src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Thu, 12 May 2011 10:29:02 -0700

author
never
date
Thu, 12 May 2011 10:29:02 -0700
changeset 2901
3d2ab563047a
parent 2897
3cfb240033d1
child 2950
cba7b5c2d53f
permissions
-rw-r--r--

7043461: VM crashes in void LinkResolver::runtime_resolve_virtual_method
Reviewed-by: kvn, coleenp

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    48 #ifndef CC_INTERP
    49 #ifndef FAST_DISPATCH
    50 #define FAST_DISPATCH 1
    51 #endif
    52 #undef FAST_DISPATCH
    55 // Generation of Interpreter
    56 //
    57 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    60 #define __ _masm->
    63 //----------------------------------------------------------------------------------------------------
    66 void InterpreterGenerator::save_native_result(void) {
    67   // result potentially in O0/O1: save it across calls
    68   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    70   // result potentially in F0/F1: save it across calls
    71   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    73   // save and restore any potential method result value around the unlocking operation
    74   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    75 #ifdef _LP64
    76   __ stx(O0, l_tmp);
    77 #else
    78   __ std(O0, l_tmp);
    79 #endif
    80 }
    82 void InterpreterGenerator::restore_native_result(void) {
    83   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    84   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    86   // Restore any method result value
    87   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    88 #ifdef _LP64
    89   __ ldx(l_tmp, O0);
    90 #else
    91   __ ldd(l_tmp, O0);
    92 #endif
    93 }
    95 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    96   assert(!pass_oop || message == NULL, "either oop or message but not both");
    97   address entry = __ pc();
    98   // expression stack must be empty before entering the VM if an exception happened
    99   __ empty_expression_stack();
   100   // load exception object
   101   __ set((intptr_t)name, G3_scratch);
   102   if (pass_oop) {
   103     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
   104   } else {
   105     __ set((intptr_t)message, G4_scratch);
   106     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
   107   }
   108   // throw exception
   109   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
   110   AddressLiteral thrower(Interpreter::throw_exception_entry());
   111   __ jump_to(thrower, G3_scratch);
   112   __ delayed()->nop();
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   117   address entry = __ pc();
   118   // expression stack must be empty before entering the VM if an exception
   119   // happened
   120   __ empty_expression_stack();
   121   // load exception object
   122   __ call_VM(Oexception,
   123              CAST_FROM_FN_PTR(address,
   124                               InterpreterRuntime::throw_ClassCastException),
   125              Otos_i);
   126   __ should_not_reach_here();
   127   return entry;
   128 }
   131 // Arguments are: required type in G5_method_type, and
   132 // failing object (or NULL) in G3_method_handle.
   133 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
   134   address entry = __ pc();
   135   // expression stack must be empty before entering the VM if an exception
   136   // happened
   137   __ empty_expression_stack();
   138   // load exception object
   139   __ call_VM(Oexception,
   140              CAST_FROM_FN_PTR(address,
   141                               InterpreterRuntime::throw_WrongMethodTypeException),
   142              G5_method_type,    // required
   143              G3_method_handle); // actual
   144   __ should_not_reach_here();
   145   return entry;
   146 }
   149 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   150   address entry = __ pc();
   151   // expression stack must be empty before entering the VM if an exception happened
   152   __ empty_expression_stack();
   153   // convention: expect aberrant index in register G3_scratch, then shuffle the
   154   // index to G4_scratch for the VM call
   155   __ mov(G3_scratch, G4_scratch);
   156   __ set((intptr_t)name, G3_scratch);
   157   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   158   __ should_not_reach_here();
   159   return entry;
   160 }
   163 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   164   address entry = __ pc();
   165   // expression stack must be empty before entering the VM if an exception happened
   166   __ empty_expression_stack();
   167   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   168   __ should_not_reach_here();
   169   return entry;
   170 }
   173 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   174   TosState incoming_state = state;
   176   Label cont;
   177   address compiled_entry = __ pc();
   179   address entry = __ pc();
   180 #if !defined(_LP64) && defined(COMPILER2)
   181   // All return values are where we want them, except for Longs.  C2 returns
   182   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   183   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   184   // build even if we are returning from interpreted we just do a little
   185   // stupid shuffing.
   186   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   187   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   188   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   190   if (incoming_state == ltos) {
   191     __ srl (G1,  0, O1);
   192     __ srlx(G1, 32, O0);
   193   }
   194 #endif // !_LP64 && COMPILER2
   196   __ bind(cont);
   198   // The callee returns with the stack possibly adjusted by adapter transition
   199   // We remove that possible adjustment here.
   200   // All interpreter local registers are untouched. Any result is passed back
   201   // in the O0/O1 or float registers. Before continuing, the arguments must be
   202   // popped from the java expression stack; i.e., Lesp must be adjusted.
   204   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   206   Label L_got_cache, L_giant_index;
   207   const Register cache = G3_scratch;
   208   const Register size  = G1_scratch;
   209   if (EnableInvokeDynamic) {
   210     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode.
   211     __ cmp(G1_scratch, Bytecodes::_invokedynamic);
   212     __ br(Assembler::equal, false, Assembler::pn, L_giant_index);
   213     __ delayed()->nop();
   214   }
   215   __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
   216   __ bind(L_got_cache);
   217   __ ld_ptr(cache, constantPoolCacheOopDesc::base_offset() +
   218                    ConstantPoolCacheEntry::flags_offset(), size);
   219   __ and3(size, 0xFF, size);                   // argument size in words
   220   __ sll(size, Interpreter::logStackElementSize, size); // each argument size in bytes
   221   __ add(Lesp, size, Lesp);                    // pop arguments
   222   __ dispatch_next(state, step);
   224   // out of the main line of code...
   225   if (EnableInvokeDynamic) {
   226     __ bind(L_giant_index);
   227     __ get_cache_and_index_at_bcp(cache, G1_scratch, 1, sizeof(u4));
   228     __ ba(false, L_got_cache);
   229     __ delayed()->nop();
   230   }
   232   return entry;
   233 }
   236 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   237   address entry = __ pc();
   238   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   239   { Label L;
   240     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   241     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
   242     __ tst(Gtemp);
   243     __ brx(Assembler::equal, false, Assembler::pt, L);
   244     __ delayed()->nop();
   245     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   246     __ should_not_reach_here();
   247     __ bind(L);
   248   }
   249   __ dispatch_next(state, step);
   250   return entry;
   251 }
   253 // A result handler converts/unboxes a native call result into
   254 // a java interpreter/compiler result. The current frame is an
   255 // interpreter frame. The activation frame unwind code must be
   256 // consistent with that of TemplateTable::_return(...). In the
   257 // case of native methods, the caller's SP was not modified.
   258 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   259   address entry = __ pc();
   260   Register Itos_i  = Otos_i ->after_save();
   261   Register Itos_l  = Otos_l ->after_save();
   262   Register Itos_l1 = Otos_l1->after_save();
   263   Register Itos_l2 = Otos_l2->after_save();
   264   switch (type) {
   265     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   266     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   267     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   268     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   269     case T_LONG   :
   270 #ifndef _LP64
   271                     __ mov(O1, Itos_l2);  // move other half of long
   272 #endif              // ifdef or no ifdef, fall through to the T_INT case
   273     case T_INT    : __ mov(O0, Itos_i);                         break;
   274     case T_VOID   : /* nothing to do */                         break;
   275     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   276     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   277     case T_OBJECT :
   278       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   279       __ verify_oop(Itos_i);
   280       break;
   281     default       : ShouldNotReachHere();
   282   }
   283   __ ret();                           // return from interpreter activation
   284   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   285   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   286   return entry;
   287 }
   289 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   290   address entry = __ pc();
   291   __ push(state);
   292   __ call_VM(noreg, runtime_entry);
   293   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   294   return entry;
   295 }
   298 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   299   address entry = __ pc();
   300   __ dispatch_next(state);
   301   return entry;
   302 }
   304 //
   305 // Helpers for commoning out cases in the various type of method entries.
   306 //
   308 // increment invocation count & check for overflow
   309 //
   310 // Note: checking for negative value instead of overflow
   311 //       so we have a 'sticky' overflow test
   312 //
   313 // Lmethod: method
   314 // ??: invocation counter
   315 //
   316 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   317   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
   318   if (TieredCompilation) {
   319     const int increment = InvocationCounter::count_increment;
   320     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
   321     Label no_mdo, done;
   322     if (ProfileInterpreter) {
   323       // If no method data exists, go to profile_continue.
   324       __ ld_ptr(Lmethod, methodOopDesc::method_data_offset(), G4_scratch);
   325       __ br_null(G4_scratch, false, Assembler::pn, no_mdo);
   326       __ delayed()->nop();
   327       // Increment counter
   328       Address mdo_invocation_counter(G4_scratch,
   329                                      in_bytes(methodDataOopDesc::invocation_counter_offset()) +
   330                                      in_bytes(InvocationCounter::counter_offset()));
   331       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
   332                                  G3_scratch, Lscratch,
   333                                  Assembler::zero, overflow);
   334       __ ba(false, done);
   335       __ delayed()->nop();
   336     }
   338     // Increment counter in methodOop
   339     __ bind(no_mdo);
   340     Address invocation_counter(Lmethod,
   341                                in_bytes(methodOopDesc::invocation_counter_offset()) +
   342                                in_bytes(InvocationCounter::counter_offset()));
   343     __ increment_mask_and_jump(invocation_counter, increment, mask,
   344                                G3_scratch, Lscratch,
   345                                Assembler::zero, overflow);
   346     __ bind(done);
   347   } else {
   348     // Update standard invocation counters
   349     __ increment_invocation_counter(O0, G3_scratch);
   350     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   351       Address interpreter_invocation_counter(Lmethod,in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   352       __ ld(interpreter_invocation_counter, G3_scratch);
   353       __ inc(G3_scratch);
   354       __ st(G3_scratch, interpreter_invocation_counter);
   355     }
   357     if (ProfileInterpreter && profile_method != NULL) {
   358       // Test to see if we should create a method data oop
   359       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
   360       __ load_contents(profile_limit, G3_scratch);
   361       __ cmp(O0, G3_scratch);
   362       __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
   363       __ delayed()->nop();
   365       // if no method data exists, go to profile_method
   366       __ test_method_data_pointer(*profile_method);
   367     }
   369     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
   370     __ load_contents(invocation_limit, G3_scratch);
   371     __ cmp(O0, G3_scratch);
   372     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   373     __ delayed()->nop();
   374   }
   376 }
   378 // Allocate monitor and lock method (asm interpreter)
   379 // ebx - methodOop
   380 //
   381 void InterpreterGenerator::lock_method(void) {
   382   __ ld(Lmethod, in_bytes(methodOopDesc::access_flags_offset()), O0);  // Load access flags.
   384 #ifdef ASSERT
   385  { Label ok;
   386    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   387    __ br( Assembler::notZero, false, Assembler::pt, ok);
   388    __ delayed()->nop();
   389    __ stop("method doesn't need synchronization");
   390    __ bind(ok);
   391   }
   392 #endif // ASSERT
   394   // get synchronization object to O0
   395   { Label done;
   396     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   397     __ btst(JVM_ACC_STATIC, O0);
   398     __ br( Assembler::zero, true, Assembler::pt, done);
   399     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   401     __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
   402     __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
   404     // lock the mirror, not the klassOop
   405     __ ld_ptr( O0, mirror_offset, O0);
   407 #ifdef ASSERT
   408     __ tst(O0);
   409     __ breakpoint_trap(Assembler::zero);
   410 #endif // ASSERT
   412     __ bind(done);
   413   }
   415   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   416   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   417   // __ untested("lock_object from method entry");
   418   __ lock_object(Lmonitors, O0);
   419 }
   422 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   423                                                          Register Rscratch,
   424                                                          Register Rscratch2) {
   425   const int page_size = os::vm_page_size();
   426   Address saved_exception_pc(G2_thread, JavaThread::saved_exception_pc_offset());
   427   Label after_frame_check;
   429   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   431   __ set( page_size,   Rscratch );
   432   __ cmp( Rframe_size, Rscratch );
   434   __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
   435   __ delayed()->nop();
   437   // get the stack base, and in debug, verify it is non-zero
   438   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
   439 #ifdef ASSERT
   440   Label base_not_zero;
   441   __ cmp( Rscratch, G0 );
   442   __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
   443   __ delayed()->nop();
   444   __ stop("stack base is zero in generate_stack_overflow_check");
   445   __ bind(base_not_zero);
   446 #endif
   448   // get the stack size, and in debug, verify it is non-zero
   449   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   450   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
   451 #ifdef ASSERT
   452   Label size_not_zero;
   453   __ cmp( Rscratch2, G0 );
   454   __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
   455   __ delayed()->nop();
   456   __ stop("stack size is zero in generate_stack_overflow_check");
   457   __ bind(size_not_zero);
   458 #endif
   460   // compute the beginning of the protected zone minus the requested frame size
   461   __ sub( Rscratch, Rscratch2,   Rscratch );
   462   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   463   __ add( Rscratch, Rscratch2,   Rscratch );
   465   // Add in the size of the frame (which is the same as subtracting it from the
   466   // SP, which would take another register
   467   __ add( Rscratch, Rframe_size, Rscratch );
   469   // the frame is greater than one page in size, so check against
   470   // the bottom of the stack
   471   __ cmp( SP, Rscratch );
   472   __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
   473   __ delayed()->nop();
   475   // Save the return address as the exception pc
   476   __ st_ptr(O7, saved_exception_pc);
   478   // the stack will overflow, throw an exception
   479   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   481   // if you get to here, then there is enough stack space
   482   __ bind( after_frame_check );
   483 }
   486 //
   487 // Generate a fixed interpreter frame. This is identical setup for interpreted
   488 // methods and for native methods hence the shared code.
   490 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   491   //
   492   //
   493   // The entry code sets up a new interpreter frame in 4 steps:
   494   //
   495   // 1) Increase caller's SP by for the extra local space needed:
   496   //    (check for overflow)
   497   //    Efficient implementation of xload/xstore bytecodes requires
   498   //    that arguments and non-argument locals are in a contigously
   499   //    addressable memory block => non-argument locals must be
   500   //    allocated in the caller's frame.
   501   //
   502   // 2) Create a new stack frame and register window:
   503   //    The new stack frame must provide space for the standard
   504   //    register save area, the maximum java expression stack size,
   505   //    the monitor slots (0 slots initially), and some frame local
   506   //    scratch locations.
   507   //
   508   // 3) The following interpreter activation registers must be setup:
   509   //    Lesp       : expression stack pointer
   510   //    Lbcp       : bytecode pointer
   511   //    Lmethod    : method
   512   //    Llocals    : locals pointer
   513   //    Lmonitors  : monitor pointer
   514   //    LcpoolCache: constant pool cache
   515   //
   516   // 4) Initialize the non-argument locals if necessary:
   517   //    Non-argument locals may need to be initialized to NULL
   518   //    for GC to work. If the oop-map information is accurate
   519   //    (in the absence of the JSR problem), no initialization
   520   //    is necessary.
   521   //
   522   // (gri - 2/25/2000)
   525   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
   526   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
   527   const Address max_stack         (G5_method, methodOopDesc::max_stack_offset());
   528   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   530   const int extra_space =
   531     rounded_vm_local_words +                   // frame local scratch space
   532     //6815692//methodOopDesc::extra_stack_words() +       // extra push slots for MH adapters
   533     frame::memory_parameter_word_sp_offset +   // register save area
   534     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   536   const Register Glocals_size = G3;
   537   const Register Otmp1 = O3;
   538   const Register Otmp2 = O4;
   539   // Lscratch can't be used as a temporary because the call_stub uses
   540   // it to assert that the stack frame was setup correctly.
   542   __ lduh( size_of_parameters, Glocals_size);
   544   // Gargs points to first local + BytesPerWord
   545   // Set the saved SP after the register window save
   546   //
   547   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   548   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
   549   __ add(Gargs, Otmp1, Gargs);
   551   if (native_call) {
   552     __ calc_mem_param_words( Glocals_size, Gframe_size );
   553     __ add( Gframe_size,  extra_space, Gframe_size);
   554     __ round_to( Gframe_size, WordsPerLong );
   555     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   556   } else {
   558     //
   559     // Compute number of locals in method apart from incoming parameters
   560     //
   561     __ lduh( size_of_locals, Otmp1 );
   562     __ sub( Otmp1, Glocals_size, Glocals_size );
   563     __ round_to( Glocals_size, WordsPerLong );
   564     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
   566     // see if the frame is greater than one page in size. If so,
   567     // then we need to verify there is enough stack space remaining
   568     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   569     __ lduh( max_stack, Gframe_size );
   570     __ add( Gframe_size, extra_space, Gframe_size );
   571     __ round_to( Gframe_size, WordsPerLong );
   572     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
   574     // Add in java locals size for stack overflow check only
   575     __ add( Gframe_size, Glocals_size, Gframe_size );
   577     const Register Otmp2 = O4;
   578     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   579     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   581     __ sub( Gframe_size, Glocals_size, Gframe_size);
   583     //
   584     // bump SP to accomodate the extra locals
   585     //
   586     __ sub( SP, Glocals_size, SP );
   587   }
   589   //
   590   // now set up a stack frame with the size computed above
   591   //
   592   __ neg( Gframe_size );
   593   __ save( SP, Gframe_size, SP );
   595   //
   596   // now set up all the local cache registers
   597   //
   598   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   599   // that all present references to Lbyte_code initialize the register
   600   // immediately before use
   601   if (native_call) {
   602     __ mov(G0, Lbcp);
   603   } else {
   604     __ ld_ptr(G5_method, methodOopDesc::const_offset(), Lbcp);
   605     __ add(Lbcp, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
   606   }
   607   __ mov( G5_method, Lmethod);                 // set Lmethod
   608   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   609   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   610 #ifdef _LP64
   611   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   612 #endif
   613   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   615   // setup interpreter activation registers
   616   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   618   if (ProfileInterpreter) {
   619 #ifdef FAST_DISPATCH
   620     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   621     // they both use I2.
   622     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   623 #endif // FAST_DISPATCH
   624     __ set_method_data_pointer();
   625   }
   627 }
   629 // Empty method, generate a very fast return.
   631 address InterpreterGenerator::generate_empty_entry(void) {
   633   // A method that does nother but return...
   635   address entry = __ pc();
   636   Label slow_path;
   638   __ verify_oop(G5_method);
   640   // do nothing for empty methods (do not even increment invocation counter)
   641   if ( UseFastEmptyMethods) {
   642     // If we need a safepoint check, generate full interpreter entry.
   643     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   644     __ set(sync_state, G3_scratch);
   645     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   646     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   647     __ delayed()->nop();
   649     // Code: _return
   650     __ retl();
   651     __ delayed()->mov(O5_savedSP, SP);
   653     __ bind(slow_path);
   654     (void) generate_normal_entry(false);
   656     return entry;
   657   }
   658   return NULL;
   659 }
   661 // Call an accessor method (assuming it is resolved, otherwise drop into
   662 // vanilla (slow path) entry
   664 // Generates code to elide accessor methods
   665 // Uses G3_scratch and G1_scratch as scratch
   666 address InterpreterGenerator::generate_accessor_entry(void) {
   668   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   669   // parameter size = 1
   670   // Note: We can only use this code if the getfield has been resolved
   671   //       and if we don't have a null-pointer exception => check for
   672   //       these conditions first and use slow path if necessary.
   673   address entry = __ pc();
   674   Label slow_path;
   677   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   678   // delay slot and damages G1
   679   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   680     // Check if we need to reach a safepoint and generate full interpreter
   681     // frame if so.
   682     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   683     __ load_contents(sync_state, G3_scratch);
   684     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   685     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   686     __ delayed()->nop();
   688     // Check if local 0 != NULL
   689     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   690     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   691     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   692     __ delayed()->nop();
   695     // read first instruction word and extract bytecode @ 1 and index @ 2
   696     // get first 4 bytes of the bytecodes (big endian!)
   697     __ ld_ptr(G5_method, methodOopDesc::const_offset(), G1_scratch);
   698     __ ld(G1_scratch, constMethodOopDesc::codes_offset(), G1_scratch);
   700     // move index @ 2 far left then to the right most two bytes.
   701     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   702     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   703                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   705     // get constant pool cache
   706     __ ld_ptr(G5_method, methodOopDesc::constants_offset(), G3_scratch);
   707     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   709     // get specific constant pool cache entry
   710     __ add(G3_scratch, G1_scratch, G3_scratch);
   712     // Check the constant Pool cache entry to see if it has been resolved.
   713     // If not, need the slow path.
   714     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   715     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
   716     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   717     __ and3(G1_scratch, 0xFF, G1_scratch);
   718     __ cmp(G1_scratch, Bytecodes::_getfield);
   719     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   720     __ delayed()->nop();
   722     // Get the type and return field offset from the constant pool cache
   723     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
   724     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
   726     Label xreturn_path;
   727     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   728     // because they are different sizes.
   729     // Get the type from the constant pool cache
   730     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   731     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   732     ConstantPoolCacheEntry::verify_tosBits();
   733     __ cmp(G1_scratch, atos );
   734     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   735     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   736     __ cmp(G1_scratch, itos);
   737     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   738     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   739     __ cmp(G1_scratch, stos);
   740     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   741     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   742     __ cmp(G1_scratch, ctos);
   743     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   744     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   745 #ifdef ASSERT
   746     __ cmp(G1_scratch, btos);
   747     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   748     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   749     __ should_not_reach_here();
   750 #endif
   751     __ ldsb(Otos_i, G3_scratch, Otos_i);
   752     __ bind(xreturn_path);
   754     // _ireturn/_areturn
   755     __ retl();                      // return from leaf routine
   756     __ delayed()->mov(O5_savedSP, SP);
   758     // Generate regular method entry
   759     __ bind(slow_path);
   760     (void) generate_normal_entry(false);
   761     return entry;
   762   }
   763   return NULL;
   764 }
   766 // Method entry for java.lang.ref.Reference.get.
   767 address InterpreterGenerator::generate_Reference_get_entry(void) {
   768 #ifndef SERIALGC
   769   // Code: _aload_0, _getfield, _areturn
   770   // parameter size = 1
   771   //
   772   // The code that gets generated by this routine is split into 2 parts:
   773   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   774   //    2. The slow path - which is an expansion of the regular method entry.
   775   //
   776   // Notes:-
   777   // * In the G1 code we do not check whether we need to block for
   778   //   a safepoint. If G1 is enabled then we must execute the specialized
   779   //   code for Reference.get (except when the Reference object is null)
   780   //   so that we can log the value in the referent field with an SATB
   781   //   update buffer.
   782   //   If the code for the getfield template is modified so that the
   783   //   G1 pre-barrier code is executed when the current method is
   784   //   Reference.get() then going through the normal method entry
   785   //   will be fine.
   786   // * The G1 code can, however, check the receiver object (the instance
   787   //   of java.lang.Reference) and jump to the slow path if null. If the
   788   //   Reference object is null then we obviously cannot fetch the referent
   789   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   790   //   regular method entry code to generate the NPE.
   791   //
   792   // This code is based on generate_accessor_enty.
   794   address entry = __ pc();
   796   const int referent_offset = java_lang_ref_Reference::referent_offset;
   797   guarantee(referent_offset > 0, "referent offset not initialized");
   799   if (UseG1GC) {
   800      Label slow_path;
   802     // In the G1 code we don't check if we need to reach a safepoint. We
   803     // continue and the thread will safepoint at the next bytecode dispatch.
   805     // Check if local 0 != NULL
   806     // If the receiver is null then it is OK to jump to the slow path.
   807     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   808     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   809     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   810     __ delayed()->nop();
   813     // Load the value of the referent field.
   814     if (Assembler::is_simm13(referent_offset)) {
   815       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
   816     } else {
   817       __ set(referent_offset, G3_scratch);
   818       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
   819     }
   821     // Generate the G1 pre-barrier code to log the value of
   822     // the referent field in an SATB buffer. Note with
   823     // these parameters the pre-barrier does not generate
   824     // the load of the previous value
   826     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
   827                             Otos_i /* pre_val */,
   828                             G3_scratch /* tmp */,
   829                             true /* preserve_o_regs */);
   831     // _areturn
   832     __ retl();                      // return from leaf routine
   833     __ delayed()->mov(O5_savedSP, SP);
   835     // Generate regular method entry
   836     __ bind(slow_path);
   837     (void) generate_normal_entry(false);
   838     return entry;
   839   }
   840 #endif // SERIALGC
   842   // If G1 is not enabled then attempt to go through the accessor entry point
   843   // Reference.get is an accessor
   844   return generate_accessor_entry();
   845 }
   847 //
   848 // Interpreter stub for calling a native method. (asm interpreter)
   849 // This sets up a somewhat different looking stack for calling the native method
   850 // than the typical interpreter frame setup.
   851 //
   853 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   854   address entry = __ pc();
   856   // the following temporary registers are used during frame creation
   857   const Register Gtmp1 = G3_scratch ;
   858   const Register Gtmp2 = G1_scratch;
   859   bool inc_counter  = UseCompiler || CountCompiledCalls;
   861   // make sure registers are different!
   862   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   864   const Address Laccess_flags(Lmethod, methodOopDesc::access_flags_offset());
   866   __ verify_oop(G5_method);
   868   const Register Glocals_size = G3;
   869   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   871   // make sure method is native & not abstract
   872   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   873 #ifdef ASSERT
   874   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
   875   {
   876     Label L;
   877     __ btst(JVM_ACC_NATIVE, Gtmp1);
   878     __ br(Assembler::notZero, false, Assembler::pt, L);
   879     __ delayed()->nop();
   880     __ stop("tried to execute non-native method as native");
   881     __ bind(L);
   882   }
   883   { Label L;
   884     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   885     __ br(Assembler::zero, false, Assembler::pt, L);
   886     __ delayed()->nop();
   887     __ stop("tried to execute abstract method as non-abstract");
   888     __ bind(L);
   889   }
   890 #endif // ASSERT
   892  // generate the code to allocate the interpreter stack frame
   893   generate_fixed_frame(true);
   895   //
   896   // No locals to initialize for native method
   897   //
   899   // this slot will be set later, we initialize it to null here just in
   900   // case we get a GC before the actual value is stored later
   901   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
   903   const Address do_not_unlock_if_synchronized(G2_thread,
   904     JavaThread::do_not_unlock_if_synchronized_offset());
   905   // Since at this point in the method invocation the exception handler
   906   // would try to exit the monitor of synchronized methods which hasn't
   907   // been entered yet, we set the thread local variable
   908   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   909   // runtime, exception handling i.e. unlock_if_synchronized_method will
   910   // check this thread local flag.
   911   // This flag has two effects, one is to force an unwind in the topmost
   912   // interpreter frame and not perform an unlock while doing so.
   914   __ movbool(true, G3_scratch);
   915   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   917   // increment invocation counter and check for overflow
   918   //
   919   // Note: checking for negative value instead of overflow
   920   //       so we have a 'sticky' overflow test (may be of
   921   //       importance as soon as we have true MT/MP)
   922   Label invocation_counter_overflow;
   923   Label Lcontinue;
   924   if (inc_counter) {
   925     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   927   }
   928   __ bind(Lcontinue);
   930   bang_stack_shadow_pages(true);
   932   // reset the _do_not_unlock_if_synchronized flag
   933   __ stbool(G0, do_not_unlock_if_synchronized);
   935   // check for synchronized methods
   936   // Must happen AFTER invocation_counter check and stack overflow check,
   937   // so method is not locked if overflows.
   939   if (synchronized) {
   940     lock_method();
   941   } else {
   942 #ifdef ASSERT
   943     { Label ok;
   944       __ ld(Laccess_flags, O0);
   945       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   946       __ br( Assembler::zero, false, Assembler::pt, ok);
   947       __ delayed()->nop();
   948       __ stop("method needs synchronization");
   949       __ bind(ok);
   950     }
   951 #endif // ASSERT
   952   }
   955   // start execution
   956   __ verify_thread();
   958   // JVMTI support
   959   __ notify_method_entry();
   961   // native call
   963   // (note that O0 is never an oop--at most it is a handle)
   964   // It is important not to smash any handles created by this call,
   965   // until any oop handle in O0 is dereferenced.
   967   // (note that the space for outgoing params is preallocated)
   969   // get signature handler
   970   { Label L;
   971     Address signature_handler(Lmethod, methodOopDesc::signature_handler_offset());
   972     __ ld_ptr(signature_handler, G3_scratch);
   973     __ tst(G3_scratch);
   974     __ brx(Assembler::notZero, false, Assembler::pt, L);
   975     __ delayed()->nop();
   976     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   977     __ ld_ptr(signature_handler, G3_scratch);
   978     __ bind(L);
   979   }
   981   // Push a new frame so that the args will really be stored in
   982   // Copy a few locals across so the new frame has the variables
   983   // we need but these values will be dead at the jni call and
   984   // therefore not gc volatile like the values in the current
   985   // frame (Lmethod in particular)
   987   // Flush the method pointer to the register save area
   988   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   989   __ mov(Llocals, O1);
   991   // calculate where the mirror handle body is allocated in the interpreter frame:
   992   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
   994   // Calculate current frame size
   995   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   996   __ save(SP, O3, SP);        // Allocate an identical sized frame
   998   // Note I7 has leftover trash. Slow signature handler will fill it in
   999   // should we get there. Normal jni call will set reasonable last_Java_pc
  1000   // below (and fix I7 so the stack trace doesn't have a meaningless frame
  1001   // in it).
  1003   // Load interpreter frame's Lmethod into same register here
  1005   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
  1007   __ mov(I1, Llocals);
  1008   __ mov(I2, Lscratch2);     // save the address of the mirror
  1011   // ONLY Lmethod and Llocals are valid here!
  1013   // call signature handler, It will move the arg properly since Llocals in current frame
  1014   // matches that in outer frame
  1016   __ callr(G3_scratch, 0);
  1017   __ delayed()->nop();
  1019   // Result handler is in Lscratch
  1021   // Reload interpreter frame's Lmethod since slow signature handler may block
  1022   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
  1024   { Label not_static;
  1026     __ ld(Laccess_flags, O0);
  1027     __ btst(JVM_ACC_STATIC, O0);
  1028     __ br( Assembler::zero, false, Assembler::pt, not_static);
  1029     // get native function entry point(O0 is a good temp until the very end)
  1030     __ delayed()->ld_ptr(Lmethod, in_bytes(methodOopDesc::native_function_offset()), O0);
  1031     // for static methods insert the mirror argument
  1032     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1034     __ ld_ptr(Lmethod, methodOopDesc:: constants_offset(), O1);
  1035     __ ld_ptr(O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
  1036     __ ld_ptr(O1, mirror_offset, O1);
  1037 #ifdef ASSERT
  1038     if (!PrintSignatureHandlers)  // do not dirty the output with this
  1039     { Label L;
  1040       __ tst(O1);
  1041       __ brx(Assembler::notZero, false, Assembler::pt, L);
  1042       __ delayed()->nop();
  1043       __ stop("mirror is missing");
  1044       __ bind(L);
  1046 #endif // ASSERT
  1047     __ st_ptr(O1, Lscratch2, 0);
  1048     __ mov(Lscratch2, O1);
  1049     __ bind(not_static);
  1052   // At this point, arguments have been copied off of stack into
  1053   // their JNI positions, which are O1..O5 and SP[68..].
  1054   // Oops are boxed in-place on the stack, with handles copied to arguments.
  1055   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
  1057 #ifdef ASSERT
  1058   { Label L;
  1059     __ tst(O0);
  1060     __ brx(Assembler::notZero, false, Assembler::pt, L);
  1061     __ delayed()->nop();
  1062     __ stop("native entry point is missing");
  1063     __ bind(L);
  1065 #endif // ASSERT
  1067   //
  1068   // setup the frame anchor
  1069   //
  1070   // The scavenge function only needs to know that the PC of this frame is
  1071   // in the interpreter method entry code, it doesn't need to know the exact
  1072   // PC and hence we can use O7 which points to the return address from the
  1073   // previous call in the code stream (signature handler function)
  1074   //
  1075   // The other trick is we set last_Java_sp to FP instead of the usual SP because
  1076   // we have pushed the extra frame in order to protect the volatile register(s)
  1077   // in that frame when we return from the jni call
  1078   //
  1080   __ set_last_Java_frame(FP, O7);
  1081   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
  1082                    // not meaningless information that'll confuse me.
  1084   // flush the windows now. We don't care about the current (protection) frame
  1085   // only the outer frames
  1087   __ flush_windows();
  1089   // mark windows as flushed
  1090   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1091   __ set(JavaFrameAnchor::flushed, G3_scratch);
  1092   __ st(G3_scratch, flags);
  1094   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
  1096   Address thread_state(G2_thread, JavaThread::thread_state_offset());
  1097 #ifdef ASSERT
  1098   { Label L;
  1099     __ ld(thread_state, G3_scratch);
  1100     __ cmp(G3_scratch, _thread_in_Java);
  1101     __ br(Assembler::equal, false, Assembler::pt, L);
  1102     __ delayed()->nop();
  1103     __ stop("Wrong thread state in native stub");
  1104     __ bind(L);
  1106 #endif // ASSERT
  1107   __ set(_thread_in_native, G3_scratch);
  1108   __ st(G3_scratch, thread_state);
  1110   // Call the jni method, using the delay slot to set the JNIEnv* argument.
  1111   __ save_thread(L7_thread_cache); // save Gthread
  1112   __ callr(O0, 0);
  1113   __ delayed()->
  1114      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
  1116   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
  1118   __ restore_thread(L7_thread_cache); // restore G2_thread
  1119   __ reinit_heapbase();
  1121   // must we block?
  1123   // Block, if necessary, before resuming in _thread_in_Java state.
  1124   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  1125   { Label no_block;
  1126     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  1128     // Switch thread to "native transition" state before reading the synchronization state.
  1129     // This additional state is necessary because reading and testing the synchronization
  1130     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1131     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1132     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1133     //     Thread A is resumed to finish this native method, but doesn't block here since it
  1134     //     didn't see any synchronization is progress, and escapes.
  1135     __ set(_thread_in_native_trans, G3_scratch);
  1136     __ st(G3_scratch, thread_state);
  1137     if(os::is_MP()) {
  1138       if (UseMembar) {
  1139         // Force this write out before the read below
  1140         __ membar(Assembler::StoreLoad);
  1141       } else {
  1142         // Write serialization page so VM thread can do a pseudo remote membar.
  1143         // We use the current thread pointer to calculate a thread specific
  1144         // offset to write to within the page. This minimizes bus traffic
  1145         // due to cache line collision.
  1146         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  1149     __ load_contents(sync_state, G3_scratch);
  1150     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  1152     Label L;
  1153     __ br(Assembler::notEqual, false, Assembler::pn, L);
  1154     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
  1155     __ cmp(G3_scratch, 0);
  1156     __ br(Assembler::equal, false, Assembler::pt, no_block);
  1157     __ delayed()->nop();
  1158     __ bind(L);
  1160     // Block.  Save any potential method result value before the operation and
  1161     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1162     save_native_result();
  1163     __ call_VM_leaf(L7_thread_cache,
  1164                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1165                     G2_thread);
  1167     // Restore any method result value
  1168     restore_native_result();
  1169     __ bind(no_block);
  1172   // Clear the frame anchor now
  1174   __ reset_last_Java_frame();
  1176   // Move the result handler address
  1177   __ mov(Lscratch, G3_scratch);
  1178   // return possible result to the outer frame
  1179 #ifndef __LP64
  1180   __ mov(O0, I0);
  1181   __ restore(O1, G0, O1);
  1182 #else
  1183   __ restore(O0, G0, O0);
  1184 #endif /* __LP64 */
  1186   // Move result handler to expected register
  1187   __ mov(G3_scratch, Lscratch);
  1189   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1190   // switch to thread_in_Java.
  1192   __ set(_thread_in_Java, G3_scratch);
  1193   __ st(G3_scratch, thread_state);
  1195   // reset handle block
  1196   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
  1197   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1199   // If we have an oop result store it where it will be safe for any further gc
  1200   // until we return now that we've released the handle it might be protected by
  1203     Label no_oop, store_result;
  1205     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1206     __ cmp(G3_scratch, Lscratch);
  1207     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
  1208     __ delayed()->nop();
  1209     __ addcc(G0, O0, O0);
  1210     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
  1211     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
  1212     __ mov(G0, O0);
  1214     __ bind(store_result);
  1215     // Store it where gc will look for it and result handler expects it.
  1216     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1218     __ bind(no_oop);
  1223   // handle exceptions (exception handling will handle unlocking!)
  1224   { Label L;
  1225     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1226     __ ld_ptr(exception_addr, Gtemp);
  1227     __ tst(Gtemp);
  1228     __ brx(Assembler::equal, false, Assembler::pt, L);
  1229     __ delayed()->nop();
  1230     // Note: This could be handled more efficiently since we know that the native
  1231     //       method doesn't have an exception handler. We could directly return
  1232     //       to the exception handler for the caller.
  1233     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1234     __ should_not_reach_here();
  1235     __ bind(L);
  1238   // JVMTI support (preserves thread register)
  1239   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1241   if (synchronized) {
  1242     // save and restore any potential method result value around the unlocking operation
  1243     save_native_result();
  1245     __ add( __ top_most_monitor(), O1);
  1246     __ unlock_object(O1);
  1248     restore_native_result();
  1251 #if defined(COMPILER2) && !defined(_LP64)
  1253   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1254   // or compiled so just be safe.
  1256   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1257   __ srl (O1, 0, O1);           // Zero extend O1
  1258   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1260 #endif /* COMPILER2 && !_LP64 */
  1262   // dispose of return address and remove activation
  1263 #ifdef ASSERT
  1265     Label ok;
  1266     __ cmp(I5_savedSP, FP);
  1267     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
  1268     __ delayed()->nop();
  1269     __ stop("bad I5_savedSP value");
  1270     __ should_not_reach_here();
  1271     __ bind(ok);
  1273 #endif
  1274   if (TraceJumps) {
  1275     // Move target to register that is recordable
  1276     __ mov(Lscratch, G3_scratch);
  1277     __ JMP(G3_scratch, 0);
  1278   } else {
  1279     __ jmp(Lscratch, 0);
  1281   __ delayed()->nop();
  1284   if (inc_counter) {
  1285     // handle invocation counter overflow
  1286     __ bind(invocation_counter_overflow);
  1287     generate_counter_overflow(Lcontinue);
  1292   return entry;
  1296 // Generic method entry to (asm) interpreter
  1297 //------------------------------------------------------------------------------------------------------------------------
  1298 //
  1299 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1300   address entry = __ pc();
  1302   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1304   // the following temporary registers are used during frame creation
  1305   const Register Gtmp1 = G3_scratch ;
  1306   const Register Gtmp2 = G1_scratch;
  1308   // make sure registers are different!
  1309   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1311   const Address size_of_parameters(G5_method, methodOopDesc::size_of_parameters_offset());
  1312   const Address size_of_locals    (G5_method, methodOopDesc::size_of_locals_offset());
  1313   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1314   // and use in the asserts.
  1315   const Address access_flags      (Lmethod,   methodOopDesc::access_flags_offset());
  1317   __ verify_oop(G5_method);
  1319   const Register Glocals_size = G3;
  1320   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1322   // make sure method is not native & not abstract
  1323   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1324 #ifdef ASSERT
  1325   __ ld(G5_method, methodOopDesc::access_flags_offset(), Gtmp1);
  1327     Label L;
  1328     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1329     __ br(Assembler::zero, false, Assembler::pt, L);
  1330     __ delayed()->nop();
  1331     __ stop("tried to execute native method as non-native");
  1332     __ bind(L);
  1334   { Label L;
  1335     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1336     __ br(Assembler::zero, false, Assembler::pt, L);
  1337     __ delayed()->nop();
  1338     __ stop("tried to execute abstract method as non-abstract");
  1339     __ bind(L);
  1341 #endif // ASSERT
  1343   // generate the code to allocate the interpreter stack frame
  1345   generate_fixed_frame(false);
  1347 #ifdef FAST_DISPATCH
  1348   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1349                                           // set bytecode dispatch table base
  1350 #endif
  1352   //
  1353   // Code to initialize the extra (i.e. non-parm) locals
  1354   //
  1355   Register init_value = noreg;    // will be G0 if we must clear locals
  1356   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1357   // It could only be false for the specialized entries like accessor or empty which have
  1358   // no extra locals so the testing was a waste of time and the extra locals were always
  1359   // initialized. We removed this extra complication to already over complicated code.
  1361   init_value = G0;
  1362   Label clear_loop;
  1364   // NOTE: If you change the frame layout, this code will need to
  1365   // be updated!
  1366   __ lduh( size_of_locals, O2 );
  1367   __ lduh( size_of_parameters, O1 );
  1368   __ sll( O2, Interpreter::logStackElementSize, O2);
  1369   __ sll( O1, Interpreter::logStackElementSize, O1 );
  1370   __ sub( Llocals, O2, O2 );
  1371   __ sub( Llocals, O1, O1 );
  1373   __ bind( clear_loop );
  1374   __ inc( O2, wordSize );
  1376   __ cmp( O2, O1 );
  1377   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1378   __ delayed()->st_ptr( init_value, O2, 0 );
  1380   const Address do_not_unlock_if_synchronized(G2_thread,
  1381     JavaThread::do_not_unlock_if_synchronized_offset());
  1382   // Since at this point in the method invocation the exception handler
  1383   // would try to exit the monitor of synchronized methods which hasn't
  1384   // been entered yet, we set the thread local variable
  1385   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1386   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1387   // check this thread local flag.
  1388   __ movbool(true, G3_scratch);
  1389   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1391   // increment invocation counter and check for overflow
  1392   //
  1393   // Note: checking for negative value instead of overflow
  1394   //       so we have a 'sticky' overflow test (may be of
  1395   //       importance as soon as we have true MT/MP)
  1396   Label invocation_counter_overflow;
  1397   Label profile_method;
  1398   Label profile_method_continue;
  1399   Label Lcontinue;
  1400   if (inc_counter) {
  1401     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1402     if (ProfileInterpreter) {
  1403       __ bind(profile_method_continue);
  1406   __ bind(Lcontinue);
  1408   bang_stack_shadow_pages(false);
  1410   // reset the _do_not_unlock_if_synchronized flag
  1411   __ stbool(G0, do_not_unlock_if_synchronized);
  1413   // check for synchronized methods
  1414   // Must happen AFTER invocation_counter check and stack overflow check,
  1415   // so method is not locked if overflows.
  1417   if (synchronized) {
  1418     lock_method();
  1419   } else {
  1420 #ifdef ASSERT
  1421     { Label ok;
  1422       __ ld(access_flags, O0);
  1423       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1424       __ br( Assembler::zero, false, Assembler::pt, ok);
  1425       __ delayed()->nop();
  1426       __ stop("method needs synchronization");
  1427       __ bind(ok);
  1429 #endif // ASSERT
  1432   // start execution
  1434   __ verify_thread();
  1436   // jvmti support
  1437   __ notify_method_entry();
  1439   // start executing instructions
  1440   __ dispatch_next(vtos);
  1443   if (inc_counter) {
  1444     if (ProfileInterpreter) {
  1445       // We have decided to profile this method in the interpreter
  1446       __ bind(profile_method);
  1448       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1449       __ set_method_data_pointer_for_bcp();
  1450       __ ba(false, profile_method_continue);
  1451       __ delayed()->nop();
  1454     // handle invocation counter overflow
  1455     __ bind(invocation_counter_overflow);
  1456     generate_counter_overflow(Lcontinue);
  1460   return entry;
  1464 //----------------------------------------------------------------------------------------------------
  1465 // Entry points & stack frame layout
  1466 //
  1467 // Here we generate the various kind of entries into the interpreter.
  1468 // The two main entry type are generic bytecode methods and native call method.
  1469 // These both come in synchronized and non-synchronized versions but the
  1470 // frame layout they create is very similar. The other method entry
  1471 // types are really just special purpose entries that are really entry
  1472 // and interpretation all in one. These are for trivial methods like
  1473 // accessor, empty, or special math methods.
  1474 //
  1475 // When control flow reaches any of the entry types for the interpreter
  1476 // the following holds ->
  1477 //
  1478 // C2 Calling Conventions:
  1479 //
  1480 // The entry code below assumes that the following registers are set
  1481 // when coming in:
  1482 //    G5_method: holds the methodOop of the method to call
  1483 //    Lesp:    points to the TOS of the callers expression stack
  1484 //             after having pushed all the parameters
  1485 //
  1486 // The entry code does the following to setup an interpreter frame
  1487 //   pop parameters from the callers stack by adjusting Lesp
  1488 //   set O0 to Lesp
  1489 //   compute X = (max_locals - num_parameters)
  1490 //   bump SP up by X to accomadate the extra locals
  1491 //   compute X = max_expression_stack
  1492 //               + vm_local_words
  1493 //               + 16 words of register save area
  1494 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1495 //   set Lbcp, Lmethod, LcpoolCache
  1496 //   set Llocals to i0
  1497 //   set Lmonitors to FP - rounded_vm_local_words
  1498 //   set Lesp to Lmonitors - 4
  1499 //
  1500 //  The frame has now been setup to do the rest of the entry code
  1502 // Try this optimization:  Most method entries could live in a
  1503 // "one size fits all" stack frame without all the dynamic size
  1504 // calculations.  It might be profitable to do all this calculation
  1505 // statically and approximately for "small enough" methods.
  1507 //-----------------------------------------------------------------------------------------------
  1509 // C1 Calling conventions
  1510 //
  1511 // Upon method entry, the following registers are setup:
  1512 //
  1513 // g2 G2_thread: current thread
  1514 // g5 G5_method: method to activate
  1515 // g4 Gargs  : pointer to last argument
  1516 //
  1517 //
  1518 // Stack:
  1519 //
  1520 // +---------------+ <--- sp
  1521 // |               |
  1522 // : reg save area :
  1523 // |               |
  1524 // +---------------+ <--- sp + 0x40
  1525 // |               |
  1526 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1527 // |               |
  1528 // +---------------+ <--- sp + 0x5c
  1529 // |               |
  1530 // :     free      :
  1531 // |               |
  1532 // +---------------+ <--- Gargs
  1533 // |               |
  1534 // :   arguments   :
  1535 // |               |
  1536 // +---------------+
  1537 // |               |
  1538 //
  1539 //
  1540 //
  1541 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1542 //
  1543 // +---------------+ <--- sp
  1544 // |               |
  1545 // : reg save area :
  1546 // |               |
  1547 // +---------------+ <--- sp + 0x40
  1548 // |               |
  1549 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1550 // |               |
  1551 // +---------------+ <--- sp + 0x5c
  1552 // |               |
  1553 // :               :
  1554 // |               | <--- Lesp
  1555 // +---------------+ <--- Lmonitors (fp - 0x18)
  1556 // |   VM locals   |
  1557 // +---------------+ <--- fp
  1558 // |               |
  1559 // : reg save area :
  1560 // |               |
  1561 // +---------------+ <--- fp + 0x40
  1562 // |               |
  1563 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1564 // |               |
  1565 // +---------------+ <--- fp + 0x5c
  1566 // |               |
  1567 // :     free      :
  1568 // |               |
  1569 // +---------------+
  1570 // |               |
  1571 // : nonarg locals :
  1572 // |               |
  1573 // +---------------+
  1574 // |               |
  1575 // :   arguments   :
  1576 // |               | <--- Llocals
  1577 // +---------------+ <--- Gargs
  1578 // |               |
  1580 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1582   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1583   // expression stack, the callee will have callee_extra_locals (so we can account for
  1584   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1585   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1586   //
  1587   //
  1588   // The big complicating thing here is that we must ensure that the stack stays properly
  1589   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1590   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1591   // the caller so we must ensure that it is properly aligned for our callee.
  1592   //
  1593   const int rounded_vm_local_words =
  1594        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1595   // callee_locals and max_stack are counts, not the size in frame.
  1596   const int locals_size =
  1597        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  1598   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  1599   return (round_to((max_stack_words
  1600                    //6815692//+ methodOopDesc::extra_stack_words()
  1601                    + rounded_vm_local_words
  1602                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1603                    // already rounded
  1604                    + locals_size + monitor_size);
  1607 // How much stack a method top interpreter activation needs in words.
  1608 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1610   // See call_stub code
  1611   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1612                                  WordsPerLong);    // 7 + register save area
  1614   // Save space for one monitor to get into the interpreted method in case
  1615   // the method is synchronized
  1616   int monitor_size    = method->is_synchronized() ?
  1617                                 1*frame::interpreter_frame_monitor_size() : 0;
  1618   return size_activation_helper(method->max_locals(), method->max_stack(),
  1619                                  monitor_size) + call_stub_size;
  1622 int AbstractInterpreter::layout_activation(methodOop method,
  1623                                            int tempcount,
  1624                                            int popframe_extra_args,
  1625                                            int moncount,
  1626                                            int caller_actual_parameters,
  1627                                            int callee_param_count,
  1628                                            int callee_local_count,
  1629                                            frame* caller,
  1630                                            frame* interpreter_frame,
  1631                                            bool is_top_frame) {
  1632   // Note: This calculation must exactly parallel the frame setup
  1633   // in InterpreterGenerator::generate_fixed_frame.
  1634   // If f!=NULL, set up the following variables:
  1635   //   - Lmethod
  1636   //   - Llocals
  1637   //   - Lmonitors (to the indicated number of monitors)
  1638   //   - Lesp (to the indicated number of temps)
  1639   // The frame f (if not NULL) on entry is a description of the caller of the frame
  1640   // we are about to layout. We are guaranteed that we will be able to fill in a
  1641   // new interpreter frame as its callee (i.e. the stack space is allocated and
  1642   // the amount was determined by an earlier call to this method with f == NULL).
  1643   // On return f (if not NULL) while describe the interpreter frame we just layed out.
  1645   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1646   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1648   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1649   //
  1650   // Note: if you look closely this appears to be doing something much different
  1651   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1652   // this dance with interpreter_sp_adjustment because the window save area would
  1653   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1654   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1655   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1656   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1657   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1658   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1659   // because the oldest frame would have adjust its callers frame and yet that frame
  1660   // already exists and isn't part of this array of frames we are unpacking. So at first
  1661   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1662   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1663   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1664   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1665   // callee... parameters here). However this would mean that this routine would have to take
  1666   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1667   // and run the calling loop in the reverse order. This would also would appear to mean making
  1668   // this code aware of what the interactions are when that initial caller fram was an osr or
  1669   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1670   // there is no sense in messing working code.
  1671   //
  1673   int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
  1674   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1676   int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
  1677                                               monitor_size);
  1679   if (interpreter_frame != NULL) {
  1680     // The skeleton frame must already look like an interpreter frame
  1681     // even if not fully filled out.
  1682     assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1684     intptr_t* fp = interpreter_frame->fp();
  1686     JavaThread* thread = JavaThread::current();
  1687     RegisterMap map(thread, false);
  1688     // More verification that skeleton frame is properly walkable
  1689     assert(fp == caller->sp(), "fp must match");
  1691     intptr_t* montop     = fp - rounded_vm_local_words;
  1693     // preallocate monitors (cf. __ add_monitor_to_stack)
  1694     intptr_t* monitors = montop - monitor_size;
  1696     // preallocate stack space
  1697     intptr_t*  esp = monitors - 1 -
  1698                      (tempcount * Interpreter::stackElementWords) -
  1699                      popframe_extra_args;
  1701     int local_words = method->max_locals() * Interpreter::stackElementWords;
  1702     NEEDS_CLEANUP;
  1703     intptr_t* locals;
  1704     if (caller->is_interpreted_frame()) {
  1705       // Can force the locals area to end up properly overlapping the top of the expression stack.
  1706       intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1707       // Note that this computation means we replace size_of_parameters() values from the caller
  1708       // interpreter frame's expression stack with our argument locals
  1709       int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
  1710       locals = Lesp_ptr + parm_words;
  1711       int delta = local_words - parm_words;
  1712       int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1713       *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1714     } else {
  1715       assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
  1716       // Don't have Lesp available; lay out locals block in the caller
  1717       // adjacent to the register window save area.
  1718       //
  1719       // Compiled frames do not allocate a varargs area which is why this if
  1720       // statement is needed.
  1721       //
  1722       if (caller->is_compiled_frame()) {
  1723         locals = fp + frame::register_save_words + local_words - 1;
  1724       } else {
  1725         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1727       if (!caller->is_entry_frame()) {
  1728         // Caller wants his own SP back
  1729         int caller_frame_size = caller->cb()->frame_size();
  1730         *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1733     if (TraceDeoptimization) {
  1734       if (caller->is_entry_frame()) {
  1735         // make sure I5_savedSP and the entry frames notion of saved SP
  1736         // agree.  This assertion duplicate a check in entry frame code
  1737         // but catches the failure earlier.
  1738         assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1739                "would change callers SP");
  1741       if (caller->is_entry_frame()) {
  1742         tty->print("entry ");
  1744       if (caller->is_compiled_frame()) {
  1745         tty->print("compiled ");
  1746         if (caller->is_deoptimized_frame()) {
  1747           tty->print("(deopt) ");
  1750       if (caller->is_interpreted_frame()) {
  1751         tty->print("interpreted ");
  1753       tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1754       tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1755       tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1756       tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1757       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1758       tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1759       tty->print_cr("Llocals = 0x%x", locals);
  1760       tty->print_cr("Lesp = 0x%x", esp);
  1761       tty->print_cr("Lmonitors = 0x%x", monitors);
  1764     if (method->max_locals() > 0) {
  1765       assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1766       assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1767       assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1768       assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1770 #ifdef _LP64
  1771     assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1772 #endif
  1774     *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1775     *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1776     *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1777     *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1778     // Llast_SP will be same as SP as there is no adapter space
  1779     *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1780     *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1781 #ifdef FAST_DISPATCH
  1782     *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1783 #endif
  1786 #ifdef ASSERT
  1787     BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1789     assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1790     assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
  1791     assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1792     assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1793     assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1795     // check bounds
  1796     intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1797     intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1798     assert(lo < monitors && montop <= hi, "monitors in bounds");
  1799     assert(lo <= esp && esp < monitors, "esp in bounds");
  1800 #endif // ASSERT
  1803   return raw_frame_size;
  1806 //----------------------------------------------------------------------------------------------------
  1807 // Exceptions
  1808 void TemplateInterpreterGenerator::generate_throw_exception() {
  1810   // Entry point in previous activation (i.e., if the caller was interpreted)
  1811   Interpreter::_rethrow_exception_entry = __ pc();
  1812   // O0: exception
  1814   // entry point for exceptions thrown within interpreter code
  1815   Interpreter::_throw_exception_entry = __ pc();
  1816   __ verify_thread();
  1817   // expression stack is undefined here
  1818   // O0: exception, i.e. Oexception
  1819   // Lbcp: exception bcx
  1820   __ verify_oop(Oexception);
  1823   // expression stack must be empty before entering the VM in case of an exception
  1824   __ empty_expression_stack();
  1825   // find exception handler address and preserve exception oop
  1826   // call C routine to find handler and jump to it
  1827   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1828   __ push_ptr(O1); // push exception for exception handler bytecodes
  1830   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1831   __ delayed()->nop();
  1834   // if the exception is not handled in the current frame
  1835   // the frame is removed and the exception is rethrown
  1836   // (i.e. exception continuation is _rethrow_exception)
  1837   //
  1838   // Note: At this point the bci is still the bxi for the instruction which caused
  1839   //       the exception and the expression stack is empty. Thus, for any VM calls
  1840   //       at this point, GC will find a legal oop map (with empty expression stack).
  1842   // in current activation
  1843   // tos: exception
  1844   // Lbcp: exception bcp
  1846   //
  1847   // JVMTI PopFrame support
  1848   //
  1850   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1851   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1852   // Set the popframe_processing bit in popframe_condition indicating that we are
  1853   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1854   // popframe handling cycles.
  1856   __ ld(popframe_condition_addr, G3_scratch);
  1857   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1858   __ stw(G3_scratch, popframe_condition_addr);
  1860   // Empty the expression stack, as in normal exception handling
  1861   __ empty_expression_stack();
  1862   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1865     // Check to see whether we are returning to a deoptimized frame.
  1866     // (The PopFrame call ensures that the caller of the popped frame is
  1867     // either interpreted or compiled and deoptimizes it if compiled.)
  1868     // In this case, we can't call dispatch_next() after the frame is
  1869     // popped, but instead must save the incoming arguments and restore
  1870     // them after deoptimization has occurred.
  1871     //
  1872     // Note that we don't compare the return PC against the
  1873     // deoptimization blob's unpack entry because of the presence of
  1874     // adapter frames in C2.
  1875     Label caller_not_deoptimized;
  1876     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1877     __ tst(O0);
  1878     __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
  1879     __ delayed()->nop();
  1881     const Register Gtmp1 = G3_scratch;
  1882     const Register Gtmp2 = G1_scratch;
  1884     // Compute size of arguments for saving when returning to deoptimized caller
  1885     __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
  1886     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
  1887     __ sub(Llocals, Gtmp1, Gtmp2);
  1888     __ add(Gtmp2, wordSize, Gtmp2);
  1889     // Save these arguments
  1890     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1891     // Inform deoptimization that it is responsible for restoring these arguments
  1892     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1893     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1894     __ st(Gtmp1, popframe_condition_addr);
  1896     // Return from the current method
  1897     // The caller's SP was adjusted upon method entry to accomodate
  1898     // the callee's non-argument locals. Undo that adjustment.
  1899     __ ret();
  1900     __ delayed()->restore(I5_savedSP, G0, SP);
  1902     __ bind(caller_not_deoptimized);
  1905   // Clear the popframe condition flag
  1906   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1908   // Get out of the current method (how this is done depends on the particular compiler calling
  1909   // convention that the interpreter currently follows)
  1910   // The caller's SP was adjusted upon method entry to accomodate
  1911   // the callee's non-argument locals. Undo that adjustment.
  1912   __ restore(I5_savedSP, G0, SP);
  1913   // The method data pointer was incremented already during
  1914   // call profiling. We have to restore the mdp for the current bcp.
  1915   if (ProfileInterpreter) {
  1916     __ set_method_data_pointer_for_bcp();
  1918   // Resume bytecode interpretation at the current bcp
  1919   __ dispatch_next(vtos);
  1920   // end of JVMTI PopFrame support
  1922   Interpreter::_remove_activation_entry = __ pc();
  1924   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1925   __ pop_ptr(Oexception);                                  // get exception
  1927   // Intel has the following comment:
  1928   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1929   // They remove the activation without checking for bad monitor state.
  1930   // %%% We should make sure this is the right semantics before implementing.
  1932   // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
  1933   __ set_vm_result(Oexception);
  1934   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1936   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1938   __ get_vm_result(Oexception);
  1939   __ verify_oop(Oexception);
  1941     const int return_reg_adjustment = frame::pc_return_offset;
  1942   Address issuing_pc_addr(I7, return_reg_adjustment);
  1944   // We are done with this activation frame; find out where to go next.
  1945   // The continuation point will be an exception handler, which expects
  1946   // the following registers set up:
  1947   //
  1948   // Oexception: exception
  1949   // Oissuing_pc: the local call that threw exception
  1950   // Other On: garbage
  1951   // In/Ln:  the contents of the caller's register window
  1952   //
  1953   // We do the required restore at the last possible moment, because we
  1954   // need to preserve some state across a runtime call.
  1955   // (Remember that the caller activation is unknown--it might not be
  1956   // interpreted, so things like Lscratch are useless in the caller.)
  1958   // Although the Intel version uses call_C, we can use the more
  1959   // compact call_VM.  (The only real difference on SPARC is a
  1960   // harmlessly ignored [re]set_last_Java_frame, compared with
  1961   // the Intel code which lacks this.)
  1962   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1963   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1964   __ super_call_VM_leaf(L7_thread_cache,
  1965                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1966                         G2_thread, Oissuing_pc->after_save());
  1968   // The caller's SP was adjusted upon method entry to accomodate
  1969   // the callee's non-argument locals. Undo that adjustment.
  1970   __ JMP(O0, 0);                         // return exception handler in caller
  1971   __ delayed()->restore(I5_savedSP, G0, SP);
  1973   // (same old exception object is already in Oexception; see above)
  1974   // Note that an "issuing PC" is actually the next PC after the call
  1978 //
  1979 // JVMTI ForceEarlyReturn support
  1980 //
  1982 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1983   address entry = __ pc();
  1985   __ empty_expression_stack();
  1986   __ load_earlyret_value(state);
  1988   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
  1989   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
  1991   // Clear the earlyret state
  1992   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  1994   __ remove_activation(state,
  1995                        /* throw_monitor_exception */ false,
  1996                        /* install_monitor_exception */ false);
  1998   // The caller's SP was adjusted upon method entry to accomodate
  1999   // the callee's non-argument locals. Undo that adjustment.
  2000   __ ret();                             // return to caller
  2001   __ delayed()->restore(I5_savedSP, G0, SP);
  2003   return entry;
  2004 } // end of JVMTI ForceEarlyReturn support
  2007 //------------------------------------------------------------------------------------------------------------------------
  2008 // Helper for vtos entry point generation
  2010 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  2011   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  2012   Label L;
  2013   aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
  2014   fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
  2015   dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
  2016   lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
  2017   iep = __ pc(); __ push_i();
  2018   bep = cep = sep = iep;                        // there aren't any
  2019   vep = __ pc(); __ bind(L);                    // fall through
  2020   generate_and_dispatch(t);
  2023 // --------------------------------------------------------------------------------
  2026 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2027  : TemplateInterpreterGenerator(code) {
  2028    generate_all(); // down here so it can be "virtual"
  2031 // --------------------------------------------------------------------------------
  2033 // Non-product code
  2034 #ifndef PRODUCT
  2035 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  2036   address entry = __ pc();
  2038   __ push(state);
  2039   __ mov(O7, Lscratch); // protect return address within interpreter
  2041   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  2042   __ mov( Otos_l2, G3_scratch );
  2043   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  2044   __ mov(Lscratch, O7); // restore return address
  2045   __ pop(state);
  2046   __ retl();
  2047   __ delayed()->nop();
  2049   return entry;
  2053 // helpers for generate_and_dispatch
  2055 void TemplateInterpreterGenerator::count_bytecode() {
  2056   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
  2060 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2061   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
  2065 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2066   AddressLiteral index   (&BytecodePairHistogram::_index);
  2067   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
  2069   // get index, shift out old bytecode, bring in new bytecode, and store it
  2070   // _index = (_index >> log2_number_of_codes) |
  2071   //          (bytecode << log2_number_of_codes);
  2073   __ load_contents(index, G4_scratch);
  2074   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  2075   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  2076   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  2077   __ store_contents(G4_scratch, index, G3_scratch);
  2079   // bump bucket contents
  2080   // _counters[_index] ++;
  2082   __ set(counters, G3_scratch);                       // loads into G3_scratch
  2083   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  2084   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  2085   __ ld (G3_scratch, 0, G4_scratch);
  2086   __ inc (G4_scratch);
  2087   __ st (G4_scratch, 0, G3_scratch);
  2091 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2092   // Call a little run-time stub to avoid blow-up for each bytecode.
  2093   // The run-time runtime saves the right registers, depending on
  2094   // the tosca in-state for the given template.
  2095   address entry = Interpreter::trace_code(t->tos_in());
  2096   guarantee(entry != NULL, "entry must have been generated");
  2097   __ call(entry, relocInfo::none);
  2098   __ delayed()->nop();
  2102 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2103   AddressLiteral counter(&BytecodeCounter::_counter_value);
  2104   __ load_contents(counter, G3_scratch);
  2105   AddressLiteral stop_at(&StopInterpreterAt);
  2106   __ load_ptr_contents(stop_at, G4_scratch);
  2107   __ cmp(G3_scratch, G4_scratch);
  2108   __ breakpoint_trap(Assembler::equal);
  2110 #endif // not PRODUCT
  2111 #endif // !CC_INTERP

mercurial