src/share/vm/memory/space.hpp

Wed, 14 Dec 2011 12:15:26 +0100

author
stefank
date
Wed, 14 Dec 2011 12:15:26 +0100
changeset 3335
3c648b9ad052
parent 3290
d06a2d7fcd5b
child 3711
b632e80fc9dc
permissions
-rw-r--r--

7121373: Clean up CollectedHeap::is_in
Summary: Fixed G1CollectedHeap::is_in, added tests, cleaned up comments and made Space::is_in pure virtual.
Reviewed-by: brutisso, tonyp, jcoomes

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_SPACE_HPP
    26 #define SHARE_VM_MEMORY_SPACE_HPP
    28 #include "memory/allocation.hpp"
    29 #include "memory/blockOffsetTable.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/iterator.hpp"
    32 #include "memory/memRegion.hpp"
    33 #include "memory/watermark.hpp"
    34 #include "oops/markOop.hpp"
    35 #include "runtime/mutexLocker.hpp"
    36 #include "runtime/prefetch.hpp"
    37 #include "utilities/workgroup.hpp"
    38 #ifdef TARGET_OS_FAMILY_linux
    39 # include "os_linux.inline.hpp"
    40 #endif
    41 #ifdef TARGET_OS_FAMILY_solaris
    42 # include "os_solaris.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_windows
    45 # include "os_windows.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_bsd
    48 # include "os_bsd.inline.hpp"
    49 #endif
    51 // A space is an abstraction for the "storage units" backing
    52 // up the generation abstraction. It includes specific
    53 // implementations for keeping track of free and used space,
    54 // for iterating over objects and free blocks, etc.
    56 // Here's the Space hierarchy:
    57 //
    58 // - Space               -- an asbtract base class describing a heap area
    59 //   - CompactibleSpace  -- a space supporting compaction
    60 //     - CompactibleFreeListSpace -- (used for CMS generation)
    61 //     - ContiguousSpace -- a compactible space in which all free space
    62 //                          is contiguous
    63 //       - EdenSpace     -- contiguous space used as nursery
    64 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
    65 //       - OffsetTableContigSpace -- contiguous space with a block offset array
    66 //                          that allows "fast" block_start calls
    67 //         - TenuredSpace -- (used for TenuredGeneration)
    68 //         - ContigPermSpace -- an offset table contiguous space for perm gen
    70 // Forward decls.
    71 class Space;
    72 class BlockOffsetArray;
    73 class BlockOffsetArrayContigSpace;
    74 class Generation;
    75 class CompactibleSpace;
    76 class BlockOffsetTable;
    77 class GenRemSet;
    78 class CardTableRS;
    79 class DirtyCardToOopClosure;
    81 // An oop closure that is circumscribed by a filtering memory region.
    82 class SpaceMemRegionOopsIterClosure: public OopClosure {
    83  private:
    84   OopClosure* _cl;
    85   MemRegion   _mr;
    86  protected:
    87   template <class T> void do_oop_work(T* p) {
    88     if (_mr.contains(p)) {
    89       _cl->do_oop(p);
    90     }
    91   }
    92  public:
    93   SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
    94     _cl(cl), _mr(mr) {}
    95   virtual void do_oop(oop* p);
    96   virtual void do_oop(narrowOop* p);
    97 };
    99 // A Space describes a heap area. Class Space is an abstract
   100 // base class.
   101 //
   102 // Space supports allocation, size computation and GC support is provided.
   103 //
   104 // Invariant: bottom() and end() are on page_size boundaries and
   105 // bottom() <= top() <= end()
   106 // top() is inclusive and end() is exclusive.
   108 class Space: public CHeapObj {
   109   friend class VMStructs;
   110  protected:
   111   HeapWord* _bottom;
   112   HeapWord* _end;
   114   // Used in support of save_marks()
   115   HeapWord* _saved_mark_word;
   117   MemRegionClosure* _preconsumptionDirtyCardClosure;
   119   // A sequential tasks done structure. This supports
   120   // parallel GC, where we have threads dynamically
   121   // claiming sub-tasks from a larger parallel task.
   122   SequentialSubTasksDone _par_seq_tasks;
   124   Space():
   125     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
   127  public:
   128   // Accessors
   129   HeapWord* bottom() const         { return _bottom; }
   130   HeapWord* end() const            { return _end;    }
   131   virtual void set_bottom(HeapWord* value) { _bottom = value; }
   132   virtual void set_end(HeapWord* value)    { _end = value; }
   134   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
   136   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
   138   MemRegionClosure* preconsumptionDirtyCardClosure() const {
   139     return _preconsumptionDirtyCardClosure;
   140   }
   141   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
   142     _preconsumptionDirtyCardClosure = cl;
   143   }
   145   // Returns a subregion of the space containing all the objects in
   146   // the space.
   147   virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
   149   // Returns a region that is guaranteed to contain (at least) all objects
   150   // allocated at the time of the last call to "save_marks".  If the space
   151   // initializes its DirtyCardToOopClosure's specifying the "contig" option
   152   // (that is, if the space is contiguous), then this region must contain only
   153   // such objects: the memregion will be from the bottom of the region to the
   154   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
   155   // the space must distiguish between objects in the region allocated before
   156   // and after the call to save marks.
   157   virtual MemRegion used_region_at_save_marks() const {
   158     return MemRegion(bottom(), saved_mark_word());
   159   }
   161   // Initialization.
   162   // "initialize" should be called once on a space, before it is used for
   163   // any purpose.  The "mr" arguments gives the bounds of the space, and
   164   // the "clear_space" argument should be true unless the memory in "mr" is
   165   // known to be zeroed.
   166   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   168   // The "clear" method must be called on a region that may have
   169   // had allocation performed in it, but is now to be considered empty.
   170   virtual void clear(bool mangle_space);
   172   // For detecting GC bugs.  Should only be called at GC boundaries, since
   173   // some unused space may be used as scratch space during GC's.
   174   // Default implementation does nothing. We also call this when expanding
   175   // a space to satisfy an allocation request. See bug #4668531
   176   virtual void mangle_unused_area() {}
   177   virtual void mangle_unused_area_complete() {}
   178   virtual void mangle_region(MemRegion mr) {}
   180   // Testers
   181   bool is_empty() const              { return used() == 0; }
   182   bool not_empty() const             { return used() > 0; }
   184   // Returns true iff the given the space contains the
   185   // given address as part of an allocated object. For
   186   // ceratin kinds of spaces, this might be a potentially
   187   // expensive operation. To prevent performance problems
   188   // on account of its inadvertent use in product jvm's,
   189   // we restrict its use to assertion checks only.
   190   virtual bool is_in(const void* p) const = 0;
   192   // Returns true iff the given reserved memory of the space contains the
   193   // given address.
   194   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
   196   // Returns true iff the given block is not allocated.
   197   virtual bool is_free_block(const HeapWord* p) const = 0;
   199   // Test whether p is double-aligned
   200   static bool is_aligned(void* p) {
   201     return ((intptr_t)p & (sizeof(double)-1)) == 0;
   202   }
   204   // Size computations.  Sizes are in bytes.
   205   size_t capacity()     const { return byte_size(bottom(), end()); }
   206   virtual size_t used() const = 0;
   207   virtual size_t free() const = 0;
   209   // Iterate over all the ref-containing fields of all objects in the
   210   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
   211   // applications of the closure are not included in the iteration.
   212   virtual void oop_iterate(OopClosure* cl);
   214   // Same as above, restricted to the intersection of a memory region and
   215   // the space.  Fields in objects allocated by applications of the closure
   216   // are not included in the iteration.
   217   virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
   219   // Iterate over all objects in the space, calling "cl.do_object" on
   220   // each.  Objects allocated by applications of the closure are not
   221   // included in the iteration.
   222   virtual void object_iterate(ObjectClosure* blk) = 0;
   223   // Similar to object_iterate() except only iterates over
   224   // objects whose internal references point to objects in the space.
   225   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
   227   // Iterate over all objects that intersect with mr, calling "cl->do_object"
   228   // on each.  There is an exception to this: if this closure has already
   229   // been invoked on an object, it may skip such objects in some cases.  This is
   230   // Most likely to happen in an "upwards" (ascending address) iteration of
   231   // MemRegions.
   232   virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   234   // Iterate over as many initialized objects in the space as possible,
   235   // calling "cl.do_object_careful" on each. Return NULL if all objects
   236   // in the space (at the start of the iteration) were iterated over.
   237   // Return an address indicating the extent of the iteration in the
   238   // event that the iteration had to return because of finding an
   239   // uninitialized object in the space, or if the closure "cl"
   240   // signalled early termination.
   241   virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   242   virtual HeapWord* object_iterate_careful_m(MemRegion mr,
   243                                              ObjectClosureCareful* cl);
   245   // Create and return a new dirty card to oop closure. Can be
   246   // overriden to return the appropriate type of closure
   247   // depending on the type of space in which the closure will
   248   // operate. ResourceArea allocated.
   249   virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   250                                              CardTableModRefBS::PrecisionStyle precision,
   251                                              HeapWord* boundary = NULL);
   253   // If "p" is in the space, returns the address of the start of the
   254   // "block" that contains "p".  We say "block" instead of "object" since
   255   // some heaps may not pack objects densely; a chunk may either be an
   256   // object or a non-object.  If "p" is not in the space, return NULL.
   257   virtual HeapWord* block_start_const(const void* p) const = 0;
   259   // The non-const version may have benevolent side effects on the data
   260   // structure supporting these calls, possibly speeding up future calls.
   261   // The default implementation, however, is simply to call the const
   262   // version.
   263   inline virtual HeapWord* block_start(const void* p);
   265   // Requires "addr" to be the start of a chunk, and returns its size.
   266   // "addr + size" is required to be the start of a new chunk, or the end
   267   // of the active area of the heap.
   268   virtual size_t block_size(const HeapWord* addr) const = 0;
   270   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   271   // the block is an object.
   272   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   274   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   275   // the block is an object and the object is alive.
   276   virtual bool obj_is_alive(const HeapWord* addr) const;
   278   // Allocation (return NULL if full).  Assumes the caller has established
   279   // mutually exclusive access to the space.
   280   virtual HeapWord* allocate(size_t word_size) = 0;
   282   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
   283   virtual HeapWord* par_allocate(size_t word_size) = 0;
   285   // Returns true if this object has been allocated since a
   286   // generation's "save_marks" call.
   287   virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
   289   // Mark-sweep-compact support: all spaces can update pointers to objects
   290   // moving as a part of compaction.
   291   virtual void adjust_pointers();
   293   // PrintHeapAtGC support
   294   virtual void print() const;
   295   virtual void print_on(outputStream* st) const;
   296   virtual void print_short() const;
   297   virtual void print_short_on(outputStream* st) const;
   300   // Accessor for parallel sequential tasks.
   301   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
   303   // IF "this" is a ContiguousSpace, return it, else return NULL.
   304   virtual ContiguousSpace* toContiguousSpace() {
   305     return NULL;
   306   }
   308   // Debugging
   309   virtual void verify(bool allow_dirty) const = 0;
   310 };
   312 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
   313 // OopClosure to (the addresses of) all the ref-containing fields that could
   314 // be modified by virtue of the given MemRegion being dirty. (Note that
   315 // because of the imprecise nature of the write barrier, this may iterate
   316 // over oops beyond the region.)
   317 // This base type for dirty card to oop closures handles memory regions
   318 // in non-contiguous spaces with no boundaries, and should be sub-classed
   319 // to support other space types. See ContiguousDCTOC for a sub-class
   320 // that works with ContiguousSpaces.
   322 class DirtyCardToOopClosure: public MemRegionClosureRO {
   323 protected:
   324   OopClosure* _cl;
   325   Space* _sp;
   326   CardTableModRefBS::PrecisionStyle _precision;
   327   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
   328                                 // pointing below boundary.
   329   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
   330                                 // a downwards traversal; this is the
   331                                 // lowest location already done (or,
   332                                 // alternatively, the lowest address that
   333                                 // shouldn't be done again.  NULL means infinity.)
   334   NOT_PRODUCT(HeapWord* _last_bottom;)
   335   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
   337   // Get the actual top of the area on which the closure will
   338   // operate, given where the top is assumed to be (the end of the
   339   // memory region passed to do_MemRegion) and where the object
   340   // at the top is assumed to start. For example, an object may
   341   // start at the top but actually extend past the assumed top,
   342   // in which case the top becomes the end of the object.
   343   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   345   // Walk the given memory region from bottom to (actual) top
   346   // looking for objects and applying the oop closure (_cl) to
   347   // them. The base implementation of this treats the area as
   348   // blocks, where a block may or may not be an object. Sub-
   349   // classes should override this to provide more accurate
   350   // or possibly more efficient walking.
   351   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
   353 public:
   354   DirtyCardToOopClosure(Space* sp, OopClosure* cl,
   355                         CardTableModRefBS::PrecisionStyle precision,
   356                         HeapWord* boundary) :
   357     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
   358     _min_done(NULL) {
   359     NOT_PRODUCT(_last_bottom = NULL);
   360     NOT_PRODUCT(_last_explicit_min_done = NULL);
   361   }
   363   void do_MemRegion(MemRegion mr);
   365   void set_min_done(HeapWord* min_done) {
   366     _min_done = min_done;
   367     NOT_PRODUCT(_last_explicit_min_done = _min_done);
   368   }
   369 #ifndef PRODUCT
   370   void set_last_bottom(HeapWord* last_bottom) {
   371     _last_bottom = last_bottom;
   372   }
   373 #endif
   374 };
   376 // A structure to represent a point at which objects are being copied
   377 // during compaction.
   378 class CompactPoint : public StackObj {
   379 public:
   380   Generation* gen;
   381   CompactibleSpace* space;
   382   HeapWord* threshold;
   383   CompactPoint(Generation* _gen, CompactibleSpace* _space,
   384                HeapWord* _threshold) :
   385     gen(_gen), space(_space), threshold(_threshold) {}
   386 };
   389 // A space that supports compaction operations.  This is usually, but not
   390 // necessarily, a space that is normally contiguous.  But, for example, a
   391 // free-list-based space whose normal collection is a mark-sweep without
   392 // compaction could still support compaction in full GC's.
   394 class CompactibleSpace: public Space {
   395   friend class VMStructs;
   396   friend class CompactibleFreeListSpace;
   397   friend class CompactingPermGenGen;
   398   friend class CMSPermGenGen;
   399 private:
   400   HeapWord* _compaction_top;
   401   CompactibleSpace* _next_compaction_space;
   403 public:
   404   CompactibleSpace() :
   405    _compaction_top(NULL), _next_compaction_space(NULL) {}
   407   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   408   virtual void clear(bool mangle_space);
   410   // Used temporarily during a compaction phase to hold the value
   411   // top should have when compaction is complete.
   412   HeapWord* compaction_top() const { return _compaction_top;    }
   414   void set_compaction_top(HeapWord* value) {
   415     assert(value == NULL || (value >= bottom() && value <= end()),
   416       "should point inside space");
   417     _compaction_top = value;
   418   }
   420   // Perform operations on the space needed after a compaction
   421   // has been performed.
   422   virtual void reset_after_compaction() {}
   424   // Returns the next space (in the current generation) to be compacted in
   425   // the global compaction order.  Also is used to select the next
   426   // space into which to compact.
   428   virtual CompactibleSpace* next_compaction_space() const {
   429     return _next_compaction_space;
   430   }
   432   void set_next_compaction_space(CompactibleSpace* csp) {
   433     _next_compaction_space = csp;
   434   }
   436   // MarkSweep support phase2
   438   // Start the process of compaction of the current space: compute
   439   // post-compaction addresses, and insert forwarding pointers.  The fields
   440   // "cp->gen" and "cp->compaction_space" are the generation and space into
   441   // which we are currently compacting.  This call updates "cp" as necessary,
   442   // and leaves the "compaction_top" of the final value of
   443   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
   444   // this phase as if the final copy had occurred; if so, "cp->threshold"
   445   // indicates when the next such action should be taken.
   446   virtual void prepare_for_compaction(CompactPoint* cp);
   447   // MarkSweep support phase3
   448   virtual void adjust_pointers();
   449   // MarkSweep support phase4
   450   virtual void compact();
   452   // The maximum percentage of objects that can be dead in the compacted
   453   // live part of a compacted space ("deadwood" support.)
   454   virtual size_t allowed_dead_ratio() const { return 0; };
   456   // Some contiguous spaces may maintain some data structures that should
   457   // be updated whenever an allocation crosses a boundary.  This function
   458   // returns the first such boundary.
   459   // (The default implementation returns the end of the space, so the
   460   // boundary is never crossed.)
   461   virtual HeapWord* initialize_threshold() { return end(); }
   463   // "q" is an object of the given "size" that should be forwarded;
   464   // "cp" names the generation ("gen") and containing "this" (which must
   465   // also equal "cp->space").  "compact_top" is where in "this" the
   466   // next object should be forwarded to.  If there is room in "this" for
   467   // the object, insert an appropriate forwarding pointer in "q".
   468   // If not, go to the next compaction space (there must
   469   // be one, since compaction must succeed -- we go to the first space of
   470   // the previous generation if necessary, updating "cp"), reset compact_top
   471   // and then forward.  In either case, returns the new value of "compact_top".
   472   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
   473   // function of the then-current compaction space, and updates "cp->threshold
   474   // accordingly".
   475   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
   476                     HeapWord* compact_top);
   478   // Return a size with adjusments as required of the space.
   479   virtual size_t adjust_object_size_v(size_t size) const { return size; }
   481 protected:
   482   // Used during compaction.
   483   HeapWord* _first_dead;
   484   HeapWord* _end_of_live;
   486   // Minimum size of a free block.
   487   virtual size_t minimum_free_block_size() const = 0;
   489   // This the function is invoked when an allocation of an object covering
   490   // "start" to "end occurs crosses the threshold; returns the next
   491   // threshold.  (The default implementation does nothing.)
   492   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
   493     return end();
   494   }
   496   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
   497   // free block of the given "word_len", and that "q", were it an object,
   498   // would not move if forwared.  If the size allows, fill the free
   499   // block with an object, to prevent excessive compaction.  Returns "true"
   500   // iff the free region was made deadspace, and modifies
   501   // "allowed_deadspace_words" to reflect the number of available deadspace
   502   // words remaining after this operation.
   503   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
   504                         size_t word_len);
   505 };
   507 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) {            \
   508   /* Compute the new addresses for the live objects and store it in the mark \
   509    * Used by universe::mark_sweep_phase2()                                   \
   510    */                                                                        \
   511   HeapWord* compact_top; /* This is where we are currently compacting to. */ \
   512                                                                              \
   513   /* We're sure to be here before any objects are compacted into this        \
   514    * space, so this is a good time to initialize this:                       \
   515    */                                                                        \
   516   set_compaction_top(bottom());                                              \
   517                                                                              \
   518   if (cp->space == NULL) {                                                   \
   519     assert(cp->gen != NULL, "need a generation");                            \
   520     assert(cp->threshold == NULL, "just checking");                          \
   521     assert(cp->gen->first_compaction_space() == this, "just checking");      \
   522     cp->space = cp->gen->first_compaction_space();                           \
   523     compact_top = cp->space->bottom();                                       \
   524     cp->space->set_compaction_top(compact_top);                              \
   525     cp->threshold = cp->space->initialize_threshold();                       \
   526   } else {                                                                   \
   527     compact_top = cp->space->compaction_top();                               \
   528   }                                                                          \
   529                                                                              \
   530   /* We allow some amount of garbage towards the bottom of the space, so     \
   531    * we don't start compacting before there is a significant gain to be made.\
   532    * Occasionally, we want to ensure a full compaction, which is determined  \
   533    * by the MarkSweepAlwaysCompactCount parameter.                           \
   534    */                                                                        \
   535   int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
   536   bool skip_dead = (MarkSweepAlwaysCompactCount < 1)                         \
   537     ||((invocations % MarkSweepAlwaysCompactCount) != 0);                    \
   538                                                                              \
   539   size_t allowed_deadspace = 0;                                              \
   540   if (skip_dead) {                                                           \
   541     const size_t ratio = allowed_dead_ratio();                               \
   542     allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize;           \
   543   }                                                                          \
   544                                                                              \
   545   HeapWord* q = bottom();                                                    \
   546   HeapWord* t = scan_limit();                                                \
   547                                                                              \
   548   HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last \
   549                                    live object. */                           \
   550   HeapWord*  first_dead = end();/* The first dead object. */                 \
   551   LiveRange* liveRange  = NULL; /* The current live range, recorded in the   \
   552                                    first header of preceding free area. */   \
   553   _first_dead = first_dead;                                                  \
   554                                                                              \
   555   const intx interval = PrefetchScanIntervalInBytes;                         \
   556                                                                              \
   557   while (q < t) {                                                            \
   558     assert(!block_is_obj(q) ||                                               \
   559            oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||   \
   560            oop(q)->mark()->has_bias_pattern(),                               \
   561            "these are the only valid states during a mark sweep");           \
   562     if (block_is_obj(q) && oop(q)->is_gc_marked()) {                         \
   563       /* prefetch beyond q */                                                \
   564       Prefetch::write(q, interval);                                          \
   565       /* size_t size = oop(q)->size();  changing this for cms for perm gen */\
   566       size_t size = block_size(q);                                           \
   567       compact_top = cp->space->forward(oop(q), size, cp, compact_top);       \
   568       q += size;                                                             \
   569       end_of_live = q;                                                       \
   570     } else {                                                                 \
   571       /* run over all the contiguous dead objects */                         \
   572       HeapWord* end = q;                                                     \
   573       do {                                                                   \
   574         /* prefetch beyond end */                                            \
   575         Prefetch::write(end, interval);                                      \
   576         end += block_size(end);                                              \
   577       } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
   578                                                                              \
   579       /* see if we might want to pretend this object is alive so that        \
   580        * we don't have to compact quite as often.                            \
   581        */                                                                    \
   582       if (allowed_deadspace > 0 && q == compact_top) {                       \
   583         size_t sz = pointer_delta(end, q);                                   \
   584         if (insert_deadspace(allowed_deadspace, q, sz)) {                    \
   585           compact_top = cp->space->forward(oop(q), sz, cp, compact_top);     \
   586           q = end;                                                           \
   587           end_of_live = end;                                                 \
   588           continue;                                                          \
   589         }                                                                    \
   590       }                                                                      \
   591                                                                              \
   592       /* otherwise, it really is a free region. */                           \
   593                                                                              \
   594       /* for the previous LiveRange, record the end of the live objects. */  \
   595       if (liveRange) {                                                       \
   596         liveRange->set_end(q);                                               \
   597       }                                                                      \
   598                                                                              \
   599       /* record the current LiveRange object.                                \
   600        * liveRange->start() is overlaid on the mark word.                    \
   601        */                                                                    \
   602       liveRange = (LiveRange*)q;                                             \
   603       liveRange->set_start(end);                                             \
   604       liveRange->set_end(end);                                               \
   605                                                                              \
   606       /* see if this is the first dead region. */                            \
   607       if (q < first_dead) {                                                  \
   608         first_dead = q;                                                      \
   609       }                                                                      \
   610                                                                              \
   611       /* move on to the next object */                                       \
   612       q = end;                                                               \
   613     }                                                                        \
   614   }                                                                          \
   615                                                                              \
   616   assert(q == t, "just checking");                                           \
   617   if (liveRange != NULL) {                                                   \
   618     liveRange->set_end(q);                                                   \
   619   }                                                                          \
   620   _end_of_live = end_of_live;                                                \
   621   if (end_of_live < first_dead) {                                            \
   622     first_dead = end_of_live;                                                \
   623   }                                                                          \
   624   _first_dead = first_dead;                                                  \
   625                                                                              \
   626   /* save the compaction_top of the compaction space. */                     \
   627   cp->space->set_compaction_top(compact_top);                                \
   628 }
   630 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) {                             \
   631   /* adjust all the interior pointers to point at the new locations of objects  \
   632    * Used by MarkSweep::mark_sweep_phase3() */                                  \
   633                                                                                 \
   634   HeapWord* q = bottom();                                                       \
   635   HeapWord* t = _end_of_live;  /* Established by "prepare_for_compaction". */   \
   636                                                                                 \
   637   assert(_first_dead <= _end_of_live, "Stands to reason, no?");                 \
   638                                                                                 \
   639   if (q < t && _first_dead > q &&                                               \
   640       !oop(q)->is_gc_marked()) {                                                \
   641     /* we have a chunk of the space which hasn't moved and we've                \
   642      * reinitialized the mark word during the previous pass, so we can't        \
   643      * use is_gc_marked for the traversal. */                                   \
   644     HeapWord* end = _first_dead;                                                \
   645                                                                                 \
   646     while (q < end) {                                                           \
   647       /* I originally tried to conjoin "block_start(q) == q" to the             \
   648        * assertion below, but that doesn't work, because you can't              \
   649        * accurately traverse previous objects to get to the current one         \
   650        * after their pointers (including pointers into permGen) have been       \
   651        * updated, until the actual compaction is done.  dld, 4/00 */            \
   652       assert(block_is_obj(q),                                                   \
   653              "should be at block boundaries, and should be looking at objs");   \
   654                                                                                 \
   655       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   656                                                                                 \
   657       /* point all the oops to the new location */                              \
   658       size_t size = oop(q)->adjust_pointers();                                  \
   659       size = adjust_obj_size(size);                                             \
   660                                                                                 \
   661       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   662                                                                                 \
   663       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   664                                                                                 \
   665       q += size;                                                                \
   666     }                                                                           \
   667                                                                                 \
   668     if (_first_dead == t) {                                                     \
   669       q = t;                                                                    \
   670     } else {                                                                    \
   671       /* $$$ This is funky.  Using this to read the previously written          \
   672        * LiveRange.  See also use below. */                                     \
   673       q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer();                \
   674     }                                                                           \
   675   }                                                                             \
   676                                                                                 \
   677   const intx interval = PrefetchScanIntervalInBytes;                            \
   678                                                                                 \
   679   debug_only(HeapWord* prev_q = NULL);                                          \
   680   while (q < t) {                                                               \
   681     /* prefetch beyond q */                                                     \
   682     Prefetch::write(q, interval);                                               \
   683     if (oop(q)->is_gc_marked()) {                                               \
   684       /* q is alive */                                                          \
   685       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   686       /* point all the oops to the new location */                              \
   687       size_t size = oop(q)->adjust_pointers();                                  \
   688       size = adjust_obj_size(size);                                             \
   689       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   690       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   691       debug_only(prev_q = q);                                                   \
   692       q += size;                                                                \
   693     } else {                                                                    \
   694       /* q is not a live object, so its mark should point at the next           \
   695        * live object */                                                         \
   696       debug_only(prev_q = q);                                                   \
   697       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   698       assert(q > prev_q, "we should be moving forward through memory");         \
   699     }                                                                           \
   700   }                                                                             \
   701                                                                                 \
   702   assert(q == t, "just checking");                                              \
   703 }
   705 #define SCAN_AND_COMPACT(obj_size) {                                            \
   706   /* Copy all live objects to their new location                                \
   707    * Used by MarkSweep::mark_sweep_phase4() */                                  \
   708                                                                                 \
   709   HeapWord*       q = bottom();                                                 \
   710   HeapWord* const t = _end_of_live;                                             \
   711   debug_only(HeapWord* prev_q = NULL);                                          \
   712                                                                                 \
   713   if (q < t && _first_dead > q &&                                               \
   714       !oop(q)->is_gc_marked()) {                                                \
   715     debug_only(                                                                 \
   716     /* we have a chunk of the space which hasn't moved and we've reinitialized  \
   717      * the mark word during the previous pass, so we can't use is_gc_marked for \
   718      * the traversal. */                                                        \
   719     HeapWord* const end = _first_dead;                                          \
   720                                                                                 \
   721     while (q < end) {                                                           \
   722       size_t size = obj_size(q);                                                \
   723       assert(!oop(q)->is_gc_marked(),                                           \
   724              "should be unmarked (special dense prefix handling)");             \
   725       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q));       \
   726       debug_only(prev_q = q);                                                   \
   727       q += size;                                                                \
   728     }                                                                           \
   729     )  /* debug_only */                                                         \
   730                                                                                 \
   731     if (_first_dead == t) {                                                     \
   732       q = t;                                                                    \
   733     } else {                                                                    \
   734       /* $$$ Funky */                                                           \
   735       q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();               \
   736     }                                                                           \
   737   }                                                                             \
   738                                                                                 \
   739   const intx scan_interval = PrefetchScanIntervalInBytes;                       \
   740   const intx copy_interval = PrefetchCopyIntervalInBytes;                       \
   741   while (q < t) {                                                               \
   742     if (!oop(q)->is_gc_marked()) {                                              \
   743       /* mark is pointer to next marked oop */                                  \
   744       debug_only(prev_q = q);                                                   \
   745       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   746       assert(q > prev_q, "we should be moving forward through memory");         \
   747     } else {                                                                    \
   748       /* prefetch beyond q */                                                   \
   749       Prefetch::read(q, scan_interval);                                         \
   750                                                                                 \
   751       /* size and destination */                                                \
   752       size_t size = obj_size(q);                                                \
   753       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();                \
   754                                                                                 \
   755       /* prefetch beyond compaction_top */                                      \
   756       Prefetch::write(compaction_top, copy_interval);                           \
   757                                                                                 \
   758       /* copy object and reinit its mark */                                     \
   759       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size,            \
   760                                                             compaction_top));   \
   761       assert(q != compaction_top, "everything in this pass should be moving");  \
   762       Copy::aligned_conjoint_words(q, compaction_top, size);                    \
   763       oop(compaction_top)->init_mark();                                         \
   764       assert(oop(compaction_top)->klass() != NULL, "should have a class");      \
   765                                                                                 \
   766       debug_only(prev_q = q);                                                   \
   767       q += size;                                                                \
   768     }                                                                           \
   769   }                                                                             \
   770                                                                                 \
   771   /* Let's remember if we were empty before we did the compaction. */           \
   772   bool was_empty = used_region().is_empty();                                    \
   773   /* Reset space after compaction is complete */                                \
   774   reset_after_compaction();                                                     \
   775   /* We do this clear, below, since it has overloaded meanings for some */      \
   776   /* space subtypes.  For example, OffsetTableContigSpace's that were   */      \
   777   /* compacted into will have had their offset table thresholds updated */      \
   778   /* continuously, but those that weren't need to have their thresholds */      \
   779   /* re-initialized.  Also mangles unused area for debugging.           */      \
   780   if (used_region().is_empty()) {                                               \
   781     if (!was_empty) clear(SpaceDecorator::Mangle);                              \
   782   } else {                                                                      \
   783     if (ZapUnusedHeapArea) mangle_unused_area();                                \
   784   }                                                                             \
   785 }
   787 class GenSpaceMangler;
   789 // A space in which the free area is contiguous.  It therefore supports
   790 // faster allocation, and compaction.
   791 class ContiguousSpace: public CompactibleSpace {
   792   friend class OneContigSpaceCardGeneration;
   793   friend class VMStructs;
   794  protected:
   795   HeapWord* _top;
   796   HeapWord* _concurrent_iteration_safe_limit;
   797   // A helper for mangling the unused area of the space in debug builds.
   798   GenSpaceMangler* _mangler;
   800   GenSpaceMangler* mangler() { return _mangler; }
   802   // Allocation helpers (return NULL if full).
   803   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   804   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   806  public:
   807   ContiguousSpace();
   808   ~ContiguousSpace();
   810   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   811   virtual void clear(bool mangle_space);
   813   // Accessors
   814   HeapWord* top() const            { return _top;    }
   815   void set_top(HeapWord* value)    { _top = value; }
   817   virtual void set_saved_mark()    { _saved_mark_word = top();    }
   818   void reset_saved_mark()          { _saved_mark_word = bottom(); }
   820   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
   821   WaterMark top_mark()        { return WaterMark(this, top()); }
   822   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
   823   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
   825   // In debug mode mangle (write it with a particular bit
   826   // pattern) the unused part of a space.
   828   // Used to save the an address in a space for later use during mangling.
   829   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
   830   // Used to save the space's current top for later use during mangling.
   831   void set_top_for_allocations() PRODUCT_RETURN;
   833   // Mangle regions in the space from the current top up to the
   834   // previously mangled part of the space.
   835   void mangle_unused_area() PRODUCT_RETURN;
   836   // Mangle [top, end)
   837   void mangle_unused_area_complete() PRODUCT_RETURN;
   838   // Mangle the given MemRegion.
   839   void mangle_region(MemRegion mr) PRODUCT_RETURN;
   841   // Do some sparse checking on the area that should have been mangled.
   842   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
   843   // Check the complete area that should have been mangled.
   844   // This code may be NULL depending on the macro DEBUG_MANGLING.
   845   void check_mangled_unused_area_complete() PRODUCT_RETURN;
   847   // Size computations: sizes in bytes.
   848   size_t capacity() const        { return byte_size(bottom(), end()); }
   849   size_t used() const            { return byte_size(bottom(), top()); }
   850   size_t free() const            { return byte_size(top(),    end()); }
   852   // Override from space.
   853   bool is_in(const void* p) const;
   855   virtual bool is_free_block(const HeapWord* p) const;
   857   // In a contiguous space we have a more obvious bound on what parts
   858   // contain objects.
   859   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   861   MemRegion used_region_at_save_marks() const {
   862     return MemRegion(bottom(), saved_mark_word());
   863   }
   865   // Allocation (return NULL if full)
   866   virtual HeapWord* allocate(size_t word_size);
   867   virtual HeapWord* par_allocate(size_t word_size);
   869   virtual bool obj_allocated_since_save_marks(const oop obj) const {
   870     return (HeapWord*)obj >= saved_mark_word();
   871   }
   873   // Iteration
   874   void oop_iterate(OopClosure* cl);
   875   void oop_iterate(MemRegion mr, OopClosure* cl);
   876   void object_iterate(ObjectClosure* blk);
   877   // For contiguous spaces this method will iterate safely over objects
   878   // in the space (i.e., between bottom and top) when at a safepoint.
   879   void safe_object_iterate(ObjectClosure* blk);
   880   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   881   // iterates on objects up to the safe limit
   882   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   883   inline HeapWord* concurrent_iteration_safe_limit();
   884   // changes the safe limit, all objects from bottom() to the new
   885   // limit should be properly initialized
   886   inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
   888 #ifndef SERIALGC
   889   // In support of parallel oop_iterate.
   890   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
   891     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
   893     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
   894   #undef ContigSpace_PAR_OOP_ITERATE_DECL
   895 #endif // SERIALGC
   897   // Compaction support
   898   virtual void reset_after_compaction() {
   899     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
   900     set_top(compaction_top());
   901     // set new iteration safe limit
   902     set_concurrent_iteration_safe_limit(compaction_top());
   903   }
   904   virtual size_t minimum_free_block_size() const { return 0; }
   906   // Override.
   907   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   908                                      CardTableModRefBS::PrecisionStyle precision,
   909                                      HeapWord* boundary = NULL);
   911   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   912   // starting with the _saved_mark_word, which was noted during a generation's
   913   // save_marks and is required to denote the head of an object.
   914   // Fields in objects allocated by applications of the closure
   915   // *are* included in the iteration.
   916   // Updates _saved_mark_word to point to just after the last object
   917   // iterated over.
   918 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   919   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   921   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
   922 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
   924   // Same as object_iterate, but starting from "mark", which is required
   925   // to denote the start of an object.  Objects allocated by
   926   // applications of the closure *are* included in the iteration.
   927   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
   929   // Very inefficient implementation.
   930   virtual HeapWord* block_start_const(const void* p) const;
   931   size_t block_size(const HeapWord* p) const;
   932   // If a block is in the allocated area, it is an object.
   933   bool block_is_obj(const HeapWord* p) const { return p < top(); }
   935   // Addresses for inlined allocation
   936   HeapWord** top_addr() { return &_top; }
   937   HeapWord** end_addr() { return &_end; }
   939   // Overrides for more efficient compaction support.
   940   void prepare_for_compaction(CompactPoint* cp);
   942   // PrintHeapAtGC support.
   943   virtual void print_on(outputStream* st) const;
   945   // Checked dynamic downcasts.
   946   virtual ContiguousSpace* toContiguousSpace() {
   947     return this;
   948   }
   950   // Debugging
   951   virtual void verify(bool allow_dirty) const;
   953   // Used to increase collection frequency.  "factor" of 0 means entire
   954   // space.
   955   void allocate_temporary_filler(int factor);
   957 };
   960 // A dirty card to oop closure that does filtering.
   961 // It knows how to filter out objects that are outside of the _boundary.
   962 class Filtering_DCTOC : public DirtyCardToOopClosure {
   963 protected:
   964   // Override.
   965   void walk_mem_region(MemRegion mr,
   966                        HeapWord* bottom, HeapWord* top);
   968   // Walk the given memory region, from bottom to top, applying
   969   // the given oop closure to (possibly) all objects found. The
   970   // given oop closure may or may not be the same as the oop
   971   // closure with which this closure was created, as it may
   972   // be a filtering closure which makes use of the _boundary.
   973   // We offer two signatures, so the FilteringClosure static type is
   974   // apparent.
   975   virtual void walk_mem_region_with_cl(MemRegion mr,
   976                                        HeapWord* bottom, HeapWord* top,
   977                                        OopClosure* cl) = 0;
   978   virtual void walk_mem_region_with_cl(MemRegion mr,
   979                                        HeapWord* bottom, HeapWord* top,
   980                                        FilteringClosure* cl) = 0;
   982 public:
   983   Filtering_DCTOC(Space* sp, OopClosure* cl,
   984                   CardTableModRefBS::PrecisionStyle precision,
   985                   HeapWord* boundary) :
   986     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
   987 };
   989 // A dirty card to oop closure for contiguous spaces
   990 // (ContiguousSpace and sub-classes).
   991 // It is a FilteringClosure, as defined above, and it knows:
   992 //
   993 // 1. That the actual top of any area in a memory region
   994 //    contained by the space is bounded by the end of the contiguous
   995 //    region of the space.
   996 // 2. That the space is really made up of objects and not just
   997 //    blocks.
   999 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
  1000 protected:
  1001   // Overrides.
  1002   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
  1004   virtual void walk_mem_region_with_cl(MemRegion mr,
  1005                                        HeapWord* bottom, HeapWord* top,
  1006                                        OopClosure* cl);
  1007   virtual void walk_mem_region_with_cl(MemRegion mr,
  1008                                        HeapWord* bottom, HeapWord* top,
  1009                                        FilteringClosure* cl);
  1011 public:
  1012   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
  1013                        CardTableModRefBS::PrecisionStyle precision,
  1014                        HeapWord* boundary) :
  1015     Filtering_DCTOC(sp, cl, precision, boundary)
  1016   {}
  1017 };
  1020 // Class EdenSpace describes eden-space in new generation.
  1022 class DefNewGeneration;
  1024 class EdenSpace : public ContiguousSpace {
  1025   friend class VMStructs;
  1026  private:
  1027   DefNewGeneration* _gen;
  1029   // _soft_end is used as a soft limit on allocation.  As soft limits are
  1030   // reached, the slow-path allocation code can invoke other actions and then
  1031   // adjust _soft_end up to a new soft limit or to end().
  1032   HeapWord* _soft_end;
  1034  public:
  1035   EdenSpace(DefNewGeneration* gen) :
  1036    _gen(gen), _soft_end(NULL) {}
  1038   // Get/set just the 'soft' limit.
  1039   HeapWord* soft_end()               { return _soft_end; }
  1040   HeapWord** soft_end_addr()         { return &_soft_end; }
  1041   void set_soft_end(HeapWord* value) { _soft_end = value; }
  1043   // Override.
  1044   void clear(bool mangle_space);
  1046   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
  1047   void set_end(HeapWord* value) {
  1048     set_soft_end(value);
  1049     ContiguousSpace::set_end(value);
  1052   // Allocation (return NULL if full)
  1053   HeapWord* allocate(size_t word_size);
  1054   HeapWord* par_allocate(size_t word_size);
  1055 };
  1057 // Class ConcEdenSpace extends EdenSpace for the sake of safe
  1058 // allocation while soft-end is being modified concurrently
  1060 class ConcEdenSpace : public EdenSpace {
  1061  public:
  1062   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
  1064   // Allocation (return NULL if full)
  1065   HeapWord* par_allocate(size_t word_size);
  1066 };
  1069 // A ContigSpace that Supports an efficient "block_start" operation via
  1070 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
  1071 // other spaces.)  This is the abstract base class for old generation
  1072 // (tenured, perm) spaces.
  1074 class OffsetTableContigSpace: public ContiguousSpace {
  1075   friend class VMStructs;
  1076  protected:
  1077   BlockOffsetArrayContigSpace _offsets;
  1078   Mutex _par_alloc_lock;
  1080  public:
  1081   // Constructor
  1082   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1083                          MemRegion mr);
  1085   void set_bottom(HeapWord* value);
  1086   void set_end(HeapWord* value);
  1088   void clear(bool mangle_space);
  1090   inline HeapWord* block_start_const(const void* p) const;
  1092   // Add offset table update.
  1093   virtual inline HeapWord* allocate(size_t word_size);
  1094   inline HeapWord* par_allocate(size_t word_size);
  1096   // MarkSweep support phase3
  1097   virtual HeapWord* initialize_threshold();
  1098   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
  1100   virtual void print_on(outputStream* st) const;
  1102   // Debugging
  1103   void verify(bool allow_dirty) const;
  1105   // Shared space support
  1106   void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
  1107 };
  1110 // Class TenuredSpace is used by TenuredGeneration
  1112 class TenuredSpace: public OffsetTableContigSpace {
  1113   friend class VMStructs;
  1114  protected:
  1115   // Mark sweep support
  1116   size_t allowed_dead_ratio() const;
  1117  public:
  1118   // Constructor
  1119   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1120                MemRegion mr) :
  1121     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1122 };
  1125 // Class ContigPermSpace is used by CompactingPermGen
  1127 class ContigPermSpace: public OffsetTableContigSpace {
  1128   friend class VMStructs;
  1129  protected:
  1130   // Mark sweep support
  1131   size_t allowed_dead_ratio() const;
  1132  public:
  1133   // Constructor
  1134   ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
  1135     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1136 };
  1138 #endif // SHARE_VM_MEMORY_SPACE_HPP

mercurial