src/share/vm/opto/loopTransform.cpp

Tue, 09 Mar 2010 20:16:19 +0100

author
twisti
date
Tue, 09 Mar 2010 20:16:19 +0100
changeset 1730
3cf667df43ef
parent 1715
336c6c200f5f
child 1738
c047da02984c
permissions
-rw-r--r--

6919934: JSR 292 needs to support x86 C1
Summary: This implements JSR 292 support for C1 x86.
Reviewed-by: never, jrose, kvn

     1 /*
     2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_loopTransform.cpp.incl"
    28 //------------------------------is_loop_exit-----------------------------------
    29 // Given an IfNode, return the loop-exiting projection or NULL if both
    30 // arms remain in the loop.
    31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    32   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    33   PhaseIdealLoop *phase = _phase;
    34   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    35   // we need loop unswitching instead of peeling.
    36   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    37     return iff->raw_out(0);
    38   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    39     return iff->raw_out(1);
    40   return NULL;
    41 }
    44 //=============================================================================
    47 //------------------------------record_for_igvn----------------------------
    48 // Put loop body on igvn work list
    49 void IdealLoopTree::record_for_igvn() {
    50   for( uint i = 0; i < _body.size(); i++ ) {
    51     Node *n = _body.at(i);
    52     _phase->_igvn._worklist.push(n);
    53   }
    54 }
    56 //------------------------------compute_profile_trip_cnt----------------------------
    57 // Compute loop trip count from profile data as
    58 //    (backedge_count + loop_exit_count) / loop_exit_count
    59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
    60   if (!_head->is_CountedLoop()) {
    61     return;
    62   }
    63   CountedLoopNode* head = _head->as_CountedLoop();
    64   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
    65     return; // Already computed
    66   }
    67   float trip_cnt = (float)max_jint; // default is big
    69   Node* back = head->in(LoopNode::LoopBackControl);
    70   while (back != head) {
    71     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    72         back->in(0) &&
    73         back->in(0)->is_If() &&
    74         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
    75         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
    76       break;
    77     }
    78     back = phase->idom(back);
    79   }
    80   if (back != head) {
    81     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
    82            back->in(0), "if-projection exists");
    83     IfNode* back_if = back->in(0)->as_If();
    84     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
    86     // Now compute a loop exit count
    87     float loop_exit_cnt = 0.0f;
    88     for( uint i = 0; i < _body.size(); i++ ) {
    89       Node *n = _body[i];
    90       if( n->is_If() ) {
    91         IfNode *iff = n->as_If();
    92         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
    93           Node *exit = is_loop_exit(iff);
    94           if( exit ) {
    95             float exit_prob = iff->_prob;
    96             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
    97             if (exit_prob > PROB_MIN) {
    98               float exit_cnt = iff->_fcnt * exit_prob;
    99               loop_exit_cnt += exit_cnt;
   100             }
   101           }
   102         }
   103       }
   104     }
   105     if (loop_exit_cnt > 0.0f) {
   106       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   107     } else {
   108       // No exit count so use
   109       trip_cnt = loop_back_cnt;
   110     }
   111   }
   112 #ifndef PRODUCT
   113   if (TraceProfileTripCount) {
   114     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   115   }
   116 #endif
   117   head->set_profile_trip_cnt(trip_cnt);
   118 }
   120 //---------------------is_invariant_addition-----------------------------
   121 // Return nonzero index of invariant operand for an Add or Sub
   122 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   124   int op = n->Opcode();
   125   if (op == Op_AddI || op == Op_SubI) {
   126     bool in1_invar = this->is_invariant(n->in(1));
   127     bool in2_invar = this->is_invariant(n->in(2));
   128     if (in1_invar && !in2_invar) return 1;
   129     if (!in1_invar && in2_invar) return 2;
   130   }
   131   return 0;
   132 }
   134 //---------------------reassociate_add_sub-----------------------------
   135 // Reassociate invariant add and subtract expressions:
   136 //
   137 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   138 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   139 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   140 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   141 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   142 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   143 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   144 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   145 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   146 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   147 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   148 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   149 //
   150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   151   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   152   if (is_invariant(n1)) return NULL;
   153   int inv1_idx = is_invariant_addition(n1, phase);
   154   if (!inv1_idx) return NULL;
   155   // Don't mess with add of constant (igvn moves them to expression tree root.)
   156   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   157   Node* inv1 = n1->in(inv1_idx);
   158   Node* n2 = n1->in(3 - inv1_idx);
   159   int inv2_idx = is_invariant_addition(n2, phase);
   160   if (!inv2_idx) return NULL;
   161   Node* x    = n2->in(3 - inv2_idx);
   162   Node* inv2 = n2->in(inv2_idx);
   164   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   165   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   166   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   167   if (n1->is_Sub() && inv1_idx == 1) {
   168     neg_x    = !neg_x;
   169     neg_inv2 = !neg_inv2;
   170   }
   171   Node* inv1_c = phase->get_ctrl(inv1);
   172   Node* inv2_c = phase->get_ctrl(inv2);
   173   Node* n_inv1;
   174   if (neg_inv1) {
   175     Node *zero = phase->_igvn.intcon(0);
   176     phase->set_ctrl(zero, phase->C->root());
   177     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   178     phase->register_new_node(n_inv1, inv1_c);
   179   } else {
   180     n_inv1 = inv1;
   181   }
   182   Node* inv;
   183   if (neg_inv2) {
   184     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   185   } else {
   186     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   187   }
   188   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   190   Node* addx;
   191   if (neg_x) {
   192     addx = new (phase->C, 3) SubINode(inv, x);
   193   } else {
   194     addx = new (phase->C, 3) AddINode(x, inv);
   195   }
   196   phase->register_new_node(addx, phase->get_ctrl(x));
   197   phase->_igvn.hash_delete(n1);
   198   phase->_igvn.subsume_node(n1, addx);
   199   return addx;
   200 }
   202 //---------------------reassociate_invariants-----------------------------
   203 // Reassociate invariant expressions:
   204 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   205   for (int i = _body.size() - 1; i >= 0; i--) {
   206     Node *n = _body.at(i);
   207     for (int j = 0; j < 5; j++) {
   208       Node* nn = reassociate_add_sub(n, phase);
   209       if (nn == NULL) break;
   210       n = nn; // again
   211     };
   212   }
   213 }
   215 //------------------------------policy_peeling---------------------------------
   216 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   217 // make some loop-invariant test (usually a null-check) happen before the loop.
   218 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   219   Node *test = ((IdealLoopTree*)this)->tail();
   220   int  body_size = ((IdealLoopTree*)this)->_body.size();
   221   int  uniq      = phase->C->unique();
   222   // Peeling does loop cloning which can result in O(N^2) node construction
   223   if( body_size > 255 /* Prevent overflow for large body_size */
   224       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   225     return false;           // too large to safely clone
   226   }
   227   while( test != _head ) {      // Scan till run off top of loop
   228     if( test->is_If() ) {       // Test?
   229       Node *ctrl = phase->get_ctrl(test->in(1));
   230       if (ctrl->is_top())
   231         return false;           // Found dead test on live IF?  No peeling!
   232       // Standard IF only has one input value to check for loop invariance
   233       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   234       // Condition is not a member of this loop?
   235       if( !is_member(phase->get_loop(ctrl)) &&
   236           is_loop_exit(test) )
   237         return true;            // Found reason to peel!
   238     }
   239     // Walk up dominators to loop _head looking for test which is
   240     // executed on every path thru loop.
   241     test = phase->idom(test);
   242   }
   243   return false;
   244 }
   246 //------------------------------peeled_dom_test_elim---------------------------
   247 // If we got the effect of peeling, either by actually peeling or by making
   248 // a pre-loop which must execute at least once, we can remove all
   249 // loop-invariant dominated tests in the main body.
   250 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   251   bool progress = true;
   252   while( progress ) {
   253     progress = false;           // Reset for next iteration
   254     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   255     Node *test = prev->in(0);
   256     while( test != loop->_head ) { // Scan till run off top of loop
   258       int p_op = prev->Opcode();
   259       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   260           test->is_If() &&      // Test?
   261           !test->in(1)->is_Con() && // And not already obvious?
   262           // Condition is not a member of this loop?
   263           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   264         // Walk loop body looking for instances of this test
   265         for( uint i = 0; i < loop->_body.size(); i++ ) {
   266           Node *n = loop->_body.at(i);
   267           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   268             // IfNode was dominated by version in peeled loop body
   269             progress = true;
   270             dominated_by( old_new[prev->_idx], n );
   271           }
   272         }
   273       }
   274       prev = test;
   275       test = idom(test);
   276     } // End of scan tests in loop
   278   } // End of while( progress )
   279 }
   281 //------------------------------do_peeling-------------------------------------
   282 // Peel the first iteration of the given loop.
   283 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   284 //         The pre-loop illegally has 2 control users (old & new loops).
   285 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   286 //         Do this by making the old-loop fall-in edges act as if they came
   287 //         around the loopback from the prior iteration (follow the old-loop
   288 //         backedges) and then map to the new peeled iteration.  This leaves
   289 //         the pre-loop with only 1 user (the new peeled iteration), but the
   290 //         peeled-loop backedge has 2 users.
   291 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   292 //         extra backedge user.
   293 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   295   C->set_major_progress();
   296   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   297   // 'pre' loop from the main and the 'pre' can no longer have it's
   298   // iterations adjusted.  Therefore, we need to declare this loop as
   299   // no longer a 'main' loop; it will need new pre and post loops before
   300   // we can do further RCE.
   301   Node *h = loop->_head;
   302   if( h->is_CountedLoop() ) {
   303     CountedLoopNode *cl = h->as_CountedLoop();
   304     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   305     cl->set_trip_count(cl->trip_count() - 1);
   306     if( cl->is_main_loop() ) {
   307       cl->set_normal_loop();
   308 #ifndef PRODUCT
   309       if( PrintOpto && VerifyLoopOptimizations ) {
   310         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   311         loop->dump_head();
   312       }
   313 #endif
   314     }
   315   }
   317   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   318   //         The pre-loop illegally has 2 control users (old & new loops).
   319   clone_loop( loop, old_new, dom_depth(loop->_head) );
   322   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   323   //         Do this by making the old-loop fall-in edges act as if they came
   324   //         around the loopback from the prior iteration (follow the old-loop
   325   //         backedges) and then map to the new peeled iteration.  This leaves
   326   //         the pre-loop with only 1 user (the new peeled iteration), but the
   327   //         peeled-loop backedge has 2 users.
   328   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
   329     Node* old = loop->_head->fast_out(j);
   330     if( old->in(0) == loop->_head && old->req() == 3 &&
   331         (old->is_Loop() || old->is_Phi()) ) {
   332       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   333       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
   334         // Then loop body backedge value remains the same.
   335         new_exit_value = old->in(LoopNode::LoopBackControl);
   336       _igvn.hash_delete(old);
   337       old->set_req(LoopNode::EntryControl, new_exit_value);
   338     }
   339   }
   342   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   343   //         extra backedge user.
   344   Node *nnn = old_new[loop->_head->_idx];
   345   _igvn.hash_delete(nnn);
   346   nnn->set_req(LoopNode::LoopBackControl, C->top());
   347   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
   348     Node* use = nnn->fast_out(j2);
   349     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
   350       _igvn.hash_delete(use);
   351       use->set_req(LoopNode::LoopBackControl, C->top());
   352     }
   353   }
   356   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   357   int dd = dom_depth(loop->_head);
   358   set_idom(loop->_head, loop->_head->in(1), dd);
   359   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   360     Node *old = loop->_body.at(j3);
   361     Node *nnn = old_new[old->_idx];
   362     if (!has_ctrl(nnn))
   363       set_idom(nnn, idom(nnn), dd-1);
   364     // While we're at it, remove any SafePoints from the peeled code
   365     if( old->Opcode() == Op_SafePoint ) {
   366       Node *nnn = old_new[old->_idx];
   367       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   368     }
   369   }
   371   // Now force out all loop-invariant dominating tests.  The optimizer
   372   // finds some, but we _know_ they are all useless.
   373   peeled_dom_test_elim(loop,old_new);
   375   loop->record_for_igvn();
   376 }
   378 //------------------------------policy_maximally_unroll------------------------
   379 // Return exact loop trip count, or 0 if not maximally unrolling
   380 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   381   CountedLoopNode *cl = _head->as_CountedLoop();
   382   assert( cl->is_normal_loop(), "" );
   384   Node *init_n = cl->init_trip();
   385   Node *limit_n = cl->limit();
   387   // Non-constant bounds
   388   if( init_n   == NULL || !init_n->is_Con()  ||
   389       limit_n  == NULL || !limit_n->is_Con() ||
   390       // protect against stride not being a constant
   391       !cl->stride_is_con() ) {
   392     return false;
   393   }
   394   int init   = init_n->get_int();
   395   int limit  = limit_n->get_int();
   396   int span   = limit - init;
   397   int stride = cl->stride_con();
   399   if (init >= limit || stride > span) {
   400     // return a false (no maximally unroll) and the regular unroll/peel
   401     // route will make a small mess which CCP will fold away.
   402     return false;
   403   }
   404   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
   405   assert( (int)trip_count*stride == span, "must divide evenly" );
   407   // Real policy: if we maximally unroll, does it get too big?
   408   // Allow the unrolled mess to get larger than standard loop
   409   // size.  After all, it will no longer be a loop.
   410   uint body_size    = _body.size();
   411   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   412   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   413   cl->set_trip_count(trip_count);
   414   if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
   415     uint new_body_size = body_size * trip_count;
   416     if (new_body_size <= unroll_limit &&
   417         body_size == new_body_size / trip_count &&
   418         // Unrolling can result in a large amount of node construction
   419         new_body_size < MaxNodeLimit - phase->C->unique()) {
   420       return true;    // maximally unroll
   421     }
   422   }
   424   return false;               // Do not maximally unroll
   425 }
   428 //------------------------------policy_unroll----------------------------------
   429 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   430 // the loop is a CountedLoop and the body is small enough.
   431 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   433   CountedLoopNode *cl = _head->as_CountedLoop();
   434   assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
   436   // protect against stride not being a constant
   437   if( !cl->stride_is_con() ) return false;
   439   // protect against over-unrolling
   440   if( cl->trip_count() <= 1 ) return false;
   442   int future_unroll_ct = cl->unrolled_count() * 2;
   444   // Don't unroll if the next round of unrolling would push us
   445   // over the expected trip count of the loop.  One is subtracted
   446   // from the expected trip count because the pre-loop normally
   447   // executes 1 iteration.
   448   if (UnrollLimitForProfileCheck > 0 &&
   449       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   450       future_unroll_ct        > UnrollLimitForProfileCheck &&
   451       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   452     return false;
   453   }
   455   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   456   //   the residual iterations are more than 10% of the trip count
   457   //   and rounds of "unroll,optimize" are not making significant progress
   458   //   Progress defined as current size less than 20% larger than previous size.
   459   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   460       future_unroll_ct > LoopUnrollMin &&
   461       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   462       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   463     return false;
   464   }
   466   Node *init_n = cl->init_trip();
   467   Node *limit_n = cl->limit();
   468   // Non-constant bounds.
   469   // Protect against over-unrolling when init or/and limit are not constant
   470   // (so that trip_count's init value is maxint) but iv range is known.
   471   if( init_n   == NULL || !init_n->is_Con()  ||
   472       limit_n  == NULL || !limit_n->is_Con() ) {
   473     Node* phi = cl->phi();
   474     if( phi != NULL ) {
   475       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   476       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   477       int next_stride = cl->stride_con() * 2; // stride after this unroll
   478       if( next_stride > 0 ) {
   479         if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   480             iv_type->_lo + next_stride >  iv_type->_hi ) {
   481           return false;  // over-unrolling
   482         }
   483       } else if( next_stride < 0 ) {
   484         if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   485             iv_type->_hi + next_stride <  iv_type->_lo ) {
   486           return false;  // over-unrolling
   487         }
   488       }
   489     }
   490   }
   492   // Adjust body_size to determine if we unroll or not
   493   uint body_size = _body.size();
   494   // Key test to unroll CaffeineMark's Logic test
   495   int xors_in_loop = 0;
   496   // Also count ModL, DivL and MulL which expand mightly
   497   for( uint k = 0; k < _body.size(); k++ ) {
   498     switch( _body.at(k)->Opcode() ) {
   499     case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
   500     case Op_ModL: body_size += 30; break;
   501     case Op_DivL: body_size += 30; break;
   502     case Op_MulL: body_size += 10; break;
   503     }
   504   }
   506   // Check for being too big
   507   if( body_size > (uint)LoopUnrollLimit ) {
   508     if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
   509     // Normal case: loop too big
   510     return false;
   511   }
   513   // Check for stride being a small enough constant
   514   if( abs(cl->stride_con()) > (1<<3) ) return false;
   516   // Unroll once!  (Each trip will soon do double iterations)
   517   return true;
   518 }
   520 //------------------------------policy_align-----------------------------------
   521 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   522 // expression that does the alignment.  Note that only one array base can be
   523 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   524 // if we vectorize short memory ops into longer memory ops, we may want to
   525 // increase alignment.
   526 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   527   return false;
   528 }
   530 //------------------------------policy_range_check-----------------------------
   531 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   532 // Actually we do iteration-splitting, a more powerful form of RCE.
   533 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   534   if( !RangeCheckElimination ) return false;
   536   CountedLoopNode *cl = _head->as_CountedLoop();
   537   // If we unrolled with no intention of doing RCE and we later
   538   // changed our minds, we got no pre-loop.  Either we need to
   539   // make a new pre-loop, or we gotta disallow RCE.
   540   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
   541   Node *trip_counter = cl->phi();
   543   // Check loop body for tests of trip-counter plus loop-invariant vs
   544   // loop-invariant.
   545   for( uint i = 0; i < _body.size(); i++ ) {
   546     Node *iff = _body[i];
   547     if( iff->Opcode() == Op_If ) { // Test?
   549       // Comparing trip+off vs limit
   550       Node *bol = iff->in(1);
   551       if( bol->req() != 2 ) continue; // dead constant test
   552       if (!bol->is_Bool()) {
   553         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   554         continue;
   555       }
   556       Node *cmp = bol->in(1);
   558       Node *rc_exp = cmp->in(1);
   559       Node *limit = cmp->in(2);
   561       Node *limit_c = phase->get_ctrl(limit);
   562       if( limit_c == phase->C->top() )
   563         return false;           // Found dead test on live IF?  No RCE!
   564       if( is_member(phase->get_loop(limit_c) ) ) {
   565         // Compare might have operands swapped; commute them
   566         rc_exp = cmp->in(2);
   567         limit  = cmp->in(1);
   568         limit_c = phase->get_ctrl(limit);
   569         if( is_member(phase->get_loop(limit_c) ) )
   570           continue;             // Both inputs are loop varying; cannot RCE
   571       }
   573       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   574         continue;
   575       }
   576       // Yeah!  Found a test like 'trip+off vs limit'
   577       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   578       // we need loop unswitching instead of iteration splitting.
   579       if( is_loop_exit(iff) )
   580         return true;            // Found reason to split iterations
   581     } // End of is IF
   582   }
   584   return false;
   585 }
   587 //------------------------------policy_peel_only-------------------------------
   588 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   589 // for unrolling loops with NO array accesses.
   590 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   592   for( uint i = 0; i < _body.size(); i++ )
   593     if( _body[i]->is_Mem() )
   594       return false;
   596   // No memory accesses at all!
   597   return true;
   598 }
   600 //------------------------------clone_up_backedge_goo--------------------------
   601 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   602 // version of n in preheader_ctrl block and return that, otherwise return n.
   603 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   604   if( get_ctrl(n) != back_ctrl ) return n;
   606   Node *x = NULL;               // If required, a clone of 'n'
   607   // Check for 'n' being pinned in the backedge.
   608   if( n->in(0) && n->in(0) == back_ctrl ) {
   609     x = n->clone();             // Clone a copy of 'n' to preheader
   610     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   611   }
   613   // Recursive fixup any other input edges into x.
   614   // If there are no changes we can just return 'n', otherwise
   615   // we need to clone a private copy and change it.
   616   for( uint i = 1; i < n->req(); i++ ) {
   617     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   618     if( g != n->in(i) ) {
   619       if( !x )
   620         x = n->clone();
   621       x->set_req(i, g);
   622     }
   623   }
   624   if( x ) {                     // x can legally float to pre-header location
   625     register_new_node( x, preheader_ctrl );
   626     return x;
   627   } else {                      // raise n to cover LCA of uses
   628     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   629   }
   630   return n;
   631 }
   633 //------------------------------insert_pre_post_loops--------------------------
   634 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   635 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   636 // alignment.  Useful to unroll loops that do no array accesses.
   637 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   639   C->set_major_progress();
   641   // Find common pieces of the loop being guarded with pre & post loops
   642   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   643   assert( main_head->is_normal_loop(), "" );
   644   CountedLoopEndNode *main_end = main_head->loopexit();
   645   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   646   uint dd_main_head = dom_depth(main_head);
   647   uint max = main_head->outcnt();
   649   Node *pre_header= main_head->in(LoopNode::EntryControl);
   650   Node *init      = main_head->init_trip();
   651   Node *incr      = main_end ->incr();
   652   Node *limit     = main_end ->limit();
   653   Node *stride    = main_end ->stride();
   654   Node *cmp       = main_end ->cmp_node();
   655   BoolTest::mask b_test = main_end->test_trip();
   657   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   658   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   659   if( bol->outcnt() != 1 ) {
   660     bol = bol->clone();
   661     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   662     _igvn.hash_delete(main_end);
   663     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   664   }
   665   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   666   if( cmp->outcnt() != 1 ) {
   667     cmp = cmp->clone();
   668     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   669     _igvn.hash_delete(bol);
   670     bol->set_req(1, cmp);
   671   }
   673   //------------------------------
   674   // Step A: Create Post-Loop.
   675   Node* main_exit = main_end->proj_out(false);
   676   assert( main_exit->Opcode() == Op_IfFalse, "" );
   677   int dd_main_exit = dom_depth(main_exit);
   679   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   680   // loop pre-header illegally has 2 control users (old & new loops).
   681   clone_loop( loop, old_new, dd_main_exit );
   682   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   683   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   684   post_head->set_post_loop(main_head);
   686   // Reduce the post-loop trip count.
   687   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   688   post_end->_prob = PROB_FAIR;
   690   // Build the main-loop normal exit.
   691   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   692   _igvn.register_new_node_with_optimizer( new_main_exit );
   693   set_idom(new_main_exit, main_end, dd_main_exit );
   694   set_loop(new_main_exit, loop->_parent);
   696   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   697   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   698   // (the main-loop trip-counter exit value) because we will be changing
   699   // the exit value (via unrolling) so we cannot constant-fold away the zero
   700   // trip guard until all unrolling is done.
   701   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   702   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   703   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   704   register_new_node( zer_opaq, new_main_exit );
   705   register_new_node( zer_cmp , new_main_exit );
   706   register_new_node( zer_bol , new_main_exit );
   708   // Build the IfNode
   709   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   710   _igvn.register_new_node_with_optimizer( zer_iff );
   711   set_idom(zer_iff, new_main_exit, dd_main_exit);
   712   set_loop(zer_iff, loop->_parent);
   714   // Plug in the false-path, taken if we need to skip post-loop
   715   _igvn.hash_delete( main_exit );
   716   main_exit->set_req(0, zer_iff);
   717   _igvn._worklist.push(main_exit);
   718   set_idom(main_exit, zer_iff, dd_main_exit);
   719   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   720   // Make the true-path, must enter the post loop
   721   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   722   _igvn.register_new_node_with_optimizer( zer_taken );
   723   set_idom(zer_taken, zer_iff, dd_main_exit);
   724   set_loop(zer_taken, loop->_parent);
   725   // Plug in the true path
   726   _igvn.hash_delete( post_head );
   727   post_head->set_req(LoopNode::EntryControl, zer_taken);
   728   set_idom(post_head, zer_taken, dd_main_exit);
   730   // Step A3: Make the fall-in values to the post-loop come from the
   731   // fall-out values of the main-loop.
   732   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   733     Node* main_phi = main_head->fast_out(i);
   734     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   735       Node *post_phi = old_new[main_phi->_idx];
   736       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   737                                               post_head->init_control(),
   738                                               main_phi->in(LoopNode::LoopBackControl));
   739       _igvn.hash_delete(post_phi);
   740       post_phi->set_req( LoopNode::EntryControl, fallmain );
   741     }
   742   }
   744   // Update local caches for next stanza
   745   main_exit = new_main_exit;
   748   //------------------------------
   749   // Step B: Create Pre-Loop.
   751   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   752   // loop pre-header illegally has 2 control users (old & new loops).
   753   clone_loop( loop, old_new, dd_main_head );
   754   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   755   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   756   pre_head->set_pre_loop(main_head);
   757   Node *pre_incr = old_new[incr->_idx];
   759   // Reduce the pre-loop trip count.
   760   pre_end->_prob = PROB_FAIR;
   762   // Find the pre-loop normal exit.
   763   Node* pre_exit = pre_end->proj_out(false);
   764   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   765   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   766   _igvn.register_new_node_with_optimizer( new_pre_exit );
   767   set_idom(new_pre_exit, pre_end, dd_main_head);
   768   set_loop(new_pre_exit, loop->_parent);
   770   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
   771   // pre-loop, the main-loop may not execute at all.  Later in life this
   772   // zero-trip guard will become the minimum-trip guard when we unroll
   773   // the main-loop.
   774   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
   775   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
   776   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
   777   register_new_node( min_opaq, new_pre_exit );
   778   register_new_node( min_cmp , new_pre_exit );
   779   register_new_node( min_bol , new_pre_exit );
   781   // Build the IfNode (assume the main-loop is executed always).
   782   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
   783   _igvn.register_new_node_with_optimizer( min_iff );
   784   set_idom(min_iff, new_pre_exit, dd_main_head);
   785   set_loop(min_iff, loop->_parent);
   787   // Plug in the false-path, taken if we need to skip main-loop
   788   _igvn.hash_delete( pre_exit );
   789   pre_exit->set_req(0, min_iff);
   790   set_idom(pre_exit, min_iff, dd_main_head);
   791   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
   792   // Make the true-path, must enter the main loop
   793   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
   794   _igvn.register_new_node_with_optimizer( min_taken );
   795   set_idom(min_taken, min_iff, dd_main_head);
   796   set_loop(min_taken, loop->_parent);
   797   // Plug in the true path
   798   _igvn.hash_delete( main_head );
   799   main_head->set_req(LoopNode::EntryControl, min_taken);
   800   set_idom(main_head, min_taken, dd_main_head);
   802   // Step B3: Make the fall-in values to the main-loop come from the
   803   // fall-out values of the pre-loop.
   804   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
   805     Node* main_phi = main_head->fast_out(i2);
   806     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
   807       Node *pre_phi = old_new[main_phi->_idx];
   808       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
   809                                              main_head->init_control(),
   810                                              pre_phi->in(LoopNode::LoopBackControl));
   811       _igvn.hash_delete(main_phi);
   812       main_phi->set_req( LoopNode::EntryControl, fallpre );
   813     }
   814   }
   816   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
   817   // RCE and alignment may change this later.
   818   Node *cmp_end = pre_end->cmp_node();
   819   assert( cmp_end->in(2) == limit, "" );
   820   Node *pre_limit = new (C, 3) AddINode( init, stride );
   822   // Save the original loop limit in this Opaque1 node for
   823   // use by range check elimination.
   824   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
   826   register_new_node( pre_limit, pre_head->in(0) );
   827   register_new_node( pre_opaq , pre_head->in(0) );
   829   // Since no other users of pre-loop compare, I can hack limit directly
   830   assert( cmp_end->outcnt() == 1, "no other users" );
   831   _igvn.hash_delete(cmp_end);
   832   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
   834   // Special case for not-equal loop bounds:
   835   // Change pre loop test, main loop test, and the
   836   // main loop guard test to use lt or gt depending on stride
   837   // direction:
   838   // positive stride use <
   839   // negative stride use >
   841   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
   843     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
   844     // Modify pre loop end condition
   845     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   846     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
   847     register_new_node( new_bol0, pre_head->in(0) );
   848     _igvn.hash_delete(pre_end);
   849     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
   850     // Modify main loop guard condition
   851     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
   852     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
   853     register_new_node( new_bol1, new_pre_exit );
   854     _igvn.hash_delete(min_iff);
   855     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
   856     // Modify main loop end condition
   857     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
   858     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
   859     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
   860     _igvn.hash_delete(main_end);
   861     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
   862   }
   864   // Flag main loop
   865   main_head->set_main_loop();
   866   if( peel_only ) main_head->set_main_no_pre_loop();
   868   // It's difficult to be precise about the trip-counts
   869   // for the pre/post loops.  They are usually very short,
   870   // so guess that 4 trips is a reasonable value.
   871   post_head->set_profile_trip_cnt(4.0);
   872   pre_head->set_profile_trip_cnt(4.0);
   874   // Now force out all loop-invariant dominating tests.  The optimizer
   875   // finds some, but we _know_ they are all useless.
   876   peeled_dom_test_elim(loop,old_new);
   877 }
   879 //------------------------------is_invariant-----------------------------
   880 // Return true if n is invariant
   881 bool IdealLoopTree::is_invariant(Node* n) const {
   882   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
   883   if (n_c->is_top()) return false;
   884   return !is_member(_phase->get_loop(n_c));
   885 }
   888 //------------------------------do_unroll--------------------------------------
   889 // Unroll the loop body one step - make each trip do 2 iterations.
   890 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
   891   assert( LoopUnrollLimit, "" );
   892 #ifndef PRODUCT
   893   if( PrintOpto && VerifyLoopOptimizations ) {
   894     tty->print("Unrolling ");
   895     loop->dump_head();
   896   }
   897 #endif
   898   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
   899   CountedLoopEndNode *loop_end = loop_head->loopexit();
   900   assert( loop_end, "" );
   902   // Remember loop node count before unrolling to detect
   903   // if rounds of unroll,optimize are making progress
   904   loop_head->set_node_count_before_unroll(loop->_body.size());
   906   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
   907   Node *limit = loop_head->limit();
   908   Node *init  = loop_head->init_trip();
   909   Node *strid = loop_head->stride();
   911   Node *opaq = NULL;
   912   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
   913     assert( loop_head->is_main_loop(), "" );
   914     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
   915     Node *iff = ctrl->in(0);
   916     assert( iff->Opcode() == Op_If, "" );
   917     Node *bol = iff->in(1);
   918     assert( bol->Opcode() == Op_Bool, "" );
   919     Node *cmp = bol->in(1);
   920     assert( cmp->Opcode() == Op_CmpI, "" );
   921     opaq = cmp->in(2);
   922     // Occasionally it's possible for a pre-loop Opaque1 node to be
   923     // optimized away and then another round of loop opts attempted.
   924     // We can not optimize this particular loop in that case.
   925     if( opaq->Opcode() != Op_Opaque1 )
   926       return;                   // Cannot find pre-loop!  Bail out!
   927   }
   929   C->set_major_progress();
   931   // Adjust max trip count. The trip count is intentionally rounded
   932   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
   933   // the main, unrolled, part of the loop will never execute as it is protected
   934   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
   935   // and later determined that part of the unrolled loop was dead.
   936   loop_head->set_trip_count(loop_head->trip_count() / 2);
   938   // Double the count of original iterations in the unrolled loop body.
   939   loop_head->double_unrolled_count();
   941   // -----------
   942   // Step 2: Cut back the trip counter for an unroll amount of 2.
   943   // Loop will normally trip (limit - init)/stride_con.  Since it's a
   944   // CountedLoop this is exact (stride divides limit-init exactly).
   945   // We are going to double the loop body, so we want to knock off any
   946   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
   947   Node *span = new (C, 3) SubINode( limit, init );
   948   register_new_node( span, ctrl );
   949   Node *trip = new (C, 3) DivINode( 0, span, strid );
   950   register_new_node( trip, ctrl );
   951   Node *mtwo = _igvn.intcon(-2);
   952   set_ctrl(mtwo, C->root());
   953   Node *rond = new (C, 3) AndINode( trip, mtwo );
   954   register_new_node( rond, ctrl );
   955   Node *spn2 = new (C, 3) MulINode( rond, strid );
   956   register_new_node( spn2, ctrl );
   957   Node *lim2 = new (C, 3) AddINode( spn2, init );
   958   register_new_node( lim2, ctrl );
   960   // Hammer in the new limit
   961   Node *ctrl2 = loop_end->in(0);
   962   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
   963   register_new_node( cmp2, ctrl2 );
   964   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
   965   register_new_node( bol2, ctrl2 );
   966   _igvn.hash_delete(loop_end);
   967   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
   969   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
   970   // Make it a 1-trip test (means at least 2 trips).
   971   if( adjust_min_trip ) {
   972     // Guard test uses an 'opaque' node which is not shared.  Hence I
   973     // can edit it's inputs directly.  Hammer in the new limit for the
   974     // minimum-trip guard.
   975     assert( opaq->outcnt() == 1, "" );
   976     _igvn.hash_delete(opaq);
   977     opaq->set_req(1, lim2);
   978   }
   980   // ---------
   981   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
   982   // represents the odd iterations; since the loop trips an even number of
   983   // times its backedge is never taken.  Kill the backedge.
   984   uint dd = dom_depth(loop_head);
   985   clone_loop( loop, old_new, dd );
   987   // Make backedges of the clone equal to backedges of the original.
   988   // Make the fall-in from the original come from the fall-out of the clone.
   989   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
   990     Node* phi = loop_head->fast_out(j);
   991     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
   992       Node *newphi = old_new[phi->_idx];
   993       _igvn.hash_delete( phi );
   994       _igvn.hash_delete( newphi );
   996       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
   997       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
   998       phi   ->set_req(LoopNode::LoopBackControl, C->top());
   999     }
  1001   Node *clone_head = old_new[loop_head->_idx];
  1002   _igvn.hash_delete( clone_head );
  1003   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1004   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1005   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1006   loop->_head = clone_head;     // New loop header
  1008   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1009   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1011   // Kill the clone's backedge
  1012   Node *newcle = old_new[loop_end->_idx];
  1013   _igvn.hash_delete( newcle );
  1014   Node *one = _igvn.intcon(1);
  1015   set_ctrl(one, C->root());
  1016   newcle->set_req(1, one);
  1017   // Force clone into same loop body
  1018   uint max = loop->_body.size();
  1019   for( uint k = 0; k < max; k++ ) {
  1020     Node *old = loop->_body.at(k);
  1021     Node *nnn = old_new[old->_idx];
  1022     loop->_body.push(nnn);
  1023     if (!has_ctrl(old))
  1024       set_loop(nnn, loop);
  1027   loop->record_for_igvn();
  1030 //------------------------------do_maximally_unroll----------------------------
  1032 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1033   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1034   assert( cl->trip_count() > 0, "");
  1036   // If loop is tripping an odd number of times, peel odd iteration
  1037   if( (cl->trip_count() & 1) == 1 ) {
  1038     do_peeling( loop, old_new );
  1041   // Now its tripping an even number of times remaining.  Double loop body.
  1042   // Do not adjust pre-guards; they are not needed and do not exist.
  1043   if( cl->trip_count() > 0 ) {
  1044     do_unroll( loop, old_new, false );
  1048 //------------------------------dominates_backedge---------------------------------
  1049 // Returns true if ctrl is executed on every complete iteration
  1050 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1051   assert(ctrl->is_CFG(), "must be control");
  1052   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1053   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1056 //------------------------------add_constraint---------------------------------
  1057 // Constrain the main loop iterations so the condition:
  1058 //    scale_con * I + offset  <  limit
  1059 // always holds true.  That is, either increase the number of iterations in
  1060 // the pre-loop or the post-loop until the condition holds true in the main
  1061 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1062 // stride and scale are constants (offset and limit often are).
  1063 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1065   // Compute "I :: (limit-offset)/scale_con"
  1066   Node *con = new (C, 3) SubINode( limit, offset );
  1067   register_new_node( con, pre_ctrl );
  1068   Node *scale = _igvn.intcon(scale_con);
  1069   set_ctrl(scale, C->root());
  1070   Node *X = new (C, 3) DivINode( 0, con, scale );
  1071   register_new_node( X, pre_ctrl );
  1073   // For positive stride, the pre-loop limit always uses a MAX function
  1074   // and the main loop a MIN function.  For negative stride these are
  1075   // reversed.
  1077   // Also for positive stride*scale the affine function is increasing, so the
  1078   // pre-loop must check for underflow and the post-loop for overflow.
  1079   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1080   // post-loop for underflow.
  1081   if( stride_con*scale_con > 0 ) {
  1082     // Compute I < (limit-offset)/scale_con
  1083     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
  1084     *main_limit = (stride_con > 0)
  1085       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
  1086       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
  1087     register_new_node( *main_limit, pre_ctrl );
  1089   } else {
  1090     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
  1091     // Add the negation of the main-loop constraint to the pre-loop.
  1092     // See footnote [++] below for a derivation of the limit expression.
  1093     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
  1094     set_ctrl(incr, C->root());
  1095     Node *adj = new (C, 3) AddINode( X, incr );
  1096     register_new_node( adj, pre_ctrl );
  1097     *pre_limit = (scale_con > 0)
  1098       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
  1099       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
  1100     register_new_node( *pre_limit, pre_ctrl );
  1102 //   [++] Here's the algebra that justifies the pre-loop limit expression:
  1103 //
  1104 //   NOT( scale_con * I + offset  <  limit )
  1105 //      ==
  1106 //   scale_con * I + offset  >=  limit
  1107 //      ==
  1108 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
  1109 //      ==
  1110 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
  1111 //      ==
  1112 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
  1113 //      ==
  1114 //   ( if (scale_con > 0) /*common case*/
  1115 //       (limit-offset)/scale_con - 1  <  I
  1116 //     else
  1117 //       (limit-offset)/scale_con + 1  >  I
  1118 //    )
  1119 //   ( if (scale_con > 0) /*common case*/
  1120 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
  1121 //     else
  1122 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
  1127 //------------------------------is_scaled_iv---------------------------------
  1128 // Return true if exp is a constant times an induction var
  1129 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1130   if (exp == iv) {
  1131     if (p_scale != NULL) {
  1132       *p_scale = 1;
  1134     return true;
  1136   int opc = exp->Opcode();
  1137   if (opc == Op_MulI) {
  1138     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1139       if (p_scale != NULL) {
  1140         *p_scale = exp->in(2)->get_int();
  1142       return true;
  1144     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1145       if (p_scale != NULL) {
  1146         *p_scale = exp->in(1)->get_int();
  1148       return true;
  1150   } else if (opc == Op_LShiftI) {
  1151     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1152       if (p_scale != NULL) {
  1153         *p_scale = 1 << exp->in(2)->get_int();
  1155       return true;
  1158   return false;
  1161 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1162 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1163 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1164   if (is_scaled_iv(exp, iv, p_scale)) {
  1165     if (p_offset != NULL) {
  1166       Node *zero = _igvn.intcon(0);
  1167       set_ctrl(zero, C->root());
  1168       *p_offset = zero;
  1170     return true;
  1172   int opc = exp->Opcode();
  1173   if (opc == Op_AddI) {
  1174     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1175       if (p_offset != NULL) {
  1176         *p_offset = exp->in(2);
  1178       return true;
  1180     if (exp->in(2)->is_Con()) {
  1181       Node* offset2 = NULL;
  1182       if (depth < 2 &&
  1183           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1184                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1185         if (p_offset != NULL) {
  1186           Node *ctrl_off2 = get_ctrl(offset2);
  1187           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1188           register_new_node(offset, ctrl_off2);
  1189           *p_offset = offset;
  1191         return true;
  1194   } else if (opc == Op_SubI) {
  1195     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1196       if (p_offset != NULL) {
  1197         Node *zero = _igvn.intcon(0);
  1198         set_ctrl(zero, C->root());
  1199         Node *ctrl_off = get_ctrl(exp->in(2));
  1200         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1201         register_new_node(offset, ctrl_off);
  1202         *p_offset = offset;
  1204       return true;
  1206     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1207       if (p_offset != NULL) {
  1208         *p_scale *= -1;
  1209         *p_offset = exp->in(1);
  1211       return true;
  1214   return false;
  1217 //------------------------------do_range_check---------------------------------
  1218 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1219 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1220 #ifndef PRODUCT
  1221   if( PrintOpto && VerifyLoopOptimizations ) {
  1222     tty->print("Range Check Elimination ");
  1223     loop->dump_head();
  1225 #endif
  1226   assert( RangeCheckElimination, "" );
  1227   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1228   assert( cl->is_main_loop(), "" );
  1230   // Find the trip counter; we are iteration splitting based on it
  1231   Node *trip_counter = cl->phi();
  1232   // Find the main loop limit; we will trim it's iterations
  1233   // to not ever trip end tests
  1234   Node *main_limit = cl->limit();
  1235   // Find the pre-loop limit; we will expand it's iterations to
  1236   // not ever trip low tests.
  1237   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1238   assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1239   Node *iffm = ctrl->in(0);
  1240   assert( iffm->Opcode() == Op_If, "" );
  1241   Node *p_f = iffm->in(0);
  1242   assert( p_f->Opcode() == Op_IfFalse, "" );
  1243   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1244   assert( pre_end->loopnode()->is_pre_loop(), "" );
  1245   Node *pre_opaq1 = pre_end->limit();
  1246   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1247   // optimized away and then another round of loop opts attempted.
  1248   // We can not optimize this particular loop in that case.
  1249   if( pre_opaq1->Opcode() != Op_Opaque1 )
  1250     return;
  1251   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1252   Node *pre_limit = pre_opaq->in(1);
  1254   // Where do we put new limit calculations
  1255   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1257   // Ensure the original loop limit is available from the
  1258   // pre-loop Opaque1 node.
  1259   Node *orig_limit = pre_opaq->original_loop_limit();
  1260   if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
  1261     return;
  1263   // Need to find the main-loop zero-trip guard
  1264   Node *bolzm = iffm->in(1);
  1265   assert( bolzm->Opcode() == Op_Bool, "" );
  1266   Node *cmpzm = bolzm->in(1);
  1267   assert( cmpzm->is_Cmp(), "" );
  1268   Node *opqzm = cmpzm->in(2);
  1269   if( opqzm->Opcode() != Op_Opaque1 )
  1270     return;
  1271   assert( opqzm->in(1) == main_limit, "do not understand situation" );
  1273   // Must know if its a count-up or count-down loop
  1275   // protect against stride not being a constant
  1276   if ( !cl->stride_is_con() ) {
  1277     return;
  1279   int stride_con = cl->stride_con();
  1280   Node *zero = _igvn.intcon(0);
  1281   Node *one  = _igvn.intcon(1);
  1282   set_ctrl(zero, C->root());
  1283   set_ctrl(one,  C->root());
  1285   // Range checks that do not dominate the loop backedge (ie.
  1286   // conditionally executed) can lengthen the pre loop limit beyond
  1287   // the original loop limit. To prevent this, the pre limit is
  1288   // (for stride > 0) MINed with the original loop limit (MAXed
  1289   // stride < 0) when some range_check (rc) is conditionally
  1290   // executed.
  1291   bool conditional_rc = false;
  1293   // Check loop body for tests of trip-counter plus loop-invariant vs
  1294   // loop-invariant.
  1295   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1296     Node *iff = loop->_body[i];
  1297     if( iff->Opcode() == Op_If ) { // Test?
  1299       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1300       // we need loop unswitching instead of iteration splitting.
  1301       Node *exit = loop->is_loop_exit(iff);
  1302       if( !exit ) continue;
  1303       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1305       // Get boolean condition to test
  1306       Node *i1 = iff->in(1);
  1307       if( !i1->is_Bool() ) continue;
  1308       BoolNode *bol = i1->as_Bool();
  1309       BoolTest b_test = bol->_test;
  1310       // Flip sense of test if exit condition is flipped
  1311       if( flip )
  1312         b_test = b_test.negate();
  1314       // Get compare
  1315       Node *cmp = bol->in(1);
  1317       // Look for trip_counter + offset vs limit
  1318       Node *rc_exp = cmp->in(1);
  1319       Node *limit  = cmp->in(2);
  1320       jint scale_con= 1;        // Assume trip counter not scaled
  1322       Node *limit_c = get_ctrl(limit);
  1323       if( loop->is_member(get_loop(limit_c) ) ) {
  1324         // Compare might have operands swapped; commute them
  1325         b_test = b_test.commute();
  1326         rc_exp = cmp->in(2);
  1327         limit  = cmp->in(1);
  1328         limit_c = get_ctrl(limit);
  1329         if( loop->is_member(get_loop(limit_c) ) )
  1330           continue;             // Both inputs are loop varying; cannot RCE
  1332       // Here we know 'limit' is loop invariant
  1334       // 'limit' maybe pinned below the zero trip test (probably from a
  1335       // previous round of rce), in which case, it can't be used in the
  1336       // zero trip test expression which must occur before the zero test's if.
  1337       if( limit_c == ctrl ) {
  1338         continue;  // Don't rce this check but continue looking for other candidates.
  1341       // Check for scaled induction variable plus an offset
  1342       Node *offset = NULL;
  1344       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1345         continue;
  1348       Node *offset_c = get_ctrl(offset);
  1349       if( loop->is_member( get_loop(offset_c) ) )
  1350         continue;               // Offset is not really loop invariant
  1351       // Here we know 'offset' is loop invariant.
  1353       // As above for the 'limit', the 'offset' maybe pinned below the
  1354       // zero trip test.
  1355       if( offset_c == ctrl ) {
  1356         continue; // Don't rce this check but continue looking for other candidates.
  1359       // At this point we have the expression as:
  1360       //   scale_con * trip_counter + offset :: limit
  1361       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1362       // monotonically increases by stride_con, a constant.  Both (or either)
  1363       // stride_con and scale_con can be negative which will flip about the
  1364       // sense of the test.
  1366       // Adjust pre and main loop limits to guard the correct iteration set
  1367       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1368         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1369           // The overflow limit: scale*I+offset < limit
  1370           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1371           // The underflow limit: 0 <= scale*I+offset.
  1372           // Some math yields: -scale*I-(offset+1) < 0
  1373           Node *plus_one = new (C, 3) AddINode( offset, one );
  1374           register_new_node( plus_one, pre_ctrl );
  1375           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
  1376           register_new_node( neg_offset, pre_ctrl );
  1377           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
  1378           if (!conditional_rc) {
  1379             conditional_rc = !loop->dominates_backedge(iff);
  1381         } else {
  1382 #ifndef PRODUCT
  1383           if( PrintOpto )
  1384             tty->print_cr("missed RCE opportunity");
  1385 #endif
  1386           continue;             // In release mode, ignore it
  1388       } else {                  // Otherwise work on normal compares
  1389         switch( b_test._test ) {
  1390         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
  1391           scale_con = -scale_con;
  1392           offset = new (C, 3) SubINode( zero, offset );
  1393           register_new_node( offset, pre_ctrl );
  1394           limit  = new (C, 3) SubINode( zero, limit  );
  1395           register_new_node( limit, pre_ctrl );
  1396           // Fall into LE case
  1397         case BoolTest::le:      // Convert X <= Y to X < Y+1
  1398           limit = new (C, 3) AddINode( limit, one );
  1399           register_new_node( limit, pre_ctrl );
  1400           // Fall into LT case
  1401         case BoolTest::lt:
  1402           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
  1403           if (!conditional_rc) {
  1404             conditional_rc = !loop->dominates_backedge(iff);
  1406           break;
  1407         default:
  1408 #ifndef PRODUCT
  1409           if( PrintOpto )
  1410             tty->print_cr("missed RCE opportunity");
  1411 #endif
  1412           continue;             // Unhandled case
  1416       // Kill the eliminated test
  1417       C->set_major_progress();
  1418       Node *kill_con = _igvn.intcon( 1-flip );
  1419       set_ctrl(kill_con, C->root());
  1420       _igvn.hash_delete(iff);
  1421       iff->set_req(1, kill_con);
  1422       _igvn._worklist.push(iff);
  1423       // Find surviving projection
  1424       assert(iff->is_If(), "");
  1425       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1426       // Find loads off the surviving projection; remove their control edge
  1427       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1428         Node* cd = dp->fast_out(i); // Control-dependent node
  1429         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1430           _igvn.hash_delete(cd);
  1431           // Allow the load to float around in the loop, or before it
  1432           // but NOT before the pre-loop.
  1433           cd->set_req(0, ctrl);   // ctrl, not NULL
  1434           _igvn._worklist.push(cd);
  1435           --i;
  1436           --imax;
  1440     } // End of is IF
  1444   // Update loop limits
  1445   if (conditional_rc) {
  1446     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1447                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1448     register_new_node(pre_limit, pre_ctrl);
  1450   _igvn.hash_delete(pre_opaq);
  1451   pre_opaq->set_req(1, pre_limit);
  1453   // Note:: we are making the main loop limit no longer precise;
  1454   // need to round up based on stride.
  1455   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
  1456     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1457     // Hopefully, compiler will optimize for powers of 2.
  1458     Node *ctrl = get_ctrl(main_limit);
  1459     Node *stride = cl->stride();
  1460     Node *init = cl->init_trip();
  1461     Node *span = new (C, 3) SubINode(main_limit,init);
  1462     register_new_node(span,ctrl);
  1463     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1464     Node *add = new (C, 3) AddINode(span,rndup);
  1465     register_new_node(add,ctrl);
  1466     Node *div = new (C, 3) DivINode(0,add,stride);
  1467     register_new_node(div,ctrl);
  1468     Node *mul = new (C, 3) MulINode(div,stride);
  1469     register_new_node(mul,ctrl);
  1470     Node *newlim = new (C, 3) AddINode(mul,init);
  1471     register_new_node(newlim,ctrl);
  1472     main_limit = newlim;
  1475   Node *main_cle = cl->loopexit();
  1476   Node *main_bol = main_cle->in(1);
  1477   // Hacking loop bounds; need private copies of exit test
  1478   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1479     _igvn.hash_delete(main_cle);
  1480     main_bol = main_bol->clone();// Clone a private BoolNode
  1481     register_new_node( main_bol, main_cle->in(0) );
  1482     main_cle->set_req(1,main_bol);
  1484   Node *main_cmp = main_bol->in(1);
  1485   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1486     _igvn.hash_delete(main_bol);
  1487     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1488     register_new_node( main_cmp, main_cle->in(0) );
  1489     main_bol->set_req(1,main_cmp);
  1491   // Hack the now-private loop bounds
  1492   _igvn.hash_delete(main_cmp);
  1493   main_cmp->set_req(2, main_limit);
  1494   _igvn._worklist.push(main_cmp);
  1495   // The OpaqueNode is unshared by design
  1496   _igvn.hash_delete(opqzm);
  1497   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1498   opqzm->set_req(1,main_limit);
  1499   _igvn._worklist.push(opqzm);
  1502 //------------------------------DCE_loop_body----------------------------------
  1503 // Remove simplistic dead code from loop body
  1504 void IdealLoopTree::DCE_loop_body() {
  1505   for( uint i = 0; i < _body.size(); i++ )
  1506     if( _body.at(i)->outcnt() == 0 )
  1507       _body.map( i--, _body.pop() );
  1511 //------------------------------adjust_loop_exit_prob--------------------------
  1512 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  1513 // Replace with a 1-in-10 exit guess.
  1514 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  1515   Node *test = tail();
  1516   while( test != _head ) {
  1517     uint top = test->Opcode();
  1518     if( top == Op_IfTrue || top == Op_IfFalse ) {
  1519       int test_con = ((ProjNode*)test)->_con;
  1520       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  1521       IfNode *iff = test->in(0)->as_If();
  1522       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  1523         Node *bol = iff->in(1);
  1524         if( bol && bol->req() > 1 && bol->in(1) &&
  1525             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  1526              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  1527              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  1528              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  1529              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  1530              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  1531              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  1532           return;               // Allocation loops RARELY take backedge
  1533         // Find the OTHER exit path from the IF
  1534         Node* ex = iff->proj_out(1-test_con);
  1535         float p = iff->_prob;
  1536         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  1537           if( top == Op_IfTrue ) {
  1538             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  1539               iff->_prob = PROB_STATIC_FREQUENT;
  1541           } else {
  1542             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  1543               iff->_prob = PROB_STATIC_INFREQUENT;
  1549     test = phase->idom(test);
  1554 //------------------------------policy_do_remove_empty_loop--------------------
  1555 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  1556 // The 'DO' part is to replace the trip counter with the value it will
  1557 // have on the last iteration.  This will break the loop.
  1558 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  1559   // Minimum size must be empty loop
  1560   if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
  1562   if( !_head->is_CountedLoop() ) return false;     // Dead loop
  1563   CountedLoopNode *cl = _head->as_CountedLoop();
  1564   if( !cl->loopexit() ) return false; // Malformed loop
  1565   if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
  1566     return false;             // Infinite loop
  1567 #ifndef PRODUCT
  1568   if( PrintOpto )
  1569     tty->print_cr("Removing empty loop");
  1570 #endif
  1571 #ifdef ASSERT
  1572   // Ensure only one phi which is the iv.
  1573   Node* iv = NULL;
  1574   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  1575     Node* n = cl->fast_out(i);
  1576     if (n->Opcode() == Op_Phi) {
  1577       assert(iv == NULL, "Too many phis" );
  1578       iv = n;
  1581   assert(iv == cl->phi(), "Wrong phi" );
  1582 #endif
  1583   // Replace the phi at loop head with the final value of the last
  1584   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  1585   // taken) and all loop-invariant uses of the exit values will be correct.
  1586   Node *phi = cl->phi();
  1587   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
  1588   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  1589   phase->_igvn.hash_delete(phi);
  1590   phase->_igvn.subsume_node(phi,final);
  1591   phase->C->set_major_progress();
  1592   return true;
  1596 //=============================================================================
  1597 //------------------------------iteration_split_impl---------------------------
  1598 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  1599   // Check and remove empty loops (spam micro-benchmarks)
  1600   if( policy_do_remove_empty_loop(phase) )
  1601     return true;  // Here we removed an empty loop
  1603   bool should_peel = policy_peeling(phase); // Should we peel?
  1605   bool should_unswitch = policy_unswitching(phase);
  1607   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  1608   // This removes loop-invariant tests (usually null checks).
  1609   if( !_head->is_CountedLoop() ) { // Non-counted loop
  1610     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  1611       // Partial peel succeeded so terminate this round of loop opts
  1612       return false;
  1614     if( should_peel ) {            // Should we peel?
  1615 #ifndef PRODUCT
  1616       if (PrintOpto) tty->print_cr("should_peel");
  1617 #endif
  1618       phase->do_peeling(this,old_new);
  1619     } else if( should_unswitch ) {
  1620       phase->do_unswitching(this, old_new);
  1622     return true;
  1624   CountedLoopNode *cl = _head->as_CountedLoop();
  1626   if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
  1628   // Do nothing special to pre- and post- loops
  1629   if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
  1631   // Compute loop trip count from profile data
  1632   compute_profile_trip_cnt(phase);
  1634   // Before attempting fancy unrolling, RCE or alignment, see if we want
  1635   // to completely unroll this loop or do loop unswitching.
  1636   if( cl->is_normal_loop() ) {
  1637     if (should_unswitch) {
  1638       phase->do_unswitching(this, old_new);
  1639       return true;
  1641     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  1642     if( should_maximally_unroll ) {
  1643       // Here we did some unrolling and peeling.  Eventually we will
  1644       // completely unroll this loop and it will no longer be a loop.
  1645       phase->do_maximally_unroll(this,old_new);
  1646       return true;
  1651   // Counted loops may be peeled, may need some iterations run up
  1652   // front for RCE, and may want to align loop refs to a cache
  1653   // line.  Thus we clone a full loop up front whose trip count is
  1654   // at least 1 (if peeling), but may be several more.
  1656   // The main loop will start cache-line aligned with at least 1
  1657   // iteration of the unrolled body (zero-trip test required) and
  1658   // will have some range checks removed.
  1660   // A post-loop will finish any odd iterations (leftover after
  1661   // unrolling), plus any needed for RCE purposes.
  1663   bool should_unroll = policy_unroll(phase);
  1665   bool should_rce = policy_range_check(phase);
  1667   bool should_align = policy_align(phase);
  1669   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  1670   // need a pre-loop.  We may still need to peel an initial iteration but
  1671   // we will not be needing an unknown number of pre-iterations.
  1672   //
  1673   // Basically, if may_rce_align reports FALSE first time through,
  1674   // we will not be able to later do RCE or Aligning on this loop.
  1675   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  1677   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  1678   // we switch to the pre-/main-/post-loop model.  This model also covers
  1679   // peeling.
  1680   if( should_rce || should_align || should_unroll ) {
  1681     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
  1682       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  1684     // Adjust the pre- and main-loop limits to let the pre and post loops run
  1685     // with full checks, but the main-loop with no checks.  Remove said
  1686     // checks from the main body.
  1687     if( should_rce )
  1688       phase->do_range_check(this,old_new);
  1690     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  1691     // twice as many iterations as before) and the main body limit (only do
  1692     // an even number of trips).  If we are peeling, we might enable some RCE
  1693     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  1694     // peeling.
  1695       if( should_unroll && !should_peel )
  1696         phase->do_unroll(this,old_new, true);
  1698     // Adjust the pre-loop limits to align the main body
  1699     // iterations.
  1700     if( should_align )
  1701       Unimplemented();
  1703   } else {                      // Else we have an unchanged counted loop
  1704     if( should_peel )           // Might want to peel but do nothing else
  1705       phase->do_peeling(this,old_new);
  1707   return true;
  1711 //=============================================================================
  1712 //------------------------------iteration_split--------------------------------
  1713 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  1714   // Recursively iteration split nested loops
  1715   if( _child && !_child->iteration_split( phase, old_new ))
  1716     return false;
  1718   // Clean out prior deadwood
  1719   DCE_loop_body();
  1722   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  1723   // Replace with a 1-in-10 exit guess.
  1724   if( _parent /*not the root loop*/ &&
  1725       !_irreducible &&
  1726       // Also ignore the occasional dead backedge
  1727       !tail()->is_top() ) {
  1728     adjust_loop_exit_prob(phase);
  1732   // Gate unrolling, RCE and peeling efforts.
  1733   if( !_child &&                // If not an inner loop, do not split
  1734       !_irreducible &&
  1735       _allow_optimizations &&
  1736       !tail()->is_top() ) {     // Also ignore the occasional dead backedge
  1737     if (!_has_call) {
  1738         if (!iteration_split_impl( phase, old_new )) {
  1739           return false;
  1741     } else if (policy_unswitching(phase)) {
  1742       phase->do_unswitching(this, old_new);
  1746   // Minor offset re-organization to remove loop-fallout uses of
  1747   // trip counter.
  1748   if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
  1749   if( _next && !_next->iteration_split( phase, old_new ))
  1750     return false;
  1751   return true;
  1754 //-------------------------------is_uncommon_trap_proj----------------------------
  1755 // Return true if proj is the form of "proj->[region->..]call_uct"
  1756 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate) {
  1757   int path_limit = 10;
  1758   assert(proj, "invalid argument");
  1759   Node* out = proj;
  1760   for (int ct = 0; ct < path_limit; ct++) {
  1761     out = out->unique_ctrl_out();
  1762     if (out == NULL || out->is_Root() || out->is_Start())
  1763       return false;
  1764     if (out->is_CallStaticJava()) {
  1765       int req = out->as_CallStaticJava()->uncommon_trap_request();
  1766       if (req != 0) {
  1767         Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(req);
  1768         if (!must_reason_predicate || reason == Deoptimization::Reason_predicate){
  1769            return true;
  1772       return false; // don't do further after call
  1775   return false;
  1778 //-------------------------------is_uncommon_trap_if_pattern-------------------------
  1779 // Return true  for "if(test)-> proj -> ...
  1780 //                          |
  1781 //                          V
  1782 //                      other_proj->[region->..]call_uct"
  1783 //
  1784 // "must_reason_predicate" means the uct reason must be Reason_predicate
  1785 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, bool must_reason_predicate) {
  1786   Node *in0 = proj->in(0);
  1787   if (!in0->is_If()) return false;
  1788   // Variation of a dead If node.
  1789   if (in0->outcnt() < 2)  return false;
  1790   IfNode* iff = in0->as_If();
  1792   // we need "If(Conv2B(Opaque1(...)))" pattern for must_reason_predicate
  1793   if (must_reason_predicate) {
  1794     if (iff->in(1)->Opcode() != Op_Conv2B ||
  1795        iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
  1796       return false;
  1800   ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
  1801   return is_uncommon_trap_proj(other_proj, must_reason_predicate);
  1804 //------------------------------create_new_if_for_predicate------------------------
  1805 // create a new if above the uct_if_pattern for the predicate to be promoted.
  1806 //
  1807 //          before                                after
  1808 //        ----------                           ----------
  1809 //           ctrl                                 ctrl
  1810 //            |                                     |
  1811 //            |                                     |
  1812 //            v                                     v
  1813 //           iff                                 new_iff
  1814 //          /    \                                /      \
  1815 //         /      \                              /        \
  1816 //        v        v                            v          v
  1817 //  uncommon_proj cont_proj                   if_uct     if_cont
  1818 // \      |        |                           |          |
  1819 //  \     |        |                           |          |
  1820 //   v    v        v                           |          v
  1821 //     rgn       loop                          |         iff
  1822 //      |                                      |        /     \
  1823 //      |                                      |       /       \
  1824 //      v                                      |      v         v
  1825 // uncommon_trap                               | uncommon_proj cont_proj
  1826 //                                           \  \    |           |
  1827 //                                            \  \   |           |
  1828 //                                             v  v  v           v
  1829 //                                               rgn           loop
  1830 //                                                |
  1831 //                                                |
  1832 //                                                v
  1833 //                                           uncommon_trap
  1834 //
  1835 //
  1836 // We will create a region to guard the uct call if there is no one there.
  1837 // The true projecttion (if_cont) of the new_iff is returned.
  1838 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj) {
  1839   assert(is_uncommon_trap_if_pattern(cont_proj, true), "must be a uct if pattern!");
  1840   IfNode* iff = cont_proj->in(0)->as_If();
  1842   ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
  1843   Node     *rgn   = uncommon_proj->unique_ctrl_out();
  1844   assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
  1846   if (!rgn->is_Region()) { // create a region to guard the call
  1847     assert(rgn->is_Call(), "must be call uct");
  1848     CallNode* call = rgn->as_Call();
  1849     rgn = new (C, 1) RegionNode(1);
  1850     _igvn.set_type(rgn, rgn->bottom_type());
  1851     rgn->add_req(uncommon_proj);
  1852     set_idom(rgn, idom(uncommon_proj), dom_depth(uncommon_proj)+1);
  1853     _igvn.hash_delete(call);
  1854     call->set_req(0, rgn);
  1857   // Create new_iff
  1858   uint  iffdd  = dom_depth(iff);
  1859   IdealLoopTree* lp = get_loop(iff);
  1860   IfNode *new_iff = new (C, 2) IfNode(iff->in(0), NULL, iff->_prob, iff->_fcnt);
  1861   register_node(new_iff, lp, idom(iff), iffdd);
  1862   Node *if_cont = new (C, 1) IfTrueNode(new_iff);
  1863   Node *if_uct  = new (C, 1) IfFalseNode(new_iff);
  1864   if (cont_proj->is_IfFalse()) {
  1865     // Swap
  1866     Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
  1868   register_node(if_cont, lp, new_iff, iffdd);
  1869   register_node(if_uct, get_loop(rgn), new_iff, iffdd);
  1871   // if_cont to iff
  1872   _igvn.hash_delete(iff);
  1873   iff->set_req(0, if_cont);
  1874   set_idom(iff, if_cont, dom_depth(iff));
  1876   // if_uct to rgn
  1877   _igvn.hash_delete(rgn);
  1878   rgn->add_req(if_uct);
  1879   Node* ridom = idom(rgn);
  1880   Node* nrdom = dom_lca(ridom, new_iff);
  1881   set_idom(rgn, nrdom, dom_depth(rgn));
  1883   // rgn must have no phis
  1884   assert(!rgn->as_Region()->has_phi(), "region must have no phis");
  1886   return if_cont->as_Proj();
  1889 //------------------------------find_predicate_insertion_point--------------------------
  1890 // Find a good location to insert a predicate
  1891 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c) {
  1892   if (start_c == C->root() || !start_c->is_Proj())
  1893     return NULL;
  1894   if (is_uncommon_trap_if_pattern(start_c->as_Proj(), true/*Reason_Predicate*/)) {
  1895     return start_c->as_Proj();
  1897   return NULL;
  1900 //------------------------------Invariance-----------------------------------
  1901 // Helper class for loop_predication_impl to compute invariance on the fly and
  1902 // clone invariants.
  1903 class Invariance : public StackObj {
  1904   VectorSet _visited, _invariant;
  1905   Node_Stack _stack;
  1906   VectorSet _clone_visited;
  1907   Node_List _old_new; // map of old to new (clone)
  1908   IdealLoopTree* _lpt;
  1909   PhaseIdealLoop* _phase;
  1911   // Helper function to set up the invariance for invariance computation
  1912   // If n is a known invariant, set up directly. Otherwise, look up the
  1913   // the possibility to push n onto the stack for further processing.
  1914   void visit(Node* use, Node* n) {
  1915     if (_lpt->is_invariant(n)) { // known invariant
  1916       _invariant.set(n->_idx);
  1917     } else if (!n->is_CFG()) {
  1918       Node *n_ctrl = _phase->ctrl_or_self(n);
  1919       Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
  1920       if (_phase->is_dominator(n_ctrl, u_ctrl)) {
  1921         _stack.push(n, n->in(0) == NULL ? 1 : 0);
  1926   // Compute invariance for "the_node" and (possibly) all its inputs recursively
  1927   // on the fly
  1928   void compute_invariance(Node* n) {
  1929     assert(_visited.test(n->_idx), "must be");
  1930     visit(n, n);
  1931     while (_stack.is_nonempty()) {
  1932       Node*  n = _stack.node();
  1933       uint idx = _stack.index();
  1934       if (idx == n->req()) { // all inputs are processed
  1935         _stack.pop();
  1936         // n is invariant if it's inputs are all invariant
  1937         bool all_inputs_invariant = true;
  1938         for (uint i = 0; i < n->req(); i++) {
  1939           Node* in = n->in(i);
  1940           if (in == NULL) continue;
  1941           assert(_visited.test(in->_idx), "must have visited input");
  1942           if (!_invariant.test(in->_idx)) { // bad guy
  1943             all_inputs_invariant = false;
  1944             break;
  1947         if (all_inputs_invariant) {
  1948           _invariant.set(n->_idx); // I am a invariant too
  1950       } else { // process next input
  1951         _stack.set_index(idx + 1);
  1952         Node* m = n->in(idx);
  1953         if (m != NULL && !_visited.test_set(m->_idx)) {
  1954           visit(n, m);
  1960   // Helper function to set up _old_new map for clone_nodes.
  1961   // If n is a known invariant, set up directly ("clone" of n == n).
  1962   // Otherwise, push n onto the stack for real cloning.
  1963   void clone_visit(Node* n) {
  1964     assert(_invariant.test(n->_idx), "must be invariant");
  1965     if (_lpt->is_invariant(n)) { // known invariant
  1966       _old_new.map(n->_idx, n);
  1967     } else{ // to be cloned
  1968       assert (!n->is_CFG(), "should not see CFG here");
  1969       _stack.push(n, n->in(0) == NULL ? 1 : 0);
  1973   // Clone "n" and (possibly) all its inputs recursively
  1974   void clone_nodes(Node* n, Node* ctrl) {
  1975     clone_visit(n);
  1976     while (_stack.is_nonempty()) {
  1977       Node*  n = _stack.node();
  1978       uint idx = _stack.index();
  1979       if (idx == n->req()) { // all inputs processed, clone n!
  1980         _stack.pop();
  1981         // clone invariant node
  1982         Node* n_cl = n->clone();
  1983         _old_new.map(n->_idx, n_cl);
  1984         _phase->register_new_node(n_cl, ctrl);
  1985         for (uint i = 0; i < n->req(); i++) {
  1986           Node* in = n_cl->in(i);
  1987           if (in == NULL) continue;
  1988           n_cl->set_req(i, _old_new[in->_idx]);
  1990       } else { // process next input
  1991         _stack.set_index(idx + 1);
  1992         Node* m = n->in(idx);
  1993         if (m != NULL && !_clone_visited.test_set(m->_idx)) {
  1994           clone_visit(m); // visit the input
  2000  public:
  2001   Invariance(Arena* area, IdealLoopTree* lpt) :
  2002     _lpt(lpt), _phase(lpt->_phase),
  2003     _visited(area), _invariant(area), _stack(area, 10 /* guess */),
  2004     _clone_visited(area), _old_new(area)
  2005   {}
  2007   // Map old to n for invariance computation and clone
  2008   void map_ctrl(Node* old, Node* n) {
  2009     assert(old->is_CFG() && n->is_CFG(), "must be");
  2010     _old_new.map(old->_idx, n); // "clone" of old is n
  2011     _invariant.set(old->_idx);  // old is invariant
  2012     _clone_visited.set(old->_idx);
  2015   // Driver function to compute invariance
  2016   bool is_invariant(Node* n) {
  2017     if (!_visited.test_set(n->_idx))
  2018       compute_invariance(n);
  2019     return (_invariant.test(n->_idx) != 0);
  2022   // Driver function to clone invariant
  2023   Node* clone(Node* n, Node* ctrl) {
  2024     assert(ctrl->is_CFG(), "must be");
  2025     assert(_invariant.test(n->_idx), "must be an invariant");
  2026     if (!_clone_visited.test(n->_idx))
  2027       clone_nodes(n, ctrl);
  2028     return _old_new[n->_idx];
  2030 };
  2032 //------------------------------is_range_check_if -----------------------------------
  2033 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
  2034 // Note: this function is particularly designed for loop predication. We require load_range
  2035 //       and offset to be loop invariant computed on the fly by "invar"
  2036 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
  2037   if (!is_loop_exit(iff)) {
  2038     return false;
  2040   if (!iff->in(1)->is_Bool()) {
  2041     return false;
  2043   const BoolNode *bol = iff->in(1)->as_Bool();
  2044   if (bol->_test._test != BoolTest::lt) {
  2045     return false;
  2047   if (!bol->in(1)->is_Cmp()) {
  2048     return false;
  2050   const CmpNode *cmp = bol->in(1)->as_Cmp();
  2051   if (cmp->Opcode() != Op_CmpU ) {
  2052     return false;
  2054   if (cmp->in(2)->Opcode() != Op_LoadRange) {
  2055     return false;
  2057   LoadRangeNode* lr = (LoadRangeNode*)cmp->in(2);
  2058   if (!invar.is_invariant(lr)) { // loadRange must be invariant
  2059     return false;
  2061   Node *iv     = _head->as_CountedLoop()->phi();
  2062   int   scale  = 0;
  2063   Node *offset = NULL;
  2064   if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
  2065     return false;
  2067   if(offset && !invar.is_invariant(offset)) { // offset must be invariant
  2068     return false;
  2070   return true;
  2073 //------------------------------rc_predicate-----------------------------------
  2074 // Create a range check predicate
  2075 //
  2076 // for (i = init; i < limit; i += stride) {
  2077 //    a[scale*i+offset]
  2078 // }
  2079 //
  2080 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
  2081 // as "max(scale*i + offset) u< a.length".
  2082 //
  2083 // There are two cases for max(scale*i + offset):
  2084 // (1) stride*scale > 0
  2085 //   max(scale*i + offset) = scale*(limit-stride) + offset
  2086 // (2) stride*scale < 0
  2087 //   max(scale*i + offset) = scale*init + offset
  2088 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
  2089                                        int scale, Node* offset,
  2090                                        Node* init, Node* limit, Node* stride,
  2091                                        Node* range) {
  2092   Node* max_idx_expr  = init;
  2093   int stride_con = stride->get_int();
  2094   if ((stride_con > 0) == (scale > 0)) {
  2095     max_idx_expr = new (C, 3) SubINode(limit, stride);
  2096     register_new_node(max_idx_expr, ctrl);
  2099   if (scale != 1) {
  2100     ConNode* con_scale = _igvn.intcon(scale);
  2101     max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
  2102     register_new_node(max_idx_expr, ctrl);
  2105   if (offset && (!offset->is_Con() || offset->get_int() != 0)){
  2106     max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
  2107     register_new_node(max_idx_expr, ctrl);
  2110   CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
  2111   register_new_node(cmp, ctrl);
  2112   BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
  2113   register_new_node(bol, ctrl);
  2114   return bol;
  2117 //------------------------------ loop_predication_impl--------------------------
  2118 // Insert loop predicates for null checks and range checks
  2119 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
  2120   if (!UseLoopPredicate) return false;
  2122   if (!loop->_head->is_Loop()) {
  2123     // Could be a simple region when irreducible loops are present.
  2124     return false;
  2127   CountedLoopNode *cl = NULL;
  2128   if (loop->_head->is_CountedLoop()) {
  2129     cl = loop->_head->as_CountedLoop();
  2130     // do nothing for iteration-splitted loops
  2131     if (!cl->is_normal_loop()) return false;
  2134   // Too many traps seen?
  2135   bool tmt = C->too_many_traps(C->method(), 0, Deoptimization::Reason_predicate);
  2136   int tc = C->trap_count(Deoptimization::Reason_predicate);
  2137   if (tmt || tc > 0) {
  2138     if (TraceLoopPredicate) {
  2139       tty->print_cr("too many predicate traps: %d", tc);
  2140       C->method()->print(); // which method has too many predicate traps
  2141       tty->print_cr("");
  2143     return false;
  2146   LoopNode *lpn  = loop->_head->as_Loop();
  2147   Node* entry = lpn->in(LoopNode::EntryControl);
  2149   ProjNode *predicate_proj = find_predicate_insertion_point(entry);
  2150   if (!predicate_proj){
  2151 #ifndef PRODUCT
  2152     if (TraceLoopPredicate) {
  2153       tty->print("missing predicate:");
  2154       loop->dump_head();
  2156 #endif
  2157     return false;
  2160   ConNode* zero = _igvn.intcon(0);
  2161   set_ctrl(zero, C->root());
  2162   Node *cond_false = new (C, 2) Conv2BNode(zero);
  2163   register_new_node(cond_false, C->root());
  2164   ConNode* one = _igvn.intcon(1);
  2165   set_ctrl(one, C->root());
  2166   Node *cond_true = new (C, 2) Conv2BNode(one);
  2167   register_new_node(cond_true, C->root());
  2169   ResourceArea *area = Thread::current()->resource_area();
  2170   Invariance invar(area, loop);
  2172   // Create list of if-projs such that a newer proj dominates all older
  2173   // projs in the list, and they all dominate loop->tail()
  2174   Node_List if_proj_list(area);
  2175   LoopNode *head  = loop->_head->as_Loop();
  2176   Node *current_proj = loop->tail(); //start from tail
  2177   while ( current_proj != head ) {
  2178     if (loop == get_loop(current_proj) && // still in the loop ?
  2179         current_proj->is_Proj()        && // is a projection  ?
  2180         current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
  2181       if_proj_list.push(current_proj);
  2183     current_proj = idom(current_proj);
  2186   bool hoisted = false; // true if at least one proj is promoted
  2187   while (if_proj_list.size() > 0) {
  2188     // Following are changed to nonnull when a predicate can be hoisted
  2189     ProjNode* new_predicate_proj = NULL;
  2190     BoolNode* new_predicate_bol   = NULL;
  2192     ProjNode* proj = if_proj_list.pop()->as_Proj();
  2193     IfNode*   iff  = proj->in(0)->as_If();
  2195     if (!is_uncommon_trap_if_pattern(proj)) {
  2196       if (loop->is_loop_exit(iff)) {
  2197         // stop processing the remaining projs in the list because the execution of them
  2198         // depends on the condition of "iff" (iff->in(1)).
  2199         break;
  2200       } else {
  2201         // Both arms are inside the loop. There are two cases:
  2202         // (1) there is one backward branch. In this case, any remaining proj
  2203         //     in the if_proj list post-dominates "iff". So, the condition of "iff"
  2204         //     does not determine the execution the remining projs directly, and we
  2205         //     can safely continue.
  2206         // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
  2207         //     does not dominate loop->tail(), so it can not be in the if_proj list.
  2208         continue;
  2212     Node*     test = iff->in(1);
  2213     if (!test->is_Bool()){ //Conv2B, ...
  2214       continue;
  2216     BoolNode* bol = test->as_Bool();
  2217     if (invar.is_invariant(bol)) {
  2218       // Invariant test
  2219       new_predicate_proj = create_new_if_for_predicate(predicate_proj);
  2220       Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
  2221       new_predicate_bol  = invar.clone(bol, ctrl)->as_Bool();
  2222       if (TraceLoopPredicate) tty->print("invariant");
  2223     } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
  2224       // Range check (only for counted loops)
  2225       new_predicate_proj = create_new_if_for_predicate(predicate_proj);
  2226       Node *ctrl = new_predicate_proj->in(0)->as_If()->in(0);
  2227       const Node*    cmp    = bol->in(1)->as_Cmp();
  2228       Node*          idx    = cmp->in(1);
  2229       assert(!invar.is_invariant(idx), "index is variant");
  2230       assert(cmp->in(2)->Opcode() == Op_LoadRange, "must be");
  2231       LoadRangeNode* ld_rng = (LoadRangeNode*)cmp->in(2); // LoadRangeNode
  2232       assert(invar.is_invariant(ld_rng), "load range must be invariant");
  2233       ld_rng = (LoadRangeNode*)invar.clone(ld_rng, ctrl);
  2234       int scale    = 1;
  2235       Node* offset = zero;
  2236       bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
  2237       assert(ok, "must be index expression");
  2238       if (offset && offset != zero) {
  2239         assert(invar.is_invariant(offset), "offset must be loop invariant");
  2240         offset = invar.clone(offset, ctrl);
  2242       Node* init    = cl->init_trip();
  2243       Node* limit   = cl->limit();
  2244       Node* stride  = cl->stride();
  2245       new_predicate_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, ld_rng);
  2246       if (TraceLoopPredicate) tty->print("range check");
  2249     if (new_predicate_proj == NULL) {
  2250       // The other proj of the "iff" is a uncommon trap projection, and we can assume
  2251       // the other proj will not be executed ("executed" means uct raised).
  2252       continue;
  2253     } else {
  2254       // Success - attach condition (new_predicate_bol) to predicate if
  2255       invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
  2256       IfNode* new_iff = new_predicate_proj->in(0)->as_If();
  2258       // Negate test if necessary
  2259       if (proj->_con != predicate_proj->_con) {
  2260         new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
  2261         register_new_node(new_predicate_bol, new_iff->in(0));
  2262         if (TraceLoopPredicate) tty->print_cr(" if negated: %d", iff->_idx);
  2263       } else {
  2264         if (TraceLoopPredicate) tty->print_cr(" if: %d", iff->_idx);
  2267       _igvn.hash_delete(new_iff);
  2268       new_iff->set_req(1, new_predicate_bol);
  2270       _igvn.hash_delete(iff);
  2271       iff->set_req(1, proj->is_IfFalse() ? cond_false : cond_true);
  2273       Node* ctrl = new_predicate_proj; // new control
  2274       ProjNode* dp = proj;     // old control
  2275       assert(get_loop(dp) == loop, "guarenteed at the time of collecting proj");
  2276       // Find nodes (depends only on the test) off the surviving projection;
  2277       // move them outside the loop with the control of proj_clone
  2278       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  2279         Node* cd = dp->fast_out(i); // Control-dependent node
  2280         if (cd->depends_only_on_test()) {
  2281           assert(cd->in(0) == dp, "");
  2282           _igvn.hash_delete(cd);
  2283           cd->set_req(0, ctrl); // ctrl, not NULL
  2284           set_early_ctrl(cd);
  2285           _igvn._worklist.push(cd);
  2286           IdealLoopTree *new_loop = get_loop(get_ctrl(cd));
  2287           if (new_loop != loop) {
  2288             if (!loop->_child) loop->_body.yank(cd);
  2289             if (!new_loop->_child ) new_loop->_body.push(cd);
  2291           --i;
  2292           --imax;
  2296       hoisted = true;
  2297       C->set_major_progress();
  2299   } // end while
  2301 #ifndef PRODUCT
  2302     // report that the loop predication has been actually performed
  2303     // for this loop
  2304     if (TraceLoopPredicate && hoisted) {
  2305       tty->print("Loop Predication Performed:");
  2306       loop->dump_head();
  2308 #endif
  2310   return hoisted;
  2313 //------------------------------loop_predication--------------------------------
  2314 // driver routine for loop predication optimization
  2315 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
  2316   bool hoisted = false;
  2317   // Recursively promote predicates
  2318   if ( _child ) {
  2319     hoisted = _child->loop_predication( phase);
  2322   // self
  2323   if (!_irreducible && !tail()->is_top()) {
  2324     hoisted |= phase->loop_predication_impl(this);
  2327   if ( _next ) { //sibling
  2328     hoisted |= _next->loop_predication( phase);
  2331   return hoisted;

mercurial