src/share/vm/opto/macro.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2985
e3cbc9ddd434
child 3047
f1c12354c3f7
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "libadt/vectset.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/compile.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/locknode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/macro.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/node.hpp"
    38 #include "opto/phaseX.hpp"
    39 #include "opto/rootnode.hpp"
    40 #include "opto/runtime.hpp"
    41 #include "opto/subnode.hpp"
    42 #include "opto/type.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    46 //
    47 // Replace any references to "oldref" in inputs to "use" with "newref".
    48 // Returns the number of replacements made.
    49 //
    50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    51   int nreplacements = 0;
    52   uint req = use->req();
    53   for (uint j = 0; j < use->len(); j++) {
    54     Node *uin = use->in(j);
    55     if (uin == oldref) {
    56       if (j < req)
    57         use->set_req(j, newref);
    58       else
    59         use->set_prec(j, newref);
    60       nreplacements++;
    61     } else if (j >= req && uin == NULL) {
    62       break;
    63     }
    64   }
    65   return nreplacements;
    66 }
    68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    69   // Copy debug information and adjust JVMState information
    70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    71   uint new_dbg_start = newcall->tf()->domain()->cnt();
    72   int jvms_adj  = new_dbg_start - old_dbg_start;
    73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    75   Dict* sosn_map = new Dict(cmpkey,hashkey);
    76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    77     Node* old_in = oldcall->in(i);
    78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    81       uint old_unique = C->unique();
    82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    83       if (old_unique != C->unique()) {
    84         new_in->set_req(0, newcall->in(0)); // reset control edge
    85         new_in = transform_later(new_in); // Register new node.
    86       }
    87       old_in = new_in;
    88     }
    89     newcall->add_req(old_in);
    90   }
    92   newcall->set_jvms(oldcall->jvms());
    93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    94     jvms->set_map(newcall);
    95     jvms->set_locoff(jvms->locoff()+jvms_adj);
    96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    97     jvms->set_monoff(jvms->monoff()+jvms_adj);
    98     jvms->set_scloff(jvms->scloff()+jvms_adj);
    99     jvms->set_endoff(jvms->endoff()+jvms_adj);
   100   }
   101 }
   103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
   104   Node* cmp;
   105   if (mask != 0) {
   106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
   107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
   108   } else {
   109     cmp = word;
   110   }
   111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
   112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   113   transform_later(iff);
   115   // Fast path taken.
   116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   118   // Fast path not-taken, i.e. slow path
   119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   121   if (return_fast_path) {
   122     region->init_req(edge, slow_taken); // Capture slow-control
   123     return fast_taken;
   124   } else {
   125     region->init_req(edge, fast_taken); // Capture fast-control
   126     return slow_taken;
   127   }
   128 }
   130 //--------------------copy_predefined_input_for_runtime_call--------------------
   131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   132   // Set fixed predefined input arguments
   133   call->init_req( TypeFunc::Control, ctrl );
   134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   138 }
   140 //------------------------------make_slow_call---------------------------------
   141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   143   // Slow-path call
   144   int size = slow_call_type->domain()->cnt();
   145  CallNode *call = leaf_name
   146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   149   // Slow path call has no side-effects, uses few values
   150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   153   copy_call_debug_info(oldcall, call);
   154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   155   _igvn.replace_node(oldcall, call);
   156   transform_later(call);
   158   return call;
   159 }
   161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   162   _fallthroughproj = NULL;
   163   _fallthroughcatchproj = NULL;
   164   _ioproj_fallthrough = NULL;
   165   _ioproj_catchall = NULL;
   166   _catchallcatchproj = NULL;
   167   _memproj_fallthrough = NULL;
   168   _memproj_catchall = NULL;
   169   _resproj = NULL;
   170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   171     ProjNode *pn = call->fast_out(i)->as_Proj();
   172     switch (pn->_con) {
   173       case TypeFunc::Control:
   174       {
   175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   176         _fallthroughproj = pn;
   177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   178         const Node *cn = pn->fast_out(j);
   179         if (cn->is_Catch()) {
   180           ProjNode *cpn = NULL;
   181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   182             cpn = cn->fast_out(k)->as_Proj();
   183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   184             if (cpn->_con == CatchProjNode::fall_through_index)
   185               _fallthroughcatchproj = cpn;
   186             else {
   187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   188               _catchallcatchproj = cpn;
   189             }
   190           }
   191         }
   192         break;
   193       }
   194       case TypeFunc::I_O:
   195         if (pn->_is_io_use)
   196           _ioproj_catchall = pn;
   197         else
   198           _ioproj_fallthrough = pn;
   199         break;
   200       case TypeFunc::Memory:
   201         if (pn->_is_io_use)
   202           _memproj_catchall = pn;
   203         else
   204           _memproj_fallthrough = pn;
   205         break;
   206       case TypeFunc::Parms:
   207         _resproj = pn;
   208         break;
   209       default:
   210         assert(false, "unexpected projection from allocation node.");
   211     }
   212   }
   214 }
   216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   219   if (!UseG1GC) {
   220     // vanilla/CMS post barrier
   221     Node *shift = p2x->unique_out();
   222     Node *addp = shift->unique_out();
   223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   224       Node *mem = addp->last_out(j);
   225       if (UseCondCardMark && mem->is_Load()) {
   226         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
   227         // The load is checking if the card has been written so
   228         // replace it with zero to fold the test.
   229         _igvn.replace_node(mem, intcon(0));
   230         continue;
   231       }
   232       assert(mem->is_Store(), "store required");
   233       _igvn.replace_node(mem, mem->in(MemNode::Memory));
   234     }
   235   } else {
   236     // G1 pre/post barriers
   237     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
   238     // It could be only one user, URShift node, in Object.clone() instrinsic
   239     // but the new allocation is passed to arraycopy stub and it could not
   240     // be scalar replaced. So we don't check the case.
   242     // Remove G1 post barrier.
   244     // Search for CastP2X->Xor->URShift->Cmp path which
   245     // checks if the store done to a different from the value's region.
   246     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   247     Node* xorx = NULL;
   248     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   249       Node* u = p2x->fast_out(i);
   250       if (u->Opcode() == Op_XorX) {
   251         xorx = u;
   252         break;
   253       }
   254     }
   255     assert(xorx != NULL, "missing G1 post barrier");
   256     Node* shift = xorx->unique_out();
   257     Node* cmpx = shift->unique_out();
   258     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   259     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   260     "missing region check in G1 post barrier");
   261     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   263     // Remove G1 pre barrier.
   265     // Search "if (marking != 0)" check and set it to "false".
   266     Node* this_region = p2x->in(0);
   267     assert(this_region != NULL, "");
   268     // There is no G1 pre barrier if previous stored value is NULL
   269     // (for example, after initialization).
   270     if (this_region->is_Region() && this_region->req() == 3) {
   271       int ind = 1;
   272       if (!this_region->in(ind)->is_IfFalse()) {
   273         ind = 2;
   274       }
   275       if (this_region->in(ind)->is_IfFalse()) {
   276         Node* bol = this_region->in(ind)->in(0)->in(1);
   277         assert(bol->is_Bool(), "");
   278         cmpx = bol->in(1);
   279         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   280             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   281             cmpx->in(1)->is_Load()) {
   282           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   283           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   284                                               PtrQueue::byte_offset_of_active());
   285           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   286               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   287               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   288             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   289           }
   290         }
   291       }
   292     }
   293     // Now CastP2X can be removed since it is used only on dead path
   294     // which currently still alive until igvn optimize it.
   295     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
   296     _igvn.replace_node(p2x, top());
   297   }
   298 }
   300 // Search for a memory operation for the specified memory slice.
   301 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   302   Node *orig_mem = mem;
   303   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   304   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   305   while (true) {
   306     if (mem == alloc_mem || mem == start_mem ) {
   307       return mem;  // hit one of our sentinels
   308     } else if (mem->is_MergeMem()) {
   309       mem = mem->as_MergeMem()->memory_at(alias_idx);
   310     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   311       Node *in = mem->in(0);
   312       // we can safely skip over safepoints, calls, locks and membars because we
   313       // already know that the object is safe to eliminate.
   314       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   315         return in;
   316       } else if (in->is_Call()) {
   317         CallNode *call = in->as_Call();
   318         if (!call->may_modify(tinst, phase)) {
   319           mem = call->in(TypeFunc::Memory);
   320         }
   321         mem = in->in(TypeFunc::Memory);
   322       } else if (in->is_MemBar()) {
   323         mem = in->in(TypeFunc::Memory);
   324       } else {
   325         assert(false, "unexpected projection");
   326       }
   327     } else if (mem->is_Store()) {
   328       const TypePtr* atype = mem->as_Store()->adr_type();
   329       int adr_idx = Compile::current()->get_alias_index(atype);
   330       if (adr_idx == alias_idx) {
   331         assert(atype->isa_oopptr(), "address type must be oopptr");
   332         int adr_offset = atype->offset();
   333         uint adr_iid = atype->is_oopptr()->instance_id();
   334         // Array elements references have the same alias_idx
   335         // but different offset and different instance_id.
   336         if (adr_offset == offset && adr_iid == alloc->_idx)
   337           return mem;
   338       } else {
   339         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   340       }
   341       mem = mem->in(MemNode::Memory);
   342     } else if (mem->is_ClearArray()) {
   343       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   344         // Can not bypass initialization of the instance
   345         // we are looking.
   346         debug_only(intptr_t offset;)
   347         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   348         InitializeNode* init = alloc->as_Allocate()->initialization();
   349         // We are looking for stored value, return Initialize node
   350         // or memory edge from Allocate node.
   351         if (init != NULL)
   352           return init;
   353         else
   354           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   355       }
   356       // Otherwise skip it (the call updated 'mem' value).
   357     } else if (mem->Opcode() == Op_SCMemProj) {
   358       assert(mem->in(0)->is_LoadStore(), "sanity");
   359       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   360       int adr_idx = Compile::current()->get_alias_index(atype);
   361       if (adr_idx == alias_idx) {
   362         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   363         return NULL;
   364       }
   365       mem = mem->in(0)->in(MemNode::Memory);
   366     } else {
   367       return mem;
   368     }
   369     assert(mem != orig_mem, "dead memory loop");
   370   }
   371 }
   373 //
   374 // Given a Memory Phi, compute a value Phi containing the values from stores
   375 // on the input paths.
   376 // Note: this function is recursive, its depth is limied by the "level" argument
   377 // Returns the computed Phi, or NULL if it cannot compute it.
   378 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   379   assert(mem->is_Phi(), "sanity");
   380   int alias_idx = C->get_alias_index(adr_t);
   381   int offset = adr_t->offset();
   382   int instance_id = adr_t->instance_id();
   384   // Check if an appropriate value phi already exists.
   385   Node* region = mem->in(0);
   386   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   387     Node* phi = region->fast_out(k);
   388     if (phi->is_Phi() && phi != mem &&
   389         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   390       return phi;
   391     }
   392   }
   393   // Check if an appropriate new value phi already exists.
   394   Node* new_phi = value_phis->find(mem->_idx);
   395   if (new_phi != NULL)
   396     return new_phi;
   398   if (level <= 0) {
   399     return NULL; // Give up: phi tree too deep
   400   }
   401   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   402   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   404   uint length = mem->req();
   405   GrowableArray <Node *> values(length, length, NULL);
   407   // create a new Phi for the value
   408   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   409   transform_later(phi);
   410   value_phis->push(phi, mem->_idx);
   412   for (uint j = 1; j < length; j++) {
   413     Node *in = mem->in(j);
   414     if (in == NULL || in->is_top()) {
   415       values.at_put(j, in);
   416     } else  {
   417       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   418       if (val == start_mem || val == alloc_mem) {
   419         // hit a sentinel, return appropriate 0 value
   420         values.at_put(j, _igvn.zerocon(ft));
   421         continue;
   422       }
   423       if (val->is_Initialize()) {
   424         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   425       }
   426       if (val == NULL) {
   427         return NULL;  // can't find a value on this path
   428       }
   429       if (val == mem) {
   430         values.at_put(j, mem);
   431       } else if (val->is_Store()) {
   432         values.at_put(j, val->in(MemNode::ValueIn));
   433       } else if(val->is_Proj() && val->in(0) == alloc) {
   434         values.at_put(j, _igvn.zerocon(ft));
   435       } else if (val->is_Phi()) {
   436         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   437         if (val == NULL) {
   438           return NULL;
   439         }
   440         values.at_put(j, val);
   441       } else if (val->Opcode() == Op_SCMemProj) {
   442         assert(val->in(0)->is_LoadStore(), "sanity");
   443         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   444         return NULL;
   445       } else {
   446 #ifdef ASSERT
   447         val->dump();
   448         assert(false, "unknown node on this path");
   449 #endif
   450         return NULL;  // unknown node on this path
   451       }
   452     }
   453   }
   454   // Set Phi's inputs
   455   for (uint j = 1; j < length; j++) {
   456     if (values.at(j) == mem) {
   457       phi->init_req(j, phi);
   458     } else {
   459       phi->init_req(j, values.at(j));
   460     }
   461   }
   462   return phi;
   463 }
   465 // Search the last value stored into the object's field.
   466 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   467   assert(adr_t->is_known_instance_field(), "instance required");
   468   int instance_id = adr_t->instance_id();
   469   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   471   int alias_idx = C->get_alias_index(adr_t);
   472   int offset = adr_t->offset();
   473   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   474   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   475   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   476   Arena *a = Thread::current()->resource_area();
   477   VectorSet visited(a);
   480   bool done = sfpt_mem == alloc_mem;
   481   Node *mem = sfpt_mem;
   482   while (!done) {
   483     if (visited.test_set(mem->_idx)) {
   484       return NULL;  // found a loop, give up
   485     }
   486     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   487     if (mem == start_mem || mem == alloc_mem) {
   488       done = true;  // hit a sentinel, return appropriate 0 value
   489     } else if (mem->is_Initialize()) {
   490       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   491       if (mem == NULL) {
   492         done = true; // Something go wrong.
   493       } else if (mem->is_Store()) {
   494         const TypePtr* atype = mem->as_Store()->adr_type();
   495         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   496         done = true;
   497       }
   498     } else if (mem->is_Store()) {
   499       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   500       assert(atype != NULL, "address type must be oopptr");
   501       assert(C->get_alias_index(atype) == alias_idx &&
   502              atype->is_known_instance_field() && atype->offset() == offset &&
   503              atype->instance_id() == instance_id, "store is correct memory slice");
   504       done = true;
   505     } else if (mem->is_Phi()) {
   506       // try to find a phi's unique input
   507       Node *unique_input = NULL;
   508       Node *top = C->top();
   509       for (uint i = 1; i < mem->req(); i++) {
   510         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   511         if (n == NULL || n == top || n == mem) {
   512           continue;
   513         } else if (unique_input == NULL) {
   514           unique_input = n;
   515         } else if (unique_input != n) {
   516           unique_input = top;
   517           break;
   518         }
   519       }
   520       if (unique_input != NULL && unique_input != top) {
   521         mem = unique_input;
   522       } else {
   523         done = true;
   524       }
   525     } else {
   526       assert(false, "unexpected node");
   527     }
   528   }
   529   if (mem != NULL) {
   530     if (mem == start_mem || mem == alloc_mem) {
   531       // hit a sentinel, return appropriate 0 value
   532       return _igvn.zerocon(ft);
   533     } else if (mem->is_Store()) {
   534       return mem->in(MemNode::ValueIn);
   535     } else if (mem->is_Phi()) {
   536       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   537       Node_Stack value_phis(a, 8);
   538       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   539       if (phi != NULL) {
   540         return phi;
   541       } else {
   542         // Kill all new Phis
   543         while(value_phis.is_nonempty()) {
   544           Node* n = value_phis.node();
   545           _igvn.replace_node(n, C->top());
   546           value_phis.pop();
   547         }
   548       }
   549     }
   550   }
   551   // Something go wrong.
   552   return NULL;
   553 }
   555 // Check the possibility of scalar replacement.
   556 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   557   //  Scan the uses of the allocation to check for anything that would
   558   //  prevent us from eliminating it.
   559   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   560   DEBUG_ONLY( Node* disq_node = NULL; )
   561   bool  can_eliminate = true;
   563   Node* res = alloc->result_cast();
   564   const TypeOopPtr* res_type = NULL;
   565   if (res == NULL) {
   566     // All users were eliminated.
   567   } else if (!res->is_CheckCastPP()) {
   568     alloc->_is_scalar_replaceable = false;  // don't try again
   569     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   570     can_eliminate = false;
   571   } else {
   572     res_type = _igvn.type(res)->isa_oopptr();
   573     if (res_type == NULL) {
   574       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   575       can_eliminate = false;
   576     } else if (res_type->isa_aryptr()) {
   577       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   578       if (length < 0) {
   579         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   580         can_eliminate = false;
   581       }
   582     }
   583   }
   585   if (can_eliminate && res != NULL) {
   586     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   587                                j < jmax && can_eliminate; j++) {
   588       Node* use = res->fast_out(j);
   590       if (use->is_AddP()) {
   591         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   592         int offset = addp_type->offset();
   594         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   595           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   596           can_eliminate = false;
   597           break;
   598         }
   599         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   600                                    k < kmax && can_eliminate; k++) {
   601           Node* n = use->fast_out(k);
   602           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   603             DEBUG_ONLY(disq_node = n;)
   604             if (n->is_Load() || n->is_LoadStore()) {
   605               NOT_PRODUCT(fail_eliminate = "Field load";)
   606             } else {
   607               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   608             }
   609             can_eliminate = false;
   610           }
   611         }
   612       } else if (use->is_SafePoint()) {
   613         SafePointNode* sfpt = use->as_SafePoint();
   614         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   615           // Object is passed as argument.
   616           DEBUG_ONLY(disq_node = use;)
   617           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   618           can_eliminate = false;
   619         }
   620         Node* sfptMem = sfpt->memory();
   621         if (sfptMem == NULL || sfptMem->is_top()) {
   622           DEBUG_ONLY(disq_node = use;)
   623           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   624           can_eliminate = false;
   625         } else {
   626           safepoints.append_if_missing(sfpt);
   627         }
   628       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   629         if (use->is_Phi()) {
   630           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   631             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   632           } else {
   633             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   634           }
   635           DEBUG_ONLY(disq_node = use;)
   636         } else {
   637           if (use->Opcode() == Op_Return) {
   638             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   639           }else {
   640             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   641           }
   642           DEBUG_ONLY(disq_node = use;)
   643         }
   644         can_eliminate = false;
   645       }
   646     }
   647   }
   649 #ifndef PRODUCT
   650   if (PrintEliminateAllocations) {
   651     if (can_eliminate) {
   652       tty->print("Scalar ");
   653       if (res == NULL)
   654         alloc->dump();
   655       else
   656         res->dump();
   657     } else {
   658       tty->print("NotScalar (%s)", fail_eliminate);
   659       if (res == NULL)
   660         alloc->dump();
   661       else
   662         res->dump();
   663 #ifdef ASSERT
   664       if (disq_node != NULL) {
   665           tty->print("  >>>> ");
   666           disq_node->dump();
   667       }
   668 #endif /*ASSERT*/
   669     }
   670   }
   671 #endif
   672   return can_eliminate;
   673 }
   675 // Do scalar replacement.
   676 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   677   GrowableArray <SafePointNode *> safepoints_done;
   679   ciKlass* klass = NULL;
   680   ciInstanceKlass* iklass = NULL;
   681   int nfields = 0;
   682   int array_base;
   683   int element_size;
   684   BasicType basic_elem_type;
   685   ciType* elem_type;
   687   Node* res = alloc->result_cast();
   688   const TypeOopPtr* res_type = NULL;
   689   if (res != NULL) { // Could be NULL when there are no users
   690     res_type = _igvn.type(res)->isa_oopptr();
   691   }
   693   if (res != NULL) {
   694     klass = res_type->klass();
   695     if (res_type->isa_instptr()) {
   696       // find the fields of the class which will be needed for safepoint debug information
   697       assert(klass->is_instance_klass(), "must be an instance klass.");
   698       iklass = klass->as_instance_klass();
   699       nfields = iklass->nof_nonstatic_fields();
   700     } else {
   701       // find the array's elements which will be needed for safepoint debug information
   702       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   703       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   704       elem_type = klass->as_array_klass()->element_type();
   705       basic_elem_type = elem_type->basic_type();
   706       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   707       element_size = type2aelembytes(basic_elem_type);
   708     }
   709   }
   710   //
   711   // Process the safepoint uses
   712   //
   713   while (safepoints.length() > 0) {
   714     SafePointNode* sfpt = safepoints.pop();
   715     Node* mem = sfpt->memory();
   716     uint first_ind = sfpt->req();
   717     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   718 #ifdef ASSERT
   719                                                  alloc,
   720 #endif
   721                                                  first_ind, nfields);
   722     sobj->init_req(0, sfpt->in(TypeFunc::Control));
   723     transform_later(sobj);
   725     // Scan object's fields adding an input to the safepoint for each field.
   726     for (int j = 0; j < nfields; j++) {
   727       intptr_t offset;
   728       ciField* field = NULL;
   729       if (iklass != NULL) {
   730         field = iklass->nonstatic_field_at(j);
   731         offset = field->offset();
   732         elem_type = field->type();
   733         basic_elem_type = field->layout_type();
   734       } else {
   735         offset = array_base + j * (intptr_t)element_size;
   736       }
   738       const Type *field_type;
   739       // The next code is taken from Parse::do_get_xxx().
   740       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   741         if (!elem_type->is_loaded()) {
   742           field_type = TypeInstPtr::BOTTOM;
   743         } else if (field != NULL && field->is_constant() && field->is_static()) {
   744           // This can happen if the constant oop is non-perm.
   745           ciObject* con = field->constant_value().as_object();
   746           // Do not "join" in the previous type; it doesn't add value,
   747           // and may yield a vacuous result if the field is of interface type.
   748           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   749           assert(field_type != NULL, "field singleton type must be consistent");
   750         } else {
   751           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   752         }
   753         if (UseCompressedOops) {
   754           field_type = field_type->make_narrowoop();
   755           basic_elem_type = T_NARROWOOP;
   756         }
   757       } else {
   758         field_type = Type::get_const_basic_type(basic_elem_type);
   759       }
   761       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   763       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   764       if (field_val == NULL) {
   765         // we weren't able to find a value for this field,
   766         // give up on eliminating this allocation
   767         alloc->_is_scalar_replaceable = false;  // don't try again
   768         // remove any extra entries we added to the safepoint
   769         uint last = sfpt->req() - 1;
   770         for (int k = 0;  k < j; k++) {
   771           sfpt->del_req(last--);
   772         }
   773         // rollback processed safepoints
   774         while (safepoints_done.length() > 0) {
   775           SafePointNode* sfpt_done = safepoints_done.pop();
   776           // remove any extra entries we added to the safepoint
   777           last = sfpt_done->req() - 1;
   778           for (int k = 0;  k < nfields; k++) {
   779             sfpt_done->del_req(last--);
   780           }
   781           JVMState *jvms = sfpt_done->jvms();
   782           jvms->set_endoff(sfpt_done->req());
   783           // Now make a pass over the debug information replacing any references
   784           // to SafePointScalarObjectNode with the allocated object.
   785           int start = jvms->debug_start();
   786           int end   = jvms->debug_end();
   787           for (int i = start; i < end; i++) {
   788             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   789               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   790               if (scobj->first_index() == sfpt_done->req() &&
   791                   scobj->n_fields() == (uint)nfields) {
   792                 assert(scobj->alloc() == alloc, "sanity");
   793                 sfpt_done->set_req(i, res);
   794               }
   795             }
   796           }
   797         }
   798 #ifndef PRODUCT
   799         if (PrintEliminateAllocations) {
   800           if (field != NULL) {
   801             tty->print("=== At SafePoint node %d can't find value of Field: ",
   802                        sfpt->_idx);
   803             field->print();
   804             int field_idx = C->get_alias_index(field_addr_type);
   805             tty->print(" (alias_idx=%d)", field_idx);
   806           } else { // Array's element
   807             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   808                        sfpt->_idx, j);
   809           }
   810           tty->print(", which prevents elimination of: ");
   811           if (res == NULL)
   812             alloc->dump();
   813           else
   814             res->dump();
   815         }
   816 #endif
   817         return false;
   818       }
   819       if (UseCompressedOops && field_type->isa_narrowoop()) {
   820         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   821         // to be able scalar replace the allocation.
   822         if (field_val->is_EncodeP()) {
   823           field_val = field_val->in(1);
   824         } else {
   825           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   826         }
   827       }
   828       sfpt->add_req(field_val);
   829     }
   830     JVMState *jvms = sfpt->jvms();
   831     jvms->set_endoff(sfpt->req());
   832     // Now make a pass over the debug information replacing any references
   833     // to the allocated object with "sobj"
   834     int start = jvms->debug_start();
   835     int end   = jvms->debug_end();
   836     for (int i = start; i < end; i++) {
   837       if (sfpt->in(i) == res) {
   838         sfpt->set_req(i, sobj);
   839       }
   840     }
   841     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   842   }
   843   return true;
   844 }
   846 // Process users of eliminated allocation.
   847 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   848   Node* res = alloc->result_cast();
   849   if (res != NULL) {
   850     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   851       Node *use = res->last_out(j);
   852       uint oc1 = res->outcnt();
   854       if (use->is_AddP()) {
   855         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   856           Node *n = use->last_out(k);
   857           uint oc2 = use->outcnt();
   858           if (n->is_Store()) {
   859 #ifdef ASSERT
   860             // Verify that there is no dependent MemBarVolatile nodes,
   861             // they should be removed during IGVN, see MemBarNode::Ideal().
   862             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   863                                        p < pmax; p++) {
   864               Node* mb = n->fast_out(p);
   865               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   866                      mb->req() <= MemBarNode::Precedent ||
   867                      mb->in(MemBarNode::Precedent) != n,
   868                      "MemBarVolatile should be eliminated for non-escaping object");
   869             }
   870 #endif
   871             _igvn.replace_node(n, n->in(MemNode::Memory));
   872           } else {
   873             eliminate_card_mark(n);
   874           }
   875           k -= (oc2 - use->outcnt());
   876         }
   877       } else {
   878         eliminate_card_mark(use);
   879       }
   880       j -= (oc1 - res->outcnt());
   881     }
   882     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   883     _igvn.remove_dead_node(res);
   884   }
   886   //
   887   // Process other users of allocation's projections
   888   //
   889   if (_resproj != NULL && _resproj->outcnt() != 0) {
   890     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   891       Node *use = _resproj->last_out(j);
   892       uint oc1 = _resproj->outcnt();
   893       if (use->is_Initialize()) {
   894         // Eliminate Initialize node.
   895         InitializeNode *init = use->as_Initialize();
   896         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   897         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   898         if (ctrl_proj != NULL) {
   899            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   900           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   901         }
   902         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   903         if (mem_proj != NULL) {
   904           Node *mem = init->in(TypeFunc::Memory);
   905 #ifdef ASSERT
   906           if (mem->is_MergeMem()) {
   907             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   908           } else {
   909             assert(mem == _memproj_fallthrough, "allocation memory projection");
   910           }
   911 #endif
   912           _igvn.replace_node(mem_proj, mem);
   913         }
   914       } else if (use->is_AddP()) {
   915         // raw memory addresses used only by the initialization
   916         _igvn.replace_node(use, C->top());
   917       } else  {
   918         assert(false, "only Initialize or AddP expected");
   919       }
   920       j -= (oc1 - _resproj->outcnt());
   921     }
   922   }
   923   if (_fallthroughcatchproj != NULL) {
   924     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   925   }
   926   if (_memproj_fallthrough != NULL) {
   927     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   928   }
   929   if (_memproj_catchall != NULL) {
   930     _igvn.replace_node(_memproj_catchall, C->top());
   931   }
   932   if (_ioproj_fallthrough != NULL) {
   933     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   934   }
   935   if (_ioproj_catchall != NULL) {
   936     _igvn.replace_node(_ioproj_catchall, C->top());
   937   }
   938   if (_catchallcatchproj != NULL) {
   939     _igvn.replace_node(_catchallcatchproj, C->top());
   940   }
   941 }
   943 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   945   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   946     return false;
   947   }
   949   extract_call_projections(alloc);
   951   GrowableArray <SafePointNode *> safepoints;
   952   if (!can_eliminate_allocation(alloc, safepoints)) {
   953     return false;
   954   }
   956   if (!scalar_replacement(alloc, safepoints)) {
   957     return false;
   958   }
   960   CompileLog* log = C->log();
   961   if (log != NULL) {
   962     Node* klass = alloc->in(AllocateNode::KlassNode);
   963     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   964     log->head("eliminate_allocation type='%d'",
   965               log->identify(tklass->klass()));
   966     JVMState* p = alloc->jvms();
   967     while (p != NULL) {
   968       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   969       p = p->caller();
   970     }
   971     log->tail("eliminate_allocation");
   972   }
   974   process_users_of_allocation(alloc);
   976 #ifndef PRODUCT
   977   if (PrintEliminateAllocations) {
   978     if (alloc->is_AllocateArray())
   979       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   980     else
   981       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   982   }
   983 #endif
   985   return true;
   986 }
   989 //---------------------------set_eden_pointers-------------------------
   990 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   991   if (UseTLAB) {                // Private allocation: load from TLS
   992     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   993     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   994     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   995     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
   996     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
   997   } else {                      // Shared allocation: load from globals
   998     CollectedHeap* ch = Universe::heap();
   999     address top_adr = (address)ch->top_addr();
  1000     address end_adr = (address)ch->end_addr();
  1001     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
  1002     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  1007 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  1008   Node* adr = basic_plus_adr(base, offset);
  1009   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
  1010   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
  1011   transform_later(value);
  1012   return value;
  1016 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  1017   Node* adr = basic_plus_adr(base, offset);
  1018   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
  1019   transform_later(mem);
  1020   return mem;
  1023 //=============================================================================
  1024 //
  1025 //                              A L L O C A T I O N
  1026 //
  1027 // Allocation attempts to be fast in the case of frequent small objects.
  1028 // It breaks down like this:
  1029 //
  1030 // 1) Size in doublewords is computed.  This is a constant for objects and
  1031 // variable for most arrays.  Doubleword units are used to avoid size
  1032 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1033 // rounding.
  1034 //
  1035 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1036 // the slow path into the VM.  The slow path can throw any required
  1037 // exceptions, and does all the special checks for very large arrays.  The
  1038 // size test can constant-fold away for objects.  For objects with
  1039 // finalizers it constant-folds the otherway: you always go slow with
  1040 // finalizers.
  1041 //
  1042 // 3) If NOT using TLABs, this is the contended loop-back point.
  1043 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1044 //
  1045 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1046 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1047 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1048 // enough that there's always space between the eden max and 4Gig (old space is
  1049 // there so it's quite large) and large enough that the cost of entering the VM
  1050 // is dwarfed by the cost to initialize the space.
  1051 //
  1052 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1053 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1054 // adjusted heap top back down; there is no contention.
  1055 //
  1056 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1057 // fields.
  1058 //
  1059 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1060 // oop flavor.
  1061 //
  1062 //=============================================================================
  1063 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1064 // Allocations bigger than this always go the slow route.
  1065 // This value must be small enough that allocation attempts that need to
  1066 // trigger exceptions go the slow route.  Also, it must be small enough so
  1067 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1068 //=============================================================================j//
  1069 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1070 // The allocator will coalesce int->oop copies away.  See comment in
  1071 // coalesce.cpp about how this works.  It depends critically on the exact
  1072 // code shape produced here, so if you are changing this code shape
  1073 // make sure the GC info for the heap-top is correct in and around the
  1074 // slow-path call.
  1075 //
  1077 void PhaseMacroExpand::expand_allocate_common(
  1078             AllocateNode* alloc, // allocation node to be expanded
  1079             Node* length,  // array length for an array allocation
  1080             const TypeFunc* slow_call_type, // Type of slow call
  1081             address slow_call_address  // Address of slow call
  1085   Node* ctrl = alloc->in(TypeFunc::Control);
  1086   Node* mem  = alloc->in(TypeFunc::Memory);
  1087   Node* i_o  = alloc->in(TypeFunc::I_O);
  1088   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1089   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1090   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1092   assert(ctrl != NULL, "must have control");
  1093   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1094   // they will not be used if "always_slow" is set
  1095   enum { slow_result_path = 1, fast_result_path = 2 };
  1096   Node *result_region;
  1097   Node *result_phi_rawmem;
  1098   Node *result_phi_rawoop;
  1099   Node *result_phi_i_o;
  1101   // The initial slow comparison is a size check, the comparison
  1102   // we want to do is a BoolTest::gt
  1103   bool always_slow = false;
  1104   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1105   if (tv >= 0) {
  1106     always_slow = (tv == 1);
  1107     initial_slow_test = NULL;
  1108   } else {
  1109     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1112   if (C->env()->dtrace_alloc_probes() ||
  1113       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1114                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1115     // Force slow-path allocation
  1116     always_slow = true;
  1117     initial_slow_test = NULL;
  1121   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1122   Node *slow_region = NULL;
  1123   Node *toobig_false = ctrl;
  1125   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1126   // generate the initial test if necessary
  1127   if (initial_slow_test != NULL ) {
  1128     slow_region = new (C, 3) RegionNode(3);
  1130     // Now make the initial failure test.  Usually a too-big test but
  1131     // might be a TRUE for finalizers or a fancy class check for
  1132     // newInstance0.
  1133     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1134     transform_later(toobig_iff);
  1135     // Plug the failing-too-big test into the slow-path region
  1136     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1137     transform_later(toobig_true);
  1138     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1139     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1140     transform_later(toobig_false);
  1141   } else {         // No initial test, just fall into next case
  1142     toobig_false = ctrl;
  1143     debug_only(slow_region = NodeSentinel);
  1146   Node *slow_mem = mem;  // save the current memory state for slow path
  1147   // generate the fast allocation code unless we know that the initial test will always go slow
  1148   if (!always_slow) {
  1149     // Fast path modifies only raw memory.
  1150     if (mem->is_MergeMem()) {
  1151       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1154     Node* eden_top_adr;
  1155     Node* eden_end_adr;
  1157     set_eden_pointers(eden_top_adr, eden_end_adr);
  1159     // Load Eden::end.  Loop invariant and hoisted.
  1160     //
  1161     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1162     //       a TLAB to work around a bug where these values were being moved across
  1163     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1164     //       map, but they can be changed by a GC.   The proper way to fix this would
  1165     //       be to set the raw memory state when generating a  SafepointNode.  However
  1166     //       this will require extensive changes to the loop optimization in order to
  1167     //       prevent a degradation of the optimization.
  1168     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1169     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1171     // allocate the Region and Phi nodes for the result
  1172     result_region = new (C, 3) RegionNode(3);
  1173     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1174     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
  1175     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
  1177     // We need a Region for the loop-back contended case.
  1178     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1179     Node *contended_region;
  1180     Node *contended_phi_rawmem;
  1181     if (UseTLAB) {
  1182       contended_region = toobig_false;
  1183       contended_phi_rawmem = mem;
  1184     } else {
  1185       contended_region = new (C, 3) RegionNode(3);
  1186       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1187       // Now handle the passing-too-big test.  We fall into the contended
  1188       // loop-back merge point.
  1189       contended_region    ->init_req(fall_in_path, toobig_false);
  1190       contended_phi_rawmem->init_req(fall_in_path, mem);
  1191       transform_later(contended_region);
  1192       transform_later(contended_phi_rawmem);
  1195     // Load(-locked) the heap top.
  1196     // See note above concerning the control input when using a TLAB
  1197     Node *old_eden_top = UseTLAB
  1198       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
  1199       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
  1201     transform_later(old_eden_top);
  1202     // Add to heap top to get a new heap top
  1203     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
  1204     transform_later(new_eden_top);
  1205     // Check for needing a GC; compare against heap end
  1206     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
  1207     transform_later(needgc_cmp);
  1208     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
  1209     transform_later(needgc_bol);
  1210     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
  1211     transform_later(needgc_iff);
  1213     // Plug the failing-heap-space-need-gc test into the slow-path region
  1214     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
  1215     transform_later(needgc_true);
  1216     if (initial_slow_test) {
  1217       slow_region->init_req(need_gc_path, needgc_true);
  1218       // This completes all paths into the slow merge point
  1219       transform_later(slow_region);
  1220     } else {                      // No initial slow path needed!
  1221       // Just fall from the need-GC path straight into the VM call.
  1222       slow_region = needgc_true;
  1224     // No need for a GC.  Setup for the Store-Conditional
  1225     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
  1226     transform_later(needgc_false);
  1228     // Grab regular I/O before optional prefetch may change it.
  1229     // Slow-path does no I/O so just set it to the original I/O.
  1230     result_phi_i_o->init_req(slow_result_path, i_o);
  1232     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1233                               old_eden_top, new_eden_top, length);
  1235     // Name successful fast-path variables
  1236     Node* fast_oop = old_eden_top;
  1237     Node* fast_oop_ctrl;
  1238     Node* fast_oop_rawmem;
  1240     // Store (-conditional) the modified eden top back down.
  1241     // StorePConditional produces flags for a test PLUS a modified raw
  1242     // memory state.
  1243     if (UseTLAB) {
  1244       Node* store_eden_top =
  1245         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1246                               TypeRawPtr::BOTTOM, new_eden_top);
  1247       transform_later(store_eden_top);
  1248       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1249       fast_oop_rawmem = store_eden_top;
  1250     } else {
  1251       Node* store_eden_top =
  1252         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1253                                          new_eden_top, fast_oop/*old_eden_top*/);
  1254       transform_later(store_eden_top);
  1255       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
  1256       transform_later(contention_check);
  1257       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1258       transform_later(store_eden_top);
  1260       // If not using TLABs, check to see if there was contention.
  1261       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
  1262       transform_later(contention_iff);
  1263       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
  1264       transform_later(contention_true);
  1265       // If contention, loopback and try again.
  1266       contended_region->init_req(contended_loopback_path, contention_true);
  1267       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
  1269       // Fast-path succeeded with no contention!
  1270       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
  1271       transform_later(contention_false);
  1272       fast_oop_ctrl = contention_false;
  1274       // Bump total allocated bytes for this thread
  1275       Node* thread = new (C, 1) ThreadLocalNode();
  1276       transform_later(thread);
  1277       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
  1278                                              in_bytes(JavaThread::allocated_bytes_offset()));
  1279       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1280                                     0, TypeLong::LONG, T_LONG);
  1281 #ifdef _LP64
  1282       Node* alloc_size = size_in_bytes;
  1283 #else
  1284       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
  1285       transform_later(alloc_size);
  1286 #endif
  1287       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
  1288       transform_later(new_alloc_bytes);
  1289       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1290                                    0, new_alloc_bytes, T_LONG);
  1293     fast_oop_rawmem = initialize_object(alloc,
  1294                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1295                                         klass_node, length, size_in_bytes);
  1297     if (C->env()->dtrace_extended_probes()) {
  1298       // Slow-path call
  1299       int size = TypeFunc::Parms + 2;
  1300       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1301                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1302                                                       "dtrace_object_alloc",
  1303                                                       TypeRawPtr::BOTTOM);
  1305       // Get base of thread-local storage area
  1306       Node* thread = new (C, 1) ThreadLocalNode();
  1307       transform_later(thread);
  1309       call->init_req(TypeFunc::Parms+0, thread);
  1310       call->init_req(TypeFunc::Parms+1, fast_oop);
  1311       call->init_req(TypeFunc::Control, fast_oop_ctrl);
  1312       call->init_req(TypeFunc::I_O    , top()); // does no i/o
  1313       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
  1314       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
  1315       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
  1316       transform_later(call);
  1317       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1318       transform_later(fast_oop_ctrl);
  1319       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1320       transform_later(fast_oop_rawmem);
  1323     // Plug in the successful fast-path into the result merge point
  1324     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
  1325     result_phi_rawoop->init_req(fast_result_path, fast_oop);
  1326     result_phi_i_o   ->init_req(fast_result_path, i_o);
  1327     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
  1328   } else {
  1329     slow_region = ctrl;
  1332   // Generate slow-path call
  1333   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1334     CallStaticJavaNode(slow_call_type, slow_call_address,
  1335                        OptoRuntime::stub_name(slow_call_address),
  1336                        alloc->jvms()->bci(),
  1337                        TypePtr::BOTTOM);
  1338   call->init_req( TypeFunc::Control, slow_region );
  1339   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1340   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1341   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1342   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1344   call->init_req(TypeFunc::Parms+0, klass_node);
  1345   if (length != NULL) {
  1346     call->init_req(TypeFunc::Parms+1, length);
  1349   // Copy debug information and adjust JVMState information, then replace
  1350   // allocate node with the call
  1351   copy_call_debug_info((CallNode *) alloc,  call);
  1352   if (!always_slow) {
  1353     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1355   _igvn.replace_node(alloc, call);
  1356   transform_later(call);
  1358   // Identify the output projections from the allocate node and
  1359   // adjust any references to them.
  1360   // The control and io projections look like:
  1361   //
  1362   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1363   //  Allocate                   Catch
  1364   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1365   //
  1366   //  We are interested in the CatchProj nodes.
  1367   //
  1368   extract_call_projections(call);
  1370   // An allocate node has separate memory projections for the uses on the control and i_o paths
  1371   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
  1372   if (!always_slow && _memproj_fallthrough != NULL) {
  1373     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1374       Node *use = _memproj_fallthrough->fast_out(i);
  1375       _igvn.hash_delete(use);
  1376       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1377       _igvn._worklist.push(use);
  1378       // back up iterator
  1379       --i;
  1382   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
  1383   // we end up with a call that has only 1 memory projection
  1384   if (_memproj_catchall != NULL ) {
  1385     if (_memproj_fallthrough == NULL) {
  1386       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1387       transform_later(_memproj_fallthrough);
  1389     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1390       Node *use = _memproj_catchall->fast_out(i);
  1391       _igvn.hash_delete(use);
  1392       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1393       _igvn._worklist.push(use);
  1394       // back up iterator
  1395       --i;
  1399   // An allocate node has separate i_o projections for the uses on the control and i_o paths
  1400   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
  1401   if (_ioproj_fallthrough == NULL) {
  1402     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1403     transform_later(_ioproj_fallthrough);
  1404   } else if (!always_slow) {
  1405     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1406       Node *use = _ioproj_fallthrough->fast_out(i);
  1408       _igvn.hash_delete(use);
  1409       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1410       _igvn._worklist.push(use);
  1411       // back up iterator
  1412       --i;
  1415   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
  1416   // we end up with a call that has only 1 control projection
  1417   if (_ioproj_catchall != NULL ) {
  1418     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1419       Node *use = _ioproj_catchall->fast_out(i);
  1420       _igvn.hash_delete(use);
  1421       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1422       _igvn._worklist.push(use);
  1423       // back up iterator
  1424       --i;
  1428   // if we generated only a slow call, we are done
  1429   if (always_slow)
  1430     return;
  1433   if (_fallthroughcatchproj != NULL) {
  1434     ctrl = _fallthroughcatchproj->clone();
  1435     transform_later(ctrl);
  1436     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1437   } else {
  1438     ctrl = top();
  1440   Node *slow_result;
  1441   if (_resproj == NULL) {
  1442     // no uses of the allocation result
  1443     slow_result = top();
  1444   } else {
  1445     slow_result = _resproj->clone();
  1446     transform_later(slow_result);
  1447     _igvn.replace_node(_resproj, result_phi_rawoop);
  1450   // Plug slow-path into result merge point
  1451   result_region    ->init_req( slow_result_path, ctrl );
  1452   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1453   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1454   transform_later(result_region);
  1455   transform_later(result_phi_rawoop);
  1456   transform_later(result_phi_rawmem);
  1457   transform_later(result_phi_i_o);
  1458   // This completes all paths into the result merge point
  1462 // Helper for PhaseMacroExpand::expand_allocate_common.
  1463 // Initializes the newly-allocated storage.
  1464 Node*
  1465 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1466                                     Node* control, Node* rawmem, Node* object,
  1467                                     Node* klass_node, Node* length,
  1468                                     Node* size_in_bytes) {
  1469   InitializeNode* init = alloc->initialization();
  1470   // Store the klass & mark bits
  1471   Node* mark_node = NULL;
  1472   // For now only enable fast locking for non-array types
  1473   if (UseBiasedLocking && (length == NULL)) {
  1474     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
  1475   } else {
  1476     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1478   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1480   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1481   int header_size = alloc->minimum_header_size();  // conservatively small
  1483   // Array length
  1484   if (length != NULL) {         // Arrays need length field
  1485     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1486     // conservatively small header size:
  1487     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1488     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1489     if (k->is_array_klass())    // we know the exact header size in most cases:
  1490       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1493   // Clear the object body, if necessary.
  1494   if (init == NULL) {
  1495     // The init has somehow disappeared; be cautious and clear everything.
  1496     //
  1497     // This can happen if a node is allocated but an uncommon trap occurs
  1498     // immediately.  In this case, the Initialize gets associated with the
  1499     // trap, and may be placed in a different (outer) loop, if the Allocate
  1500     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1501     // there can be two Allocates to one Initialize.  The answer in all these
  1502     // edge cases is safety first.  It is always safe to clear immediately
  1503     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1504     if (!ZeroTLAB)
  1505       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1506                                             header_size, size_in_bytes,
  1507                                             &_igvn);
  1508   } else {
  1509     if (!init->is_complete()) {
  1510       // Try to win by zeroing only what the init does not store.
  1511       // We can also try to do some peephole optimizations,
  1512       // such as combining some adjacent subword stores.
  1513       rawmem = init->complete_stores(control, rawmem, object,
  1514                                      header_size, size_in_bytes, &_igvn);
  1516     // We have no more use for this link, since the AllocateNode goes away:
  1517     init->set_req(InitializeNode::RawAddress, top());
  1518     // (If we keep the link, it just confuses the register allocator,
  1519     // who thinks he sees a real use of the address by the membar.)
  1522   return rawmem;
  1525 // Generate prefetch instructions for next allocations.
  1526 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1527                                         Node*& contended_phi_rawmem,
  1528                                         Node* old_eden_top, Node* new_eden_top,
  1529                                         Node* length) {
  1530    enum { fall_in_path = 1, pf_path = 2 };
  1531    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1532       // Generate prefetch allocation with watermark check.
  1533       // As an allocation hits the watermark, we will prefetch starting
  1534       // at a "distance" away from watermark.
  1536       Node *pf_region = new (C, 3) RegionNode(3);
  1537       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1538                                                 TypeRawPtr::BOTTOM );
  1539       // I/O is used for Prefetch
  1540       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1542       Node *thread = new (C, 1) ThreadLocalNode();
  1543       transform_later(thread);
  1545       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1546                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1547       transform_later(eden_pf_adr);
  1549       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1550                                    contended_phi_rawmem, eden_pf_adr,
  1551                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1552       transform_later(old_pf_wm);
  1554       // check against new_eden_top
  1555       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1556       transform_later(need_pf_cmp);
  1557       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1558       transform_later(need_pf_bol);
  1559       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1560                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1561       transform_later(need_pf_iff);
  1563       // true node, add prefetchdistance
  1564       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1565       transform_later(need_pf_true);
  1567       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1568       transform_later(need_pf_false);
  1570       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1571                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1572       transform_later(new_pf_wmt );
  1573       new_pf_wmt->set_req(0, need_pf_true);
  1575       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1576                                        contended_phi_rawmem, eden_pf_adr,
  1577                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1578       transform_later(store_new_wmt);
  1580       // adding prefetches
  1581       pf_phi_abio->init_req( fall_in_path, i_o );
  1583       Node *prefetch_adr;
  1584       Node *prefetch;
  1585       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1586       uint step_size = AllocatePrefetchStepSize;
  1587       uint distance = 0;
  1589       for ( uint i = 0; i < lines; i++ ) {
  1590         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1591                                             _igvn.MakeConX(distance) );
  1592         transform_later(prefetch_adr);
  1593         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1594         transform_later(prefetch);
  1595         distance += step_size;
  1596         i_o = prefetch;
  1598       pf_phi_abio->set_req( pf_path, i_o );
  1600       pf_region->init_req( fall_in_path, need_pf_false );
  1601       pf_region->init_req( pf_path, need_pf_true );
  1603       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1604       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1606       transform_later(pf_region);
  1607       transform_later(pf_phi_rawmem);
  1608       transform_later(pf_phi_abio);
  1610       needgc_false = pf_region;
  1611       contended_phi_rawmem = pf_phi_rawmem;
  1612       i_o = pf_phi_abio;
  1613    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1614       // Insert a prefetch for each allocation only on the fast-path
  1615       Node *pf_region = new (C, 3) RegionNode(3);
  1616       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1617                                                 TypeRawPtr::BOTTOM );
  1619       // Generate several prefetch instructions only for arrays.
  1620       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1621       uint step_size = AllocatePrefetchStepSize;
  1622       uint distance = AllocatePrefetchDistance;
  1624       // Next cache address.
  1625       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
  1626                                             _igvn.MakeConX(distance));
  1627       transform_later(cache_adr);
  1628       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
  1629       transform_later(cache_adr);
  1630       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1631       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
  1632       transform_later(cache_adr);
  1633       cache_adr = new (C, 2) CastX2PNode(cache_adr);
  1634       transform_later(cache_adr);
  1636       // Prefetch
  1637       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
  1638       prefetch->set_req(0, needgc_false);
  1639       transform_later(prefetch);
  1640       contended_phi_rawmem = prefetch;
  1641       Node *prefetch_adr;
  1642       distance = step_size;
  1643       for ( uint i = 1; i < lines; i++ ) {
  1644         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
  1645                                             _igvn.MakeConX(distance) );
  1646         transform_later(prefetch_adr);
  1647         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
  1648         transform_later(prefetch);
  1649         distance += step_size;
  1650         contended_phi_rawmem = prefetch;
  1652    } else if( AllocatePrefetchStyle > 0 ) {
  1653       // Insert a prefetch for each allocation only on the fast-path
  1654       Node *prefetch_adr;
  1655       Node *prefetch;
  1656       // Generate several prefetch instructions only for arrays.
  1657       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
  1658       uint step_size = AllocatePrefetchStepSize;
  1659       uint distance = AllocatePrefetchDistance;
  1660       for ( uint i = 0; i < lines; i++ ) {
  1661         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1662                                             _igvn.MakeConX(distance) );
  1663         transform_later(prefetch_adr);
  1664         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
  1665         // Do not let it float too high, since if eden_top == eden_end,
  1666         // both might be null.
  1667         if( i == 0 ) { // Set control for first prefetch, next follows it
  1668           prefetch->init_req(0, needgc_false);
  1670         transform_later(prefetch);
  1671         distance += step_size;
  1672         i_o = prefetch;
  1675    return i_o;
  1679 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1680   expand_allocate_common(alloc, NULL,
  1681                          OptoRuntime::new_instance_Type(),
  1682                          OptoRuntime::new_instance_Java());
  1685 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1686   Node* length = alloc->in(AllocateNode::ALength);
  1687   expand_allocate_common(alloc, length,
  1688                          OptoRuntime::new_array_Type(),
  1689                          OptoRuntime::new_array_Java());
  1692 //-----------------------mark_eliminated_locking_nodes-----------------------
  1693 // During EA obj may point to several objects but after few ideal graph
  1694 // transformations (CCP) it may point to only one non escaping object
  1695 // (but still using phi), corresponding locks and unlocks will be marked
  1696 // for elimination. Later obj could be replaced with a new node (new phi)
  1697 // and which does not have escape information. And later after some graph
  1698 // reshape other locks and unlocks (which were not marked for elimination
  1699 // before) are connected to this new obj (phi) but they still will not be
  1700 // marked for elimination since new obj has no escape information.
  1701 // Mark all associated (same box and obj) lock and unlock nodes for
  1702 // elimination if some of them marked already.
  1703 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
  1704   if (!alock->is_eliminated()) {
  1705     return;
  1707   if (!alock->is_coarsened()) { // Eliminated by EA
  1708       // Create new "eliminated" BoxLock node and use it
  1709       // in monitor debug info for the same object.
  1710       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1711       Node* obj = alock->obj_node();
  1712       if (!oldbox->is_eliminated()) {
  1713         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
  1714         // Note: BoxLock node is marked eliminated only here
  1715         // and it is used to indicate that all associated lock
  1716         // and unlock nodes are marked for elimination.
  1717         newbox->set_eliminated();
  1718         transform_later(newbox);
  1719         // Replace old box node with new box for all users
  1720         // of the same object.
  1721         for (uint i = 0; i < oldbox->outcnt();) {
  1723           bool next_edge = true;
  1724           Node* u = oldbox->raw_out(i);
  1725           if (u->is_AbstractLock() &&
  1726               u->as_AbstractLock()->obj_node() == obj &&
  1727               u->as_AbstractLock()->box_node() == oldbox) {
  1728             // Mark all associated locks and unlocks.
  1729             u->as_AbstractLock()->set_eliminated();
  1730             _igvn.hash_delete(u);
  1731             u->set_req(TypeFunc::Parms + 1, newbox);
  1732             next_edge = false;
  1734           // Replace old box in monitor debug info.
  1735           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1736             SafePointNode* sfn = u->as_SafePoint();
  1737             JVMState* youngest_jvms = sfn->jvms();
  1738             int max_depth = youngest_jvms->depth();
  1739             for (int depth = 1; depth <= max_depth; depth++) {
  1740               JVMState* jvms = youngest_jvms->of_depth(depth);
  1741               int num_mon  = jvms->nof_monitors();
  1742               // Loop over monitors
  1743               for (int idx = 0; idx < num_mon; idx++) {
  1744                 Node* obj_node = sfn->monitor_obj(jvms, idx);
  1745                 Node* box_node = sfn->monitor_box(jvms, idx);
  1746                 if (box_node == oldbox && obj_node == obj) {
  1747                   int j = jvms->monitor_box_offset(idx);
  1748                   _igvn.hash_delete(u);
  1749                   u->set_req(j, newbox);
  1750                   next_edge = false;
  1752               } // for (int idx = 0;
  1753             } // for (int depth = 1;
  1754           } // if (u->is_SafePoint()
  1755           if (next_edge) i++;
  1756         } // for (uint i = 0; i < oldbox->outcnt();)
  1757       } // if (!oldbox->is_eliminated())
  1758   } // if (!alock->is_coarsened())
  1761 // we have determined that this lock/unlock can be eliminated, we simply
  1762 // eliminate the node without expanding it.
  1763 //
  1764 // Note:  The membar's associated with the lock/unlock are currently not
  1765 //        eliminated.  This should be investigated as a future enhancement.
  1766 //
  1767 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1769   if (!alock->is_eliminated()) {
  1770     return false;
  1772 #ifdef ASSERT
  1773   if (alock->is_Lock() && !alock->is_coarsened()) {
  1774     // Check that new "eliminated" BoxLock node is created.
  1775     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1776     assert(oldbox->is_eliminated(), "should be done already");
  1778 #endif
  1779   CompileLog* log = C->log();
  1780   if (log != NULL) {
  1781     log->head("eliminate_lock lock='%d'",
  1782               alock->is_Lock());
  1783     JVMState* p = alock->jvms();
  1784     while (p != NULL) {
  1785       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1786       p = p->caller();
  1788     log->tail("eliminate_lock");
  1791   #ifndef PRODUCT
  1792   if (PrintEliminateLocks) {
  1793     if (alock->is_Lock()) {
  1794       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
  1795     } else {
  1796       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
  1799   #endif
  1801   Node* mem  = alock->in(TypeFunc::Memory);
  1802   Node* ctrl = alock->in(TypeFunc::Control);
  1804   extract_call_projections(alock);
  1805   // There are 2 projections from the lock.  The lock node will
  1806   // be deleted when its last use is subsumed below.
  1807   assert(alock->outcnt() == 2 &&
  1808          _fallthroughproj != NULL &&
  1809          _memproj_fallthrough != NULL,
  1810          "Unexpected projections from Lock/Unlock");
  1812   Node* fallthroughproj = _fallthroughproj;
  1813   Node* memproj_fallthrough = _memproj_fallthrough;
  1815   // The memory projection from a lock/unlock is RawMem
  1816   // The input to a Lock is merged memory, so extract its RawMem input
  1817   // (unless the MergeMem has been optimized away.)
  1818   if (alock->is_Lock()) {
  1819     // Seach for MemBarAcquire node and delete it also.
  1820     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  1821     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
  1822     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  1823     Node* memproj = membar->proj_out(TypeFunc::Memory);
  1824     _igvn.replace_node(ctrlproj, fallthroughproj);
  1825     _igvn.replace_node(memproj, memproj_fallthrough);
  1827     // Delete FastLock node also if this Lock node is unique user
  1828     // (a loop peeling may clone a Lock node).
  1829     Node* flock = alock->as_Lock()->fastlock_node();
  1830     if (flock->outcnt() == 1) {
  1831       assert(flock->unique_out() == alock, "sanity");
  1832       _igvn.replace_node(flock, top());
  1836   // Seach for MemBarRelease node and delete it also.
  1837   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  1838       ctrl->in(0)->is_MemBar()) {
  1839     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  1840     assert(membar->Opcode() == Op_MemBarRelease &&
  1841            mem->is_Proj() && membar == mem->in(0), "");
  1842     _igvn.replace_node(fallthroughproj, ctrl);
  1843     _igvn.replace_node(memproj_fallthrough, mem);
  1844     fallthroughproj = ctrl;
  1845     memproj_fallthrough = mem;
  1846     ctrl = membar->in(TypeFunc::Control);
  1847     mem  = membar->in(TypeFunc::Memory);
  1850   _igvn.replace_node(fallthroughproj, ctrl);
  1851   _igvn.replace_node(memproj_fallthrough, mem);
  1852   return true;
  1856 //------------------------------expand_lock_node----------------------
  1857 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  1859   Node* ctrl = lock->in(TypeFunc::Control);
  1860   Node* mem = lock->in(TypeFunc::Memory);
  1861   Node* obj = lock->obj_node();
  1862   Node* box = lock->box_node();
  1863   Node* flock = lock->fastlock_node();
  1865   // Make the merge point
  1866   Node *region;
  1867   Node *mem_phi;
  1868   Node *slow_path;
  1870   if (UseOptoBiasInlining) {
  1871     /*
  1872      *  See the full description in MacroAssembler::biased_locking_enter().
  1874      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  1875      *    // The object is biased.
  1876      *    proto_node = klass->prototype_header;
  1877      *    o_node = thread | proto_node;
  1878      *    x_node = o_node ^ mark_word;
  1879      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  1880      *      // Done.
  1881      *    } else {
  1882      *      if( (x_node & biased_lock_mask) != 0 ) {
  1883      *        // The klass's prototype header is no longer biased.
  1884      *        cas(&mark_word, mark_word, proto_node)
  1885      *        goto cas_lock;
  1886      *      } else {
  1887      *        // The klass's prototype header is still biased.
  1888      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  1889      *          old = mark_word;
  1890      *          new = o_node;
  1891      *        } else {
  1892      *          // Different thread or anonymous biased.
  1893      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  1894      *          new = thread | old;
  1895      *        }
  1896      *        // Try to rebias.
  1897      *        if( cas(&mark_word, old, new) == 0 ) {
  1898      *          // Done.
  1899      *        } else {
  1900      *          goto slow_path; // Failed.
  1901      *        }
  1902      *      }
  1903      *    }
  1904      *  } else {
  1905      *    // The object is not biased.
  1906      *    cas_lock:
  1907      *    if( FastLock(obj) == 0 ) {
  1908      *      // Done.
  1909      *    } else {
  1910      *      slow_path:
  1911      *      OptoRuntime::complete_monitor_locking_Java(obj);
  1912      *    }
  1913      *  }
  1914      */
  1916     region  = new (C, 5) RegionNode(5);
  1917     // create a Phi for the memory state
  1918     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1920     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  1921     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1923     // First, check mark word for the biased lock pattern.
  1924     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  1926     // Get fast path - mark word has the biased lock pattern.
  1927     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  1928                          markOopDesc::biased_lock_mask_in_place,
  1929                          markOopDesc::biased_lock_pattern, true);
  1930     // fast_lock_region->in(1) is set to slow path.
  1931     fast_lock_mem_phi->init_req(1, mem);
  1933     // Now check that the lock is biased to the current thread and has
  1934     // the same epoch and bias as Klass::_prototype_header.
  1936     // Special-case a fresh allocation to avoid building nodes:
  1937     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  1938     if (klass_node == NULL) {
  1939       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1940       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  1941 #ifdef _LP64
  1942       if (UseCompressedOops && klass_node->is_DecodeN()) {
  1943         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  1944         klass_node->in(1)->init_req(0, ctrl);
  1945       } else
  1946 #endif
  1947       klass_node->init_req(0, ctrl);
  1949     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
  1951     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  1952     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  1953     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  1954     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  1956     // Get slow path - mark word does NOT match the value.
  1957     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  1958                                       (~markOopDesc::age_mask_in_place), 0);
  1959     // region->in(3) is set to fast path - the object is biased to the current thread.
  1960     mem_phi->init_req(3, mem);
  1963     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  1966     // First, check biased pattern.
  1967     // Get fast path - _prototype_header has the same biased lock pattern.
  1968     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  1969                           markOopDesc::biased_lock_mask_in_place, 0, true);
  1971     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  1972     // fast_lock_region->in(2) - the prototype header is no longer biased
  1973     // and we have to revoke the bias on this object.
  1974     // We are going to try to reset the mark of this object to the prototype
  1975     // value and fall through to the CAS-based locking scheme.
  1976     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  1977     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  1978                                                  proto_node, mark_node);
  1979     transform_later(cas);
  1980     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  1981     fast_lock_mem_phi->init_req(2, proj);
  1984     // Second, check epoch bits.
  1985     Node* rebiased_region  = new (C, 3) RegionNode(3);
  1986     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1987     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  1989     // Get slow path - mark word does NOT match epoch bits.
  1990     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  1991                                       markOopDesc::epoch_mask_in_place, 0);
  1992     // The epoch of the current bias is not valid, attempt to rebias the object
  1993     // toward the current thread.
  1994     rebiased_region->init_req(2, epoch_ctrl);
  1995     old_phi->init_req(2, mark_node);
  1996     new_phi->init_req(2, o_node);
  1998     // rebiased_region->in(1) is set to fast path.
  1999     // The epoch of the current bias is still valid but we know
  2000     // nothing about the owner; it might be set or it might be clear.
  2001     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  2002                              markOopDesc::age_mask_in_place |
  2003                              markOopDesc::epoch_mask_in_place);
  2004     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  2005     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  2006     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  2007     old_phi->init_req(1, old);
  2008     new_phi->init_req(1, new_mark);
  2010     transform_later(rebiased_region);
  2011     transform_later(old_phi);
  2012     transform_later(new_phi);
  2014     // Try to acquire the bias of the object using an atomic operation.
  2015     // If this fails we will go in to the runtime to revoke the object's bias.
  2016     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  2017                                            new_phi, old_phi);
  2018     transform_later(cas);
  2019     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  2021     // Get slow path - Failed to CAS.
  2022     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  2023     mem_phi->init_req(4, proj);
  2024     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  2026     // Failed to CAS.
  2027     slow_path  = new (C, 3) RegionNode(3);
  2028     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  2030     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  2031     slow_mem->init_req(1, proj);
  2033     // Call CAS-based locking scheme (FastLock node).
  2035     transform_later(fast_lock_region);
  2036     transform_later(fast_lock_mem_phi);
  2038     // Get slow path - FastLock failed to lock the object.
  2039     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  2040     mem_phi->init_req(2, fast_lock_mem_phi);
  2041     // region->in(2) is set to fast path - the object is locked to the current thread.
  2043     slow_path->init_req(2, ctrl); // Capture slow-control
  2044     slow_mem->init_req(2, fast_lock_mem_phi);
  2046     transform_later(slow_path);
  2047     transform_later(slow_mem);
  2048     // Reset lock's memory edge.
  2049     lock->set_req(TypeFunc::Memory, slow_mem);
  2051   } else {
  2052     region  = new (C, 3) RegionNode(3);
  2053     // create a Phi for the memory state
  2054     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2056     // Optimize test; set region slot 2
  2057     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2058     mem_phi->init_req(2, mem);
  2061   // Make slow path call
  2062   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2064   extract_call_projections(call);
  2066   // Slow path can only throw asynchronous exceptions, which are always
  2067   // de-opted.  So the compiler thinks the slow-call can never throw an
  2068   // exception.  If it DOES throw an exception we would need the debug
  2069   // info removed first (since if it throws there is no monitor).
  2070   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2071            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2073   // Capture slow path
  2074   // disconnect fall-through projection from call and create a new one
  2075   // hook up users of fall-through projection to region
  2076   Node *slow_ctrl = _fallthroughproj->clone();
  2077   transform_later(slow_ctrl);
  2078   _igvn.hash_delete(_fallthroughproj);
  2079   _fallthroughproj->disconnect_inputs(NULL);
  2080   region->init_req(1, slow_ctrl);
  2081   // region inputs are now complete
  2082   transform_later(region);
  2083   _igvn.replace_node(_fallthroughproj, region);
  2085   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2086   mem_phi->init_req(1, memproj );
  2087   transform_later(mem_phi);
  2088   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2091 //------------------------------expand_unlock_node----------------------
  2092 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2094   Node* ctrl = unlock->in(TypeFunc::Control);
  2095   Node* mem = unlock->in(TypeFunc::Memory);
  2096   Node* obj = unlock->obj_node();
  2097   Node* box = unlock->box_node();
  2099   // No need for a null check on unlock
  2101   // Make the merge point
  2102   Node *region;
  2103   Node *mem_phi;
  2105   if (UseOptoBiasInlining) {
  2106     // Check for biased locking unlock case, which is a no-op.
  2107     // See the full description in MacroAssembler::biased_locking_exit().
  2108     region  = new (C, 4) RegionNode(4);
  2109     // create a Phi for the memory state
  2110     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2111     mem_phi->init_req(3, mem);
  2113     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2114     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2115                          markOopDesc::biased_lock_mask_in_place,
  2116                          markOopDesc::biased_lock_pattern);
  2117   } else {
  2118     region  = new (C, 3) RegionNode(3);
  2119     // create a Phi for the memory state
  2120     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2123   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2124   funlock = transform_later( funlock )->as_FastUnlock();
  2125   // Optimize test; set region slot 2
  2126   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2128   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2130   extract_call_projections(call);
  2132   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2133            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2135   // No exceptions for unlocking
  2136   // Capture slow path
  2137   // disconnect fall-through projection from call and create a new one
  2138   // hook up users of fall-through projection to region
  2139   Node *slow_ctrl = _fallthroughproj->clone();
  2140   transform_later(slow_ctrl);
  2141   _igvn.hash_delete(_fallthroughproj);
  2142   _fallthroughproj->disconnect_inputs(NULL);
  2143   region->init_req(1, slow_ctrl);
  2144   // region inputs are now complete
  2145   transform_later(region);
  2146   _igvn.replace_node(_fallthroughproj, region);
  2148   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2149   mem_phi->init_req(1, memproj );
  2150   mem_phi->init_req(2, mem);
  2151   transform_later(mem_phi);
  2152   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2155 //------------------------------expand_macro_nodes----------------------
  2156 //  Returns true if a failure occurred.
  2157 bool PhaseMacroExpand::expand_macro_nodes() {
  2158   if (C->macro_count() == 0)
  2159     return false;
  2160   // First, attempt to eliminate locks
  2161   int cnt = C->macro_count();
  2162   for (int i=0; i < cnt; i++) {
  2163     Node *n = C->macro_node(i);
  2164     if (n->is_AbstractLock()) { // Lock and Unlock nodes
  2165       // Before elimination mark all associated (same box and obj)
  2166       // lock and unlock nodes.
  2167       mark_eliminated_locking_nodes(n->as_AbstractLock());
  2170   bool progress = true;
  2171   while (progress) {
  2172     progress = false;
  2173     for (int i = C->macro_count(); i > 0; i--) {
  2174       Node * n = C->macro_node(i-1);
  2175       bool success = false;
  2176       debug_only(int old_macro_count = C->macro_count(););
  2177       if (n->is_AbstractLock()) {
  2178         success = eliminate_locking_node(n->as_AbstractLock());
  2179       } else if (n->Opcode() == Op_LoopLimit) {
  2180         // Remove it from macro list and put on IGVN worklist to optimize.
  2181         C->remove_macro_node(n);
  2182         _igvn._worklist.push(n);
  2183         success = true;
  2184       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2185         _igvn.replace_node(n, n->in(1));
  2186         success = true;
  2188       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2189       progress = progress || success;
  2192   // Next, attempt to eliminate allocations
  2193   progress = true;
  2194   while (progress) {
  2195     progress = false;
  2196     for (int i = C->macro_count(); i > 0; i--) {
  2197       Node * n = C->macro_node(i-1);
  2198       bool success = false;
  2199       debug_only(int old_macro_count = C->macro_count(););
  2200       switch (n->class_id()) {
  2201       case Node::Class_Allocate:
  2202       case Node::Class_AllocateArray:
  2203         success = eliminate_allocate_node(n->as_Allocate());
  2204         break;
  2205       case Node::Class_Lock:
  2206       case Node::Class_Unlock:
  2207         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2208         break;
  2209       default:
  2210         assert(false, "unknown node type in macro list");
  2212       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2213       progress = progress || success;
  2216   // Make sure expansion will not cause node limit to be exceeded.
  2217   // Worst case is a macro node gets expanded into about 50 nodes.
  2218   // Allow 50% more for optimization.
  2219   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2220     return true;
  2222   // expand "macro" nodes
  2223   // nodes are removed from the macro list as they are processed
  2224   while (C->macro_count() > 0) {
  2225     int macro_count = C->macro_count();
  2226     Node * n = C->macro_node(macro_count-1);
  2227     assert(n->is_macro(), "only macro nodes expected here");
  2228     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2229       // node is unreachable, so don't try to expand it
  2230       C->remove_macro_node(n);
  2231       continue;
  2233     switch (n->class_id()) {
  2234     case Node::Class_Allocate:
  2235       expand_allocate(n->as_Allocate());
  2236       break;
  2237     case Node::Class_AllocateArray:
  2238       expand_allocate_array(n->as_AllocateArray());
  2239       break;
  2240     case Node::Class_Lock:
  2241       expand_lock_node(n->as_Lock());
  2242       break;
  2243     case Node::Class_Unlock:
  2244       expand_unlock_node(n->as_Unlock());
  2245       break;
  2246     default:
  2247       assert(false, "unknown node type in macro list");
  2249     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2250     if (C->failing())  return true;
  2253   _igvn.set_delay_transform(false);
  2254   _igvn.optimize();
  2255   return false;

mercurial