src/cpu/sparc/vm/methodHandles_sparc.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 3005
341a57af9b0a
child 3046
a19c671188cb
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "prims/methodHandles.hpp"
    30 #define __ _masm->
    32 #ifdef PRODUCT
    33 #define BLOCK_COMMENT(str) /* nothing */
    34 #else
    35 #define BLOCK_COMMENT(str) __ block_comment(str)
    36 #endif
    38 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    40 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
    41                                                 address interpreted_entry) {
    42   // Just before the actual machine code entry point, allocate space
    43   // for a MethodHandleEntry::Data record, so that we can manage everything
    44   // from one base pointer.
    45   __ align(wordSize);
    46   address target = __ pc() + sizeof(Data);
    47   while (__ pc() < target) {
    48     __ nop();
    49     __ align(wordSize);
    50   }
    52   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
    53   me->set_end_address(__ pc());         // set a temporary end_address
    54   me->set_from_interpreted_entry(interpreted_entry);
    55   me->set_type_checking_entry(NULL);
    57   return (address) me;
    58 }
    60 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
    61                                                 address start_addr) {
    62   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
    63   assert(me->end_address() == start_addr, "valid ME");
    65   // Fill in the real end_address:
    66   __ align(wordSize);
    67   me->set_end_address(__ pc());
    69   return me;
    70 }
    72 // stack walking support
    74 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
    75   //RicochetFrame* f = RicochetFrame::from_frame(fr);
    76   // Cf. is_interpreted_frame path of frame::sender
    77   intptr_t* younger_sp = fr.sp();
    78   intptr_t* sp         = fr.sender_sp();
    79   map->make_integer_regs_unsaved();
    80   map->shift_window(sp, younger_sp);
    81   bool this_frame_adjusted_stack = true;  // I5_savedSP is live in this RF
    82   return frame(sp, younger_sp, this_frame_adjusted_stack);
    83 }
    85 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
    86   ResourceMark rm;
    87   RicochetFrame* f = RicochetFrame::from_frame(fr);
    89   // pick up the argument type descriptor:
    90   Thread* thread = Thread::current();
    91   Handle cookie(thread, f->compute_saved_args_layout(true, true));
    93   // process fixed part
    94   blk->do_oop((oop*)f->saved_target_addr());
    95   blk->do_oop((oop*)f->saved_args_layout_addr());
    97   // process variable arguments:
    98   if (cookie.is_null())  return;  // no arguments to describe
   100   // the cookie is actually the invokeExact method for my target
   101   // his argument signature is what I'm interested in
   102   assert(cookie->is_method(), "");
   103   methodHandle invoker(thread, methodOop(cookie()));
   104   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
   105   assert(!invoker->is_static(), "must have MH argument");
   106   int slot_count = invoker->size_of_parameters();
   107   assert(slot_count >= 1, "must include 'this'");
   108   intptr_t* base = f->saved_args_base();
   109   intptr_t* retval = NULL;
   110   if (f->has_return_value_slot())
   111     retval = f->return_value_slot_addr();
   112   int slot_num = slot_count - 1;
   113   intptr_t* loc = &base[slot_num];
   114   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
   115   int arg_num = 0;
   116   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
   117     if (ss.at_return_type())  continue;
   118     BasicType ptype = ss.type();
   119     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
   120     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
   121     slot_num -= type2size[ptype];
   122     loc = &base[slot_num];
   123     bool is_oop = (ptype == T_OBJECT && loc != retval);
   124     if (is_oop)  blk->do_oop((oop*)loc);
   125     arg_num += 1;
   126   }
   127   assert(slot_num == 0, "must have processed all the arguments");
   128 }
   130 // Ricochet Frames
   131 const Register MethodHandles::RicochetFrame::L1_continuation      = L1;
   132 const Register MethodHandles::RicochetFrame::L2_saved_target      = L2;
   133 const Register MethodHandles::RicochetFrame::L3_saved_args_layout = L3;
   134 const Register MethodHandles::RicochetFrame::L4_saved_args_base   = L4; // cf. Gargs = G4
   135 const Register MethodHandles::RicochetFrame::L5_conversion        = L5;
   136 #ifdef ASSERT
   137 const Register MethodHandles::RicochetFrame::L0_magic_number_1    = L0;
   138 #endif //ASSERT
   140 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
   141   if (read_cache) {
   142     oop cookie = saved_args_layout();
   143     if (cookie != NULL)  return cookie;
   144   }
   145   oop target = saved_target();
   146   oop mtype  = java_lang_invoke_MethodHandle::type(target);
   147   oop mtform = java_lang_invoke_MethodType::form(mtype);
   148   oop cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
   149   if (write_cache)  {
   150     (*saved_args_layout_addr()) = cookie;
   151   }
   152   return cookie;
   153 }
   155 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
   156                                                           // output params:
   157                                                           int* bounce_offset,
   158                                                           int* exception_offset,
   159                                                           int* frame_size_in_words) {
   160   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
   162   address start = __ pc();
   164 #ifdef ASSERT
   165   __ illtrap(0); __ illtrap(0); __ illtrap(0);
   166   // here's a hint of something special:
   167   __ set(MAGIC_NUMBER_1, G0);
   168   __ set(MAGIC_NUMBER_2, G0);
   169 #endif //ASSERT
   170   __ illtrap(0);  // not reached
   172   // Return values are in registers.
   173   // L1_continuation contains a cleanup continuation we must return
   174   // to.
   176   (*bounce_offset) = __ pc() - start;
   177   BLOCK_COMMENT("ricochet_blob.bounce");
   179   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
   180   trace_method_handle(_masm, "ricochet_blob.bounce");
   182   __ JMP(L1_continuation, 0);
   183   __ delayed()->nop();
   184   __ illtrap(0);
   186   DEBUG_ONLY(__ set(MAGIC_NUMBER_2, G0));
   188   (*exception_offset) = __ pc() - start;
   189   BLOCK_COMMENT("ricochet_blob.exception");
   191   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
   192   // for example, see TemplateInterpreterGenerator::generate_throw_exception
   193   // Live registers in:
   194   //   Oexception  (O0): exception
   195   //   Oissuing_pc (O1): return address/pc that threw exception (ignored, always equal to bounce addr)
   196   __ verify_oop(Oexception);
   198   // Take down the frame.
   200   // Cf. InterpreterMacroAssembler::remove_activation.
   201   leave_ricochet_frame(_masm, /*recv_reg=*/ noreg, I5_savedSP, I7);
   203   // We are done with this activation frame; find out where to go next.
   204   // The continuation point will be an exception handler, which expects
   205   // the following registers set up:
   206   //
   207   // Oexception: exception
   208   // Oissuing_pc: the local call that threw exception
   209   // Other On: garbage
   210   // In/Ln:  the contents of the caller's register window
   211   //
   212   // We do the required restore at the last possible moment, because we
   213   // need to preserve some state across a runtime call.
   214   // (Remember that the caller activation is unknown--it might not be
   215   // interpreted, so things like Lscratch are useless in the caller.)
   216   __ mov(Oexception,  Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
   217   __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
   218   __ call_VM_leaf(L7_thread_cache,
   219                   CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
   220                   G2_thread, Oissuing_pc->after_save());
   222   // The caller's SP was adjusted upon method entry to accomodate
   223   // the callee's non-argument locals. Undo that adjustment.
   224   __ JMP(O0, 0);                         // return exception handler in caller
   225   __ delayed()->restore(I5_savedSP, G0, SP);
   227   // (same old exception object is already in Oexception; see above)
   228   // Note that an "issuing PC" is actually the next PC after the call
   229 }
   231 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
   232                                                         Register recv_reg,
   233                                                         Register argv_reg,
   234                                                         address return_handler) {
   235   // does not include the __ save()
   236   assert(argv_reg == Gargs, "");
   237   Address G3_mh_vmtarget(   recv_reg, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
   238   Address G3_amh_conversion(recv_reg, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
   240   // Create the RicochetFrame.
   241   // Unlike on x86 we can store all required information in local
   242   // registers.
   243   BLOCK_COMMENT("push RicochetFrame {");
   244   __ set(ExternalAddress(return_handler),          L1_continuation);
   245   __ load_heap_oop(G3_mh_vmtarget,                 L2_saved_target);
   246   __ mov(G0,                                       L3_saved_args_layout);
   247   __ mov(Gargs,                                    L4_saved_args_base);
   248   __ lduw(G3_amh_conversion,                       L5_conversion);  // 32-bit field
   249   // I5, I6, I7 are already set up
   250   DEBUG_ONLY(__ set((int32_t) MAGIC_NUMBER_1,      L0_magic_number_1));
   251   BLOCK_COMMENT("} RicochetFrame");
   252 }
   254 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
   255                                                         Register recv_reg,
   256                                                         Register new_sp_reg,
   257                                                         Register sender_pc_reg) {
   258   assert(new_sp_reg == I5_savedSP, "exact_sender_sp already in place");
   259   assert(sender_pc_reg == I7, "in a fixed place");
   260   // does not include the __ ret() & __ restore()
   261   assert_different_registers(recv_reg, new_sp_reg, sender_pc_reg);
   262   // Take down the frame.
   263   // Cf. InterpreterMacroAssembler::remove_activation.
   264   BLOCK_COMMENT("end_ricochet_frame {");
   265   if (recv_reg->is_valid())
   266     __ mov(L2_saved_target, recv_reg);
   267   BLOCK_COMMENT("} end_ricochet_frame");
   268 }
   270 // Emit code to verify that FP is pointing at a valid ricochet frame.
   271 #ifdef ASSERT
   272 enum {
   273   ARG_LIMIT = 255, SLOP = 45,
   274   // use this parameter for checking for garbage stack movements:
   275   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
   276   // the slop defends against false alarms due to fencepost errors
   277 };
   279 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
   280   // The stack should look like this:
   281   //    ... keep1 | dest=42 | keep2 | magic | handler | magic | recursive args | [RF]
   282   // Check various invariants.
   284   Register O7_temp = O7, O5_temp = O5;
   286   Label L_ok_1, L_ok_2, L_ok_3, L_ok_4;
   287   BLOCK_COMMENT("verify_clean {");
   288   // Magic numbers must check out:
   289   __ set((int32_t) MAGIC_NUMBER_1, O7_temp);
   290   __ cmp_and_br_short(O7_temp, L0_magic_number_1, Assembler::equal, Assembler::pt, L_ok_1);
   291   __ stop("damaged ricochet frame: MAGIC_NUMBER_1 not found");
   293   __ BIND(L_ok_1);
   295   // Arguments pointer must look reasonable:
   296 #ifdef _LP64
   297   Register FP_temp = O5_temp;
   298   __ add(FP, STACK_BIAS, FP_temp);
   299 #else
   300   Register FP_temp = FP;
   301 #endif
   302   __ cmp_and_brx_short(L4_saved_args_base, FP_temp, Assembler::greaterEqualUnsigned, Assembler::pt, L_ok_2);
   303   __ stop("damaged ricochet frame: L4 < FP");
   305   __ BIND(L_ok_2);
   306   // Disable until we decide on it's fate
   307   // __ sub(L4_saved_args_base, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize, O7_temp);
   308   // __ cmp(O7_temp, FP_temp);
   309   // __ br(Assembler::lessEqualUnsigned, false, Assembler::pt, L_ok_3);
   310   // __ delayed()->nop();
   311   // __ stop("damaged ricochet frame: (L4 - UNREASONABLE_STACK_MOVE) > FP");
   313   __ BIND(L_ok_3);
   314   extract_conversion_dest_type(_masm, L5_conversion, O7_temp);
   315   __ cmp_and_br_short(O7_temp, T_VOID, Assembler::equal, Assembler::pt, L_ok_4);
   316   extract_conversion_vminfo(_masm, L5_conversion, O5_temp);
   317   __ ld_ptr(L4_saved_args_base, __ argument_offset(O5_temp, O5_temp), O7_temp);
   318   assert(__ is_simm13(RETURN_VALUE_PLACEHOLDER), "must be simm13");
   319   __ cmp_and_brx_short(O7_temp, (int32_t) RETURN_VALUE_PLACEHOLDER, Assembler::equal, Assembler::pt, L_ok_4);
   320   __ stop("damaged ricochet frame: RETURN_VALUE_PLACEHOLDER not found");
   321   __ BIND(L_ok_4);
   322   BLOCK_COMMENT("} verify_clean");
   323 }
   324 #endif //ASSERT
   326 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) {
   327   if (VerifyMethodHandles)
   328     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(), temp_reg, temp2_reg,
   329                  "AMH argument is a Class");
   330   __ load_heap_oop(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg);
   331 }
   333 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg) {
   334   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   335   assert(CONV_VMINFO_MASK == right_n_bits(BitsPerByte), "else change type of following load");
   336   __ ldub(conversion_field_addr.plus_disp(BytesPerInt - 1), reg);
   337 }
   339 void MethodHandles::extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
   340   assert(CONV_VMINFO_SHIFT == 0, "preshifted");
   341   __ and3(conversion_field_reg, CONV_VMINFO_MASK, reg);
   342 }
   344 void MethodHandles::extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg) {
   345   __ srl(conversion_field_reg, CONV_DEST_TYPE_SHIFT, reg);
   346   __ and3(reg, 0x0F, reg);
   347 }
   349 void MethodHandles::load_stack_move(MacroAssembler* _masm,
   350                                     Address G3_amh_conversion,
   351                                     Register stack_move_reg) {
   352   BLOCK_COMMENT("load_stack_move {");
   353   __ ldsw(G3_amh_conversion, stack_move_reg);
   354   __ sra(stack_move_reg, CONV_STACK_MOVE_SHIFT, stack_move_reg);
   355   if (VerifyMethodHandles) {
   356     Label L_ok, L_bad;
   357     int32_t stack_move_limit = 0x0800;  // extra-large
   358     __ cmp_and_br_short(stack_move_reg, stack_move_limit, Assembler::greaterEqual, Assembler::pn, L_bad);
   359     __ cmp(stack_move_reg, -stack_move_limit);
   360     __ br(Assembler::greater, false, Assembler::pt, L_ok);
   361     __ delayed()->nop();
   362     __ BIND(L_bad);
   363     __ stop("load_stack_move of garbage value");
   364     __ BIND(L_ok);
   365   }
   366   BLOCK_COMMENT("} load_stack_move");
   367 }
   369 #ifdef ASSERT
   370 void MethodHandles::RicochetFrame::verify() const {
   371   assert(magic_number_1() == MAGIC_NUMBER_1, "");
   372   if (!Universe::heap()->is_gc_active()) {
   373     if (saved_args_layout() != NULL) {
   374       assert(saved_args_layout()->is_method(), "must be valid oop");
   375     }
   376     if (saved_target() != NULL) {
   377       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
   378     }
   379   }
   380   int conv_op = adapter_conversion_op(conversion());
   381   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
   382          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
   383          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
   384          "must be a sane conversion");
   385   if (has_return_value_slot()) {
   386     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
   387   }
   388 }
   390 void MethodHandles::verify_argslot(MacroAssembler* _masm, Register argslot_reg, Register temp_reg, const char* error_message) {
   391   // Verify that argslot lies within (Gargs, FP].
   392   Label L_ok, L_bad;
   393   BLOCK_COMMENT("verify_argslot {");
   394   __ cmp_and_brx_short(Gargs, argslot_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
   395   __ add(FP, STACK_BIAS, temp_reg);  // STACK_BIAS is zero on !_LP64
   396   __ cmp_and_brx_short(argslot_reg, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
   397   __ BIND(L_bad);
   398   __ stop(error_message);
   399   __ BIND(L_ok);
   400   BLOCK_COMMENT("} verify_argslot");
   401 }
   403 void MethodHandles::verify_argslots(MacroAssembler* _masm,
   404                                     RegisterOrConstant arg_slots,
   405                                     Register arg_slot_base_reg,
   406                                     Register temp_reg,
   407                                     Register temp2_reg,
   408                                     bool negate_argslots,
   409                                     const char* error_message) {
   410   // Verify that [argslot..argslot+size) lies within (Gargs, FP).
   411   Label L_ok, L_bad;
   412   BLOCK_COMMENT("verify_argslots {");
   413   if (negate_argslots) {
   414     if (arg_slots.is_constant()) {
   415       arg_slots = -1 * arg_slots.as_constant();
   416     } else {
   417       __ neg(arg_slots.as_register(), temp_reg);
   418       arg_slots = temp_reg;
   419     }
   420   }
   421   __ add(arg_slot_base_reg, __ argument_offset(arg_slots, temp_reg), temp_reg);
   422   __ add(FP, STACK_BIAS, temp2_reg);  // STACK_BIAS is zero on !_LP64
   423   __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::greaterUnsigned, Assembler::pn, L_bad);
   424   // Gargs points to the first word so adjust by BytesPerWord
   425   __ add(arg_slot_base_reg, BytesPerWord, temp_reg);
   426   __ cmp_and_brx_short(Gargs, temp_reg, Assembler::lessEqualUnsigned, Assembler::pt, L_ok);
   427   __ BIND(L_bad);
   428   __ stop(error_message);
   429   __ BIND(L_ok);
   430   BLOCK_COMMENT("} verify_argslots");
   431 }
   433 // Make sure that arg_slots has the same sign as the given direction.
   434 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
   435 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
   436                                       RegisterOrConstant arg_slots, int direction) {
   437   enum { UNREASONABLE_STACK_MOVE = 256 * 4 };  // limit of 255 arguments
   438   bool allow_zero = arg_slots.is_constant();
   439   if (direction == 0) { direction = +1; allow_zero = true; }
   440   assert(stack_move_unit() == -1, "else add extra checks here");
   441   if (arg_slots.is_register()) {
   442     Label L_ok, L_bad;
   443     BLOCK_COMMENT("verify_stack_move {");
   444     // __ btst(-stack_move_unit() - 1, arg_slots.as_register());  // no need
   445     // __ br(Assembler::notZero, false, Assembler::pn, L_bad);
   446     // __ delayed()->nop();
   447     __ cmp(arg_slots.as_register(), (int32_t) NULL_WORD);
   448     if (direction > 0) {
   449       __ br(allow_zero ? Assembler::less : Assembler::lessEqual, false, Assembler::pn, L_bad);
   450       __ delayed()->nop();
   451       __ cmp(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
   452       __ br(Assembler::less, false, Assembler::pn, L_ok);
   453       __ delayed()->nop();
   454     } else {
   455       __ br(allow_zero ? Assembler::greater : Assembler::greaterEqual, false, Assembler::pn, L_bad);
   456       __ delayed()->nop();
   457       __ cmp(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
   458       __ br(Assembler::greater, false, Assembler::pn, L_ok);
   459       __ delayed()->nop();
   460     }
   461     __ BIND(L_bad);
   462     if (direction > 0)
   463       __ stop("assert arg_slots > 0");
   464     else
   465       __ stop("assert arg_slots < 0");
   466     __ BIND(L_ok);
   467     BLOCK_COMMENT("} verify_stack_move");
   468   } else {
   469     intptr_t size = arg_slots.as_constant();
   470     if (direction < 0)  size = -size;
   471     assert(size >= 0, "correct direction of constant move");
   472     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
   473   }
   474 }
   476 void MethodHandles::verify_klass(MacroAssembler* _masm,
   477                                  Register obj_reg, KlassHandle klass,
   478                                  Register temp_reg, Register temp2_reg,
   479                                  const char* error_message) {
   480   oop* klass_addr = klass.raw_value();
   481   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   482          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   483          "must be one of the SystemDictionaryHandles");
   484   Label L_ok, L_bad;
   485   BLOCK_COMMENT("verify_klass {");
   486   __ verify_oop(obj_reg);
   487   __ br_null_short(obj_reg, Assembler::pn, L_bad);
   488   __ load_klass(obj_reg, temp_reg);
   489   __ set(ExternalAddress(klass_addr), temp2_reg);
   490   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
   491   __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
   492   intptr_t super_check_offset = klass->super_check_offset();
   493   __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg);
   494   __ set(ExternalAddress(klass_addr), temp2_reg);
   495   __ ld_ptr(Address(temp2_reg, 0), temp2_reg);
   496   __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok);
   497   __ BIND(L_bad);
   498   __ stop(error_message);
   499   __ BIND(L_ok);
   500   BLOCK_COMMENT("} verify_klass");
   501 }
   502 #endif // ASSERT
   505 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp) {
   506   assert(method == G5_method, "interpreter calling convention");
   507   __ verify_oop(method);
   508   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   509   if (JvmtiExport::can_post_interpreter_events()) {
   510     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   511     // compiled code in threads for which the event is enabled.  Check here for
   512     // interp_only_mode if these events CAN be enabled.
   513     __ verify_thread();
   514     Label skip_compiled_code;
   516     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   517     __ ld(interp_only, temp);
   518     __ tst(temp);
   519     __ br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
   520     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   521     __ bind(skip_compiled_code);
   522   }
   523   __ jmp(target, 0);
   524   __ delayed()->nop();
   525 }
   528 // Code generation
   529 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   530   // I5_savedSP/O5_savedSP: sender SP (must preserve)
   531   // G4 (Gargs): incoming argument list (must preserve)
   532   // G5_method:  invoke methodOop
   533   // G3_method_handle: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   534   // O0, O1, O2, O3, O4: garbage temps, blown away
   535   Register O0_mtype   = O0;
   536   Register O1_scratch = O1;
   537   Register O2_scratch = O2;
   538   Register O3_scratch = O3;
   539   Register O4_argslot = O4;
   540   Register O4_argbase = O4;
   542   // emit WrongMethodType path first, to enable back-branch from main path
   543   Label wrong_method_type;
   544   __ bind(wrong_method_type);
   545   Label invoke_generic_slow_path;
   546   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
   547   __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
   548   __ cmp(O1_scratch, (int) vmIntrinsics::_invokeExact);
   549   __ brx(Assembler::notEqual, false, Assembler::pt, invoke_generic_slow_path);
   550   __ delayed()->nop();
   551   __ mov(O0_mtype, G5_method_type);  // required by throw_WrongMethodType
   552   __ mov(G3_method_handle, G3_method_handle);  // already in this register
   553   // O0 will be filled in with JavaThread in stub
   554   __ jump_to(AddressLiteral(StubRoutines::throw_WrongMethodTypeException_entry()), O3_scratch);
   555   __ delayed()->nop();
   557   // here's where control starts out:
   558   __ align(CodeEntryAlignment);
   559   address entry_point = __ pc();
   561   // fetch the MethodType from the method handle
   562   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
   563   // This would simplify several touchy bits of code.
   564   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
   565   {
   566     Register tem = G5_method;
   567     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
   568       __ ld_ptr(Address(tem, *pchase), O0_mtype);
   569       tem = O0_mtype;          // in case there is another indirection
   570     }
   571   }
   573   // given the MethodType, find out where the MH argument is buried
   574   __ load_heap_oop(Address(O0_mtype,   __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,        O1_scratch)), O4_argslot);
   575   __ ldsw(         Address(O4_argslot, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, O1_scratch)), O4_argslot);
   576   __ add(__ argument_address(O4_argslot, O4_argslot, 1), O4_argbase);
   577   // Note: argument_address uses its input as a scratch register!
   578   Address mh_receiver_slot_addr(O4_argbase, -Interpreter::stackElementSize);
   579   __ ld_ptr(mh_receiver_slot_addr, G3_method_handle);
   581   trace_method_handle(_masm, "invokeExact");
   583   __ check_method_handle_type(O0_mtype, G3_method_handle, O1_scratch, wrong_method_type);
   585   // Nobody uses the MH receiver slot after this.  Make sure.
   586   DEBUG_ONLY(__ set((int32_t) 0x999999, O1_scratch); __ st_ptr(O1_scratch, mh_receiver_slot_addr));
   588   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
   590   // for invokeGeneric (only), apply argument and result conversions on the fly
   591   __ bind(invoke_generic_slow_path);
   592 #ifdef ASSERT
   593   if (VerifyMethodHandles) {
   594     Label L;
   595     __ ldub(Address(G5_method, methodOopDesc::intrinsic_id_offset_in_bytes()), O1_scratch);
   596     __ cmp(O1_scratch, (int) vmIntrinsics::_invokeGeneric);
   597     __ brx(Assembler::equal, false, Assembler::pt, L);
   598     __ delayed()->nop();
   599     __ stop("bad methodOop::intrinsic_id");
   600     __ bind(L);
   601   }
   602 #endif //ASSERT
   604   // make room on the stack for another pointer:
   605   insert_arg_slots(_masm, 2 * stack_move_unit(), O4_argbase, O1_scratch, O2_scratch, O3_scratch);
   606   // load up an adapter from the calling type (Java weaves this)
   607   Register O2_form    = O2_scratch;
   608   Register O3_adapter = O3_scratch;
   609   __ load_heap_oop(Address(O0_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               O1_scratch)), O2_form);
   610   __ load_heap_oop(Address(O2_form,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, O1_scratch)), O3_adapter);
   611   __ verify_oop(O3_adapter);
   612   __ st_ptr(O3_adapter, Address(O4_argbase, 1 * Interpreter::stackElementSize));
   613   // As a trusted first argument, pass the type being called, so the adapter knows
   614   // the actual types of the arguments and return values.
   615   // (Generic invokers are shared among form-families of method-type.)
   616   __ st_ptr(O0_mtype,   Address(O4_argbase, 0 * Interpreter::stackElementSize));
   617   // FIXME: assert that O3_adapter is of the right method-type.
   618   __ mov(O3_adapter, G3_method_handle);
   619   trace_method_handle(_masm, "invokeGeneric");
   620   __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
   622   return entry_point;
   623 }
   625 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
   626 static RegisterOrConstant constant(int value) {
   627   return RegisterOrConstant(value);
   628 }
   630 static void load_vmargslot(MacroAssembler* _masm, Address vmargslot_addr, Register result) {
   631   __ ldsw(vmargslot_addr, result);
   632 }
   634 static RegisterOrConstant adjust_SP_and_Gargs_down_by_slots(MacroAssembler* _masm,
   635                                                             RegisterOrConstant arg_slots,
   636                                                             Register temp_reg, Register temp2_reg) {
   637   // Keep the stack pointer 2*wordSize aligned.
   638   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
   639   if (arg_slots.is_constant()) {
   640     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
   641     const int masked_offset = round_to(offset, 2 * BytesPerWord);
   642     const int masked_offset2 = (offset + 1*BytesPerWord) & ~TwoWordAlignmentMask;
   643     assert(masked_offset == masked_offset2, "must agree");
   644     __ sub(Gargs,        offset, Gargs);
   645     __ sub(SP,    masked_offset, SP   );
   646     return offset;
   647   } else {
   648 #ifdef ASSERT
   649     {
   650       Label L_ok;
   651       __ cmp_and_br_short(arg_slots.as_register(), 0, Assembler::greaterEqual, Assembler::pt, L_ok);
   652       __ stop("negative arg_slots");
   653       __ bind(L_ok);
   654     }
   655 #endif
   656     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
   657     __ add( temp_reg,  1*BytesPerWord,       temp2_reg);
   658     __ andn(temp2_reg, TwoWordAlignmentMask, temp2_reg);
   659     __ sub(Gargs, temp_reg,  Gargs);
   660     __ sub(SP,    temp2_reg, SP   );
   661     return temp_reg;
   662   }
   663 }
   665 static RegisterOrConstant adjust_SP_and_Gargs_up_by_slots(MacroAssembler* _masm,
   666                                                           RegisterOrConstant arg_slots,
   667                                                           Register temp_reg, Register temp2_reg) {
   668   // Keep the stack pointer 2*wordSize aligned.
   669   const int TwoWordAlignmentMask = right_n_bits(LogBytesPerWord + 1);
   670   if (arg_slots.is_constant()) {
   671     const int        offset = arg_slots.as_constant() << LogBytesPerWord;
   672     const int masked_offset = offset & ~TwoWordAlignmentMask;
   673     __ add(Gargs,        offset, Gargs);
   674     __ add(SP,    masked_offset, SP   );
   675     return offset;
   676   } else {
   677     __ sll_ptr(arg_slots.as_register(), LogBytesPerWord, temp_reg);
   678     __ andn(temp_reg, TwoWordAlignmentMask, temp2_reg);
   679     __ add(Gargs, temp_reg,  Gargs);
   680     __ add(SP,    temp2_reg, SP   );
   681     return temp_reg;
   682   }
   683 }
   685 // Helper to insert argument slots into the stack.
   686 // arg_slots must be a multiple of stack_move_unit() and < 0
   687 // argslot_reg is decremented to point to the new (shifted) location of the argslot
   688 // But, temp_reg ends up holding the original value of argslot_reg.
   689 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   690                                      RegisterOrConstant arg_slots,
   691                                      Register argslot_reg,
   692                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
   693   // allow constant zero
   694   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   695     return;
   697   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
   698                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
   700   BLOCK_COMMENT("insert_arg_slots {");
   701   if (VerifyMethodHandles)
   702     verify_argslot(_masm, argslot_reg, temp_reg, "insertion point must fall within current frame");
   703   if (VerifyMethodHandles)
   704     verify_stack_move(_masm, arg_slots, -1);
   706   // Make space on the stack for the inserted argument(s).
   707   // Then pull down everything shallower than argslot_reg.
   708   // The stacked return address gets pulled down with everything else.
   709   // That is, copy [sp, argslot) downward by -size words.  In pseudo-code:
   710   //   sp -= size;
   711   //   for (temp = sp + size; temp < argslot; temp++)
   712   //     temp[-size] = temp[0]
   713   //   argslot -= size;
   715   // offset is temp3_reg in case of arg_slots being a register.
   716   RegisterOrConstant offset = adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
   717   __ sub(Gargs, offset, temp_reg);  // source pointer for copy
   719   {
   720     Label loop;
   721     __ BIND(loop);
   722     // pull one word down each time through the loop
   723     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
   724     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
   725     __ add(temp_reg, wordSize, temp_reg);
   726     __ cmp_and_brx_short(temp_reg, argslot_reg, Assembler::lessUnsigned, Assembler::pt, loop);
   727   }
   729   // Now move the argslot down, to point to the opened-up space.
   730   __ add(argslot_reg, offset, argslot_reg);
   731   BLOCK_COMMENT("} insert_arg_slots");
   732 }
   735 // Helper to remove argument slots from the stack.
   736 // arg_slots must be a multiple of stack_move_unit() and > 0
   737 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
   738                                      RegisterOrConstant arg_slots,
   739                                      Register argslot_reg,
   740                                      Register temp_reg, Register temp2_reg, Register temp3_reg) {
   741   // allow constant zero
   742   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   743     return;
   744   assert_different_registers(argslot_reg, temp_reg, temp2_reg, temp3_reg,
   745                              (!arg_slots.is_register() ? Gargs : arg_slots.as_register()));
   747   BLOCK_COMMENT("remove_arg_slots {");
   748   if (VerifyMethodHandles)
   749     verify_argslots(_masm, arg_slots, argslot_reg, temp_reg, temp2_reg, false,
   750                     "deleted argument(s) must fall within current frame");
   751   if (VerifyMethodHandles)
   752     verify_stack_move(_masm, arg_slots, +1);
   754   // Pull up everything shallower than argslot.
   755   // Then remove the excess space on the stack.
   756   // The stacked return address gets pulled up with everything else.
   757   // That is, copy [sp, argslot) upward by size words.  In pseudo-code:
   758   //   for (temp = argslot-1; temp >= sp; --temp)
   759   //     temp[size] = temp[0]
   760   //   argslot += size;
   761   //   sp += size;
   763   RegisterOrConstant offset = __ regcon_sll_ptr(arg_slots, LogBytesPerWord, temp3_reg);
   764   __ sub(argslot_reg, wordSize, temp_reg);  // source pointer for copy
   766   {
   767     Label L_loop;
   768     __ BIND(L_loop);
   769     // pull one word up each time through the loop
   770     __ ld_ptr(           Address(temp_reg, 0     ), temp2_reg);
   771     __ st_ptr(temp2_reg, Address(temp_reg, offset)           );
   772     __ sub(temp_reg, wordSize, temp_reg);
   773     __ cmp_and_brx_short(temp_reg, Gargs, Assembler::greaterEqualUnsigned, Assembler::pt, L_loop);
   774   }
   776   // And adjust the argslot address to point at the deletion point.
   777   __ add(argslot_reg, offset, argslot_reg);
   779   // We don't need the offset at this point anymore, just adjust SP and Gargs.
   780   (void) adjust_SP_and_Gargs_up_by_slots(_masm, arg_slots, temp3_reg, temp_reg);
   782   BLOCK_COMMENT("} remove_arg_slots");
   783 }
   785 // Helper to copy argument slots to the top of the stack.
   786 // The sequence starts with argslot_reg and is counted by slot_count
   787 // slot_count must be a multiple of stack_move_unit() and >= 0
   788 // This function blows the temps but does not change argslot_reg.
   789 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
   790                                    Register argslot_reg,
   791                                    RegisterOrConstant slot_count,
   792                                    Register temp_reg, Register temp2_reg) {
   793   // allow constant zero
   794   if (slot_count.is_constant() && slot_count.as_constant() == 0)
   795     return;
   796   assert_different_registers(argslot_reg, temp_reg, temp2_reg,
   797                              (!slot_count.is_register() ? Gargs : slot_count.as_register()),
   798                              SP);
   799   assert(Interpreter::stackElementSize == wordSize, "else change this code");
   801   BLOCK_COMMENT("push_arg_slots {");
   802   if (VerifyMethodHandles)
   803     verify_stack_move(_masm, slot_count, 0);
   805   RegisterOrConstant offset = adjust_SP_and_Gargs_down_by_slots(_masm, slot_count, temp2_reg, temp_reg);
   807   if (slot_count.is_constant()) {
   808     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
   809       __ ld_ptr(          Address(argslot_reg, i * wordSize), temp_reg);
   810       __ st_ptr(temp_reg, Address(Gargs,       i * wordSize));
   811     }
   812   } else {
   813     Label L_plural, L_loop, L_break;
   814     // Emit code to dynamically check for the common cases, zero and one slot.
   815     __ cmp(slot_count.as_register(), (int32_t) 1);
   816     __ br(Assembler::greater, false, Assembler::pn, L_plural);
   817     __ delayed()->nop();
   818     __ br(Assembler::less, false, Assembler::pn, L_break);
   819     __ delayed()->nop();
   820     __ ld_ptr(          Address(argslot_reg, 0), temp_reg);
   821     __ st_ptr(temp_reg, Address(Gargs,       0));
   822     __ ba_short(L_break);
   823     __ BIND(L_plural);
   825     // Loop for 2 or more:
   826     //   top = &argslot[slot_count]
   827     //   while (top > argslot)  *(--Gargs) = *(--top)
   828     Register top_reg = temp_reg;
   829     __ add(argslot_reg, offset, top_reg);
   830     __ add(Gargs,       offset, Gargs  );  // move back up again so we can go down
   831     __ BIND(L_loop);
   832     __ sub(top_reg, wordSize, top_reg);
   833     __ sub(Gargs,   wordSize, Gargs  );
   834     __ ld_ptr(           Address(top_reg, 0), temp2_reg);
   835     __ st_ptr(temp2_reg, Address(Gargs,   0));
   836     __ cmp_and_brx_short(top_reg, argslot_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
   837     __ BIND(L_break);
   838   }
   839   BLOCK_COMMENT("} push_arg_slots");
   840 }
   842 // in-place movement; no change to Gargs
   843 // blows temp_reg, temp2_reg
   844 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   845                                       Register bottom_reg,  // invariant
   846                                       Address  top_addr,    // can use temp_reg
   847                                       RegisterOrConstant positive_distance_in_slots,  // destroyed if register
   848                                       Register temp_reg, Register temp2_reg) {
   849   assert_different_registers(bottom_reg,
   850                              temp_reg, temp2_reg,
   851                              positive_distance_in_slots.register_or_noreg());
   852   BLOCK_COMMENT("move_arg_slots_up {");
   853   Label L_loop, L_break;
   854   Register top_reg = temp_reg;
   855   if (!top_addr.is_same_address(Address(top_reg, 0))) {
   856     __ add(top_addr, top_reg);
   857   }
   858   // Detect empty (or broken) loop:
   859 #ifdef ASSERT
   860   if (VerifyMethodHandles) {
   861     // Verify that &bottom < &top (non-empty interval)
   862     Label L_ok, L_bad;
   863     if (positive_distance_in_slots.is_register()) {
   864       __ cmp(positive_distance_in_slots.as_register(), (int32_t) 0);
   865       __ br(Assembler::lessEqual, false, Assembler::pn, L_bad);
   866       __ delayed()->nop();
   867     }
   868     __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   869     __ BIND(L_bad);
   870     __ stop("valid bounds (copy up)");
   871     __ BIND(L_ok);
   872   }
   873 #endif
   874   __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
   875   // work top down to bottom, copying contiguous data upwards
   876   // In pseudo-code:
   877   //   while (--top >= bottom) *(top + distance) = *(top + 0);
   878   RegisterOrConstant offset = __ argument_offset(positive_distance_in_slots, positive_distance_in_slots.register_or_noreg());
   879   __ BIND(L_loop);
   880   __ sub(top_reg, wordSize, top_reg);
   881   __ ld_ptr(           Address(top_reg, 0     ), temp2_reg);
   882   __ st_ptr(temp2_reg, Address(top_reg, offset)           );
   883   __ cmp_and_brx_short(top_reg, bottom_reg, Assembler::greaterUnsigned, Assembler::pt, L_loop);
   884   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   885   __ BIND(L_break);
   886   BLOCK_COMMENT("} move_arg_slots_up");
   887 }
   889 // in-place movement; no change to rsp
   890 // blows temp_reg, temp2_reg
   891 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   892                                         Address  bottom_addr,  // can use temp_reg
   893                                         Register top_reg,      // invariant
   894                                         RegisterOrConstant negative_distance_in_slots,  // destroyed if register
   895                                         Register temp_reg, Register temp2_reg) {
   896   assert_different_registers(top_reg,
   897                              negative_distance_in_slots.register_or_noreg(),
   898                              temp_reg, temp2_reg);
   899   BLOCK_COMMENT("move_arg_slots_down {");
   900   Label L_loop, L_break;
   901   Register bottom_reg = temp_reg;
   902   if (!bottom_addr.is_same_address(Address(bottom_reg, 0))) {
   903     __ add(bottom_addr, bottom_reg);
   904   }
   905   // Detect empty (or broken) loop:
   906 #ifdef ASSERT
   907   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   908   if (VerifyMethodHandles) {
   909     // Verify that &bottom < &top (non-empty interval)
   910     Label L_ok, L_bad;
   911     if (negative_distance_in_slots.is_register()) {
   912       __ cmp(negative_distance_in_slots.as_register(), (int32_t) 0);
   913       __ br(Assembler::greaterEqual, false, Assembler::pn, L_bad);
   914       __ delayed()->nop();
   915     }
   916     __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   917     __ BIND(L_bad);
   918     __ stop("valid bounds (copy down)");
   919     __ BIND(L_ok);
   920   }
   921 #endif
   922   __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::greaterEqualUnsigned, Assembler::pn, L_break);
   923   // work bottom up to top, copying contiguous data downwards
   924   // In pseudo-code:
   925   //   while (bottom < top) *(bottom - distance) = *(bottom + 0), bottom++;
   926   RegisterOrConstant offset = __ argument_offset(negative_distance_in_slots, negative_distance_in_slots.register_or_noreg());
   927   __ BIND(L_loop);
   928   __ ld_ptr(           Address(bottom_reg, 0     ), temp2_reg);
   929   __ st_ptr(temp2_reg, Address(bottom_reg, offset)           );
   930   __ add(bottom_reg, wordSize, bottom_reg);
   931   __ cmp_and_brx_short(bottom_reg, top_reg, Assembler::lessUnsigned, Assembler::pt, L_loop);
   932   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   933   __ BIND(L_break);
   934   BLOCK_COMMENT("} move_arg_slots_down");
   935 }
   937 // Copy from a field or array element to a stacked argument slot.
   938 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   939 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   940                                    BasicType type, bool is_element,
   941                                    Address value_src, Address slot_dest,
   942                                    Register temp_reg) {
   943   assert(!slot_dest.uses(temp_reg), "must be different register");
   944   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   945   if (type == T_OBJECT || type == T_ARRAY) {
   946     __ load_heap_oop(value_src, temp_reg);
   947     __ verify_oop(temp_reg);
   948     __ st_ptr(temp_reg, slot_dest);
   949   } else if (type != T_VOID) {
   950     int  arg_size      = type2aelembytes(type);
   951     bool arg_is_signed = is_signed_subword_type(type);
   952     int  slot_size     = is_subword_type(type) ? type2aelembytes(T_INT) : arg_size;  // store int sub-words as int
   953     __ load_sized_value( value_src, temp_reg, arg_size, arg_is_signed);
   954     __ store_sized_value(temp_reg, slot_dest, slot_size              );
   955   }
   956   BLOCK_COMMENT("} move_typed_arg");
   957 }
   959 // Cf. TemplateInterpreterGenerator::generate_return_entry_for and
   960 // InterpreterMacroAssembler::save_return_value
   961 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   962                                       Address return_slot) {
   963   BLOCK_COMMENT("move_return_value {");
   964   // Look at the type and pull the value out of the corresponding register.
   965   if (type == T_VOID) {
   966     // nothing to do
   967   } else if (type == T_OBJECT) {
   968     __ verify_oop(O0);
   969     __ st_ptr(O0, return_slot);
   970   } else if (type == T_INT || is_subword_type(type)) {
   971     int type_size = type2aelembytes(T_INT);
   972     __ store_sized_value(O0, return_slot, type_size);
   973   } else if (type == T_LONG) {
   974     // store the value by parts
   975     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
   976 #if !defined(_LP64) && defined(COMPILER2)
   977     __ stx(G1, return_slot);
   978 #else
   979   #ifdef _LP64
   980     __ stx(O0, return_slot);
   981   #else
   982     if (return_slot.has_disp()) {
   983       // The displacement is a constant
   984       __ st(O0, return_slot);
   985       __ st(O1, return_slot.plus_disp(Interpreter::stackElementSize));
   986     } else {
   987       __ std(O0, return_slot);
   988     }
   989   #endif
   990 #endif
   991   } else if (type == T_FLOAT) {
   992     __ stf(FloatRegisterImpl::S, Ftos_f, return_slot);
   993   } else if (type == T_DOUBLE) {
   994     __ stf(FloatRegisterImpl::D, Ftos_f, return_slot);
   995   } else {
   996     ShouldNotReachHere();
   997   }
   998   BLOCK_COMMENT("} move_return_value");
   999 }
  1001 #ifndef PRODUCT
  1002 extern "C" void print_method_handle(oop mh);
  1003 void trace_method_handle_stub(const char* adaptername,
  1004                               oopDesc* mh,
  1005                               intptr_t* saved_sp) {
  1006   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have mh
  1007   tty->print_cr("MH %s mh="INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT, adaptername, (intptr_t) mh, saved_sp);
  1008   if (has_mh)
  1009     print_method_handle(mh);
  1011 void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) {
  1012   if (!TraceMethodHandles)  return;
  1013   BLOCK_COMMENT("trace_method_handle {");
  1014   // save: Gargs, O5_savedSP
  1015   __ save_frame(16);
  1016   __ set((intptr_t) adaptername, O0);
  1017   __ mov(G3_method_handle, O1);
  1018   __ mov(I5_savedSP, O2);
  1019   __ mov(G3_method_handle, L3);
  1020   __ mov(Gargs, L4);
  1021   __ mov(G5_method_type, L5);
  1022   __ call_VM_leaf(L7, CAST_FROM_FN_PTR(address, trace_method_handle_stub));
  1024   __ mov(L3, G3_method_handle);
  1025   __ mov(L4, Gargs);
  1026   __ mov(L5, G5_method_type);
  1027   __ restore();
  1028   BLOCK_COMMENT("} trace_method_handle");
  1030 #endif // PRODUCT
  1032 // which conversion op types are implemented here?
  1033 int MethodHandles::adapter_conversion_ops_supported_mask() {
  1034   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
  1035          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
  1036          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
  1037          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
  1038          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
  1039           // OP_PRIM_TO_REF is below...
  1040          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
  1041          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
  1042          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
  1043          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
  1044           // OP_COLLECT_ARGS is below...
  1045          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
  1046          |(!UseRicochetFrames ? 0 :
  1047            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
  1048            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
  1049            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
  1050            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
  1053          );
  1056 //------------------------------------------------------------------------------
  1057 // MethodHandles::generate_method_handle_stub
  1058 //
  1059 // Generate an "entry" field for a method handle.
  1060 // This determines how the method handle will respond to calls.
  1061 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
  1062   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
  1064   // Here is the register state during an interpreted call,
  1065   // as set up by generate_method_handle_interpreter_entry():
  1066   // - G5: garbage temp (was MethodHandle.invoke methodOop, unused)
  1067   // - G3: receiver method handle
  1068   // - O5_savedSP: sender SP (must preserve)
  1070   const Register O0_scratch = O0;
  1071   const Register O1_scratch = O1;
  1072   const Register O2_scratch = O2;
  1073   const Register O3_scratch = O3;
  1074   const Register O4_scratch = O4;
  1075   const Register G5_scratch = G5;
  1077   // Often used names:
  1078   const Register O0_argslot = O0;
  1080   // Argument registers for _raise_exception:
  1081   const Register O0_code     = O0;
  1082   const Register O1_actual   = O1;
  1083   const Register O2_required = O2;
  1085   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
  1087   // Some handy addresses:
  1088   Address G3_mh_vmtarget(   G3_method_handle, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes());
  1090   Address G3_dmh_vmindex(   G3_method_handle, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes());
  1092   Address G3_bmh_vmargslot( G3_method_handle, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes());
  1093   Address G3_bmh_argument(  G3_method_handle, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes());
  1095   Address G3_amh_vmargslot( G3_method_handle, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes());
  1096   Address G3_amh_argument ( G3_method_handle, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes());
  1097   Address G3_amh_conversion(G3_method_handle, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
  1099   const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1101   if (have_entry(ek)) {
  1102     __ nop();  // empty stubs make SG sick
  1103     return;
  1106   address interp_entry = __ pc();
  1108   trace_method_handle(_masm, entry_name(ek));
  1110   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
  1112   switch ((int) ek) {
  1113   case _raise_exception:
  1115       // Not a real MH entry, but rather shared code for raising an
  1116       // exception.  For sharing purposes the arguments are passed into registers
  1117       // and then placed in the intepreter calling convention here.
  1118       assert(raise_exception_method(), "must be set");
  1119       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
  1121       __ set(AddressLiteral((address) &_raise_exception_method), G5_method);
  1122       __ ld_ptr(Address(G5_method, 0), G5_method);
  1124       const int jobject_oop_offset = 0;
  1125       __ ld_ptr(Address(G5_method, jobject_oop_offset), G5_method);
  1127       adjust_SP_and_Gargs_down_by_slots(_masm, 3, noreg, noreg);
  1129       __ st_ptr(O0_code,     __ argument_address(constant(2), noreg, 0));
  1130       __ st_ptr(O1_actual,   __ argument_address(constant(1), noreg, 0));
  1131       __ st_ptr(O2_required, __ argument_address(constant(0), noreg, 0));
  1132       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1134     break;
  1136   case _invokestatic_mh:
  1137   case _invokespecial_mh:
  1139       __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
  1140       // Same as TemplateTable::invokestatic or invokespecial,
  1141       // minus the CP setup and profiling:
  1142       if (ek == _invokespecial_mh) {
  1143         // Must load & check the first argument before entering the target method.
  1144         __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1145         __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1146         __ null_check(G3_method_handle);
  1147         __ verify_oop(G3_method_handle);
  1149       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1151     break;
  1153   case _invokevirtual_mh:
  1155       // Same as TemplateTable::invokevirtual,
  1156       // minus the CP setup and profiling:
  1158       // Pick out the vtable index and receiver offset from the MH,
  1159       // and then we can discard it:
  1160       Register O2_index = O2_scratch;
  1161       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1162       __ ldsw(G3_dmh_vmindex, O2_index);
  1163       // Note:  The verifier allows us to ignore G3_mh_vmtarget.
  1164       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1165       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
  1167       // Get receiver klass:
  1168       Register O0_klass = O0_argslot;
  1169       __ load_klass(G3_method_handle, O0_klass);
  1170       __ verify_oop(O0_klass);
  1172       // Get target methodOop & entry point:
  1173       const int base = instanceKlass::vtable_start_offset() * wordSize;
  1174       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  1176       __ sll_ptr(O2_index, LogBytesPerWord, O2_index);
  1177       __ add(O0_klass, O2_index, O0_klass);
  1178       Address vtable_entry_addr(O0_klass, base + vtableEntry::method_offset_in_bytes());
  1179       __ ld_ptr(vtable_entry_addr, G5_method);
  1181       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1183     break;
  1185   case _invokeinterface_mh:
  1187       // Same as TemplateTable::invokeinterface,
  1188       // minus the CP setup and profiling:
  1189       __ load_method_handle_vmslots(O0_argslot, G3_method_handle, O1_scratch);
  1190       Register O1_intf  = O1_scratch;
  1191       Register G5_index = G5_scratch;
  1192       __ load_heap_oop(G3_mh_vmtarget, O1_intf);
  1193       __ ldsw(G3_dmh_vmindex, G5_index);
  1194       __ ld_ptr(__ argument_address(O0_argslot, O0_argslot, -1), G3_method_handle);
  1195       __ null_check(G3_method_handle, oopDesc::klass_offset_in_bytes());
  1197       // Get receiver klass:
  1198       Register O0_klass = O0_argslot;
  1199       __ load_klass(G3_method_handle, O0_klass);
  1200       __ verify_oop(O0_klass);
  1202       // Get interface:
  1203       Label no_such_interface;
  1204       __ verify_oop(O1_intf);
  1205       __ lookup_interface_method(O0_klass, O1_intf,
  1206                                  // Note: next two args must be the same:
  1207                                  G5_index, G5_method,
  1208                                  O2_scratch,
  1209                                  O3_scratch,
  1210                                  no_such_interface);
  1212       jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1214       __ bind(no_such_interface);
  1215       // Throw an exception.
  1216       // For historical reasons, it will be IncompatibleClassChangeError.
  1217       __ unimplemented("not tested yet");
  1218       __ ld_ptr(Address(O1_intf, java_mirror_offset), O2_required);  // required interface
  1219       __ mov(   O0_klass,                             O1_actual);    // bad receiver
  1220       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  1221       __ delayed()->mov(Bytecodes::_invokeinterface,  O0_code);      // who is complaining?
  1223     break;
  1225   case _bound_ref_mh:
  1226   case _bound_int_mh:
  1227   case _bound_long_mh:
  1228   case _bound_ref_direct_mh:
  1229   case _bound_int_direct_mh:
  1230   case _bound_long_direct_mh:
  1232       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
  1233       BasicType arg_type  = ek_bound_mh_arg_type(ek);
  1234       int       arg_slots = type2size[arg_type];
  1236       // Make room for the new argument:
  1237       load_vmargslot(_masm, G3_bmh_vmargslot, O0_argslot);
  1238       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1240       insert_arg_slots(_masm, arg_slots * stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1242       // Store bound argument into the new stack slot:
  1243       __ load_heap_oop(G3_bmh_argument, O1_scratch);
  1244       if (arg_type == T_OBJECT) {
  1245         __ st_ptr(O1_scratch, Address(O0_argslot, 0));
  1246       } else {
  1247         Address prim_value_addr(O1_scratch, java_lang_boxing_object::value_offset_in_bytes(arg_type));
  1248         move_typed_arg(_masm, arg_type, false,
  1249                        prim_value_addr,
  1250                        Address(O0_argslot, 0),
  1251                        O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  1254       if (direct_to_method) {
  1255         __ load_heap_oop(G3_mh_vmtarget, G5_method);  // target is a methodOop
  1256         jump_from_method_handle(_masm, G5_method, O1_scratch, O2_scratch);
  1257       } else {
  1258         __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);  // target is a methodOop
  1259         __ verify_oop(G3_method_handle);
  1260         __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1263     break;
  1265   case _adapter_retype_only:
  1266   case _adapter_retype_raw:
  1267     // Immediately jump to the next MH layer:
  1268     __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1269     __ verify_oop(G3_method_handle);
  1270     __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1271     // This is OK when all parameter types widen.
  1272     // It is also OK when a return type narrows.
  1273     break;
  1275   case _adapter_check_cast:
  1277       // Check a reference argument before jumping to the next layer of MH:
  1278       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1279       Address vmarg = __ argument_address(O0_argslot, O0_argslot);
  1281       // What class are we casting to?
  1282       Register O1_klass = O1_scratch;  // Interesting AMH data.
  1283       __ load_heap_oop(G3_amh_argument, O1_klass);  // This is a Class object!
  1284       load_klass_from_Class(_masm, O1_klass, O2_scratch, O3_scratch);
  1286       Label L_done;
  1287       __ ld_ptr(vmarg, O2_scratch);
  1288       __ br_null_short(O2_scratch, Assembler::pn, L_done);  // No cast if null.
  1289       __ load_klass(O2_scratch, O2_scratch);
  1291       // Live at this point:
  1292       // - O0_argslot      :  argslot index in vmarg; may be required in the failing path
  1293       // - O1_klass        :  klass required by the target method
  1294       // - O2_scratch      :  argument klass to test
  1295       // - G3_method_handle:  adapter method handle
  1296       __ check_klass_subtype(O2_scratch, O1_klass, O3_scratch, O4_scratch, L_done);
  1298       // If we get here, the type check failed!
  1299       __ load_heap_oop(G3_amh_argument,        O2_required);  // required class
  1300       __ ld_ptr(       vmarg,                  O1_actual);    // bad object
  1301       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  1302       __ delayed()->mov(Bytecodes::_checkcast, O0_code);      // who is complaining?
  1304       __ BIND(L_done);
  1305       // Get the new MH:
  1306       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1307       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1309     break;
  1311   case _adapter_prim_to_prim:
  1312   case _adapter_ref_to_prim:
  1313     // Handled completely by optimized cases.
  1314     __ stop("init_AdapterMethodHandle should not issue this");
  1315     break;
  1317   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
  1318 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
  1319   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
  1320   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
  1322       // Perform an in-place conversion to int or an int subword.
  1323       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1324       Address value;
  1325       Address vmarg;
  1326       bool value_left_justified = false;
  1328       switch (ek) {
  1329       case _adapter_opt_i2i:
  1330         value = vmarg = __ argument_address(O0_argslot, O0_argslot);
  1331         break;
  1332       case _adapter_opt_l2i:
  1334           // just delete the extra slot
  1335 #ifdef _LP64
  1336           // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1337           // data is passed in only 1 slot.
  1338           // Keep the second slot.
  1339           __ add(__ argument_address(O0_argslot, O0_argslot, -1), O0_argslot);
  1340           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1341           value = Address(O0_argslot, 4);  // Get least-significant 32-bit of 64-bit value.
  1342           vmarg = Address(O0_argslot, Interpreter::stackElementSize);
  1343 #else
  1344           // Keep the first slot.
  1345           __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1346           remove_arg_slots(_masm, -stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1347           value = Address(O0_argslot, 0);
  1348           vmarg = value;
  1349 #endif
  1351         break;
  1352       case _adapter_opt_unboxi:
  1354           vmarg = __ argument_address(O0_argslot, O0_argslot);
  1355           // Load the value up from the heap.
  1356           __ ld_ptr(vmarg, O1_scratch);
  1357           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
  1358 #ifdef ASSERT
  1359           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1360             if (is_subword_type(BasicType(bt)))
  1361               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
  1363 #endif
  1364           __ null_check(O1_scratch, value_offset);
  1365           value = Address(O1_scratch, value_offset);
  1366 #ifdef _BIG_ENDIAN
  1367           // Values stored in objects are packed.
  1368           value_left_justified = true;
  1369 #endif
  1371         break;
  1372       default:
  1373         ShouldNotReachHere();
  1376       // This check is required on _BIG_ENDIAN
  1377       Register G5_vminfo = G5_scratch;
  1378       __ ldsw(G3_amh_conversion, G5_vminfo);
  1379       assert(CONV_VMINFO_SHIFT == 0, "preshifted");
  1381       // Original 32-bit vmdata word must be of this form:
  1382       // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
  1383       __ lduw(value, O1_scratch);
  1384       if (!value_left_justified)
  1385         __ sll(O1_scratch, G5_vminfo, O1_scratch);
  1386       Label zero_extend, done;
  1387       __ btst(CONV_VMINFO_SIGN_FLAG, G5_vminfo);
  1388       __ br(Assembler::zero, false, Assembler::pn, zero_extend);
  1389       __ delayed()->nop();
  1391       // this path is taken for int->byte, int->short
  1392       __ sra(O1_scratch, G5_vminfo, O1_scratch);
  1393       __ ba_short(done);
  1395       __ bind(zero_extend);
  1396       // this is taken for int->char
  1397       __ srl(O1_scratch, G5_vminfo, O1_scratch);
  1399       __ bind(done);
  1400       __ st(O1_scratch, vmarg);
  1402       // Get the new MH:
  1403       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1404       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1406     break;
  1408   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
  1409   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
  1411       // Perform an in-place int-to-long or ref-to-long conversion.
  1412       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1414       // On big-endian machine we duplicate the slot and store the MSW
  1415       // in the first slot.
  1416       __ add(__ argument_address(O0_argslot, O0_argslot, 1), O0_argslot);
  1418       insert_arg_slots(_masm, stack_move_unit(), O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  1420       Address arg_lsw(O0_argslot, 0);
  1421       Address arg_msw(O0_argslot, -Interpreter::stackElementSize);
  1423       switch (ek) {
  1424       case _adapter_opt_i2l:
  1426 #ifdef _LP64
  1427           __ ldsw(arg_lsw, O2_scratch);                 // Load LSW sign-extended
  1428 #else
  1429           __ ldsw(arg_lsw, O3_scratch);                 // Load LSW sign-extended
  1430           __ srlx(O3_scratch, BitsPerInt, O2_scratch);  // Move MSW value to lower 32-bits for std
  1431 #endif
  1432           __ st_long(O2_scratch, arg_msw);              // Uses O2/O3 on !_LP64
  1434         break;
  1435       case _adapter_opt_unboxl:
  1437           // Load the value up from the heap.
  1438           __ ld_ptr(arg_lsw, O1_scratch);
  1439           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
  1440           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
  1441           __ null_check(O1_scratch, value_offset);
  1442           __ ld_long(Address(O1_scratch, value_offset), O2_scratch);  // Uses O2/O3 on !_LP64
  1443           __ st_long(O2_scratch, arg_msw);
  1445         break;
  1446       default:
  1447         ShouldNotReachHere();
  1450       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1451       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1453     break;
  1455   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
  1456   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
  1458       // perform an in-place floating primitive conversion
  1459       __ unimplemented(entry_name(ek));
  1461     break;
  1463   case _adapter_prim_to_ref:
  1464     __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  1465     break;
  1467   case _adapter_swap_args:
  1468   case _adapter_rot_args:
  1469     // handled completely by optimized cases
  1470     __ stop("init_AdapterMethodHandle should not issue this");
  1471     break;
  1473   case _adapter_opt_swap_1:
  1474   case _adapter_opt_swap_2:
  1475   case _adapter_opt_rot_1_up:
  1476   case _adapter_opt_rot_1_down:
  1477   case _adapter_opt_rot_2_up:
  1478   case _adapter_opt_rot_2_down:
  1480       int swap_slots = ek_adapter_opt_swap_slots(ek);
  1481       int rotate     = ek_adapter_opt_swap_mode(ek);
  1483       // 'argslot' is the position of the first argument to swap.
  1484       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1485       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1486       if (VerifyMethodHandles)
  1487         verify_argslot(_masm, O0_argslot, O2_scratch, "swap point must fall within current frame");
  1489       // 'vminfo' is the second.
  1490       Register O1_destslot = O1_scratch;
  1491       load_conversion_vminfo(_masm, G3_amh_conversion, O1_destslot);
  1492       __ add(__ argument_address(O1_destslot, O1_destslot), O1_destslot);
  1493       if (VerifyMethodHandles)
  1494         verify_argslot(_masm, O1_destslot, O2_scratch, "swap point must fall within current frame");
  1496       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
  1497       if (!rotate) {
  1498         // simple swap
  1499         for (int i = 0; i < swap_slots; i++) {
  1500           __ ld_ptr(            Address(O0_argslot,  i * wordSize), O2_scratch);
  1501           __ ld_ptr(            Address(O1_destslot, i * wordSize), O3_scratch);
  1502           __ st_ptr(O3_scratch, Address(O0_argslot,  i * wordSize));
  1503           __ st_ptr(O2_scratch, Address(O1_destslot, i * wordSize));
  1505       } else {
  1506         // A rotate is actually pair of moves, with an "odd slot" (or pair)
  1507         // changing place with a series of other slots.
  1508         // First, push the "odd slot", which is going to get overwritten
  1509         switch (swap_slots) {
  1510         case 2 :  __ ld_ptr(Address(O0_argslot, 1 * wordSize), O4_scratch); // fall-thru
  1511         case 1 :  __ ld_ptr(Address(O0_argslot, 0 * wordSize), O3_scratch); break;
  1512         default:  ShouldNotReachHere();
  1514         if (rotate > 0) {
  1515           // Here is rotate > 0:
  1516           // (low mem)                                          (high mem)
  1517           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
  1518           // =>
  1519           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
  1520           // work argslot down to destslot, copying contiguous data upwards
  1521           // pseudo-code:
  1522           //   argslot  = src_addr - swap_bytes
  1523           //   destslot = dest_addr
  1524           //   while (argslot >= destslot) *(argslot + swap_bytes) = *(argslot + 0), argslot--;
  1525           move_arg_slots_up(_masm,
  1526                             O1_destslot,
  1527                             Address(O0_argslot, 0),
  1528                             swap_slots,
  1529                             O0_argslot, O2_scratch);
  1530         } else {
  1531           // Here is the other direction, rotate < 0:
  1532           // (low mem)                                          (high mem)
  1533           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
  1534           // =>
  1535           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
  1536           // work argslot up to destslot, copying contiguous data downwards
  1537           // pseudo-code:
  1538           //   argslot  = src_addr + swap_bytes
  1539           //   destslot = dest_addr
  1540           //   while (argslot <= destslot) *(argslot - swap_bytes) = *(argslot + 0), argslot++;
  1541           // dest_slot denotes an exclusive upper limit
  1542           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
  1543           if (limit_bias != 0)
  1544             __ add(O1_destslot, - limit_bias * wordSize, O1_destslot);
  1545           move_arg_slots_down(_masm,
  1546                               Address(O0_argslot, swap_slots * wordSize),
  1547                               O1_destslot,
  1548                               -swap_slots,
  1549                               O0_argslot, O2_scratch);
  1551           __ sub(O1_destslot, swap_slots * wordSize, O1_destslot);
  1553         // pop the original first chunk into the destination slot, now free
  1554         switch (swap_slots) {
  1555         case 2 :  __ st_ptr(O4_scratch, Address(O1_destslot, 1 * wordSize)); // fall-thru
  1556         case 1 :  __ st_ptr(O3_scratch, Address(O1_destslot, 0 * wordSize)); break;
  1557         default:  ShouldNotReachHere();
  1561       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1562       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1564     break;
  1566   case _adapter_dup_args:
  1568       // 'argslot' is the position of the first argument to duplicate.
  1569       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1570       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1572       // 'stack_move' is negative number of words to duplicate.
  1573       Register O1_stack_move = O1_scratch;
  1574       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
  1576       if (VerifyMethodHandles) {
  1577         verify_argslots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, true,
  1578                         "copied argument(s) must fall within current frame");
  1581       // insert location is always the bottom of the argument list:
  1582       __ neg(O1_stack_move);
  1583       push_arg_slots(_masm, O0_argslot, O1_stack_move, O2_scratch, O3_scratch);
  1585       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1586       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1588     break;
  1590   case _adapter_drop_args:
  1592       // 'argslot' is the position of the first argument to nuke.
  1593       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  1594       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  1596       // 'stack_move' is number of words to drop.
  1597       Register O1_stack_move = O1_scratch;
  1598       load_stack_move(_masm, G3_amh_conversion, O1_stack_move);
  1600       remove_arg_slots(_masm, O1_stack_move, O0_argslot, O2_scratch, O3_scratch, O4_scratch);
  1602       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  1603       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  1605     break;
  1607   case _adapter_collect_args:
  1608   case _adapter_fold_args:
  1609   case _adapter_spread_args:
  1610     // Handled completely by optimized cases.
  1611     __ stop("init_AdapterMethodHandle should not issue this");
  1612     break;
  1614   case _adapter_opt_collect_ref:
  1615   case _adapter_opt_collect_int:
  1616   case _adapter_opt_collect_long:
  1617   case _adapter_opt_collect_float:
  1618   case _adapter_opt_collect_double:
  1619   case _adapter_opt_collect_void:
  1620   case _adapter_opt_collect_0_ref:
  1621   case _adapter_opt_collect_1_ref:
  1622   case _adapter_opt_collect_2_ref:
  1623   case _adapter_opt_collect_3_ref:
  1624   case _adapter_opt_collect_4_ref:
  1625   case _adapter_opt_collect_5_ref:
  1626   case _adapter_opt_filter_S0_ref:
  1627   case _adapter_opt_filter_S1_ref:
  1628   case _adapter_opt_filter_S2_ref:
  1629   case _adapter_opt_filter_S3_ref:
  1630   case _adapter_opt_filter_S4_ref:
  1631   case _adapter_opt_filter_S5_ref:
  1632   case _adapter_opt_collect_2_S0_ref:
  1633   case _adapter_opt_collect_2_S1_ref:
  1634   case _adapter_opt_collect_2_S2_ref:
  1635   case _adapter_opt_collect_2_S3_ref:
  1636   case _adapter_opt_collect_2_S4_ref:
  1637   case _adapter_opt_collect_2_S5_ref:
  1638   case _adapter_opt_fold_ref:
  1639   case _adapter_opt_fold_int:
  1640   case _adapter_opt_fold_long:
  1641   case _adapter_opt_fold_float:
  1642   case _adapter_opt_fold_double:
  1643   case _adapter_opt_fold_void:
  1644   case _adapter_opt_fold_1_ref:
  1645   case _adapter_opt_fold_2_ref:
  1646   case _adapter_opt_fold_3_ref:
  1647   case _adapter_opt_fold_4_ref:
  1648   case _adapter_opt_fold_5_ref:
  1650       // Given a fresh incoming stack frame, build a new ricochet frame.
  1651       // On entry, TOS points at a return PC, and FP is the callers frame ptr.
  1652       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
  1653       // RCX contains an AdapterMethodHandle of the indicated kind.
  1655       // Relevant AMH fields:
  1656       // amh.vmargslot:
  1657       //   points to the trailing edge of the arguments
  1658       //   to filter, collect, or fold.  For a boxing operation,
  1659       //   it points just after the single primitive value.
  1660       // amh.argument:
  1661       //   recursively called MH, on |collect| arguments
  1662       // amh.vmtarget:
  1663       //   final destination MH, on return value, etc.
  1664       // amh.conversion.dest:
  1665       //   tells what is the type of the return value
  1666       //   (not needed here, since dest is also derived from ek)
  1667       // amh.conversion.vminfo:
  1668       //   points to the trailing edge of the return value
  1669       //   when the vmtarget is to be called; this is
  1670       //   equal to vmargslot + (retained ? |collect| : 0)
  1672       // Pass 0 or more argument slots to the recursive target.
  1673       int collect_count_constant = ek_adapter_opt_collect_count(ek);
  1675       // The collected arguments are copied from the saved argument list:
  1676       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
  1678       assert(ek_orig == _adapter_collect_args ||
  1679              ek_orig == _adapter_fold_args, "");
  1680       bool retain_original_args = (ek_orig == _adapter_fold_args);
  1682       // The return value is replaced (or inserted) at the 'vminfo' argslot.
  1683       // Sometimes we can compute this statically.
  1684       int dest_slot_constant = -1;
  1685       if (!retain_original_args)
  1686         dest_slot_constant = collect_slot_constant;
  1687       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
  1688         // We are preserving all the arguments, and the return value is prepended,
  1689         // so the return slot is to the left (above) the |collect| sequence.
  1690         dest_slot_constant = collect_slot_constant + collect_count_constant;
  1692       // Replace all those slots by the result of the recursive call.
  1693       // The result type can be one of ref, int, long, float, double, void.
  1694       // In the case of void, nothing is pushed on the stack after return.
  1695       BasicType dest = ek_adapter_opt_collect_type(ek);
  1696       assert(dest == type2wfield[dest], "dest is a stack slot type");
  1697       int dest_count = type2size[dest];
  1698       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
  1700       // Choose a return continuation.
  1701       EntryKind ek_ret = _adapter_opt_return_any;
  1702       if (dest != T_CONFLICT && OptimizeMethodHandles) {
  1703         switch (dest) {
  1704         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
  1705         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
  1706         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
  1707         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
  1708         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
  1709         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
  1710         default       : ShouldNotReachHere();
  1712         if (dest == T_OBJECT && dest_slot_constant >= 0) {
  1713           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
  1714           if (ek_try <= _adapter_opt_return_LAST &&
  1715               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
  1716             ek_ret = ek_try;
  1719         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
  1722       // Already pushed:  ... keep1 | collect | keep2 |
  1724       // Push a few extra argument words, if we need them to store the return value.
  1726         int extra_slots = 0;
  1727         if (retain_original_args) {
  1728           extra_slots = dest_count;
  1729         } else if (collect_count_constant == -1) {
  1730           extra_slots = dest_count;  // collect_count might be zero; be generous
  1731         } else if (dest_count > collect_count_constant) {
  1732           extra_slots = (dest_count - collect_count_constant);
  1733         } else {
  1734           // else we know we have enough dead space in |collect| to repurpose for return values
  1736         if (extra_slots != 0) {
  1737           __ sub(SP, round_to(extra_slots, 2) * Interpreter::stackElementSize, SP);
  1741       // Set up Ricochet Frame.
  1742       __ mov(SP, O5_savedSP);  // record SP for the callee
  1744       // One extra (empty) slot for outgoing target MH (see Gargs computation below).
  1745       __ save_frame(2);  // Note: we need to add 2 slots since frame::memory_parameter_word_sp_offset is 23.
  1747       // Note: Gargs is live throughout the following, until we make our recursive call.
  1748       // And the RF saves a copy in L4_saved_args_base.
  1750       RicochetFrame::enter_ricochet_frame(_masm, G3_method_handle, Gargs,
  1751                                           entry(ek_ret)->from_interpreted_entry());
  1753       // Compute argument base:
  1754       // Set up Gargs for current frame, extra (empty) slot is for outgoing target MH (space reserved by save_frame above).
  1755       __ add(FP, STACK_BIAS - (1 * Interpreter::stackElementSize), Gargs);
  1757       // Now pushed:  ... keep1 | collect | keep2 | extra | [RF]
  1759 #ifdef ASSERT
  1760       if (VerifyMethodHandles && dest != T_CONFLICT) {
  1761         BLOCK_COMMENT("verify AMH.conv.dest {");
  1762         extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O1_scratch);
  1763         Label L_dest_ok;
  1764         __ cmp(O1_scratch, (int) dest);
  1765         __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
  1766         __ delayed()->nop();
  1767         if (dest == T_INT) {
  1768           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  1769             if (is_subword_type(BasicType(bt))) {
  1770               __ cmp(O1_scratch, (int) bt);
  1771               __ br(Assembler::equal, false, Assembler::pt, L_dest_ok);
  1772               __ delayed()->nop();
  1776         __ stop("bad dest in AMH.conv");
  1777         __ BIND(L_dest_ok);
  1778         BLOCK_COMMENT("} verify AMH.conv.dest");
  1780 #endif //ASSERT
  1782       // Find out where the original copy of the recursive argument sequence begins.
  1783       Register O0_coll = O0_scratch;
  1785         RegisterOrConstant collect_slot = collect_slot_constant;
  1786         if (collect_slot_constant == -1) {
  1787           load_vmargslot(_masm, G3_amh_vmargslot, O1_scratch);
  1788           collect_slot = O1_scratch;
  1790         // collect_slot might be 0, but we need the move anyway.
  1791         __ add(RicochetFrame::L4_saved_args_base, __ argument_offset(collect_slot, collect_slot.register_or_noreg()), O0_coll);
  1792         // O0_coll now points at the trailing edge of |collect| and leading edge of |keep2|
  1795       // Replace the old AMH with the recursive MH.  (No going back now.)
  1796       // In the case of a boxing call, the recursive call is to a 'boxer' method,
  1797       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
  1798       // or collect call, it will take one or more arguments, transform them,
  1799       // and return some result, to store back into argument_base[vminfo].
  1800       __ load_heap_oop(G3_amh_argument, G3_method_handle);
  1801       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O1_scratch, O2_scratch);
  1803       // Calculate |collect|, the number of arguments we are collecting.
  1804       Register O1_collect_count = O1_scratch;
  1805       RegisterOrConstant collect_count;
  1806       if (collect_count_constant < 0) {
  1807         __ load_method_handle_vmslots(O1_collect_count, G3_method_handle, O2_scratch);
  1808         collect_count = O1_collect_count;
  1809       } else {
  1810         collect_count = collect_count_constant;
  1811 #ifdef ASSERT
  1812         if (VerifyMethodHandles) {
  1813           BLOCK_COMMENT("verify collect_count_constant {");
  1814           __ load_method_handle_vmslots(O3_scratch, G3_method_handle, O2_scratch);
  1815           Label L_count_ok;
  1816           __ cmp_and_br_short(O3_scratch, collect_count_constant, Assembler::equal, Assembler::pt, L_count_ok);
  1817           __ stop("bad vminfo in AMH.conv");
  1818           __ BIND(L_count_ok);
  1819           BLOCK_COMMENT("} verify collect_count_constant");
  1821 #endif //ASSERT
  1824       // copy |collect| slots directly to TOS:
  1825       push_arg_slots(_masm, O0_coll, collect_count, O2_scratch, O3_scratch);
  1826       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
  1827       // O0_coll still points at the trailing edge of |collect| and leading edge of |keep2|
  1829       // If necessary, adjust the saved arguments to make room for the eventual return value.
  1830       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
  1831       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
  1832       // In the non-retaining case, this might move keep2 either up or down.
  1833       // We don't have to copy the whole | RF... collect | complex,
  1834       // but we must adjust RF.saved_args_base.
  1835       // Also, from now on, we will forget about the original copy of |collect|.
  1836       // If we are retaining it, we will treat it as part of |keep2|.
  1837       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
  1839       BLOCK_COMMENT("adjust trailing arguments {");
  1840       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
  1841       int                open_count  = dest_count;
  1842       RegisterOrConstant close_count = collect_count_constant;
  1843       Register O1_close_count = O1_collect_count;
  1844       if (retain_original_args) {
  1845         close_count = constant(0);
  1846       } else if (collect_count_constant == -1) {
  1847         close_count = O1_collect_count;
  1850       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
  1851       RegisterOrConstant keep3_count;
  1852       Register O2_keep3_count = O2_scratch;
  1853       if (dest_slot_constant < 0) {
  1854         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O2_keep3_count);
  1855         keep3_count = O2_keep3_count;
  1856       } else  {
  1857         keep3_count = dest_slot_constant;
  1858 #ifdef ASSERT
  1859         if (VerifyMethodHandles && dest_slot_constant < 0) {
  1860           BLOCK_COMMENT("verify dest_slot_constant {");
  1861           extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O3_scratch);
  1862           Label L_vminfo_ok;
  1863           __ cmp_and_br_short(O3_scratch, dest_slot_constant, Assembler::equal, Assembler::pt, L_vminfo_ok);
  1864           __ stop("bad vminfo in AMH.conv");
  1865           __ BIND(L_vminfo_ok);
  1866           BLOCK_COMMENT("} verify dest_slot_constant");
  1868 #endif //ASSERT
  1871       // tasks remaining:
  1872       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
  1873       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
  1874       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
  1876       // Old and new argument locations (based at slot 0).
  1877       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
  1878       bool zero_open_count = (open_count == 0);  // remember this bit of info
  1879       if (move_keep3 && fix_arg_base) {
  1880         // It will be easier to have everything in one register:
  1881         if (close_count.is_register()) {
  1882           // Deduct open_count from close_count register to get a clean +/- value.
  1883           __ sub(close_count.as_register(), open_count, close_count.as_register());
  1884         } else {
  1885           close_count = close_count.as_constant() - open_count;
  1887         open_count = 0;
  1889       Register L4_old_argv = RicochetFrame::L4_saved_args_base;
  1890       Register O3_new_argv = O3_scratch;
  1891       if (fix_arg_base) {
  1892         __ add(L4_old_argv, __ argument_offset(close_count, O4_scratch), O3_new_argv,
  1893                -(open_count * Interpreter::stackElementSize));
  1896       // First decide if any actual data are to be moved.
  1897       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
  1898       // (As it happens, all movements involve an argument list size change.)
  1900       // If there are variable parameters, use dynamic checks to skip around the whole mess.
  1901       Label L_done;
  1902       if (keep3_count.is_register()) {
  1903         __ cmp_and_br_short(keep3_count.as_register(), 0, Assembler::equal, Assembler::pn, L_done);
  1905       if (close_count.is_register()) {
  1906         __ cmp_and_br_short(close_count.as_register(), open_count, Assembler::equal, Assembler::pn, L_done);
  1909       if (move_keep3 && fix_arg_base) {
  1910         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
  1911         if (!close_count.is_constant()) {
  1912           emit_move_down = emit_guard = !zero_open_count;
  1913           emit_move_up   = true;
  1914         } else if (open_count != close_count.as_constant()) {
  1915           emit_move_down = (open_count > close_count.as_constant());
  1916           emit_move_up   = !emit_move_down;
  1918         Label L_move_up;
  1919         if (emit_guard) {
  1920           __ cmp(close_count.as_register(), open_count);
  1921           __ br(Assembler::greater, false, Assembler::pn, L_move_up);
  1922           __ delayed()->nop();
  1925         if (emit_move_down) {
  1926           // Move arguments down if |+dest+| > |-collect-|
  1927           // (This is rare, except when arguments are retained.)
  1928           // This opens space for the return value.
  1929           if (keep3_count.is_constant()) {
  1930             for (int i = 0; i < keep3_count.as_constant(); i++) {
  1931               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
  1932               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
  1934           } else {
  1935             // Live: O1_close_count, O2_keep3_count, O3_new_argv
  1936             Register argv_top = O0_scratch;
  1937             __ add(L4_old_argv, __ argument_offset(keep3_count, O4_scratch), argv_top);
  1938             move_arg_slots_down(_masm,
  1939                                 Address(L4_old_argv, 0),  // beginning of old argv
  1940                                 argv_top,                 // end of old argv
  1941                                 close_count,              // distance to move down (must be negative)
  1942                                 O4_scratch, G5_scratch);
  1946         if (emit_guard) {
  1947           __ ba_short(L_done);  // assumes emit_move_up is true also
  1948           __ BIND(L_move_up);
  1951         if (emit_move_up) {
  1952           // Move arguments up if |+dest+| < |-collect-|
  1953           // (This is usual, except when |keep3| is empty.)
  1954           // This closes up the space occupied by the now-deleted collect values.
  1955           if (keep3_count.is_constant()) {
  1956             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
  1957               __ ld_ptr(            Address(L4_old_argv, i * Interpreter::stackElementSize), O4_scratch);
  1958               __ st_ptr(O4_scratch, Address(O3_new_argv, i * Interpreter::stackElementSize)            );
  1960           } else {
  1961             Address argv_top(L4_old_argv, __ argument_offset(keep3_count, O4_scratch));
  1962             // Live: O1_close_count, O2_keep3_count, O3_new_argv
  1963             move_arg_slots_up(_masm,
  1964                               L4_old_argv,  // beginning of old argv
  1965                               argv_top,     // end of old argv
  1966                               close_count,  // distance to move up (must be positive)
  1967                               O4_scratch, G5_scratch);
  1971       __ BIND(L_done);
  1973       if (fix_arg_base) {
  1974         // adjust RF.saved_args_base
  1975         __ mov(O3_new_argv, RicochetFrame::L4_saved_args_base);
  1978       if (stomp_dest) {
  1979         // Stomp the return slot, so it doesn't hold garbage.
  1980         // This isn't strictly necessary, but it may help detect bugs.
  1981         __ set(RicochetFrame::RETURN_VALUE_PLACEHOLDER, O4_scratch);
  1982         __ st_ptr(O4_scratch, Address(RicochetFrame::L4_saved_args_base,
  1983                                       __ argument_offset(keep3_count, keep3_count.register_or_noreg())));  // uses O2_keep3_count
  1985       BLOCK_COMMENT("} adjust trailing arguments");
  1987       BLOCK_COMMENT("do_recursive_call");
  1988       __ mov(SP, O5_savedSP);  // record SP for the callee
  1989       __ set(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr() - frame::pc_return_offset), O7);
  1990       // The globally unique bounce address has two purposes:
  1991       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
  1992       // 2. When returned to, it cuts back the stack and redirects control flow
  1993       //    to the return handler.
  1994       // The return handler will further cut back the stack when it takes
  1995       // down the RF.  Perhaps there is a way to streamline this further.
  1997       // State during recursive call:
  1998       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
  1999       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  2001     break;
  2003   case _adapter_opt_return_ref:
  2004   case _adapter_opt_return_int:
  2005   case _adapter_opt_return_long:
  2006   case _adapter_opt_return_float:
  2007   case _adapter_opt_return_double:
  2008   case _adapter_opt_return_void:
  2009   case _adapter_opt_return_S0_ref:
  2010   case _adapter_opt_return_S1_ref:
  2011   case _adapter_opt_return_S2_ref:
  2012   case _adapter_opt_return_S3_ref:
  2013   case _adapter_opt_return_S4_ref:
  2014   case _adapter_opt_return_S5_ref:
  2016       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
  2017       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
  2019       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2021       if (dest_slot_constant == -1) {
  2022         // The current stub is a general handler for this dest_type.
  2023         // It can be called from _adapter_opt_return_any below.
  2024         // Stash the address in a little table.
  2025         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
  2026         address return_handler = __ pc();
  2027         _adapter_return_handlers[dest_type_constant] = return_handler;
  2028         if (dest_type_constant == T_INT) {
  2029           // do the subword types too
  2030           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
  2031             if (is_subword_type(BasicType(bt)) &&
  2032                 _adapter_return_handlers[bt] == NULL) {
  2033               _adapter_return_handlers[bt] = return_handler;
  2039       // On entry to this continuation handler, make Gargs live again.
  2040       __ mov(RicochetFrame::L4_saved_args_base, Gargs);
  2042       Register O7_temp   = O7;
  2043       Register O5_vminfo = O5;
  2045       RegisterOrConstant dest_slot = dest_slot_constant;
  2046       if (dest_slot_constant == -1) {
  2047         extract_conversion_vminfo(_masm, RicochetFrame::L5_conversion, O5_vminfo);
  2048         dest_slot = O5_vminfo;
  2050       // Store the result back into the argslot.
  2051       // This code uses the interpreter calling sequence, in which the return value
  2052       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
  2053       // There are certain irregularities with floating point values, which can be seen
  2054       // in TemplateInterpreterGenerator::generate_return_entry_for.
  2055       move_return_value(_masm, dest_type_constant, __ argument_address(dest_slot, O7_temp));
  2057       RicochetFrame::leave_ricochet_frame(_masm, G3_method_handle, I5_savedSP, I7);
  2059       // Load the final target and go.
  2060       if (VerifyMethodHandles)  verify_method_handle(_masm, G3_method_handle, O0_scratch, O1_scratch);
  2061       __ restore(I5_savedSP, G0, SP);
  2062       __ jump_to_method_handle_entry(G3_method_handle, O0_scratch);
  2063       __ illtrap(0);
  2065     break;
  2067   case _adapter_opt_return_any:
  2069       Register O7_temp      = O7;
  2070       Register O5_dest_type = O5;
  2072       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
  2073       extract_conversion_dest_type(_masm, RicochetFrame::L5_conversion, O5_dest_type);
  2074       __ set(ExternalAddress((address) &_adapter_return_handlers[0]), O7_temp);
  2075       __ sll_ptr(O5_dest_type, LogBytesPerWord, O5_dest_type);
  2076       __ ld_ptr(O7_temp, O5_dest_type, O7_temp);
  2078 #ifdef ASSERT
  2079       { Label L_ok;
  2080         __ br_notnull_short(O7_temp, Assembler::pt, L_ok);
  2081         __ stop("bad method handle return");
  2082         __ BIND(L_ok);
  2084 #endif //ASSERT
  2085       __ JMP(O7_temp, 0);
  2086       __ delayed()->nop();
  2088     break;
  2090   case _adapter_opt_spread_0:
  2091   case _adapter_opt_spread_1_ref:
  2092   case _adapter_opt_spread_2_ref:
  2093   case _adapter_opt_spread_3_ref:
  2094   case _adapter_opt_spread_4_ref:
  2095   case _adapter_opt_spread_5_ref:
  2096   case _adapter_opt_spread_ref:
  2097   case _adapter_opt_spread_byte:
  2098   case _adapter_opt_spread_char:
  2099   case _adapter_opt_spread_short:
  2100   case _adapter_opt_spread_int:
  2101   case _adapter_opt_spread_long:
  2102   case _adapter_opt_spread_float:
  2103   case _adapter_opt_spread_double:
  2105       // spread an array out into a group of arguments
  2106       int  length_constant    = ek_adapter_opt_spread_count(ek);
  2107       bool length_can_be_zero = (length_constant == 0);
  2108       if (length_constant < 0) {
  2109         // some adapters with variable length must handle the zero case
  2110         if (!OptimizeMethodHandles ||
  2111             ek_adapter_opt_spread_type(ek) != T_OBJECT)
  2112           length_can_be_zero = true;
  2115       // find the address of the array argument
  2116       load_vmargslot(_masm, G3_amh_vmargslot, O0_argslot);
  2117       __ add(__ argument_address(O0_argslot, O0_argslot), O0_argslot);
  2119       // O0_argslot points both to the array and to the first output arg
  2120       Address vmarg = Address(O0_argslot, 0);
  2122       // Get the array value.
  2123       Register  O1_array       = O1_scratch;
  2124       Register  O2_array_klass = O2_scratch;
  2125       BasicType elem_type      = ek_adapter_opt_spread_type(ek);
  2126       int       elem_slots     = type2size[elem_type];  // 1 or 2
  2127       int       array_slots    = 1;  // array is always a T_OBJECT
  2128       int       length_offset  = arrayOopDesc::length_offset_in_bytes();
  2129       int       elem0_offset   = arrayOopDesc::base_offset_in_bytes(elem_type);
  2130       __ ld_ptr(vmarg, O1_array);
  2132       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
  2133       if (length_can_be_zero) {
  2134         // handle the null pointer case, if zero is allowed
  2135         Label L_skip;
  2136         if (length_constant < 0) {
  2137           load_conversion_vminfo(_masm, G3_amh_conversion, O3_scratch);
  2138           __ cmp_zero_and_br(Assembler::notZero, O3_scratch, L_skip);
  2139           __ delayed()->nop(); // to avoid back-to-back cbcond instructions
  2141         __ br_null_short(O1_array, Assembler::pn, L_array_is_empty);
  2142         __ BIND(L_skip);
  2144       __ null_check(O1_array, oopDesc::klass_offset_in_bytes());
  2145       __ load_klass(O1_array, O2_array_klass);
  2147       // Check the array type.
  2148       Register O3_klass = O3_scratch;
  2149       __ load_heap_oop(G3_amh_argument, O3_klass);  // this is a Class object!
  2150       load_klass_from_Class(_masm, O3_klass, O4_scratch, G5_scratch);
  2152       Label L_ok_array_klass, L_bad_array_klass, L_bad_array_length;
  2153       __ check_klass_subtype(O2_array_klass, O3_klass, O4_scratch, G5_scratch, L_ok_array_klass);
  2154       // If we get here, the type check failed!
  2155       __ ba_short(L_bad_array_klass);
  2156       __ BIND(L_ok_array_klass);
  2158       // Check length.
  2159       if (length_constant >= 0) {
  2160         __ ldsw(Address(O1_array, length_offset), O4_scratch);
  2161         __ cmp(O4_scratch, length_constant);
  2162       } else {
  2163         Register O3_vminfo = O3_scratch;
  2164         load_conversion_vminfo(_masm, G3_amh_conversion, O3_vminfo);
  2165         __ ldsw(Address(O1_array, length_offset), O4_scratch);
  2166         __ cmp(O3_vminfo, O4_scratch);
  2168       __ br(Assembler::notEqual, false, Assembler::pn, L_bad_array_length);
  2169       __ delayed()->nop();
  2171       Register O2_argslot_limit = O2_scratch;
  2173       // Array length checks out.  Now insert any required stack slots.
  2174       if (length_constant == -1) {
  2175         // Form a pointer to the end of the affected region.
  2176         __ add(O0_argslot, Interpreter::stackElementSize, O2_argslot_limit);
  2177         // 'stack_move' is negative number of words to insert
  2178         // This number already accounts for elem_slots.
  2179         Register O3_stack_move = O3_scratch;
  2180         load_stack_move(_masm, G3_amh_conversion, O3_stack_move);
  2181         __ cmp(O3_stack_move, 0);
  2182         assert(stack_move_unit() < 0, "else change this comparison");
  2183         __ br(Assembler::less, false, Assembler::pn, L_insert_arg_space);
  2184         __ delayed()->nop();
  2185         __ br(Assembler::equal, false, Assembler::pn, L_copy_args);
  2186         __ delayed()->nop();
  2187         // single argument case, with no array movement
  2188         __ BIND(L_array_is_empty);
  2189         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2190                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  2191         __ ba_short(L_args_done);  // no spreading to do
  2192         __ BIND(L_insert_arg_space);
  2193         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
  2194         // Live: O1_array, O2_argslot_limit, O3_stack_move
  2195         insert_arg_slots(_masm, O3_stack_move,
  2196                          O0_argslot, O4_scratch, G5_scratch, O1_scratch);
  2197         // reload from rdx_argslot_limit since rax_argslot is now decremented
  2198         __ ld_ptr(Address(O2_argslot_limit, -Interpreter::stackElementSize), O1_array);
  2199       } else if (length_constant >= 1) {
  2200         int new_slots = (length_constant * elem_slots) - array_slots;
  2201         insert_arg_slots(_masm, new_slots * stack_move_unit(),
  2202                          O0_argslot, O2_scratch, O3_scratch, O4_scratch);
  2203       } else if (length_constant == 0) {
  2204         __ BIND(L_array_is_empty);
  2205         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
  2206                          O0_argslot, O1_scratch, O2_scratch, O3_scratch);
  2207       } else {
  2208         ShouldNotReachHere();
  2211       // Copy from the array to the new slots.
  2212       // Note: Stack change code preserves integrity of O0_argslot pointer.
  2213       // So even after slot insertions, O0_argslot still points to first argument.
  2214       // Beware:  Arguments that are shallow on the stack are deep in the array,
  2215       // and vice versa.  So a downward-growing stack (the usual) has to be copied
  2216       // elementwise in reverse order from the source array.
  2217       __ BIND(L_copy_args);
  2218       if (length_constant == -1) {
  2219         // [O0_argslot, O2_argslot_limit) is the area we are inserting into.
  2220         // Array element [0] goes at O0_argslot_limit[-wordSize].
  2221         Register O1_source = O1_array;
  2222         __ add(Address(O1_array, elem0_offset), O1_source);
  2223         Register O4_fill_ptr = O4_scratch;
  2224         __ mov(O2_argslot_limit, O4_fill_ptr);
  2225         Label L_loop;
  2226         __ BIND(L_loop);
  2227         __ add(O4_fill_ptr, -Interpreter::stackElementSize * elem_slots, O4_fill_ptr);
  2228         move_typed_arg(_masm, elem_type, true,
  2229                        Address(O1_source, 0), Address(O4_fill_ptr, 0),
  2230                        O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  2231         __ add(O1_source, type2aelembytes(elem_type), O1_source);
  2232         __ cmp_and_brx_short(O4_fill_ptr, O0_argslot, Assembler::greaterUnsigned, Assembler::pt, L_loop);
  2233       } else if (length_constant == 0) {
  2234         // nothing to copy
  2235       } else {
  2236         int elem_offset = elem0_offset;
  2237         int slot_offset = length_constant * Interpreter::stackElementSize;
  2238         for (int index = 0; index < length_constant; index++) {
  2239           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
  2240           move_typed_arg(_masm, elem_type, true,
  2241                          Address(O1_array, elem_offset), Address(O0_argslot, slot_offset),
  2242                          O2_scratch);  // must be an even register for !_LP64 long moves (uses O2/O3)
  2243           elem_offset += type2aelembytes(elem_type);
  2246       __ BIND(L_args_done);
  2248       // Arguments are spread.  Move to next method handle.
  2249       __ load_heap_oop(G3_mh_vmtarget, G3_method_handle);
  2250       __ jump_to_method_handle_entry(G3_method_handle, O1_scratch);
  2252       __ BIND(L_bad_array_klass);
  2253       assert(!vmarg.uses(O2_required), "must be different registers");
  2254       __ load_heap_oop(Address(O2_array_klass, java_mirror_offset), O2_required);  // required class
  2255       __ ld_ptr(       vmarg,                                       O1_actual);    // bad object
  2256       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  2257       __ delayed()->mov(Bytecodes::_aaload,                         O0_code);      // who is complaining?
  2259       __ bind(L_bad_array_length);
  2260       assert(!vmarg.uses(O2_required), "must be different registers");
  2261       __ mov(   G3_method_handle,                O2_required);  // required class
  2262       __ ld_ptr(vmarg,                           O1_actual);    // bad object
  2263       __ jump_to(AddressLiteral(from_interpreted_entry(_raise_exception)), O3_scratch);
  2264       __ delayed()->mov(Bytecodes::_arraylength, O0_code);      // who is complaining?
  2266     break;
  2268   default:
  2269     DEBUG_ONLY(tty->print_cr("bad ek=%d (%s)", (int)ek, entry_name(ek)));
  2270     ShouldNotReachHere();
  2272   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
  2274   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
  2275   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
  2277   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));

mercurial