{
  3841   constraint(ALLOC_IN_RC(int_reg));
  3842   match(RegN);
  3844   format %{ %}
  3845   interface(REG_INTER);
  3846 %}
  3848 // Long Register
  3849 operand iRegL() %{
  3850   constraint(ALLOC_IN_RC(long_reg));
  3851   match(RegL);
  3853   format %{ %}
  3854   interface(REG_INTER);
  3855 %}
  3857 operand o2RegL() %{
  3858   constraint(ALLOC_IN_RC(o2_regL));
  3859   match(iRegL);
  3861   format %{ %}
  3862   interface(REG_INTER);
  3863 %}
  3865 operand o7RegL() %{
  3866   constraint(ALLOC_IN_RC(o7_regL));
  3867   match(iRegL);
  3869   format %{ %}
  3870   interface(REG_INTER);
  3871 %}
  3873 operand g1RegL() %{
  3874   constraint(ALLOC_IN_RC(g1_regL));
  3875   match(iRegL);
  3877   format %{ %}
  3878   interface(REG_INTER);
  3879 %}
  3881 operand g3RegL() %{
  3882   constraint(ALLOC_IN_RC(g3_regL));
  3883   match(iRegL);
  3885   format %{ %}
  3886   interface(REG_INTER);
  3887 %}
  3889 // Int Register safe
  3890 // This is 64bit safe
  3891 operand iRegIsafe() %{
  3892   constraint(ALLOC_IN_RC(long_reg));
  3894   match(iRegI);
  3896   format %{ %}
  3897   interface(REG_INTER);
  3898 %}
  3900 // Condition Code Flag Register
  3901 operand flagsReg() %{
  3902   constraint(ALLOC_IN_RC(int_flags));
  3903   match(RegFlags);
  3905   format %{ "ccr" %} // both ICC and XCC
  3906   interface(REG_INTER);
  3907 %}
  3909 // Condition Code Register, unsigned comparisons.
  3910 operand flagsRegU() %{
  3911   constraint(ALLOC_IN_RC(int_flags));
  3912   match(RegFlags);
  3914   format %{ "icc_U" %}
  3915   interface(REG_INTER);
  3916 %}
  3918 // Condition Code Register, pointer comparisons.
  3919 operand flagsRegP() %{
  3920   constraint(ALLOC_IN_RC(int_flags));
  3921   match(RegFlags);
  3923 #ifdef _LP64
  3924   format %{ "xcc_P" %}
  3925 #else
  3926   format %{ "icc_P" %}
  3927 #endif
  3928   interface(REG_INTER);
  3929 %}
  3931 // Condition Code Register, long comparisons.
  3932 operand flagsRegL() %{
  3933   constraint(ALLOC_IN_RC(int_flags));
  3934   match(RegFlags);
  3936   format %{ "xcc_L" %}
  3937   interface(REG_INTER);
  3938 %}
  3940 // Condition Code Register, floating comparisons, unordered same as "less".
  3941 operand flagsRegF() %{
  3942   constraint(ALLOC_IN_RC(float_flags));
  3943   match(RegFlags);
  3944   match(flagsRegF0);
  3946   format %{ %}
  3947   interface(REG_INTER);
  3948 %}
  3950 operand flagsRegF0() %{
  3951   constraint(ALLOC_IN_RC(float_flag0));
  3952   match(RegFlags);
  3954   format %{ %}
  3955   interface(REG_INTER);
  3956 %}
  3959 // Condition Code Flag Register used by long compare
  3960 operand flagsReg_long_LTGE() %{
  3961   constraint(ALLOC_IN_RC(int_flags));
  3962   match(RegFlags);
  3963   format %{ "icc_LTGE" %}
  3964   interface(REG_INTER);
  3965 %}
  3966 operand flagsReg_long_EQNE() %{
  3967   constraint(ALLOC_IN_RC(int_flags));
  3968   match(RegFlags);
  3969   format %{ "icc_EQNE" %}
  3970   interface(REG_INTER);
  3971 %}
  3972 operand flagsReg_long_LEGT() %{
  3973   constraint(ALLOC_IN_RC(int_flags));
  3974   match(RegFlags);
  3975   format %{ "icc_LEGT" %}
  3976   interface(REG_INTER);
  3977 %}
  3980 operand regD() %{
  3981   constraint(ALLOC_IN_RC(dflt_reg));
  3982   match(RegD);
  3984   match(regD_low);
  3986   format %{ %}
  3987   interface(REG_INTER);
  3988 %}
  3990 operand regF() %{
  3991   constraint(ALLOC_IN_RC(sflt_reg));
  3992   match(RegF);
  3994   format %{ %}
  3995   interface(REG_INTER);
  3996 %}
  3998 operand regD_low() %{
  3999   constraint(ALLOC_IN_RC(dflt_low_reg));
  4000   match(regD);
  4002   format %{ %}
  4003   interface(REG_INTER);
  4004 %}
  4006 // Special Registers
  4008 // Method Register
  4009 operand inline_cache_regP(iRegP reg) %{
  4010   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
  4011   match(reg);
  4012   format %{ %}
  4013   interface(REG_INTER);
  4014 %}
  4016 operand interpreter_method_oop_regP(iRegP reg) %{
  4017   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
  4018   match(reg);
  4019   format %{ %}
  4020   interface(REG_INTER);
  4021 %}
  4024 //----------Complex Operands---------------------------------------------------
  4025 // Indirect Memory Reference
  4026 operand indirect(sp_ptr_RegP reg) %{
  4027   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4028   match(reg);
  4030   op_cost(100);
  4031   format %{ "[$reg]" %}
  4032   interface(MEMORY_INTER) %{
  4033     base($reg);
  4034     index(0x0);
  4035     scale(0x0);
  4036     disp(0x0);
  4037   %}
  4038 %}
  4040 // Indirect with simm13 Offset
  4041 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
  4042   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4043   match(AddP reg offset);
  4045   op_cost(100);
  4046   format %{ "[$reg + $offset]" %}
  4047   interface(MEMORY_INTER) %{
  4048     base($reg);
  4049     index(0x0);
  4050     scale(0x0);
  4051     disp($offset);
  4052   %}
  4053 %}
  4055 // Indirect with simm13 Offset minus 7
  4056 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
  4057   constraint(ALLOC_IN_RC(sp_ptr_reg));
  4058   match(AddP reg offset);
  4060   op_cost(100);
  4061   format %{ "[$reg + $offset]" %}
  4062   interface(MEMORY_INTER) %{
  4063     base($reg);
  4064     index(0x0);
  4065     scale(0x0);
  4066     disp($offset);
  4067   %}
  4068 %}
  4070 // Note:  Intel has a swapped version also, like this:
  4071 //operand indOffsetX(iRegI reg, immP offset) %{
  4072 //  constraint(ALLOC_IN_RC(int_reg));
  4073 //  match(AddP offset reg);
  4074 //
  4075 //  op_cost(100);
  4076 //  format %{ "[$reg + $offset]" %}
  4077 //  interface(MEMORY_INTER) %{
  4078 //    base($reg);
  4079 //    index(0x0);
  4080 //    scale(0x0);
  4081 //    disp($offset);
  4082 //  %}
  4083 //%}
  4084 //// However, it doesn't make sense for SPARC, since
  4085 // we have no particularly good way to embed oops in
  4086 // single instructions.
  4088 // Indirect with Register Index
  4089 operand indIndex(iRegP addr, iRegX index) %{
  4090   constraint(ALLOC_IN_RC(ptr_reg));
  4091   match(AddP addr index);
  4093   op_cost(100);
  4094   format %{ "[$addr + $index]" %}
  4095   interface(MEMORY_INTER) %{
  4096     base($addr);
  4097     index($index);
  4098     scale(0x0);
  4099     disp(0x0);
  4100   %}
  4101 %}
  4103 //----------Special Memory Operands--------------------------------------------
  4104 // Stack Slot Operand - This operand is used for loading and storing temporary
  4105 //                      values on the stack where a match requires a value to
  4106 //                      flow through memory.
  4107 operand stackSlotI(sRegI reg) %{
  4108   constraint(ALLOC_IN_RC(stack_slots));
  4109   op_cost(100);
  4110   //match(RegI);
  4111   format %{ "[$reg]" %}
  4112   interface(MEMORY_INTER) %{
  4113     base(0xE);   // R_SP
  4114     index(0x0);
  4115     scale(0x0);
  4116     disp($reg);  // Stack Offset
  4117   %}
  4118 %}
  4120 operand stackSlotP(sRegP reg) %{
  4121   constraint(ALLOC_IN_RC(stack_slots));
  4122   op_cost(100);
  4123   //match(RegP);
  4124   format %{ "[$reg]" %}
  4125   interface(MEMORY_INTER) %{
  4126     base(0xE);   // R_SP
  4127     index(0x0);
  4128     scale(0x0);
  4129     disp($reg);  // Stack Offset
  4130   %}
  4131 %}
  4133 operand stackSlotF(sRegF reg) %{
  4134   constraint(ALLOC_IN_RC(stack_slots));
  4135   op_cost(100);
  4136   //match(RegF);
  4137   format %{ "[$reg]" %}
  4138   interface(MEMORY_INTER) %{
  4139     base(0xE);   // R_SP
  4140     index(0x0);
  4141     scale(0x0);
  4142     disp($reg);  // Stack Offset
  4143   %}
  4144 %}
  4145 operand stackSlotD(sRegD reg) %{
  4146   constraint(ALLOC_IN_RC(stack_slots));
  4147   op_cost(100);
  4148   //match(RegD);
  4149   format %{ "[$reg]" %}
  4150   interface(MEMORY_INTER) %{
  4151     base(0xE);   // R_SP
  4152     index(0x0);
  4153     scale(0x0);
  4154     disp($reg);  // Stack Offset
  4155   %}
  4156 %}
  4157 operand stackSlotL(sRegL reg) %{
  4158   constraint(ALLOC_IN_RC(stack_slots));
  4159   op_cost(100);
  4160   //match(RegL);
  4161   format %{ "[$reg]" %}
  4162   interface(MEMORY_INTER) %{
  4163     base(0xE);   // R_SP
  4164     index(0x0);
  4165     scale(0x0);
  4166     disp($reg);  // Stack Offset
  4167   %}
  4168 %}
  4170 // Operands for expressing Control Flow
  4171 // NOTE:  Label is a predefined operand which should not be redefined in
  4172 //        the AD file.  It is generically handled within the ADLC.
  4174 //----------Conditional Branch Operands----------------------------------------
  4175 // Comparison Op  - This is the operation of the comparison, and is limited to
  4176 //                  the following set of codes:
  4177 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  4178 //
  4179 // Other attributes of the comparison, such as unsignedness, are specified
  4180 // by the comparison instruction that sets a condition code flags register.
  4181 // That result is represented by a flags operand whose subtype is appropriate
  4182 // to the unsignedness (etc.) of the comparison.
  4183 //
  4184 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4185 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4186 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  4188 operand cmpOp() %{
  4189   match(Bool);
  4191   format %{ "" %}
  4192   interface(COND_INTER) %{
  4193     equal(0x1);
  4194     not_equal(0x9);
  4195     less(0x3);
  4196     greater_equal(0xB);
  4197     less_equal(0x2);
  4198     greater(0xA);
  4199   %}
  4200 %}
  4202 // Comparison Op, unsigned
  4203 operand cmpOpU() %{
  4204   match(Bool);
  4206   format %{ "u" %}
  4207   interface(COND_INTER) %{
  4208     equal(0x1);
  4209     not_equal(0x9);
  4210     less(0x5);
  4211     greater_equal(0xD);
  4212     less_equal(0x4);
  4213     greater(0xC);
  4214   %}
  4215 %}
  4217 // Comparison Op, pointer (same as unsigned)
  4218 operand cmpOpP() %{
  4219   match(Bool);
  4221   format %{ "p" %}
  4222   interface(COND_INTER) %{
  4223     equal(0x1);
  4224     not_equal(0x9);
  4225     less(0x5);
  4226     greater_equal(0xD);
  4227     less_equal(0x4);
  4228     greater(0xC);
  4229   %}
  4230 %}
  4232 // Comparison Op, branch-register encoding
  4233 operand cmpOp_reg() %{
  4234   match(Bool);
  4236   format %{ "" %}
  4237   interface(COND_INTER) %{
  4238     equal        (0x1);
  4239     not_equal    (0x5);
  4240     less         (0x3);
  4241     greater_equal(0x7);
  4242     less_equal   (0x2);
  4243     greater      (0x6);
  4244   %}
  4245 %}
  4247 // Comparison Code, floating, unordered same as less
  4248 operand cmpOpF() %{
  4249   match(Bool);
  4251   format %{ "fl" %}
  4252   interface(COND_INTER) %{
  4253     equal(0x9);
  4254     not_equal(0x1);
  4255     less(0x3);
  4256     greater_equal(0xB);
  4257     less_equal(0xE);
  4258     greater(0x6);
  4259   %}
  4260 %}
  4262 // Used by long compare
  4263 operand cmpOp_commute() %{
  4264   match(Bool);
  4266   format %{ "" %}
  4267   interface(COND_INTER) %{
  4268     equal(0x1);
  4269     not_equal(0x9);
  4270     less(0xA);
  4271     greater_equal(0x2);
  4272     less_equal(0xB);
  4273     greater(0x3);
  4274   %}
  4275 %}
  4277 //----------OPERAND CLASSES----------------------------------------------------
  4278 // Operand Classes are groups of operands that are used to simplify
  4279 // instruction definitions by not requiring the AD writer to specify separate
  4280 // instructions for every form of operand when the instruction accepts
  4281 // multiple operand types with the same basic encoding and format.  The classic
  4282 // case of this is memory operands.
  4283 opclass memory( indirect, indOffset13, indIndex );
  4284 opclass indIndexMemory( indIndex );
  4286 //----------PIPELINE-----------------------------------------------------------
  4287 pipeline %{
  4289 //----------ATTRIBUTES---------------------------------------------------------
  4290 attributes %{
  4291   fixed_size_instructions;           // Fixed size instructions
  4292   branch_has_delay_slot;             // Branch has delay slot following
  4293   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
  4294   instruction_unit_size = 4;         // An instruction is 4 bytes long
  4295   instruction_fetch_unit_size = 16;  // The processor fetches one line
  4296   instruction_fetch_units = 1;       // of 16 bytes
  4298   // List of nop instructions
  4299   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
  4300 %}
  4302 //----------RESOURCES----------------------------------------------------------
  4303 // Resources are the functional units available to the machine
  4304 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
  4306 //----------PIPELINE DESCRIPTION-----------------------------------------------
  4307 // Pipeline Description specifies the stages in the machine's pipeline
  4309 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
  4311 //----------PIPELINE CLASSES---------------------------------------------------
  4312 // Pipeline Classes describe the stages in which input and output are
  4313 // referenced by the hardware pipeline.
  4315 // Integer ALU reg-reg operation
  4316 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4317     single_instruction;
  4318     dst   : E(write);
  4319     src1  : R(read);
  4320     src2  : R(read);
  4321     IALU  : R;
  4322 %}
  4324 // Integer ALU reg-reg long operation
  4325 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  4326     instruction_count(2);
  4327     dst   : E(write);
  4328     src1  : R(read);
  4329     src2  : R(read);
  4330     IALU  : R;
  4331     IALU  : R;
  4332 %}
  4334 // Integer ALU reg-reg long dependent operation
  4335 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
  4336     instruction_count(1); multiple_bundles;
  4337     dst   : E(write);
  4338     src1  : R(read);
  4339     src2  : R(read);
  4340     cr    : E(write);
  4341     IALU  : R(2);
  4342 %}
  4344 // Integer ALU reg-imm operaion
  4345 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4346     single_instruction;
  4347     dst   : E(write);
  4348     src1  : R(read);
  4349     IALU  : R;
  4350 %}
  4352 // Integer ALU reg-reg operation with condition code
  4353 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
  4354     single_instruction;
  4355     dst   : E(write);
  4356     cr    : E(write);
  4357     src1  : R(read);
  4358     src2  : R(read);
  4359     IALU  : R;
  4360 %}
  4362 // Integer ALU reg-imm operation with condition code
  4363 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
  4364     single_instruction;
  4365     dst   : E(write);
  4366     cr    : E(write);
  4367     src1  : R(read);
  4368     IALU  : R;
  4369 %}
  4371 // Integer ALU zero-reg operation
  4372 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  4373     single_instruction;
  4374     dst   : E(write);
  4375     src2  : R(read);
  4376     IALU  : R;
  4377 %}
  4379 // Integer ALU zero-reg operation with condition code only
  4380 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
  4381     single_instruction;
  4382     cr    : E(write);
  4383     src   : R(read);
  4384     IALU  : R;
  4385 %}
  4387 // Integer ALU reg-reg operation with condition code only
  4388 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4389     single_instruction;
  4390     cr    : E(write);
  4391     src1  : R(read);
  4392     src2  : R(read);
  4393     IALU  : R;
  4394 %}
  4396 // Integer ALU reg-imm operation with condition code only
  4397 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4398     single_instruction;
  4399     cr    : E(write);
  4400     src1  : R(read);
  4401     IALU  : R;
  4402 %}
  4404 // Integer ALU reg-reg-zero operation with condition code only
  4405 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
  4406     single_instruction;
  4407     cr    : E(write);
  4408     src1  : R(read);
  4409     src2  : R(read);
  4410     IALU  : R;
  4411 %}
  4413 // Integer ALU reg-imm-zero operation with condition code only
  4414 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
  4415     single_instruction;
  4416     cr    : E(write);
  4417     src1  : R(read);
  4418     IALU  : R;
  4419 %}
  4421 // Integer ALU reg-reg operation with condition code, src1 modified
  4422 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
  4423     single_instruction;
  4424     cr    : E(write);
  4425     src1  : E(write);
  4426     src1  : R(read);
  4427     src2  : R(read);
  4428     IALU  : R;
  4429 %}
  4431 // Integer ALU reg-imm operation with condition code, src1 modified
  4432 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
  4433     single_instruction;
  4434     cr    : E(write);
  4435     src1  : E(write);
  4436     src1  : R(read);
  4437     IALU  : R;
  4438 %}
  4440 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
  4441     multiple_bundles;
  4442     dst   : E(write)+4;
  4443     cr    : E(write);
  4444     src1  : R(read);
  4445     src2  : R(read);
  4446     IALU  : R(3);
  4447     BR    : R(2);
  4448 %}
  4450 // Integer ALU operation
  4451 pipe_class ialu_none(iRegI dst) %{
  4452     single_instruction;
  4453     dst   : E(write);
  4454     IALU  : R;
  4455 %}
  4457 // Integer ALU reg operation
  4458 pipe_class ialu_reg(iRegI dst, iRegI src) %{
  4459     single_instruction; may_have_no_code;
  4460     dst   : E(write);
  4461     src   : R(read);
  4462     IALU  : R;
  4463 %}
  4465 // Integer ALU reg conditional operation
  4466 // This instruction has a 1 cycle stall, and cannot execute
  4467 // in the same cycle as the instruction setting the condition
  4468 // code. We kludge this by pretending to read the condition code
  4469 // 1 cycle earlier, and by marking the functional units as busy
  4470 // for 2 cycles with the result available 1 cycle later than
  4471 // is really the case.
  4472 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
  4473     single_instruction;
  4474     op2_out : C(write);
  4475     op1     : R(read);
  4476     cr      : R(read);       // This is really E, with a 1 cycle stall
  4477     BR      : R(2);
  4478     MS      : R(2);
  4479 %}
  4481 #ifdef _LP64
  4482 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
  4483     instruction_count(1); multiple_bundles;
  4484     dst     : C(write)+1;
  4485     src     : R(read)+1;
  4486     IALU    : R(1);
  4487     BR      : E(2);
  4488     MS      : E(2);
  4489 %}
  4490 #endif
  4492 // Integer ALU reg operation
  4493 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
  4494     single_instruction; may_have_no_code;
  4495     dst   : E(write);
  4496     src   : R(read);
  4497     IALU  : R;
  4498 %}
  4499 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
  4500     single_instruction; may_have_no_code;
  4501     dst   : E(write);
  4502     src   : R(read);
  4503     IALU  : R;
  4504 %}
  4506 // Two integer ALU reg operations
  4507 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
  4508     instruction_count(2);
  4509     dst   : E(write);
  4510     src   : R(read);
  4511     A0    : R;
  4512     A1    : R;
  4513 %}
  4515 // Two integer ALU reg operations
  4516 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
  4517     instruction_count(2); may_have_no_code;
  4518     dst   : E(write);
  4519     src   : R(read);
  4520     A0    : R;
  4521     A1    : R;
  4522 %}
  4524 // Integer ALU imm operation
  4525 pipe_class ialu_imm(iRegI dst, immI13 src) %{
  4526     single_instruction;
  4527     dst   : E(write);
  4528     IALU  : R;
  4529 %}
  4531 // Integer ALU reg-reg with carry operation
  4532 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
  4533     single_instruction;
  4534     dst   : E(write);
  4535     src1  : R(read);
  4536     src2  : R(read);
  4537     IALU  : R;
  4538 %}
  4540 // Integer ALU cc operation
  4541 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
  4542     single_instruction;
  4543     dst   : E(write);
  4544     cc    : R(read);
  4545     IALU  : R;
  4546 %}
  4548 // Integer ALU cc / second IALU operation
  4549 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
  4550     instruction_count(1); multiple_bundles;
  4551     dst   : E(write)+1;
  4552     src   : R(read);
  4553     IALU  : R;
  4554 %}
  4556 // Integer ALU cc / second IALU operation
  4557 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
  4558     instruction_count(1); multiple_bundles;
  4559     dst   : E(write)+1;
  4560     p     : R(read);
  4561     q     : R(read);
  4562     IALU  : R;
  4563 %}
  4565 // Integer ALU hi-lo-reg operation
  4566 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
  4567     instruction_count(1); multiple_bundles;
  4568     dst   : E(write)+1;
  4569     IALU  : R(2);
  4570 %}
  4572 // Float ALU hi-lo-reg operation (with temp)
  4573 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
  4574     instruction_count(1); multiple_bundles;
  4575     dst   : E(write)+1;
  4576     IALU  : R(2);
  4577 %}
  4579 // Long Constant
  4580 pipe_class loadConL( iRegL dst, immL src ) %{
  4581     instruction_count(2); multiple_bundles;
  4582     dst   : E(write)+1;
  4583     IALU  : R(2);
  4584     IALU  : R(2);
  4585 %}
  4587 // Pointer Constant
  4588 pipe_class loadConP( iRegP dst, immP src ) %{
  4589     instruction_count(0); multiple_bundles;
  4590     fixed_latency(6);
  4591 %}
  4593 // Polling Address
  4594 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
  4595 #ifdef _LP64
  4596     instruction_count(0); multiple_bundles;
  4597     fixed_latency(6);
  4598 #else
  4599     dst   : E(write);
  4600     IALU  : R;
  4601 #endif
  4602 %}
  4604 // Long Constant small
  4605 pipe_class loadConLlo( iRegL dst, immL src ) %{
  4606     instruction_count(2);
  4607     dst   : E(write);
  4608     IALU  : R;
  4609     IALU  : R;
  4610 %}
  4612 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
  4613 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
  4614     instruction_count(1); multiple_bundles;
  4615     src   : R(read);
  4616     dst   : M(write)+1;
  4617     IALU  : R;
  4618     MS    : E;
  4619 %}
  4621 // Integer ALU nop operation
  4622 pipe_class ialu_nop() %{
  4623     single_instruction;
  4624     IALU  : R;
  4625 %}
  4627 // Integer ALU nop operation
  4628 pipe_class ialu_nop_A0() %{
  4629     single_instruction;
  4630     A0    : R;
  4631 %}
  4633 // Integer ALU nop operation
  4634 pipe_class ialu_nop_A1() %{
  4635     single_instruction;
  4636     A1    : R;
  4637 %}
  4639 // Integer Multiply reg-reg operation
  4640 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  4641     single_instruction;
  4642     dst   : E(write);
  4643     src1  : R(read);
  4644     src2  : R(read);
  4645     MS    : R(5);
  4646 %}
  4648 // Integer Multiply reg-imm operation
  4649 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
  4650     single_instruction;
  4651     dst   : E(write);
  4652     src1  : R(read);
  4653     MS    : R(5);
  4654 %}
  4656 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4657     single_instruction;
  4658     dst   : E(write)+4;
  4659     src1  : R(read);
  4660     src2  : R(read);
  4661     MS    : R(6);
  4662 %}
  4664 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4665     single_instruction;
  4666     dst   : E(write)+4;
  4667     src1  : R(read);
  4668     MS    : R(6);
  4669 %}
  4671 // Integer Divide reg-reg
  4672 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
  4673     instruction_count(1); multiple_bundles;
  4674     dst   : E(write);
  4675     temp  : E(write);
  4676     src1  : R(read);
  4677     src2  : R(read);
  4678     temp  : R(read);
  4679     MS    : R(38);
  4680 %}
  4682 // Integer Divide reg-imm
  4683 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
  4684     instruction_count(1); multiple_bundles;
  4685     dst   : E(write);
  4686     temp  : E(write);
  4687     src1  : R(read);
  4688     temp  : R(read);
  4689     MS    : R(38);
  4690 %}
  4692 // Long Divide
  4693 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  4694     dst  : E(write)+71;
  4695     src1 : R(read);
  4696     src2 : R(read)+1;
  4697     MS   : R(70);
  4698 %}
  4700 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
  4701     dst  : E(write)+71;
  4702     src1 : R(read);
  4703     MS   : R(70);
  4704 %}
  4706 // Floating Point Add Float
  4707 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
  4708     single_instruction;
  4709     dst   : X(write);
  4710     src1  : E(read);
  4711     src2  : E(read);
  4712     FA    : R;
  4713 %}
  4715 // Floating Point Add Double
  4716 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
  4717     single_instruction;
  4718     dst   : X(write);
  4719     src1  : E(read);
  4720     src2  : E(read);
  4721     FA    : R;
  4722 %}
  4724 // Floating Point Conditional Move based on integer flags
  4725 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
  4726     single_instruction;
  4727     dst   : X(write);
  4728     src   : E(read);
  4729     cr    : R(read);
  4730     FA    : R(2);
  4731     BR    : R(2);
  4732 %}
  4734 // Floating Point Conditional Move based on integer flags
  4735 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
  4736     single_instruction;
  4737     dst   : X(write);
  4738     src   : E(read);
  4739     cr    : R(read);
  4740     FA    : R(2);
  4741     BR    : R(2);
  4742 %}
  4744 // Floating Point Multiply Float
  4745 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
  4746     single_instruction;
  4747     dst   : X(write);
  4748     src1  : E(read);
  4749     src2  : E(read);
  4750     FM    : R;
  4751 %}
  4753 // Floating Point Multiply Double
  4754 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
  4755     single_instruction;
  4756     dst   : X(write);
  4757     src1  : E(read);
  4758     src2  : E(read);
  4759     FM    : R;
  4760 %}
  4762 // Floating Point Divide Float
  4763 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
  4764     single_instruction;
  4765     dst   : X(write);
  4766     src1  : E(read);
  4767     src2  : E(read);
  4768     FM    : R;
  4769     FDIV  : C(14);
  4770 %}
  4772 // Floating Point Divide Double
  4773 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
  4774     single_instruction;
  4775     dst   : X(write);
  4776     src1  : E(read);
  4777     src2  : E(read);
  4778     FM    : R;
  4779     FDIV  : C(17);
  4780 %}
  4782 // Floating Point Move/Negate/Abs Float
  4783 pipe_class faddF_reg(regF dst, regF src) %{
  4784     single_instruction;
  4785     dst   : W(write);
  4786     src   : E(read);
  4787     FA    : R(1);
  4788 %}
  4790 // Floating Point Move/Negate/Abs Double
  4791 pipe_class faddD_reg(regD dst, regD src) %{
  4792     single_instruction;
  4793     dst   : W(write);
  4794     src   : E(read);
  4795     FA    : R;
  4796 %}
  4798 // Floating Point Convert F->D
  4799 pipe_class fcvtF2D(regD dst, regF src) %{
  4800     single_instruction;
  4801     dst   : X(write);
  4802     src   : E(read);
  4803     FA    : R;
  4804 %}
  4806 // Floating Point Convert I->D
  4807 pipe_class fcvtI2D(regD dst, regF src) %{
  4808     single_instruction;
  4809     dst   : X(write);
  4810     src   : E(read);
  4811     FA    : R;
  4812 %}
  4814 // Floating Point Convert LHi->D
  4815 pipe_class fcvtLHi2D(regD dst, regD src) %{
  4816     single_instruction;
  4817     dst   : X(write);
  4818     src   : E(read);
  4819     FA    : R;
  4820 %}
  4822 // Floating Point Convert L->D
  4823 pipe_class fcvtL2D(regD dst, regF src) %{
  4824     single_instruction;
  4825     dst   : X(write);
  4826     src   : E(read);
  4827     FA    : R;
  4828 %}
  4830 // Floating Point Convert L->F
  4831 pipe_class fcvtL2F(regD dst, regF src) %{
  4832     single_instruction;
  4833     dst   : X(write);
  4834     src   : E(read);
  4835     FA    : R;
  4836 %}
  4838 // Floating Point Convert D->F
  4839 pipe_class fcvtD2F(regD dst, regF src) %{
  4840     single_instruction;
  4841     dst   : X(write);
  4842     src   : E(read);
  4843     FA    : R;
  4844 %}
  4846 // Floating Point Convert I->L
  4847 pipe_class fcvtI2L(regD dst, regF src) %{
  4848     single_instruction;
  4849     dst   : X(write);
  4850     src   : E(read);
  4851     FA    : R;
  4852 %}
  4854 // Floating Point Convert D->F
  4855 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
  4856     instruction_count(1); multiple_bundles;
  4857     dst   : X(write)+6;
  4858     src   : E(read);
  4859     FA    : R;
  4860 %}
  4862 // Floating Point Convert D->L
  4863 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
  4864     instruction_count(1); multiple_bundles;
  4865     dst   : X(write)+6;
  4866     src   : E(read);
  4867     FA    : R;
  4868 %}
  4870 // Floating Point Convert F->I
  4871 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
  4872     instruction_count(1); multiple_bundles;
  4873     dst   : X(write)+6;
  4874     src   : E(read);
  4875     FA    : R;
  4876 %}
  4878 // Floating Point Convert F->L
  4879 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
  4880     instruction_count(1); multiple_bundles;
  4881     dst   : X(write)+6;
  4882     src   : E(read);
  4883     FA    : R;
  4884 %}
  4886 // Floating Point Convert I->F
  4887 pipe_class fcvtI2F(regF dst, regF src) %{
  4888     single_instruction;
  4889     dst   : X(write);
  4890     src   : E(read);
  4891     FA    : R;
  4892 %}
  4894 // Floating Point Compare
  4895 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
  4896     single_instruction;
  4897     cr    : X(write);
  4898     src1  : E(read);
  4899     src2  : E(read);
  4900     FA    : R;
  4901 %}
  4903 // Floating Point Compare
  4904 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
  4905     single_instruction;
  4906     cr    : X(write);
  4907     src1  : E(read);
  4908     src2  : E(read);
  4909     FA    : R;
  4910 %}
  4912 // Floating Add Nop
  4913 pipe_class fadd_nop() %{
  4914     single_instruction;
  4915     FA  : R;
  4916 %}
  4918 // Integer Store to Memory
  4919 pipe_class istore_mem_reg(memory mem, iRegI src) %{
  4920     single_instruction;
  4921     mem   : R(read);
  4922     src   : C(read);
  4923     MS    : R;
  4924 %}
  4926 // Integer Store to Memory
  4927 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
  4928     single_instruction;
  4929     mem   : R(read);
  4930     src   : C(read);
  4931     MS    : R;
  4932 %}
  4934 // Integer Store Zero to Memory
  4935 pipe_class istore_mem_zero(memory mem, immI0 src) %{
  4936     single_instruction;
  4937     mem   : R(read);
  4938     MS    : R;
  4939 %}
  4941 // Special Stack Slot Store
  4942 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
  4943     single_instruction;
  4944     stkSlot : R(read);
  4945     src     : C(read);
  4946     MS      : R;
  4947 %}
  4949 // Special Stack Slot Store
  4950 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
  4951     instruction_count(2); multiple_bundles;
  4952     stkSlot : R(read);
  4953     src     : C(read);
  4954     MS      : R(2);
  4955 %}
  4957 // Float Store
  4958 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
  4959     single_instruction;
  4960     mem : R(read);
  4961     src : C(read);
  4962     MS  : R;
  4963 %}
  4965 // Float Store
  4966 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
  4967     single_instruction;
  4968     mem : R(read);
  4969     MS  : R;
  4970 %}
  4972 // Double Store
  4973 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
  4974     instruction_count(1);
  4975     mem : R(read);
  4976     src : C(read);
  4977     MS  : R;
  4978 %}
  4980 // Double Store
  4981 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
  4982     single_instruction;
  4983     mem : R(read);
  4984     MS  : R;
  4985 %}
  4987 // Special Stack Slot Float Store
  4988 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
  4989     single_instruction;
  4990     stkSlot : R(read);
  4991     src     : C(read);
  4992     MS      : R;
  4993 %}
  4995 // Special Stack Slot Double Store
  4996 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
  4997     single_instruction;
  4998     stkSlot : R(read);
  4999     src     : C(read);
  5000     MS      : R;
  5001 %}
  5003 // Integer Load (when sign bit propagation not needed)
  5004 pipe_class iload_mem(iRegI dst, memory mem) %{
  5005     single_instruction;
  5006     mem : R(read);
  5007     dst : C(write);
  5008     MS  : R;
  5009 %}
  5011 // Integer Load from stack operand
  5012 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
  5013     single_instruction;
  5014     mem : R(read);
  5015     dst : C(write);
  5016     MS  : R;
  5017 %}
  5019 // Integer Load (when sign bit propagation or masking is needed)
  5020 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
  5021     single_instruction;
  5022     mem : R(read);
  5023     dst : M(write);
  5024     MS  : R;
  5025 %}
  5027 // Float Load
  5028 pipe_class floadF_mem(regF dst, memory mem) %{
  5029     single_instruction;
  5030     mem : R(read);
  5031     dst : M(write);
  5032     MS  : R;
  5033 %}
  5035 // Float Load
  5036 pipe_class floadD_mem(regD dst, memory mem) %{
  5037     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
  5038     mem : R(read);
  5039     dst : M(write);
  5040     MS  : R;
  5041 %}
  5043 // Float Load
  5044 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
  5045     single_instruction;
  5046     stkSlot : R(read);
  5047     dst : M(write);
  5048     MS  : R;
  5049 %}
  5051 // Float Load
  5052 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
  5053     single_instruction;
  5054     stkSlot : R(read);
  5055     dst : M(write);
  5056     MS  : R;
  5057 %}
  5059 // Memory Nop
  5060 pipe_class mem_nop() %{
  5061     single_instruction;
  5062     MS  : R;
  5063 %}
  5065 pipe_class sethi(iRegP dst, immI src) %{
  5066     single_instruction;
  5067     dst  : E(write);
  5068     IALU : R;
  5069 %}
  5071 pipe_class loadPollP(iRegP poll) %{
  5072     single_instruction;
  5073     poll : R(read);
  5074     MS   : R;
  5075 %}
  5077 pipe_class br(Universe br, label labl) %{
  5078     single_instruction_with_delay_slot;
  5079     BR  : R;
  5080 %}
  5082 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
  5083     single_instruction_with_delay_slot;
  5084     cr    : E(read);
  5085     BR    : R;
  5086 %}
  5088 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
  5089     single_instruction_with_delay_slot;
  5090     op1 : E(read);
  5091     BR  : R;
  5092     MS  : R;
  5093 %}
  5095 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
  5096     single_instruction_with_delay_slot;
  5097     cr    : E(read);
  5098     BR    : R;
  5099 %}
  5101 pipe_class br_nop() %{
  5102     single_instruction;
  5103     BR  : R;
  5104 %}
  5106 pipe_class simple_call(method meth) %{
  5107     instruction_count(2); multiple_bundles; force_serialization;
  5108     fixed_latency(100);
  5109     BR  : R(1);
  5110     MS  : R(1);
  5111     A0  : R(1);
  5112 %}
  5114 pipe_class compiled_call(method meth) %{
  5115     instruction_count(1); multiple_bundles; force_serialization;
  5116     fixed_latency(100);
  5117     MS  : R(1);
  5118 %}
  5120 pipe_class call(method meth) %{
  5121     instruction_count(0); multiple_bundles; force_serialization;
  5122     fixed_latency(100);
  5123 %}
  5125 pipe_class tail_call(Universe ignore, label labl) %{
  5126     single_instruction; has_delay_slot;
  5127     fixed_latency(100);
  5128     BR  : R(1);
  5129     MS  : R(1);
  5130 %}
  5132 pipe_class ret(Universe ignore) %{
  5133     single_instruction; has_delay_slot;
  5134     BR  : R(1);
  5135     MS  : R(1);
  5136 %}
  5138 pipe_class ret_poll(g3RegP poll) %{
  5139     instruction_count(3); has_delay_slot;
  5140     poll : E(read);
  5141     MS   : R;
  5142 %}
  5144 // The real do-nothing guy
  5145 pipe_class empty( ) %{
  5146     instruction_count(0);
  5147 %}
  5149 pipe_class long_memory_op() %{
  5150     instruction_count(0); multiple_bundles; force_serialization;
  5151     fixed_latency(25);
  5152     MS  : R(1);
  5153 %}
  5155 // Check-cast
  5156 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
  5157     array : R(read);
  5158     match  : R(read);
  5159     IALU   : R(2);
  5160     BR     : R(2);
  5161     MS     : R;
  5162 %}
  5164 // Convert FPU flags into +1,0,-1
  5165 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
  5166     src1  : E(read);
  5167     src2  : E(read);
  5168     dst   : E(write);
  5169     FA    : R;
  5170     MS    : R(2);
  5171     BR    : R(2);
  5172 %}
  5174 // Compare for p < q, and conditionally add y
  5175 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
  5176     p     : E(read);
  5177     q     : E(read);
  5178     y     : E(read);
  5179     IALU  : R(3)
  5180 %}
  5182 // Perform a compare, then move conditionally in a branch delay slot.
  5183 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
  5184     src2   : E(read);
  5185     srcdst : E(read);
  5186     IALU   : R;
  5187     BR     : R;
  5188 %}
  5190 // Define the class for the Nop node
  5191 define %{
  5192    MachNop = ialu_nop;
  5193 %}
  5195 %}
  5197 //----------INSTRUCTIONS-------------------------------------------------------
  5199 //------------Special Stack Slot instructions - no match rules-----------------
  5200 instruct stkI_to_regF(regF dst, stackSlotI src) %{
  5201   // No match rule to avoid chain rule match.
  5202   effect(DEF dst, USE src);
  5203   ins_cost(MEMORY_REF_COST);
  5204   size(4);
  5205   format %{ "LDF    $src,$dst\t! stkI to regF" %}
  5206   opcode(Assembler::ldf_op3);
  5207   ins_encode(simple_form3_mem_reg(src, dst));
  5208   ins_pipe(floadF_stk);
  5209 %}
  5211 instruct stkL_to_regD(regD dst, stackSlotL src) %{
  5212   // No match rule to avoid chain rule match.
  5213   effect(DEF dst, USE src);
  5214   ins_cost(MEMORY_REF_COST);
  5215   size(4);
  5216   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
  5217   opcode(Assembler::lddf_op3);
  5218   ins_encode(simple_form3_mem_reg(src, dst));
  5219   ins_pipe(floadD_stk);
  5220 %}
  5222 instruct regF_to_stkI(stackSlotI dst, regF src) %{
  5223   // No match rule to avoid chain rule match.
  5224   effect(DEF dst, USE src);
  5225   ins_cost(MEMORY_REF_COST);
  5226   size(4);
  5227   format %{ "STF    $src,$dst\t! regF to stkI" %}
  5228   opcode(Assembler::stf_op3);
  5229   ins_encode(simple_form3_mem_reg(dst, src));
  5230   ins_pipe(fstoreF_stk_reg);
  5231 %}
  5233 instruct regD_to_stkL(stackSlotL dst, regD src) %{
  5234   // No match rule to avoid chain rule match.
  5235   effect(DEF dst, USE src);
  5236   ins_cost(MEMORY_REF_COST);
  5237   size(4);
  5238   format %{ "STDF   $src,$dst\t! regD to stkL" %}
  5239   opcode(Assembler::stdf_op3);
  5240   ins_encode(simple_form3_mem_reg(dst, src));
  5241   ins_pipe(fstoreD_stk_reg);
  5242 %}
  5244 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
  5245   effect(DEF dst, USE src);
  5246   ins_cost(MEMORY_REF_COST*2);
  5247   size(8);
  5248   format %{ "STW    $src,$dst.hi\t! long\n\t"
  5249             "STW    R_G0,$dst.lo" %}
  5250   opcode(Assembler::stw_op3);
  5251   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
  5252   ins_pipe(lstoreI_stk_reg);
  5253 %}
  5255 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
  5256   // No match rule to avoid chain rule match.
  5257   effect(DEF dst, USE src);
  5258   ins_cost(MEMORY_REF_COST);
  5259   size(4);
  5260   format %{ "STX    $src,$dst\t! regL to stkD" %}
  5261   opcode(Assembler::stx_op3);
  5262   ins_encode(simple_form3_mem_reg( dst, src ) );
  5263   ins_pipe(istore_stk_reg);
  5264 %}
  5266 //---------- Chain stack slots between similar types --------
  5268 // Load integer from stack slot
  5269 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
  5270   match(Set dst src);
  5271   ins_cost(MEMORY_REF_COST);
  5273   size(4);
  5274   format %{ "LDUW   $src,$dst\t!stk" %}
  5275   opcode(Assembler::lduw_op3);
  5276   ins_encode(simple_form3_mem_reg( src, dst ) );
  5277   ins_pipe(iload_mem);
  5278 %}
  5280 // Store integer to stack slot
  5281 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
  5282   match(Set dst src);
  5283   ins_cost(MEMORY_REF_COST);
  5285   size(4);
  5286   format %{ "STW    $src,$dst\t!stk" %}
  5287   opcode(Assembler::stw_op3);
  5288   ins_encode(simple_form3_mem_reg( dst, src ) );
  5289   ins_pipe(istore_mem_reg);
  5290 %}
  5292 // Load long from stack slot
  5293 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
  5294   match(Set dst src);
  5296   ins_cost(MEMORY_REF_COST);
  5297   size(4);
  5298   format %{ "LDX    $src,$dst\t! long" %}
  5299   opcode(Assembler::ldx_op3);
  5300   ins_encode(simple_form3_mem_reg( src, dst ) );
  5301   ins_pipe(iload_mem);
  5302 %}
  5304 // Store long to stack slot
  5305 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
  5306   match(Set dst src);
  5308   ins_cost(MEMORY_REF_COST);
  5309   size(4);
  5310   format %{ "STX    $src,$dst\t! long" %}
  5311   opcode(Assembler::stx_op3);
  5312   ins_encode(simple_form3_mem_reg( dst, src ) );
  5313   ins_pipe(istore_mem_reg);
  5314 %}
  5316 #ifdef _LP64
  5317 // Load pointer from stack slot, 64-bit encoding
  5318 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5319   match(Set dst src);
  5320   ins_cost(MEMORY_REF_COST);
  5321   size(4);
  5322   format %{ "LDX    $src,$dst\t!ptr" %}
  5323   opcode(Assembler::ldx_op3);
  5324   ins_encode(simple_form3_mem_reg( src, dst ) );
  5325   ins_pipe(iload_mem);
  5326 %}
  5328 // Store pointer to stack slot
  5329 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5330   match(Set dst src);
  5331   ins_cost(MEMORY_REF_COST);
  5332   size(4);
  5333   format %{ "STX    $src,$dst\t!ptr" %}
  5334   opcode(Assembler::stx_op3);
  5335   ins_encode(simple_form3_mem_reg( dst, src ) );
  5336   ins_pipe(istore_mem_reg);
  5337 %}
  5338 #else // _LP64
  5339 // Load pointer from stack slot, 32-bit encoding
  5340 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
  5341   match(Set dst src);
  5342   ins_cost(MEMORY_REF_COST);
  5343   format %{ "LDUW   $src,$dst\t!ptr" %}
  5344   opcode(Assembler::lduw_op3, Assembler::ldst_op);
  5345   ins_encode(simple_form3_mem_reg( src, dst ) );
  5346   ins_pipe(iload_mem);
  5347 %}
  5349 // Store pointer to stack slot
  5350 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
  5351   match(Set dst src);
  5352   ins_cost(MEMORY_REF_COST);
  5353   format %{ "STW    $src,$dst\t!ptr" %}
  5354   opcode(Assembler::stw_op3, Assembler::ldst_op);
  5355   ins_encode(simple_form3_mem_reg( dst, src ) );
  5356   ins_pipe(istore_mem_reg);
  5357 %}
  5358 #endif // _LP64
  5360 //------------Special Nop instructions for bundling - no match rules-----------
  5361 // Nop using the A0 functional unit
  5362 instruct Nop_A0() %{
  5363   ins_cost(0);
  5365   format %{ "NOP    ! Alu Pipeline" %}
  5366   opcode(Assembler::or_op3, Assembler::arith_op);
  5367   ins_encode( form2_nop() );
  5368   ins_pipe(ialu_nop_A0);
  5369 %}
  5371 // Nop using the A1 functional unit
  5372 instruct Nop_A1( ) %{
  5373   ins_cost(0);
  5375   format %{ "NOP    ! Alu Pipeline" %}
  5376   opcode(Assembler::or_op3, Assembler::arith_op);
  5377   ins_encode( form2_nop() );
  5378   ins_pipe(ialu_nop_A1);
  5379 %}
  5381 // Nop using the memory functional unit
  5382 instruct Nop_MS( ) %{
  5383   ins_cost(0);
  5385   format %{ "NOP    ! Memory Pipeline" %}
  5386   ins_encode( emit_mem_nop );
  5387   ins_pipe(mem_nop);
  5388 %}
  5390 // Nop using the floating add functional unit
  5391 instruct Nop_FA( ) %{
  5392   ins_cost(0);
  5394   format %{ "NOP    ! Floating Add Pipeline" %}
  5395   ins_encode( emit_fadd_nop );
  5396   ins_pipe(fadd_nop);
  5397 %}
  5399 // Nop using the branch functional unit
  5400 instruct Nop_BR( ) %{
  5401   ins_cost(0);
  5403   format %{ "NOP    ! Branch Pipeline" %}
  5404   ins_encode( emit_br_nop );
  5405   ins_pipe(br_nop);
  5406 %}
  5408 //----------Load/Store/Move Instructions---------------------------------------
  5409 //----------Load Instructions--------------------------------------------------
  5410 // Load Byte (8bit signed)
  5411 instruct loadB(iRegI dst, memory mem) %{
  5412   match(Set dst (LoadB mem));
  5413   ins_cost(MEMORY_REF_COST);
  5415   size(4);
  5416   format %{ "LDSB   $mem,$dst\t! byte" %}
  5417   ins_encode %{
  5418     __ ldsb($mem$$Address, $dst$$Register);
  5419   %}
  5420   ins_pipe(iload_mask_mem);
  5421 %}
  5423 // Load Byte (8bit signed) into a Long Register
  5424 instruct loadB2L(iRegL dst, memory mem) %{
  5425   match(Set dst (ConvI2L (LoadB mem)));
  5426   ins_cost(MEMORY_REF_COST);
  5428   size(4);
  5429   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
  5430   ins_encode %{
  5431     __ ldsb($mem$$Address, $dst$$Register);
  5432   %}
  5433   ins_pipe(iload_mask_mem);
  5434 %}
  5436 // Load Unsigned Byte (8bit UNsigned) into an int reg
  5437 instruct loadUB(iRegI dst, memory mem) %{
  5438   match(Set dst (LoadUB mem));
  5439   ins_cost(MEMORY_REF_COST);
  5441   size(4);
  5442   format %{ "LDUB   $mem,$dst\t! ubyte" %}
  5443   ins_encode %{
  5444     __ ldub($mem$$Address, $dst$$Register);
  5445   %}
  5446   ins_pipe(iload_mem);
  5447 %}
  5449 // Load Unsigned Byte (8bit UNsigned) into a Long Register
  5450 instruct loadUB2L(iRegL dst, memory mem) %{
  5451   match(Set dst (ConvI2L (LoadUB mem)));
  5452   ins_cost(MEMORY_REF_COST);
  5454   size(4);
  5455   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
  5456   ins_encode %{
  5457     __ ldub($mem$$Address, $dst$$Register);
  5458   %}
  5459   ins_pipe(iload_mem);
  5460 %}
  5462 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
  5463 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
  5464   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
  5465   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5467   size(2*4);
  5468   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
  5469             "AND    $dst,$mask,$dst" %}
  5470   ins_encode %{
  5471     __ ldub($mem$$Address, $dst$$Register);
  5472     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
  5473   %}
  5474   ins_pipe(iload_mem);
  5475 %}
  5477 // Load Short (16bit signed)
  5478 instruct loadS(iRegI dst, memory mem) %{
  5479   match(Set dst (LoadS mem));
  5480   ins_cost(MEMORY_REF_COST);
  5482   size(4);
  5483   format %{ "LDSH   $mem,$dst\t! short" %}
  5484   ins_encode %{
  5485     __ ldsh($mem$$Address, $dst$$Register);
  5486   %}
  5487   ins_pipe(iload_mask_mem);
  5488 %}
  5490 // Load Short (16 bit signed) to Byte (8 bit signed)
  5491 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5492   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
  5493   ins_cost(MEMORY_REF_COST);
  5495   size(4);
  5497   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
  5498   ins_encode %{
  5499     __ ldsb($mem$$Address, $dst$$Register, 1);
  5500   %}
  5501   ins_pipe(iload_mask_mem);
  5502 %}
  5504 // Load Short (16bit signed) into a Long Register
  5505 instruct loadS2L(iRegL dst, memory mem) %{
  5506   match(Set dst (ConvI2L (LoadS mem)));
  5507   ins_cost(MEMORY_REF_COST);
  5509   size(4);
  5510   format %{ "LDSH   $mem,$dst\t! short -> long" %}
  5511   ins_encode %{
  5512     __ ldsh($mem$$Address, $dst$$Register);
  5513   %}
  5514   ins_pipe(iload_mask_mem);
  5515 %}
  5517 // Load Unsigned Short/Char (16bit UNsigned)
  5518 instruct loadUS(iRegI dst, memory mem) %{
  5519   match(Set dst (LoadUS mem));
  5520   ins_cost(MEMORY_REF_COST);
  5522   size(4);
  5523   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
  5524   ins_encode %{
  5525     __ lduh($mem$$Address, $dst$$Register);
  5526   %}
  5527   ins_pipe(iload_mem);
  5528 %}
  5530 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
  5531 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5532   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
  5533   ins_cost(MEMORY_REF_COST);
  5535   size(4);
  5536   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
  5537   ins_encode %{
  5538     __ ldsb($mem$$Address, $dst$$Register, 1);
  5539   %}
  5540   ins_pipe(iload_mask_mem);
  5541 %}
  5543 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
  5544 instruct loadUS2L(iRegL dst, memory mem) %{
  5545   match(Set dst (ConvI2L (LoadUS mem)));
  5546   ins_cost(MEMORY_REF_COST);
  5548   size(4);
  5549   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
  5550   ins_encode %{
  5551     __ lduh($mem$$Address, $dst$$Register);
  5552   %}
  5553   ins_pipe(iload_mem);
  5554 %}
  5556 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
  5557 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5558   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5559   ins_cost(MEMORY_REF_COST);
  5561   size(4);
  5562   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
  5563   ins_encode %{
  5564     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
  5565   %}
  5566   ins_pipe(iload_mem);
  5567 %}
  5569 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
  5570 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5571   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5572   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5574   size(2*4);
  5575   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
  5576             "AND    $dst,$mask,$dst" %}
  5577   ins_encode %{
  5578     Register Rdst = $dst$$Register;
  5579     __ lduh($mem$$Address, Rdst);
  5580     __ and3(Rdst, $mask$$constant, Rdst);
  5581   %}
  5582   ins_pipe(iload_mem);
  5583 %}
  5585 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
  5586 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
  5587   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
  5588   effect(TEMP dst, TEMP tmp);
  5589   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5591   size((3+1)*4);  // set may use two instructions.
  5592   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
  5593             "SET    $mask,$tmp\n\t"
  5594             "AND    $dst,$tmp,$dst" %}
  5595   ins_encode %{
  5596     Register Rdst = $dst$$Register;
  5597     Register Rtmp = $tmp$$Register;
  5598     __ lduh($mem$$Address, Rdst);
  5599     __ set($mask$$constant, Rtmp);
  5600     __ and3(Rdst, Rtmp, Rdst);
  5601   %}
  5602   ins_pipe(iload_mem);
  5603 %}
  5605 // Load Integer
  5606 instruct loadI(iRegI dst, memory mem) %{
  5607   match(Set dst (LoadI mem));
  5608   ins_cost(MEMORY_REF_COST);
  5610   size(4);
  5611   format %{ "LDUW   $mem,$dst\t! int" %}
  5612   ins_encode %{
  5613     __ lduw($mem$$Address, $dst$$Register);
  5614   %}
  5615   ins_pipe(iload_mem);
  5616 %}
  5618 // Load Integer to Byte (8 bit signed)
  5619 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
  5620   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
  5621   ins_cost(MEMORY_REF_COST);
  5623   size(4);
  5625   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
  5626   ins_encode %{
  5627     __ ldsb($mem$$Address, $dst$$Register, 3);
  5628   %}
  5629   ins_pipe(iload_mask_mem);
  5630 %}
  5632 // Load Integer to Unsigned Byte (8 bit UNsigned)
  5633 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
  5634   match(Set dst (AndI (LoadI mem) mask));
  5635   ins_cost(MEMORY_REF_COST);
  5637   size(4);
  5639   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
  5640   ins_encode %{
  5641     __ ldub($mem$$Address, $dst$$Register, 3);
  5642   %}
  5643   ins_pipe(iload_mask_mem);
  5644 %}
  5646 // Load Integer to Short (16 bit signed)
  5647 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
  5648   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
  5649   ins_cost(MEMORY_REF_COST);
  5651   size(4);
  5653   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
  5654   ins_encode %{
  5655     __ ldsh($mem$$Address, $dst$$Register, 2);
  5656   %}
  5657   ins_pipe(iload_mask_mem);
  5658 %}
  5660 // Load Integer to Unsigned Short (16 bit UNsigned)
  5661 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
  5662   match(Set dst (AndI (LoadI mem) mask));
  5663   ins_cost(MEMORY_REF_COST);
  5665   size(4);
  5667   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
  5668   ins_encode %{
  5669     __ lduh($mem$$Address, $dst$$Register, 2);
  5670   %}
  5671   ins_pipe(iload_mask_mem);
  5672 %}
  5674 // Load Integer into a Long Register
  5675 instruct loadI2L(iRegL dst, memory mem) %{
  5676   match(Set dst (ConvI2L (LoadI mem)));
  5677   ins_cost(MEMORY_REF_COST);
  5679   size(4);
  5680   format %{ "LDSW   $mem,$dst\t! int -> long" %}
  5681   ins_encode %{
  5682     __ ldsw($mem$$Address, $dst$$Register);
  5683   %}
  5684   ins_pipe(iload_mask_mem);
  5685 %}
  5687 // Load Integer with mask 0xFF into a Long Register
  5688 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
  5689   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5690   ins_cost(MEMORY_REF_COST);
  5692   size(4);
  5693   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
  5694   ins_encode %{
  5695     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
  5696   %}
  5697   ins_pipe(iload_mem);
  5698 %}
  5700 // Load Integer with mask 0xFFFF into a Long Register
  5701 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
  5702   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5703   ins_cost(MEMORY_REF_COST);
  5705   size(4);
  5706   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
  5707   ins_encode %{
  5708     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
  5709   %}
  5710   ins_pipe(iload_mem);
  5711 %}
  5713 // Load Integer with a 13-bit mask into a Long Register
  5714 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
  5715   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5716   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5718   size(2*4);
  5719   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
  5720             "AND    $dst,$mask,$dst" %}
  5721   ins_encode %{
  5722     Register Rdst = $dst$$Register;
  5723     __ lduw($mem$$Address, Rdst);
  5724     __ and3(Rdst, $mask$$constant, Rdst);
  5725   %}
  5726   ins_pipe(iload_mem);
  5727 %}
  5729 // Load Integer with a 32-bit mask into a Long Register
  5730 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
  5731   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
  5732   effect(TEMP dst, TEMP tmp);
  5733   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
  5735   size((3+1)*4);  // set may use two instructions.
  5736   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
  5737             "SET    $mask,$tmp\n\t"
  5738             "AND    $dst,$tmp,$dst" %}
  5739   ins_encode %{
  5740     Register Rdst = $dst$$Register;
  5741     Register Rtmp = $tmp$$Register;
  5742     __ lduw($mem$$Address, Rdst);
  5743     __ set($mask$$constant, Rtmp);
  5744     __ and3(Rdst, Rtmp, Rdst);
  5745   %}
  5746   ins_pipe(iload_mem);
  5747 %}
  5749 // Load Unsigned Integer into a Long Register
  5750 instruct loadUI2L(iRegL dst, memory mem) %{
  5751   match(Set dst (LoadUI2L mem));
  5752   ins_cost(MEMORY_REF_COST);
  5754   size(4);
  5755   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
  5756   ins_encode %{
  5757     __ lduw($mem$$Address, $dst$$Register);
  5758   %}
  5759   ins_pipe(iload_mem);
  5760 %}
  5762 // Load Long - aligned
  5763 instruct loadL(iRegL dst, memory mem ) %{
  5764   match(Set dst (LoadL mem));
  5765   ins_cost(MEMORY_REF_COST);
  5767   size(4);
  5768   format %{ "LDX    $mem,$dst\t! long" %}
  5769   ins_encode %{
  5770     __ ldx($mem$$Address, $dst$$Register);
  5771   %}
  5772   ins_pipe(iload_mem);
  5773 %}
  5775 // Load Long - UNaligned
  5776 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
  5777   match(Set dst (LoadL_unaligned mem));
  5778   effect(KILL tmp);
  5779   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5780   size(16);
  5781   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
  5782           "\tLDUW   $mem  ,$dst\n"
  5783           "\tSLLX   #32, $dst, $dst\n"
  5784           "\tOR     $dst, R_O7, $dst" %}
  5785   opcode(Assembler::lduw_op3);
  5786   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
  5787   ins_pipe(iload_mem);
  5788 %}
  5790 // Load Aligned Packed Byte into a Double Register
  5791 instruct loadA8B(regD dst, memory mem) %{
  5792   match(Set dst (Load8B mem));
  5793   ins_cost(MEMORY_REF_COST);
  5794   size(4);
  5795   format %{ "LDDF   $mem,$dst\t! packed8B" %}
  5796   opcode(Assembler::lddf_op3);
  5797   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5798   ins_pipe(floadD_mem);
  5799 %}
  5801 // Load Aligned Packed Char into a Double Register
  5802 instruct loadA4C(regD dst, memory mem) %{
  5803   match(Set dst (Load4C mem));
  5804   ins_cost(MEMORY_REF_COST);
  5805   size(4);
  5806   format %{ "LDDF   $mem,$dst\t! packed4C" %}
  5807   opcode(Assembler::lddf_op3);
  5808   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5809   ins_pipe(floadD_mem);
  5810 %}
  5812 // Load Aligned Packed Short into a Double Register
  5813 instruct loadA4S(regD dst, memory mem) %{
  5814   match(Set dst (Load4S mem));
  5815   ins_cost(MEMORY_REF_COST);
  5816   size(4);
  5817   format %{ "LDDF   $mem,$dst\t! packed4S" %}
  5818   opcode(Assembler::lddf_op3);
  5819   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5820   ins_pipe(floadD_mem);
  5821 %}
  5823 // Load Aligned Packed Int into a Double Register
  5824 instruct loadA2I(regD dst, memory mem) %{
  5825   match(Set dst (Load2I mem));
  5826   ins_cost(MEMORY_REF_COST);
  5827   size(4);
  5828   format %{ "LDDF   $mem,$dst\t! packed2I" %}
  5829   opcode(Assembler::lddf_op3);
  5830   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5831   ins_pipe(floadD_mem);
  5832 %}
  5834 // Load Range
  5835 instruct loadRange(iRegI dst, memory mem) %{
  5836   match(Set dst (LoadRange mem));
  5837   ins_cost(MEMORY_REF_COST);
  5839   size(4);
  5840   format %{ "LDUW   $mem,$dst\t! range" %}
  5841   opcode(Assembler::lduw_op3);
  5842   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5843   ins_pipe(iload_mem);
  5844 %}
  5846 // Load Integer into %f register (for fitos/fitod)
  5847 instruct loadI_freg(regF dst, memory mem) %{
  5848   match(Set dst (LoadI mem));
  5849   ins_cost(MEMORY_REF_COST);
  5850   size(4);
  5852   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
  5853   opcode(Assembler::ldf_op3);
  5854   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5855   ins_pipe(floadF_mem);
  5856 %}
  5858 // Load Pointer
  5859 instruct loadP(iRegP dst, memory mem) %{
  5860   match(Set dst (LoadP mem));
  5861   ins_cost(MEMORY_REF_COST);
  5862   size(4);
  5864 #ifndef _LP64
  5865   format %{ "LDUW   $mem,$dst\t! ptr" %}
  5866   ins_encode %{
  5867     __ lduw($mem$$Address, $dst$$Register);
  5868   %}
  5869 #else
  5870   format %{ "LDX    $mem,$dst\t! ptr" %}
  5871   ins_encode %{
  5872     __ ldx($mem$$Address, $dst$$Register);
  5873   %}
  5874 #endif
  5875   ins_pipe(iload_mem);
  5876 %}
  5878 // Load Compressed Pointer
  5879 instruct loadN(iRegN dst, memory mem) %{
  5880   match(Set dst (LoadN mem));
  5881   ins_cost(MEMORY_REF_COST);
  5882   size(4);
  5884   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
  5885   ins_encode %{
  5886     __ lduw($mem$$Address, $dst$$Register);
  5887   %}
  5888   ins_pipe(iload_mem);
  5889 %}
  5891 // Load Klass Pointer
  5892 instruct loadKlass(iRegP dst, memory mem) %{
  5893   match(Set dst (LoadKlass mem));
  5894   ins_cost(MEMORY_REF_COST);
  5895   size(4);
  5897 #ifndef _LP64
  5898   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
  5899   ins_encode %{
  5900     __ lduw($mem$$Address, $dst$$Register);
  5901   %}
  5902 #else
  5903   format %{ "LDX    $mem,$dst\t! klass ptr" %}
  5904   ins_encode %{
  5905     __ ldx($mem$$Address, $dst$$Register);
  5906   %}
  5907 #endif
  5908   ins_pipe(iload_mem);
  5909 %}
  5911 // Load narrow Klass Pointer
  5912 instruct loadNKlass(iRegN dst, memory mem) %{
  5913   match(Set dst (LoadNKlass mem));
  5914   ins_cost(MEMORY_REF_COST);
  5915   size(4);
  5917   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
  5918   ins_encode %{
  5919     __ lduw($mem$$Address, $dst$$Register);
  5920   %}
  5921   ins_pipe(iload_mem);
  5922 %}
  5924 // Load Double
  5925 instruct loadD(regD dst, memory mem) %{
  5926   match(Set dst (LoadD mem));
  5927   ins_cost(MEMORY_REF_COST);
  5929   size(4);
  5930   format %{ "LDDF   $mem,$dst" %}
  5931   opcode(Assembler::lddf_op3);
  5932   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5933   ins_pipe(floadD_mem);
  5934 %}
  5936 // Load Double - UNaligned
  5937 instruct loadD_unaligned(regD_low dst, memory mem ) %{
  5938   match(Set dst (LoadD_unaligned mem));
  5939   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
  5940   size(8);
  5941   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
  5942           "\tLDF    $mem+4,$dst.lo\t!" %}
  5943   opcode(Assembler::ldf_op3);
  5944   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
  5945   ins_pipe(iload_mem);
  5946 %}
  5948 // Load Float
  5949 instruct loadF(regF dst, memory mem) %{
  5950   match(Set dst (LoadF mem));
  5951   ins_cost(MEMORY_REF_COST);
  5953   size(4);
  5954   format %{ "LDF    $mem,$dst" %}
  5955   opcode(Assembler::ldf_op3);
  5956   ins_encode(simple_form3_mem_reg( mem, dst ) );
  5957   ins_pipe(floadF_mem);
  5958 %}
  5960 // Load Constant
  5961 instruct loadConI( iRegI dst, immI src ) %{
  5962   match(Set dst src);
  5963   ins_cost(DEFAULT_COST * 3/2);
  5964   format %{ "SET    $src,$dst" %}
  5965   ins_encode( Set32(src, dst) );
  5966   ins_pipe(ialu_hi_lo_reg);
  5967 %}
  5969 instruct loadConI13( iRegI dst, immI13 src ) %{
  5970   match(Set dst src);
  5972   size(4);
  5973   format %{ "MOV    $src,$dst" %}
  5974   ins_encode( Set13( src, dst ) );
  5975   ins_pipe(ialu_imm);
  5976 %}
  5978 instruct loadConP(iRegP dst, immP src) %{
  5979   match(Set dst src);
  5980   ins_cost(DEFAULT_COST * 3/2);
  5981   format %{ "SET    $src,$dst\t!ptr" %}
  5982   // This rule does not use "expand" unlike loadConI because then
  5983   // the result type is not known to be an Oop.  An ADLC
  5984   // enhancement will be needed to make that work - not worth it!
  5986   ins_encode( SetPtr( src, dst ) );
  5987   ins_pipe(loadConP);
  5989 %}
  5991 instruct loadConP0(iRegP dst, immP0 src) %{
  5992   match(Set dst src);
  5994   size(4);
  5995   format %{ "CLR    $dst\t!ptr" %}
  5996   ins_encode( SetNull( dst ) );
  5997   ins_pipe(ialu_imm);
  5998 %}
  6000 instruct loadConP_poll(iRegP dst, immP_poll src) %{
  6001   match(Set dst src);
  6002   ins_cost(DEFAULT_COST);
  6003   format %{ "SET    $src,$dst\t!ptr" %}
  6004   ins_encode %{
  6005     AddressLiteral polling_page(os::get_polling_page());
  6006     __ sethi(polling_page, reg_to_register_object($dst$$reg));
  6007   %}
  6008   ins_pipe(loadConP_poll);
  6009 %}
  6011 instruct loadConN0(iRegN dst, immN0 src) %{
  6012   match(Set dst src);
  6014   size(4);
  6015   format %{ "CLR    $dst\t! compressed NULL ptr" %}
  6016   ins_encode( SetNull( dst ) );
  6017   ins_pipe(ialu_imm);
  6018 %}
  6020 instruct loadConN(iRegN dst, immN src) %{
  6021   match(Set dst src);
  6022   ins_cost(DEFAULT_COST * 3/2);
  6023   format %{ "SET    $src,$dst\t! compressed ptr" %}
  6024   ins_encode %{
  6025     Register dst = $dst$$Register;
  6026     __ set_narrow_oop((jobject)$src$$constant, dst);
  6027   %}
  6028   ins_pipe(ialu_hi_lo_reg);
  6029 %}
  6031 instruct loadConL(iRegL dst, immL src, o7RegL tmp) %{
  6032   // %%% maybe this should work like loadConD
  6033   match(Set dst src);
  6034   effect(KILL tmp);
  6035   ins_cost(DEFAULT_COST * 4);
  6036   format %{ "SET64   $src,$dst KILL $tmp\t! long" %}
  6037   ins_encode( LdImmL(src, dst, tmp) );
  6038   ins_pipe(loadConL);
  6039 %}
  6041 instruct loadConL0( iRegL dst, immL0 src ) %{
  6042   match(Set dst src);
  6043   ins_cost(DEFAULT_COST);
  6044   size(4);
  6045   format %{ "CLR    $dst\t! long" %}
  6046   ins_encode( Set13( src, dst ) );
  6047   ins_pipe(ialu_imm);
  6048 %}
  6050 instruct loadConL13( iRegL dst, immL13 src ) %{
  6051   match(Set dst src);
  6052   ins_cost(DEFAULT_COST * 2);
  6054   size(4);
  6055   format %{ "MOV    $src,$dst\t! long" %}
  6056   ins_encode( Set13( src, dst ) );
  6057   ins_pipe(ialu_imm);
  6058 %}
  6060 instruct loadConF(regF dst, immF src, o7RegP tmp) %{
  6061   match(Set dst src);
  6062   effect(KILL tmp);
  6064 #ifdef _LP64
  6065   size(8*4);
  6066 #else
  6067   size(2*4);
  6068 #endif
  6070   format %{ "SETHI  hi(&$src),$tmp\t!get float $src from table\n\t"
  6071             "LDF    [$tmp+lo(&$src)],$dst" %}
  6072   ins_encode %{
  6073     address float_address = __ float_constant($src$$constant);
  6074     RelocationHolder rspec = internal_word_Relocation::spec(float_address);
  6075     AddressLiteral addrlit(float_address, rspec);
  6077     __ sethi(addrlit, $tmp$$Register);
  6078     __ ldf(FloatRegisterImpl::S, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6079   %}
  6080   ins_pipe(loadConFD);
  6081 %}
  6083 instruct loadConD(regD dst, immD src, o7RegP tmp) %{
  6084   match(Set dst src);
  6085   effect(KILL tmp);
  6087 #ifdef _LP64
  6088   size(8*4);
  6089 #else
  6090   size(2*4);
  6091 #endif
  6093   format %{ "SETHI  hi(&$src),$tmp\t!get double $src from table\n\t"
  6094             "LDDF   [$tmp+lo(&$src)],$dst" %}
  6095   ins_encode %{
  6096     address double_address = __ double_constant($src$$constant);
  6097     RelocationHolder rspec = internal_word_Relocation::spec(double_address);
  6098     AddressLiteral addrlit(double_address, rspec);
  6100     __ sethi(addrlit, $tmp$$Register);
  6101     // XXX This is a quick fix for 6833573.
  6102     //__ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), $dst$$FloatRegister, rspec);
  6103     __ ldf(FloatRegisterImpl::D, $tmp$$Register, addrlit.low10(), as_DoubleFloatRegister($dst$$reg), rspec);
  6104   %}
  6105   ins_pipe(loadConFD);
  6106 %}
  6108 // Prefetch instructions.
  6109 // Must be safe to execute with invalid address (cannot fault).
  6111 instruct prefetchr( memory mem ) %{
  6112   match( PrefetchRead mem );
  6113   ins_cost(MEMORY_REF_COST);
  6115   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
  6116   opcode(Assembler::prefetch_op3);
  6117   ins_encode( form3_mem_prefetch_read( mem ) );
  6118   ins_pipe(iload_mem);
  6119 %}
  6121 instruct prefetchw( memory mem ) %{
  6122   predicate(AllocatePrefetchStyle != 3 );
  6123   match( PrefetchWrite mem );
  6124   ins_cost(MEMORY_REF_COST);
  6126   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
  6127   opcode(Assembler::prefetch_op3);
  6128   ins_encode( form3_mem_prefetch_write( mem ) );
  6129   ins_pipe(iload_mem);
  6130 %}
  6132 // Use BIS instruction to prefetch.
  6133 instruct prefetchw_bis( memory mem ) %{
  6134   predicate(AllocatePrefetchStyle == 3);
  6135   match( PrefetchWrite mem );
  6136   ins_cost(MEMORY_REF_COST);
  6138   format %{ "STXA   G0,$mem\t! // Block initializing store" %}
  6139   ins_encode %{
  6140      Register base = as_Register($mem$$base);
  6141      int disp = $mem$$disp;
  6142      if (disp != 0) {
  6143        __ add(base, AllocatePrefetchStepSize, base);
  6145      __ stxa(G0, base, G0, ASI_BLK_INIT_QUAD_LDD_P);
  6146   %}
  6147   ins_pipe(istore_mem_reg);
  6148 %}
  6150 //----------Store Instructions-------------------------------------------------
  6151 // Store Byte
  6152 instruct storeB(memory mem, iRegI src) %{
  6153   match(Set mem (StoreB mem src));
  6154   ins_cost(MEMORY_REF_COST);
  6156   size(4);
  6157   format %{ "STB    $src,$mem\t! byte" %}
  6158   opcode(Assembler::stb_op3);
  6159   ins_encode(simple_form3_mem_reg( mem, src ) );
  6160   ins_pipe(istore_mem_reg);
  6161 %}
  6163 instruct storeB0(memory mem, immI0 src) %{
  6164   match(Set mem (StoreB mem src));
  6165   ins_cost(MEMORY_REF_COST);
  6167   size(4);
  6168   format %{ "STB    $src,$mem\t! byte" %}
  6169   opcode(Assembler::stb_op3);
  6170   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6171   ins_pipe(istore_mem_zero);
  6172 %}
  6174 instruct storeCM0(memory mem, immI0 src) %{
  6175   match(Set mem (StoreCM mem src));
  6176   ins_cost(MEMORY_REF_COST);
  6178   size(4);
  6179   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
  6180   opcode(Assembler::stb_op3);
  6181   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6182   ins_pipe(istore_mem_zero);
  6183 %}
  6185 // Store Char/Short
  6186 instruct storeC(memory mem, iRegI src) %{
  6187   match(Set mem (StoreC mem src));
  6188   ins_cost(MEMORY_REF_COST);
  6190   size(4);
  6191   format %{ "STH    $src,$mem\t! short" %}
  6192   opcode(Assembler::sth_op3);
  6193   ins_encode(simple_form3_mem_reg( mem, src ) );
  6194   ins_pipe(istore_mem_reg);
  6195 %}
  6197 instruct storeC0(memory mem, immI0 src) %{
  6198   match(Set mem (StoreC mem src));
  6199   ins_cost(MEMORY_REF_COST);
  6201   size(4);
  6202   format %{ "STH    $src,$mem\t! short" %}
  6203   opcode(Assembler::sth_op3);
  6204   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6205   ins_pipe(istore_mem_zero);
  6206 %}
  6208 // Store Integer
  6209 instruct storeI(memory mem, iRegI src) %{
  6210   match(Set mem (StoreI mem src));
  6211   ins_cost(MEMORY_REF_COST);
  6213   size(4);
  6214   format %{ "STW    $src,$mem" %}
  6215   opcode(Assembler::stw_op3);
  6216   ins_encode(simple_form3_mem_reg( mem, src ) );
  6217   ins_pipe(istore_mem_reg);
  6218 %}
  6220 // Store Long
  6221 instruct storeL(memory mem, iRegL src) %{
  6222   match(Set mem (StoreL mem src));
  6223   ins_cost(MEMORY_REF_COST);
  6224   size(4);
  6225   format %{ "STX    $src,$mem\t! long" %}
  6226   opcode(Assembler::stx_op3);
  6227   ins_encode(simple_form3_mem_reg( mem, src ) );
  6228   ins_pipe(istore_mem_reg);
  6229 %}
  6231 instruct storeI0(memory mem, immI0 src) %{
  6232   match(Set mem (StoreI mem src));
  6233   ins_cost(MEMORY_REF_COST);
  6235   size(4);
  6236   format %{ "STW    $src,$mem" %}
  6237   opcode(Assembler::stw_op3);
  6238   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6239   ins_pipe(istore_mem_zero);
  6240 %}
  6242 instruct storeL0(memory mem, immL0 src) %{
  6243   match(Set mem (StoreL mem src));
  6244   ins_cost(MEMORY_REF_COST);
  6246   size(4);
  6247   format %{ "STX    $src,$mem" %}
  6248   opcode(Assembler::stx_op3);
  6249   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6250   ins_pipe(istore_mem_zero);
  6251 %}
  6253 // Store Integer from float register (used after fstoi)
  6254 instruct storeI_Freg(memory mem, regF src) %{
  6255   match(Set mem (StoreI mem src));
  6256   ins_cost(MEMORY_REF_COST);
  6258   size(4);
  6259   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
  6260   opcode(Assembler::stf_op3);
  6261   ins_encode(simple_form3_mem_reg( mem, src ) );
  6262   ins_pipe(fstoreF_mem_reg);
  6263 %}
  6265 // Store Pointer
  6266 instruct storeP(memory dst, sp_ptr_RegP src) %{
  6267   match(Set dst (StoreP dst src));
  6268   ins_cost(MEMORY_REF_COST);
  6269   size(4);
  6271 #ifndef _LP64
  6272   format %{ "STW    $src,$dst\t! ptr" %}
  6273   opcode(Assembler::stw_op3, 0, REGP_OP);
  6274 #else
  6275   format %{ "STX    $src,$dst\t! ptr" %}
  6276   opcode(Assembler::stx_op3, 0, REGP_OP);
  6277 #endif
  6278   ins_encode( form3_mem_reg( dst, src ) );
  6279   ins_pipe(istore_mem_spORreg);
  6280 %}
  6282 instruct storeP0(memory dst, immP0 src) %{
  6283   match(Set dst (StoreP dst src));
  6284   ins_cost(MEMORY_REF_COST);
  6285   size(4);
  6287 #ifndef _LP64
  6288   format %{ "STW    $src,$dst\t! ptr" %}
  6289   opcode(Assembler::stw_op3, 0, REGP_OP);
  6290 #else
  6291   format %{ "STX    $src,$dst\t! ptr" %}
  6292   opcode(Assembler::stx_op3, 0, REGP_OP);
  6293 #endif
  6294   ins_encode( form3_mem_reg( dst, R_G0 ) );
  6295   ins_pipe(istore_mem_zero);
  6296 %}
  6298 // Store Compressed Pointer
  6299 instruct storeN(memory dst, iRegN src) %{
  6300    match(Set dst (StoreN dst src));
  6301    ins_cost(MEMORY_REF_COST);
  6302    size(4);
  6304    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6305    ins_encode %{
  6306      Register base = as_Register($dst$$base);
  6307      Register index = as_Register($dst$$index);
  6308      Register src = $src$$Register;
  6309      if (index != G0) {
  6310        __ stw(src, base, index);
  6311      } else {
  6312        __ stw(src, base, $dst$$disp);
  6314    %}
  6315    ins_pipe(istore_mem_spORreg);
  6316 %}
  6318 instruct storeN0(memory dst, immN0 src) %{
  6319    match(Set dst (StoreN dst src));
  6320    ins_cost(MEMORY_REF_COST);
  6321    size(4);
  6323    format %{ "STW    $src,$dst\t! compressed ptr" %}
  6324    ins_encode %{
  6325      Register base = as_Register($dst$$base);
  6326      Register index = as_Register($dst$$index);
  6327      if (index != G0) {
  6328        __ stw(0, base, index);
  6329      } else {
  6330        __ stw(0, base, $dst$$disp);
  6332    %}
  6333    ins_pipe(istore_mem_zero);
  6334 %}
  6336 // Store Double
  6337 instruct storeD( memory mem, regD src) %{
  6338   match(Set mem (StoreD mem src));
  6339   ins_cost(MEMORY_REF_COST);
  6341   size(4);
  6342   format %{ "STDF   $src,$mem" %}
  6343   opcode(Assembler::stdf_op3);
  6344   ins_encode(simple_form3_mem_reg( mem, src ) );
  6345   ins_pipe(fstoreD_mem_reg);
  6346 %}
  6348 instruct storeD0( memory mem, immD0 src) %{
  6349   match(Set mem (StoreD mem src));
  6350   ins_cost(MEMORY_REF_COST);
  6352   size(4);
  6353   format %{ "STX    $src,$mem" %}
  6354   opcode(Assembler::stx_op3);
  6355   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6356   ins_pipe(fstoreD_mem_zero);
  6357 %}
  6359 // Store Float
  6360 instruct storeF( memory mem, regF src) %{
  6361   match(Set mem (StoreF mem src));
  6362   ins_cost(MEMORY_REF_COST);
  6364   size(4);
  6365   format %{ "STF    $src,$mem" %}
  6366   opcode(Assembler::stf_op3);
  6367   ins_encode(simple_form3_mem_reg( mem, src ) );
  6368   ins_pipe(fstoreF_mem_reg);
  6369 %}
  6371 instruct storeF0( memory mem, immF0 src) %{
  6372   match(Set mem (StoreF mem src));
  6373   ins_cost(MEMORY_REF_COST);
  6375   size(4);
  6376   format %{ "STW    $src,$mem\t! storeF0" %}
  6377   opcode(Assembler::stw_op3);
  6378   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6379   ins_pipe(fstoreF_mem_zero);
  6380 %}
  6382 // Store Aligned Packed Bytes in Double register to memory
  6383 instruct storeA8B(memory mem, regD src) %{
  6384   match(Set mem (Store8B mem src));
  6385   ins_cost(MEMORY_REF_COST);
  6386   size(4);
  6387   format %{ "STDF   $src,$mem\t! packed8B" %}
  6388   opcode(Assembler::stdf_op3);
  6389   ins_encode(simple_form3_mem_reg( mem, src ) );
  6390   ins_pipe(fstoreD_mem_reg);
  6391 %}
  6393 // Convert oop pointer into compressed form
  6394 instruct encodeHeapOop(iRegN dst, iRegP src) %{
  6395   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  6396   match(Set dst (EncodeP src));
  6397   format %{ "encode_heap_oop $src, $dst" %}
  6398   ins_encode %{
  6399     __ encode_heap_oop($src$$Register, $dst$$Register);
  6400   %}
  6401   ins_pipe(ialu_reg);
  6402 %}
  6404 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
  6405   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  6406   match(Set dst (EncodeP src));
  6407   format %{ "encode_heap_oop_not_null $src, $dst" %}
  6408   ins_encode %{
  6409     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
  6410   %}
  6411   ins_pipe(ialu_reg);
  6412 %}
  6414 instruct decodeHeapOop(iRegP dst, iRegN src) %{
  6415   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6416             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  6417   match(Set dst (DecodeN src));
  6418   format %{ "decode_heap_oop $src, $dst" %}
  6419   ins_encode %{
  6420     __ decode_heap_oop($src$$Register, $dst$$Register);
  6421   %}
  6422   ins_pipe(ialu_reg);
  6423 %}
  6425 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
  6426   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6427             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  6428   match(Set dst (DecodeN src));
  6429   format %{ "decode_heap_oop_not_null $src, $dst" %}
  6430   ins_encode %{
  6431     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
  6432   %}
  6433   ins_pipe(ialu_reg);
  6434 %}
  6437 // Store Zero into Aligned Packed Bytes
  6438 instruct storeA8B0(memory mem, immI0 zero) %{
  6439   match(Set mem (Store8B mem zero));
  6440   ins_cost(MEMORY_REF_COST);
  6441   size(4);
  6442   format %{ "STX    $zero,$mem\t! packed8B" %}
  6443   opcode(Assembler::stx_op3);
  6444   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6445   ins_pipe(fstoreD_mem_zero);
  6446 %}
  6448 // Store Aligned Packed Chars/Shorts in Double register to memory
  6449 instruct storeA4C(memory mem, regD src) %{
  6450   match(Set mem (Store4C mem src));
  6451   ins_cost(MEMORY_REF_COST);
  6452   size(4);
  6453   format %{ "STDF   $src,$mem\t! packed4C" %}
  6454   opcode(Assembler::stdf_op3);
  6455   ins_encode(simple_form3_mem_reg( mem, src ) );
  6456   ins_pipe(fstoreD_mem_reg);
  6457 %}
  6459 // Store Zero into Aligned Packed Chars/Shorts
  6460 instruct storeA4C0(memory mem, immI0 zero) %{
  6461   match(Set mem (Store4C mem (Replicate4C zero)));
  6462   ins_cost(MEMORY_REF_COST);
  6463   size(4);
  6464   format %{ "STX    $zero,$mem\t! packed4C" %}
  6465   opcode(Assembler::stx_op3);
  6466   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6467   ins_pipe(fstoreD_mem_zero);
  6468 %}
  6470 // Store Aligned Packed Ints in Double register to memory
  6471 instruct storeA2I(memory mem, regD src) %{
  6472   match(Set mem (Store2I mem src));
  6473   ins_cost(MEMORY_REF_COST);
  6474   size(4);
  6475   format %{ "STDF   $src,$mem\t! packed2I" %}
  6476   opcode(Assembler::stdf_op3);
  6477   ins_encode(simple_form3_mem_reg( mem, src ) );
  6478   ins_pipe(fstoreD_mem_reg);
  6479 %}
  6481 // Store Zero into Aligned Packed Ints
  6482 instruct storeA2I0(memory mem, immI0 zero) %{
  6483   match(Set mem (Store2I mem zero));
  6484   ins_cost(MEMORY_REF_COST);
  6485   size(4);
  6486   format %{ "STX    $zero,$mem\t! packed2I" %}
  6487   opcode(Assembler::stx_op3);
  6488   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
  6489   ins_pipe(fstoreD_mem_zero);
  6490 %}
  6493 //----------MemBar Instructions-----------------------------------------------
  6494 // Memory barrier flavors
  6496 instruct membar_acquire() %{
  6497   match(MemBarAcquire);
  6498   ins_cost(4*MEMORY_REF_COST);
  6500   size(0);
  6501   format %{ "MEMBAR-acquire" %}
  6502   ins_encode( enc_membar_acquire );
  6503   ins_pipe(long_memory_op);
  6504 %}
  6506 instruct membar_acquire_lock() %{
  6507   match(MemBarAcquire);
  6508   predicate(Matcher::prior_fast_lock(n));
  6509   ins_cost(0);
  6511   size(0);
  6512   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
  6513   ins_encode( );
  6514   ins_pipe(empty);
  6515 %}
  6517 instruct membar_release() %{
  6518   match(MemBarRelease);
  6519   ins_cost(4*MEMORY_REF_COST);
  6521   size(0);
  6522   format %{ "MEMBAR-release" %}
  6523   ins_encode( enc_membar_release );
  6524   ins_pipe(long_memory_op);
  6525 %}
  6527 instruct membar_release_lock() %{
  6528   match(MemBarRelease);
  6529   predicate(Matcher::post_fast_unlock(n));
  6530   ins_cost(0);
  6532   size(0);
  6533   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
  6534   ins_encode( );
  6535   ins_pipe(empty);
  6536 %}
  6538 instruct membar_volatile() %{
  6539   match(MemBarVolatile);
  6540   ins_cost(4*MEMORY_REF_COST);
  6542   size(4);
  6543   format %{ "MEMBAR-volatile" %}
  6544   ins_encode( enc_membar_volatile );
  6545   ins_pipe(long_memory_op);
  6546 %}
  6548 instruct unnecessary_membar_volatile() %{
  6549   match(MemBarVolatile);
  6550   predicate(Matcher::post_store_load_barrier(n));
  6551   ins_cost(0);
  6553   size(0);
  6554   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
  6555   ins_encode( );
  6556   ins_pipe(empty);
  6557 %}
  6559 //----------Register Move Instructions-----------------------------------------
  6560 instruct roundDouble_nop(regD dst) %{
  6561   match(Set dst (RoundDouble dst));
  6562   ins_cost(0);
  6563   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6564   ins_encode( );
  6565   ins_pipe(empty);
  6566 %}
  6569 instruct roundFloat_nop(regF dst) %{
  6570   match(Set dst (RoundFloat dst));
  6571   ins_cost(0);
  6572   // SPARC results are already "rounded" (i.e., normal-format IEEE)
  6573   ins_encode( );
  6574   ins_pipe(empty);
  6575 %}
  6578 // Cast Index to Pointer for unsafe natives
  6579 instruct castX2P(iRegX src, iRegP dst) %{
  6580   match(Set dst (CastX2P src));
  6582   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
  6583   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6584   ins_pipe(ialu_reg);
  6585 %}
  6587 // Cast Pointer to Index for unsafe natives
  6588 instruct castP2X(iRegP src, iRegX dst) %{
  6589   match(Set dst (CastP2X src));
  6591   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
  6592   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
  6593   ins_pipe(ialu_reg);
  6594 %}
  6596 instruct stfSSD(stackSlotD stkSlot, regD src) %{
  6597   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6598   match(Set stkSlot src);   // chain rule
  6599   ins_cost(MEMORY_REF_COST);
  6600   format %{ "STDF   $src,$stkSlot\t!stk" %}
  6601   opcode(Assembler::stdf_op3);
  6602   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6603   ins_pipe(fstoreD_stk_reg);
  6604 %}
  6606 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
  6607   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6608   match(Set dst stkSlot);   // chain rule
  6609   ins_cost(MEMORY_REF_COST);
  6610   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
  6611   opcode(Assembler::lddf_op3);
  6612   ins_encode(simple_form3_mem_reg(stkSlot, dst));
  6613   ins_pipe(floadD_stk);
  6614 %}
  6616 instruct stfSSF(stackSlotF stkSlot, regF src) %{
  6617   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
  6618   match(Set stkSlot src);   // chain rule
  6619   ins_cost(MEMORY_REF_COST);
  6620   format %{ "STF   $src,$stkSlot\t!stk" %}
  6621   opcode(Assembler::stf_op3);
  6622   ins_encode(simple_form3_mem_reg(stkSlot, src));
  6623   ins_pipe(fstoreF_stk_reg);
  6624 %}
  6626 //----------Conditional Move---------------------------------------------------
  6627 // Conditional move
  6628 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
  6629   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6630   ins_cost(150);
  6631   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6632   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6633   ins_pipe(ialu_reg);
  6634 %}
  6636 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
  6637   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
  6638   ins_cost(140);
  6639   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6640   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6641   ins_pipe(ialu_imm);
  6642 %}
  6644 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
  6645   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6646   ins_cost(150);
  6647   size(4);
  6648   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6649   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6650   ins_pipe(ialu_reg);
  6651 %}
  6653 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
  6654   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6655   ins_cost(140);
  6656   size(4);
  6657   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6658   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6659   ins_pipe(ialu_imm);
  6660 %}
  6662 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
  6663   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6664   ins_cost(150);
  6665   size(4);
  6666   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6667   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6668   ins_pipe(ialu_reg);
  6669 %}
  6671 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
  6672   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
  6673   ins_cost(140);
  6674   size(4);
  6675   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6676   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6677   ins_pipe(ialu_imm);
  6678 %}
  6680 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
  6681   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6682   ins_cost(150);
  6683   size(4);
  6684   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6685   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6686   ins_pipe(ialu_reg);
  6687 %}
  6689 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
  6690   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
  6691   ins_cost(140);
  6692   size(4);
  6693   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6694   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6695   ins_pipe(ialu_imm);
  6696 %}
  6698 // Conditional move for RegN. Only cmov(reg,reg).
  6699 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
  6700   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
  6701   ins_cost(150);
  6702   format %{ "MOV$cmp $pcc,$src,$dst" %}
  6703   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6704   ins_pipe(ialu_reg);
  6705 %}
  6707 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6708 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
  6709   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6710   ins_cost(150);
  6711   size(4);
  6712   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6713   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6714   ins_pipe(ialu_reg);
  6715 %}
  6717 // This instruction also works with CmpN so we don't need cmovNN_reg.
  6718 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
  6719   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
  6720   ins_cost(150);
  6721   size(4);
  6722   format %{ "MOV$cmp  $icc,$src,$dst" %}
  6723   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6724   ins_pipe(ialu_reg);
  6725 %}
  6727 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
  6728   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
  6729   ins_cost(150);
  6730   size(4);
  6731   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6732   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6733   ins_pipe(ialu_reg);
  6734 %}
  6736 // Conditional move
  6737 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
  6738   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6739   ins_cost(150);
  6740   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6741   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6742   ins_pipe(ialu_reg);
  6743 %}
  6745 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
  6746   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
  6747   ins_cost(140);
  6748   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
  6749   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6750   ins_pipe(ialu_imm);
  6751 %}
  6753 // This instruction also works with CmpN so we don't need cmovPN_reg.
  6754 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
  6755   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6756   ins_cost(150);
  6758   size(4);
  6759   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6760   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6761   ins_pipe(ialu_reg);
  6762 %}
  6764 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
  6765   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6766   ins_cost(150);
  6768   size(4);
  6769   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6770   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6771   ins_pipe(ialu_reg);
  6772 %}
  6774 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
  6775   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6776   ins_cost(140);
  6778   size(4);
  6779   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6780   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6781   ins_pipe(ialu_imm);
  6782 %}
  6784 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
  6785   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
  6786   ins_cost(140);
  6788   size(4);
  6789   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
  6790   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
  6791   ins_pipe(ialu_imm);
  6792 %}
  6794 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
  6795   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6796   ins_cost(150);
  6797   size(4);
  6798   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6799   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6800   ins_pipe(ialu_imm);
  6801 %}
  6803 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
  6804   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
  6805   ins_cost(140);
  6806   size(4);
  6807   format %{ "MOV$cmp $fcc,$src,$dst" %}
  6808   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
  6809   ins_pipe(ialu_imm);
  6810 %}
  6812 // Conditional move
  6813 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
  6814   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
  6815   ins_cost(150);
  6816   opcode(0x101);
  6817   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6818   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6819   ins_pipe(int_conditional_float_move);
  6820 %}
  6822 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
  6823   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6824   ins_cost(150);
  6826   size(4);
  6827   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6828   opcode(0x101);
  6829   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6830   ins_pipe(int_conditional_float_move);
  6831 %}
  6833 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
  6834   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
  6835   ins_cost(150);
  6837   size(4);
  6838   format %{ "FMOVS$cmp $icc,$src,$dst" %}
  6839   opcode(0x101);
  6840   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6841   ins_pipe(int_conditional_float_move);
  6842 %}
  6844 // Conditional move,
  6845 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
  6846   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
  6847   ins_cost(150);
  6848   size(4);
  6849   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
  6850   opcode(0x1);
  6851   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6852   ins_pipe(int_conditional_double_move);
  6853 %}
  6855 // Conditional move
  6856 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
  6857   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
  6858   ins_cost(150);
  6859   size(4);
  6860   opcode(0x102);
  6861   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
  6862   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6863   ins_pipe(int_conditional_double_move);
  6864 %}
  6866 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
  6867   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6868   ins_cost(150);
  6870   size(4);
  6871   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6872   opcode(0x102);
  6873   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6874   ins_pipe(int_conditional_double_move);
  6875 %}
  6877 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
  6878   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
  6879   ins_cost(150);
  6881   size(4);
  6882   format %{ "FMOVD$cmp $icc,$src,$dst" %}
  6883   opcode(0x102);
  6884   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
  6885   ins_pipe(int_conditional_double_move);
  6886 %}
  6888 // Conditional move,
  6889 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
  6890   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
  6891   ins_cost(150);
  6892   size(4);
  6893   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
  6894   opcode(0x2);
  6895   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
  6896   ins_pipe(int_conditional_double_move);
  6897 %}
  6899 // Conditional move
  6900 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
  6901   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6902   ins_cost(150);
  6903   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6904   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
  6905   ins_pipe(ialu_reg);
  6906 %}
  6908 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
  6909   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
  6910   ins_cost(140);
  6911   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
  6912   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
  6913   ins_pipe(ialu_imm);
  6914 %}
  6916 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
  6917   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6918   ins_cost(150);
  6920   size(4);
  6921   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6922   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6923   ins_pipe(ialu_reg);
  6924 %}
  6927 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
  6928   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
  6929   ins_cost(150);
  6931   size(4);
  6932   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
  6933   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
  6934   ins_pipe(ialu_reg);
  6935 %}
  6938 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
  6939   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
  6940   ins_cost(150);
  6942   size(4);
  6943   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
  6944   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
  6945   ins_pipe(ialu_reg);
  6946 %}
  6950 //----------OS and Locking Instructions----------------------------------------
  6952 // This name is KNOWN by the ADLC and cannot be changed.
  6953 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
  6954 // for this guy.
  6955 instruct tlsLoadP(g2RegP dst) %{
  6956   match(Set dst (ThreadLocal));
  6958   size(0);
  6959   ins_cost(0);
  6960   format %{ "# TLS is in G2" %}
  6961   ins_encode( /*empty encoding*/ );
  6962   ins_pipe(ialu_none);
  6963 %}
  6965 instruct checkCastPP( iRegP dst ) %{
  6966   match(Set dst (CheckCastPP dst));
  6968   size(0);
  6969   format %{ "# checkcastPP of $dst" %}
  6970   ins_encode( /*empty encoding*/ );
  6971   ins_pipe(empty);
  6972 %}
  6975 instruct castPP( iRegP dst ) %{
  6976   match(Set dst (CastPP dst));
  6977   format %{ "# castPP of $dst" %}
  6978   ins_encode( /*empty encoding*/ );
  6979   ins_pipe(empty);
  6980 %}
  6982 instruct castII( iRegI dst ) %{
  6983   match(Set dst (CastII dst));
  6984   format %{ "# castII of $dst" %}
  6985   ins_encode( /*empty encoding*/ );
  6986   ins_cost(0);
  6987   ins_pipe(empty);
  6988 %}
  6990 //----------Arithmetic Instructions--------------------------------------------
  6991 // Addition Instructions
  6992 // Register Addition
  6993 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  6994   match(Set dst (AddI src1 src2));
  6996   size(4);
  6997   format %{ "ADD    $src1,$src2,$dst" %}
  6998   ins_encode %{
  6999     __ add($src1$$Register, $src2$$Register, $dst$$Register);
  7000   %}
  7001   ins_pipe(ialu_reg_reg);
  7002 %}
  7004 // Immediate Addition
  7005 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7006   match(Set dst (AddI src1 src2));
  7008   size(4);
  7009   format %{ "ADD    $src1,$src2,$dst" %}
  7010   opcode(Assembler::add_op3, Assembler::arith_op);
  7011   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7012   ins_pipe(ialu_reg_imm);
  7013 %}
  7015 // Pointer Register Addition
  7016 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
  7017   match(Set dst (AddP src1 src2));
  7019   size(4);
  7020   format %{ "ADD    $src1,$src2,$dst" %}
  7021   opcode(Assembler::add_op3, Assembler::arith_op);
  7022   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7023   ins_pipe(ialu_reg_reg);
  7024 %}
  7026 // Pointer Immediate Addition
  7027 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
  7028   match(Set dst (AddP src1 src2));
  7030   size(4);
  7031   format %{ "ADD    $src1,$src2,$dst" %}
  7032   opcode(Assembler::add_op3, Assembler::arith_op);
  7033   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7034   ins_pipe(ialu_reg_imm);
  7035 %}
  7037 // Long Addition
  7038 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7039   match(Set dst (AddL src1 src2));
  7041   size(4);
  7042   format %{ "ADD    $src1,$src2,$dst\t! long" %}
  7043   opcode(Assembler::add_op3, Assembler::arith_op);
  7044   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7045   ins_pipe(ialu_reg_reg);
  7046 %}
  7048 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7049   match(Set dst (AddL src1 con));
  7051   size(4);
  7052   format %{ "ADD    $src1,$con,$dst" %}
  7053   opcode(Assembler::add_op3, Assembler::arith_op);
  7054   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7055   ins_pipe(ialu_reg_imm);
  7056 %}
  7058 //----------Conditional_store--------------------------------------------------
  7059 // Conditional-store of the updated heap-top.
  7060 // Used during allocation of the shared heap.
  7061 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
  7063 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
  7064 instruct loadPLocked(iRegP dst, memory mem) %{
  7065   match(Set dst (LoadPLocked mem));
  7066   ins_cost(MEMORY_REF_COST);
  7068 #ifndef _LP64
  7069   size(4);
  7070   format %{ "LDUW   $mem,$dst\t! ptr" %}
  7071   opcode(Assembler::lduw_op3, 0, REGP_OP);
  7072 #else
  7073   format %{ "LDX    $mem,$dst\t! ptr" %}
  7074   opcode(Assembler::ldx_op3, 0, REGP_OP);
  7075 #endif
  7076   ins_encode( form3_mem_reg( mem, dst ) );
  7077   ins_pipe(iload_mem);
  7078 %}
  7080 // LoadL-locked.  Same as a regular long load when used with a compare-swap
  7081 instruct loadLLocked(iRegL dst, memory mem) %{
  7082   match(Set dst (LoadLLocked mem));
  7083   ins_cost(MEMORY_REF_COST);
  7084   size(4);
  7085   format %{ "LDX    $mem,$dst\t! long" %}
  7086   opcode(Assembler::ldx_op3);
  7087   ins_encode(simple_form3_mem_reg( mem, dst ) );
  7088   ins_pipe(iload_mem);
  7089 %}
  7091 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
  7092   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
  7093   effect( KILL newval );
  7094   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
  7095             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
  7096   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
  7097   ins_pipe( long_memory_op );
  7098 %}
  7100 // Conditional-store of an int value.
  7101 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
  7102   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
  7103   effect( KILL newval );
  7104   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7105             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7106   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7107   ins_pipe( long_memory_op );
  7108 %}
  7110 // Conditional-store of a long value.
  7111 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
  7112   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
  7113   effect( KILL newval );
  7114   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
  7115             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
  7116   ins_encode( enc_cas(mem_ptr,oldval,newval) );
  7117   ins_pipe( long_memory_op );
  7118 %}
  7120 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7122 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7123   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7124   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7125   format %{
  7126             "MOV    $newval,O7\n\t"
  7127             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7128             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7129             "MOV    1,$res\n\t"
  7130             "MOVne  xcc,R_G0,$res"
  7131   %}
  7132   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7133               enc_lflags_ne_to_boolean(res) );
  7134   ins_pipe( long_memory_op );
  7135 %}
  7138 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7139   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  7140   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7141   format %{
  7142             "MOV    $newval,O7\n\t"
  7143             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7144             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7145             "MOV    1,$res\n\t"
  7146             "MOVne  icc,R_G0,$res"
  7147   %}
  7148   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7149               enc_iflags_ne_to_boolean(res) );
  7150   ins_pipe( long_memory_op );
  7151 %}
  7153 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7154   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7155   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7156   format %{
  7157             "MOV    $newval,O7\n\t"
  7158             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7159             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7160             "MOV    1,$res\n\t"
  7161             "MOVne  xcc,R_G0,$res"
  7162   %}
  7163 #ifdef _LP64
  7164   ins_encode( enc_casx(mem_ptr, oldval, newval),
  7165               enc_lflags_ne_to_boolean(res) );
  7166 #else
  7167   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7168               enc_iflags_ne_to_boolean(res) );
  7169 #endif
  7170   ins_pipe( long_memory_op );
  7171 %}
  7173 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
  7174   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  7175   effect( USE mem_ptr, KILL ccr, KILL tmp1);
  7176   format %{
  7177             "MOV    $newval,O7\n\t"
  7178             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
  7179             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
  7180             "MOV    1,$res\n\t"
  7181             "MOVne  icc,R_G0,$res"
  7182   %}
  7183   ins_encode( enc_casi(mem_ptr, oldval, newval),
  7184               enc_iflags_ne_to_boolean(res) );
  7185   ins_pipe( long_memory_op );
  7186 %}
  7188 //---------------------
  7189 // Subtraction Instructions
  7190 // Register Subtraction
  7191 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7192   match(Set dst (SubI src1 src2));
  7194   size(4);
  7195   format %{ "SUB    $src1,$src2,$dst" %}
  7196   opcode(Assembler::sub_op3, Assembler::arith_op);
  7197   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7198   ins_pipe(ialu_reg_reg);
  7199 %}
  7201 // Immediate Subtraction
  7202 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7203   match(Set dst (SubI src1 src2));
  7205   size(4);
  7206   format %{ "SUB    $src1,$src2,$dst" %}
  7207   opcode(Assembler::sub_op3, Assembler::arith_op);
  7208   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7209   ins_pipe(ialu_reg_imm);
  7210 %}
  7212 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
  7213   match(Set dst (SubI zero src2));
  7215   size(4);
  7216   format %{ "NEG    $src2,$dst" %}
  7217   opcode(Assembler::sub_op3, Assembler::arith_op);
  7218   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7219   ins_pipe(ialu_zero_reg);
  7220 %}
  7222 // Long subtraction
  7223 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7224   match(Set dst (SubL src1 src2));
  7226   size(4);
  7227   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7228   opcode(Assembler::sub_op3, Assembler::arith_op);
  7229   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7230   ins_pipe(ialu_reg_reg);
  7231 %}
  7233 // Immediate Subtraction
  7234 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7235   match(Set dst (SubL src1 con));
  7237   size(4);
  7238   format %{ "SUB    $src1,$con,$dst\t! long" %}
  7239   opcode(Assembler::sub_op3, Assembler::arith_op);
  7240   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7241   ins_pipe(ialu_reg_imm);
  7242 %}
  7244 // Long negation
  7245 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
  7246   match(Set dst (SubL zero src2));
  7248   size(4);
  7249   format %{ "NEG    $src2,$dst\t! long" %}
  7250   opcode(Assembler::sub_op3, Assembler::arith_op);
  7251   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
  7252   ins_pipe(ialu_zero_reg);
  7253 %}
  7255 // Multiplication Instructions
  7256 // Integer Multiplication
  7257 // Register Multiplication
  7258 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7259   match(Set dst (MulI src1 src2));
  7261   size(4);
  7262   format %{ "MULX   $src1,$src2,$dst" %}
  7263   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7264   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7265   ins_pipe(imul_reg_reg);
  7266 %}
  7268 // Immediate Multiplication
  7269 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7270   match(Set dst (MulI src1 src2));
  7272   size(4);
  7273   format %{ "MULX   $src1,$src2,$dst" %}
  7274   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7275   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7276   ins_pipe(imul_reg_imm);
  7277 %}
  7279 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7280   match(Set dst (MulL src1 src2));
  7281   ins_cost(DEFAULT_COST * 5);
  7282   size(4);
  7283   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7284   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7285   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7286   ins_pipe(mulL_reg_reg);
  7287 %}
  7289 // Immediate Multiplication
  7290 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7291   match(Set dst (MulL src1 src2));
  7292   ins_cost(DEFAULT_COST * 5);
  7293   size(4);
  7294   format %{ "MULX   $src1,$src2,$dst" %}
  7295   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7296   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7297   ins_pipe(mulL_reg_imm);
  7298 %}
  7300 // Integer Division
  7301 // Register Division
  7302 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
  7303   match(Set dst (DivI src1 src2));
  7304   ins_cost((2+71)*DEFAULT_COST);
  7306   format %{ "SRA     $src2,0,$src2\n\t"
  7307             "SRA     $src1,0,$src1\n\t"
  7308             "SDIVX   $src1,$src2,$dst" %}
  7309   ins_encode( idiv_reg( src1, src2, dst ) );
  7310   ins_pipe(sdiv_reg_reg);
  7311 %}
  7313 // Immediate Division
  7314 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
  7315   match(Set dst (DivI src1 src2));
  7316   ins_cost((2+71)*DEFAULT_COST);
  7318   format %{ "SRA     $src1,0,$src1\n\t"
  7319             "SDIVX   $src1,$src2,$dst" %}
  7320   ins_encode( idiv_imm( src1, src2, dst ) );
  7321   ins_pipe(sdiv_reg_imm);
  7322 %}
  7324 //----------Div-By-10-Expansion------------------------------------------------
  7325 // Extract hi bits of a 32x32->64 bit multiply.
  7326 // Expand rule only, not matched
  7327 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
  7328   effect( DEF dst, USE src1, USE src2 );
  7329   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
  7330             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
  7331   ins_encode( enc_mul_hi(dst,src1,src2));
  7332   ins_pipe(sdiv_reg_reg);
  7333 %}
  7335 // Magic constant, reciprocal of 10
  7336 instruct loadConI_x66666667(iRegIsafe dst) %{
  7337   effect( DEF dst );
  7339   size(8);
  7340   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
  7341   ins_encode( Set32(0x66666667, dst) );
  7342   ins_pipe(ialu_hi_lo_reg);
  7343 %}
  7345 // Register Shift Right Arithmetic Long by 32-63
  7346 instruct sra_31( iRegI dst, iRegI src ) %{
  7347   effect( DEF dst, USE src );
  7348   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
  7349   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
  7350   ins_pipe(ialu_reg_reg);
  7351 %}
  7353 // Arithmetic Shift Right by 8-bit immediate
  7354 instruct sra_reg_2( iRegI dst, iRegI src ) %{
  7355   effect( DEF dst, USE src );
  7356   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
  7357   opcode(Assembler::sra_op3, Assembler::arith_op);
  7358   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
  7359   ins_pipe(ialu_reg_imm);
  7360 %}
  7362 // Integer DIV with 10
  7363 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
  7364   match(Set dst (DivI src div));
  7365   ins_cost((6+6)*DEFAULT_COST);
  7366   expand %{
  7367     iRegIsafe tmp1;               // Killed temps;
  7368     iRegIsafe tmp2;               // Killed temps;
  7369     iRegI tmp3;                   // Killed temps;
  7370     iRegI tmp4;                   // Killed temps;
  7371     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
  7372     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
  7373     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
  7374     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
  7375     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
  7376   %}
  7377 %}
  7379 // Register Long Division
  7380 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7381   match(Set dst (DivL src1 src2));
  7382   ins_cost(DEFAULT_COST*71);
  7383   size(4);
  7384   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7385   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7386   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7387   ins_pipe(divL_reg_reg);
  7388 %}
  7390 // Register Long Division
  7391 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7392   match(Set dst (DivL src1 src2));
  7393   ins_cost(DEFAULT_COST*71);
  7394   size(4);
  7395   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7396   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7397   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7398   ins_pipe(divL_reg_imm);
  7399 %}
  7401 // Integer Remainder
  7402 // Register Remainder
  7403 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
  7404   match(Set dst (ModI src1 src2));
  7405   effect( KILL ccr, KILL temp);
  7407   format %{ "SREM   $src1,$src2,$dst" %}
  7408   ins_encode( irem_reg(src1, src2, dst, temp) );
  7409   ins_pipe(sdiv_reg_reg);
  7410 %}
  7412 // Immediate Remainder
  7413 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
  7414   match(Set dst (ModI src1 src2));
  7415   effect( KILL ccr, KILL temp);
  7417   format %{ "SREM   $src1,$src2,$dst" %}
  7418   ins_encode( irem_imm(src1, src2, dst, temp) );
  7419   ins_pipe(sdiv_reg_imm);
  7420 %}
  7422 // Register Long Remainder
  7423 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7424   effect(DEF dst, USE src1, USE src2);
  7425   size(4);
  7426   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7427   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7428   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7429   ins_pipe(divL_reg_reg);
  7430 %}
  7432 // Register Long Division
  7433 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7434   effect(DEF dst, USE src1, USE src2);
  7435   size(4);
  7436   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
  7437   opcode(Assembler::sdivx_op3, Assembler::arith_op);
  7438   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7439   ins_pipe(divL_reg_imm);
  7440 %}
  7442 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7443   effect(DEF dst, USE src1, USE src2);
  7444   size(4);
  7445   format %{ "MULX   $src1,$src2,$dst\t! long" %}
  7446   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7447   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7448   ins_pipe(mulL_reg_reg);
  7449 %}
  7451 // Immediate Multiplication
  7452 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
  7453   effect(DEF dst, USE src1, USE src2);
  7454   size(4);
  7455   format %{ "MULX   $src1,$src2,$dst" %}
  7456   opcode(Assembler::mulx_op3, Assembler::arith_op);
  7457   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7458   ins_pipe(mulL_reg_imm);
  7459 %}
  7461 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
  7462   effect(DEF dst, USE src1, USE src2);
  7463   size(4);
  7464   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7465   opcode(Assembler::sub_op3, Assembler::arith_op);
  7466   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7467   ins_pipe(ialu_reg_reg);
  7468 %}
  7470 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
  7471   effect(DEF dst, USE src1, USE src2);
  7472   size(4);
  7473   format %{ "SUB    $src1,$src2,$dst\t! long" %}
  7474   opcode(Assembler::sub_op3, Assembler::arith_op);
  7475   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7476   ins_pipe(ialu_reg_reg);
  7477 %}
  7479 // Register Long Remainder
  7480 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7481   match(Set dst (ModL src1 src2));
  7482   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7483   expand %{
  7484     iRegL tmp1;
  7485     iRegL tmp2;
  7486     divL_reg_reg_1(tmp1, src1, src2);
  7487     mulL_reg_reg_1(tmp2, tmp1, src2);
  7488     subL_reg_reg_1(dst,  src1, tmp2);
  7489   %}
  7490 %}
  7492 // Register Long Remainder
  7493 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
  7494   match(Set dst (ModL src1 src2));
  7495   ins_cost(DEFAULT_COST*(71 + 6 + 1));
  7496   expand %{
  7497     iRegL tmp1;
  7498     iRegL tmp2;
  7499     divL_reg_imm13_1(tmp1, src1, src2);
  7500     mulL_reg_imm13_1(tmp2, tmp1, src2);
  7501     subL_reg_reg_2  (dst,  src1, tmp2);
  7502   %}
  7503 %}
  7505 // Integer Shift Instructions
  7506 // Register Shift Left
  7507 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7508   match(Set dst (LShiftI src1 src2));
  7510   size(4);
  7511   format %{ "SLL    $src1,$src2,$dst" %}
  7512   opcode(Assembler::sll_op3, Assembler::arith_op);
  7513   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7514   ins_pipe(ialu_reg_reg);
  7515 %}
  7517 // Register Shift Left Immediate
  7518 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7519   match(Set dst (LShiftI src1 src2));
  7521   size(4);
  7522   format %{ "SLL    $src1,$src2,$dst" %}
  7523   opcode(Assembler::sll_op3, Assembler::arith_op);
  7524   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7525   ins_pipe(ialu_reg_imm);
  7526 %}
  7528 // Register Shift Left
  7529 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7530   match(Set dst (LShiftL src1 src2));
  7532   size(4);
  7533   format %{ "SLLX   $src1,$src2,$dst" %}
  7534   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7535   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7536   ins_pipe(ialu_reg_reg);
  7537 %}
  7539 // Register Shift Left Immediate
  7540 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7541   match(Set dst (LShiftL src1 src2));
  7543   size(4);
  7544   format %{ "SLLX   $src1,$src2,$dst" %}
  7545   opcode(Assembler::sllx_op3, Assembler::arith_op);
  7546   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7547   ins_pipe(ialu_reg_imm);
  7548 %}
  7550 // Register Arithmetic Shift Right
  7551 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7552   match(Set dst (RShiftI src1 src2));
  7553   size(4);
  7554   format %{ "SRA    $src1,$src2,$dst" %}
  7555   opcode(Assembler::sra_op3, Assembler::arith_op);
  7556   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7557   ins_pipe(ialu_reg_reg);
  7558 %}
  7560 // Register Arithmetic Shift Right Immediate
  7561 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7562   match(Set dst (RShiftI src1 src2));
  7564   size(4);
  7565   format %{ "SRA    $src1,$src2,$dst" %}
  7566   opcode(Assembler::sra_op3, Assembler::arith_op);
  7567   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7568   ins_pipe(ialu_reg_imm);
  7569 %}
  7571 // Register Shift Right Arithmatic Long
  7572 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7573   match(Set dst (RShiftL src1 src2));
  7575   size(4);
  7576   format %{ "SRAX   $src1,$src2,$dst" %}
  7577   opcode(Assembler::srax_op3, Assembler::arith_op);
  7578   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7579   ins_pipe(ialu_reg_reg);
  7580 %}
  7582 // Register Shift Left Immediate
  7583 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7584   match(Set dst (RShiftL src1 src2));
  7586   size(4);
  7587   format %{ "SRAX   $src1,$src2,$dst" %}
  7588   opcode(Assembler::srax_op3, Assembler::arith_op);
  7589   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7590   ins_pipe(ialu_reg_imm);
  7591 %}
  7593 // Register Shift Right
  7594 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7595   match(Set dst (URShiftI src1 src2));
  7597   size(4);
  7598   format %{ "SRL    $src1,$src2,$dst" %}
  7599   opcode(Assembler::srl_op3, Assembler::arith_op);
  7600   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7601   ins_pipe(ialu_reg_reg);
  7602 %}
  7604 // Register Shift Right Immediate
  7605 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
  7606   match(Set dst (URShiftI src1 src2));
  7608   size(4);
  7609   format %{ "SRL    $src1,$src2,$dst" %}
  7610   opcode(Assembler::srl_op3, Assembler::arith_op);
  7611   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7612   ins_pipe(ialu_reg_imm);
  7613 %}
  7615 // Register Shift Right
  7616 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
  7617   match(Set dst (URShiftL src1 src2));
  7619   size(4);
  7620   format %{ "SRLX   $src1,$src2,$dst" %}
  7621   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7622   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
  7623   ins_pipe(ialu_reg_reg);
  7624 %}
  7626 // Register Shift Right Immediate
  7627 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
  7628   match(Set dst (URShiftL src1 src2));
  7630   size(4);
  7631   format %{ "SRLX   $src1,$src2,$dst" %}
  7632   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7633   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7634   ins_pipe(ialu_reg_imm);
  7635 %}
  7637 // Register Shift Right Immediate with a CastP2X
  7638 #ifdef _LP64
  7639 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
  7640   match(Set dst (URShiftL (CastP2X src1) src2));
  7641   size(4);
  7642   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
  7643   opcode(Assembler::srlx_op3, Assembler::arith_op);
  7644   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
  7645   ins_pipe(ialu_reg_imm);
  7646 %}
  7647 #else
  7648 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
  7649   match(Set dst (URShiftI (CastP2X src1) src2));
  7650   size(4);
  7651   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
  7652   opcode(Assembler::srl_op3, Assembler::arith_op);
  7653   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
  7654   ins_pipe(ialu_reg_imm);
  7655 %}
  7656 #endif
  7659 //----------Floating Point Arithmetic Instructions-----------------------------
  7661 //  Add float single precision
  7662 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  7663   match(Set dst (AddF src1 src2));
  7665   size(4);
  7666   format %{ "FADDS  $src1,$src2,$dst" %}
  7667   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
  7668   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7669   ins_pipe(faddF_reg_reg);
  7670 %}
  7672 //  Add float double precision
  7673 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  7674   match(Set dst (AddD src1 src2));
  7676   size(4);
  7677   format %{ "FADDD  $src1,$src2,$dst" %}
  7678   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  7679   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7680   ins_pipe(faddD_reg_reg);
  7681 %}
  7683 //  Sub float single precision
  7684 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  7685   match(Set dst (SubF src1 src2));
  7687   size(4);
  7688   format %{ "FSUBS  $src1,$src2,$dst" %}
  7689   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
  7690   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7691   ins_pipe(faddF_reg_reg);
  7692 %}
  7694 //  Sub float double precision
  7695 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  7696   match(Set dst (SubD src1 src2));
  7698   size(4);
  7699   format %{ "FSUBD  $src1,$src2,$dst" %}
  7700   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  7701   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7702   ins_pipe(faddD_reg_reg);
  7703 %}
  7705 //  Mul float single precision
  7706 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  7707   match(Set dst (MulF src1 src2));
  7709   size(4);
  7710   format %{ "FMULS  $src1,$src2,$dst" %}
  7711   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
  7712   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7713   ins_pipe(fmulF_reg_reg);
  7714 %}
  7716 //  Mul float double precision
  7717 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  7718   match(Set dst (MulD src1 src2));
  7720   size(4);
  7721   format %{ "FMULD  $src1,$src2,$dst" %}
  7722   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  7723   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7724   ins_pipe(fmulD_reg_reg);
  7725 %}
  7727 //  Div float single precision
  7728 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  7729   match(Set dst (DivF src1 src2));
  7731   size(4);
  7732   format %{ "FDIVS  $src1,$src2,$dst" %}
  7733   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
  7734   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
  7735   ins_pipe(fdivF_reg_reg);
  7736 %}
  7738 //  Div float double precision
  7739 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  7740   match(Set dst (DivD src1 src2));
  7742   size(4);
  7743   format %{ "FDIVD  $src1,$src2,$dst" %}
  7744   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
  7745   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  7746   ins_pipe(fdivD_reg_reg);
  7747 %}
  7749 //  Absolute float double precision
  7750 instruct absD_reg(regD dst, regD src) %{
  7751   match(Set dst (AbsD src));
  7753   format %{ "FABSd  $src,$dst" %}
  7754   ins_encode(fabsd(dst, src));
  7755   ins_pipe(faddD_reg);
  7756 %}
  7758 //  Absolute float single precision
  7759 instruct absF_reg(regF dst, regF src) %{
  7760   match(Set dst (AbsF src));
  7762   format %{ "FABSs  $src,$dst" %}
  7763   ins_encode(fabss(dst, src));
  7764   ins_pipe(faddF_reg);
  7765 %}
  7767 instruct negF_reg(regF dst, regF src) %{
  7768   match(Set dst (NegF src));
  7770   size(4);
  7771   format %{ "FNEGs  $src,$dst" %}
  7772   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
  7773   ins_encode(form3_opf_rs2F_rdF(src, dst));
  7774   ins_pipe(faddF_reg);
  7775 %}
  7777 instruct negD_reg(regD dst, regD src) %{
  7778   match(Set dst (NegD src));
  7780   format %{ "FNEGd  $src,$dst" %}
  7781   ins_encode(fnegd(dst, src));
  7782   ins_pipe(faddD_reg);
  7783 %}
  7785 //  Sqrt float double precision
  7786 instruct sqrtF_reg_reg(regF dst, regF src) %{
  7787   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  7789   size(4);
  7790   format %{ "FSQRTS $src,$dst" %}
  7791   ins_encode(fsqrts(dst, src));
  7792   ins_pipe(fdivF_reg_reg);
  7793 %}
  7795 //  Sqrt float double precision
  7796 instruct sqrtD_reg_reg(regD dst, regD src) %{
  7797   match(Set dst (SqrtD src));
  7799   size(4);
  7800   format %{ "FSQRTD $src,$dst" %}
  7801   ins_encode(fsqrtd(dst, src));
  7802   ins_pipe(fdivD_reg_reg);
  7803 %}
  7805 //----------Logical Instructions-----------------------------------------------
  7806 // And Instructions
  7807 // Register And
  7808 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7809   match(Set dst (AndI src1 src2));
  7811   size(4);
  7812   format %{ "AND    $src1,$src2,$dst" %}
  7813   opcode(Assembler::and_op3, Assembler::arith_op);
  7814   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7815   ins_pipe(ialu_reg_reg);
  7816 %}
  7818 // Immediate And
  7819 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7820   match(Set dst (AndI src1 src2));
  7822   size(4);
  7823   format %{ "AND    $src1,$src2,$dst" %}
  7824   opcode(Assembler::and_op3, Assembler::arith_op);
  7825   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7826   ins_pipe(ialu_reg_imm);
  7827 %}
  7829 // Register And Long
  7830 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7831   match(Set dst (AndL src1 src2));
  7833   ins_cost(DEFAULT_COST);
  7834   size(4);
  7835   format %{ "AND    $src1,$src2,$dst\t! long" %}
  7836   opcode(Assembler::and_op3, Assembler::arith_op);
  7837   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7838   ins_pipe(ialu_reg_reg);
  7839 %}
  7841 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7842   match(Set dst (AndL src1 con));
  7844   ins_cost(DEFAULT_COST);
  7845   size(4);
  7846   format %{ "AND    $src1,$con,$dst\t! long" %}
  7847   opcode(Assembler::and_op3, Assembler::arith_op);
  7848   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7849   ins_pipe(ialu_reg_imm);
  7850 %}
  7852 // Or Instructions
  7853 // Register Or
  7854 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7855   match(Set dst (OrI src1 src2));
  7857   size(4);
  7858   format %{ "OR     $src1,$src2,$dst" %}
  7859   opcode(Assembler::or_op3, Assembler::arith_op);
  7860   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7861   ins_pipe(ialu_reg_reg);
  7862 %}
  7864 // Immediate Or
  7865 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7866   match(Set dst (OrI src1 src2));
  7868   size(4);
  7869   format %{ "OR     $src1,$src2,$dst" %}
  7870   opcode(Assembler::or_op3, Assembler::arith_op);
  7871   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7872   ins_pipe(ialu_reg_imm);
  7873 %}
  7875 // Register Or Long
  7876 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7877   match(Set dst (OrL src1 src2));
  7879   ins_cost(DEFAULT_COST);
  7880   size(4);
  7881   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7882   opcode(Assembler::or_op3, Assembler::arith_op);
  7883   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7884   ins_pipe(ialu_reg_reg);
  7885 %}
  7887 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7888   match(Set dst (OrL src1 con));
  7889   ins_cost(DEFAULT_COST*2);
  7891   ins_cost(DEFAULT_COST);
  7892   size(4);
  7893   format %{ "OR     $src1,$con,$dst\t! long" %}
  7894   opcode(Assembler::or_op3, Assembler::arith_op);
  7895   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7896   ins_pipe(ialu_reg_imm);
  7897 %}
  7899 #ifndef _LP64
  7901 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
  7902 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
  7903   match(Set dst (OrI src1 (CastP2X src2)));
  7905   size(4);
  7906   format %{ "OR     $src1,$src2,$dst" %}
  7907   opcode(Assembler::or_op3, Assembler::arith_op);
  7908   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7909   ins_pipe(ialu_reg_reg);
  7910 %}
  7912 #else
  7914 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
  7915   match(Set dst (OrL src1 (CastP2X src2)));
  7917   ins_cost(DEFAULT_COST);
  7918   size(4);
  7919   format %{ "OR     $src1,$src2,$dst\t! long" %}
  7920   opcode(Assembler::or_op3, Assembler::arith_op);
  7921   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7922   ins_pipe(ialu_reg_reg);
  7923 %}
  7925 #endif
  7927 // Xor Instructions
  7928 // Register Xor
  7929 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
  7930   match(Set dst (XorI src1 src2));
  7932   size(4);
  7933   format %{ "XOR    $src1,$src2,$dst" %}
  7934   opcode(Assembler::xor_op3, Assembler::arith_op);
  7935   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7936   ins_pipe(ialu_reg_reg);
  7937 %}
  7939 // Immediate Xor
  7940 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
  7941   match(Set dst (XorI src1 src2));
  7943   size(4);
  7944   format %{ "XOR    $src1,$src2,$dst" %}
  7945   opcode(Assembler::xor_op3, Assembler::arith_op);
  7946   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
  7947   ins_pipe(ialu_reg_imm);
  7948 %}
  7950 // Register Xor Long
  7951 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
  7952   match(Set dst (XorL src1 src2));
  7954   ins_cost(DEFAULT_COST);
  7955   size(4);
  7956   format %{ "XOR    $src1,$src2,$dst\t! long" %}
  7957   opcode(Assembler::xor_op3, Assembler::arith_op);
  7958   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
  7959   ins_pipe(ialu_reg_reg);
  7960 %}
  7962 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
  7963   match(Set dst (XorL src1 con));
  7965   ins_cost(DEFAULT_COST);
  7966   size(4);
  7967   format %{ "XOR    $src1,$con,$dst\t! long" %}
  7968   opcode(Assembler::xor_op3, Assembler::arith_op);
  7969   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
  7970   ins_pipe(ialu_reg_imm);
  7971 %}
  7973 //----------Convert to Boolean-------------------------------------------------
  7974 // Nice hack for 32-bit tests but doesn't work for
  7975 // 64-bit pointers.
  7976 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
  7977   match(Set dst (Conv2B src));
  7978   effect( KILL ccr );
  7979   ins_cost(DEFAULT_COST*2);
  7980   format %{ "CMP    R_G0,$src\n\t"
  7981             "ADDX   R_G0,0,$dst" %}
  7982   ins_encode( enc_to_bool( src, dst ) );
  7983   ins_pipe(ialu_reg_ialu);
  7984 %}
  7986 #ifndef _LP64
  7987 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
  7988   match(Set dst (Conv2B src));
  7989   effect( KILL ccr );
  7990   ins_cost(DEFAULT_COST*2);
  7991   format %{ "CMP    R_G0,$src\n\t"
  7992             "ADDX   R_G0,0,$dst" %}
  7993   ins_encode( enc_to_bool( src, dst ) );
  7994   ins_pipe(ialu_reg_ialu);
  7995 %}
  7996 #else
  7997 instruct convP2B( iRegI dst, iRegP src ) %{
  7998   match(Set dst (Conv2B src));
  7999   ins_cost(DEFAULT_COST*2);
  8000   format %{ "MOV    $src,$dst\n\t"
  8001             "MOVRNZ $src,1,$dst" %}
  8002   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
  8003   ins_pipe(ialu_clr_and_mover);
  8004 %}
  8005 #endif
  8007 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
  8008   match(Set dst (CmpLTMask p q));
  8009   effect( KILL ccr );
  8010   ins_cost(DEFAULT_COST*4);
  8011   format %{ "CMP    $p,$q\n\t"
  8012             "MOV    #0,$dst\n\t"
  8013             "BLT,a  .+8\n\t"
  8014             "MOV    #-1,$dst" %}
  8015   ins_encode( enc_ltmask(p,q,dst) );
  8016   ins_pipe(ialu_reg_reg_ialu);
  8017 %}
  8019 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8020   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  8021   effect(KILL ccr, TEMP tmp);
  8022   ins_cost(DEFAULT_COST*3);
  8024   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8025             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8026             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8027   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8028   ins_pipe( cadd_cmpltmask );
  8029 %}
  8031 instruct cadd_cmpLTMask2( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
  8032   match(Set p (AddI (SubI p q) (AndI (CmpLTMask p q) y)));
  8033   effect( KILL ccr, TEMP tmp);
  8034   ins_cost(DEFAULT_COST*3);
  8036   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
  8037             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
  8038             "MOVl   $tmp,$p\t! p' < 0 ? p'+y : p'" %}
  8039   ins_encode( enc_cadd_cmpLTMask(p, q, y, tmp) );
  8040   ins_pipe( cadd_cmpltmask );
  8041 %}
  8043 //----------Arithmetic Conversion Instructions---------------------------------
  8044 // The conversions operations are all Alpha sorted.  Please keep it that way!
  8046 instruct convD2F_reg(regF dst, regD src) %{
  8047   match(Set dst (ConvD2F src));
  8048   size(4);
  8049   format %{ "FDTOS  $src,$dst" %}
  8050   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
  8051   ins_encode(form3_opf_rs2D_rdF(src, dst));
  8052   ins_pipe(fcvtD2F);
  8053 %}
  8056 // Convert a double to an int in a float register.
  8057 // If the double is a NAN, stuff a zero in instead.
  8058 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
  8059   effect(DEF dst, USE src, KILL fcc0);
  8060   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8061             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8062             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
  8063             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8064             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8065       "skip:" %}
  8066   ins_encode(form_d2i_helper(src,dst));
  8067   ins_pipe(fcvtD2I);
  8068 %}
  8070 instruct convD2I_reg(stackSlotI dst, regD src) %{
  8071   match(Set dst (ConvD2I src));
  8072   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8073   expand %{
  8074     regF tmp;
  8075     convD2I_helper(tmp, src);
  8076     regF_to_stkI(dst, tmp);
  8077   %}
  8078 %}
  8080 // Convert a double to a long in a double register.
  8081 // If the double is a NAN, stuff a zero in instead.
  8082 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
  8083   effect(DEF dst, USE src, KILL fcc0);
  8084   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
  8085             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8086             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
  8087             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8088             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8089       "skip:" %}
  8090   ins_encode(form_d2l_helper(src,dst));
  8091   ins_pipe(fcvtD2L);
  8092 %}
  8095 // Double to Long conversion
  8096 instruct convD2L_reg(stackSlotL dst, regD src) %{
  8097   match(Set dst (ConvD2L src));
  8098   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8099   expand %{
  8100     regD tmp;
  8101     convD2L_helper(tmp, src);
  8102     regD_to_stkL(dst, tmp);
  8103   %}
  8104 %}
  8107 instruct convF2D_reg(regD dst, regF src) %{
  8108   match(Set dst (ConvF2D src));
  8109   format %{ "FSTOD  $src,$dst" %}
  8110   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
  8111   ins_encode(form3_opf_rs2F_rdD(src, dst));
  8112   ins_pipe(fcvtF2D);
  8113 %}
  8116 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
  8117   effect(DEF dst, USE src, KILL fcc0);
  8118   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8119             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8120             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
  8121             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
  8122             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
  8123       "skip:" %}
  8124   ins_encode(form_f2i_helper(src,dst));
  8125   ins_pipe(fcvtF2I);
  8126 %}
  8128 instruct convF2I_reg(stackSlotI dst, regF src) %{
  8129   match(Set dst (ConvF2I src));
  8130   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8131   expand %{
  8132     regF tmp;
  8133     convF2I_helper(tmp, src);
  8134     regF_to_stkI(dst, tmp);
  8135   %}
  8136 %}
  8139 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
  8140   effect(DEF dst, USE src, KILL fcc0);
  8141   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
  8142             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
  8143             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
  8144             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
  8145             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
  8146       "skip:" %}
  8147   ins_encode(form_f2l_helper(src,dst));
  8148   ins_pipe(fcvtF2L);
  8149 %}
  8151 // Float to Long conversion
  8152 instruct convF2L_reg(stackSlotL dst, regF src) %{
  8153   match(Set dst (ConvF2L src));
  8154   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
  8155   expand %{
  8156     regD tmp;
  8157     convF2L_helper(tmp, src);
  8158     regD_to_stkL(dst, tmp);
  8159   %}
  8160 %}
  8163 instruct convI2D_helper(regD dst, regF tmp) %{
  8164   effect(USE tmp, DEF dst);
  8165   format %{ "FITOD  $tmp,$dst" %}
  8166   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8167   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
  8168   ins_pipe(fcvtI2D);
  8169 %}
  8171 instruct convI2D_reg(stackSlotI src, regD dst) %{
  8172   match(Set dst (ConvI2D src));
  8173   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8174   expand %{
  8175     regF tmp;
  8176     stkI_to_regF( tmp, src);
  8177     convI2D_helper( dst, tmp);
  8178   %}
  8179 %}
  8181 instruct convI2D_mem( regD_low dst, memory mem ) %{
  8182   match(Set dst (ConvI2D (LoadI mem)));
  8183   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8184   size(8);
  8185   format %{ "LDF    $mem,$dst\n\t"
  8186             "FITOD  $dst,$dst" %}
  8187   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
  8188   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8189   ins_pipe(floadF_mem);
  8190 %}
  8193 instruct convI2F_helper(regF dst, regF tmp) %{
  8194   effect(DEF dst, USE tmp);
  8195   format %{ "FITOS  $tmp,$dst" %}
  8196   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
  8197   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
  8198   ins_pipe(fcvtI2F);
  8199 %}
  8201 instruct convI2F_reg( regF dst, stackSlotI src ) %{
  8202   match(Set dst (ConvI2F src));
  8203   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8204   expand %{
  8205     regF tmp;
  8206     stkI_to_regF(tmp,src);
  8207     convI2F_helper(dst, tmp);
  8208   %}
  8209 %}
  8211 instruct convI2F_mem( regF dst, memory mem ) %{
  8212   match(Set dst (ConvI2F (LoadI mem)));
  8213   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8214   size(8);
  8215   format %{ "LDF    $mem,$dst\n\t"
  8216             "FITOS  $dst,$dst" %}
  8217   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
  8218   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
  8219   ins_pipe(floadF_mem);
  8220 %}
  8223 instruct convI2L_reg(iRegL dst, iRegI src) %{
  8224   match(Set dst (ConvI2L src));
  8225   size(4);
  8226   format %{ "SRA    $src,0,$dst\t! int->long" %}
  8227   opcode(Assembler::sra_op3, Assembler::arith_op);
  8228   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8229   ins_pipe(ialu_reg_reg);
  8230 %}
  8232 // Zero-extend convert int to long
  8233 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
  8234   match(Set dst (AndL (ConvI2L src) mask) );
  8235   size(4);
  8236   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
  8237   opcode(Assembler::srl_op3, Assembler::arith_op);
  8238   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8239   ins_pipe(ialu_reg_reg);
  8240 %}
  8242 // Zero-extend long
  8243 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
  8244   match(Set dst (AndL src mask) );
  8245   size(4);
  8246   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
  8247   opcode(Assembler::srl_op3, Assembler::arith_op);
  8248   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
  8249   ins_pipe(ialu_reg_reg);
  8250 %}
  8252 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
  8253   match(Set dst (MoveF2I src));
  8254   effect(DEF dst, USE src);
  8255   ins_cost(MEMORY_REF_COST);
  8257   size(4);
  8258   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
  8259   opcode(Assembler::lduw_op3);
  8260   ins_encode(simple_form3_mem_reg( src, dst ) );
  8261   ins_pipe(iload_mem);
  8262 %}
  8264 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
  8265   match(Set dst (MoveI2F src));
  8266   effect(DEF dst, USE src);
  8267   ins_cost(MEMORY_REF_COST);
  8269   size(4);
  8270   format %{ "LDF    $src,$dst\t! MoveI2F" %}
  8271   opcode(Assembler::ldf_op3);
  8272   ins_encode(simple_form3_mem_reg(src, dst));
  8273   ins_pipe(floadF_stk);
  8274 %}
  8276 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
  8277   match(Set dst (MoveD2L src));
  8278   effect(DEF dst, USE src);
  8279   ins_cost(MEMORY_REF_COST);
  8281   size(4);
  8282   format %{ "LDX    $src,$dst\t! MoveD2L" %}
  8283   opcode(Assembler::ldx_op3);
  8284   ins_encode(simple_form3_mem_reg( src, dst ) );
  8285   ins_pipe(iload_mem);
  8286 %}
  8288 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
  8289   match(Set dst (MoveL2D src));
  8290   effect(DEF dst, USE src);
  8291   ins_cost(MEMORY_REF_COST);
  8293   size(4);
  8294   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
  8295   opcode(Assembler::lddf_op3);
  8296   ins_encode(simple_form3_mem_reg(src, dst));
  8297   ins_pipe(floadD_stk);
  8298 %}
  8300 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
  8301   match(Set dst (MoveF2I src));
  8302   effect(DEF dst, USE src);
  8303   ins_cost(MEMORY_REF_COST);
  8305   size(4);
  8306   format %{ "STF   $src,$dst\t!MoveF2I" %}
  8307   opcode(Assembler::stf_op3);
  8308   ins_encode(simple_form3_mem_reg(dst, src));
  8309   ins_pipe(fstoreF_stk_reg);
  8310 %}
  8312 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
  8313   match(Set dst (MoveI2F src));
  8314   effect(DEF dst, USE src);
  8315   ins_cost(MEMORY_REF_COST);
  8317   size(4);
  8318   format %{ "STW    $src,$dst\t!MoveI2F" %}
  8319   opcode(Assembler::stw_op3);
  8320   ins_encode(simple_form3_mem_reg( dst, src ) );
  8321   ins_pipe(istore_mem_reg);
  8322 %}
  8324 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
  8325   match(Set dst (MoveD2L src));
  8326   effect(DEF dst, USE src);
  8327   ins_cost(MEMORY_REF_COST);
  8329   size(4);
  8330   format %{ "STDF   $src,$dst\t!MoveD2L" %}
  8331   opcode(Assembler::stdf_op3);
  8332   ins_encode(simple_form3_mem_reg(dst, src));
  8333   ins_pipe(fstoreD_stk_reg);
  8334 %}
  8336 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
  8337   match(Set dst (MoveL2D src));
  8338   effect(DEF dst, USE src);
  8339   ins_cost(MEMORY_REF_COST);
  8341   size(4);
  8342   format %{ "STX    $src,$dst\t!MoveL2D" %}
  8343   opcode(Assembler::stx_op3);
  8344   ins_encode(simple_form3_mem_reg( dst, src ) );
  8345   ins_pipe(istore_mem_reg);
  8346 %}
  8349 //-----------
  8350 // Long to Double conversion using V8 opcodes.
  8351 // Still useful because cheetah traps and becomes
  8352 // amazingly slow for some common numbers.
  8354 // Magic constant, 0x43300000
  8355 instruct loadConI_x43300000(iRegI dst) %{
  8356   effect(DEF dst);
  8357   size(4);
  8358   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
  8359   ins_encode(SetHi22(0x43300000, dst));
  8360   ins_pipe(ialu_none);
  8361 %}
  8363 // Magic constant, 0x41f00000
  8364 instruct loadConI_x41f00000(iRegI dst) %{
  8365   effect(DEF dst);
  8366   size(4);
  8367   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
  8368   ins_encode(SetHi22(0x41f00000, dst));
  8369   ins_pipe(ialu_none);
  8370 %}
  8372 // Construct a double from two float halves
  8373 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
  8374   effect(DEF dst, USE src1, USE src2);
  8375   size(8);
  8376   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
  8377             "FMOVS  $src2.lo,$dst.lo" %}
  8378   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
  8379   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
  8380   ins_pipe(faddD_reg_reg);
  8381 %}
  8383 // Convert integer in high half of a double register (in the lower half of
  8384 // the double register file) to double
  8385 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
  8386   effect(DEF dst, USE src);
  8387   size(4);
  8388   format %{ "FITOD  $src,$dst" %}
  8389   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
  8390   ins_encode(form3_opf_rs2D_rdD(src, dst));
  8391   ins_pipe(fcvtLHi2D);
  8392 %}
  8394 // Add float double precision
  8395 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
  8396   effect(DEF dst, USE src1, USE src2);
  8397   size(4);
  8398   format %{ "FADDD  $src1,$src2,$dst" %}
  8399   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
  8400   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8401   ins_pipe(faddD_reg_reg);
  8402 %}
  8404 // Sub float double precision
  8405 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
  8406   effect(DEF dst, USE src1, USE src2);
  8407   size(4);
  8408   format %{ "FSUBD  $src1,$src2,$dst" %}
  8409   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
  8410   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8411   ins_pipe(faddD_reg_reg);
  8412 %}
  8414 // Mul float double precision
  8415 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
  8416   effect(DEF dst, USE src1, USE src2);
  8417   size(4);
  8418   format %{ "FMULD  $src1,$src2,$dst" %}
  8419   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
  8420   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
  8421   ins_pipe(fmulD_reg_reg);
  8422 %}
  8424 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
  8425   match(Set dst (ConvL2D src));
  8426   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
  8428   expand %{
  8429     regD_low   tmpsrc;
  8430     iRegI      ix43300000;
  8431     iRegI      ix41f00000;
  8432     stackSlotL lx43300000;
  8433     stackSlotL lx41f00000;
  8434     regD_low   dx43300000;
  8435     regD       dx41f00000;
  8436     regD       tmp1;
  8437     regD_low   tmp2;
  8438     regD       tmp3;
  8439     regD       tmp4;
  8441     stkL_to_regD(tmpsrc, src);
  8443     loadConI_x43300000(ix43300000);
  8444     loadConI_x41f00000(ix41f00000);
  8445     regI_to_stkLHi(lx43300000, ix43300000);
  8446     regI_to_stkLHi(lx41f00000, ix41f00000);
  8447     stkL_to_regD(dx43300000, lx43300000);
  8448     stkL_to_regD(dx41f00000, lx41f00000);
  8450     convI2D_regDHi_regD(tmp1, tmpsrc);
  8451     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
  8452     subD_regD_regD(tmp3, tmp2, dx43300000);
  8453     mulD_regD_regD(tmp4, tmp1, dx41f00000);
  8454     addD_regD_regD(dst, tmp3, tmp4);
  8455   %}
  8456 %}
  8458 // Long to Double conversion using fast fxtof
  8459 instruct convL2D_helper(regD dst, regD tmp) %{
  8460   effect(DEF dst, USE tmp);
  8461   size(4);
  8462   format %{ "FXTOD  $tmp,$dst" %}
  8463   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
  8464   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
  8465   ins_pipe(fcvtL2D);
  8466 %}
  8468 instruct convL2D_reg_fast_fxtof(regD dst, stackSlotL src) %{
  8469   predicate(VM_Version::has_fast_fxtof());
  8470   match(Set dst (ConvL2D src));
  8471   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
  8472   expand %{
  8473     regD tmp;
  8474     stkL_to_regD(tmp, src);
  8475     convL2D_helper(dst, tmp);
  8476   %}
  8477 %}
  8479 //-----------
  8480 // Long to Float conversion using V8 opcodes.
  8481 // Still useful because cheetah traps and becomes
  8482 // amazingly slow for some common numbers.
  8484 // Long to Float conversion using fast fxtof
  8485 instruct convL2F_helper(regF dst, regD tmp) %{
  8486   effect(DEF dst, USE tmp);
  8487   size(4);
  8488   format %{ "FXTOS  $tmp,$dst" %}
  8489   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
  8490   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
  8491   ins_pipe(fcvtL2F);
  8492 %}
  8494 instruct convL2F_reg_fast_fxtof(regF dst, stackSlotL src) %{
  8495   match(Set dst (ConvL2F src));
  8496   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  8497   expand %{
  8498     regD tmp;
  8499     stkL_to_regD(tmp, src);
  8500     convL2F_helper(dst, tmp);
  8501   %}
  8502 %}
  8503 //-----------
  8505 instruct convL2I_reg(iRegI dst, iRegL src) %{
  8506   match(Set dst (ConvL2I src));
  8507 #ifndef _LP64
  8508   format %{ "MOV    $src.lo,$dst\t! long->int" %}
  8509   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
  8510   ins_pipe(ialu_move_reg_I_to_L);
  8511 #else
  8512   size(4);
  8513   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
  8514   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
  8515   ins_pipe(ialu_reg);
  8516 #endif
  8517 %}
  8519 // Register Shift Right Immediate
  8520 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
  8521   match(Set dst (ConvL2I (RShiftL src cnt)));
  8523   size(4);
  8524   format %{ "SRAX   $src,$cnt,$dst" %}
  8525   opcode(Assembler::srax_op3, Assembler::arith_op);
  8526   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
  8527   ins_pipe(ialu_reg_imm);
  8528 %}
  8530 // Replicate scalar to packed byte values in Double register
  8531 instruct Repl8B_reg_helper(iRegL dst, iRegI src) %{
  8532   effect(DEF dst, USE src);
  8533   format %{ "SLLX  $src,56,$dst\n\t"
  8534             "SRLX  $dst, 8,O7\n\t"
  8535             "OR    $dst,O7,$dst\n\t"
  8536             "SRLX  $dst,16,O7\n\t"
  8537             "OR    $dst,O7,$dst\n\t"
  8538             "SRLX  $dst,32,O7\n\t"
  8539             "OR    $dst,O7,$dst\t! replicate8B" %}
  8540   ins_encode( enc_repl8b(src, dst));
  8541   ins_pipe(ialu_reg);
  8542 %}
  8544 // Replicate scalar to packed byte values in Double register
  8545 instruct Repl8B_reg(stackSlotD dst, iRegI src) %{
  8546   match(Set dst (Replicate8B src));
  8547   expand %{
  8548     iRegL tmp;
  8549     Repl8B_reg_helper(tmp, src);
  8550     regL_to_stkD(dst, tmp);
  8551   %}
  8552 %}
  8554 // Replicate scalar constant to packed byte values in Double register
  8555 instruct Repl8B_immI(regD dst, immI13 src, o7RegP tmp) %{
  8556   match(Set dst (Replicate8B src));
  8557 #ifdef _LP64
  8558   size(36);
  8559 #else
  8560   size(8);
  8561 #endif
  8562   format %{ "SETHI  hi(&Repl8($src)),$tmp\t!get Repl8B($src) from table\n\t"
  8563             "LDDF   [$tmp+lo(&Repl8($src))],$dst" %}
  8564   ins_encode( LdReplImmI(src, dst, tmp, (8), (1)) );
  8565   ins_pipe(loadConFD);
  8566 %}
  8568 // Replicate scalar to packed char values into stack slot
  8569 instruct Repl4C_reg_helper(iRegL dst, iRegI src) %{
  8570   effect(DEF dst, USE src);
  8571   format %{ "SLLX  $src,48,$dst\n\t"
  8572             "SRLX  $dst,16,O7\n\t"
  8573             "OR    $dst,O7,$dst\n\t"
  8574             "SRLX  $dst,32,O7\n\t"
  8575             "OR    $dst,O7,$dst\t! replicate4C" %}
  8576   ins_encode( enc_repl4s(src, dst) );
  8577   ins_pipe(ialu_reg);
  8578 %}
  8580 // Replicate scalar to packed char values into stack slot
  8581 instruct Repl4C_reg(stackSlotD dst, iRegI src) %{
  8582   match(Set dst (Replicate4C src));
  8583   expand %{
  8584     iRegL tmp;
  8585     Repl4C_reg_helper(tmp, src);
  8586     regL_to_stkD(dst, tmp);
  8587   %}
  8588 %}
  8590 // Replicate scalar constant to packed char values in Double register
  8591 instruct Repl4C_immI(regD dst, immI src, o7RegP tmp) %{
  8592   match(Set dst (Replicate4C src));
  8593 #ifdef _LP64
  8594   size(36);
  8595 #else
  8596   size(8);
  8597 #endif
  8598   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4C($src) from table\n\t"
  8599             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8600   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8601   ins_pipe(loadConFD);
  8602 %}
  8604 // Replicate scalar to packed short values into stack slot
  8605 instruct Repl4S_reg_helper(iRegL dst, iRegI src) %{
  8606   effect(DEF dst, USE src);
  8607   format %{ "SLLX  $src,48,$dst\n\t"
  8608             "SRLX  $dst,16,O7\n\t"
  8609             "OR    $dst,O7,$dst\n\t"
  8610             "SRLX  $dst,32,O7\n\t"
  8611             "OR    $dst,O7,$dst\t! replicate4S" %}
  8612   ins_encode( enc_repl4s(src, dst) );
  8613   ins_pipe(ialu_reg);
  8614 %}
  8616 // Replicate scalar to packed short values into stack slot
  8617 instruct Repl4S_reg(stackSlotD dst, iRegI src) %{
  8618   match(Set dst (Replicate4S src));
  8619   expand %{
  8620     iRegL tmp;
  8621     Repl4S_reg_helper(tmp, src);
  8622     regL_to_stkD(dst, tmp);
  8623   %}
  8624 %}
  8626 // Replicate scalar constant to packed short values in Double register
  8627 instruct Repl4S_immI(regD dst, immI src, o7RegP tmp) %{
  8628   match(Set dst (Replicate4S src));
  8629 #ifdef _LP64
  8630   size(36);
  8631 #else
  8632   size(8);
  8633 #endif
  8634   format %{ "SETHI  hi(&Repl4($src)),$tmp\t!get Repl4S($src) from table\n\t"
  8635             "LDDF   [$tmp+lo(&Repl4($src))],$dst" %}
  8636   ins_encode( LdReplImmI(src, dst, tmp, (4), (2)) );
  8637   ins_pipe(loadConFD);
  8638 %}
  8640 // Replicate scalar to packed int values in Double register
  8641 instruct Repl2I_reg_helper(iRegL dst, iRegI src) %{
  8642   effect(DEF dst, USE src);
  8643   format %{ "SLLX  $src,32,$dst\n\t"
  8644             "SRLX  $dst,32,O7\n\t"
  8645             "OR    $dst,O7,$dst\t! replicate2I" %}
  8646   ins_encode( enc_repl2i(src, dst));
  8647   ins_pipe(ialu_reg);
  8648 %}
  8650 // Replicate scalar to packed int values in Double register
  8651 instruct Repl2I_reg(stackSlotD dst, iRegI src) %{
  8652   match(Set dst (Replicate2I src));
  8653   expand %{
  8654     iRegL tmp;
  8655     Repl2I_reg_helper(tmp, src);
  8656     regL_to_stkD(dst, tmp);
  8657   %}
  8658 %}
  8660 // Replicate scalar zero constant to packed int values in Double register
  8661 instruct Repl2I_immI(regD dst, immI src, o7RegP tmp) %{
  8662   match(Set dst (Replicate2I src));
  8663 #ifdef _LP64
  8664   size(36);
  8665 #else
  8666   size(8);
  8667 #endif
  8668   format %{ "SETHI  hi(&Repl2($src)),$tmp\t!get Repl2I($src) from table\n\t"
  8669             "LDDF   [$tmp+lo(&Repl2($src))],$dst" %}
  8670   ins_encode( LdReplImmI(src, dst, tmp, (2), (4)) );
  8671   ins_pipe(loadConFD);
  8672 %}
  8674 //----------Control Flow Instructions------------------------------------------
  8675 // Compare Instructions
  8676 // Compare Integers
  8677 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
  8678   match(Set icc (CmpI op1 op2));
  8679   effect( DEF icc, USE op1, USE op2 );
  8681   size(4);
  8682   format %{ "CMP    $op1,$op2" %}
  8683   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8684   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8685   ins_pipe(ialu_cconly_reg_reg);
  8686 %}
  8688 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
  8689   match(Set icc (CmpU op1 op2));
  8691   size(4);
  8692   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8693   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8694   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8695   ins_pipe(ialu_cconly_reg_reg);
  8696 %}
  8698 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
  8699   match(Set icc (CmpI op1 op2));
  8700   effect( DEF icc, USE op1 );
  8702   size(4);
  8703   format %{ "CMP    $op1,$op2" %}
  8704   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8705   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8706   ins_pipe(ialu_cconly_reg_imm);
  8707 %}
  8709 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
  8710   match(Set icc (CmpI (AndI op1 op2) zero));
  8712   size(4);
  8713   format %{ "BTST   $op2,$op1" %}
  8714   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8715   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8716   ins_pipe(ialu_cconly_reg_reg_zero);
  8717 %}
  8719 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
  8720   match(Set icc (CmpI (AndI op1 op2) zero));
  8722   size(4);
  8723   format %{ "BTST   $op2,$op1" %}
  8724   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8725   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8726   ins_pipe(ialu_cconly_reg_imm_zero);
  8727 %}
  8729 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
  8730   match(Set xcc (CmpL op1 op2));
  8731   effect( DEF xcc, USE op1, USE op2 );
  8733   size(4);
  8734   format %{ "CMP    $op1,$op2\t\t! long" %}
  8735   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8736   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8737   ins_pipe(ialu_cconly_reg_reg);
  8738 %}
  8740 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
  8741   match(Set xcc (CmpL op1 con));
  8742   effect( DEF xcc, USE op1, USE con );
  8744   size(4);
  8745   format %{ "CMP    $op1,$con\t\t! long" %}
  8746   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8747   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8748   ins_pipe(ialu_cconly_reg_reg);
  8749 %}
  8751 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
  8752   match(Set xcc (CmpL (AndL op1 op2) zero));
  8753   effect( DEF xcc, USE op1, USE op2 );
  8755   size(4);
  8756   format %{ "BTST   $op1,$op2\t\t! long" %}
  8757   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8758   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8759   ins_pipe(ialu_cconly_reg_reg);
  8760 %}
  8762 // useful for checking the alignment of a pointer:
  8763 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
  8764   match(Set xcc (CmpL (AndL op1 con) zero));
  8765   effect( DEF xcc, USE op1, USE con );
  8767   size(4);
  8768   format %{ "BTST   $op1,$con\t\t! long" %}
  8769   opcode(Assembler::andcc_op3, Assembler::arith_op);
  8770   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
  8771   ins_pipe(ialu_cconly_reg_reg);
  8772 %}
  8774 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
  8775   match(Set icc (CmpU op1 op2));
  8777   size(4);
  8778   format %{ "CMP    $op1,$op2\t! unsigned" %}
  8779   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8780   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8781   ins_pipe(ialu_cconly_reg_imm);
  8782 %}
  8784 // Compare Pointers
  8785 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
  8786   match(Set pcc (CmpP op1 op2));
  8788   size(4);
  8789   format %{ "CMP    $op1,$op2\t! ptr" %}
  8790   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8791   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8792   ins_pipe(ialu_cconly_reg_reg);
  8793 %}
  8795 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
  8796   match(Set pcc (CmpP op1 op2));
  8798   size(4);
  8799   format %{ "CMP    $op1,$op2\t! ptr" %}
  8800   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8801   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8802   ins_pipe(ialu_cconly_reg_imm);
  8803 %}
  8805 // Compare Narrow oops
  8806 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
  8807   match(Set icc (CmpN op1 op2));
  8809   size(4);
  8810   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8811   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8812   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
  8813   ins_pipe(ialu_cconly_reg_reg);
  8814 %}
  8816 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
  8817   match(Set icc (CmpN op1 op2));
  8819   size(4);
  8820   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
  8821   opcode(Assembler::subcc_op3, Assembler::arith_op);
  8822   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
  8823   ins_pipe(ialu_cconly_reg_imm);
  8824 %}
  8826 //----------Max and Min--------------------------------------------------------
  8827 // Min Instructions
  8828 // Conditional move for min
  8829 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8830   effect( USE_DEF op2, USE op1, USE icc );
  8832   size(4);
  8833   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
  8834   opcode(Assembler::less);
  8835   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8836   ins_pipe(ialu_reg_flags);
  8837 %}
  8839 // Min Register with Register.
  8840 instruct minI_eReg(iRegI op1, iRegI op2) %{
  8841   match(Set op2 (MinI op1 op2));
  8842   ins_cost(DEFAULT_COST*2);
  8843   expand %{
  8844     flagsReg icc;
  8845     compI_iReg(icc,op1,op2);
  8846     cmovI_reg_lt(op2,op1,icc);
  8847   %}
  8848 %}
  8850 // Max Instructions
  8851 // Conditional move for max
  8852 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
  8853   effect( USE_DEF op2, USE op1, USE icc );
  8854   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
  8855   opcode(Assembler::greater);
  8856   ins_encode( enc_cmov_reg_minmax(op2,op1) );
  8857   ins_pipe(ialu_reg_flags);
  8858 %}
  8860 // Max Register with Register
  8861 instruct maxI_eReg(iRegI op1, iRegI op2) %{
  8862   match(Set op2 (MaxI op1 op2));
  8863   ins_cost(DEFAULT_COST*2);
  8864   expand %{
  8865     flagsReg icc;
  8866     compI_iReg(icc,op1,op2);
  8867     cmovI_reg_gt(op2,op1,icc);
  8868   %}
  8869 %}
  8872 //----------Float Compares----------------------------------------------------
  8873 // Compare floating, generate condition code
  8874 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
  8875   match(Set fcc (CmpF src1 src2));
  8877   size(4);
  8878   format %{ "FCMPs  $fcc,$src1,$src2" %}
  8879   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
  8880   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
  8881   ins_pipe(faddF_fcc_reg_reg_zero);
  8882 %}
  8884 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
  8885   match(Set fcc (CmpD src1 src2));
  8887   size(4);
  8888   format %{ "FCMPd  $fcc,$src1,$src2" %}
  8889   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
  8890   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
  8891   ins_pipe(faddD_fcc_reg_reg_zero);
  8892 %}
  8895 // Compare floating, generate -1,0,1
  8896 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
  8897   match(Set dst (CmpF3 src1 src2));
  8898   effect(KILL fcc0);
  8899   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8900   format %{ "fcmpl  $dst,$src1,$src2" %}
  8901   // Primary = float
  8902   opcode( true );
  8903   ins_encode( floating_cmp( dst, src1, src2 ) );
  8904   ins_pipe( floating_cmp );
  8905 %}
  8907 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
  8908   match(Set dst (CmpD3 src1 src2));
  8909   effect(KILL fcc0);
  8910   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
  8911   format %{ "dcmpl  $dst,$src1,$src2" %}
  8912   // Primary = double (not float)
  8913   opcode( false );
  8914   ins_encode( floating_cmp( dst, src1, src2 ) );
  8915   ins_pipe( floating_cmp );
  8916 %}
  8918 //----------Branches---------------------------------------------------------
  8919 // Jump
  8920 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
  8921 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
  8922   match(Jump switch_val);
  8924   ins_cost(350);
  8926   format %{  "SETHI  [hi(table_base)],O7\n\t"
  8927              "ADD    O7, lo(table_base), O7\n\t"
  8928              "LD     [O7+$switch_val], O7\n\t"
  8929              "JUMP   O7"
  8930          %}
  8931   ins_encode( jump_enc( switch_val, table) );
  8932   ins_pc_relative(1);
  8933   ins_pipe(ialu_reg_reg);
  8934 %}
  8936 // Direct Branch.  Use V8 version with longer range.
  8937 instruct branch(label labl) %{
  8938   match(Goto);
  8939   effect(USE labl);
  8941   size(8);
  8942   ins_cost(BRANCH_COST);
  8943   format %{ "BA     $labl" %}
  8944   // Prim = bits 24-22, Secnd = bits 31-30, Tert = cond
  8945   opcode(Assembler::br_op2, Assembler::branch_op, Assembler::always);
  8946   ins_encode( enc_ba( labl ) );
  8947   ins_pc_relative(1);
  8948   ins_pipe(br);
  8949 %}
  8951 // Conditional Direct Branch
  8952 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
  8953   match(If cmp icc);
  8954   effect(USE labl);
  8956   size(8);
  8957   ins_cost(BRANCH_COST);
  8958   format %{ "BP$cmp   $icc,$labl" %}
  8959   // Prim = bits 24-22, Secnd = bits 31-30
  8960   ins_encode( enc_bp( labl, cmp, icc ) );
  8961   ins_pc_relative(1);
  8962   ins_pipe(br_cc);
  8963 %}
  8965 // Branch-on-register tests all 64 bits.  We assume that values
  8966 // in 64-bit registers always remains zero or sign extended
  8967 // unless our code munges the high bits.  Interrupts can chop
  8968 // the high order bits to zero or sign at any time.
  8969 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
  8970   match(If cmp (CmpI op1 zero));
  8971   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8972   effect(USE labl);
  8974   size(8);
  8975   ins_cost(BRANCH_COST);
  8976   format %{ "BR$cmp   $op1,$labl" %}
  8977   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8978   ins_pc_relative(1);
  8979   ins_pipe(br_reg);
  8980 %}
  8982 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
  8983   match(If cmp (CmpP op1 null));
  8984   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8985   effect(USE labl);
  8987   size(8);
  8988   ins_cost(BRANCH_COST);
  8989   format %{ "BR$cmp   $op1,$labl" %}
  8990   ins_encode( enc_bpr( labl, cmp, op1 ) );
  8991   ins_pc_relative(1);
  8992   ins_pipe(br_reg);
  8993 %}
  8995 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
  8996   match(If cmp (CmpL op1 zero));
  8997   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
  8998   effect(USE labl);
  9000   size(8);
  9001   ins_cost(BRANCH_COST);
  9002   format %{ "BR$cmp   $op1,$labl" %}
  9003   ins_encode( enc_bpr( labl, cmp, op1 ) );
  9004   ins_pc_relative(1);
  9005   ins_pipe(br_reg);
  9006 %}
  9008 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9009   match(If cmp icc);
  9010   effect(USE labl);
  9012   format %{ "BP$cmp  $icc,$labl" %}
  9013   // Prim = bits 24-22, Secnd = bits 31-30
  9014   ins_encode( enc_bp( labl, cmp, icc ) );
  9015   ins_pc_relative(1);
  9016   ins_pipe(br_cc);
  9017 %}
  9019 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
  9020   match(If cmp pcc);
  9021   effect(USE labl);
  9023   size(8);
  9024   ins_cost(BRANCH_COST);
  9025   format %{ "BP$cmp  $pcc,$labl" %}
  9026   // Prim = bits 24-22, Secnd = bits 31-30
  9027   ins_encode( enc_bpx( labl, cmp, pcc ) );
  9028   ins_pc_relative(1);
  9029   ins_pipe(br_cc);
  9030 %}
  9032 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
  9033   match(If cmp fcc);
  9034   effect(USE labl);
  9036   size(8);
  9037   ins_cost(BRANCH_COST);
  9038   format %{ "FBP$cmp $fcc,$labl" %}
  9039   // Prim = bits 24-22, Secnd = bits 31-30
  9040   ins_encode( enc_fbp( labl, cmp, fcc ) );
  9041   ins_pc_relative(1);
  9042   ins_pipe(br_fcc);
  9043 %}
  9045 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
  9046   match(CountedLoopEnd cmp icc);
  9047   effect(USE labl);
  9049   size(8);
  9050   ins_cost(BRANCH_COST);
  9051   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
  9052   // Prim = bits 24-22, Secnd = bits 31-30
  9053   ins_encode( enc_bp( labl, cmp, icc ) );
  9054   ins_pc_relative(1);
  9055   ins_pipe(br_cc);
  9056 %}
  9058 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
  9059   match(CountedLoopEnd cmp icc);
  9060   effect(USE labl);
  9062   size(8);
  9063   ins_cost(BRANCH_COST);
  9064   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
  9065   // Prim = bits 24-22, Secnd = bits 31-30
  9066   ins_encode( enc_bp( labl, cmp, icc ) );
  9067   ins_pc_relative(1);
  9068   ins_pipe(br_cc);
  9069 %}
  9071 // ============================================================================
  9072 // Long Compare
  9073 //
  9074 // Currently we hold longs in 2 registers.  Comparing such values efficiently
  9075 // is tricky.  The flavor of compare used depends on whether we are testing
  9076 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
  9077 // The GE test is the negated LT test.  The LE test can be had by commuting
  9078 // the operands (yielding a GE test) and then negating; negate again for the
  9079 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
  9080 // NE test is negated from that.
  9082 // Due to a shortcoming in the ADLC, it mixes up expressions like:
  9083 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
  9084 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
  9085 // are collapsed internally in the ADLC's dfa-gen code.  The match for
  9086 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
  9087 // foo match ends up with the wrong leaf.  One fix is to not match both
  9088 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
  9089 // both forms beat the trinary form of long-compare and both are very useful
  9090 // on Intel which has so few registers.
  9092 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
  9093   match(If cmp xcc);
  9094   effect(USE labl);
  9096   size(8);
  9097   ins_cost(BRANCH_COST);
  9098   format %{ "BP$cmp   $xcc,$labl" %}
  9099   // Prim = bits 24-22, Secnd = bits 31-30
  9100   ins_encode( enc_bpl( labl, cmp, xcc ) );
  9101   ins_pc_relative(1);
  9102   ins_pipe(br_cc);
  9103 %}
  9105 // Manifest a CmpL3 result in an integer register.  Very painful.
  9106 // This is the test to avoid.
  9107 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
  9108   match(Set dst (CmpL3 src1 src2) );
  9109   effect( KILL ccr );
  9110   ins_cost(6*DEFAULT_COST);
  9111   size(24);
  9112   format %{ "CMP    $src1,$src2\t\t! long\n"
  9113           "\tBLT,a,pn done\n"
  9114           "\tMOV    -1,$dst\t! delay slot\n"
  9115           "\tBGT,a,pn done\n"
  9116           "\tMOV    1,$dst\t! delay slot\n"
  9117           "\tCLR    $dst\n"
  9118     "done:"     %}
  9119   ins_encode( cmpl_flag(src1,src2,dst) );
  9120   ins_pipe(cmpL_reg);
  9121 %}
  9123 // Conditional move
  9124 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
  9125   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9126   ins_cost(150);
  9127   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9128   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9129   ins_pipe(ialu_reg);
  9130 %}
  9132 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
  9133   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
  9134   ins_cost(140);
  9135   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
  9136   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9137   ins_pipe(ialu_imm);
  9138 %}
  9140 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
  9141   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9142   ins_cost(150);
  9143   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9144   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9145   ins_pipe(ialu_reg);
  9146 %}
  9148 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
  9149   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
  9150   ins_cost(140);
  9151   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9152   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9153   ins_pipe(ialu_imm);
  9154 %}
  9156 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
  9157   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
  9158   ins_cost(150);
  9159   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9160   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9161   ins_pipe(ialu_reg);
  9162 %}
  9164 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
  9165   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9166   ins_cost(150);
  9167   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9168   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
  9169   ins_pipe(ialu_reg);
  9170 %}
  9172 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
  9173   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
  9174   ins_cost(140);
  9175   format %{ "MOV$cmp  $xcc,$src,$dst" %}
  9176   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
  9177   ins_pipe(ialu_imm);
  9178 %}
  9180 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
  9181   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
  9182   ins_cost(150);
  9183   opcode(0x101);
  9184   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
  9185   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9186   ins_pipe(int_conditional_float_move);
  9187 %}
  9189 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
  9190   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
  9191   ins_cost(150);
  9192   opcode(0x102);
  9193   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
  9194   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
  9195   ins_pipe(int_conditional_float_move);
  9196 %}
  9198 // ============================================================================
  9199 // Safepoint Instruction
  9200 instruct safePoint_poll(iRegP poll) %{
  9201   match(SafePoint poll);
  9202   effect(USE poll);
  9204   size(4);
  9205 #ifdef _LP64
  9206   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
  9207 #else
  9208   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
  9209 #endif
  9210   ins_encode %{
  9211     __ relocate(relocInfo::poll_type);
  9212     __ ld_ptr($poll$$Register, 0, G0);
  9213   %}
  9214   ins_pipe(loadPollP);
  9215 %}
  9217 // ============================================================================
  9218 // Call Instructions
  9219 // Call Java Static Instruction
  9220 instruct CallStaticJavaDirect( method meth ) %{
  9221   match(CallStaticJava);
  9222   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9223   effect(USE meth);
  9225   size(8);
  9226   ins_cost(CALL_COST);
  9227   format %{ "CALL,static  ; NOP ==> " %}
  9228   ins_encode( Java_Static_Call( meth ), call_epilog );
  9229   ins_pc_relative(1);
  9230   ins_pipe(simple_call);
  9231 %}
  9233 // Call Java Static Instruction (method handle version)
  9234 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
  9235   match(CallStaticJava);
  9236   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
  9237   effect(USE meth, KILL l7_mh_SP_save);
  9239   size(8);
  9240   ins_cost(CALL_COST);
  9241   format %{ "CALL,static/MethodHandle" %}
  9242   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
  9243   ins_pc_relative(1);
  9244   ins_pipe(simple_call);
  9245 %}
  9247 // Call Java Dynamic Instruction
  9248 instruct CallDynamicJavaDirect( method meth ) %{
  9249   match(CallDynamicJava);
  9250   effect(USE meth);
  9252   ins_cost(CALL_COST);
  9253   format %{ "SET    (empty),R_G5\n\t"
  9254             "CALL,dynamic  ; NOP ==> " %}
  9255   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
  9256   ins_pc_relative(1);
  9257   ins_pipe(call);
  9258 %}
  9260 // Call Runtime Instruction
  9261 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
  9262   match(CallRuntime);
  9263   effect(USE meth, KILL l7);
  9264   ins_cost(CALL_COST);
  9265   format %{ "CALL,runtime" %}
  9266   ins_encode( Java_To_Runtime( meth ),
  9267               call_epilog, adjust_long_from_native_call );
  9268   ins_pc_relative(1);
  9269   ins_pipe(simple_call);
  9270 %}
  9272 // Call runtime without safepoint - same as CallRuntime
  9273 instruct CallLeafDirect(method meth, l7RegP l7) %{
  9274   match(CallLeaf);
  9275   effect(USE meth, KILL l7);
  9276   ins_cost(CALL_COST);
  9277   format %{ "CALL,runtime leaf" %}
  9278   ins_encode( Java_To_Runtime( meth ),
  9279               call_epilog,
  9280               adjust_long_from_native_call );
  9281   ins_pc_relative(1);
  9282   ins_pipe(simple_call);
  9283 %}
  9285 // Call runtime without safepoint - same as CallLeaf
  9286 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
  9287   match(CallLeafNoFP);
  9288   effect(USE meth, KILL l7);
  9289   ins_cost(CALL_COST);
  9290   format %{ "CALL,runtime leaf nofp" %}
  9291   ins_encode( Java_To_Runtime( meth ),
  9292               call_epilog,
  9293               adjust_long_from_native_call );
  9294   ins_pc_relative(1);
  9295   ins_pipe(simple_call);
  9296 %}
  9298 // Tail Call; Jump from runtime stub to Java code.
  9299 // Also known as an 'interprocedural jump'.
  9300 // Target of jump will eventually return to caller.
  9301 // TailJump below removes the return address.
  9302 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
  9303   match(TailCall jump_target method_oop );
  9305   ins_cost(CALL_COST);
  9306   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
  9307   ins_encode(form_jmpl(jump_target));
  9308   ins_pipe(tail_call);
  9309 %}
  9312 // Return Instruction
  9313 instruct Ret() %{
  9314   match(Return);
  9316   // The epilogue node did the ret already.
  9317   size(0);
  9318   format %{ "! return" %}
  9319   ins_encode();
  9320   ins_pipe(empty);
  9321 %}
  9324 // Tail Jump; remove the return address; jump to target.
  9325 // TailCall above leaves the return address around.
  9326 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
  9327 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
  9328 // "restore" before this instruction (in Epilogue), we need to materialize it
  9329 // in %i0.
  9330 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
  9331   match( TailJump jump_target ex_oop );
  9332   ins_cost(CALL_COST);
  9333   format %{ "! discard R_O7\n\t"
  9334             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
  9335   ins_encode(form_jmpl_set_exception_pc(jump_target));
  9336   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
  9337   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
  9338   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
  9339   ins_pipe(tail_call);
  9340 %}
  9342 // Create exception oop: created by stack-crawling runtime code.
  9343 // Created exception is now available to this handler, and is setup
  9344 // just prior to jumping to this handler.  No code emitted.
  9345 instruct CreateException( o0RegP ex_oop )
  9346 %{
  9347   match(Set ex_oop (CreateEx));
  9348   ins_cost(0);
  9350   size(0);
  9351   // use the following format syntax
  9352   format %{ "! exception oop is in R_O0; no code emitted" %}
  9353   ins_encode();
  9354   ins_pipe(empty);
  9355 %}
  9358 // Rethrow exception:
  9359 // The exception oop will come in the first argument position.
  9360 // Then JUMP (not call) to the rethrow stub code.
  9361 instruct RethrowException()
  9362 %{
  9363   match(Rethrow);
  9364   ins_cost(CALL_COST);
  9366   // use the following format syntax
  9367   format %{ "Jmp    rethrow_stub" %}
  9368   ins_encode(enc_rethrow);
  9369   ins_pipe(tail_call);
  9370 %}
  9373 // Die now
  9374 instruct ShouldNotReachHere( )
  9375 %{
  9376   match(Halt);
  9377   ins_cost(CALL_COST);
  9379   size(4);
  9380   // Use the following format syntax
  9381   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
  9382   ins_encode( form2_illtrap() );
  9383   ins_pipe(tail_call);
  9384 %}
  9386 // ============================================================================
  9387 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
  9388 // array for an instance of the superklass.  Set a hidden internal cache on a
  9389 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
  9390 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
  9391 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
  9392   match(Set index (PartialSubtypeCheck sub super));
  9393   effect( KILL pcc, KILL o7 );
  9394   ins_cost(DEFAULT_COST*10);
  9395   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
  9396   ins_encode( enc_PartialSubtypeCheck() );
  9397   ins_pipe(partial_subtype_check_pipe);
  9398 %}
  9400 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
  9401   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
  9402   effect( KILL idx, KILL o7 );
  9403   ins_cost(DEFAULT_COST*10);
  9404   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
  9405   ins_encode( enc_PartialSubtypeCheck() );
  9406   ins_pipe(partial_subtype_check_pipe);
  9407 %}
  9410 // ============================================================================
  9411 // inlined locking and unlocking
  9413 instruct cmpFastLock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9414   match(Set pcc (FastLock object box));
  9416   effect(KILL scratch, TEMP scratch2);
  9417   ins_cost(100);
  9419   size(4*112);       // conservative overestimation ...
  9420   format %{ "FASTLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9421   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
  9422   ins_pipe(long_memory_op);
  9423 %}
  9426 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, iRegP box, iRegP scratch2, o7RegP scratch ) %{
  9427   match(Set pcc (FastUnlock object box));
  9428   effect(KILL scratch, TEMP scratch2);
  9429   ins_cost(100);
  9431   size(4*120);       // conservative overestimation ...
  9432   format %{ "FASTUNLOCK  $object, $box; KILL $scratch, $scratch2, $box" %}
  9433   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
  9434   ins_pipe(long_memory_op);
  9435 %}
  9437 // Count and Base registers are fixed because the allocator cannot
  9438 // kill unknown registers.  The encodings are generic.
  9439 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
  9440   match(Set dummy (ClearArray cnt base));
  9441   effect(TEMP temp, KILL ccr);
  9442   ins_cost(300);
  9443   format %{ "MOV    $cnt,$temp\n"
  9444     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
  9445     "        BRge   loop\t\t! Clearing loop\n"
  9446     "        STX    G0,[$base+$temp]\t! delay slot" %}
  9447   ins_encode( enc_Clear_Array(cnt, base, temp) );
  9448   ins_pipe(long_memory_op);
  9449 %}
  9451 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
  9452                         o7RegI tmp, flagsReg ccr) %{
  9453   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
  9454   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
  9455   ins_cost(300);
  9456   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
  9457   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
  9458   ins_pipe(long_memory_op);
  9459 %}
  9461 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
  9462                        o7RegI tmp, flagsReg ccr) %{
  9463   match(Set result (StrEquals (Binary str1 str2) cnt));
  9464   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
  9465   ins_cost(300);
  9466   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
  9467   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
  9468   ins_pipe(long_memory_op);
  9469 %}
  9471 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
  9472                       o7RegI tmp2, flagsReg ccr) %{
  9473   match(Set result (AryEq ary1 ary2));
  9474   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
  9475   ins_cost(300);
  9476   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
  9477   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
  9478   ins_pipe(long_memory_op);
  9479 %}
  9482 //---------- Zeros Count Instructions ------------------------------------------
  9484 instruct countLeadingZerosI(iRegI dst, iRegI src, iRegI tmp, flagsReg cr) %{
  9485   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9486   match(Set dst (CountLeadingZerosI src));
  9487   effect(TEMP dst, TEMP tmp, KILL cr);
  9489   // x |= (x >> 1);
  9490   // x |= (x >> 2);
  9491   // x |= (x >> 4);
  9492   // x |= (x >> 8);
  9493   // x |= (x >> 16);
  9494   // return (WORDBITS - popc(x));
  9495   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
  9496             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
  9497             "OR      $dst,$tmp,$dst\n\t"
  9498             "SRL     $dst,2,$tmp\n\t"
  9499             "OR      $dst,$tmp,$dst\n\t"
  9500             "SRL     $dst,4,$tmp\n\t"
  9501             "OR      $dst,$tmp,$dst\n\t"
  9502             "SRL     $dst,8,$tmp\n\t"
  9503             "OR      $dst,$tmp,$dst\n\t"
  9504             "SRL     $dst,16,$tmp\n\t"
  9505             "OR      $dst,$tmp,$dst\n\t"
  9506             "POPC    $dst,$dst\n\t"
  9507             "MOV     32,$tmp\n\t"
  9508             "SUB     $tmp,$dst,$dst" %}
  9509   ins_encode %{
  9510     Register Rdst = $dst$$Register;
  9511     Register Rsrc = $src$$Register;
  9512     Register Rtmp = $tmp$$Register;
  9513     __ srl(Rsrc, 1, Rtmp);
  9514     __ srl(Rsrc, 0, Rdst);
  9515     __ or3(Rdst, Rtmp, Rdst);
  9516     __ srl(Rdst, 2, Rtmp);
  9517     __ or3(Rdst, Rtmp, Rdst);
  9518     __ srl(Rdst, 4, Rtmp);
  9519     __ or3(Rdst, Rtmp, Rdst);
  9520     __ srl(Rdst, 8, Rtmp);
  9521     __ or3(Rdst, Rtmp, Rdst);
  9522     __ srl(Rdst, 16, Rtmp);
  9523     __ or3(Rdst, Rtmp, Rdst);
  9524     __ popc(Rdst, Rdst);
  9525     __ mov(BitsPerInt, Rtmp);
  9526     __ sub(Rtmp, Rdst, Rdst);
  9527   %}
  9528   ins_pipe(ialu_reg);
  9529 %}
  9531 instruct countLeadingZerosL(iRegI dst, iRegL src, iRegL tmp, flagsReg cr) %{
  9532   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9533   match(Set dst (CountLeadingZerosL src));
  9534   effect(TEMP dst, TEMP tmp, KILL cr);
  9536   // x |= (x >> 1);
  9537   // x |= (x >> 2);
  9538   // x |= (x >> 4);
  9539   // x |= (x >> 8);
  9540   // x |= (x >> 16);
  9541   // x |= (x >> 32);
  9542   // return (WORDBITS - popc(x));
  9543   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
  9544             "OR      $src,$tmp,$dst\n\t"
  9545             "SRLX    $dst,2,$tmp\n\t"
  9546             "OR      $dst,$tmp,$dst\n\t"
  9547             "SRLX    $dst,4,$tmp\n\t"
  9548             "OR      $dst,$tmp,$dst\n\t"
  9549             "SRLX    $dst,8,$tmp\n\t"
  9550             "OR      $dst,$tmp,$dst\n\t"
  9551             "SRLX    $dst,16,$tmp\n\t"
  9552             "OR      $dst,$tmp,$dst\n\t"
  9553             "SRLX    $dst,32,$tmp\n\t"
  9554             "OR      $dst,$tmp,$dst\n\t"
  9555             "POPC    $dst,$dst\n\t"
  9556             "MOV     64,$tmp\n\t"
  9557             "SUB     $tmp,$dst,$dst" %}
  9558   ins_encode %{
  9559     Register Rdst = $dst$$Register;
  9560     Register Rsrc = $src$$Register;
  9561     Register Rtmp = $tmp$$Register;
  9562     __ srlx(Rsrc, 1, Rtmp);
  9563     __ or3(Rsrc, Rtmp, Rdst);
  9564     __ srlx(Rdst, 2, Rtmp);
  9565     __ or3(Rdst, Rtmp, Rdst);
  9566     __ srlx(Rdst, 4, Rtmp);
  9567     __ or3(Rdst, Rtmp, Rdst);
  9568     __ srlx(Rdst, 8, Rtmp);
  9569     __ or3(Rdst, Rtmp, Rdst);
  9570     __ srlx(Rdst, 16, Rtmp);
  9571     __ or3(Rdst, Rtmp, Rdst);
  9572     __ srlx(Rdst, 32, Rtmp);
  9573     __ or3(Rdst, Rtmp, Rdst);
  9574     __ popc(Rdst, Rdst);
  9575     __ mov(BitsPerLong, Rtmp);
  9576     __ sub(Rtmp, Rdst, Rdst);
  9577   %}
  9578   ins_pipe(ialu_reg);
  9579 %}
  9581 instruct countTrailingZerosI(iRegI dst, iRegI src, flagsReg cr) %{
  9582   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9583   match(Set dst (CountTrailingZerosI src));
  9584   effect(TEMP dst, KILL cr);
  9586   // return popc(~x & (x - 1));
  9587   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
  9588             "ANDN    $dst,$src,$dst\n\t"
  9589             "SRL     $dst,R_G0,$dst\n\t"
  9590             "POPC    $dst,$dst" %}
  9591   ins_encode %{
  9592     Register Rdst = $dst$$Register;
  9593     Register Rsrc = $src$$Register;
  9594     __ sub(Rsrc, 1, Rdst);
  9595     __ andn(Rdst, Rsrc, Rdst);
  9596     __ srl(Rdst, G0, Rdst);
  9597     __ popc(Rdst, Rdst);
  9598   %}
  9599   ins_pipe(ialu_reg);
  9600 %}
  9602 instruct countTrailingZerosL(iRegI dst, iRegL src, flagsReg cr) %{
  9603   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
  9604   match(Set dst (CountTrailingZerosL src));
  9605   effect(TEMP dst, KILL cr);
  9607   // return popc(~x & (x - 1));
  9608   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
  9609             "ANDN    $dst,$src,$dst\n\t"
  9610             "POPC    $dst,$dst" %}
  9611   ins_encode %{
  9612     Register Rdst = $dst$$Register;
  9613     Register Rsrc = $src$$Register;
  9614     __ sub(Rsrc, 1, Rdst);
  9615     __ andn(Rdst, Rsrc, Rdst);
  9616     __ popc(Rdst, Rdst);
  9617   %}
  9618   ins_pipe(ialu_reg);
  9619 %}
  9622 //---------- Population Count Instructions -------------------------------------
  9624 instruct popCountI(iRegI dst, iRegI src) %{
  9625   predicate(UsePopCountInstruction);
  9626   match(Set dst (PopCountI src));
  9628   format %{ "POPC   $src, $dst" %}
  9629   ins_encode %{
  9630     __ popc($src$$Register, $dst$$Register);
  9631   %}
  9632   ins_pipe(ialu_reg);
  9633 %}
  9635 // Note: Long.bitCount(long) returns an int.
  9636 instruct popCountL(iRegI dst, iRegL src) %{
  9637   predicate(UsePopCountInstruction);
  9638   match(Set dst (PopCountL src));
  9640   format %{ "POPC   $src, $dst" %}
  9641   ins_encode %{
  9642     __ popc($src$$Register, $dst$$Register);
  9643   %}
  9644   ins_pipe(ialu_reg);
  9645 %}
  9648 // ============================================================================
  9649 //------------Bytes reverse--------------------------------------------------
  9651 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
  9652   match(Set dst (ReverseBytesI src));
  9654   // Op cost is artificially doubled to make sure that load or store
  9655   // instructions are preferred over this one which requires a spill
  9656   // onto a stack slot.
  9657   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9658   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9660   ins_encode %{
  9661     __ set($src$$disp + STACK_BIAS, O7);
  9662     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9663   %}
  9664   ins_pipe( iload_mem );
  9665 %}
  9667 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
  9668   match(Set dst (ReverseBytesL src));
  9670   // Op cost is artificially doubled to make sure that load or store
  9671   // instructions are preferred over this one which requires a spill
  9672   // onto a stack slot.
  9673   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9674   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9676   ins_encode %{
  9677     __ set($src$$disp + STACK_BIAS, O7);
  9678     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9679   %}
  9680   ins_pipe( iload_mem );
  9681 %}
  9683 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
  9684   match(Set dst (ReverseBytesUS src));
  9686   // Op cost is artificially doubled to make sure that load or store
  9687   // instructions are preferred over this one which requires a spill
  9688   // onto a stack slot.
  9689   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9690   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
  9692   ins_encode %{
  9693     // the value was spilled as an int so bias the load
  9694     __ set($src$$disp + STACK_BIAS + 2, O7);
  9695     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9696   %}
  9697   ins_pipe( iload_mem );
  9698 %}
  9700 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
  9701   match(Set dst (ReverseBytesS src));
  9703   // Op cost is artificially doubled to make sure that load or store
  9704   // instructions are preferred over this one which requires a spill
  9705   // onto a stack slot.
  9706   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
  9707   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
  9709   ins_encode %{
  9710     // the value was spilled as an int so bias the load
  9711     __ set($src$$disp + STACK_BIAS + 2, O7);
  9712     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9713   %}
  9714   ins_pipe( iload_mem );
  9715 %}
  9717 // Load Integer reversed byte order
  9718 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
  9719   match(Set dst (ReverseBytesI (LoadI src)));
  9721   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
  9722   size(4);
  9723   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
  9725   ins_encode %{
  9726     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9727   %}
  9728   ins_pipe(iload_mem);
  9729 %}
  9731 // Load Long - aligned and reversed
  9732 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
  9733   match(Set dst (ReverseBytesL (LoadL src)));
  9735   ins_cost(MEMORY_REF_COST);
  9736   size(4);
  9737   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
  9739   ins_encode %{
  9740     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9741   %}
  9742   ins_pipe(iload_mem);
  9743 %}
  9745 // Load unsigned short / char reversed byte order
  9746 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
  9747   match(Set dst (ReverseBytesUS (LoadUS src)));
  9749   ins_cost(MEMORY_REF_COST);
  9750   size(4);
  9751   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
  9753   ins_encode %{
  9754     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9755   %}
  9756   ins_pipe(iload_mem);
  9757 %}
  9759 // Load short reversed byte order
  9760 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
  9761   match(Set dst (ReverseBytesS (LoadS src)));
  9763   ins_cost(MEMORY_REF_COST);
  9764   size(4);
  9765   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
  9767   ins_encode %{
  9768     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
  9769   %}
  9770   ins_pipe(iload_mem);
  9771 %}
  9773 // Store Integer reversed byte order
  9774 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
  9775   match(Set dst (StoreI dst (ReverseBytesI src)));
  9777   ins_cost(MEMORY_REF_COST);
  9778   size(4);
  9779   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
  9781   ins_encode %{
  9782     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9783   %}
  9784   ins_pipe(istore_mem_reg);
  9785 %}
  9787 // Store Long reversed byte order
  9788 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
  9789   match(Set dst (StoreL dst (ReverseBytesL src)));
  9791   ins_cost(MEMORY_REF_COST);
  9792   size(4);
  9793   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
  9795   ins_encode %{
  9796     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9797   %}
  9798   ins_pipe(istore_mem_reg);
  9799 %}
  9801 // Store unsighed short/char reversed byte order
  9802 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
  9803   match(Set dst (StoreC dst (ReverseBytesUS src)));
  9805   ins_cost(MEMORY_REF_COST);
  9806   size(4);
  9807   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9809   ins_encode %{
  9810     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9811   %}
  9812   ins_pipe(istore_mem_reg);
  9813 %}
  9815 // Store short reversed byte order
  9816 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
  9817   match(Set dst (StoreC dst (ReverseBytesS src)));
  9819   ins_cost(MEMORY_REF_COST);
  9820   size(4);
  9821   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
  9823   ins_encode %{
  9824     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
  9825   %}
  9826   ins_pipe(istore_mem_reg);
  9827 %}
  9829 //----------PEEPHOLE RULES-----------------------------------------------------
  9830 // These must follow all instruction definitions as they use the names
  9831 // defined in the instructions definitions.
  9832 //
  9833 // peepmatch ( root_instr_name [preceding_instruction]* );
  9834 //
  9835 // peepconstraint %{
  9836 // (instruction_number.operand_name relational_op instruction_number.operand_name
  9837 //  [, ...] );
  9838 // // instruction numbers are zero-based using left to right order in peepmatch
  9839 //
  9840 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
  9841 // // provide an instruction_number.operand_name for each operand that appears
  9842 // // in the replacement instruction's match rule
  9843 //
  9844 // ---------VM FLAGS---------------------------------------------------------
  9845 //
  9846 // All peephole optimizations can be turned off using -XX:-OptoPeephole
  9847 //
  9848 // Each peephole rule is given an identifying number starting with zero and
  9849 // increasing by one in the order seen by the parser.  An individual peephole
  9850 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
  9851 // on the command-line.
  9852 //
  9853 // ---------CURRENT LIMITATIONS----------------------------------------------
  9854 //
  9855 // Only match adjacent instructions in same basic block
  9856 // Only equality constraints
  9857 // Only constraints between operands, not (0.dest_reg == EAX_enc)
  9858 // Only one replacement instruction
  9859 //
  9860 // ---------EXAMPLE----------------------------------------------------------
  9861 //
  9862 // // pertinent parts of existing instructions in architecture description
  9863 // instruct movI(eRegI dst, eRegI src) %{
  9864 //   match(Set dst (CopyI src));
  9865 // %}
  9866 //
  9867 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
  9868 //   match(Set dst (AddI dst src));
  9869 //   effect(KILL cr);
  9870 // %}
  9871 //
  9872 // // Change (inc mov) to lea
  9873 // peephole %{
  9874 //   // increment preceeded by register-register move
  9875 //   peepmatch ( incI_eReg movI );
  9876 //   // require that the destination register of the increment
  9877 //   // match the destination register of the move
  9878 //   peepconstraint ( 0.dst == 1.dst );
  9879 //   // construct a replacement instruction that sets
  9880 //   // the destination to ( move's source register + one )
  9881 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
  9882 // %}
  9883 //
  9885 // // Change load of spilled value to only a spill
  9886 // instruct storeI(memory mem, eRegI src) %{
  9887 //   match(Set mem (StoreI mem src));
  9888 // %}
  9889 //
  9890 // instruct loadI(eRegI dst, memory mem) %{
  9891 //   match(Set dst (LoadI mem));
  9892 // %}
  9893 //
  9894 // peephole %{
  9895 //   peepmatch ( loadI storeI );
  9896 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
  9897 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
  9898 // %}
  9900 //----------SMARTSPILL RULES---------------------------------------------------
  9901 // These must follow all instruction definitions as they use the names
  9902 // defined in the instructions definitions.
  9903 //
  9904 // SPARC will probably not have any of these rules due to RISC instruction set.
  9906 //----------PIPELINE-----------------------------------------------------------
  9907 // Rules which define the behavior of the target architectures pipeline.

mercurial