src/cpu/sparc/vm/assembler_sparc.inline.hpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2950
cba7b5c2d53f
child 3255
44ce519bc3d1
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
    26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/codeBuffer.hpp"
    30 #include "code/codeCache.hpp"
    31 #include "runtime/handles.inline.hpp"
    33 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    34   jint& stub_inst = *(jint*) branch;
    35   stub_inst = patched_branch(target - branch, stub_inst, 0);
    36 }
    38 #ifndef PRODUCT
    39 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    40   jint stub_inst = *(jint*) branch;
    41   print_instruction(stub_inst);
    42   ::tty->print("%s", " (unresolved)");
    43 }
    44 #endif // PRODUCT
    46 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    49 inline int AddressLiteral::low10() const {
    50   return Assembler::low10(value());
    51 }
    54 // inlines for SPARC assembler -- dmu 5/97
    56 inline void Assembler::check_delay() {
    57 # ifdef CHECK_DELAY
    58   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    59   delay_state = no_delay;
    60 # endif
    61 }
    63 inline void Assembler::emit_long(int x) {
    64   check_delay();
    65   AbstractAssembler::emit_long(x);
    66 }
    68 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    69   relocate(rtype);
    70   emit_long(x);
    71 }
    73 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    74   relocate(rspec);
    75   emit_long(x);
    76 }
    79 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    80 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    81 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    83 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    84 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    86 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    87 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    89 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    90 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    92 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    93 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    95 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  cti();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    96 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    98 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  cti();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    99 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
   101 // compare and branch
   102 inline void Assembler::cbcond(Condition c, CC cc, Register s1, Register s2, Label& L) { cti();  no_cbcond_before();  emit_data(op(branch_op) | cond_cbcond(c) | op2(bpr_op2) | branchcc(cc) | wdisp10(intptr_t(target(L)), intptr_t(pc())) | rs1(s1) | rs2(s2)); }
   103 inline void Assembler::cbcond(Condition c, CC cc, Register s1, int simm5, Label& L)   { cti();  no_cbcond_before();  emit_data(op(branch_op) | cond_cbcond(c) | op2(bpr_op2) | branchcc(cc) | wdisp10(intptr_t(target(L)), intptr_t(pc())) | rs1(s1) | immed(true) | simm(simm5, 5)); }
   105 inline void Assembler::call( address d,  relocInfo::relocType rt ) { cti();  emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
   106 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
   108 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
   109 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   111 inline void Assembler::jmpl( Register s1, Register s2, Register d ) { cti();  emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   112 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { cti();  emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
   114 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
   115   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
   116   else                  ldf(w, s1, s2.as_constant(), d);
   117 }
   119 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   120 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
   122 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   124 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   125 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   126 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   127 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   131 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   132 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   133 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   134 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   136 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   137 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   139 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   140 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   141 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   142 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   143 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   144 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   145 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   146 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   147 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   148 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   150 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   151 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   152 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   153 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   155 #ifdef _LP64
   156 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   157 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   158 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   159 #else
   160 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   161 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   162 #endif
   164 #ifdef ASSERT
   165   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   166 # ifdef _LP64
   167 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   168 # else
   169 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   170 # endif
   171 #endif
   173 inline void Assembler::ld(  const Address& a, Register d, int offset) {
   174   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   175   else               {                          ld(  a.base(), a.disp() + offset, d); }
   176 }
   177 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
   178   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   179   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   180 }
   181 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
   182   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   183   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   184 }
   185 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
   186   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   187   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   188 }
   189 inline void Assembler::ldub(const Address& a, Register d, int offset) {
   190   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   191   else               {                          ldub(a.base(), a.disp() + offset, d); }
   192 }
   193 inline void Assembler::lduh(const Address& a, Register d, int offset) {
   194   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   195   else               {                          lduh(a.base(), a.disp() + offset, d); }
   196 }
   197 inline void Assembler::lduw(const Address& a, Register d, int offset) {
   198   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   199   else               {                          lduw(a.base(), a.disp() + offset, d); }
   200 }
   201 inline void Assembler::ldd( const Address& a, Register d, int offset) {
   202   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   203   else               {                          ldd( a.base(), a.disp() + offset, d); }
   204 }
   205 inline void Assembler::ldx( const Address& a, Register d, int offset) {
   206   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   207   else               {                          ldx( a.base(), a.disp() + offset, d); }
   208 }
   210 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   211 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   212 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   213 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   214 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   215 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   216 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   217 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   218 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   220 // form effective addresses this way:
   221 inline void Assembler::add(const Address& a, Register d, int offset) {
   222   if (a.has_index())   add(a.base(), a.index(),         d);
   223   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
   224   if (offset != 0)     add(d,        offset,            d);
   225 }
   226 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
   227   if (s2.is_register())  add(s1, s2.as_register(),          d);
   228   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   229   if (offset != 0)       add(d,  offset,                    d);
   230 }
   232 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
   233   if (s2.is_register())  andn(s1, s2.as_register(), d);
   234   else                   andn(s1, s2.as_constant(), d);
   235 }
   237 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   238 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   241 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   242 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   244 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   247 inline void Assembler::rett( Register s1, Register s2                         ) { cti();  emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   248 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { cti();  emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   250 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   252   // pp 222
   254 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
   255   if (s2.is_register()) stf(w, d, s1, s2.as_register());
   256   else                  stf(w, d, s1, s2.as_constant());
   257 }
   259 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   260 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   262 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) {
   263   relocate(a.rspec(offset));
   264   if (a.has_index()) { assert(offset == 0, ""); stf(w, d, a.base(), a.index()        ); }
   265   else               {                          stf(w, d, a.base(), a.disp() + offset); }
   266 }
   268 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   269 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   270 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   271 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   273   // p 226
   275 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   276 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   277 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   278 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   279 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   280 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   283 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   284 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   285 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   286 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   288 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   289 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   291 #ifdef ASSERT
   292 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   293 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   294 #endif
   296 inline void Assembler::stb(Register d, const Address& a, int offset) {
   297   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   298   else               {                          stb(d, a.base(), a.disp() + offset); }
   299 }
   300 inline void Assembler::sth(Register d, const Address& a, int offset) {
   301   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   302   else               {                          sth(d, a.base(), a.disp() + offset); }
   303 }
   304 inline void Assembler::stw(Register d, const Address& a, int offset) {
   305   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   306   else               {                          stw(d, a.base(), a.disp() + offset); }
   307 }
   308 inline void Assembler::st( Register d, const Address& a, int offset) {
   309   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   310   else               {                          st( d, a.base(), a.disp() + offset); }
   311 }
   312 inline void Assembler::std(Register d, const Address& a, int offset) {
   313   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   314   else               {                          std(d, a.base(), a.disp() + offset); }
   315 }
   316 inline void Assembler::stx(Register d, const Address& a, int offset) {
   317   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   318   else               {                          stx(d, a.base(), a.disp() + offset); }
   319 }
   321 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   322 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   323 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
   324 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   325 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   326 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   328 // v8 p 99
   330 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   331 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   332 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   333 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   334 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   335 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   336 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   337 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   339 inline void Assembler::sub(Register s1, RegisterOrConstant s2, Register d, int offset) {
   340   if (s2.is_register())  sub(s1, s2.as_register(),          d);
   341   else                 { sub(s1, s2.as_constant() + offset, d); offset = 0; }
   342   if (offset != 0)       sub(d,  offset,                    d);
   343 }
   345 // pp 231
   347 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   348 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   350 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   353 // Use the right loads/stores for the platform
   354 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   355 #ifdef _LP64
   356   Assembler::ldx(s1, s2, d);
   357 #else
   358   Assembler::ld( s1, s2, d);
   359 #endif
   360 }
   362 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   363 #ifdef _LP64
   364   Assembler::ldx(s1, simm13a, d);
   365 #else
   366   Assembler::ld( s1, simm13a, d);
   367 #endif
   368 }
   370 #ifdef ASSERT
   371 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   372 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
   373   ld_ptr(s1, in_bytes(simm13a), d);
   374 }
   375 #endif
   377 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   378 #ifdef _LP64
   379   Assembler::ldx(s1, s2, d);
   380 #else
   381   Assembler::ld( s1, s2, d);
   382 #endif
   383 }
   385 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
   386 #ifdef _LP64
   387   Assembler::ldx(a, d, offset);
   388 #else
   389   Assembler::ld( a, d, offset);
   390 #endif
   391 }
   393 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   394 #ifdef _LP64
   395   Assembler::stx(d, s1, s2);
   396 #else
   397   Assembler::st( d, s1, s2);
   398 #endif
   399 }
   401 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   402 #ifdef _LP64
   403   Assembler::stx(d, s1, simm13a);
   404 #else
   405   Assembler::st( d, s1, simm13a);
   406 #endif
   407 }
   409 #ifdef ASSERT
   410 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   411 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   412   st_ptr(d, s1, in_bytes(simm13a));
   413 }
   414 #endif
   416 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   417 #ifdef _LP64
   418   Assembler::stx(d, s1, s2);
   419 #else
   420   Assembler::st( d, s1, s2);
   421 #endif
   422 }
   424 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   425 #ifdef _LP64
   426   Assembler::stx(d, a, offset);
   427 #else
   428   Assembler::st( d, a, offset);
   429 #endif
   430 }
   432 // Use the right loads/stores for the platform
   433 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   434 #ifdef _LP64
   435   Assembler::ldx(s1, s2, d);
   436 #else
   437   Assembler::ldd(s1, s2, d);
   438 #endif
   439 }
   441 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   442 #ifdef _LP64
   443   Assembler::ldx(s1, simm13a, d);
   444 #else
   445   Assembler::ldd(s1, simm13a, d);
   446 #endif
   447 }
   449 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   450 #ifdef _LP64
   451   Assembler::ldx(s1, s2, d);
   452 #else
   453   Assembler::ldd(s1, s2, d);
   454 #endif
   455 }
   457 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   458 #ifdef _LP64
   459   Assembler::ldx(a, d, offset);
   460 #else
   461   Assembler::ldd(a, d, offset);
   462 #endif
   463 }
   465 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   466 #ifdef _LP64
   467   Assembler::stx(d, s1, s2);
   468 #else
   469   Assembler::std(d, s1, s2);
   470 #endif
   471 }
   473 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   474 #ifdef _LP64
   475   Assembler::stx(d, s1, simm13a);
   476 #else
   477   Assembler::std(d, s1, simm13a);
   478 #endif
   479 }
   481 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   482 #ifdef _LP64
   483   Assembler::stx(d, s1, s2);
   484 #else
   485   Assembler::std(d, s1, s2);
   486 #endif
   487 }
   489 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   490 #ifdef _LP64
   491   Assembler::stx(d, a, offset);
   492 #else
   493   Assembler::std(d, a, offset);
   494 #endif
   495 }
   497 // Functions for isolating 64 bit shifts for LP64
   499 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   500 #ifdef _LP64
   501   Assembler::sllx(s1, s2, d);
   502 #else
   503   Assembler::sll( s1, s2, d);
   504 #endif
   505 }
   507 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   508 #ifdef _LP64
   509   Assembler::sllx(s1, imm6a, d);
   510 #else
   511   Assembler::sll( s1, imm6a, d);
   512 #endif
   513 }
   515 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   516 #ifdef _LP64
   517   Assembler::srlx(s1, s2, d);
   518 #else
   519   Assembler::srl( s1, s2, d);
   520 #endif
   521 }
   523 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   524 #ifdef _LP64
   525   Assembler::srlx(s1, imm6a, d);
   526 #else
   527   Assembler::srl( s1, imm6a, d);
   528 #endif
   529 }
   531 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   532   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   533   else                   sll_ptr(s1, s2.as_constant(), d);
   534 }
   536 // Use the right branch for the platform
   538 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   539   if (VM_Version::v9_instructions_work())
   540     Assembler::bp(c, a, icc, p, d, rt);
   541   else
   542     Assembler::br(c, a, d, rt);
   543 }
   545 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   546   br(c, a, p, target(L));
   547 }
   550 // Branch that tests either xcc or icc depending on the
   551 // architecture compiled (LP64 or not)
   552 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   553 #ifdef _LP64
   554     Assembler::bp(c, a, xcc, p, d, rt);
   555 #else
   556     MacroAssembler::br(c, a, p, d, rt);
   557 #endif
   558 }
   560 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   561   brx(c, a, p, target(L));
   562 }
   564 inline void MacroAssembler::ba( Label& L ) {
   565   br(always, false, pt, L);
   566 }
   568 // Warning: V9 only functions
   569 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   570   Assembler::bp(c, a, cc, p, d, rt);
   571 }
   573 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   574   Assembler::bp(c, a, cc, p, L);
   575 }
   577 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   578   if (VM_Version::v9_instructions_work())
   579     fbp(c, a, fcc0, p, d, rt);
   580   else
   581     Assembler::fb(c, a, d, rt);
   582 }
   584 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   585   fb(c, a, p, target(L));
   586 }
   588 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   589   Assembler::fbp(c, a, cc, p, d, rt);
   590 }
   592 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   593   Assembler::fbp(c, a, cc, p, L);
   594 }
   596 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   597 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   599 inline bool MacroAssembler::is_far_target(address d) {
   600   return !is_in_wdisp30_range(d, CodeCache::low_bound()) || !is_in_wdisp30_range(d, CodeCache::high_bound());
   601 }
   603 // Call with a check to see if we need to deal with the added
   604 // expense of relocation and if we overflow the displacement
   605 // of the quick call instruction.
   606 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   607 #ifdef _LP64
   608   intptr_t disp;
   609   // NULL is ok because it will be relocated later.
   610   // Must change NULL to a reachable address in order to
   611   // pass asserts here and in wdisp.
   612   if ( d == NULL )
   613     d = pc();
   615   // Is this address within range of the call instruction?
   616   // If not, use the expensive instruction sequence
   617   if (is_far_target(d)) {
   618     relocate(rt);
   619     AddressLiteral dest(d);
   620     jumpl_to(dest, O7, O7);
   621   } else {
   622     Assembler::call(d, rt);
   623   }
   624 #else
   625   Assembler::call( d, rt );
   626 #endif
   627 }
   629 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   630   MacroAssembler::call( target(L), rt);
   631 }
   635 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   636 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   638 // prefetch instruction
   639 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   640   if (VM_Version::v9_instructions_work())
   641     Assembler::bp( never, true, xcc, pt, d, rt );
   642 }
   643 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   646 // clobbers o7 on V8!!
   647 // returns delta from gotten pc to addr after
   648 inline int MacroAssembler::get_pc( Register d ) {
   649   int x = offset();
   650   if (VM_Version::v9_instructions_work())
   651     rdpc(d);
   652   else {
   653     Label lbl;
   654     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   655     if (d == O7)  delayed()->nop();
   656     else          delayed()->mov(O7, d);
   657     bind(lbl);
   658   }
   659   return offset() - x;
   660 }
   663 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   666 // Loads the current PC of the following instruction as an immediate value in
   667 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   668 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   669   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   670 #ifdef _LP64
   671   Unimplemented();
   672 #else
   673   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   674   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   675 #endif
   676   return thepc;
   677 }
   680 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
   681   assert_not_delayed();
   682   sethi(addrlit, d);
   683   ld(d, addrlit.low10() + offset, d);
   684 }
   687 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
   688   assert_not_delayed();
   689   sethi(addrlit, d);
   690   ld_ptr(d, addrlit.low10() + offset, d);
   691 }
   694 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   695   assert_not_delayed();
   696   sethi(addrlit, temp);
   697   st(s, temp, addrlit.low10() + offset);
   698 }
   701 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   702   assert_not_delayed();
   703   sethi(addrlit, temp);
   704   st_ptr(s, temp, addrlit.low10() + offset);
   705 }
   708 // This code sequence is relocatable to any address, even on LP64.
   709 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
   710   assert_not_delayed();
   711   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   712   // variable length instruction streams.
   713   patchable_sethi(addrlit, temp);
   714   jmpl(temp, addrlit.low10() + offset, d);
   715 }
   718 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
   719   jumpl_to(addrlit, temp, G0, offset);
   720 }
   723 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   724                                              int ld_offset, int jmp_offset) {
   725   assert_not_delayed();
   726   //sethi(al);                   // sethi is caller responsibility for this one
   727   ld_ptr(a, temp, ld_offset);
   728   jmp(temp, jmp_offset);
   729 }
   732 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   733   set_oop(allocate_oop_address(obj), d);
   734 }
   737 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   738   set_oop(constant_oop_address(obj), d);
   739 }
   742 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
   743   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   744   set(obj_addr, d);
   745 }
   748 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   749   if (a.is_register())
   750     mov(a.as_register(), d);
   751   else
   752     ld (a.as_address(),  d);
   753 }
   755 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   756   if (a.is_register())
   757     mov(s, a.as_register());
   758   else
   759     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   760 }
   762 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   763   if (a.is_register())
   764     mov(s, a.as_register());
   765   else
   766     st_ptr (s, a.as_address());
   767 }
   770 #ifdef _LP64
   771 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   772   if (a.is_float_register())
   773 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   774     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   775   else
   776     // Floats are stored in the high half of the stack entry
   777     // The low half is undefined per the ABI.
   778     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   779 }
   781 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   782   if (a.is_float_register())
   783 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   784     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   785   else
   786     stf(FloatRegisterImpl::D, s, a.as_address());
   787 }
   789 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   790   if (a.is_register())
   791     mov(s, a.as_register());
   792   else
   793     stx(s, a.as_address());
   794 }
   795 #endif
   797 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   798 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   799 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   800 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   802 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   803 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   804 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   805 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   807 // returns if membar generates anything, obviously this code should mirror
   808 // membar below.
   809 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   810   if( !os::is_MP() ) return false;  // Not needed on single CPU
   811   if( VM_Version::v9_instructions_work() ) {
   812     const Membar_mask_bits effective_mask =
   813         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   814     return (effective_mask != 0);
   815   } else {
   816     return true;
   817   }
   818 }
   820 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   821   // Uniprocessors do not need memory barriers
   822   if (!os::is_MP()) return;
   823   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   824   // 8.4.4.3, a.31 and a.50.
   825   if( VM_Version::v9_instructions_work() ) {
   826     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   827     // of the mmask subfield of const7a that does anything that isn't done
   828     // implicitly is StoreLoad.
   829     const Membar_mask_bits effective_mask =
   830         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   831     if ( effective_mask != 0 ) {
   832       Assembler::membar( effective_mask );
   833     }
   834   } else {
   835     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   836     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   837     // which guarantees that all stores behave as if an stbar were issued just after
   838     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   839     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   840     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   841     //
   842     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   843     // space.  Put one here to be on the safe side.
   844     Assembler::ldstub(SP, 0, G0);
   845   }
   846 }
   848 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_INLINE_HPP

mercurial