src/share/vm/opto/library_call.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2939
b2cb497dec28
child 3157
a92cdbac8b9e
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   vmIntrinsics::ID _intrinsic_id;
    49  public:
    50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    51     : InlineCallGenerator(m),
    52       _is_virtual(is_virtual),
    53       _intrinsic_id(id)
    54   {
    55   }
    56   virtual bool is_intrinsic() const { return true; }
    57   virtual bool is_virtual()   const { return _is_virtual; }
    58   virtual JVMState* generate(JVMState* jvms);
    59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    60 };
    63 // Local helper class for LibraryIntrinsic:
    64 class LibraryCallKit : public GraphKit {
    65  private:
    66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    68  public:
    69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    70     : GraphKit(caller),
    71       _intrinsic(intrinsic)
    72   {
    73   }
    75   ciMethod*         caller()    const    { return jvms()->method(); }
    76   int               bci()       const    { return jvms()->bci(); }
    77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    79   ciMethod*         callee()    const    { return _intrinsic->method(); }
    80   ciSignature*      signature() const    { return callee()->signature(); }
    81   int               arg_size()  const    { return callee()->arg_size(); }
    83   bool try_to_inline();
    85   // Helper functions to inline natives
    86   void push_result(RegionNode* region, PhiNode* value);
    87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    88   Node* generate_slow_guard(Node* test, RegionNode* region);
    89   Node* generate_fair_guard(Node* test, RegionNode* region);
    90   Node* generate_negative_guard(Node* index, RegionNode* region,
    91                                 // resulting CastII of index:
    92                                 Node* *pos_index = NULL);
    93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    94                                    // resulting CastII of index:
    95                                    Node* *pos_index = NULL);
    96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    97                              Node* array_length,
    98                              RegionNode* region);
    99   Node* generate_current_thread(Node* &tls_output);
   100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   102   Node* load_mirror_from_klass(Node* klass);
   103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   104                                       int nargs,
   105                                       RegionNode* region, int null_path,
   106                                       int offset);
   107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   108                                RegionNode* region, int null_path) {
   109     int offset = java_lang_Class::klass_offset_in_bytes();
   110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   111                                          region, null_path,
   112                                          offset);
   113   }
   114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   115                                      int nargs,
   116                                      RegionNode* region, int null_path) {
   117     int offset = java_lang_Class::array_klass_offset_in_bytes();
   118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   119                                          region, null_path,
   120                                          offset);
   121   }
   122   Node* generate_access_flags_guard(Node* kls,
   123                                     int modifier_mask, int modifier_bits,
   124                                     RegionNode* region);
   125   Node* generate_interface_guard(Node* kls, RegionNode* region);
   126   Node* generate_array_guard(Node* kls, RegionNode* region) {
   127     return generate_array_guard_common(kls, region, false, false);
   128   }
   129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   130     return generate_array_guard_common(kls, region, false, true);
   131   }
   132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   133     return generate_array_guard_common(kls, region, true, false);
   134   }
   135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   136     return generate_array_guard_common(kls, region, true, true);
   137   }
   138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   139                                     bool obj_array, bool not_array);
   140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   142                                      bool is_virtual = false, bool is_static = false);
   143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   144     return generate_method_call(method_id, false, true);
   145   }
   146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   147     return generate_method_call(method_id, true, false);
   148   }
   150   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
   151   bool inline_string_compareTo();
   152   bool inline_string_indexOf();
   153   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   154   bool inline_string_equals();
   155   Node* pop_math_arg();
   156   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   157   bool inline_math_native(vmIntrinsics::ID id);
   158   bool inline_trig(vmIntrinsics::ID id);
   159   bool inline_trans(vmIntrinsics::ID id);
   160   bool inline_abs(vmIntrinsics::ID id);
   161   bool inline_sqrt(vmIntrinsics::ID id);
   162   bool inline_pow(vmIntrinsics::ID id);
   163   bool inline_exp(vmIntrinsics::ID id);
   164   bool inline_min_max(vmIntrinsics::ID id);
   165   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   166   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   167   int classify_unsafe_addr(Node* &base, Node* &offset);
   168   Node* make_unsafe_address(Node* base, Node* offset);
   169   // Helper for inline_unsafe_access.
   170   // Generates the guards that check whether the result of
   171   // Unsafe.getObject should be recorded in an SATB log buffer.
   172   void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
   173   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   174   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   175   bool inline_unsafe_allocate();
   176   bool inline_unsafe_copyMemory();
   177   bool inline_native_currentThread();
   178   bool inline_native_time_funcs(bool isNano);
   179   bool inline_native_isInterrupted();
   180   bool inline_native_Class_query(vmIntrinsics::ID id);
   181   bool inline_native_subtype_check();
   183   bool inline_native_newArray();
   184   bool inline_native_getLength();
   185   bool inline_array_copyOf(bool is_copyOfRange);
   186   bool inline_array_equals();
   187   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   188   bool inline_native_clone(bool is_virtual);
   189   bool inline_native_Reflection_getCallerClass();
   190   bool inline_native_AtomicLong_get();
   191   bool inline_native_AtomicLong_attemptUpdate();
   192   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   193   // Helper function for inlining native object hash method
   194   bool inline_native_hashcode(bool is_virtual, bool is_static);
   195   bool inline_native_getClass();
   197   // Helper functions for inlining arraycopy
   198   bool inline_arraycopy();
   199   void generate_arraycopy(const TypePtr* adr_type,
   200                           BasicType basic_elem_type,
   201                           Node* src,  Node* src_offset,
   202                           Node* dest, Node* dest_offset,
   203                           Node* copy_length,
   204                           bool disjoint_bases = false,
   205                           bool length_never_negative = false,
   206                           RegionNode* slow_region = NULL);
   207   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   208                                                 RegionNode* slow_region);
   209   void generate_clear_array(const TypePtr* adr_type,
   210                             Node* dest,
   211                             BasicType basic_elem_type,
   212                             Node* slice_off,
   213                             Node* slice_len,
   214                             Node* slice_end);
   215   bool generate_block_arraycopy(const TypePtr* adr_type,
   216                                 BasicType basic_elem_type,
   217                                 AllocateNode* alloc,
   218                                 Node* src,  Node* src_offset,
   219                                 Node* dest, Node* dest_offset,
   220                                 Node* dest_size, bool dest_uninitialized);
   221   void generate_slow_arraycopy(const TypePtr* adr_type,
   222                                Node* src,  Node* src_offset,
   223                                Node* dest, Node* dest_offset,
   224                                Node* copy_length, bool dest_uninitialized);
   225   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   226                                      Node* dest_elem_klass,
   227                                      Node* src,  Node* src_offset,
   228                                      Node* dest, Node* dest_offset,
   229                                      Node* copy_length, bool dest_uninitialized);
   230   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   231                                    Node* src,  Node* src_offset,
   232                                    Node* dest, Node* dest_offset,
   233                                    Node* copy_length, bool dest_uninitialized);
   234   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   235                                     BasicType basic_elem_type,
   236                                     bool disjoint_bases,
   237                                     Node* src,  Node* src_offset,
   238                                     Node* dest, Node* dest_offset,
   239                                     Node* copy_length, bool dest_uninitialized);
   240   bool inline_unsafe_CAS(BasicType type);
   241   bool inline_unsafe_ordered_store(BasicType type);
   242   bool inline_fp_conversions(vmIntrinsics::ID id);
   243   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   244   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   245   bool inline_bitCount(vmIntrinsics::ID id);
   246   bool inline_reverseBytes(vmIntrinsics::ID id);
   248   bool inline_reference_get();
   249 };
   252 //---------------------------make_vm_intrinsic----------------------------
   253 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   254   vmIntrinsics::ID id = m->intrinsic_id();
   255   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   257   if (DisableIntrinsic[0] != '\0'
   258       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   259     // disabled by a user request on the command line:
   260     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   261     return NULL;
   262   }
   264   if (!m->is_loaded()) {
   265     // do not attempt to inline unloaded methods
   266     return NULL;
   267   }
   269   // Only a few intrinsics implement a virtual dispatch.
   270   // They are expensive calls which are also frequently overridden.
   271   if (is_virtual) {
   272     switch (id) {
   273     case vmIntrinsics::_hashCode:
   274     case vmIntrinsics::_clone:
   275       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   276       break;
   277     default:
   278       return NULL;
   279     }
   280   }
   282   // -XX:-InlineNatives disables nearly all intrinsics:
   283   if (!InlineNatives) {
   284     switch (id) {
   285     case vmIntrinsics::_indexOf:
   286     case vmIntrinsics::_compareTo:
   287     case vmIntrinsics::_equals:
   288     case vmIntrinsics::_equalsC:
   289       break;  // InlineNatives does not control String.compareTo
   290     default:
   291       return NULL;
   292     }
   293   }
   295   switch (id) {
   296   case vmIntrinsics::_compareTo:
   297     if (!SpecialStringCompareTo)  return NULL;
   298     break;
   299   case vmIntrinsics::_indexOf:
   300     if (!SpecialStringIndexOf)  return NULL;
   301     break;
   302   case vmIntrinsics::_equals:
   303     if (!SpecialStringEquals)  return NULL;
   304     break;
   305   case vmIntrinsics::_equalsC:
   306     if (!SpecialArraysEquals)  return NULL;
   307     break;
   308   case vmIntrinsics::_arraycopy:
   309     if (!InlineArrayCopy)  return NULL;
   310     break;
   311   case vmIntrinsics::_copyMemory:
   312     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   313     if (!InlineArrayCopy)  return NULL;
   314     break;
   315   case vmIntrinsics::_hashCode:
   316     if (!InlineObjectHash)  return NULL;
   317     break;
   318   case vmIntrinsics::_clone:
   319   case vmIntrinsics::_copyOf:
   320   case vmIntrinsics::_copyOfRange:
   321     if (!InlineObjectCopy)  return NULL;
   322     // These also use the arraycopy intrinsic mechanism:
   323     if (!InlineArrayCopy)  return NULL;
   324     break;
   325   case vmIntrinsics::_checkIndex:
   326     // We do not intrinsify this.  The optimizer does fine with it.
   327     return NULL;
   329   case vmIntrinsics::_get_AtomicLong:
   330   case vmIntrinsics::_attemptUpdate:
   331     if (!InlineAtomicLong)  return NULL;
   332     break;
   334   case vmIntrinsics::_getCallerClass:
   335     if (!UseNewReflection)  return NULL;
   336     if (!InlineReflectionGetCallerClass)  return NULL;
   337     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   338     break;
   340   case vmIntrinsics::_bitCount_i:
   341   case vmIntrinsics::_bitCount_l:
   342     if (!UsePopCountInstruction)  return NULL;
   343     break;
   345   case vmIntrinsics::_Reference_get:
   346     // It is only when G1 is enabled that we absolutely
   347     // need to use the intrinsic version of Reference.get()
   348     // so that the value in the referent field, if necessary,
   349     // can be registered by the pre-barrier code.
   350     if (!UseG1GC) return NULL;
   351     break;
   353  default:
   354     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   355     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   356     break;
   357   }
   359   // -XX:-InlineClassNatives disables natives from the Class class.
   360   // The flag applies to all reflective calls, notably Array.newArray
   361   // (visible to Java programmers as Array.newInstance).
   362   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   363       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   364     if (!InlineClassNatives)  return NULL;
   365   }
   367   // -XX:-InlineThreadNatives disables natives from the Thread class.
   368   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   369     if (!InlineThreadNatives)  return NULL;
   370   }
   372   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   373   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   374       m->holder()->name() == ciSymbol::java_lang_Float() ||
   375       m->holder()->name() == ciSymbol::java_lang_Double()) {
   376     if (!InlineMathNatives)  return NULL;
   377   }
   379   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   380   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   381     if (!InlineUnsafeOps)  return NULL;
   382   }
   384   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   385 }
   387 //----------------------register_library_intrinsics-----------------------
   388 // Initialize this file's data structures, for each Compile instance.
   389 void Compile::register_library_intrinsics() {
   390   // Nothing to do here.
   391 }
   393 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   394   LibraryCallKit kit(jvms, this);
   395   Compile* C = kit.C;
   396   int nodes = C->unique();
   397 #ifndef PRODUCT
   398   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   399     char buf[1000];
   400     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   401     tty->print_cr("Intrinsic %s", str);
   402   }
   403 #endif
   405   if (kit.try_to_inline()) {
   406     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   407       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   408     }
   409     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   410     if (C->log()) {
   411       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   412                      vmIntrinsics::name_at(intrinsic_id()),
   413                      (is_virtual() ? " virtual='1'" : ""),
   414                      C->unique() - nodes);
   415     }
   416     return kit.transfer_exceptions_into_jvms();
   417   }
   419   if (PrintIntrinsics) {
   420     if (jvms->has_method()) {
   421       // Not a root compile.
   422       tty->print("Did not inline intrinsic %s%s at bci:%d in",
   423                  vmIntrinsics::name_at(intrinsic_id()),
   424                  (is_virtual() ? " (virtual)" : ""), kit.bci());
   425       kit.caller()->print_short_name(tty);
   426       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
   427     } else {
   428       // Root compile
   429       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   430                vmIntrinsics::name_at(intrinsic_id()),
   431                (is_virtual() ? " (virtual)" : ""), kit.bci());
   432     }
   433   }
   434   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   435   return NULL;
   436 }
   438 bool LibraryCallKit::try_to_inline() {
   439   // Handle symbolic names for otherwise undistinguished boolean switches:
   440   const bool is_store       = true;
   441   const bool is_native_ptr  = true;
   442   const bool is_static      = true;
   444   if (!jvms()->has_method()) {
   445     // Root JVMState has a null method.
   446     assert(map()->memory()->Opcode() == Op_Parm, "");
   447     // Insert the memory aliasing node
   448     set_all_memory(reset_memory());
   449   }
   450   assert(merged_memory(), "");
   452   switch (intrinsic_id()) {
   453   case vmIntrinsics::_hashCode:
   454     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   455   case vmIntrinsics::_identityHashCode:
   456     return inline_native_hashcode(/*!virtual*/ false, is_static);
   457   case vmIntrinsics::_getClass:
   458     return inline_native_getClass();
   460   case vmIntrinsics::_dsin:
   461   case vmIntrinsics::_dcos:
   462   case vmIntrinsics::_dtan:
   463   case vmIntrinsics::_dabs:
   464   case vmIntrinsics::_datan2:
   465   case vmIntrinsics::_dsqrt:
   466   case vmIntrinsics::_dexp:
   467   case vmIntrinsics::_dlog:
   468   case vmIntrinsics::_dlog10:
   469   case vmIntrinsics::_dpow:
   470     return inline_math_native(intrinsic_id());
   472   case vmIntrinsics::_min:
   473   case vmIntrinsics::_max:
   474     return inline_min_max(intrinsic_id());
   476   case vmIntrinsics::_arraycopy:
   477     return inline_arraycopy();
   479   case vmIntrinsics::_compareTo:
   480     return inline_string_compareTo();
   481   case vmIntrinsics::_indexOf:
   482     return inline_string_indexOf();
   483   case vmIntrinsics::_equals:
   484     return inline_string_equals();
   486   case vmIntrinsics::_getObject:
   487     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   488   case vmIntrinsics::_getBoolean:
   489     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   490   case vmIntrinsics::_getByte:
   491     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   492   case vmIntrinsics::_getShort:
   493     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   494   case vmIntrinsics::_getChar:
   495     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   496   case vmIntrinsics::_getInt:
   497     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   498   case vmIntrinsics::_getLong:
   499     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   500   case vmIntrinsics::_getFloat:
   501     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   502   case vmIntrinsics::_getDouble:
   503     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   505   case vmIntrinsics::_putObject:
   506     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   507   case vmIntrinsics::_putBoolean:
   508     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   509   case vmIntrinsics::_putByte:
   510     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   511   case vmIntrinsics::_putShort:
   512     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   513   case vmIntrinsics::_putChar:
   514     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   515   case vmIntrinsics::_putInt:
   516     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   517   case vmIntrinsics::_putLong:
   518     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   519   case vmIntrinsics::_putFloat:
   520     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   521   case vmIntrinsics::_putDouble:
   522     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   524   case vmIntrinsics::_getByte_raw:
   525     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   526   case vmIntrinsics::_getShort_raw:
   527     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   528   case vmIntrinsics::_getChar_raw:
   529     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   530   case vmIntrinsics::_getInt_raw:
   531     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   532   case vmIntrinsics::_getLong_raw:
   533     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   534   case vmIntrinsics::_getFloat_raw:
   535     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   536   case vmIntrinsics::_getDouble_raw:
   537     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   538   case vmIntrinsics::_getAddress_raw:
   539     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   541   case vmIntrinsics::_putByte_raw:
   542     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   543   case vmIntrinsics::_putShort_raw:
   544     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   545   case vmIntrinsics::_putChar_raw:
   546     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   547   case vmIntrinsics::_putInt_raw:
   548     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   549   case vmIntrinsics::_putLong_raw:
   550     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   551   case vmIntrinsics::_putFloat_raw:
   552     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   553   case vmIntrinsics::_putDouble_raw:
   554     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   555   case vmIntrinsics::_putAddress_raw:
   556     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   558   case vmIntrinsics::_getObjectVolatile:
   559     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   560   case vmIntrinsics::_getBooleanVolatile:
   561     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   562   case vmIntrinsics::_getByteVolatile:
   563     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   564   case vmIntrinsics::_getShortVolatile:
   565     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   566   case vmIntrinsics::_getCharVolatile:
   567     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   568   case vmIntrinsics::_getIntVolatile:
   569     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   570   case vmIntrinsics::_getLongVolatile:
   571     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   572   case vmIntrinsics::_getFloatVolatile:
   573     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   574   case vmIntrinsics::_getDoubleVolatile:
   575     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   577   case vmIntrinsics::_putObjectVolatile:
   578     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   579   case vmIntrinsics::_putBooleanVolatile:
   580     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   581   case vmIntrinsics::_putByteVolatile:
   582     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   583   case vmIntrinsics::_putShortVolatile:
   584     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   585   case vmIntrinsics::_putCharVolatile:
   586     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   587   case vmIntrinsics::_putIntVolatile:
   588     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   589   case vmIntrinsics::_putLongVolatile:
   590     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   591   case vmIntrinsics::_putFloatVolatile:
   592     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   593   case vmIntrinsics::_putDoubleVolatile:
   594     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   596   case vmIntrinsics::_prefetchRead:
   597     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   598   case vmIntrinsics::_prefetchWrite:
   599     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   600   case vmIntrinsics::_prefetchReadStatic:
   601     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   602   case vmIntrinsics::_prefetchWriteStatic:
   603     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   605   case vmIntrinsics::_compareAndSwapObject:
   606     return inline_unsafe_CAS(T_OBJECT);
   607   case vmIntrinsics::_compareAndSwapInt:
   608     return inline_unsafe_CAS(T_INT);
   609   case vmIntrinsics::_compareAndSwapLong:
   610     return inline_unsafe_CAS(T_LONG);
   612   case vmIntrinsics::_putOrderedObject:
   613     return inline_unsafe_ordered_store(T_OBJECT);
   614   case vmIntrinsics::_putOrderedInt:
   615     return inline_unsafe_ordered_store(T_INT);
   616   case vmIntrinsics::_putOrderedLong:
   617     return inline_unsafe_ordered_store(T_LONG);
   619   case vmIntrinsics::_currentThread:
   620     return inline_native_currentThread();
   621   case vmIntrinsics::_isInterrupted:
   622     return inline_native_isInterrupted();
   624   case vmIntrinsics::_currentTimeMillis:
   625     return inline_native_time_funcs(false);
   626   case vmIntrinsics::_nanoTime:
   627     return inline_native_time_funcs(true);
   628   case vmIntrinsics::_allocateInstance:
   629     return inline_unsafe_allocate();
   630   case vmIntrinsics::_copyMemory:
   631     return inline_unsafe_copyMemory();
   632   case vmIntrinsics::_newArray:
   633     return inline_native_newArray();
   634   case vmIntrinsics::_getLength:
   635     return inline_native_getLength();
   636   case vmIntrinsics::_copyOf:
   637     return inline_array_copyOf(false);
   638   case vmIntrinsics::_copyOfRange:
   639     return inline_array_copyOf(true);
   640   case vmIntrinsics::_equalsC:
   641     return inline_array_equals();
   642   case vmIntrinsics::_clone:
   643     return inline_native_clone(intrinsic()->is_virtual());
   645   case vmIntrinsics::_isAssignableFrom:
   646     return inline_native_subtype_check();
   648   case vmIntrinsics::_isInstance:
   649   case vmIntrinsics::_getModifiers:
   650   case vmIntrinsics::_isInterface:
   651   case vmIntrinsics::_isArray:
   652   case vmIntrinsics::_isPrimitive:
   653   case vmIntrinsics::_getSuperclass:
   654   case vmIntrinsics::_getComponentType:
   655   case vmIntrinsics::_getClassAccessFlags:
   656     return inline_native_Class_query(intrinsic_id());
   658   case vmIntrinsics::_floatToRawIntBits:
   659   case vmIntrinsics::_floatToIntBits:
   660   case vmIntrinsics::_intBitsToFloat:
   661   case vmIntrinsics::_doubleToRawLongBits:
   662   case vmIntrinsics::_doubleToLongBits:
   663   case vmIntrinsics::_longBitsToDouble:
   664     return inline_fp_conversions(intrinsic_id());
   666   case vmIntrinsics::_numberOfLeadingZeros_i:
   667   case vmIntrinsics::_numberOfLeadingZeros_l:
   668     return inline_numberOfLeadingZeros(intrinsic_id());
   670   case vmIntrinsics::_numberOfTrailingZeros_i:
   671   case vmIntrinsics::_numberOfTrailingZeros_l:
   672     return inline_numberOfTrailingZeros(intrinsic_id());
   674   case vmIntrinsics::_bitCount_i:
   675   case vmIntrinsics::_bitCount_l:
   676     return inline_bitCount(intrinsic_id());
   678   case vmIntrinsics::_reverseBytes_i:
   679   case vmIntrinsics::_reverseBytes_l:
   680   case vmIntrinsics::_reverseBytes_s:
   681   case vmIntrinsics::_reverseBytes_c:
   682     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   684   case vmIntrinsics::_get_AtomicLong:
   685     return inline_native_AtomicLong_get();
   686   case vmIntrinsics::_attemptUpdate:
   687     return inline_native_AtomicLong_attemptUpdate();
   689   case vmIntrinsics::_getCallerClass:
   690     return inline_native_Reflection_getCallerClass();
   692   case vmIntrinsics::_Reference_get:
   693     return inline_reference_get();
   695   default:
   696     // If you get here, it may be that someone has added a new intrinsic
   697     // to the list in vmSymbols.hpp without implementing it here.
   698 #ifndef PRODUCT
   699     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   700       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   701                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   702     }
   703 #endif
   704     return false;
   705   }
   706 }
   708 //------------------------------push_result------------------------------
   709 // Helper function for finishing intrinsics.
   710 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   711   record_for_igvn(region);
   712   set_control(_gvn.transform(region));
   713   BasicType value_type = value->type()->basic_type();
   714   push_node(value_type, _gvn.transform(value));
   715 }
   717 //------------------------------generate_guard---------------------------
   718 // Helper function for generating guarded fast-slow graph structures.
   719 // The given 'test', if true, guards a slow path.  If the test fails
   720 // then a fast path can be taken.  (We generally hope it fails.)
   721 // In all cases, GraphKit::control() is updated to the fast path.
   722 // The returned value represents the control for the slow path.
   723 // The return value is never 'top'; it is either a valid control
   724 // or NULL if it is obvious that the slow path can never be taken.
   725 // Also, if region and the slow control are not NULL, the slow edge
   726 // is appended to the region.
   727 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   728   if (stopped()) {
   729     // Already short circuited.
   730     return NULL;
   731   }
   733   // Build an if node and its projections.
   734   // If test is true we take the slow path, which we assume is uncommon.
   735   if (_gvn.type(test) == TypeInt::ZERO) {
   736     // The slow branch is never taken.  No need to build this guard.
   737     return NULL;
   738   }
   740   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   742   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   743   if (if_slow == top()) {
   744     // The slow branch is never taken.  No need to build this guard.
   745     return NULL;
   746   }
   748   if (region != NULL)
   749     region->add_req(if_slow);
   751   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   752   set_control(if_fast);
   754   return if_slow;
   755 }
   757 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   758   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   759 }
   760 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   761   return generate_guard(test, region, PROB_FAIR);
   762 }
   764 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   765                                                      Node* *pos_index) {
   766   if (stopped())
   767     return NULL;                // already stopped
   768   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   769     return NULL;                // index is already adequately typed
   770   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   771   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   772   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   773   if (is_neg != NULL && pos_index != NULL) {
   774     // Emulate effect of Parse::adjust_map_after_if.
   775     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   776     ccast->set_req(0, control());
   777     (*pos_index) = _gvn.transform(ccast);
   778   }
   779   return is_neg;
   780 }
   782 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   783                                                         Node* *pos_index) {
   784   if (stopped())
   785     return NULL;                // already stopped
   786   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   787     return NULL;                // index is already adequately typed
   788   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   789   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   790   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   791   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   792   if (is_notp != NULL && pos_index != NULL) {
   793     // Emulate effect of Parse::adjust_map_after_if.
   794     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   795     ccast->set_req(0, control());
   796     (*pos_index) = _gvn.transform(ccast);
   797   }
   798   return is_notp;
   799 }
   801 // Make sure that 'position' is a valid limit index, in [0..length].
   802 // There are two equivalent plans for checking this:
   803 //   A. (offset + copyLength)  unsigned<=  arrayLength
   804 //   B. offset  <=  (arrayLength - copyLength)
   805 // We require that all of the values above, except for the sum and
   806 // difference, are already known to be non-negative.
   807 // Plan A is robust in the face of overflow, if offset and copyLength
   808 // are both hugely positive.
   809 //
   810 // Plan B is less direct and intuitive, but it does not overflow at
   811 // all, since the difference of two non-negatives is always
   812 // representable.  Whenever Java methods must perform the equivalent
   813 // check they generally use Plan B instead of Plan A.
   814 // For the moment we use Plan A.
   815 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   816                                                   Node* subseq_length,
   817                                                   Node* array_length,
   818                                                   RegionNode* region) {
   819   if (stopped())
   820     return NULL;                // already stopped
   821   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   822   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
   823     return NULL;                // common case of whole-array copy
   824   Node* last = subseq_length;
   825   if (!zero_offset)             // last += offset
   826     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   827   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   828   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   829   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   830   return is_over;
   831 }
   834 //--------------------------generate_current_thread--------------------
   835 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   836   ciKlass*    thread_klass = env()->Thread_klass();
   837   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   838   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   839   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   840   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   841   tls_output = thread;
   842   return threadObj;
   843 }
   846 //------------------------------make_string_method_node------------------------
   847 // Helper method for String intrinsic finctions.
   848 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
   849   const int value_offset  = java_lang_String::value_offset_in_bytes();
   850   const int count_offset  = java_lang_String::count_offset_in_bytes();
   851   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   853   Node* no_ctrl = NULL;
   855   ciInstanceKlass* klass = env()->String_klass();
   856   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   858   const TypeAryPtr* value_type =
   859         TypeAryPtr::make(TypePtr::NotNull,
   860                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
   861                          ciTypeArrayKlass::make(T_CHAR), true, 0);
   863   // Get start addr of string and substring
   864   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
   865   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   866   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
   867   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   868   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   870   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
   871   Node* str2_value   = make_load(no_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
   872   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
   873   Node* str2_offset  = make_load(no_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
   874   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   876   Node* result = NULL;
   877   switch (opcode) {
   878   case Op_StrIndexOf:
   879     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   880                                        str1_start, cnt1, str2_start, cnt2);
   881     break;
   882   case Op_StrComp:
   883     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   884                                     str1_start, cnt1, str2_start, cnt2);
   885     break;
   886   case Op_StrEquals:
   887     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   888                                       str1_start, str2_start, cnt1);
   889     break;
   890   default:
   891     ShouldNotReachHere();
   892     return NULL;
   893   }
   895   // All these intrinsics have checks.
   896   C->set_has_split_ifs(true); // Has chance for split-if optimization
   898   return _gvn.transform(result);
   899 }
   901 //------------------------------inline_string_compareTo------------------------
   902 bool LibraryCallKit::inline_string_compareTo() {
   904   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   906   const int value_offset = java_lang_String::value_offset_in_bytes();
   907   const int count_offset = java_lang_String::count_offset_in_bytes();
   908   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   910   _sp += 2;
   911   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   912   Node *receiver = pop();
   914   // Null check on self without removing any arguments.  The argument
   915   // null check technically happens in the wrong place, which can lead to
   916   // invalid stack traces when string compare is inlined into a method
   917   // which handles NullPointerExceptions.
   918   _sp += 2;
   919   receiver = do_null_check(receiver, T_OBJECT);
   920   argument = do_null_check(argument, T_OBJECT);
   921   _sp -= 2;
   922   if (stopped()) {
   923     return true;
   924   }
   926   ciInstanceKlass* klass = env()->String_klass();
   927   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
   928   Node* no_ctrl = NULL;
   930   // Get counts for string and argument
   931   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
   932   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   934   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
   935   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
   937   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
   938   push(compare);
   939   return true;
   940 }
   942 //------------------------------inline_string_equals------------------------
   943 bool LibraryCallKit::inline_string_equals() {
   945   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   947   const int value_offset = java_lang_String::value_offset_in_bytes();
   948   const int count_offset = java_lang_String::count_offset_in_bytes();
   949   const int offset_offset = java_lang_String::offset_offset_in_bytes();
   951   int nargs = 2;
   952   _sp += nargs;
   953   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   954   Node* receiver = pop();
   956   // Null check on self without removing any arguments.  The argument
   957   // null check technically happens in the wrong place, which can lead to
   958   // invalid stack traces when string compare is inlined into a method
   959   // which handles NullPointerExceptions.
   960   _sp += nargs;
   961   receiver = do_null_check(receiver, T_OBJECT);
   962   //should not do null check for argument for String.equals(), because spec
   963   //allows to specify NULL as argument.
   964   _sp -= nargs;
   966   if (stopped()) {
   967     return true;
   968   }
   970   // paths (plus control) merge
   971   RegionNode* region = new (C, 5) RegionNode(5);
   972   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
   974   // does source == target string?
   975   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
   976   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
   978   Node* if_eq = generate_slow_guard(bol, NULL);
   979   if (if_eq != NULL) {
   980     // receiver == argument
   981     phi->init_req(2, intcon(1));
   982     region->init_req(2, if_eq);
   983   }
   985   // get String klass for instanceOf
   986   ciInstanceKlass* klass = env()->String_klass();
   988   if (!stopped()) {
   989     _sp += nargs;          // gen_instanceof might do an uncommon trap
   990     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
   991     _sp -= nargs;
   992     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
   993     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
   995     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
   996     //instanceOf == true, fallthrough
   998     if (inst_false != NULL) {
   999       phi->init_req(3, intcon(0));
  1000       region->init_req(3, inst_false);
  1004   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1006   Node* no_ctrl = NULL;
  1007   Node* receiver_cnt;
  1008   Node* argument_cnt;
  1010   if (!stopped()) {
  1011     // Properly cast the argument to String
  1012     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
  1013     // This path is taken only when argument's type is String:NotNull.
  1014     argument = cast_not_null(argument, false);
  1016     // Get counts for string and argument
  1017     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1018     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1020     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
  1021     argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1023     // Check for receiver count != argument count
  1024     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
  1025     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
  1026     Node* if_ne = generate_slow_guard(bol, NULL);
  1027     if (if_ne != NULL) {
  1028       phi->init_req(4, intcon(0));
  1029       region->init_req(4, if_ne);
  1033   // Check for count == 0 is done by mach node StrEquals.
  1035   if (!stopped()) {
  1036     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
  1037     phi->init_req(1, equals);
  1038     region->init_req(1, control());
  1041   // post merge
  1042   set_control(_gvn.transform(region));
  1043   record_for_igvn(region);
  1045   push(_gvn.transform(phi));
  1047   return true;
  1050 //------------------------------inline_array_equals----------------------------
  1051 bool LibraryCallKit::inline_array_equals() {
  1053   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1055   _sp += 2;
  1056   Node *argument2 = pop();
  1057   Node *argument1 = pop();
  1059   Node* equals =
  1060     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1061                                         argument1, argument2) );
  1062   push(equals);
  1063   return true;
  1066 // Java version of String.indexOf(constant string)
  1067 // class StringDecl {
  1068 //   StringDecl(char[] ca) {
  1069 //     offset = 0;
  1070 //     count = ca.length;
  1071 //     value = ca;
  1072 //   }
  1073 //   int offset;
  1074 //   int count;
  1075 //   char[] value;
  1076 // }
  1077 //
  1078 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1079 //                             int targetOffset, int cache_i, int md2) {
  1080 //   int cache = cache_i;
  1081 //   int sourceOffset = string_object.offset;
  1082 //   int sourceCount = string_object.count;
  1083 //   int targetCount = target_object.length;
  1084 //
  1085 //   int targetCountLess1 = targetCount - 1;
  1086 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1087 //
  1088 //   char[] source = string_object.value;
  1089 //   char[] target = target_object;
  1090 //   int lastChar = target[targetCountLess1];
  1091 //
  1092 //  outer_loop:
  1093 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1094 //     int src = source[i + targetCountLess1];
  1095 //     if (src == lastChar) {
  1096 //       // With random strings and a 4-character alphabet,
  1097 //       // reverse matching at this point sets up 0.8% fewer
  1098 //       // frames, but (paradoxically) makes 0.3% more probes.
  1099 //       // Since those probes are nearer the lastChar probe,
  1100 //       // there is may be a net D$ win with reverse matching.
  1101 //       // But, reversing loop inhibits unroll of inner loop
  1102 //       // for unknown reason.  So, does running outer loop from
  1103 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1104 //       for (int j = 0; j < targetCountLess1; j++) {
  1105 //         if (target[targetOffset + j] != source[i+j]) {
  1106 //           if ((cache & (1 << source[i+j])) == 0) {
  1107 //             if (md2 < j+1) {
  1108 //               i += j+1;
  1109 //               continue outer_loop;
  1110 //             }
  1111 //           }
  1112 //           i += md2;
  1113 //           continue outer_loop;
  1114 //         }
  1115 //       }
  1116 //       return i - sourceOffset;
  1117 //     }
  1118 //     if ((cache & (1 << src)) == 0) {
  1119 //       i += targetCountLess1;
  1120 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1121 //     i++;
  1122 //   }
  1123 //   return -1;
  1124 // }
  1126 //------------------------------string_indexOf------------------------
  1127 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1128                                      jint cache_i, jint md2_i) {
  1130   Node* no_ctrl  = NULL;
  1131   float likely   = PROB_LIKELY(0.9);
  1132   float unlikely = PROB_UNLIKELY(0.9);
  1134   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1136   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1137   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1138   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1140   ciInstanceKlass* klass = env()->String_klass();
  1141   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1142   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
  1144   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
  1145   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
  1146   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
  1147   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1148   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
  1149   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
  1151   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1152   jint target_length = target_array->length();
  1153   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1154   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1156   IdealKit kit(this, false, true);
  1157 #define __ kit.
  1158   Node* zero             = __ ConI(0);
  1159   Node* one              = __ ConI(1);
  1160   Node* cache            = __ ConI(cache_i);
  1161   Node* md2              = __ ConI(md2_i);
  1162   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1163   Node* targetCount      = __ ConI(target_length);
  1164   Node* targetCountLess1 = __ ConI(target_length - 1);
  1165   Node* targetOffset     = __ ConI(targetOffset_i);
  1166   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1168   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1169   Node* outer_loop = __ make_label(2 /* goto */);
  1170   Node* return_    = __ make_label(1);
  1172   __ set(rtn,__ ConI(-1));
  1173   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1174        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1175        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1176        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1177        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1178          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1179               Node* tpj = __ AddI(targetOffset, __ value(j));
  1180               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1181               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1182               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1183               __ if_then(targ, BoolTest::ne, src2); {
  1184                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1185                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1186                     __ increment(i, __ AddI(__ value(j), one));
  1187                     __ goto_(outer_loop);
  1188                   } __ end_if(); __ dead(j);
  1189                 }__ end_if(); __ dead(j);
  1190                 __ increment(i, md2);
  1191                 __ goto_(outer_loop);
  1192               }__ end_if();
  1193               __ increment(j, one);
  1194          }__ end_loop(); __ dead(j);
  1195          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1196          __ goto_(return_);
  1197        }__ end_if();
  1198        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1199          __ increment(i, targetCountLess1);
  1200        }__ end_if();
  1201        __ increment(i, one);
  1202        __ bind(outer_loop);
  1203   }__ end_loop(); __ dead(i);
  1204   __ bind(return_);
  1206   // Final sync IdealKit and GraphKit.
  1207   final_sync(kit);
  1208   Node* result = __ value(rtn);
  1209 #undef __
  1210   C->set_has_loops(true);
  1211   return result;
  1214 //------------------------------inline_string_indexOf------------------------
  1215 bool LibraryCallKit::inline_string_indexOf() {
  1217   const int value_offset  = java_lang_String::value_offset_in_bytes();
  1218   const int count_offset  = java_lang_String::count_offset_in_bytes();
  1219   const int offset_offset = java_lang_String::offset_offset_in_bytes();
  1221   _sp += 2;
  1222   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1223   Node *receiver = pop();
  1225   Node* result;
  1226   // Disable the use of pcmpestri until it can be guaranteed that
  1227   // the load doesn't cross into the uncommited space.
  1228   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1229       UseSSE42Intrinsics) {
  1230     // Generate SSE4.2 version of indexOf
  1231     // We currently only have match rules that use SSE4.2
  1233     // Null check on self without removing any arguments.  The argument
  1234     // null check technically happens in the wrong place, which can lead to
  1235     // invalid stack traces when string compare is inlined into a method
  1236     // which handles NullPointerExceptions.
  1237     _sp += 2;
  1238     receiver = do_null_check(receiver, T_OBJECT);
  1239     argument = do_null_check(argument, T_OBJECT);
  1240     _sp -= 2;
  1242     if (stopped()) {
  1243       return true;
  1246     ciInstanceKlass* str_klass = env()->String_klass();
  1247     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1249     // Make the merge point
  1250     RegionNode* result_rgn = new (C, 4) RegionNode(4);
  1251     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
  1252     Node* no_ctrl  = NULL;
  1254     // Get counts for string and substr
  1255     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
  1256     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1258     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
  1259     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
  1261     // Check for substr count > string count
  1262     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1263     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1264     Node* if_gt = generate_slow_guard(bol, NULL);
  1265     if (if_gt != NULL) {
  1266       result_phi->init_req(2, intcon(-1));
  1267       result_rgn->init_req(2, if_gt);
  1270     if (!stopped()) {
  1271       // Check for substr count == 0
  1272       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
  1273       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1274       Node* if_zero = generate_slow_guard(bol, NULL);
  1275       if (if_zero != NULL) {
  1276         result_phi->init_req(3, intcon(0));
  1277         result_rgn->init_req(3, if_zero);
  1281     if (!stopped()) {
  1282       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
  1283       result_phi->init_req(1, result);
  1284       result_rgn->init_req(1, control());
  1286     set_control(_gvn.transform(result_rgn));
  1287     record_for_igvn(result_rgn);
  1288     result = _gvn.transform(result_phi);
  1290   } else { // Use LibraryCallKit::string_indexOf
  1291     // don't intrinsify if argument isn't a constant string.
  1292     if (!argument->is_Con()) {
  1293      return false;
  1295     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1296     if (str_type == NULL) {
  1297       return false;
  1299     ciInstanceKlass* klass = env()->String_klass();
  1300     ciObject* str_const = str_type->const_oop();
  1301     if (str_const == NULL || str_const->klass() != klass) {
  1302       return false;
  1304     ciInstance* str = str_const->as_instance();
  1305     assert(str != NULL, "must be instance");
  1307     ciObject* v = str->field_value_by_offset(value_offset).as_object();
  1308     int       o = str->field_value_by_offset(offset_offset).as_int();
  1309     int       c = str->field_value_by_offset(count_offset).as_int();
  1310     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1312     // constant strings have no offset and count == length which
  1313     // simplifies the resulting code somewhat so lets optimize for that.
  1314     if (o != 0 || c != pat->length()) {
  1315      return false;
  1318     // Null check on self without removing any arguments.  The argument
  1319     // null check technically happens in the wrong place, which can lead to
  1320     // invalid stack traces when string compare is inlined into a method
  1321     // which handles NullPointerExceptions.
  1322     _sp += 2;
  1323     receiver = do_null_check(receiver, T_OBJECT);
  1324     // No null check on the argument is needed since it's a constant String oop.
  1325     _sp -= 2;
  1326     if (stopped()) {
  1327       return true;
  1330     // The null string as a pattern always returns 0 (match at beginning of string)
  1331     if (c == 0) {
  1332       push(intcon(0));
  1333       return true;
  1336     // Generate default indexOf
  1337     jchar lastChar = pat->char_at(o + (c - 1));
  1338     int cache = 0;
  1339     int i;
  1340     for (i = 0; i < c - 1; i++) {
  1341       assert(i < pat->length(), "out of range");
  1342       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1345     int md2 = c;
  1346     for (i = 0; i < c - 1; i++) {
  1347       assert(i < pat->length(), "out of range");
  1348       if (pat->char_at(o + i) == lastChar) {
  1349         md2 = (c - 1) - i;
  1353     result = string_indexOf(receiver, pat, o, cache, md2);
  1356   push(result);
  1357   return true;
  1360 //--------------------------pop_math_arg--------------------------------
  1361 // Pop a double argument to a math function from the stack
  1362 // rounding it if necessary.
  1363 Node * LibraryCallKit::pop_math_arg() {
  1364   Node *arg = pop_pair();
  1365   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1366     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1367   return arg;
  1370 //------------------------------inline_trig----------------------------------
  1371 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1372 // argument reduction which will turn into a fast/slow diamond.
  1373 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1374   _sp += arg_size();            // restore stack pointer
  1375   Node* arg = pop_math_arg();
  1376   Node* trig = NULL;
  1378   switch (id) {
  1379   case vmIntrinsics::_dsin:
  1380     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1381     break;
  1382   case vmIntrinsics::_dcos:
  1383     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1384     break;
  1385   case vmIntrinsics::_dtan:
  1386     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1387     break;
  1388   default:
  1389     assert(false, "bad intrinsic was passed in");
  1390     return false;
  1393   // Rounding required?  Check for argument reduction!
  1394   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1396     static const double     pi_4 =  0.7853981633974483;
  1397     static const double neg_pi_4 = -0.7853981633974483;
  1398     // pi/2 in 80-bit extended precision
  1399     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1400     // -pi/2 in 80-bit extended precision
  1401     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1402     // Cutoff value for using this argument reduction technique
  1403     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1404     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1406     // Pseudocode for sin:
  1407     // if (x <= Math.PI / 4.0) {
  1408     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1409     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1410     // } else {
  1411     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1412     // }
  1413     // return StrictMath.sin(x);
  1415     // Pseudocode for cos:
  1416     // if (x <= Math.PI / 4.0) {
  1417     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1418     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1419     // } else {
  1420     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1421     // }
  1422     // return StrictMath.cos(x);
  1424     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1425     // requires a special machine instruction to load it.  Instead we'll try
  1426     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1427     // probably do the math inside the SIN encoding.
  1429     // Make the merge point
  1430     RegionNode *r = new (C, 3) RegionNode(3);
  1431     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1433     // Flatten arg so we need only 1 test
  1434     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1435     // Node for PI/4 constant
  1436     Node *pi4 = makecon(TypeD::make(pi_4));
  1437     // Check PI/4 : abs(arg)
  1438     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1439     // Check: If PI/4 < abs(arg) then go slow
  1440     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1441     // Branch either way
  1442     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1443     set_control(opt_iff(r,iff));
  1445     // Set fast path result
  1446     phi->init_req(2,trig);
  1448     // Slow path - non-blocking leaf call
  1449     Node* call = NULL;
  1450     switch (id) {
  1451     case vmIntrinsics::_dsin:
  1452       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1453                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1454                                "Sin", NULL, arg, top());
  1455       break;
  1456     case vmIntrinsics::_dcos:
  1457       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1458                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1459                                "Cos", NULL, arg, top());
  1460       break;
  1461     case vmIntrinsics::_dtan:
  1462       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1463                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1464                                "Tan", NULL, arg, top());
  1465       break;
  1467     assert(control()->in(0) == call, "");
  1468     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1469     r->init_req(1,control());
  1470     phi->init_req(1,slow_result);
  1472     // Post-merge
  1473     set_control(_gvn.transform(r));
  1474     record_for_igvn(r);
  1475     trig = _gvn.transform(phi);
  1477     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1479   // Push result back on JVM stack
  1480   push_pair(trig);
  1481   return true;
  1484 //------------------------------inline_sqrt-------------------------------------
  1485 // Inline square root instruction, if possible.
  1486 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1487   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1488   _sp += arg_size();        // restore stack pointer
  1489   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1490   return true;
  1493 //------------------------------inline_abs-------------------------------------
  1494 // Inline absolute value instruction, if possible.
  1495 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1496   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1497   _sp += arg_size();        // restore stack pointer
  1498   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1499   return true;
  1502 //------------------------------inline_exp-------------------------------------
  1503 // Inline exp instructions, if possible.  The Intel hardware only misses
  1504 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1505 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1506   assert(id == vmIntrinsics::_dexp, "Not exp");
  1508   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1509   // every again.  NaN results requires StrictMath.exp handling.
  1510   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1512   // Do not intrinsify on older platforms which lack cmove.
  1513   if (ConditionalMoveLimit == 0)  return false;
  1515   _sp += arg_size();        // restore stack pointer
  1516   Node *x = pop_math_arg();
  1517   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1519   //-------------------
  1520   //result=(result.isNaN())? StrictMath::exp():result;
  1521   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1522   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1523   // Build the boolean node
  1524   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1526   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1527     // End the current control-flow path
  1528     push_pair(x);
  1529     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
  1530     // to handle.  Recompile without intrinsifying Math.exp
  1531     uncommon_trap(Deoptimization::Reason_intrinsic,
  1532                   Deoptimization::Action_make_not_entrant);
  1535   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1537   push_pair(result);
  1539   return true;
  1542 //------------------------------inline_pow-------------------------------------
  1543 // Inline power instructions, if possible.
  1544 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1545   assert(id == vmIntrinsics::_dpow, "Not pow");
  1547   // If this inlining ever returned NaN in the past, we do not intrinsify it
  1548   // every again.  NaN results requires StrictMath.pow handling.
  1549   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  1551   // Do not intrinsify on older platforms which lack cmove.
  1552   if (ConditionalMoveLimit == 0)  return false;
  1554   // Pseudocode for pow
  1555   // if (x <= 0.0) {
  1556   //   if ((double)((int)y)==y) { // if y is int
  1557   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
  1558   //   } else {
  1559   //     result = NaN;
  1560   //   }
  1561   // } else {
  1562   //   result = DPow(x,y);
  1563   // }
  1564   // if (result != result)?  {
  1565   //   uncommon_trap();
  1566   // }
  1567   // return result;
  1569   _sp += arg_size();        // restore stack pointer
  1570   Node* y = pop_math_arg();
  1571   Node* x = pop_math_arg();
  1573   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1575   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
  1576   // inside of something) then skip the fancy tests and just check for
  1577   // NaN result.
  1578   Node *result = NULL;
  1579   if( jvms()->depth() >= 1 ) {
  1580     result = fast_result;
  1581   } else {
  1583     // Set the merge point for If node with condition of (x <= 0.0)
  1584     // There are four possible paths to region node and phi node
  1585     RegionNode *r = new (C, 4) RegionNode(4);
  1586     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1588     // Build the first if node: if (x <= 0.0)
  1589     // Node for 0 constant
  1590     Node *zeronode = makecon(TypeD::ZERO);
  1591     // Check x:0
  1592     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1593     // Check: If (x<=0) then go complex path
  1594     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1595     // Branch either way
  1596     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1597     Node *opt_test = _gvn.transform(if1);
  1598     //assert( opt_test->is_If(), "Expect an IfNode");
  1599     IfNode *opt_if1 = (IfNode*)opt_test;
  1600     // Fast path taken; set region slot 3
  1601     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
  1602     r->init_req(3,fast_taken); // Capture fast-control
  1604     // Fast path not-taken, i.e. slow path
  1605     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
  1607     // Set fast path result
  1608     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
  1609     phi->init_req(3, fast_result);
  1611     // Complex path
  1612     // Build the second if node (if y is int)
  1613     // Node for (int)y
  1614     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
  1615     // Node for (double)((int) y)
  1616     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
  1617     // Check (double)((int) y) : y
  1618     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
  1619     // Check if (y isn't int) then go to slow path
  1621     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
  1622     // Branch either way
  1623     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1624     Node *slow_path = opt_iff(r,if2); // Set region path 2
  1626     // Calculate DPow(abs(x), y)*(1 & (int)y)
  1627     // Node for constant 1
  1628     Node *conone = intcon(1);
  1629     // 1& (int)y
  1630     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
  1631     // zero node
  1632     Node *conzero = intcon(0);
  1633     // Check (1&(int)y)==0?
  1634     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
  1635     // Check if (1&(int)y)!=0?, if so the result is negative
  1636     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1637     // abs(x)
  1638     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1639     // abs(x)^y
  1640     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
  1641     // -abs(x)^y
  1642     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1643     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1644     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1645     // Set complex path fast result
  1646     phi->init_req(2, signresult);
  1648     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1649     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1650     r->init_req(1,slow_path);
  1651     phi->init_req(1,slow_result);
  1653     // Post merge
  1654     set_control(_gvn.transform(r));
  1655     record_for_igvn(r);
  1656     result=_gvn.transform(phi);
  1659   //-------------------
  1660   //result=(result.isNaN())? uncommon_trap():result;
  1661   // Check: If isNaN() by checking result!=result? then go to Strict Math
  1662   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1663   // Build the boolean node
  1664   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1666   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1667     // End the current control-flow path
  1668     push_pair(x);
  1669     push_pair(y);
  1670     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
  1671     // to handle.  Recompile without intrinsifying Math.pow.
  1672     uncommon_trap(Deoptimization::Reason_intrinsic,
  1673                   Deoptimization::Action_make_not_entrant);
  1676   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1678   push_pair(result);
  1680   return true;
  1683 //------------------------------inline_trans-------------------------------------
  1684 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1685 // these right, no funny corner cases missed.
  1686 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1687   _sp += arg_size();        // restore stack pointer
  1688   Node* arg = pop_math_arg();
  1689   Node* trans = NULL;
  1691   switch (id) {
  1692   case vmIntrinsics::_dlog:
  1693     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1694     break;
  1695   case vmIntrinsics::_dlog10:
  1696     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1697     break;
  1698   default:
  1699     assert(false, "bad intrinsic was passed in");
  1700     return false;
  1703   // Push result back on JVM stack
  1704   push_pair(trans);
  1705   return true;
  1708 //------------------------------runtime_math-----------------------------
  1709 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1710   Node* a = NULL;
  1711   Node* b = NULL;
  1713   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1714          "must be (DD)D or (D)D type");
  1716   // Inputs
  1717   _sp += arg_size();        // restore stack pointer
  1718   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1719     b = pop_math_arg();
  1721   a = pop_math_arg();
  1723   const TypePtr* no_memory_effects = NULL;
  1724   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1725                                  no_memory_effects,
  1726                                  a, top(), b, b ? top() : NULL);
  1727   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1728 #ifdef ASSERT
  1729   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1730   assert(value_top == top(), "second value must be top");
  1731 #endif
  1733   push_pair(value);
  1734   return true;
  1737 //------------------------------inline_math_native-----------------------------
  1738 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1739   switch (id) {
  1740     // These intrinsics are not properly supported on all hardware
  1741   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1742     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1743   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1744     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1745   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1746     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1748   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1749     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1750   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1751     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1753     // These intrinsics are supported on all hardware
  1754   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1755   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1757     // These intrinsics don't work on X86.  The ad implementation doesn't
  1758     // handle NaN's properly.  Instead of returning infinity, the ad
  1759     // implementation returns a NaN on overflow. See bug: 6304089
  1760     // Once the ad implementations are fixed, change the code below
  1761     // to match the intrinsics above
  1763   case vmIntrinsics::_dexp:  return
  1764     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1765   case vmIntrinsics::_dpow:  return
  1766     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1768    // These intrinsics are not yet correctly implemented
  1769   case vmIntrinsics::_datan2:
  1770     return false;
  1772   default:
  1773     ShouldNotReachHere();
  1774     return false;
  1778 static bool is_simple_name(Node* n) {
  1779   return (n->req() == 1         // constant
  1780           || (n->is_Type() && n->as_Type()->type()->singleton())
  1781           || n->is_Proj()       // parameter or return value
  1782           || n->is_Phi()        // local of some sort
  1783           );
  1786 //----------------------------inline_min_max-----------------------------------
  1787 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1788   push(generate_min_max(id, argument(0), argument(1)));
  1790   return true;
  1793 Node*
  1794 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1795   // These are the candidate return value:
  1796   Node* xvalue = x0;
  1797   Node* yvalue = y0;
  1799   if (xvalue == yvalue) {
  1800     return xvalue;
  1803   bool want_max = (id == vmIntrinsics::_max);
  1805   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1806   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1807   if (txvalue == NULL || tyvalue == NULL)  return top();
  1808   // This is not really necessary, but it is consistent with a
  1809   // hypothetical MaxINode::Value method:
  1810   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1812   // %%% This folding logic should (ideally) be in a different place.
  1813   // Some should be inside IfNode, and there to be a more reliable
  1814   // transformation of ?: style patterns into cmoves.  We also want
  1815   // more powerful optimizations around cmove and min/max.
  1817   // Try to find a dominating comparison of these guys.
  1818   // It can simplify the index computation for Arrays.copyOf
  1819   // and similar uses of System.arraycopy.
  1820   // First, compute the normalized version of CmpI(x, y).
  1821   int   cmp_op = Op_CmpI;
  1822   Node* xkey = xvalue;
  1823   Node* ykey = yvalue;
  1824   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1825   if (ideal_cmpxy->is_Cmp()) {
  1826     // E.g., if we have CmpI(length - offset, count),
  1827     // it might idealize to CmpI(length, count + offset)
  1828     cmp_op = ideal_cmpxy->Opcode();
  1829     xkey = ideal_cmpxy->in(1);
  1830     ykey = ideal_cmpxy->in(2);
  1833   // Start by locating any relevant comparisons.
  1834   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1835   Node* cmpxy = NULL;
  1836   Node* cmpyx = NULL;
  1837   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1838     Node* cmp = start_from->fast_out(k);
  1839     if (cmp->outcnt() > 0 &&            // must have prior uses
  1840         cmp->in(0) == NULL &&           // must be context-independent
  1841         cmp->Opcode() == cmp_op) {      // right kind of compare
  1842       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1843       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1847   const int NCMPS = 2;
  1848   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1849   int cmpn;
  1850   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1851     if (cmps[cmpn] != NULL)  break;     // find a result
  1853   if (cmpn < NCMPS) {
  1854     // Look for a dominating test that tells us the min and max.
  1855     int depth = 0;                // Limit search depth for speed
  1856     Node* dom = control();
  1857     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1858       if (++depth >= 100)  break;
  1859       Node* ifproj = dom;
  1860       if (!ifproj->is_Proj())  continue;
  1861       Node* iff = ifproj->in(0);
  1862       if (!iff->is_If())  continue;
  1863       Node* bol = iff->in(1);
  1864       if (!bol->is_Bool())  continue;
  1865       Node* cmp = bol->in(1);
  1866       if (cmp == NULL)  continue;
  1867       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1868         if (cmps[cmpn] == cmp)  break;
  1869       if (cmpn == NCMPS)  continue;
  1870       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1871       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1872       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1873       // At this point, we know that 'x btest y' is true.
  1874       switch (btest) {
  1875       case BoolTest::eq:
  1876         // They are proven equal, so we can collapse the min/max.
  1877         // Either value is the answer.  Choose the simpler.
  1878         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1879           return yvalue;
  1880         return xvalue;
  1881       case BoolTest::lt:          // x < y
  1882       case BoolTest::le:          // x <= y
  1883         return (want_max ? yvalue : xvalue);
  1884       case BoolTest::gt:          // x > y
  1885       case BoolTest::ge:          // x >= y
  1886         return (want_max ? xvalue : yvalue);
  1891   // We failed to find a dominating test.
  1892   // Let's pick a test that might GVN with prior tests.
  1893   Node*          best_bol   = NULL;
  1894   BoolTest::mask best_btest = BoolTest::illegal;
  1895   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1896     Node* cmp = cmps[cmpn];
  1897     if (cmp == NULL)  continue;
  1898     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1899       Node* bol = cmp->fast_out(j);
  1900       if (!bol->is_Bool())  continue;
  1901       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1902       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1903       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1904       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1905         best_bol   = bol->as_Bool();
  1906         best_btest = btest;
  1911   Node* answer_if_true  = NULL;
  1912   Node* answer_if_false = NULL;
  1913   switch (best_btest) {
  1914   default:
  1915     if (cmpxy == NULL)
  1916       cmpxy = ideal_cmpxy;
  1917     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  1918     // and fall through:
  1919   case BoolTest::lt:          // x < y
  1920   case BoolTest::le:          // x <= y
  1921     answer_if_true  = (want_max ? yvalue : xvalue);
  1922     answer_if_false = (want_max ? xvalue : yvalue);
  1923     break;
  1924   case BoolTest::gt:          // x > y
  1925   case BoolTest::ge:          // x >= y
  1926     answer_if_true  = (want_max ? xvalue : yvalue);
  1927     answer_if_false = (want_max ? yvalue : xvalue);
  1928     break;
  1931   jint hi, lo;
  1932   if (want_max) {
  1933     // We can sharpen the minimum.
  1934     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  1935     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  1936   } else {
  1937     // We can sharpen the maximum.
  1938     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  1939     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  1942   // Use a flow-free graph structure, to avoid creating excess control edges
  1943   // which could hinder other optimizations.
  1944   // Since Math.min/max is often used with arraycopy, we want
  1945   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  1946   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  1947                                answer_if_false, answer_if_true,
  1948                                TypeInt::make(lo, hi, widen));
  1950   return _gvn.transform(cmov);
  1952   /*
  1953   // This is not as desirable as it may seem, since Min and Max
  1954   // nodes do not have a full set of optimizations.
  1955   // And they would interfere, anyway, with 'if' optimizations
  1956   // and with CMoveI canonical forms.
  1957   switch (id) {
  1958   case vmIntrinsics::_min:
  1959     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  1960   case vmIntrinsics::_max:
  1961     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  1962   default:
  1963     ShouldNotReachHere();
  1965   */
  1968 inline int
  1969 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  1970   const TypePtr* base_type = TypePtr::NULL_PTR;
  1971   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  1972   if (base_type == NULL) {
  1973     // Unknown type.
  1974     return Type::AnyPtr;
  1975   } else if (base_type == TypePtr::NULL_PTR) {
  1976     // Since this is a NULL+long form, we have to switch to a rawptr.
  1977     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  1978     offset = MakeConX(0);
  1979     return Type::RawPtr;
  1980   } else if (base_type->base() == Type::RawPtr) {
  1981     return Type::RawPtr;
  1982   } else if (base_type->isa_oopptr()) {
  1983     // Base is never null => always a heap address.
  1984     if (base_type->ptr() == TypePtr::NotNull) {
  1985       return Type::OopPtr;
  1987     // Offset is small => always a heap address.
  1988     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  1989     if (offset_type != NULL &&
  1990         base_type->offset() == 0 &&     // (should always be?)
  1991         offset_type->_lo >= 0 &&
  1992         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  1993       return Type::OopPtr;
  1995     // Otherwise, it might either be oop+off or NULL+addr.
  1996     return Type::AnyPtr;
  1997   } else {
  1998     // No information:
  1999     return Type::AnyPtr;
  2003 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2004   int kind = classify_unsafe_addr(base, offset);
  2005   if (kind == Type::RawPtr) {
  2006     return basic_plus_adr(top(), base, offset);
  2007   } else {
  2008     return basic_plus_adr(base, offset);
  2012 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  2013 // inline int Integer.numberOfLeadingZeros(int)
  2014 // inline int Long.numberOfLeadingZeros(long)
  2015 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  2016   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  2017   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  2018   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  2019   _sp += arg_size();  // restore stack pointer
  2020   switch (id) {
  2021   case vmIntrinsics::_numberOfLeadingZeros_i:
  2022     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  2023     break;
  2024   case vmIntrinsics::_numberOfLeadingZeros_l:
  2025     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  2026     break;
  2027   default:
  2028     ShouldNotReachHere();
  2030   return true;
  2033 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2034 // inline int Integer.numberOfTrailingZeros(int)
  2035 // inline int Long.numberOfTrailingZeros(long)
  2036 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2037   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2038   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2039   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2040   _sp += arg_size();  // restore stack pointer
  2041   switch (id) {
  2042   case vmIntrinsics::_numberOfTrailingZeros_i:
  2043     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  2044     break;
  2045   case vmIntrinsics::_numberOfTrailingZeros_l:
  2046     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  2047     break;
  2048   default:
  2049     ShouldNotReachHere();
  2051   return true;
  2054 //----------------------------inline_bitCount_int/long-----------------------
  2055 // inline int Integer.bitCount(int)
  2056 // inline int Long.bitCount(long)
  2057 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2058   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2059   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2060   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2061   _sp += arg_size();  // restore stack pointer
  2062   switch (id) {
  2063   case vmIntrinsics::_bitCount_i:
  2064     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2065     break;
  2066   case vmIntrinsics::_bitCount_l:
  2067     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2068     break;
  2069   default:
  2070     ShouldNotReachHere();
  2072   return true;
  2075 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2076 // inline Integer.reverseBytes(int)
  2077 // inline Long.reverseBytes(long)
  2078 // inline Character.reverseBytes(char)
  2079 // inline Short.reverseBytes(short)
  2080 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2081   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2082          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2083          "not reverse Bytes");
  2084   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2085   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2086   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2087   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2088   _sp += arg_size();        // restore stack pointer
  2089   switch (id) {
  2090   case vmIntrinsics::_reverseBytes_i:
  2091     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2092     break;
  2093   case vmIntrinsics::_reverseBytes_l:
  2094     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2095     break;
  2096   case vmIntrinsics::_reverseBytes_c:
  2097     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2098     break;
  2099   case vmIntrinsics::_reverseBytes_s:
  2100     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2101     break;
  2102   default:
  2105   return true;
  2108 //----------------------------inline_unsafe_access----------------------------
  2110 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2112 // Helper that guards and inserts a G1 pre-barrier.
  2113 void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
  2114   assert(UseG1GC, "should not call this otherwise");
  2116   // We could be accessing the referent field of a reference object. If so, when G1
  2117   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2118   // This routine performs some compile time filters and generates suitable
  2119   // runtime filters that guard the pre-barrier code.
  2121   // Some compile time checks.
  2123   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2124   const TypeX* otype = offset->find_intptr_t_type();
  2125   if (otype != NULL && otype->is_con() &&
  2126       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2127     // Constant offset but not the reference_offset so just return
  2128     return;
  2131   // We only need to generate the runtime guards for instances.
  2132   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2133   if (btype != NULL) {
  2134     if (btype->isa_aryptr()) {
  2135       // Array type so nothing to do
  2136       return;
  2139     const TypeInstPtr* itype = btype->isa_instptr();
  2140     if (itype != NULL) {
  2141       // Can the klass of base_oop be statically determined
  2142       // to be _not_ a sub-class of Reference?
  2143       ciKlass* klass = itype->klass();
  2144       if (klass->is_subtype_of(env()->Reference_klass()) &&
  2145           !env()->Reference_klass()->is_subtype_of(klass)) {
  2146         return;
  2151   // The compile time filters did not reject base_oop/offset so
  2152   // we need to generate the following runtime filters
  2153   //
  2154   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2155   //   if (base != null) {
  2156   //     if (klass(base)->reference_type() != REF_NONE)) {
  2157   //       pre_barrier(_, pre_val, ...);
  2158   //     }
  2159   //   }
  2160   // }
  2162   float likely  = PROB_LIKELY(0.999);
  2163   float unlikely  = PROB_UNLIKELY(0.999);
  2165   IdealKit ideal(this);
  2166 #define __ ideal.
  2168   const int reference_type_offset = instanceKlass::reference_type_offset_in_bytes() +
  2169                                         sizeof(oopDesc);
  2171   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2173   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2174     __ if_then(base_oop, BoolTest::ne, null(), likely); {
  2176       // Update graphKit memory and control from IdealKit.
  2177       sync_kit(ideal);
  2179       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2180       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2182       // Update IdealKit memory and control from graphKit.
  2183       __ sync_kit(this);
  2185       Node* one = __ ConI(1);
  2187       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2189         // Update graphKit from IdeakKit.
  2190         sync_kit(ideal);
  2192         // Use the pre-barrier to record the value in the referent field
  2193         pre_barrier(false /* do_load */,
  2194                     __ ctrl(),
  2195                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2196                     pre_val /* pre_val */,
  2197                     T_OBJECT);
  2199         // Update IdealKit from graphKit.
  2200         __ sync_kit(this);
  2202       } __ end_if(); // _ref_type != ref_none
  2203     } __ end_if(); // base  != NULL
  2204   } __ end_if(); // offset == referent_offset
  2206   // Final sync IdealKit and GraphKit.
  2207   final_sync(ideal);
  2208 #undef __
  2212 // Interpret Unsafe.fieldOffset cookies correctly:
  2213 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2215 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2216   if (callee()->is_static())  return false;  // caller must have the capability!
  2218 #ifndef PRODUCT
  2220     ResourceMark rm;
  2221     // Check the signatures.
  2222     ciSignature* sig = signature();
  2223 #ifdef ASSERT
  2224     if (!is_store) {
  2225       // Object getObject(Object base, int/long offset), etc.
  2226       BasicType rtype = sig->return_type()->basic_type();
  2227       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2228           rtype = T_ADDRESS;  // it is really a C void*
  2229       assert(rtype == type, "getter must return the expected value");
  2230       if (!is_native_ptr) {
  2231         assert(sig->count() == 2, "oop getter has 2 arguments");
  2232         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2233         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2234       } else {
  2235         assert(sig->count() == 1, "native getter has 1 argument");
  2236         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2238     } else {
  2239       // void putObject(Object base, int/long offset, Object x), etc.
  2240       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2241       if (!is_native_ptr) {
  2242         assert(sig->count() == 3, "oop putter has 3 arguments");
  2243         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2244         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2245       } else {
  2246         assert(sig->count() == 2, "native putter has 2 arguments");
  2247         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2249       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2250       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2251         vtype = T_ADDRESS;  // it is really a C void*
  2252       assert(vtype == type, "putter must accept the expected value");
  2254 #endif // ASSERT
  2256 #endif //PRODUCT
  2258   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2260   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2262   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2263   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2265   debug_only(int saved_sp = _sp);
  2266   _sp += nargs;
  2268   Node* val;
  2269   debug_only(val = (Node*)(uintptr_t)-1);
  2272   if (is_store) {
  2273     // Get the value being stored.  (Pop it first; it was pushed last.)
  2274     switch (type) {
  2275     case T_DOUBLE:
  2276     case T_LONG:
  2277     case T_ADDRESS:
  2278       val = pop_pair();
  2279       break;
  2280     default:
  2281       val = pop();
  2285   // Build address expression.  See the code in inline_unsafe_prefetch.
  2286   Node *adr;
  2287   Node *heap_base_oop = top();
  2288   Node* offset = top();
  2290   if (!is_native_ptr) {
  2291     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2292     offset = pop_pair();
  2293     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2294     Node* base   = pop();
  2295     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2296     // to be plain byte offsets, which are also the same as those accepted
  2297     // by oopDesc::field_base.
  2298     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2299            "fieldOffset must be byte-scaled");
  2300     // 32-bit machines ignore the high half!
  2301     offset = ConvL2X(offset);
  2302     adr = make_unsafe_address(base, offset);
  2303     heap_base_oop = base;
  2304   } else {
  2305     Node* ptr = pop_pair();
  2306     // Adjust Java long to machine word:
  2307     ptr = ConvL2X(ptr);
  2308     adr = make_unsafe_address(NULL, ptr);
  2311   // Pop receiver last:  it was pushed first.
  2312   Node *receiver = pop();
  2314   assert(saved_sp == _sp, "must have correct argument count");
  2316   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2318   // First guess at the value type.
  2319   const Type *value_type = Type::get_const_basic_type(type);
  2321   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2322   // there was not enough information to nail it down.
  2323   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2324   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2326   // We will need memory barriers unless we can determine a unique
  2327   // alias category for this reference.  (Note:  If for some reason
  2328   // the barriers get omitted and the unsafe reference begins to "pollute"
  2329   // the alias analysis of the rest of the graph, either Compile::can_alias
  2330   // or Compile::must_alias will throw a diagnostic assert.)
  2331   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2333   // If we are reading the value of the referent field of a Reference
  2334   // object (either by using Unsafe directly or through reflection)
  2335   // then, if G1 is enabled, we need to record the referent in an
  2336   // SATB log buffer using the pre-barrier mechanism.
  2337   bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
  2338                            offset != top() && heap_base_oop != top();
  2340   if (!is_store && type == T_OBJECT) {
  2341     // Attempt to infer a sharper value type from the offset and base type.
  2342     ciKlass* sharpened_klass = NULL;
  2344     // See if it is an instance field, with an object type.
  2345     if (alias_type->field() != NULL) {
  2346       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2347       if (alias_type->field()->type()->is_klass()) {
  2348         sharpened_klass = alias_type->field()->type()->as_klass();
  2352     // See if it is a narrow oop array.
  2353     if (adr_type->isa_aryptr()) {
  2354       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2355         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2356         if (elem_type != NULL) {
  2357           sharpened_klass = elem_type->klass();
  2362     if (sharpened_klass != NULL) {
  2363       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2365       // Sharpen the value type.
  2366       value_type = tjp;
  2368 #ifndef PRODUCT
  2369       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2370         tty->print("  from base type:  ");   adr_type->dump();
  2371         tty->print("  sharpened value: "); value_type->dump();
  2373 #endif
  2377   // Null check on self without removing any arguments.  The argument
  2378   // null check technically happens in the wrong place, which can lead to
  2379   // invalid stack traces when the primitive is inlined into a method
  2380   // which handles NullPointerExceptions.
  2381   _sp += nargs;
  2382   do_null_check(receiver, T_OBJECT);
  2383   _sp -= nargs;
  2384   if (stopped()) {
  2385     return true;
  2387   // Heap pointers get a null-check from the interpreter,
  2388   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2389   // and it is not possible to fully distinguish unintended nulls
  2390   // from intended ones in this API.
  2392   if (is_volatile) {
  2393     // We need to emit leading and trailing CPU membars (see below) in
  2394     // addition to memory membars when is_volatile. This is a little
  2395     // too strong, but avoids the need to insert per-alias-type
  2396     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2397     // we cannot do effectively here because we probably only have a
  2398     // rough approximation of type.
  2399     need_mem_bar = true;
  2400     // For Stores, place a memory ordering barrier now.
  2401     if (is_store)
  2402       insert_mem_bar(Op_MemBarRelease);
  2405   // Memory barrier to prevent normal and 'unsafe' accesses from
  2406   // bypassing each other.  Happens after null checks, so the
  2407   // exception paths do not take memory state from the memory barrier,
  2408   // so there's no problems making a strong assert about mixing users
  2409   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2410   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2411   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2413   if (!is_store) {
  2414     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2415     // load value and push onto stack
  2416     switch (type) {
  2417     case T_BOOLEAN:
  2418     case T_CHAR:
  2419     case T_BYTE:
  2420     case T_SHORT:
  2421     case T_INT:
  2422     case T_FLOAT:
  2423       push(p);
  2424       break;
  2425     case T_OBJECT:
  2426       if (need_read_barrier) {
  2427         insert_g1_pre_barrier(heap_base_oop, offset, p);
  2429       push(p);
  2430       break;
  2431     case T_ADDRESS:
  2432       // Cast to an int type.
  2433       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2434       p = ConvX2L(p);
  2435       push_pair(p);
  2436       break;
  2437     case T_DOUBLE:
  2438     case T_LONG:
  2439       push_pair( p );
  2440       break;
  2441     default: ShouldNotReachHere();
  2443   } else {
  2444     // place effect of store into memory
  2445     switch (type) {
  2446     case T_DOUBLE:
  2447       val = dstore_rounding(val);
  2448       break;
  2449     case T_ADDRESS:
  2450       // Repackage the long as a pointer.
  2451       val = ConvL2X(val);
  2452       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2453       break;
  2456     if (type != T_OBJECT ) {
  2457       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2458     } else {
  2459       // Possibly an oop being stored to Java heap or native memory
  2460       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2461         // oop to Java heap.
  2462         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2463       } else {
  2464         // We can't tell at compile time if we are storing in the Java heap or outside
  2465         // of it. So we need to emit code to conditionally do the proper type of
  2466         // store.
  2468         IdealKit ideal(this);
  2469 #define __ ideal.
  2470         // QQQ who knows what probability is here??
  2471         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2472           // Sync IdealKit and graphKit.
  2473           sync_kit(ideal);
  2474           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2475           // Update IdealKit memory.
  2476           __ sync_kit(this);
  2477         } __ else_(); {
  2478           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2479         } __ end_if();
  2480         // Final sync IdealKit and GraphKit.
  2481         final_sync(ideal);
  2482 #undef __
  2487   if (is_volatile) {
  2488     if (!is_store)
  2489       insert_mem_bar(Op_MemBarAcquire);
  2490     else
  2491       insert_mem_bar(Op_MemBarVolatile);
  2494   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2496   return true;
  2499 //----------------------------inline_unsafe_prefetch----------------------------
  2501 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2502 #ifndef PRODUCT
  2504     ResourceMark rm;
  2505     // Check the signatures.
  2506     ciSignature* sig = signature();
  2507 #ifdef ASSERT
  2508     // Object getObject(Object base, int/long offset), etc.
  2509     BasicType rtype = sig->return_type()->basic_type();
  2510     if (!is_native_ptr) {
  2511       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2512       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2513       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2514     } else {
  2515       assert(sig->count() == 1, "native prefetch has 1 argument");
  2516       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2518 #endif // ASSERT
  2520 #endif // !PRODUCT
  2522   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2524   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2525   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2527   debug_only(int saved_sp = _sp);
  2528   _sp += nargs;
  2530   // Build address expression.  See the code in inline_unsafe_access.
  2531   Node *adr;
  2532   if (!is_native_ptr) {
  2533     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2534     Node* offset = pop_pair();
  2535     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2536     Node* base   = pop();
  2537     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2538     // to be plain byte offsets, which are also the same as those accepted
  2539     // by oopDesc::field_base.
  2540     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2541            "fieldOffset must be byte-scaled");
  2542     // 32-bit machines ignore the high half!
  2543     offset = ConvL2X(offset);
  2544     adr = make_unsafe_address(base, offset);
  2545   } else {
  2546     Node* ptr = pop_pair();
  2547     // Adjust Java long to machine word:
  2548     ptr = ConvL2X(ptr);
  2549     adr = make_unsafe_address(NULL, ptr);
  2552   if (is_static) {
  2553     assert(saved_sp == _sp, "must have correct argument count");
  2554   } else {
  2555     // Pop receiver last:  it was pushed first.
  2556     Node *receiver = pop();
  2557     assert(saved_sp == _sp, "must have correct argument count");
  2559     // Null check on self without removing any arguments.  The argument
  2560     // null check technically happens in the wrong place, which can lead to
  2561     // invalid stack traces when the primitive is inlined into a method
  2562     // which handles NullPointerExceptions.
  2563     _sp += nargs;
  2564     do_null_check(receiver, T_OBJECT);
  2565     _sp -= nargs;
  2566     if (stopped()) {
  2567       return true;
  2571   // Generate the read or write prefetch
  2572   Node *prefetch;
  2573   if (is_store) {
  2574     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2575   } else {
  2576     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2578   prefetch->init_req(0, control());
  2579   set_i_o(_gvn.transform(prefetch));
  2581   return true;
  2584 //----------------------------inline_unsafe_CAS----------------------------
  2586 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2587   // This basic scheme here is the same as inline_unsafe_access, but
  2588   // differs in enough details that combining them would make the code
  2589   // overly confusing.  (This is a true fact! I originally combined
  2590   // them, but even I was confused by it!) As much code/comments as
  2591   // possible are retained from inline_unsafe_access though to make
  2592   // the correspondences clearer. - dl
  2594   if (callee()->is_static())  return false;  // caller must have the capability!
  2596 #ifndef PRODUCT
  2598     ResourceMark rm;
  2599     // Check the signatures.
  2600     ciSignature* sig = signature();
  2601 #ifdef ASSERT
  2602     BasicType rtype = sig->return_type()->basic_type();
  2603     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2604     assert(sig->count() == 4, "CAS has 4 arguments");
  2605     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2606     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2607 #endif // ASSERT
  2609 #endif //PRODUCT
  2611   // number of stack slots per value argument (1 or 2)
  2612   int type_words = type2size[type];
  2614   // Cannot inline wide CAS on machines that don't support it natively
  2615   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2616     return false;
  2618   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2620   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2621   int nargs = 1 + 1 + 2  + type_words + type_words;
  2623   // pop arguments: newval, oldval, offset, base, and receiver
  2624   debug_only(int saved_sp = _sp);
  2625   _sp += nargs;
  2626   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2627   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2628   Node *offset   = pop_pair();
  2629   Node *base     = pop();
  2630   Node *receiver = pop();
  2631   assert(saved_sp == _sp, "must have correct argument count");
  2633   //  Null check receiver.
  2634   _sp += nargs;
  2635   do_null_check(receiver, T_OBJECT);
  2636   _sp -= nargs;
  2637   if (stopped()) {
  2638     return true;
  2641   // Build field offset expression.
  2642   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2643   // to be plain byte offsets, which are also the same as those accepted
  2644   // by oopDesc::field_base.
  2645   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2646   // 32-bit machines ignore the high half of long offsets
  2647   offset = ConvL2X(offset);
  2648   Node* adr = make_unsafe_address(base, offset);
  2649   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2651   // (Unlike inline_unsafe_access, there seems no point in trying
  2652   // to refine types. Just use the coarse types here.
  2653   const Type *value_type = Type::get_const_basic_type(type);
  2654   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2655   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2656   int alias_idx = C->get_alias_index(adr_type);
  2658   // Memory-model-wise, a CAS acts like a little synchronized block,
  2659   // so needs barriers on each side.  These don't translate into
  2660   // actual barriers on most machines, but we still need rest of
  2661   // compiler to respect ordering.
  2663   insert_mem_bar(Op_MemBarRelease);
  2664   insert_mem_bar(Op_MemBarCPUOrder);
  2666   // 4984716: MemBars must be inserted before this
  2667   //          memory node in order to avoid a false
  2668   //          dependency which will confuse the scheduler.
  2669   Node *mem = memory(alias_idx);
  2671   // For now, we handle only those cases that actually exist: ints,
  2672   // longs, and Object. Adding others should be straightforward.
  2673   Node* cas;
  2674   switch(type) {
  2675   case T_INT:
  2676     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2677     break;
  2678   case T_LONG:
  2679     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2680     break;
  2681   case T_OBJECT:
  2682      // reference stores need a store barrier.
  2683     // (They don't if CAS fails, but it isn't worth checking.)
  2684     pre_barrier(true /* do_load*/,
  2685                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2686                 NULL /* pre_val*/,
  2687                 T_OBJECT);
  2688 #ifdef _LP64
  2689     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2690       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2691       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2692       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2693                                                           newval_enc, oldval_enc));
  2694     } else
  2695 #endif
  2697       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2699     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2700     break;
  2701   default:
  2702     ShouldNotReachHere();
  2703     break;
  2706   // SCMemProjNodes represent the memory state of CAS. Their main
  2707   // role is to prevent CAS nodes from being optimized away when their
  2708   // results aren't used.
  2709   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2710   set_memory(proj, alias_idx);
  2712   // Add the trailing membar surrounding the access
  2713   insert_mem_bar(Op_MemBarCPUOrder);
  2714   insert_mem_bar(Op_MemBarAcquire);
  2716   push(cas);
  2717   return true;
  2720 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2721   // This is another variant of inline_unsafe_access, differing in
  2722   // that it always issues store-store ("release") barrier and ensures
  2723   // store-atomicity (which only matters for "long").
  2725   if (callee()->is_static())  return false;  // caller must have the capability!
  2727 #ifndef PRODUCT
  2729     ResourceMark rm;
  2730     // Check the signatures.
  2731     ciSignature* sig = signature();
  2732 #ifdef ASSERT
  2733     BasicType rtype = sig->return_type()->basic_type();
  2734     assert(rtype == T_VOID, "must return void");
  2735     assert(sig->count() == 3, "has 3 arguments");
  2736     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2737     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2738 #endif // ASSERT
  2740 #endif //PRODUCT
  2742   // number of stack slots per value argument (1 or 2)
  2743   int type_words = type2size[type];
  2745   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2747   // Argument words:  "this" plus oop plus offset plus value;
  2748   int nargs = 1 + 1 + 2 + type_words;
  2750   // pop arguments: val, offset, base, and receiver
  2751   debug_only(int saved_sp = _sp);
  2752   _sp += nargs;
  2753   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2754   Node *offset   = pop_pair();
  2755   Node *base     = pop();
  2756   Node *receiver = pop();
  2757   assert(saved_sp == _sp, "must have correct argument count");
  2759   //  Null check receiver.
  2760   _sp += nargs;
  2761   do_null_check(receiver, T_OBJECT);
  2762   _sp -= nargs;
  2763   if (stopped()) {
  2764     return true;
  2767   // Build field offset expression.
  2768   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2769   // 32-bit machines ignore the high half of long offsets
  2770   offset = ConvL2X(offset);
  2771   Node* adr = make_unsafe_address(base, offset);
  2772   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2773   const Type *value_type = Type::get_const_basic_type(type);
  2774   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2776   insert_mem_bar(Op_MemBarRelease);
  2777   insert_mem_bar(Op_MemBarCPUOrder);
  2778   // Ensure that the store is atomic for longs:
  2779   bool require_atomic_access = true;
  2780   Node* store;
  2781   if (type == T_OBJECT) // reference stores need a store barrier.
  2782     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2783   else {
  2784     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2786   insert_mem_bar(Op_MemBarCPUOrder);
  2787   return true;
  2790 bool LibraryCallKit::inline_unsafe_allocate() {
  2791   if (callee()->is_static())  return false;  // caller must have the capability!
  2792   int nargs = 1 + 1;
  2793   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2794   null_check_receiver(callee());  // check then ignore argument(0)
  2795   _sp += nargs;  // set original stack for use by uncommon_trap
  2796   Node* cls = do_null_check(argument(1), T_OBJECT);
  2797   _sp -= nargs;
  2798   if (stopped())  return true;
  2800   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2801   _sp += nargs;  // set original stack for use by uncommon_trap
  2802   kls = do_null_check(kls, T_OBJECT);
  2803   _sp -= nargs;
  2804   if (stopped())  return true;  // argument was like int.class
  2806   // Note:  The argument might still be an illegal value like
  2807   // Serializable.class or Object[].class.   The runtime will handle it.
  2808   // But we must make an explicit check for initialization.
  2809   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
  2810   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
  2811   Node* bits = intcon(instanceKlass::fully_initialized);
  2812   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2813   // The 'test' is non-zero if we need to take a slow path.
  2815   Node* obj = new_instance(kls, test);
  2816   push(obj);
  2818   return true;
  2821 //------------------------inline_native_time_funcs--------------
  2822 // inline code for System.currentTimeMillis() and System.nanoTime()
  2823 // these have the same type and signature
  2824 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
  2825   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
  2826                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
  2827   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
  2828   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
  2829   const TypePtr* no_memory_effects = NULL;
  2830   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2831   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2832 #ifdef ASSERT
  2833   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2834   assert(value_top == top(), "second value must be top");
  2835 #endif
  2836   push_pair(value);
  2837   return true;
  2840 //------------------------inline_native_currentThread------------------
  2841 bool LibraryCallKit::inline_native_currentThread() {
  2842   Node* junk = NULL;
  2843   push(generate_current_thread(junk));
  2844   return true;
  2847 //------------------------inline_native_isInterrupted------------------
  2848 bool LibraryCallKit::inline_native_isInterrupted() {
  2849   const int nargs = 1+1;  // receiver + boolean
  2850   assert(nargs == arg_size(), "sanity");
  2851   // Add a fast path to t.isInterrupted(clear_int):
  2852   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2853   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2854   // So, in the common case that the interrupt bit is false,
  2855   // we avoid making a call into the VM.  Even if the interrupt bit
  2856   // is true, if the clear_int argument is false, we avoid the VM call.
  2857   // However, if the receiver is not currentThread, we must call the VM,
  2858   // because there must be some locking done around the operation.
  2860   // We only go to the fast case code if we pass two guards.
  2861   // Paths which do not pass are accumulated in the slow_region.
  2862   RegionNode* slow_region = new (C, 1) RegionNode(1);
  2863   record_for_igvn(slow_region);
  2864   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  2865   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  2866   enum { no_int_result_path   = 1,
  2867          no_clear_result_path = 2,
  2868          slow_result_path     = 3
  2869   };
  2871   // (a) Receiving thread must be the current thread.
  2872   Node* rec_thr = argument(0);
  2873   Node* tls_ptr = NULL;
  2874   Node* cur_thr = generate_current_thread(tls_ptr);
  2875   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  2876   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  2878   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  2879   if (!known_current_thread)
  2880     generate_slow_guard(bol_thr, slow_region);
  2882   // (b) Interrupt bit on TLS must be false.
  2883   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2884   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2885   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  2886   // Set the control input on the field _interrupted read to prevent it floating up.
  2887   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  2888   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  2889   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  2891   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  2893   // First fast path:  if (!TLS._interrupted) return false;
  2894   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  2895   result_rgn->init_req(no_int_result_path, false_bit);
  2896   result_val->init_req(no_int_result_path, intcon(0));
  2898   // drop through to next case
  2899   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  2901   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  2902   Node* clr_arg = argument(1);
  2903   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  2904   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  2905   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  2907   // Second fast path:  ... else if (!clear_int) return true;
  2908   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  2909   result_rgn->init_req(no_clear_result_path, false_arg);
  2910   result_val->init_req(no_clear_result_path, intcon(1));
  2912   // drop through to next case
  2913   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  2915   // (d) Otherwise, go to the slow path.
  2916   slow_region->add_req(control());
  2917   set_control( _gvn.transform(slow_region) );
  2919   if (stopped()) {
  2920     // There is no slow path.
  2921     result_rgn->init_req(slow_result_path, top());
  2922     result_val->init_req(slow_result_path, top());
  2923   } else {
  2924     // non-virtual because it is a private non-static
  2925     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  2927     Node* slow_val = set_results_for_java_call(slow_call);
  2928     // this->control() comes from set_results_for_java_call
  2930     // If we know that the result of the slow call will be true, tell the optimizer!
  2931     if (known_current_thread)  slow_val = intcon(1);
  2933     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  2934     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  2935     // These two phis are pre-filled with copies of of the fast IO and Memory
  2936     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  2937     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  2939     result_rgn->init_req(slow_result_path, control());
  2940     io_phi    ->init_req(slow_result_path, i_o());
  2941     mem_phi   ->init_req(slow_result_path, reset_memory());
  2942     result_val->init_req(slow_result_path, slow_val);
  2944     set_all_memory( _gvn.transform(mem_phi) );
  2945     set_i_o(        _gvn.transform(io_phi) );
  2948   push_result(result_rgn, result_val);
  2949   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2951   return true;
  2954 //---------------------------load_mirror_from_klass----------------------------
  2955 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  2956 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  2957   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
  2958   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  2961 //-----------------------load_klass_from_mirror_common-------------------------
  2962 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  2963 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  2964 // and branch to the given path on the region.
  2965 // If never_see_null, take an uncommon trap on null, so we can optimistically
  2966 // compile for the non-null case.
  2967 // If the region is NULL, force never_see_null = true.
  2968 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  2969                                                     bool never_see_null,
  2970                                                     int nargs,
  2971                                                     RegionNode* region,
  2972                                                     int null_path,
  2973                                                     int offset) {
  2974   if (region == NULL)  never_see_null = true;
  2975   Node* p = basic_plus_adr(mirror, offset);
  2976   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  2977   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  2978   _sp += nargs; // any deopt will start just before call to enclosing method
  2979   Node* null_ctl = top();
  2980   kls = null_check_oop(kls, &null_ctl, never_see_null);
  2981   if (region != NULL) {
  2982     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  2983     region->init_req(null_path, null_ctl);
  2984   } else {
  2985     assert(null_ctl == top(), "no loose ends");
  2987   _sp -= nargs;
  2988   return kls;
  2991 //--------------------(inline_native_Class_query helpers)---------------------
  2992 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  2993 // Fall through if (mods & mask) == bits, take the guard otherwise.
  2994 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  2995   // Branch around if the given klass has the given modifier bit set.
  2996   // Like generate_guard, adds a new path onto the region.
  2997   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  2998   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  2999   Node* mask = intcon(modifier_mask);
  3000   Node* bits = intcon(modifier_bits);
  3001   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  3002   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  3003   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  3004   return generate_fair_guard(bol, region);
  3006 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3007   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3010 //-------------------------inline_native_Class_query-------------------
  3011 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3012   int nargs = 1+0;  // just the Class mirror, in most cases
  3013   const Type* return_type = TypeInt::BOOL;
  3014   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3015   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3016   bool expect_prim = false;     // most of these guys expect to work on refs
  3018   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3020   switch (id) {
  3021   case vmIntrinsics::_isInstance:
  3022     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  3023     // nothing is an instance of a primitive type
  3024     prim_return_value = intcon(0);
  3025     break;
  3026   case vmIntrinsics::_getModifiers:
  3027     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3028     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3029     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3030     break;
  3031   case vmIntrinsics::_isInterface:
  3032     prim_return_value = intcon(0);
  3033     break;
  3034   case vmIntrinsics::_isArray:
  3035     prim_return_value = intcon(0);
  3036     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3037     break;
  3038   case vmIntrinsics::_isPrimitive:
  3039     prim_return_value = intcon(1);
  3040     expect_prim = true;  // obviously
  3041     break;
  3042   case vmIntrinsics::_getSuperclass:
  3043     prim_return_value = null();
  3044     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3045     break;
  3046   case vmIntrinsics::_getComponentType:
  3047     prim_return_value = null();
  3048     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3049     break;
  3050   case vmIntrinsics::_getClassAccessFlags:
  3051     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3052     return_type = TypeInt::INT;  // not bool!  6297094
  3053     break;
  3054   default:
  3055     ShouldNotReachHere();
  3058   Node* mirror =                      argument(0);
  3059   Node* obj    = (nargs <= 1)? top(): argument(1);
  3061   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3062   if (mirror_con == NULL)  return false;  // cannot happen?
  3064 #ifndef PRODUCT
  3065   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3066     ciType* k = mirror_con->java_mirror_type();
  3067     if (k) {
  3068       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3069       k->print_name();
  3070       tty->cr();
  3073 #endif
  3075   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3076   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3077   record_for_igvn(region);
  3078   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  3080   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3081   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3082   // if it is. See bug 4774291.
  3084   // For Reflection.getClassAccessFlags(), the null check occurs in
  3085   // the wrong place; see inline_unsafe_access(), above, for a similar
  3086   // situation.
  3087   _sp += nargs;  // set original stack for use by uncommon_trap
  3088   mirror = do_null_check(mirror, T_OBJECT);
  3089   _sp -= nargs;
  3090   // If mirror or obj is dead, only null-path is taken.
  3091   if (stopped())  return true;
  3093   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3095   // Now load the mirror's klass metaobject, and null-check it.
  3096   // Side-effects region with the control path if the klass is null.
  3097   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  3098                                      region, _prim_path);
  3099   // If kls is null, we have a primitive mirror.
  3100   phi->init_req(_prim_path, prim_return_value);
  3101   if (stopped()) { push_result(region, phi); return true; }
  3103   Node* p;  // handy temp
  3104   Node* null_ctl;
  3106   // Now that we have the non-null klass, we can perform the real query.
  3107   // For constant classes, the query will constant-fold in LoadNode::Value.
  3108   Node* query_value = top();
  3109   switch (id) {
  3110   case vmIntrinsics::_isInstance:
  3111     // nothing is an instance of a primitive type
  3112     _sp += nargs;          // gen_instanceof might do an uncommon trap
  3113     query_value = gen_instanceof(obj, kls);
  3114     _sp -= nargs;
  3115     break;
  3117   case vmIntrinsics::_getModifiers:
  3118     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
  3119     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3120     break;
  3122   case vmIntrinsics::_isInterface:
  3123     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3124     if (generate_interface_guard(kls, region) != NULL)
  3125       // A guard was added.  If the guard is taken, it was an interface.
  3126       phi->add_req(intcon(1));
  3127     // If we fall through, it's a plain class.
  3128     query_value = intcon(0);
  3129     break;
  3131   case vmIntrinsics::_isArray:
  3132     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3133     if (generate_array_guard(kls, region) != NULL)
  3134       // A guard was added.  If the guard is taken, it was an array.
  3135       phi->add_req(intcon(1));
  3136     // If we fall through, it's a plain class.
  3137     query_value = intcon(0);
  3138     break;
  3140   case vmIntrinsics::_isPrimitive:
  3141     query_value = intcon(0); // "normal" path produces false
  3142     break;
  3144   case vmIntrinsics::_getSuperclass:
  3145     // The rules here are somewhat unfortunate, but we can still do better
  3146     // with random logic than with a JNI call.
  3147     // Interfaces store null or Object as _super, but must report null.
  3148     // Arrays store an intermediate super as _super, but must report Object.
  3149     // Other types can report the actual _super.
  3150     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3151     if (generate_interface_guard(kls, region) != NULL)
  3152       // A guard was added.  If the guard is taken, it was an interface.
  3153       phi->add_req(null());
  3154     if (generate_array_guard(kls, region) != NULL)
  3155       // A guard was added.  If the guard is taken, it was an array.
  3156       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3157     // If we fall through, it's a plain class.  Get its _super.
  3158     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
  3159     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3160     null_ctl = top();
  3161     kls = null_check_oop(kls, &null_ctl);
  3162     if (null_ctl != top()) {
  3163       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3164       region->add_req(null_ctl);
  3165       phi   ->add_req(null());
  3167     if (!stopped()) {
  3168       query_value = load_mirror_from_klass(kls);
  3170     break;
  3172   case vmIntrinsics::_getComponentType:
  3173     if (generate_array_guard(kls, region) != NULL) {
  3174       // Be sure to pin the oop load to the guard edge just created:
  3175       Node* is_array_ctrl = region->in(region->req()-1);
  3176       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
  3177       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3178       phi->add_req(cmo);
  3180     query_value = null();  // non-array case is null
  3181     break;
  3183   case vmIntrinsics::_getClassAccessFlags:
  3184     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
  3185     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3186     break;
  3188   default:
  3189     ShouldNotReachHere();
  3192   // Fall-through is the normal case of a query to a real class.
  3193   phi->init_req(1, query_value);
  3194   region->init_req(1, control());
  3196   push_result(region, phi);
  3197   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3199   return true;
  3202 //--------------------------inline_native_subtype_check------------------------
  3203 // This intrinsic takes the JNI calls out of the heart of
  3204 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3205 bool LibraryCallKit::inline_native_subtype_check() {
  3206   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3208   // Pull both arguments off the stack.
  3209   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3210   args[0] = argument(0);
  3211   args[1] = argument(1);
  3212   Node* klasses[2];             // corresponding Klasses: superk, subk
  3213   klasses[0] = klasses[1] = top();
  3215   enum {
  3216     // A full decision tree on {superc is prim, subc is prim}:
  3217     _prim_0_path = 1,           // {P,N} => false
  3218                                 // {P,P} & superc!=subc => false
  3219     _prim_same_path,            // {P,P} & superc==subc => true
  3220     _prim_1_path,               // {N,P} => false
  3221     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3222     _both_ref_path,             // {N,N} & subtype check loses => false
  3223     PATH_LIMIT
  3224   };
  3226   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3227   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3228   record_for_igvn(region);
  3230   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3231   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3232   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3234   // First null-check both mirrors and load each mirror's klass metaobject.
  3235   int which_arg;
  3236   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3237     Node* arg = args[which_arg];
  3238     _sp += nargs;  // set original stack for use by uncommon_trap
  3239     arg = do_null_check(arg, T_OBJECT);
  3240     _sp -= nargs;
  3241     if (stopped())  break;
  3242     args[which_arg] = _gvn.transform(arg);
  3244     Node* p = basic_plus_adr(arg, class_klass_offset);
  3245     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3246     klasses[which_arg] = _gvn.transform(kls);
  3249   // Having loaded both klasses, test each for null.
  3250   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3251   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3252     Node* kls = klasses[which_arg];
  3253     Node* null_ctl = top();
  3254     _sp += nargs;  // set original stack for use by uncommon_trap
  3255     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3256     _sp -= nargs;
  3257     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3258     region->init_req(prim_path, null_ctl);
  3259     if (stopped())  break;
  3260     klasses[which_arg] = kls;
  3263   if (!stopped()) {
  3264     // now we have two reference types, in klasses[0..1]
  3265     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3266     Node* superk = klasses[0];  // the receiver
  3267     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3268     // now we have a successful reference subtype check
  3269     region->set_req(_ref_subtype_path, control());
  3272   // If both operands are primitive (both klasses null), then
  3273   // we must return true when they are identical primitives.
  3274   // It is convenient to test this after the first null klass check.
  3275   set_control(region->in(_prim_0_path)); // go back to first null check
  3276   if (!stopped()) {
  3277     // Since superc is primitive, make a guard for the superc==subc case.
  3278     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3279     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3280     generate_guard(bol_eq, region, PROB_FAIR);
  3281     if (region->req() == PATH_LIMIT+1) {
  3282       // A guard was added.  If the added guard is taken, superc==subc.
  3283       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3284       region->del_req(PATH_LIMIT);
  3286     region->set_req(_prim_0_path, control()); // Not equal after all.
  3289   // these are the only paths that produce 'true':
  3290   phi->set_req(_prim_same_path,   intcon(1));
  3291   phi->set_req(_ref_subtype_path, intcon(1));
  3293   // pull together the cases:
  3294   assert(region->req() == PATH_LIMIT, "sane region");
  3295   for (uint i = 1; i < region->req(); i++) {
  3296     Node* ctl = region->in(i);
  3297     if (ctl == NULL || ctl == top()) {
  3298       region->set_req(i, top());
  3299       phi   ->set_req(i, top());
  3300     } else if (phi->in(i) == NULL) {
  3301       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3305   set_control(_gvn.transform(region));
  3306   push(_gvn.transform(phi));
  3308   return true;
  3311 //---------------------generate_array_guard_common------------------------
  3312 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3313                                                   bool obj_array, bool not_array) {
  3314   // If obj_array/non_array==false/false:
  3315   // Branch around if the given klass is in fact an array (either obj or prim).
  3316   // If obj_array/non_array==false/true:
  3317   // Branch around if the given klass is not an array klass of any kind.
  3318   // If obj_array/non_array==true/true:
  3319   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3320   // If obj_array/non_array==true/false:
  3321   // Branch around if the kls is an oop array (Object[] or subtype)
  3322   //
  3323   // Like generate_guard, adds a new path onto the region.
  3324   jint  layout_con = 0;
  3325   Node* layout_val = get_layout_helper(kls, layout_con);
  3326   if (layout_val == NULL) {
  3327     bool query = (obj_array
  3328                   ? Klass::layout_helper_is_objArray(layout_con)
  3329                   : Klass::layout_helper_is_javaArray(layout_con));
  3330     if (query == not_array) {
  3331       return NULL;                       // never a branch
  3332     } else {                             // always a branch
  3333       Node* always_branch = control();
  3334       if (region != NULL)
  3335         region->add_req(always_branch);
  3336       set_control(top());
  3337       return always_branch;
  3340   // Now test the correct condition.
  3341   jint  nval = (obj_array
  3342                 ? ((jint)Klass::_lh_array_tag_type_value
  3343                    <<    Klass::_lh_array_tag_shift)
  3344                 : Klass::_lh_neutral_value);
  3345   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3346   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3347   // invert the test if we are looking for a non-array
  3348   if (not_array)  btest = BoolTest(btest).negate();
  3349   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3350   return generate_fair_guard(bol, region);
  3354 //-----------------------inline_native_newArray--------------------------
  3355 bool LibraryCallKit::inline_native_newArray() {
  3356   int nargs = 2;
  3357   Node* mirror    = argument(0);
  3358   Node* count_val = argument(1);
  3360   _sp += nargs;  // set original stack for use by uncommon_trap
  3361   mirror = do_null_check(mirror, T_OBJECT);
  3362   _sp -= nargs;
  3363   // If mirror or obj is dead, only null-path is taken.
  3364   if (stopped())  return true;
  3366   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3367   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3368   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3369                                                       TypeInstPtr::NOTNULL);
  3370   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3371   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3372                                                       TypePtr::BOTTOM);
  3374   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3375   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3376                                                   nargs,
  3377                                                   result_reg, _slow_path);
  3378   Node* normal_ctl   = control();
  3379   Node* no_array_ctl = result_reg->in(_slow_path);
  3381   // Generate code for the slow case.  We make a call to newArray().
  3382   set_control(no_array_ctl);
  3383   if (!stopped()) {
  3384     // Either the input type is void.class, or else the
  3385     // array klass has not yet been cached.  Either the
  3386     // ensuing call will throw an exception, or else it
  3387     // will cache the array klass for next time.
  3388     PreserveJVMState pjvms(this);
  3389     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3390     Node* slow_result = set_results_for_java_call(slow_call);
  3391     // this->control() comes from set_results_for_java_call
  3392     result_reg->set_req(_slow_path, control());
  3393     result_val->set_req(_slow_path, slow_result);
  3394     result_io ->set_req(_slow_path, i_o());
  3395     result_mem->set_req(_slow_path, reset_memory());
  3398   set_control(normal_ctl);
  3399   if (!stopped()) {
  3400     // Normal case:  The array type has been cached in the java.lang.Class.
  3401     // The following call works fine even if the array type is polymorphic.
  3402     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3403     Node* obj = new_array(klass_node, count_val, nargs);
  3404     result_reg->init_req(_normal_path, control());
  3405     result_val->init_req(_normal_path, obj);
  3406     result_io ->init_req(_normal_path, i_o());
  3407     result_mem->init_req(_normal_path, reset_memory());
  3410   // Return the combined state.
  3411   set_i_o(        _gvn.transform(result_io)  );
  3412   set_all_memory( _gvn.transform(result_mem) );
  3413   push_result(result_reg, result_val);
  3414   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3416   return true;
  3419 //----------------------inline_native_getLength--------------------------
  3420 bool LibraryCallKit::inline_native_getLength() {
  3421   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3423   int nargs = 1;
  3424   Node* array = argument(0);
  3426   _sp += nargs;  // set original stack for use by uncommon_trap
  3427   array = do_null_check(array, T_OBJECT);
  3428   _sp -= nargs;
  3430   // If array is dead, only null-path is taken.
  3431   if (stopped())  return true;
  3433   // Deoptimize if it is a non-array.
  3434   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3436   if (non_array != NULL) {
  3437     PreserveJVMState pjvms(this);
  3438     set_control(non_array);
  3439     _sp += nargs;  // push the arguments back on the stack
  3440     uncommon_trap(Deoptimization::Reason_intrinsic,
  3441                   Deoptimization::Action_maybe_recompile);
  3444   // If control is dead, only non-array-path is taken.
  3445   if (stopped())  return true;
  3447   // The works fine even if the array type is polymorphic.
  3448   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3449   push( load_array_length(array) );
  3451   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3453   return true;
  3456 //------------------------inline_array_copyOf----------------------------
  3457 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3458   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3460   // Restore the stack and pop off the arguments.
  3461   int nargs = 3 + (is_copyOfRange? 1: 0);
  3462   Node* original          = argument(0);
  3463   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3464   Node* end               = is_copyOfRange? argument(2): argument(1);
  3465   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3467   Node* newcopy;
  3469   //set the original stack and the reexecute bit for the interpreter to reexecute
  3470   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3471   { PreserveReexecuteState preexecs(this);
  3472     _sp += nargs;
  3473     jvms()->set_should_reexecute(true);
  3475     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3476     original          = do_null_check(original, T_OBJECT);
  3478     // Check if a null path was taken unconditionally.
  3479     if (stopped())  return true;
  3481     Node* orig_length = load_array_length(original);
  3483     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3484                                               NULL, 0);
  3485     klass_node = do_null_check(klass_node, T_OBJECT);
  3487     RegionNode* bailout = new (C, 1) RegionNode(1);
  3488     record_for_igvn(bailout);
  3490     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3491     // Bail out if that is so.
  3492     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3493     if (not_objArray != NULL) {
  3494       // Improve the klass node's type from the new optimistic assumption:
  3495       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3496       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3497       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3498       cast->init_req(0, control());
  3499       klass_node = _gvn.transform(cast);
  3502     // Bail out if either start or end is negative.
  3503     generate_negative_guard(start, bailout, &start);
  3504     generate_negative_guard(end,   bailout, &end);
  3506     Node* length = end;
  3507     if (_gvn.type(start) != TypeInt::ZERO) {
  3508       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3511     // Bail out if length is negative.
  3512     // ...Not needed, since the new_array will throw the right exception.
  3513     //generate_negative_guard(length, bailout, &length);
  3515     if (bailout->req() > 1) {
  3516       PreserveJVMState pjvms(this);
  3517       set_control( _gvn.transform(bailout) );
  3518       uncommon_trap(Deoptimization::Reason_intrinsic,
  3519                     Deoptimization::Action_maybe_recompile);
  3522     if (!stopped()) {
  3524       // How many elements will we copy from the original?
  3525       // The answer is MinI(orig_length - start, length).
  3526       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3527       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3529       newcopy = new_array(klass_node, length, 0);
  3531       // Generate a direct call to the right arraycopy function(s).
  3532       // We know the copy is disjoint but we might not know if the
  3533       // oop stores need checking.
  3534       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3535       // This will fail a store-check if x contains any non-nulls.
  3536       bool disjoint_bases = true;
  3537       bool length_never_negative = true;
  3538       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3539                          original, start, newcopy, intcon(0), moved,
  3540                          disjoint_bases, length_never_negative);
  3542   } //original reexecute and sp are set back here
  3544   if(!stopped()) {
  3545     push(newcopy);
  3548   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3550   return true;
  3554 //----------------------generate_virtual_guard---------------------------
  3555 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3556 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3557                                              RegionNode* slow_region) {
  3558   ciMethod* method = callee();
  3559   int vtable_index = method->vtable_index();
  3560   // Get the methodOop out of the appropriate vtable entry.
  3561   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3562                      vtable_index*vtableEntry::size()) * wordSize +
  3563                      vtableEntry::method_offset_in_bytes();
  3564   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3565   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3567   // Compare the target method with the expected method (e.g., Object.hashCode).
  3568   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3570   Node* native_call = makecon(native_call_addr);
  3571   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3572   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3574   return generate_slow_guard(test_native, slow_region);
  3577 //-----------------------generate_method_call----------------------------
  3578 // Use generate_method_call to make a slow-call to the real
  3579 // method if the fast path fails.  An alternative would be to
  3580 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3581 // This only works for expanding the current library call,
  3582 // not another intrinsic.  (E.g., don't use this for making an
  3583 // arraycopy call inside of the copyOf intrinsic.)
  3584 CallJavaNode*
  3585 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3586   // When compiling the intrinsic method itself, do not use this technique.
  3587   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3589   ciMethod* method = callee();
  3590   // ensure the JVMS we have will be correct for this call
  3591   guarantee(method_id == method->intrinsic_id(), "must match");
  3593   const TypeFunc* tf = TypeFunc::make(method);
  3594   int tfdc = tf->domain()->cnt();
  3595   CallJavaNode* slow_call;
  3596   if (is_static) {
  3597     assert(!is_virtual, "");
  3598     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3599                                 SharedRuntime::get_resolve_static_call_stub(),
  3600                                 method, bci());
  3601   } else if (is_virtual) {
  3602     null_check_receiver(method);
  3603     int vtable_index = methodOopDesc::invalid_vtable_index;
  3604     if (UseInlineCaches) {
  3605       // Suppress the vtable call
  3606     } else {
  3607       // hashCode and clone are not a miranda methods,
  3608       // so the vtable index is fixed.
  3609       // No need to use the linkResolver to get it.
  3610        vtable_index = method->vtable_index();
  3612     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3613                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3614                                 method, vtable_index, bci());
  3615   } else {  // neither virtual nor static:  opt_virtual
  3616     null_check_receiver(method);
  3617     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3618                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3619                                 method, bci());
  3620     slow_call->set_optimized_virtual(true);
  3622   set_arguments_for_java_call(slow_call);
  3623   set_edges_for_java_call(slow_call);
  3624   return slow_call;
  3628 //------------------------------inline_native_hashcode--------------------
  3629 // Build special case code for calls to hashCode on an object.
  3630 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3631   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3632   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3634   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3636   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3637   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3638                                                       TypeInt::INT);
  3639   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3640   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3641                                                       TypePtr::BOTTOM);
  3642   Node* obj = NULL;
  3643   if (!is_static) {
  3644     // Check for hashing null object
  3645     obj = null_check_receiver(callee());
  3646     if (stopped())  return true;        // unconditionally null
  3647     result_reg->init_req(_null_path, top());
  3648     result_val->init_req(_null_path, top());
  3649   } else {
  3650     // Do a null check, and return zero if null.
  3651     // System.identityHashCode(null) == 0
  3652     obj = argument(0);
  3653     Node* null_ctl = top();
  3654     obj = null_check_oop(obj, &null_ctl);
  3655     result_reg->init_req(_null_path, null_ctl);
  3656     result_val->init_req(_null_path, _gvn.intcon(0));
  3659   // Unconditionally null?  Then return right away.
  3660   if (stopped()) {
  3661     set_control( result_reg->in(_null_path) );
  3662     if (!stopped())
  3663       push(      result_val ->in(_null_path) );
  3664     return true;
  3667   // After null check, get the object's klass.
  3668   Node* obj_klass = load_object_klass(obj);
  3670   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3671   // For each case we generate slightly different code.
  3673   // We only go to the fast case code if we pass a number of guards.  The
  3674   // paths which do not pass are accumulated in the slow_region.
  3675   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3676   record_for_igvn(slow_region);
  3678   // If this is a virtual call, we generate a funny guard.  We pull out
  3679   // the vtable entry corresponding to hashCode() from the target object.
  3680   // If the target method which we are calling happens to be the native
  3681   // Object hashCode() method, we pass the guard.  We do not need this
  3682   // guard for non-virtual calls -- the caller is known to be the native
  3683   // Object hashCode().
  3684   if (is_virtual) {
  3685     generate_virtual_guard(obj_klass, slow_region);
  3688   // Get the header out of the object, use LoadMarkNode when available
  3689   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3690   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3692   // Test the header to see if it is unlocked.
  3693   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3694   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3695   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3696   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3697   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3699   generate_slow_guard(test_unlocked, slow_region);
  3701   // Get the hash value and check to see that it has been properly assigned.
  3702   // We depend on hash_mask being at most 32 bits and avoid the use of
  3703   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3704   // vm: see markOop.hpp.
  3705   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3706   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3707   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3708   // This hack lets the hash bits live anywhere in the mark object now, as long
  3709   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3710   // Java spec says that HashCode is an int so there's no point in capturing
  3711   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3712   hshifted_header      = ConvX2I(hshifted_header);
  3713   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3715   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3716   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3717   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3719   generate_slow_guard(test_assigned, slow_region);
  3721   Node* init_mem = reset_memory();
  3722   // fill in the rest of the null path:
  3723   result_io ->init_req(_null_path, i_o());
  3724   result_mem->init_req(_null_path, init_mem);
  3726   result_val->init_req(_fast_path, hash_val);
  3727   result_reg->init_req(_fast_path, control());
  3728   result_io ->init_req(_fast_path, i_o());
  3729   result_mem->init_req(_fast_path, init_mem);
  3731   // Generate code for the slow case.  We make a call to hashCode().
  3732   set_control(_gvn.transform(slow_region));
  3733   if (!stopped()) {
  3734     // No need for PreserveJVMState, because we're using up the present state.
  3735     set_all_memory(init_mem);
  3736     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3737     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3738     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3739     Node* slow_result = set_results_for_java_call(slow_call);
  3740     // this->control() comes from set_results_for_java_call
  3741     result_reg->init_req(_slow_path, control());
  3742     result_val->init_req(_slow_path, slow_result);
  3743     result_io  ->set_req(_slow_path, i_o());
  3744     result_mem ->set_req(_slow_path, reset_memory());
  3747   // Return the combined state.
  3748   set_i_o(        _gvn.transform(result_io)  );
  3749   set_all_memory( _gvn.transform(result_mem) );
  3750   push_result(result_reg, result_val);
  3752   return true;
  3755 //---------------------------inline_native_getClass----------------------------
  3756 // Build special case code for calls to getClass on an object.
  3757 bool LibraryCallKit::inline_native_getClass() {
  3758   Node* obj = null_check_receiver(callee());
  3759   if (stopped())  return true;
  3760   push( load_mirror_from_klass(load_object_klass(obj)) );
  3761   return true;
  3764 //-----------------inline_native_Reflection_getCallerClass---------------------
  3765 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3766 //
  3767 // NOTE that this code must perform the same logic as
  3768 // vframeStream::security_get_caller_frame in that it must skip
  3769 // Method.invoke() and auxiliary frames.
  3774 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3775   ciMethod*       method = callee();
  3777 #ifndef PRODUCT
  3778   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3779     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3781 #endif
  3783   debug_only(int saved_sp = _sp);
  3785   // Argument words:  (int depth)
  3786   int nargs = 1;
  3788   _sp += nargs;
  3789   Node* caller_depth_node = pop();
  3791   assert(saved_sp == _sp, "must have correct argument count");
  3793   // The depth value must be a constant in order for the runtime call
  3794   // to be eliminated.
  3795   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3796   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3797 #ifndef PRODUCT
  3798     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3799       tty->print_cr("  Bailing out because caller depth was not a constant");
  3801 #endif
  3802     return false;
  3804   // Note that the JVM state at this point does not include the
  3805   // getCallerClass() frame which we are trying to inline. The
  3806   // semantics of getCallerClass(), however, are that the "first"
  3807   // frame is the getCallerClass() frame, so we subtract one from the
  3808   // requested depth before continuing. We don't inline requests of
  3809   // getCallerClass(0).
  3810   int caller_depth = caller_depth_type->get_con() - 1;
  3811   if (caller_depth < 0) {
  3812 #ifndef PRODUCT
  3813     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3814       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3816 #endif
  3817     return false;
  3820   if (!jvms()->has_method()) {
  3821 #ifndef PRODUCT
  3822     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3823       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3825 #endif
  3826     return false;
  3828   int _depth = jvms()->depth();  // cache call chain depth
  3830   // Walk back up the JVM state to find the caller at the required
  3831   // depth. NOTE that this code must perform the same logic as
  3832   // vframeStream::security_get_caller_frame in that it must skip
  3833   // Method.invoke() and auxiliary frames. Note also that depth is
  3834   // 1-based (1 is the bottom of the inlining).
  3835   int inlining_depth = _depth;
  3836   JVMState* caller_jvms = NULL;
  3838   if (inlining_depth > 0) {
  3839     caller_jvms = jvms();
  3840     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3841     do {
  3842       // The following if-tests should be performed in this order
  3843       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3844         // Skip a Method.invoke() or auxiliary frame
  3845       } else if (caller_depth > 0) {
  3846         // Skip real frame
  3847         --caller_depth;
  3848       } else {
  3849         // We're done: reached desired caller after skipping.
  3850         break;
  3852       caller_jvms = caller_jvms->caller();
  3853       --inlining_depth;
  3854     } while (inlining_depth > 0);
  3857   if (inlining_depth == 0) {
  3858 #ifndef PRODUCT
  3859     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3860       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  3861       tty->print_cr("  JVM state at this point:");
  3862       for (int i = _depth; i >= 1; i--) {
  3863         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3866 #endif
  3867     return false; // Reached end of inlining
  3870   // Acquire method holder as java.lang.Class
  3871   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  3872   ciInstance*      caller_mirror = caller_klass->java_mirror();
  3873   // Push this as a constant
  3874   push(makecon(TypeInstPtr::make(caller_mirror)));
  3875 #ifndef PRODUCT
  3876   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3877     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  3878     tty->print_cr("  JVM state at this point:");
  3879     for (int i = _depth; i >= 1; i--) {
  3880       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  3883 #endif
  3884   return true;
  3887 // Helper routine for above
  3888 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  3889   ciMethod* method = jvms->method();
  3891   // Is this the Method.invoke method itself?
  3892   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  3893     return true;
  3895   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  3896   ciKlass* k = method->holder();
  3897   if (k->is_instance_klass()) {
  3898     ciInstanceKlass* ik = k->as_instance_klass();
  3899     for (; ik != NULL; ik = ik->super()) {
  3900       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  3901           ik == env()->find_system_klass(ik->name())) {
  3902         return true;
  3906   else if (method->is_method_handle_adapter()) {
  3907     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  3908     return true;
  3911   return false;
  3914 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
  3915                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
  3916                                      // computing it since there is no lookup field by name function in the
  3917                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
  3918                                      // Using a static variable here is safe even if we have multiple compilation
  3919                                      // threads because the offset is constant.  At worst the same offset will be
  3920                                      // computed and  stored multiple
  3922 bool LibraryCallKit::inline_native_AtomicLong_get() {
  3923   // Restore the stack and pop off the argument
  3924   _sp+=1;
  3925   Node *obj = pop();
  3927   // get the offset of the "value" field. Since the CI interfaces
  3928   // does not provide a way to look up a field by name, we scan the bytecodes
  3929   // to get the field index.  We expect the first 2 instructions of the method
  3930   // to be:
  3931   //    0 aload_0
  3932   //    1 getfield "value"
  3933   ciMethod* method = callee();
  3934   if (value_field_offset == -1)
  3936     ciField* value_field;
  3937     ciBytecodeStream iter(method);
  3938     Bytecodes::Code bc = iter.next();
  3940     if ((bc != Bytecodes::_aload_0) &&
  3941               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
  3942       return false;
  3943     bc = iter.next();
  3944     if (bc != Bytecodes::_getfield)
  3945       return false;
  3946     bool ignore;
  3947     value_field = iter.get_field(ignore);
  3948     value_field_offset = value_field->offset_in_bytes();
  3951   // Null check without removing any arguments.
  3952   _sp++;
  3953   obj = do_null_check(obj, T_OBJECT);
  3954   _sp--;
  3955   // Check for locking null object
  3956   if (stopped()) return true;
  3958   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3959   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3960   int alias_idx = C->get_alias_index(adr_type);
  3962   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
  3964   push_pair(result);
  3966   return true;
  3969 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
  3970   // Restore the stack and pop off the arguments
  3971   _sp+=5;
  3972   Node *newVal = pop_pair();
  3973   Node *oldVal = pop_pair();
  3974   Node *obj = pop();
  3976   // we need the offset of the "value" field which was computed when
  3977   // inlining the get() method.  Give up if we don't have it.
  3978   if (value_field_offset == -1)
  3979     return false;
  3981   // Null check without removing any arguments.
  3982   _sp+=5;
  3983   obj = do_null_check(obj, T_OBJECT);
  3984   _sp-=5;
  3985   // Check for locking null object
  3986   if (stopped()) return true;
  3988   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
  3989   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
  3990   int alias_idx = C->get_alias_index(adr_type);
  3992   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
  3993   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  3994   set_memory(store_proj, alias_idx);
  3995   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
  3997   Node *result;
  3998   // CMove node is not used to be able fold a possible check code
  3999   // after attemptUpdate() call. This code could be transformed
  4000   // into CMove node by loop optimizations.
  4002     RegionNode *r = new (C, 3) RegionNode(3);
  4003     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
  4005     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
  4006     Node *iftrue = opt_iff(r, iff);
  4007     r->init_req(1, iftrue);
  4008     result->init_req(1, intcon(1));
  4009     result->init_req(2, intcon(0));
  4011     set_control(_gvn.transform(r));
  4012     record_for_igvn(r);
  4014     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4017   push(_gvn.transform(result));
  4018   return true;
  4021 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4022   // restore the arguments
  4023   _sp += arg_size();
  4025   switch (id) {
  4026   case vmIntrinsics::_floatToRawIntBits:
  4027     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  4028     break;
  4030   case vmIntrinsics::_intBitsToFloat:
  4031     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  4032     break;
  4034   case vmIntrinsics::_doubleToRawLongBits:
  4035     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  4036     break;
  4038   case vmIntrinsics::_longBitsToDouble:
  4039     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  4040     break;
  4042   case vmIntrinsics::_doubleToLongBits: {
  4043     Node* value = pop_pair();
  4045     // two paths (plus control) merge in a wood
  4046     RegionNode *r = new (C, 3) RegionNode(3);
  4047     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  4049     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  4050     // Build the boolean node
  4051     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4053     // Branch either way.
  4054     // NaN case is less traveled, which makes all the difference.
  4055     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4056     Node *opt_isnan = _gvn.transform(ifisnan);
  4057     assert( opt_isnan->is_If(), "Expect an IfNode");
  4058     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4059     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4061     set_control(iftrue);
  4063     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4064     Node *slow_result = longcon(nan_bits); // return NaN
  4065     phi->init_req(1, _gvn.transform( slow_result ));
  4066     r->init_req(1, iftrue);
  4068     // Else fall through
  4069     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4070     set_control(iffalse);
  4072     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  4073     r->init_req(2, iffalse);
  4075     // Post merge
  4076     set_control(_gvn.transform(r));
  4077     record_for_igvn(r);
  4079     Node* result = _gvn.transform(phi);
  4080     assert(result->bottom_type()->isa_long(), "must be");
  4081     push_pair(result);
  4083     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4085     break;
  4088   case vmIntrinsics::_floatToIntBits: {
  4089     Node* value = pop();
  4091     // two paths (plus control) merge in a wood
  4092     RegionNode *r = new (C, 3) RegionNode(3);
  4093     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  4095     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  4096     // Build the boolean node
  4097     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4099     // Branch either way.
  4100     // NaN case is less traveled, which makes all the difference.
  4101     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4102     Node *opt_isnan = _gvn.transform(ifisnan);
  4103     assert( opt_isnan->is_If(), "Expect an IfNode");
  4104     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4105     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4107     set_control(iftrue);
  4109     static const jint nan_bits = 0x7fc00000;
  4110     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4111     phi->init_req(1, _gvn.transform( slow_result ));
  4112     r->init_req(1, iftrue);
  4114     // Else fall through
  4115     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4116     set_control(iffalse);
  4118     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  4119     r->init_req(2, iffalse);
  4121     // Post merge
  4122     set_control(_gvn.transform(r));
  4123     record_for_igvn(r);
  4125     Node* result = _gvn.transform(phi);
  4126     assert(result->bottom_type()->isa_int(), "must be");
  4127     push(result);
  4129     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4131     break;
  4134   default:
  4135     ShouldNotReachHere();
  4138   return true;
  4141 #ifdef _LP64
  4142 #define XTOP ,top() /*additional argument*/
  4143 #else  //_LP64
  4144 #define XTOP        /*no additional argument*/
  4145 #endif //_LP64
  4147 //----------------------inline_unsafe_copyMemory-------------------------
  4148 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4149   if (callee()->is_static())  return false;  // caller must have the capability!
  4150   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4151   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4152   null_check_receiver(callee());  // check then ignore argument(0)
  4153   if (stopped())  return true;
  4155   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4157   Node* src_ptr = argument(1);
  4158   Node* src_off = ConvL2X(argument(2));
  4159   assert(argument(3)->is_top(), "2nd half of long");
  4160   Node* dst_ptr = argument(4);
  4161   Node* dst_off = ConvL2X(argument(5));
  4162   assert(argument(6)->is_top(), "2nd half of long");
  4163   Node* size    = ConvL2X(argument(7));
  4164   assert(argument(8)->is_top(), "2nd half of long");
  4166   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4167          "fieldOffset must be byte-scaled");
  4169   Node* src = make_unsafe_address(src_ptr, src_off);
  4170   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4172   // Conservatively insert a memory barrier on all memory slices.
  4173   // Do not let writes of the copy source or destination float below the copy.
  4174   insert_mem_bar(Op_MemBarCPUOrder);
  4176   // Call it.  Note that the length argument is not scaled.
  4177   make_runtime_call(RC_LEAF|RC_NO_FP,
  4178                     OptoRuntime::fast_arraycopy_Type(),
  4179                     StubRoutines::unsafe_arraycopy(),
  4180                     "unsafe_arraycopy",
  4181                     TypeRawPtr::BOTTOM,
  4182                     src, dst, size XTOP);
  4184   // Do not let reads of the copy destination float above the copy.
  4185   insert_mem_bar(Op_MemBarCPUOrder);
  4187   return true;
  4190 //------------------------clone_coping-----------------------------------
  4191 // Helper function for inline_native_clone.
  4192 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4193   assert(obj_size != NULL, "");
  4194   Node* raw_obj = alloc_obj->in(1);
  4195   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4197   if (ReduceBulkZeroing) {
  4198     // We will be completely responsible for initializing this object -
  4199     // mark Initialize node as complete.
  4200     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4201     // The object was just allocated - there should be no any stores!
  4202     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4205   // Copy the fastest available way.
  4206   // TODO: generate fields copies for small objects instead.
  4207   Node* src  = obj;
  4208   Node* dest = alloc_obj;
  4209   Node* size = _gvn.transform(obj_size);
  4211   // Exclude the header but include array length to copy by 8 bytes words.
  4212   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4213   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4214                             instanceOopDesc::base_offset_in_bytes();
  4215   // base_off:
  4216   // 8  - 32-bit VM
  4217   // 12 - 64-bit VM, compressed oops
  4218   // 16 - 64-bit VM, normal oops
  4219   if (base_off % BytesPerLong != 0) {
  4220     assert(UseCompressedOops, "");
  4221     if (is_array) {
  4222       // Exclude length to copy by 8 bytes words.
  4223       base_off += sizeof(int);
  4224     } else {
  4225       // Include klass to copy by 8 bytes words.
  4226       base_off = instanceOopDesc::klass_offset_in_bytes();
  4228     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4230   src  = basic_plus_adr(src,  base_off);
  4231   dest = basic_plus_adr(dest, base_off);
  4233   // Compute the length also, if needed:
  4234   Node* countx = size;
  4235   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4236   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4238   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4239   bool disjoint_bases = true;
  4240   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4241                                src, NULL, dest, NULL, countx,
  4242                                /*dest_uninitialized*/true);
  4244   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4245   if (card_mark) {
  4246     assert(!is_array, "");
  4247     // Put in store barrier for any and all oops we are sticking
  4248     // into this object.  (We could avoid this if we could prove
  4249     // that the object type contains no oop fields at all.)
  4250     Node* no_particular_value = NULL;
  4251     Node* no_particular_field = NULL;
  4252     int raw_adr_idx = Compile::AliasIdxRaw;
  4253     post_barrier(control(),
  4254                  memory(raw_adr_type),
  4255                  alloc_obj,
  4256                  no_particular_field,
  4257                  raw_adr_idx,
  4258                  no_particular_value,
  4259                  T_OBJECT,
  4260                  false);
  4263   // Do not let reads from the cloned object float above the arraycopy.
  4264   insert_mem_bar(Op_MemBarCPUOrder);
  4267 //------------------------inline_native_clone----------------------------
  4268 // Here are the simple edge cases:
  4269 //  null receiver => normal trap
  4270 //  virtual and clone was overridden => slow path to out-of-line clone
  4271 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4272 //
  4273 // The general case has two steps, allocation and copying.
  4274 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4275 //
  4276 // Copying also has two cases, oop arrays and everything else.
  4277 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4278 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4279 //
  4280 // These steps fold up nicely if and when the cloned object's klass
  4281 // can be sharply typed as an object array, a type array, or an instance.
  4282 //
  4283 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4284   int nargs = 1;
  4285   PhiNode* result_val;
  4287   //set the original stack and the reexecute bit for the interpreter to reexecute
  4288   //the bytecode that invokes Object.clone if deoptimization happens
  4289   { PreserveReexecuteState preexecs(this);
  4290     jvms()->set_should_reexecute(true);
  4292     //null_check_receiver will adjust _sp (push and pop)
  4293     Node* obj = null_check_receiver(callee());
  4294     if (stopped())  return true;
  4296     _sp += nargs;
  4298     Node* obj_klass = load_object_klass(obj);
  4299     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4300     const TypeOopPtr*   toop   = ((tklass != NULL)
  4301                                 ? tklass->as_instance_type()
  4302                                 : TypeInstPtr::NOTNULL);
  4304     // Conservatively insert a memory barrier on all memory slices.
  4305     // Do not let writes into the original float below the clone.
  4306     insert_mem_bar(Op_MemBarCPUOrder);
  4308     // paths into result_reg:
  4309     enum {
  4310       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4311       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4312       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4313       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4314       PATH_LIMIT
  4315     };
  4316     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4317     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4318                                                         TypeInstPtr::NOTNULL);
  4319     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4320     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4321                                                         TypePtr::BOTTOM);
  4322     record_for_igvn(result_reg);
  4324     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4325     int raw_adr_idx = Compile::AliasIdxRaw;
  4327     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4328     if (array_ctl != NULL) {
  4329       // It's an array.
  4330       PreserveJVMState pjvms(this);
  4331       set_control(array_ctl);
  4332       Node* obj_length = load_array_length(obj);
  4333       Node* obj_size  = NULL;
  4334       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
  4336       if (!use_ReduceInitialCardMarks()) {
  4337         // If it is an oop array, it requires very special treatment,
  4338         // because card marking is required on each card of the array.
  4339         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4340         if (is_obja != NULL) {
  4341           PreserveJVMState pjvms2(this);
  4342           set_control(is_obja);
  4343           // Generate a direct call to the right arraycopy function(s).
  4344           bool disjoint_bases = true;
  4345           bool length_never_negative = true;
  4346           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4347                              obj, intcon(0), alloc_obj, intcon(0),
  4348                              obj_length,
  4349                              disjoint_bases, length_never_negative);
  4350           result_reg->init_req(_objArray_path, control());
  4351           result_val->init_req(_objArray_path, alloc_obj);
  4352           result_i_o ->set_req(_objArray_path, i_o());
  4353           result_mem ->set_req(_objArray_path, reset_memory());
  4356       // Otherwise, there are no card marks to worry about.
  4357       // (We can dispense with card marks if we know the allocation
  4358       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4359       //  causes the non-eden paths to take compensating steps to
  4360       //  simulate a fresh allocation, so that no further
  4361       //  card marks are required in compiled code to initialize
  4362       //  the object.)
  4364       if (!stopped()) {
  4365         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4367         // Present the results of the copy.
  4368         result_reg->init_req(_array_path, control());
  4369         result_val->init_req(_array_path, alloc_obj);
  4370         result_i_o ->set_req(_array_path, i_o());
  4371         result_mem ->set_req(_array_path, reset_memory());
  4375     // We only go to the instance fast case code if we pass a number of guards.
  4376     // The paths which do not pass are accumulated in the slow_region.
  4377     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4378     record_for_igvn(slow_region);
  4379     if (!stopped()) {
  4380       // It's an instance (we did array above).  Make the slow-path tests.
  4381       // If this is a virtual call, we generate a funny guard.  We grab
  4382       // the vtable entry corresponding to clone() from the target object.
  4383       // If the target method which we are calling happens to be the
  4384       // Object clone() method, we pass the guard.  We do not need this
  4385       // guard for non-virtual calls; the caller is known to be the native
  4386       // Object clone().
  4387       if (is_virtual) {
  4388         generate_virtual_guard(obj_klass, slow_region);
  4391       // The object must be cloneable and must not have a finalizer.
  4392       // Both of these conditions may be checked in a single test.
  4393       // We could optimize the cloneable test further, but we don't care.
  4394       generate_access_flags_guard(obj_klass,
  4395                                   // Test both conditions:
  4396                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4397                                   // Must be cloneable but not finalizer:
  4398                                   JVM_ACC_IS_CLONEABLE,
  4399                                   slow_region);
  4402     if (!stopped()) {
  4403       // It's an instance, and it passed the slow-path tests.
  4404       PreserveJVMState pjvms(this);
  4405       Node* obj_size  = NULL;
  4406       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4408       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4410       // Present the results of the slow call.
  4411       result_reg->init_req(_instance_path, control());
  4412       result_val->init_req(_instance_path, alloc_obj);
  4413       result_i_o ->set_req(_instance_path, i_o());
  4414       result_mem ->set_req(_instance_path, reset_memory());
  4417     // Generate code for the slow case.  We make a call to clone().
  4418     set_control(_gvn.transform(slow_region));
  4419     if (!stopped()) {
  4420       PreserveJVMState pjvms(this);
  4421       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4422       Node* slow_result = set_results_for_java_call(slow_call);
  4423       // this->control() comes from set_results_for_java_call
  4424       result_reg->init_req(_slow_path, control());
  4425       result_val->init_req(_slow_path, slow_result);
  4426       result_i_o ->set_req(_slow_path, i_o());
  4427       result_mem ->set_req(_slow_path, reset_memory());
  4430     // Return the combined state.
  4431     set_control(    _gvn.transform(result_reg) );
  4432     set_i_o(        _gvn.transform(result_i_o) );
  4433     set_all_memory( _gvn.transform(result_mem) );
  4434   } //original reexecute and sp are set back here
  4436   push(_gvn.transform(result_val));
  4438   return true;
  4441 //------------------------------basictype2arraycopy----------------------------
  4442 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4443                                             Node* src_offset,
  4444                                             Node* dest_offset,
  4445                                             bool disjoint_bases,
  4446                                             const char* &name,
  4447                                             bool dest_uninitialized) {
  4448   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4449   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4451   bool aligned = false;
  4452   bool disjoint = disjoint_bases;
  4454   // if the offsets are the same, we can treat the memory regions as
  4455   // disjoint, because either the memory regions are in different arrays,
  4456   // or they are identical (which we can treat as disjoint.)  We can also
  4457   // treat a copy with a destination index  less that the source index
  4458   // as disjoint since a low->high copy will work correctly in this case.
  4459   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4460       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4461     // both indices are constants
  4462     int s_offs = src_offset_inttype->get_con();
  4463     int d_offs = dest_offset_inttype->get_con();
  4464     int element_size = type2aelembytes(t);
  4465     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4466               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4467     if (s_offs >= d_offs)  disjoint = true;
  4468   } else if (src_offset == dest_offset && src_offset != NULL) {
  4469     // This can occur if the offsets are identical non-constants.
  4470     disjoint = true;
  4473   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4477 //------------------------------inline_arraycopy-----------------------
  4478 bool LibraryCallKit::inline_arraycopy() {
  4479   // Restore the stack and pop off the arguments.
  4480   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4481   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4483   Node *src         = argument(0);
  4484   Node *src_offset  = argument(1);
  4485   Node *dest        = argument(2);
  4486   Node *dest_offset = argument(3);
  4487   Node *length      = argument(4);
  4489   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4490   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4491   // is.  The checks we choose to mandate at compile time are:
  4492   //
  4493   // (1) src and dest are arrays.
  4494   const Type* src_type = src->Value(&_gvn);
  4495   const Type* dest_type = dest->Value(&_gvn);
  4496   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4497   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4498   if (top_src  == NULL || top_src->klass()  == NULL ||
  4499       top_dest == NULL || top_dest->klass() == NULL) {
  4500     // Conservatively insert a memory barrier on all memory slices.
  4501     // Do not let writes into the source float below the arraycopy.
  4502     insert_mem_bar(Op_MemBarCPUOrder);
  4504     // Call StubRoutines::generic_arraycopy stub.
  4505     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4506                        src, src_offset, dest, dest_offset, length);
  4508     // Do not let reads from the destination float above the arraycopy.
  4509     // Since we cannot type the arrays, we don't know which slices
  4510     // might be affected.  We could restrict this barrier only to those
  4511     // memory slices which pertain to array elements--but don't bother.
  4512     if (!InsertMemBarAfterArraycopy)
  4513       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4514       insert_mem_bar(Op_MemBarCPUOrder);
  4515     return true;
  4518   // (2) src and dest arrays must have elements of the same BasicType
  4519   // Figure out the size and type of the elements we will be copying.
  4520   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4521   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4522   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4523   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4525   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4526     // The component types are not the same or are not recognized.  Punt.
  4527     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4528     generate_slow_arraycopy(TypePtr::BOTTOM,
  4529                             src, src_offset, dest, dest_offset, length,
  4530                             /*dest_uninitialized*/false);
  4531     return true;
  4534   //---------------------------------------------------------------------------
  4535   // We will make a fast path for this call to arraycopy.
  4537   // We have the following tests left to perform:
  4538   //
  4539   // (3) src and dest must not be null.
  4540   // (4) src_offset must not be negative.
  4541   // (5) dest_offset must not be negative.
  4542   // (6) length must not be negative.
  4543   // (7) src_offset + length must not exceed length of src.
  4544   // (8) dest_offset + length must not exceed length of dest.
  4545   // (9) each element of an oop array must be assignable
  4547   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4548   record_for_igvn(slow_region);
  4550   // (3) operands must not be null
  4551   // We currently perform our null checks with the do_null_check routine.
  4552   // This means that the null exceptions will be reported in the caller
  4553   // rather than (correctly) reported inside of the native arraycopy call.
  4554   // This should be corrected, given time.  We do our null check with the
  4555   // stack pointer restored.
  4556   _sp += nargs;
  4557   src  = do_null_check(src,  T_ARRAY);
  4558   dest = do_null_check(dest, T_ARRAY);
  4559   _sp -= nargs;
  4561   // (4) src_offset must not be negative.
  4562   generate_negative_guard(src_offset, slow_region);
  4564   // (5) dest_offset must not be negative.
  4565   generate_negative_guard(dest_offset, slow_region);
  4567   // (6) length must not be negative (moved to generate_arraycopy()).
  4568   // generate_negative_guard(length, slow_region);
  4570   // (7) src_offset + length must not exceed length of src.
  4571   generate_limit_guard(src_offset, length,
  4572                        load_array_length(src),
  4573                        slow_region);
  4575   // (8) dest_offset + length must not exceed length of dest.
  4576   generate_limit_guard(dest_offset, length,
  4577                        load_array_length(dest),
  4578                        slow_region);
  4580   // (9) each element of an oop array must be assignable
  4581   // The generate_arraycopy subroutine checks this.
  4583   // This is where the memory effects are placed:
  4584   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4585   generate_arraycopy(adr_type, dest_elem,
  4586                      src, src_offset, dest, dest_offset, length,
  4587                      false, false, slow_region);
  4589   return true;
  4592 //-----------------------------generate_arraycopy----------------------
  4593 // Generate an optimized call to arraycopy.
  4594 // Caller must guard against non-arrays.
  4595 // Caller must determine a common array basic-type for both arrays.
  4596 // Caller must validate offsets against array bounds.
  4597 // The slow_region has already collected guard failure paths
  4598 // (such as out of bounds length or non-conformable array types).
  4599 // The generated code has this shape, in general:
  4600 //
  4601 //     if (length == 0)  return   // via zero_path
  4602 //     slowval = -1
  4603 //     if (types unknown) {
  4604 //       slowval = call generic copy loop
  4605 //       if (slowval == 0)  return  // via checked_path
  4606 //     } else if (indexes in bounds) {
  4607 //       if ((is object array) && !(array type check)) {
  4608 //         slowval = call checked copy loop
  4609 //         if (slowval == 0)  return  // via checked_path
  4610 //       } else {
  4611 //         call bulk copy loop
  4612 //         return  // via fast_path
  4613 //       }
  4614 //     }
  4615 //     // adjust params for remaining work:
  4616 //     if (slowval != -1) {
  4617 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4618 //     }
  4619 //   slow_region:
  4620 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4621 //     return  // via slow_call_path
  4622 //
  4623 // This routine is used from several intrinsics:  System.arraycopy,
  4624 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4625 //
  4626 void
  4627 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4628                                    BasicType basic_elem_type,
  4629                                    Node* src,  Node* src_offset,
  4630                                    Node* dest, Node* dest_offset,
  4631                                    Node* copy_length,
  4632                                    bool disjoint_bases,
  4633                                    bool length_never_negative,
  4634                                    RegionNode* slow_region) {
  4636   if (slow_region == NULL) {
  4637     slow_region = new(C,1) RegionNode(1);
  4638     record_for_igvn(slow_region);
  4641   Node* original_dest      = dest;
  4642   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4643   bool  dest_uninitialized = false;
  4645   // See if this is the initialization of a newly-allocated array.
  4646   // If so, we will take responsibility here for initializing it to zero.
  4647   // (Note:  Because tightly_coupled_allocation performs checks on the
  4648   // out-edges of the dest, we need to avoid making derived pointers
  4649   // from it until we have checked its uses.)
  4650   if (ReduceBulkZeroing
  4651       && !ZeroTLAB              // pointless if already zeroed
  4652       && basic_elem_type != T_CONFLICT // avoid corner case
  4653       && !_gvn.eqv_uncast(src, dest)
  4654       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4655           != NULL)
  4656       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4657       && alloc->maybe_set_complete(&_gvn)) {
  4658     // "You break it, you buy it."
  4659     InitializeNode* init = alloc->initialization();
  4660     assert(init->is_complete(), "we just did this");
  4661     assert(dest->is_CheckCastPP(), "sanity");
  4662     assert(dest->in(0)->in(0) == init, "dest pinned");
  4663     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4664     // From this point on, every exit path is responsible for
  4665     // initializing any non-copied parts of the object to zero.
  4666     // Also, if this flag is set we make sure that arraycopy interacts properly
  4667     // with G1, eliding pre-barriers. See CR 6627983.
  4668     dest_uninitialized = true;
  4669   } else {
  4670     // No zeroing elimination here.
  4671     alloc             = NULL;
  4672     //original_dest   = dest;
  4673     //dest_uninitialized = false;
  4676   // Results are placed here:
  4677   enum { fast_path        = 1,  // normal void-returning assembly stub
  4678          checked_path     = 2,  // special assembly stub with cleanup
  4679          slow_call_path   = 3,  // something went wrong; call the VM
  4680          zero_path        = 4,  // bypass when length of copy is zero
  4681          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4682          PATH_LIMIT       = 6
  4683   };
  4684   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4685   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4686   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4687   record_for_igvn(result_region);
  4688   _gvn.set_type_bottom(result_i_o);
  4689   _gvn.set_type_bottom(result_memory);
  4690   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4692   // The slow_control path:
  4693   Node* slow_control;
  4694   Node* slow_i_o = i_o();
  4695   Node* slow_mem = memory(adr_type);
  4696   debug_only(slow_control = (Node*) badAddress);
  4698   // Checked control path:
  4699   Node* checked_control = top();
  4700   Node* checked_mem     = NULL;
  4701   Node* checked_i_o     = NULL;
  4702   Node* checked_value   = NULL;
  4704   if (basic_elem_type == T_CONFLICT) {
  4705     assert(!dest_uninitialized, "");
  4706     Node* cv = generate_generic_arraycopy(adr_type,
  4707                                           src, src_offset, dest, dest_offset,
  4708                                           copy_length, dest_uninitialized);
  4709     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4710     checked_control = control();
  4711     checked_i_o     = i_o();
  4712     checked_mem     = memory(adr_type);
  4713     checked_value   = cv;
  4714     set_control(top());         // no fast path
  4717   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4718   if (not_pos != NULL) {
  4719     PreserveJVMState pjvms(this);
  4720     set_control(not_pos);
  4722     // (6) length must not be negative.
  4723     if (!length_never_negative) {
  4724       generate_negative_guard(copy_length, slow_region);
  4727     // copy_length is 0.
  4728     if (!stopped() && dest_uninitialized) {
  4729       Node* dest_length = alloc->in(AllocateNode::ALength);
  4730       if (_gvn.eqv_uncast(copy_length, dest_length)
  4731           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4732         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4733       } else {
  4734         // Clear the whole thing since there are no source elements to copy.
  4735         generate_clear_array(adr_type, dest, basic_elem_type,
  4736                              intcon(0), NULL,
  4737                              alloc->in(AllocateNode::AllocSize));
  4738         // Use a secondary InitializeNode as raw memory barrier.
  4739         // Currently it is needed only on this path since other
  4740         // paths have stub or runtime calls as raw memory barriers.
  4741         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4742                                                        Compile::AliasIdxRaw,
  4743                                                        top())->as_Initialize();
  4744         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4748     // Present the results of the fast call.
  4749     result_region->init_req(zero_path, control());
  4750     result_i_o   ->init_req(zero_path, i_o());
  4751     result_memory->init_req(zero_path, memory(adr_type));
  4754   if (!stopped() && dest_uninitialized) {
  4755     // We have to initialize the *uncopied* part of the array to zero.
  4756     // The copy destination is the slice dest[off..off+len].  The other slices
  4757     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4758     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4759     Node* dest_length = alloc->in(AllocateNode::ALength);
  4760     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4761                                                           copy_length) );
  4763     // If there is a head section that needs zeroing, do it now.
  4764     if (find_int_con(dest_offset, -1) != 0) {
  4765       generate_clear_array(adr_type, dest, basic_elem_type,
  4766                            intcon(0), dest_offset,
  4767                            NULL);
  4770     // Next, perform a dynamic check on the tail length.
  4771     // It is often zero, and we can win big if we prove this.
  4772     // There are two wins:  Avoid generating the ClearArray
  4773     // with its attendant messy index arithmetic, and upgrade
  4774     // the copy to a more hardware-friendly word size of 64 bits.
  4775     Node* tail_ctl = NULL;
  4776     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
  4777       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4778       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4779       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4780       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4783     // At this point, let's assume there is no tail.
  4784     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4785       // There is no tail.  Try an upgrade to a 64-bit copy.
  4786       bool didit = false;
  4787       { PreserveJVMState pjvms(this);
  4788         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4789                                          src, src_offset, dest, dest_offset,
  4790                                          dest_size, dest_uninitialized);
  4791         if (didit) {
  4792           // Present the results of the block-copying fast call.
  4793           result_region->init_req(bcopy_path, control());
  4794           result_i_o   ->init_req(bcopy_path, i_o());
  4795           result_memory->init_req(bcopy_path, memory(adr_type));
  4798       if (didit)
  4799         set_control(top());     // no regular fast path
  4802     // Clear the tail, if any.
  4803     if (tail_ctl != NULL) {
  4804       Node* notail_ctl = stopped() ? NULL : control();
  4805       set_control(tail_ctl);
  4806       if (notail_ctl == NULL) {
  4807         generate_clear_array(adr_type, dest, basic_elem_type,
  4808                              dest_tail, NULL,
  4809                              dest_size);
  4810       } else {
  4811         // Make a local merge.
  4812         Node* done_ctl = new(C,3) RegionNode(3);
  4813         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4814         done_ctl->init_req(1, notail_ctl);
  4815         done_mem->init_req(1, memory(adr_type));
  4816         generate_clear_array(adr_type, dest, basic_elem_type,
  4817                              dest_tail, NULL,
  4818                              dest_size);
  4819         done_ctl->init_req(2, control());
  4820         done_mem->init_req(2, memory(adr_type));
  4821         set_control( _gvn.transform(done_ctl) );
  4822         set_memory(  _gvn.transform(done_mem), adr_type );
  4827   BasicType copy_type = basic_elem_type;
  4828   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4829   if (!stopped() && copy_type == T_OBJECT) {
  4830     // If src and dest have compatible element types, we can copy bits.
  4831     // Types S[] and D[] are compatible if D is a supertype of S.
  4832     //
  4833     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4834     // which performs a fast optimistic per-oop check, and backs off
  4835     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4836     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4838     // Get the klassOop for both src and dest
  4839     Node* src_klass  = load_object_klass(src);
  4840     Node* dest_klass = load_object_klass(dest);
  4842     // Generate the subtype check.
  4843     // This might fold up statically, or then again it might not.
  4844     //
  4845     // Non-static example:  Copying List<String>.elements to a new String[].
  4846     // The backing store for a List<String> is always an Object[],
  4847     // but its elements are always type String, if the generic types
  4848     // are correct at the source level.
  4849     //
  4850     // Test S[] against D[], not S against D, because (probably)
  4851     // the secondary supertype cache is less busy for S[] than S.
  4852     // This usually only matters when D is an interface.
  4853     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4854     // Plug failing path into checked_oop_disjoint_arraycopy
  4855     if (not_subtype_ctrl != top()) {
  4856       PreserveJVMState pjvms(this);
  4857       set_control(not_subtype_ctrl);
  4858       // (At this point we can assume disjoint_bases, since types differ.)
  4859       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
  4860       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4861       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4862       Node* dest_elem_klass = _gvn.transform(n1);
  4863       Node* cv = generate_checkcast_arraycopy(adr_type,
  4864                                               dest_elem_klass,
  4865                                               src, src_offset, dest, dest_offset,
  4866                                               ConvI2X(copy_length), dest_uninitialized);
  4867       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4868       checked_control = control();
  4869       checked_i_o     = i_o();
  4870       checked_mem     = memory(adr_type);
  4871       checked_value   = cv;
  4873     // At this point we know we do not need type checks on oop stores.
  4875     // Let's see if we need card marks:
  4876     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4877       // If we do not need card marks, copy using the jint or jlong stub.
  4878       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4879       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4880              "sizes agree");
  4884   if (!stopped()) {
  4885     // Generate the fast path, if possible.
  4886     PreserveJVMState pjvms(this);
  4887     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4888                                  src, src_offset, dest, dest_offset,
  4889                                  ConvI2X(copy_length), dest_uninitialized);
  4891     // Present the results of the fast call.
  4892     result_region->init_req(fast_path, control());
  4893     result_i_o   ->init_req(fast_path, i_o());
  4894     result_memory->init_req(fast_path, memory(adr_type));
  4897   // Here are all the slow paths up to this point, in one bundle:
  4898   slow_control = top();
  4899   if (slow_region != NULL)
  4900     slow_control = _gvn.transform(slow_region);
  4901   debug_only(slow_region = (RegionNode*)badAddress);
  4903   set_control(checked_control);
  4904   if (!stopped()) {
  4905     // Clean up after the checked call.
  4906     // The returned value is either 0 or -1^K,
  4907     // where K = number of partially transferred array elements.
  4908     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4909     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4910     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4912     // If it is 0, we are done, so transfer to the end.
  4913     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4914     result_region->init_req(checked_path, checks_done);
  4915     result_i_o   ->init_req(checked_path, checked_i_o);
  4916     result_memory->init_req(checked_path, checked_mem);
  4918     // If it is not zero, merge into the slow call.
  4919     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4920     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4921     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4922     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4923     record_for_igvn(slow_reg2);
  4924     slow_reg2  ->init_req(1, slow_control);
  4925     slow_i_o2  ->init_req(1, slow_i_o);
  4926     slow_mem2  ->init_req(1, slow_mem);
  4927     slow_reg2  ->init_req(2, control());
  4928     slow_i_o2  ->init_req(2, checked_i_o);
  4929     slow_mem2  ->init_req(2, checked_mem);
  4931     slow_control = _gvn.transform(slow_reg2);
  4932     slow_i_o     = _gvn.transform(slow_i_o2);
  4933     slow_mem     = _gvn.transform(slow_mem2);
  4935     if (alloc != NULL) {
  4936       // We'll restart from the very beginning, after zeroing the whole thing.
  4937       // This can cause double writes, but that's OK since dest is brand new.
  4938       // So we ignore the low 31 bits of the value returned from the stub.
  4939     } else {
  4940       // We must continue the copy exactly where it failed, or else
  4941       // another thread might see the wrong number of writes to dest.
  4942       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  4943       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  4944       slow_offset->init_req(1, intcon(0));
  4945       slow_offset->init_req(2, checked_offset);
  4946       slow_offset  = _gvn.transform(slow_offset);
  4948       // Adjust the arguments by the conditionally incoming offset.
  4949       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  4950       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  4951       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  4953       // Tweak the node variables to adjust the code produced below:
  4954       src_offset  = src_off_plus;
  4955       dest_offset = dest_off_plus;
  4956       copy_length = length_minus;
  4960   set_control(slow_control);
  4961   if (!stopped()) {
  4962     // Generate the slow path, if needed.
  4963     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4965     set_memory(slow_mem, adr_type);
  4966     set_i_o(slow_i_o);
  4968     if (dest_uninitialized) {
  4969       generate_clear_array(adr_type, dest, basic_elem_type,
  4970                            intcon(0), NULL,
  4971                            alloc->in(AllocateNode::AllocSize));
  4974     generate_slow_arraycopy(adr_type,
  4975                             src, src_offset, dest, dest_offset,
  4976                             copy_length, /*dest_uninitialized*/false);
  4978     result_region->init_req(slow_call_path, control());
  4979     result_i_o   ->init_req(slow_call_path, i_o());
  4980     result_memory->init_req(slow_call_path, memory(adr_type));
  4983   // Remove unused edges.
  4984   for (uint i = 1; i < result_region->req(); i++) {
  4985     if (result_region->in(i) == NULL)
  4986       result_region->init_req(i, top());
  4989   // Finished; return the combined state.
  4990   set_control( _gvn.transform(result_region) );
  4991   set_i_o(     _gvn.transform(result_i_o)    );
  4992   set_memory(  _gvn.transform(result_memory), adr_type );
  4994   // The memory edges above are precise in order to model effects around
  4995   // array copies accurately to allow value numbering of field loads around
  4996   // arraycopy.  Such field loads, both before and after, are common in Java
  4997   // collections and similar classes involving header/array data structures.
  4998   //
  4999   // But with low number of register or when some registers are used or killed
  5000   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5001   // The next memory barrier is added to avoid it. If the arraycopy can be
  5002   // optimized away (which it can, sometimes) then we can manually remove
  5003   // the membar also.
  5004   //
  5005   // Do not let reads from the cloned object float above the arraycopy.
  5006   if (InsertMemBarAfterArraycopy || alloc != NULL)
  5007     insert_mem_bar(Op_MemBarCPUOrder);
  5011 // Helper function which determines if an arraycopy immediately follows
  5012 // an allocation, with no intervening tests or other escapes for the object.
  5013 AllocateArrayNode*
  5014 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5015                                            RegionNode* slow_region) {
  5016   if (stopped())             return NULL;  // no fast path
  5017   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5019   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5020   if (alloc == NULL)  return NULL;
  5022   Node* rawmem = memory(Compile::AliasIdxRaw);
  5023   // Is the allocation's memory state untouched?
  5024   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5025     // Bail out if there have been raw-memory effects since the allocation.
  5026     // (Example:  There might have been a call or safepoint.)
  5027     return NULL;
  5029   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5030   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5031     return NULL;
  5034   // There must be no unexpected observers of this allocation.
  5035   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5036     Node* obs = ptr->fast_out(i);
  5037     if (obs != this->map()) {
  5038       return NULL;
  5042   // This arraycopy must unconditionally follow the allocation of the ptr.
  5043   Node* alloc_ctl = ptr->in(0);
  5044   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5046   Node* ctl = control();
  5047   while (ctl != alloc_ctl) {
  5048     // There may be guards which feed into the slow_region.
  5049     // Any other control flow means that we might not get a chance
  5050     // to finish initializing the allocated object.
  5051     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5052       IfNode* iff = ctl->in(0)->as_If();
  5053       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5054       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5055       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5056         ctl = iff->in(0);       // This test feeds the known slow_region.
  5057         continue;
  5059       // One more try:  Various low-level checks bottom out in
  5060       // uncommon traps.  If the debug-info of the trap omits
  5061       // any reference to the allocation, as we've already
  5062       // observed, then there can be no objection to the trap.
  5063       bool found_trap = false;
  5064       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5065         Node* obs = not_ctl->fast_out(j);
  5066         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5067             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5068           found_trap = true; break;
  5071       if (found_trap) {
  5072         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5073         continue;
  5076     return NULL;
  5079   // If we get this far, we have an allocation which immediately
  5080   // precedes the arraycopy, and we can take over zeroing the new object.
  5081   // The arraycopy will finish the initialization, and provide
  5082   // a new control state to which we will anchor the destination pointer.
  5084   return alloc;
  5087 // Helper for initialization of arrays, creating a ClearArray.
  5088 // It writes zero bits in [start..end), within the body of an array object.
  5089 // The memory effects are all chained onto the 'adr_type' alias category.
  5090 //
  5091 // Since the object is otherwise uninitialized, we are free
  5092 // to put a little "slop" around the edges of the cleared area,
  5093 // as long as it does not go back into the array's header,
  5094 // or beyond the array end within the heap.
  5095 //
  5096 // The lower edge can be rounded down to the nearest jint and the
  5097 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5098 //
  5099 // Arguments:
  5100 //   adr_type           memory slice where writes are generated
  5101 //   dest               oop of the destination array
  5102 //   basic_elem_type    element type of the destination
  5103 //   slice_idx          array index of first element to store
  5104 //   slice_len          number of elements to store (or NULL)
  5105 //   dest_size          total size in bytes of the array object
  5106 //
  5107 // Exactly one of slice_len or dest_size must be non-NULL.
  5108 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5109 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5110 void
  5111 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5112                                      Node* dest,
  5113                                      BasicType basic_elem_type,
  5114                                      Node* slice_idx,
  5115                                      Node* slice_len,
  5116                                      Node* dest_size) {
  5117   // one or the other but not both of slice_len and dest_size:
  5118   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5119   if (slice_len == NULL)  slice_len = top();
  5120   if (dest_size == NULL)  dest_size = top();
  5122   // operate on this memory slice:
  5123   Node* mem = memory(adr_type); // memory slice to operate on
  5125   // scaling and rounding of indexes:
  5126   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5127   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5128   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5129   int bump_bit  = (-1 << scale) & BytesPerInt;
  5131   // determine constant starts and ends
  5132   const intptr_t BIG_NEG = -128;
  5133   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5134   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5135   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5136   if (slice_len_con == 0) {
  5137     return;                     // nothing to do here
  5139   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5140   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5141   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5142     assert(end_con < 0, "not two cons");
  5143     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5144                        BytesPerLong);
  5147   if (start_con >= 0 && end_con >= 0) {
  5148     // Constant start and end.  Simple.
  5149     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5150                                        start_con, end_con, &_gvn);
  5151   } else if (start_con >= 0 && dest_size != top()) {
  5152     // Constant start, pre-rounded end after the tail of the array.
  5153     Node* end = dest_size;
  5154     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5155                                        start_con, end, &_gvn);
  5156   } else if (start_con >= 0 && slice_len != top()) {
  5157     // Constant start, non-constant end.  End needs rounding up.
  5158     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5159     intptr_t end_base  = abase + (slice_idx_con << scale);
  5160     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5161     Node*    end       = ConvI2X(slice_len);
  5162     if (scale != 0)
  5163       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5164     end_base += end_round;
  5165     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5166     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5167     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5168                                        start_con, end, &_gvn);
  5169   } else if (start_con < 0 && dest_size != top()) {
  5170     // Non-constant start, pre-rounded end after the tail of the array.
  5171     // This is almost certainly a "round-to-end" operation.
  5172     Node* start = slice_idx;
  5173     start = ConvI2X(start);
  5174     if (scale != 0)
  5175       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5176     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5177     if ((bump_bit | clear_low) != 0) {
  5178       int to_clear = (bump_bit | clear_low);
  5179       // Align up mod 8, then store a jint zero unconditionally
  5180       // just before the mod-8 boundary.
  5181       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5182           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5183         bump_bit = 0;
  5184         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5185       } else {
  5186         // Bump 'start' up to (or past) the next jint boundary:
  5187         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5188         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5190       // Round bumped 'start' down to jlong boundary in body of array.
  5191       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5192       if (bump_bit != 0) {
  5193         // Store a zero to the immediately preceding jint:
  5194         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5195         Node* p1 = basic_plus_adr(dest, x1);
  5196         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5197         mem = _gvn.transform(mem);
  5200     Node* end = dest_size; // pre-rounded
  5201     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5202                                        start, end, &_gvn);
  5203   } else {
  5204     // Non-constant start, unrounded non-constant end.
  5205     // (Nobody zeroes a random midsection of an array using this routine.)
  5206     ShouldNotReachHere();       // fix caller
  5209   // Done.
  5210   set_memory(mem, adr_type);
  5214 bool
  5215 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5216                                          BasicType basic_elem_type,
  5217                                          AllocateNode* alloc,
  5218                                          Node* src,  Node* src_offset,
  5219                                          Node* dest, Node* dest_offset,
  5220                                          Node* dest_size, bool dest_uninitialized) {
  5221   // See if there is an advantage from block transfer.
  5222   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5223   if (scale >= LogBytesPerLong)
  5224     return false;               // it is already a block transfer
  5226   // Look at the alignment of the starting offsets.
  5227   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5229   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5230   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5231   if (src_off_con < 0 || dest_off_con < 0)
  5232     // At present, we can only understand constants.
  5233     return false;
  5235   intptr_t src_off  = abase + (src_off_con  << scale);
  5236   intptr_t dest_off = abase + (dest_off_con << scale);
  5238   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5239     // Non-aligned; too bad.
  5240     // One more chance:  Pick off an initial 32-bit word.
  5241     // This is a common case, since abase can be odd mod 8.
  5242     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5243         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5244       Node* sptr = basic_plus_adr(src,  src_off);
  5245       Node* dptr = basic_plus_adr(dest, dest_off);
  5246       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5247       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5248       src_off += BytesPerInt;
  5249       dest_off += BytesPerInt;
  5250     } else {
  5251       return false;
  5254   assert(src_off % BytesPerLong == 0, "");
  5255   assert(dest_off % BytesPerLong == 0, "");
  5257   // Do this copy by giant steps.
  5258   Node* sptr  = basic_plus_adr(src,  src_off);
  5259   Node* dptr  = basic_plus_adr(dest, dest_off);
  5260   Node* countx = dest_size;
  5261   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5262   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5264   bool disjoint_bases = true;   // since alloc != NULL
  5265   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5266                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5268   return true;
  5272 // Helper function; generates code for the slow case.
  5273 // We make a call to a runtime method which emulates the native method,
  5274 // but without the native wrapper overhead.
  5275 void
  5276 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5277                                         Node* src,  Node* src_offset,
  5278                                         Node* dest, Node* dest_offset,
  5279                                         Node* copy_length, bool dest_uninitialized) {
  5280   assert(!dest_uninitialized, "Invariant");
  5281   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5282                                  OptoRuntime::slow_arraycopy_Type(),
  5283                                  OptoRuntime::slow_arraycopy_Java(),
  5284                                  "slow_arraycopy", adr_type,
  5285                                  src, src_offset, dest, dest_offset,
  5286                                  copy_length);
  5288   // Handle exceptions thrown by this fellow:
  5289   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5292 // Helper function; generates code for cases requiring runtime checks.
  5293 Node*
  5294 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5295                                              Node* dest_elem_klass,
  5296                                              Node* src,  Node* src_offset,
  5297                                              Node* dest, Node* dest_offset,
  5298                                              Node* copy_length, bool dest_uninitialized) {
  5299   if (stopped())  return NULL;
  5301   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5302   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5303     return NULL;
  5306   // Pick out the parameters required to perform a store-check
  5307   // for the target array.  This is an optimistic check.  It will
  5308   // look in each non-null element's class, at the desired klass's
  5309   // super_check_offset, for the desired klass.
  5310   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
  5311   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5312   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5313   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5314   Node* check_value  = dest_elem_klass;
  5316   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5317   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5319   // (We know the arrays are never conjoint, because their types differ.)
  5320   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5321                                  OptoRuntime::checkcast_arraycopy_Type(),
  5322                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5323                                  // five arguments, of which two are
  5324                                  // intptr_t (jlong in LP64)
  5325                                  src_start, dest_start,
  5326                                  copy_length XTOP,
  5327                                  check_offset XTOP,
  5328                                  check_value);
  5330   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5334 // Helper function; generates code for cases requiring runtime checks.
  5335 Node*
  5336 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5337                                            Node* src,  Node* src_offset,
  5338                                            Node* dest, Node* dest_offset,
  5339                                            Node* copy_length, bool dest_uninitialized) {
  5340   assert(!dest_uninitialized, "Invariant");
  5341   if (stopped())  return NULL;
  5342   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5343   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5344     return NULL;
  5347   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5348                     OptoRuntime::generic_arraycopy_Type(),
  5349                     copyfunc_addr, "generic_arraycopy", adr_type,
  5350                     src, src_offset, dest, dest_offset, copy_length);
  5352   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5355 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5356 void
  5357 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5358                                              BasicType basic_elem_type,
  5359                                              bool disjoint_bases,
  5360                                              Node* src,  Node* src_offset,
  5361                                              Node* dest, Node* dest_offset,
  5362                                              Node* copy_length, bool dest_uninitialized) {
  5363   if (stopped())  return;               // nothing to do
  5365   Node* src_start  = src;
  5366   Node* dest_start = dest;
  5367   if (src_offset != NULL || dest_offset != NULL) {
  5368     assert(src_offset != NULL && dest_offset != NULL, "");
  5369     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5370     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5373   // Figure out which arraycopy runtime method to call.
  5374   const char* copyfunc_name = "arraycopy";
  5375   address     copyfunc_addr =
  5376       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5377                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5379   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5380   make_runtime_call(RC_LEAF|RC_NO_FP,
  5381                     OptoRuntime::fast_arraycopy_Type(),
  5382                     copyfunc_addr, copyfunc_name, adr_type,
  5383                     src_start, dest_start, copy_length XTOP);
  5386 //----------------------------inline_reference_get----------------------------
  5388 bool LibraryCallKit::inline_reference_get() {
  5389   const int nargs = 1; // self
  5391   guarantee(java_lang_ref_Reference::referent_offset > 0,
  5392             "should have already been set");
  5394   int referent_offset = java_lang_ref_Reference::referent_offset;
  5396   // Restore the stack and pop off the argument
  5397   _sp += nargs;
  5398   Node *reference_obj = pop();
  5400   // Null check on self without removing any arguments.
  5401   _sp += nargs;
  5402   reference_obj = do_null_check(reference_obj, T_OBJECT);
  5403   _sp -= nargs;;
  5405   if (stopped()) return true;
  5407   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5409   ciInstanceKlass* klass = env()->Object_klass();
  5410   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5412   Node* no_ctrl = NULL;
  5413   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5415   // Use the pre-barrier to record the value in the referent field
  5416   pre_barrier(false /* do_load */,
  5417               control(),
  5418               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5419               result /* pre_val */,
  5420               T_OBJECT);
  5422   push(result);
  5423   return true;

mercurial