src/share/vm/runtime/objectMonitor.cpp

Thu, 03 Jan 2013 15:03:27 -0800

author
jmasa
date
Thu, 03 Jan 2013 15:03:27 -0800
changeset 4488
3c327c2b6782
parent 4299
f34d701e952e
child 4471
22ba8c8ce6a6
permissions
-rw-r--r--

8004895: NPG: JMapPermCore test failure caused by warnings about missing field
Reviewed-by: johnc

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/handles.inline.hpp"
    31 #include "runtime/interfaceSupport.hpp"
    32 #include "runtime/mutexLocker.hpp"
    33 #include "runtime/objectMonitor.hpp"
    34 #include "runtime/objectMonitor.inline.hpp"
    35 #include "runtime/osThread.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/thread.inline.hpp"
    38 #include "services/threadService.hpp"
    39 #include "utilities/dtrace.hpp"
    40 #include "utilities/preserveException.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "os_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "os_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "os_windows.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_bsd
    51 # include "os_bsd.inline.hpp"
    52 #endif
    54 #if defined(__GNUC__) && !defined(IA64)
    55   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    56   #define ATTR __attribute__((noinline))
    57 #else
    58   #define ATTR
    59 #endif
    62 #ifdef DTRACE_ENABLED
    64 // Only bother with this argument setup if dtrace is available
    65 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
    69   char* bytes = NULL;                                                      \
    70   int len = 0;                                                             \
    71   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    72   Symbol* klassname = ((oop)obj)->klass()->name();                         \
    73   if (klassname != NULL) {                                                 \
    74     bytes = (char*)klassname->bytes();                                     \
    75     len = klassname->utf8_length();                                        \
    76   }
    78 #ifndef USDT2
    80 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    81   jlong, uintptr_t, char*, int);
    82 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    83   jlong, uintptr_t, char*, int);
    84 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    85   jlong, uintptr_t, char*, int);
    86 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    87   jlong, uintptr_t, char*, int);
    88 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    89   jlong, uintptr_t, char*, int);
    91 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)       \
    92   {                                                                        \
    93     if (DTraceMonitorProbes) {                                            \
    94       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
    95       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    96                        (monitor), bytes, len, (millis));                   \
    97     }                                                                      \
    98   }
   100 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)             \
   101   {                                                                        \
   102     if (DTraceMonitorProbes) {                                            \
   103       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                       \
   104       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   105                        (uintptr_t)(monitor), bytes, len);                  \
   106     }                                                                      \
   107   }
   109 #else /* USDT2 */
   111 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
   112   {                                                                        \
   113     if (DTraceMonitorProbes) {                                            \
   114       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   115       HOTSPOT_MONITOR_WAIT(jtid,                                           \
   116                        (monitor), bytes, len, (millis));                   \
   117     }                                                                      \
   118   }
   120 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
   121 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
   122 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
   123 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
   124 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
   126 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
   127   {                                                                        \
   128     if (DTraceMonitorProbes) {                                            \
   129       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
   130       HOTSPOT_MONITOR_##probe(jtid,                                               \
   131                        (uintptr_t)(monitor), bytes, len);                  \
   132     }                                                                      \
   133   }
   135 #endif /* USDT2 */
   136 #else //  ndef DTRACE_ENABLED
   138 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
   139 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
   141 #endif // ndef DTRACE_ENABLED
   143 // Tunables ...
   144 // The knob* variables are effectively final.  Once set they should
   145 // never be modified hence.  Consider using __read_mostly with GCC.
   147 int ObjectMonitor::Knob_Verbose    = 0 ;
   148 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
   149 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   150 static int Knob_HandOff            = 0 ;
   151 static int Knob_ReportSettings     = 0 ;
   153 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   154 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   155 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   156 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   157 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   158 static int Knob_SpinEarly          = 1 ;
   159 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   160 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   161 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   162 static int Knob_Bonus              = 100 ;     // spin success bonus
   163 static int Knob_BonusB             = 100 ;     // spin success bonus
   164 static int Knob_Penalty            = 200 ;     // spin failure penalty
   165 static int Knob_Poverty            = 1000 ;
   166 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   167 static int Knob_FixedSpin          = 0 ;
   168 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   169 static int Knob_UsePause           = 1 ;
   170 static int Knob_ExitPolicy         = 0 ;
   171 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   172 static int Knob_ResetEvent         = 0 ;
   173 static int BackOffMask             = 0 ;
   175 static int Knob_FastHSSEC          = 0 ;
   176 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   177 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   178 static volatile int InitDone       = 0 ;
   180 #define TrySpin TrySpin_VaryDuration
   182 // -----------------------------------------------------------------------------
   183 // Theory of operations -- Monitors lists, thread residency, etc:
   184 //
   185 // * A thread acquires ownership of a monitor by successfully
   186 //   CAS()ing the _owner field from null to non-null.
   187 //
   188 // * Invariant: A thread appears on at most one monitor list --
   189 //   cxq, EntryList or WaitSet -- at any one time.
   190 //
   191 // * Contending threads "push" themselves onto the cxq with CAS
   192 //   and then spin/park.
   193 //
   194 // * After a contending thread eventually acquires the lock it must
   195 //   dequeue itself from either the EntryList or the cxq.
   196 //
   197 // * The exiting thread identifies and unparks an "heir presumptive"
   198 //   tentative successor thread on the EntryList.  Critically, the
   199 //   exiting thread doesn't unlink the successor thread from the EntryList.
   200 //   After having been unparked, the wakee will recontend for ownership of
   201 //   the monitor.   The successor (wakee) will either acquire the lock or
   202 //   re-park itself.
   203 //
   204 //   Succession is provided for by a policy of competitive handoff.
   205 //   The exiting thread does _not_ grant or pass ownership to the
   206 //   successor thread.  (This is also referred to as "handoff" succession").
   207 //   Instead the exiting thread releases ownership and possibly wakes
   208 //   a successor, so the successor can (re)compete for ownership of the lock.
   209 //   If the EntryList is empty but the cxq is populated the exiting
   210 //   thread will drain the cxq into the EntryList.  It does so by
   211 //   by detaching the cxq (installing null with CAS) and folding
   212 //   the threads from the cxq into the EntryList.  The EntryList is
   213 //   doubly linked, while the cxq is singly linked because of the
   214 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
   215 //
   216 // * Concurrency invariants:
   217 //
   218 //   -- only the monitor owner may access or mutate the EntryList.
   219 //      The mutex property of the monitor itself protects the EntryList
   220 //      from concurrent interference.
   221 //   -- Only the monitor owner may detach the cxq.
   222 //
   223 // * The monitor entry list operations avoid locks, but strictly speaking
   224 //   they're not lock-free.  Enter is lock-free, exit is not.
   225 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
   226 //
   227 // * The cxq can have multiple concurrent "pushers" but only one concurrent
   228 //   detaching thread.  This mechanism is immune from the ABA corruption.
   229 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
   230 //
   231 // * Taken together, the cxq and the EntryList constitute or form a
   232 //   single logical queue of threads stalled trying to acquire the lock.
   233 //   We use two distinct lists to improve the odds of a constant-time
   234 //   dequeue operation after acquisition (in the ::enter() epilog) and
   235 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
   236 //   A key desideratum is to minimize queue & monitor metadata manipulation
   237 //   that occurs while holding the monitor lock -- that is, we want to
   238 //   minimize monitor lock holds times.  Note that even a small amount of
   239 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
   240 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
   241 //   locks and monitor metadata.
   242 //
   243 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
   244 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
   245 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
   246 //   the unlocking thread notices that EntryList is null but _cxq is != null.
   247 //
   248 //   The EntryList is ordered by the prevailing queue discipline and
   249 //   can be organized in any convenient fashion, such as a doubly-linked list or
   250 //   a circular doubly-linked list.  Critically, we want insert and delete operations
   251 //   to operate in constant-time.  If we need a priority queue then something akin
   252 //   to Solaris' sleepq would work nicely.  Viz.,
   253 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
   254 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
   255 //   drains the cxq into the EntryList, and orders or reorders the threads on the
   256 //   EntryList accordingly.
   257 //
   258 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
   259 //   somewhat similar to an elevator-scan.
   260 //
   261 // * The monitor synchronization subsystem avoids the use of native
   262 //   synchronization primitives except for the narrow platform-specific
   263 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
   264 //   the semantics of park-unpark.  Put another way, this monitor implementation
   265 //   depends only on atomic operations and park-unpark.  The monitor subsystem
   266 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
   267 //   underlying OS manages the READY<->RUN transitions.
   268 //
   269 // * Waiting threads reside on the WaitSet list -- wait() puts
   270 //   the caller onto the WaitSet.
   271 //
   272 // * notify() or notifyAll() simply transfers threads from the WaitSet to
   273 //   either the EntryList or cxq.  Subsequent exit() operations will
   274 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
   275 //   it's likely the notifyee would simply impale itself on the lock held
   276 //   by the notifier.
   277 //
   278 // * An interesting alternative is to encode cxq as (List,LockByte) where
   279 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
   280 //   variable, like _recursions, in the scheme.  The threads or Events that form
   281 //   the list would have to be aligned in 256-byte addresses.  A thread would
   282 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
   283 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
   284 //   Note that is is *not* word-tearing, but it does presume that full-word
   285 //   CAS operations are coherent with intermix with STB operations.  That's true
   286 //   on most common processors.
   287 //
   288 // * See also http://blogs.sun.com/dave
   291 // -----------------------------------------------------------------------------
   292 // Enter support
   294 bool ObjectMonitor::try_enter(Thread* THREAD) {
   295   if (THREAD != _owner) {
   296     if (THREAD->is_lock_owned ((address)_owner)) {
   297        assert(_recursions == 0, "internal state error");
   298        _owner = THREAD ;
   299        _recursions = 1 ;
   300        OwnerIsThread = 1 ;
   301        return true;
   302     }
   303     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
   304       return false;
   305     }
   306     return true;
   307   } else {
   308     _recursions++;
   309     return true;
   310   }
   311 }
   313 void ATTR ObjectMonitor::enter(TRAPS) {
   314   // The following code is ordered to check the most common cases first
   315   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
   316   Thread * const Self = THREAD ;
   317   void * cur ;
   319   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
   320   if (cur == NULL) {
   321      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
   322      assert (_recursions == 0   , "invariant") ;
   323      assert (_owner      == Self, "invariant") ;
   324      // CONSIDER: set or assert OwnerIsThread == 1
   325      return ;
   326   }
   328   if (cur == Self) {
   329      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
   330      _recursions ++ ;
   331      return ;
   332   }
   334   if (Self->is_lock_owned ((address)cur)) {
   335     assert (_recursions == 0, "internal state error");
   336     _recursions = 1 ;
   337     // Commute owner from a thread-specific on-stack BasicLockObject address to
   338     // a full-fledged "Thread *".
   339     _owner = Self ;
   340     OwnerIsThread = 1 ;
   341     return ;
   342   }
   344   // We've encountered genuine contention.
   345   assert (Self->_Stalled == 0, "invariant") ;
   346   Self->_Stalled = intptr_t(this) ;
   348   // Try one round of spinning *before* enqueueing Self
   349   // and before going through the awkward and expensive state
   350   // transitions.  The following spin is strictly optional ...
   351   // Note that if we acquire the monitor from an initial spin
   352   // we forgo posting JVMTI events and firing DTRACE probes.
   353   if (Knob_SpinEarly && TrySpin (Self) > 0) {
   354      assert (_owner == Self      , "invariant") ;
   355      assert (_recursions == 0    , "invariant") ;
   356      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   357      Self->_Stalled = 0 ;
   358      return ;
   359   }
   361   assert (_owner != Self          , "invariant") ;
   362   assert (_succ  != Self          , "invariant") ;
   363   assert (Self->is_Java_thread()  , "invariant") ;
   364   JavaThread * jt = (JavaThread *) Self ;
   365   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   366   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
   367   assert (this->object() != NULL  , "invariant") ;
   368   assert (_count >= 0, "invariant") ;
   370   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
   371   // Ensure the object-monitor relationship remains stable while there's contention.
   372   Atomic::inc_ptr(&_count);
   374   { // Change java thread status to indicate blocked on monitor enter.
   375     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
   377     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
   378     if (JvmtiExport::should_post_monitor_contended_enter()) {
   379       JvmtiExport::post_monitor_contended_enter(jt, this);
   380     }
   382     OSThreadContendState osts(Self->osthread());
   383     ThreadBlockInVM tbivm(jt);
   385     Self->set_current_pending_monitor(this);
   387     // TODO-FIXME: change the following for(;;) loop to straight-line code.
   388     for (;;) {
   389       jt->set_suspend_equivalent();
   390       // cleared by handle_special_suspend_equivalent_condition()
   391       // or java_suspend_self()
   393       EnterI (THREAD) ;
   395       if (!ExitSuspendEquivalent(jt)) break ;
   397       //
   398       // We have acquired the contended monitor, but while we were
   399       // waiting another thread suspended us. We don't want to enter
   400       // the monitor while suspended because that would surprise the
   401       // thread that suspended us.
   402       //
   403           _recursions = 0 ;
   404       _succ = NULL ;
   405       exit (Self) ;
   407       jt->java_suspend_self();
   408     }
   409     Self->set_current_pending_monitor(NULL);
   410   }
   412   Atomic::dec_ptr(&_count);
   413   assert (_count >= 0, "invariant") ;
   414   Self->_Stalled = 0 ;
   416   // Must either set _recursions = 0 or ASSERT _recursions == 0.
   417   assert (_recursions == 0     , "invariant") ;
   418   assert (_owner == Self       , "invariant") ;
   419   assert (_succ  != Self       , "invariant") ;
   420   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   422   // The thread -- now the owner -- is back in vm mode.
   423   // Report the glorious news via TI,DTrace and jvmstat.
   424   // The probe effect is non-trivial.  All the reportage occurs
   425   // while we hold the monitor, increasing the length of the critical
   426   // section.  Amdahl's parallel speedup law comes vividly into play.
   427   //
   428   // Another option might be to aggregate the events (thread local or
   429   // per-monitor aggregation) and defer reporting until a more opportune
   430   // time -- such as next time some thread encounters contention but has
   431   // yet to acquire the lock.  While spinning that thread could
   432   // spinning we could increment JVMStat counters, etc.
   434   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
   435   if (JvmtiExport::should_post_monitor_contended_entered()) {
   436     JvmtiExport::post_monitor_contended_entered(jt, this);
   437   }
   438   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
   439      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
   440   }
   441 }
   444 // Caveat: TryLock() is not necessarily serializing if it returns failure.
   445 // Callers must compensate as needed.
   447 int ObjectMonitor::TryLock (Thread * Self) {
   448    for (;;) {
   449       void * own = _owner ;
   450       if (own != NULL) return 0 ;
   451       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
   452          // Either guarantee _recursions == 0 or set _recursions = 0.
   453          assert (_recursions == 0, "invariant") ;
   454          assert (_owner == Self, "invariant") ;
   455          // CONSIDER: set or assert that OwnerIsThread == 1
   456          return 1 ;
   457       }
   458       // The lock had been free momentarily, but we lost the race to the lock.
   459       // Interference -- the CAS failed.
   460       // We can either return -1 or retry.
   461       // Retry doesn't make as much sense because the lock was just acquired.
   462       if (true) return -1 ;
   463    }
   464 }
   466 void ATTR ObjectMonitor::EnterI (TRAPS) {
   467     Thread * Self = THREAD ;
   468     assert (Self->is_Java_thread(), "invariant") ;
   469     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
   471     // Try the lock - TATAS
   472     if (TryLock (Self) > 0) {
   473         assert (_succ != Self              , "invariant") ;
   474         assert (_owner == Self             , "invariant") ;
   475         assert (_Responsible != Self       , "invariant") ;
   476         return ;
   477     }
   479     DeferredInitialize () ;
   481     // We try one round of spinning *before* enqueueing Self.
   482     //
   483     // If the _owner is ready but OFFPROC we could use a YieldTo()
   484     // operation to donate the remainder of this thread's quantum
   485     // to the owner.  This has subtle but beneficial affinity
   486     // effects.
   488     if (TrySpin (Self) > 0) {
   489         assert (_owner == Self        , "invariant") ;
   490         assert (_succ != Self         , "invariant") ;
   491         assert (_Responsible != Self  , "invariant") ;
   492         return ;
   493     }
   495     // The Spin failed -- Enqueue and park the thread ...
   496     assert (_succ  != Self            , "invariant") ;
   497     assert (_owner != Self            , "invariant") ;
   498     assert (_Responsible != Self      , "invariant") ;
   500     // Enqueue "Self" on ObjectMonitor's _cxq.
   501     //
   502     // Node acts as a proxy for Self.
   503     // As an aside, if were to ever rewrite the synchronization code mostly
   504     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
   505     // Java objects.  This would avoid awkward lifecycle and liveness issues,
   506     // as well as eliminate a subset of ABA issues.
   507     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
   508     //
   510     ObjectWaiter node(Self) ;
   511     Self->_ParkEvent->reset() ;
   512     node._prev   = (ObjectWaiter *) 0xBAD ;
   513     node.TState  = ObjectWaiter::TS_CXQ ;
   515     // Push "Self" onto the front of the _cxq.
   516     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
   517     // Note that spinning tends to reduce the rate at which threads
   518     // enqueue and dequeue on EntryList|cxq.
   519     ObjectWaiter * nxt ;
   520     for (;;) {
   521         node._next = nxt = _cxq ;
   522         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
   524         // Interference - the CAS failed because _cxq changed.  Just retry.
   525         // As an optional optimization we retry the lock.
   526         if (TryLock (Self) > 0) {
   527             assert (_succ != Self         , "invariant") ;
   528             assert (_owner == Self        , "invariant") ;
   529             assert (_Responsible != Self  , "invariant") ;
   530             return ;
   531         }
   532     }
   534     // Check for cxq|EntryList edge transition to non-null.  This indicates
   535     // the onset of contention.  While contention persists exiting threads
   536     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
   537     // operations revert to the faster 1-0 mode.  This enter operation may interleave
   538     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
   539     // arrange for one of the contending thread to use a timed park() operations
   540     // to detect and recover from the race.  (Stranding is form of progress failure
   541     // where the monitor is unlocked but all the contending threads remain parked).
   542     // That is, at least one of the contended threads will periodically poll _owner.
   543     // One of the contending threads will become the designated "Responsible" thread.
   544     // The Responsible thread uses a timed park instead of a normal indefinite park
   545     // operation -- it periodically wakes and checks for and recovers from potential
   546     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
   547     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
   548     // be responsible for a monitor.
   549     //
   550     // Currently, one of the contended threads takes on the added role of "Responsible".
   551     // A viable alternative would be to use a dedicated "stranding checker" thread
   552     // that periodically iterated over all the threads (or active monitors) and unparked
   553     // successors where there was risk of stranding.  This would help eliminate the
   554     // timer scalability issues we see on some platforms as we'd only have one thread
   555     // -- the checker -- parked on a timer.
   557     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
   558         // Try to assume the role of responsible thread for the monitor.
   559         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
   560         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   561     }
   563     // The lock have been released while this thread was occupied queueing
   564     // itself onto _cxq.  To close the race and avoid "stranding" and
   565     // progress-liveness failure we must resample-retry _owner before parking.
   566     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
   567     // In this case the ST-MEMBAR is accomplished with CAS().
   568     //
   569     // TODO: Defer all thread state transitions until park-time.
   570     // Since state transitions are heavy and inefficient we'd like
   571     // to defer the state transitions until absolutely necessary,
   572     // and in doing so avoid some transitions ...
   574     TEVENT (Inflated enter - Contention) ;
   575     int nWakeups = 0 ;
   576     int RecheckInterval = 1 ;
   578     for (;;) {
   580         if (TryLock (Self) > 0) break ;
   581         assert (_owner != Self, "invariant") ;
   583         if ((SyncFlags & 2) && _Responsible == NULL) {
   584            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
   585         }
   587         // park self
   588         if (_Responsible == Self || (SyncFlags & 1)) {
   589             TEVENT (Inflated enter - park TIMED) ;
   590             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
   591             // Increase the RecheckInterval, but clamp the value.
   592             RecheckInterval *= 8 ;
   593             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
   594         } else {
   595             TEVENT (Inflated enter - park UNTIMED) ;
   596             Self->_ParkEvent->park() ;
   597         }
   599         if (TryLock(Self) > 0) break ;
   601         // The lock is still contested.
   602         // Keep a tally of the # of futile wakeups.
   603         // Note that the counter is not protected by a lock or updated by atomics.
   604         // That is by design - we trade "lossy" counters which are exposed to
   605         // races during updates for a lower probe effect.
   606         TEVENT (Inflated enter - Futile wakeup) ;
   607         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   608            ObjectMonitor::_sync_FutileWakeups->inc() ;
   609         }
   610         ++ nWakeups ;
   612         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
   613         // We can defer clearing _succ until after the spin completes
   614         // TrySpin() must tolerate being called with _succ == Self.
   615         // Try yet another round of adaptive spinning.
   616         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
   618         // We can find that we were unpark()ed and redesignated _succ while
   619         // we were spinning.  That's harmless.  If we iterate and call park(),
   620         // park() will consume the event and return immediately and we'll
   621         // just spin again.  This pattern can repeat, leaving _succ to simply
   622         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
   623         // Alternately, we can sample fired() here, and if set, forgo spinning
   624         // in the next iteration.
   626         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
   627            Self->_ParkEvent->reset() ;
   628            OrderAccess::fence() ;
   629         }
   630         if (_succ == Self) _succ = NULL ;
   632         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
   633         OrderAccess::fence() ;
   634     }
   636     // Egress :
   637     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
   638     // Normally we'll find Self on the EntryList .
   639     // From the perspective of the lock owner (this thread), the
   640     // EntryList is stable and cxq is prepend-only.
   641     // The head of cxq is volatile but the interior is stable.
   642     // In addition, Self.TState is stable.
   644     assert (_owner == Self      , "invariant") ;
   645     assert (object() != NULL    , "invariant") ;
   646     // I'd like to write:
   647     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   648     // but as we're at a safepoint that's not safe.
   650     UnlinkAfterAcquire (Self, &node) ;
   651     if (_succ == Self) _succ = NULL ;
   653     assert (_succ != Self, "invariant") ;
   654     if (_Responsible == Self) {
   655         _Responsible = NULL ;
   656         // Dekker pivot-point.
   657         // Consider OrderAccess::storeload() here
   659         // We may leave threads on cxq|EntryList without a designated
   660         // "Responsible" thread.  This is benign.  When this thread subsequently
   661         // exits the monitor it can "see" such preexisting "old" threads --
   662         // threads that arrived on the cxq|EntryList before the fence, above --
   663         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
   664         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
   665         // non-null and elect a new "Responsible" timer thread.
   666         //
   667         // This thread executes:
   668         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
   669         //    LD cxq|EntryList               (in subsequent exit)
   670         //
   671         // Entering threads in the slow/contended path execute:
   672         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
   673         //    The (ST cxq; MEMBAR) is accomplished with CAS().
   674         //
   675         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
   676         // exit operation from floating above the ST Responsible=null.
   677         //
   678         // In *practice* however, EnterI() is always followed by some atomic
   679         // operation such as the decrement of _count in ::enter().  Those atomics
   680         // obviate the need for the explicit MEMBAR, above.
   681     }
   683     // We've acquired ownership with CAS().
   684     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
   685     // But since the CAS() this thread may have also stored into _succ,
   686     // EntryList, cxq or Responsible.  These meta-data updates must be
   687     // visible __before this thread subsequently drops the lock.
   688     // Consider what could occur if we didn't enforce this constraint --
   689     // STs to monitor meta-data and user-data could reorder with (become
   690     // visible after) the ST in exit that drops ownership of the lock.
   691     // Some other thread could then acquire the lock, but observe inconsistent
   692     // or old monitor meta-data and heap data.  That violates the JMM.
   693     // To that end, the 1-0 exit() operation must have at least STST|LDST
   694     // "release" barrier semantics.  Specifically, there must be at least a
   695     // STST|LDST barrier in exit() before the ST of null into _owner that drops
   696     // the lock.   The barrier ensures that changes to monitor meta-data and data
   697     // protected by the lock will be visible before we release the lock, and
   698     // therefore before some other thread (CPU) has a chance to acquire the lock.
   699     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
   700     //
   701     // Critically, any prior STs to _succ or EntryList must be visible before
   702     // the ST of null into _owner in the *subsequent* (following) corresponding
   703     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
   704     // execute a serializing instruction.
   706     if (SyncFlags & 8) {
   707        OrderAccess::fence() ;
   708     }
   709     return ;
   710 }
   712 // ReenterI() is a specialized inline form of the latter half of the
   713 // contended slow-path from EnterI().  We use ReenterI() only for
   714 // monitor reentry in wait().
   715 //
   716 // In the future we should reconcile EnterI() and ReenterI(), adding
   717 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
   718 // loop accordingly.
   720 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
   721     assert (Self != NULL                , "invariant") ;
   722     assert (SelfNode != NULL            , "invariant") ;
   723     assert (SelfNode->_thread == Self   , "invariant") ;
   724     assert (_waiters > 0                , "invariant") ;
   725     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
   726     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   727     JavaThread * jt = (JavaThread *) Self ;
   729     int nWakeups = 0 ;
   730     for (;;) {
   731         ObjectWaiter::TStates v = SelfNode->TState ;
   732         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
   733         assert    (_owner != Self, "invariant") ;
   735         if (TryLock (Self) > 0) break ;
   736         if (TrySpin (Self) > 0) break ;
   738         TEVENT (Wait Reentry - parking) ;
   740         // State transition wrappers around park() ...
   741         // ReenterI() wisely defers state transitions until
   742         // it's clear we must park the thread.
   743         {
   744            OSThreadContendState osts(Self->osthread());
   745            ThreadBlockInVM tbivm(jt);
   747            // cleared by handle_special_suspend_equivalent_condition()
   748            // or java_suspend_self()
   749            jt->set_suspend_equivalent();
   750            if (SyncFlags & 1) {
   751               Self->_ParkEvent->park ((jlong)1000) ;
   752            } else {
   753               Self->_ParkEvent->park () ;
   754            }
   756            // were we externally suspended while we were waiting?
   757            for (;;) {
   758               if (!ExitSuspendEquivalent (jt)) break ;
   759               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
   760               jt->java_suspend_self();
   761               jt->set_suspend_equivalent();
   762            }
   763         }
   765         // Try again, but just so we distinguish between futile wakeups and
   766         // successful wakeups.  The following test isn't algorithmically
   767         // necessary, but it helps us maintain sensible statistics.
   768         if (TryLock(Self) > 0) break ;
   770         // The lock is still contested.
   771         // Keep a tally of the # of futile wakeups.
   772         // Note that the counter is not protected by a lock or updated by atomics.
   773         // That is by design - we trade "lossy" counters which are exposed to
   774         // races during updates for a lower probe effect.
   775         TEVENT (Wait Reentry - futile wakeup) ;
   776         ++ nWakeups ;
   778         // Assuming this is not a spurious wakeup we'll normally
   779         // find that _succ == Self.
   780         if (_succ == Self) _succ = NULL ;
   782         // Invariant: after clearing _succ a contending thread
   783         // *must* retry  _owner before parking.
   784         OrderAccess::fence() ;
   786         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
   787           ObjectMonitor::_sync_FutileWakeups->inc() ;
   788         }
   789     }
   791     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
   792     // Normally we'll find Self on the EntryList.
   793     // Unlinking from the EntryList is constant-time and atomic-free.
   794     // From the perspective of the lock owner (this thread), the
   795     // EntryList is stable and cxq is prepend-only.
   796     // The head of cxq is volatile but the interior is stable.
   797     // In addition, Self.TState is stable.
   799     assert (_owner == Self, "invariant") ;
   800     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
   801     UnlinkAfterAcquire (Self, SelfNode) ;
   802     if (_succ == Self) _succ = NULL ;
   803     assert (_succ != Self, "invariant") ;
   804     SelfNode->TState = ObjectWaiter::TS_RUN ;
   805     OrderAccess::fence() ;      // see comments at the end of EnterI()
   806 }
   808 // after the thread acquires the lock in ::enter().  Equally, we could defer
   809 // unlinking the thread until ::exit()-time.
   811 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
   812 {
   813     assert (_owner == Self, "invariant") ;
   814     assert (SelfNode->_thread == Self, "invariant") ;
   816     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
   817         // Normal case: remove Self from the DLL EntryList .
   818         // This is a constant-time operation.
   819         ObjectWaiter * nxt = SelfNode->_next ;
   820         ObjectWaiter * prv = SelfNode->_prev ;
   821         if (nxt != NULL) nxt->_prev = prv ;
   822         if (prv != NULL) prv->_next = nxt ;
   823         if (SelfNode == _EntryList ) _EntryList = nxt ;
   824         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   825         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
   826         TEVENT (Unlink from EntryList) ;
   827     } else {
   828         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   829         // Inopportune interleaving -- Self is still on the cxq.
   830         // This usually means the enqueue of self raced an exiting thread.
   831         // Normally we'll find Self near the front of the cxq, so
   832         // dequeueing is typically fast.  If needbe we can accelerate
   833         // this with some MCS/CHL-like bidirectional list hints and advisory
   834         // back-links so dequeueing from the interior will normally operate
   835         // in constant-time.
   836         // Dequeue Self from either the head (with CAS) or from the interior
   837         // with a linear-time scan and normal non-atomic memory operations.
   838         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
   839         // and then unlink Self from EntryList.  We have to drain eventually,
   840         // so it might as well be now.
   842         ObjectWaiter * v = _cxq ;
   843         assert (v != NULL, "invariant") ;
   844         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
   845             // The CAS above can fail from interference IFF a "RAT" arrived.
   846             // In that case Self must be in the interior and can no longer be
   847             // at the head of cxq.
   848             if (v == SelfNode) {
   849                 assert (_cxq != v, "invariant") ;
   850                 v = _cxq ;          // CAS above failed - start scan at head of list
   851             }
   852             ObjectWaiter * p ;
   853             ObjectWaiter * q = NULL ;
   854             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
   855                 q = p ;
   856                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
   857             }
   858             assert (v != SelfNode,  "invariant") ;
   859             assert (p == SelfNode,  "Node not found on cxq") ;
   860             assert (p != _cxq,      "invariant") ;
   861             assert (q != NULL,      "invariant") ;
   862             assert (q->_next == p,  "invariant") ;
   863             q->_next = p->_next ;
   864         }
   865         TEVENT (Unlink from cxq) ;
   866     }
   868     // Diagnostic hygiene ...
   869     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
   870     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
   871     SelfNode->TState = ObjectWaiter::TS_RUN ;
   872 }
   874 // -----------------------------------------------------------------------------
   875 // Exit support
   876 //
   877 // exit()
   878 // ~~~~~~
   879 // Note that the collector can't reclaim the objectMonitor or deflate
   880 // the object out from underneath the thread calling ::exit() as the
   881 // thread calling ::exit() never transitions to a stable state.
   882 // This inhibits GC, which in turn inhibits asynchronous (and
   883 // inopportune) reclamation of "this".
   884 //
   885 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
   886 // There's one exception to the claim above, however.  EnterI() can call
   887 // exit() to drop a lock if the acquirer has been externally suspended.
   888 // In that case exit() is called with _thread_state as _thread_blocked,
   889 // but the monitor's _count field is > 0, which inhibits reclamation.
   890 //
   891 // 1-0 exit
   892 // ~~~~~~~~
   893 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
   894 // the fast-path operators have been optimized so the common ::exit()
   895 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
   896 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
   897 // greatly improves latency -- MEMBAR and CAS having considerable local
   898 // latency on modern processors -- but at the cost of "stranding".  Absent the
   899 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
   900 // ::enter() path, resulting in the entering thread being stranding
   901 // and a progress-liveness failure.   Stranding is extremely rare.
   902 // We use timers (timed park operations) & periodic polling to detect
   903 // and recover from stranding.  Potentially stranded threads periodically
   904 // wake up and poll the lock.  See the usage of the _Responsible variable.
   905 //
   906 // The CAS() in enter provides for safety and exclusion, while the CAS or
   907 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
   908 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
   909 // We detect and recover from stranding with timers.
   910 //
   911 // If a thread transiently strands it'll park until (a) another
   912 // thread acquires the lock and then drops the lock, at which time the
   913 // exiting thread will notice and unpark the stranded thread, or, (b)
   914 // the timer expires.  If the lock is high traffic then the stranding latency
   915 // will be low due to (a).  If the lock is low traffic then the odds of
   916 // stranding are lower, although the worst-case stranding latency
   917 // is longer.  Critically, we don't want to put excessive load in the
   918 // platform's timer subsystem.  We want to minimize both the timer injection
   919 // rate (timers created/sec) as well as the number of timers active at
   920 // any one time.  (more precisely, we want to minimize timer-seconds, which is
   921 // the integral of the # of active timers at any instant over time).
   922 // Both impinge on OS scalability.  Given that, at most one thread parked on
   923 // a monitor will use a timer.
   925 void ATTR ObjectMonitor::exit(TRAPS) {
   926    Thread * Self = THREAD ;
   927    if (THREAD != _owner) {
   928      if (THREAD->is_lock_owned((address) _owner)) {
   929        // Transmute _owner from a BasicLock pointer to a Thread address.
   930        // We don't need to hold _mutex for this transition.
   931        // Non-null to Non-null is safe as long as all readers can
   932        // tolerate either flavor.
   933        assert (_recursions == 0, "invariant") ;
   934        _owner = THREAD ;
   935        _recursions = 0 ;
   936        OwnerIsThread = 1 ;
   937      } else {
   938        // NOTE: we need to handle unbalanced monitor enter/exit
   939        // in native code by throwing an exception.
   940        // TODO: Throw an IllegalMonitorStateException ?
   941        TEVENT (Exit - Throw IMSX) ;
   942        assert(false, "Non-balanced monitor enter/exit!");
   943        if (false) {
   944           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
   945        }
   946        return;
   947      }
   948    }
   950    if (_recursions != 0) {
   951      _recursions--;        // this is simple recursive enter
   952      TEVENT (Inflated exit - recursive) ;
   953      return ;
   954    }
   956    // Invariant: after setting Responsible=null an thread must execute
   957    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
   958    if ((SyncFlags & 4) == 0) {
   959       _Responsible = NULL ;
   960    }
   962    for (;;) {
   963       assert (THREAD == _owner, "invariant") ;
   966       if (Knob_ExitPolicy == 0) {
   967          // release semantics: prior loads and stores from within the critical section
   968          // must not float (reorder) past the following store that drops the lock.
   969          // On SPARC that requires MEMBAR #loadstore|#storestore.
   970          // But of course in TSO #loadstore|#storestore is not required.
   971          // I'd like to write one of the following:
   972          // A.  OrderAccess::release() ; _owner = NULL
   973          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
   974          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
   975          // store into a _dummy variable.  That store is not needed, but can result
   976          // in massive wasteful coherency traffic on classic SMP systems.
   977          // Instead, I use release_store(), which is implemented as just a simple
   978          // ST on x64, x86 and SPARC.
   979          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
   980          OrderAccess::storeload() ;                         // See if we need to wake a successor
   981          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
   982             TEVENT (Inflated exit - simple egress) ;
   983             return ;
   984          }
   985          TEVENT (Inflated exit - complex egress) ;
   987          // Normally the exiting thread is responsible for ensuring succession,
   988          // but if other successors are ready or other entering threads are spinning
   989          // then this thread can simply store NULL into _owner and exit without
   990          // waking a successor.  The existence of spinners or ready successors
   991          // guarantees proper succession (liveness).  Responsibility passes to the
   992          // ready or running successors.  The exiting thread delegates the duty.
   993          // More precisely, if a successor already exists this thread is absolved
   994          // of the responsibility of waking (unparking) one.
   995          //
   996          // The _succ variable is critical to reducing futile wakeup frequency.
   997          // _succ identifies the "heir presumptive" thread that has been made
   998          // ready (unparked) but that has not yet run.  We need only one such
   999          // successor thread to guarantee progress.
  1000          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  1001          // section 3.3 "Futile Wakeup Throttling" for details.
  1002          //
  1003          // Note that spinners in Enter() also set _succ non-null.
  1004          // In the current implementation spinners opportunistically set
  1005          // _succ so that exiting threads might avoid waking a successor.
  1006          // Another less appealing alternative would be for the exiting thread
  1007          // to drop the lock and then spin briefly to see if a spinner managed
  1008          // to acquire the lock.  If so, the exiting thread could exit
  1009          // immediately without waking a successor, otherwise the exiting
  1010          // thread would need to dequeue and wake a successor.
  1011          // (Note that we'd need to make the post-drop spin short, but no
  1012          // shorter than the worst-case round-trip cache-line migration time.
  1013          // The dropped lock needs to become visible to the spinner, and then
  1014          // the acquisition of the lock by the spinner must become visible to
  1015          // the exiting thread).
  1016          //
  1018          // It appears that an heir-presumptive (successor) must be made ready.
  1019          // Only the current lock owner can manipulate the EntryList or
  1020          // drain _cxq, so we need to reacquire the lock.  If we fail
  1021          // to reacquire the lock the responsibility for ensuring succession
  1022          // falls to the new owner.
  1023          //
  1024          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1025             return ;
  1027          TEVENT (Exit - Reacquired) ;
  1028       } else {
  1029          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  1030             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  1031             OrderAccess::storeload() ;
  1032             // Ratify the previously observed values.
  1033             if (_cxq == NULL || _succ != NULL) {
  1034                 TEVENT (Inflated exit - simple egress) ;
  1035                 return ;
  1038             // inopportune interleaving -- the exiting thread (this thread)
  1039             // in the fast-exit path raced an entering thread in the slow-enter
  1040             // path.
  1041             // We have two choices:
  1042             // A.  Try to reacquire the lock.
  1043             //     If the CAS() fails return immediately, otherwise
  1044             //     we either restart/rerun the exit operation, or simply
  1045             //     fall-through into the code below which wakes a successor.
  1046             // B.  If the elements forming the EntryList|cxq are TSM
  1047             //     we could simply unpark() the lead thread and return
  1048             //     without having set _succ.
  1049             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  1050                TEVENT (Inflated exit - reacquired succeeded) ;
  1051                return ;
  1053             TEVENT (Inflated exit - reacquired failed) ;
  1054          } else {
  1055             TEVENT (Inflated exit - complex egress) ;
  1059       guarantee (_owner == THREAD, "invariant") ;
  1061       ObjectWaiter * w = NULL ;
  1062       int QMode = Knob_QMode ;
  1064       if (QMode == 2 && _cxq != NULL) {
  1065           // QMode == 2 : cxq has precedence over EntryList.
  1066           // Try to directly wake a successor from the cxq.
  1067           // If successful, the successor will need to unlink itself from cxq.
  1068           w = _cxq ;
  1069           assert (w != NULL, "invariant") ;
  1070           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1071           ExitEpilog (Self, w) ;
  1072           return ;
  1075       if (QMode == 3 && _cxq != NULL) {
  1076           // Aggressively drain cxq into EntryList at the first opportunity.
  1077           // This policy ensure that recently-run threads live at the head of EntryList.
  1078           // Drain _cxq into EntryList - bulk transfer.
  1079           // First, detach _cxq.
  1080           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1081           w = _cxq ;
  1082           for (;;) {
  1083              assert (w != NULL, "Invariant") ;
  1084              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1085              if (u == w) break ;
  1086              w = u ;
  1088           assert (w != NULL              , "invariant") ;
  1090           ObjectWaiter * q = NULL ;
  1091           ObjectWaiter * p ;
  1092           for (p = w ; p != NULL ; p = p->_next) {
  1093               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1094               p->TState = ObjectWaiter::TS_ENTER ;
  1095               p->_prev = q ;
  1096               q = p ;
  1099           // Append the RATs to the EntryList
  1100           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  1101           ObjectWaiter * Tail ;
  1102           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  1103           if (Tail == NULL) {
  1104               _EntryList = w ;
  1105           } else {
  1106               Tail->_next = w ;
  1107               w->_prev = Tail ;
  1110           // Fall thru into code that tries to wake a successor from EntryList
  1113       if (QMode == 4 && _cxq != NULL) {
  1114           // Aggressively drain cxq into EntryList at the first opportunity.
  1115           // This policy ensure that recently-run threads live at the head of EntryList.
  1117           // Drain _cxq into EntryList - bulk transfer.
  1118           // First, detach _cxq.
  1119           // The following loop is tantamount to: w = swap (&cxq, NULL)
  1120           w = _cxq ;
  1121           for (;;) {
  1122              assert (w != NULL, "Invariant") ;
  1123              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1124              if (u == w) break ;
  1125              w = u ;
  1127           assert (w != NULL              , "invariant") ;
  1129           ObjectWaiter * q = NULL ;
  1130           ObjectWaiter * p ;
  1131           for (p = w ; p != NULL ; p = p->_next) {
  1132               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1133               p->TState = ObjectWaiter::TS_ENTER ;
  1134               p->_prev = q ;
  1135               q = p ;
  1138           // Prepend the RATs to the EntryList
  1139           if (_EntryList != NULL) {
  1140               q->_next = _EntryList ;
  1141               _EntryList->_prev = q ;
  1143           _EntryList = w ;
  1145           // Fall thru into code that tries to wake a successor from EntryList
  1148       w = _EntryList  ;
  1149       if (w != NULL) {
  1150           // I'd like to write: guarantee (w->_thread != Self).
  1151           // But in practice an exiting thread may find itself on the EntryList.
  1152           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  1153           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  1154           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  1155           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  1156           // release the lock "O".  T2 resumes immediately after the ST of null into
  1157           // _owner, above.  T2 notices that the EntryList is populated, so it
  1158           // reacquires the lock and then finds itself on the EntryList.
  1159           // Given all that, we have to tolerate the circumstance where "w" is
  1160           // associated with Self.
  1161           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1162           ExitEpilog (Self, w) ;
  1163           return ;
  1166       // If we find that both _cxq and EntryList are null then just
  1167       // re-run the exit protocol from the top.
  1168       w = _cxq ;
  1169       if (w == NULL) continue ;
  1171       // Drain _cxq into EntryList - bulk transfer.
  1172       // First, detach _cxq.
  1173       // The following loop is tantamount to: w = swap (&cxq, NULL)
  1174       for (;;) {
  1175           assert (w != NULL, "Invariant") ;
  1176           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  1177           if (u == w) break ;
  1178           w = u ;
  1180       TEVENT (Inflated exit - drain cxq into EntryList) ;
  1182       assert (w != NULL              , "invariant") ;
  1183       assert (_EntryList  == NULL    , "invariant") ;
  1185       // Convert the LIFO SLL anchored by _cxq into a DLL.
  1186       // The list reorganization step operates in O(LENGTH(w)) time.
  1187       // It's critical that this step operate quickly as
  1188       // "Self" still holds the outer-lock, restricting parallelism
  1189       // and effectively lengthening the critical section.
  1190       // Invariant: s chases t chases u.
  1191       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  1192       // we have faster access to the tail.
  1194       if (QMode == 1) {
  1195          // QMode == 1 : drain cxq to EntryList, reversing order
  1196          // We also reverse the order of the list.
  1197          ObjectWaiter * s = NULL ;
  1198          ObjectWaiter * t = w ;
  1199          ObjectWaiter * u = NULL ;
  1200          while (t != NULL) {
  1201              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  1202              t->TState = ObjectWaiter::TS_ENTER ;
  1203              u = t->_next ;
  1204              t->_prev = u ;
  1205              t->_next = s ;
  1206              s = t;
  1207              t = u ;
  1209          _EntryList  = s ;
  1210          assert (s != NULL, "invariant") ;
  1211       } else {
  1212          // QMode == 0 or QMode == 2
  1213          _EntryList = w ;
  1214          ObjectWaiter * q = NULL ;
  1215          ObjectWaiter * p ;
  1216          for (p = w ; p != NULL ; p = p->_next) {
  1217              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  1218              p->TState = ObjectWaiter::TS_ENTER ;
  1219              p->_prev = q ;
  1220              q = p ;
  1224       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  1225       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  1227       // See if we can abdicate to a spinner instead of waking a thread.
  1228       // A primary goal of the implementation is to reduce the
  1229       // context-switch rate.
  1230       if (_succ != NULL) continue;
  1232       w = _EntryList  ;
  1233       if (w != NULL) {
  1234           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1235           ExitEpilog (Self, w) ;
  1236           return ;
  1241 // ExitSuspendEquivalent:
  1242 // A faster alternate to handle_special_suspend_equivalent_condition()
  1243 //
  1244 // handle_special_suspend_equivalent_condition() unconditionally
  1245 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  1246 // operations have high latency.  Note that in ::enter() we call HSSEC
  1247 // while holding the monitor, so we effectively lengthen the critical sections.
  1248 //
  1249 // There are a number of possible solutions:
  1250 //
  1251 // A.  To ameliorate the problem we might also defer state transitions
  1252 //     to as late as possible -- just prior to parking.
  1253 //     Given that, we'd call HSSEC after having returned from park(),
  1254 //     but before attempting to acquire the monitor.  This is only a
  1255 //     partial solution.  It avoids calling HSSEC while holding the
  1256 //     monitor (good), but it still increases successor reacquisition latency --
  1257 //     the interval between unparking a successor and the time the successor
  1258 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  1259 //     If we use this technique we can also avoid EnterI()-exit() loop
  1260 //     in ::enter() where we iteratively drop the lock and then attempt
  1261 //     to reacquire it after suspending.
  1262 //
  1263 // B.  In the future we might fold all the suspend bits into a
  1264 //     composite per-thread suspend flag and then update it with CAS().
  1265 //     Alternately, a Dekker-like mechanism with multiple variables
  1266 //     would suffice:
  1267 //       ST Self->_suspend_equivalent = false
  1268 //       MEMBAR
  1269 //       LD Self_>_suspend_flags
  1270 //
  1273 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  1274    int Mode = Knob_FastHSSEC ;
  1275    if (Mode && !jSelf->is_external_suspend()) {
  1276       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  1277       jSelf->clear_suspend_equivalent() ;
  1278       if (2 == Mode) OrderAccess::storeload() ;
  1279       if (!jSelf->is_external_suspend()) return false ;
  1280       // We raced a suspension -- fall thru into the slow path
  1281       TEVENT (ExitSuspendEquivalent - raced) ;
  1282       jSelf->set_suspend_equivalent() ;
  1284    return jSelf->handle_special_suspend_equivalent_condition() ;
  1288 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  1289    assert (_owner == Self, "invariant") ;
  1291    // Exit protocol:
  1292    // 1. ST _succ = wakee
  1293    // 2. membar #loadstore|#storestore;
  1294    // 2. ST _owner = NULL
  1295    // 3. unpark(wakee)
  1297    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  1298    ParkEvent * Trigger = Wakee->_event ;
  1300    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  1301    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  1302    // out-of-scope (non-extant).
  1303    Wakee  = NULL ;
  1305    // Drop the lock
  1306    OrderAccess::release_store_ptr (&_owner, NULL) ;
  1307    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  1309    if (SafepointSynchronize::do_call_back()) {
  1310       TEVENT (unpark before SAFEPOINT) ;
  1313    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  1314    Trigger->unpark() ;
  1316    // Maintain stats and report events to JVMTI
  1317    if (ObjectMonitor::_sync_Parks != NULL) {
  1318       ObjectMonitor::_sync_Parks->inc() ;
  1323 // -----------------------------------------------------------------------------
  1324 // Class Loader deadlock handling.
  1325 //
  1326 // complete_exit exits a lock returning recursion count
  1327 // complete_exit/reenter operate as a wait without waiting
  1328 // complete_exit requires an inflated monitor
  1329 // The _owner field is not always the Thread addr even with an
  1330 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  1331 // thread due to contention.
  1332 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  1333    Thread * const Self = THREAD;
  1334    assert(Self->is_Java_thread(), "Must be Java thread!");
  1335    JavaThread *jt = (JavaThread *)THREAD;
  1337    DeferredInitialize();
  1339    if (THREAD != _owner) {
  1340     if (THREAD->is_lock_owned ((address)_owner)) {
  1341        assert(_recursions == 0, "internal state error");
  1342        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  1343        _recursions = 0 ;
  1344        OwnerIsThread = 1 ;
  1348    guarantee(Self == _owner, "complete_exit not owner");
  1349    intptr_t save = _recursions; // record the old recursion count
  1350    _recursions = 0;        // set the recursion level to be 0
  1351    exit (Self) ;           // exit the monitor
  1352    guarantee (_owner != Self, "invariant");
  1353    return save;
  1356 // reenter() enters a lock and sets recursion count
  1357 // complete_exit/reenter operate as a wait without waiting
  1358 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  1359    Thread * const Self = THREAD;
  1360    assert(Self->is_Java_thread(), "Must be Java thread!");
  1361    JavaThread *jt = (JavaThread *)THREAD;
  1363    guarantee(_owner != Self, "reenter already owner");
  1364    enter (THREAD);       // enter the monitor
  1365    guarantee (_recursions == 0, "reenter recursion");
  1366    _recursions = recursions;
  1367    return;
  1371 // -----------------------------------------------------------------------------
  1372 // A macro is used below because there may already be a pending
  1373 // exception which should not abort the execution of the routines
  1374 // which use this (which is why we don't put this into check_slow and
  1375 // call it with a CHECK argument).
  1377 #define CHECK_OWNER()                                                             \
  1378   do {                                                                            \
  1379     if (THREAD != _owner) {                                                       \
  1380       if (THREAD->is_lock_owned((address) _owner)) {                              \
  1381         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1382         _recursions = 0;                                                          \
  1383         OwnerIsThread = 1 ;                                                       \
  1384       } else {                                                                    \
  1385         TEVENT (Throw IMSX) ;                                                     \
  1386         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1387       }                                                                           \
  1388     }                                                                             \
  1389   } while (false)
  1391 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  1392 // TODO-FIXME: remove check_slow() -- it's likely dead.
  1394 void ObjectMonitor::check_slow(TRAPS) {
  1395   TEVENT (check_slow - throw IMSX) ;
  1396   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  1397   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  1400 static int Adjust (volatile int * adr, int dx) {
  1401   int v ;
  1402   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
  1403   return v ;
  1405 // -----------------------------------------------------------------------------
  1406 // Wait/Notify/NotifyAll
  1407 //
  1408 // Note: a subset of changes to ObjectMonitor::wait()
  1409 // will need to be replicated in complete_exit above
  1410 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  1411    Thread * const Self = THREAD ;
  1412    assert(Self->is_Java_thread(), "Must be Java thread!");
  1413    JavaThread *jt = (JavaThread *)THREAD;
  1415    DeferredInitialize () ;
  1417    // Throw IMSX or IEX.
  1418    CHECK_OWNER();
  1420    // check for a pending interrupt
  1421    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1422      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  1423      if (JvmtiExport::should_post_monitor_waited()) {
  1424         // Note: 'false' parameter is passed here because the
  1425         // wait was not timed out due to thread interrupt.
  1426         JvmtiExport::post_monitor_waited(jt, this, false);
  1428      TEVENT (Wait - Throw IEX) ;
  1429      THROW(vmSymbols::java_lang_InterruptedException());
  1430      return ;
  1432    TEVENT (Wait) ;
  1434    assert (Self->_Stalled == 0, "invariant") ;
  1435    Self->_Stalled = intptr_t(this) ;
  1436    jt->set_current_waiting_monitor(this);
  1438    // create a node to be put into the queue
  1439    // Critically, after we reset() the event but prior to park(), we must check
  1440    // for a pending interrupt.
  1441    ObjectWaiter node(Self);
  1442    node.TState = ObjectWaiter::TS_WAIT ;
  1443    Self->_ParkEvent->reset() ;
  1444    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  1446    // Enter the waiting queue, which is a circular doubly linked list in this case
  1447    // but it could be a priority queue or any data structure.
  1448    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  1449    // by the the owner of the monitor *except* in the case where park()
  1450    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  1451    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  1453    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  1454    AddWaiter (&node) ;
  1455    Thread::SpinRelease (&_WaitSetLock) ;
  1457    if ((SyncFlags & 4) == 0) {
  1458       _Responsible = NULL ;
  1460    intptr_t save = _recursions; // record the old recursion count
  1461    _waiters++;                  // increment the number of waiters
  1462    _recursions = 0;             // set the recursion level to be 1
  1463    exit (Self) ;                    // exit the monitor
  1464    guarantee (_owner != Self, "invariant") ;
  1466    // As soon as the ObjectMonitor's ownership is dropped in the exit()
  1467    // call above, another thread can enter() the ObjectMonitor, do the
  1468    // notify(), and exit() the ObjectMonitor. If the other thread's
  1469    // exit() call chooses this thread as the successor and the unpark()
  1470    // call happens to occur while this thread is posting a
  1471    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
  1472    // handler using RawMonitors and consuming the unpark().
  1473    //
  1474    // To avoid the problem, we re-post the event. This does no harm
  1475    // even if the original unpark() was not consumed because we are the
  1476    // chosen successor for this monitor.
  1477    if (node._notified != 0 && _succ == Self) {
  1478       node._event->unpark();
  1481    // The thread is on the WaitSet list - now park() it.
  1482    // On MP systems it's conceivable that a brief spin before we park
  1483    // could be profitable.
  1484    //
  1485    // TODO-FIXME: change the following logic to a loop of the form
  1486    //   while (!timeout && !interrupted && _notified == 0) park()
  1488    int ret = OS_OK ;
  1489    int WasNotified = 0 ;
  1490    { // State transition wrappers
  1491      OSThread* osthread = Self->osthread();
  1492      OSThreadWaitState osts(osthread, true);
  1494        ThreadBlockInVM tbivm(jt);
  1495        // Thread is in thread_blocked state and oop access is unsafe.
  1496        jt->set_suspend_equivalent();
  1498        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  1499            // Intentionally empty
  1500        } else
  1501        if (node._notified == 0) {
  1502          if (millis <= 0) {
  1503             Self->_ParkEvent->park () ;
  1504          } else {
  1505             ret = Self->_ParkEvent->park (millis) ;
  1509        // were we externally suspended while we were waiting?
  1510        if (ExitSuspendEquivalent (jt)) {
  1511           // TODO-FIXME: add -- if succ == Self then succ = null.
  1512           jt->java_suspend_self();
  1515      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  1518      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  1519      // from the WaitSet to the EntryList.
  1520      // See if we need to remove Node from the WaitSet.
  1521      // We use double-checked locking to avoid grabbing _WaitSetLock
  1522      // if the thread is not on the wait queue.
  1523      //
  1524      // Note that we don't need a fence before the fetch of TState.
  1525      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  1526      // written by the is thread. (perhaps the fetch might even be satisfied
  1527      // by a look-aside into the processor's own store buffer, although given
  1528      // the length of the code path between the prior ST and this load that's
  1529      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  1530      // then we'll acquire the lock and then re-fetch a fresh TState value.
  1531      // That is, we fail toward safety.
  1533      if (node.TState == ObjectWaiter::TS_WAIT) {
  1534          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  1535          if (node.TState == ObjectWaiter::TS_WAIT) {
  1536             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  1537             assert(node._notified == 0, "invariant");
  1538             node.TState = ObjectWaiter::TS_RUN ;
  1540          Thread::SpinRelease (&_WaitSetLock) ;
  1543      // The thread is now either on off-list (TS_RUN),
  1544      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  1545      // The Node's TState variable is stable from the perspective of this thread.
  1546      // No other threads will asynchronously modify TState.
  1547      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  1548      OrderAccess::loadload() ;
  1549      if (_succ == Self) _succ = NULL ;
  1550      WasNotified = node._notified ;
  1552      // Reentry phase -- reacquire the monitor.
  1553      // re-enter contended monitor after object.wait().
  1554      // retain OBJECT_WAIT state until re-enter successfully completes
  1555      // Thread state is thread_in_vm and oop access is again safe,
  1556      // although the raw address of the object may have changed.
  1557      // (Don't cache naked oops over safepoints, of course).
  1559      // post monitor waited event. Note that this is past-tense, we are done waiting.
  1560      if (JvmtiExport::should_post_monitor_waited()) {
  1561        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  1563      OrderAccess::fence() ;
  1565      assert (Self->_Stalled != 0, "invariant") ;
  1566      Self->_Stalled = 0 ;
  1568      assert (_owner != Self, "invariant") ;
  1569      ObjectWaiter::TStates v = node.TState ;
  1570      if (v == ObjectWaiter::TS_RUN) {
  1571          enter (Self) ;
  1572      } else {
  1573          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  1574          ReenterI (Self, &node) ;
  1575          node.wait_reenter_end(this);
  1578      // Self has reacquired the lock.
  1579      // Lifecycle - the node representing Self must not appear on any queues.
  1580      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  1581      // want residual elements associated with this thread left on any lists.
  1582      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  1583      assert    (_owner == Self, "invariant") ;
  1584      assert    (_succ != Self , "invariant") ;
  1585    } // OSThreadWaitState()
  1587    jt->set_current_waiting_monitor(NULL);
  1589    guarantee (_recursions == 0, "invariant") ;
  1590    _recursions = save;     // restore the old recursion count
  1591    _waiters--;             // decrement the number of waiters
  1593    // Verify a few postconditions
  1594    assert (_owner == Self       , "invariant") ;
  1595    assert (_succ  != Self       , "invariant") ;
  1596    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  1598    if (SyncFlags & 32) {
  1599       OrderAccess::fence() ;
  1602    // check if the notification happened
  1603    if (!WasNotified) {
  1604      // no, it could be timeout or Thread.interrupt() or both
  1605      // check for interrupt event, otherwise it is timeout
  1606      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  1607        TEVENT (Wait - throw IEX from epilog) ;
  1608        THROW(vmSymbols::java_lang_InterruptedException());
  1612    // NOTE: Spurious wake up will be consider as timeout.
  1613    // Monitor notify has precedence over thread interrupt.
  1617 // Consider:
  1618 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  1619 // then instead of transferring a thread from the WaitSet to the EntryList
  1620 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  1622 void ObjectMonitor::notify(TRAPS) {
  1623   CHECK_OWNER();
  1624   if (_WaitSet == NULL) {
  1625      TEVENT (Empty-Notify) ;
  1626      return ;
  1628   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  1630   int Policy = Knob_MoveNotifyee ;
  1632   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  1633   ObjectWaiter * iterator = DequeueWaiter() ;
  1634   if (iterator != NULL) {
  1635      TEVENT (Notify1 - Transfer) ;
  1636      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1637      guarantee (iterator->_notified == 0, "invariant") ;
  1638      if (Policy != 4) {
  1639         iterator->TState = ObjectWaiter::TS_ENTER ;
  1641      iterator->_notified = 1 ;
  1643      ObjectWaiter * List = _EntryList ;
  1644      if (List != NULL) {
  1645         assert (List->_prev == NULL, "invariant") ;
  1646         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1647         assert (List != iterator, "invariant") ;
  1650      if (Policy == 0) {       // prepend to EntryList
  1651          if (List == NULL) {
  1652              iterator->_next = iterator->_prev = NULL ;
  1653              _EntryList = iterator ;
  1654          } else {
  1655              List->_prev = iterator ;
  1656              iterator->_next = List ;
  1657              iterator->_prev = NULL ;
  1658              _EntryList = iterator ;
  1660      } else
  1661      if (Policy == 1) {      // append to EntryList
  1662          if (List == NULL) {
  1663              iterator->_next = iterator->_prev = NULL ;
  1664              _EntryList = iterator ;
  1665          } else {
  1666             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1667             // the EntryList.  We can make tail access constant-time by converting to
  1668             // a CDLL instead of using our current DLL.
  1669             ObjectWaiter * Tail ;
  1670             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1671             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1672             Tail->_next = iterator ;
  1673             iterator->_prev = Tail ;
  1674             iterator->_next = NULL ;
  1676      } else
  1677      if (Policy == 2) {      // prepend to cxq
  1678          // prepend to cxq
  1679          if (List == NULL) {
  1680              iterator->_next = iterator->_prev = NULL ;
  1681              _EntryList = iterator ;
  1682          } else {
  1683             iterator->TState = ObjectWaiter::TS_CXQ ;
  1684             for (;;) {
  1685                 ObjectWaiter * Front = _cxq ;
  1686                 iterator->_next = Front ;
  1687                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1688                     break ;
  1692      } else
  1693      if (Policy == 3) {      // append to cxq
  1694         iterator->TState = ObjectWaiter::TS_CXQ ;
  1695         for (;;) {
  1696             ObjectWaiter * Tail ;
  1697             Tail = _cxq ;
  1698             if (Tail == NULL) {
  1699                 iterator->_next = NULL ;
  1700                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1701                    break ;
  1703             } else {
  1704                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1705                 Tail->_next = iterator ;
  1706                 iterator->_prev = Tail ;
  1707                 iterator->_next = NULL ;
  1708                 break ;
  1711      } else {
  1712         ParkEvent * ev = iterator->_event ;
  1713         iterator->TState = ObjectWaiter::TS_RUN ;
  1714         OrderAccess::fence() ;
  1715         ev->unpark() ;
  1718      if (Policy < 4) {
  1719        iterator->wait_reenter_begin(this);
  1722      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1723      // move the add-to-EntryList operation, above, outside the critical section
  1724      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1725      // exception of  wait() timeouts and interrupts the monitor owner
  1726      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1727      // on _WaitSetLock so it's not profitable to reduce the length of the
  1728      // critical section.
  1731   Thread::SpinRelease (&_WaitSetLock) ;
  1733   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
  1734      ObjectMonitor::_sync_Notifications->inc() ;
  1739 void ObjectMonitor::notifyAll(TRAPS) {
  1740   CHECK_OWNER();
  1741   ObjectWaiter* iterator;
  1742   if (_WaitSet == NULL) {
  1743       TEVENT (Empty-NotifyAll) ;
  1744       return ;
  1746   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  1748   int Policy = Knob_MoveNotifyee ;
  1749   int Tally = 0 ;
  1750   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  1752   for (;;) {
  1753      iterator = DequeueWaiter () ;
  1754      if (iterator == NULL) break ;
  1755      TEVENT (NotifyAll - Transfer1) ;
  1756      ++Tally ;
  1758      // Disposition - what might we do with iterator ?
  1759      // a.  add it directly to the EntryList - either tail or head.
  1760      // b.  push it onto the front of the _cxq.
  1761      // For now we use (a).
  1763      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  1764      guarantee (iterator->_notified == 0, "invariant") ;
  1765      iterator->_notified = 1 ;
  1766      if (Policy != 4) {
  1767         iterator->TState = ObjectWaiter::TS_ENTER ;
  1770      ObjectWaiter * List = _EntryList ;
  1771      if (List != NULL) {
  1772         assert (List->_prev == NULL, "invariant") ;
  1773         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  1774         assert (List != iterator, "invariant") ;
  1777      if (Policy == 0) {       // prepend to EntryList
  1778          if (List == NULL) {
  1779              iterator->_next = iterator->_prev = NULL ;
  1780              _EntryList = iterator ;
  1781          } else {
  1782              List->_prev = iterator ;
  1783              iterator->_next = List ;
  1784              iterator->_prev = NULL ;
  1785              _EntryList = iterator ;
  1787      } else
  1788      if (Policy == 1) {      // append to EntryList
  1789          if (List == NULL) {
  1790              iterator->_next = iterator->_prev = NULL ;
  1791              _EntryList = iterator ;
  1792          } else {
  1793             // CONSIDER:  finding the tail currently requires a linear-time walk of
  1794             // the EntryList.  We can make tail access constant-time by converting to
  1795             // a CDLL instead of using our current DLL.
  1796             ObjectWaiter * Tail ;
  1797             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  1798             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  1799             Tail->_next = iterator ;
  1800             iterator->_prev = Tail ;
  1801             iterator->_next = NULL ;
  1803      } else
  1804      if (Policy == 2) {      // prepend to cxq
  1805          // prepend to cxq
  1806          iterator->TState = ObjectWaiter::TS_CXQ ;
  1807          for (;;) {
  1808              ObjectWaiter * Front = _cxq ;
  1809              iterator->_next = Front ;
  1810              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  1811                  break ;
  1814      } else
  1815      if (Policy == 3) {      // append to cxq
  1816         iterator->TState = ObjectWaiter::TS_CXQ ;
  1817         for (;;) {
  1818             ObjectWaiter * Tail ;
  1819             Tail = _cxq ;
  1820             if (Tail == NULL) {
  1821                 iterator->_next = NULL ;
  1822                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  1823                    break ;
  1825             } else {
  1826                 while (Tail->_next != NULL) Tail = Tail->_next ;
  1827                 Tail->_next = iterator ;
  1828                 iterator->_prev = Tail ;
  1829                 iterator->_next = NULL ;
  1830                 break ;
  1833      } else {
  1834         ParkEvent * ev = iterator->_event ;
  1835         iterator->TState = ObjectWaiter::TS_RUN ;
  1836         OrderAccess::fence() ;
  1837         ev->unpark() ;
  1840      if (Policy < 4) {
  1841        iterator->wait_reenter_begin(this);
  1844      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  1845      // move the add-to-EntryList operation, above, outside the critical section
  1846      // protected by _WaitSetLock.  In practice that's not useful.  With the
  1847      // exception of  wait() timeouts and interrupts the monitor owner
  1848      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  1849      // on _WaitSetLock so it's not profitable to reduce the length of the
  1850      // critical section.
  1853   Thread::SpinRelease (&_WaitSetLock) ;
  1855   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
  1856      ObjectMonitor::_sync_Notifications->inc(Tally) ;
  1860 // -----------------------------------------------------------------------------
  1861 // Adaptive Spinning Support
  1862 //
  1863 // Adaptive spin-then-block - rational spinning
  1864 //
  1865 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  1866 // algorithm.  On high order SMP systems it would be better to start with
  1867 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  1868 // a contending thread could enqueue itself on the cxq and then spin locally
  1869 // on a thread-specific variable such as its ParkEvent._Event flag.
  1870 // That's left as an exercise for the reader.  Note that global spinning is
  1871 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  1872 // low latency and massive bandwidth.
  1873 //
  1874 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  1875 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  1876 // (duration) or we can fix the count at approximately the duration of
  1877 // a context switch and vary the frequency.   Of course we could also
  1878 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  1879 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  1880 //
  1881 // This implementation varies the duration "D", where D varies with
  1882 // the success rate of recent spin attempts. (D is capped at approximately
  1883 // length of a round-trip context switch).  The success rate for recent
  1884 // spin attempts is a good predictor of the success rate of future spin
  1885 // attempts.  The mechanism adapts automatically to varying critical
  1886 // section length (lock modality), system load and degree of parallelism.
  1887 // D is maintained per-monitor in _SpinDuration and is initialized
  1888 // optimistically.  Spin frequency is fixed at 100%.
  1889 //
  1890 // Note that _SpinDuration is volatile, but we update it without locks
  1891 // or atomics.  The code is designed so that _SpinDuration stays within
  1892 // a reasonable range even in the presence of races.  The arithmetic
  1893 // operations on _SpinDuration are closed over the domain of legal values,
  1894 // so at worst a race will install and older but still legal value.
  1895 // At the very worst this introduces some apparent non-determinism.
  1896 // We might spin when we shouldn't or vice-versa, but since the spin
  1897 // count are relatively short, even in the worst case, the effect is harmless.
  1898 //
  1899 // Care must be taken that a low "D" value does not become an
  1900 // an absorbing state.  Transient spinning failures -- when spinning
  1901 // is overall profitable -- should not cause the system to converge
  1902 // on low "D" values.  We want spinning to be stable and predictable
  1903 // and fairly responsive to change and at the same time we don't want
  1904 // it to oscillate, become metastable, be "too" non-deterministic,
  1905 // or converge on or enter undesirable stable absorbing states.
  1906 //
  1907 // We implement a feedback-based control system -- using past behavior
  1908 // to predict future behavior.  We face two issues: (a) if the
  1909 // input signal is random then the spin predictor won't provide optimal
  1910 // results, and (b) if the signal frequency is too high then the control
  1911 // system, which has some natural response lag, will "chase" the signal.
  1912 // (b) can arise from multimodal lock hold times.  Transient preemption
  1913 // can also result in apparent bimodal lock hold times.
  1914 // Although sub-optimal, neither condition is particularly harmful, as
  1915 // in the worst-case we'll spin when we shouldn't or vice-versa.
  1916 // The maximum spin duration is rather short so the failure modes aren't bad.
  1917 // To be conservative, I've tuned the gain in system to bias toward
  1918 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  1919 // "rings" or oscillates between spinning and not spinning.  This happens
  1920 // when spinning is just on the cusp of profitability, however, so the
  1921 // situation is not dire.  The state is benign -- there's no need to add
  1922 // hysteresis control to damp the transition rate between spinning and
  1923 // not spinning.
  1924 //
  1926 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  1927 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  1929 // Spinning: Fixed frequency (100%), vary duration
  1932 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  1934     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  1935     int ctr = Knob_FixedSpin ;
  1936     if (ctr != 0) {
  1937         while (--ctr >= 0) {
  1938             if (TryLock (Self) > 0) return 1 ;
  1939             SpinPause () ;
  1941         return 0 ;
  1944     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  1945       if (TryLock(Self) > 0) {
  1946         // Increase _SpinDuration ...
  1947         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  1948         // Raising _SpurDuration to the poverty line is key.
  1949         int x = _SpinDuration ;
  1950         if (x < Knob_SpinLimit) {
  1951            if (x < Knob_Poverty) x = Knob_Poverty ;
  1952            _SpinDuration = x + Knob_BonusB ;
  1954         return 1 ;
  1956       SpinPause () ;
  1959     // Admission control - verify preconditions for spinning
  1960     //
  1961     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  1962     // becoming an absorbing state.  Put another way, we spin briefly to
  1963     // sample, just in case the system load, parallelism, contention, or lock
  1964     // modality changed.
  1965     //
  1966     // Consider the following alternative:
  1967     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  1968     // spin attempt.  "Periodically" might mean after a tally of
  1969     // the # of failed spin attempts (or iterations) reaches some threshold.
  1970     // This takes us into the realm of 1-out-of-N spinning, where we
  1971     // hold the duration constant but vary the frequency.
  1973     ctr = _SpinDuration  ;
  1974     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  1975     if (ctr <= 0) return 0 ;
  1977     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  1978     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  1979        TEVENT (Spin abort - notrunnable [TOP]);
  1980        return 0 ;
  1983     int MaxSpin = Knob_MaxSpinners ;
  1984     if (MaxSpin >= 0) {
  1985        if (_Spinner > MaxSpin) {
  1986           TEVENT (Spin abort -- too many spinners) ;
  1987           return 0 ;
  1989        // Slighty racy, but benign ...
  1990        Adjust (&_Spinner, 1) ;
  1993     // We're good to spin ... spin ingress.
  1994     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  1995     // when preparing to LD...CAS _owner, etc and the CAS is likely
  1996     // to succeed.
  1997     int hits    = 0 ;
  1998     int msk     = 0 ;
  1999     int caspty  = Knob_CASPenalty ;
  2000     int oxpty   = Knob_OXPenalty ;
  2001     int sss     = Knob_SpinSetSucc ;
  2002     if (sss && _succ == NULL ) _succ = Self ;
  2003     Thread * prv = NULL ;
  2005     // There are three ways to exit the following loop:
  2006     // 1.  A successful spin where this thread has acquired the lock.
  2007     // 2.  Spin failure with prejudice
  2008     // 3.  Spin failure without prejudice
  2010     while (--ctr >= 0) {
  2012       // Periodic polling -- Check for pending GC
  2013       // Threads may spin while they're unsafe.
  2014       // We don't want spinning threads to delay the JVM from reaching
  2015       // a stop-the-world safepoint or to steal cycles from GC.
  2016       // If we detect a pending safepoint we abort in order that
  2017       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  2018       // this thread, if safe, doesn't steal cycles from GC.
  2019       // This is in keeping with the "no loitering in runtime" rule.
  2020       // We periodically check to see if there's a safepoint pending.
  2021       if ((ctr & 0xFF) == 0) {
  2022          if (SafepointSynchronize::do_call_back()) {
  2023             TEVENT (Spin: safepoint) ;
  2024             goto Abort ;           // abrupt spin egress
  2026          if (Knob_UsePause & 1) SpinPause () ;
  2028          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  2029          if (hits > 50 && scb != NULL) {
  2030             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2034       if (Knob_UsePause & 2) SpinPause() ;
  2036       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2037       // This is useful on classic SMP systems, but is of less utility on
  2038       // N1-style CMT platforms.
  2039       //
  2040       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2041       // Lock hold times are typically short.  A histogram
  2042       // of successful spin attempts shows that we usually acquire
  2043       // the lock early in the spin.  That suggests we want to
  2044       // sample _owner frequently in the early phase of the spin,
  2045       // but then back-off and sample less frequently as the spin
  2046       // progresses.  The back-off makes a good citizen on SMP big
  2047       // SMP systems.  Oversampling _owner can consume excessive
  2048       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2049       // can inadvertently interfere with the the ST m->owner=null.
  2050       // executed by the lock owner.
  2051       if (ctr & msk) continue ;
  2052       ++hits ;
  2053       if ((hits & 0xF) == 0) {
  2054         // The 0xF, above, corresponds to the exponent.
  2055         // Consider: (msk+1)|msk
  2056         msk = ((msk << 2)|3) & BackOffMask ;
  2059       // Probe _owner with TATAS
  2060       // If this thread observes the monitor transition or flicker
  2061       // from locked to unlocked to locked, then the odds that this
  2062       // thread will acquire the lock in this spin attempt go down
  2063       // considerably.  The same argument applies if the CAS fails
  2064       // or if we observe _owner change from one non-null value to
  2065       // another non-null value.   In such cases we might abort
  2066       // the spin without prejudice or apply a "penalty" to the
  2067       // spin count-down variable "ctr", reducing it by 100, say.
  2069       Thread * ox = (Thread *) _owner ;
  2070       if (ox == NULL) {
  2071          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2072          if (ox == NULL) {
  2073             // The CAS succeeded -- this thread acquired ownership
  2074             // Take care of some bookkeeping to exit spin state.
  2075             if (sss && _succ == Self) {
  2076                _succ = NULL ;
  2078             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2080             // Increase _SpinDuration :
  2081             // The spin was successful (profitable) so we tend toward
  2082             // longer spin attempts in the future.
  2083             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2084             // If we acquired the lock early in the spin cycle it
  2085             // makes sense to increase _SpinDuration proportionally.
  2086             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2087             int x = _SpinDuration ;
  2088             if (x < Knob_SpinLimit) {
  2089                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2090                 _SpinDuration = x + Knob_Bonus ;
  2092             return 1 ;
  2095          // The CAS failed ... we can take any of the following actions:
  2096          // * penalize: ctr -= Knob_CASPenalty
  2097          // * exit spin with prejudice -- goto Abort;
  2098          // * exit spin without prejudice.
  2099          // * Since CAS is high-latency, retry again immediately.
  2100          prv = ox ;
  2101          TEVENT (Spin: cas failed) ;
  2102          if (caspty == -2) break ;
  2103          if (caspty == -1) goto Abort ;
  2104          ctr -= caspty ;
  2105          continue ;
  2108       // Did lock ownership change hands ?
  2109       if (ox != prv && prv != NULL ) {
  2110           TEVENT (spin: Owner changed)
  2111           if (oxpty == -2) break ;
  2112           if (oxpty == -1) goto Abort ;
  2113           ctr -= oxpty ;
  2115       prv = ox ;
  2117       // Abort the spin if the owner is not executing.
  2118       // The owner must be executing in order to drop the lock.
  2119       // Spinning while the owner is OFFPROC is idiocy.
  2120       // Consider: ctr -= RunnablePenalty ;
  2121       if (Knob_OState && NotRunnable (Self, ox)) {
  2122          TEVENT (Spin abort - notrunnable);
  2123          goto Abort ;
  2125       if (sss && _succ == NULL ) _succ = Self ;
  2128    // Spin failed with prejudice -- reduce _SpinDuration.
  2129    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2130    // AIMD is globally stable.
  2131    TEVENT (Spin failure) ;
  2133      int x = _SpinDuration ;
  2134      if (x > 0) {
  2135         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2136         // This is globally sample and tends to damp the response.
  2137         x -= Knob_Penalty ;
  2138         if (x < 0) x = 0 ;
  2139         _SpinDuration = x ;
  2143  Abort:
  2144    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2145    if (sss && _succ == Self) {
  2146       _succ = NULL ;
  2147       // Invariant: after setting succ=null a contending thread
  2148       // must recheck-retry _owner before parking.  This usually happens
  2149       // in the normal usage of TrySpin(), but it's safest
  2150       // to make TrySpin() as foolproof as possible.
  2151       OrderAccess::fence() ;
  2152       if (TryLock(Self) > 0) return 1 ;
  2154    return 0 ;
  2157 // NotRunnable() -- informed spinning
  2158 //
  2159 // Don't bother spinning if the owner is not eligible to drop the lock.
  2160 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2161 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2162 // The thread must be runnable in order to drop the lock in timely fashion.
  2163 // If the _owner is not runnable then spinning will not likely be
  2164 // successful (profitable).
  2165 //
  2166 // Beware -- the thread referenced by _owner could have died
  2167 // so a simply fetch from _owner->_thread_state might trap.
  2168 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2169 // Because of the lifecycle issues the schedctl and _thread_state values
  2170 // observed by NotRunnable() might be garbage.  NotRunnable must
  2171 // tolerate this and consider the observed _thread_state value
  2172 // as advisory.
  2173 //
  2174 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2175 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2176 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2177 // with the LSB of _owner.  Another option would be to probablistically probe
  2178 // the putative _owner->TypeTag value.
  2179 //
  2180 // Checking _thread_state isn't perfect.  Even if the thread is
  2181 // in_java it might be blocked on a page-fault or have been preempted
  2182 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2183 // with schedctl.sc_state gives us a good picture of what the
  2184 // thread is doing, however.
  2185 //
  2186 // TODO: check schedctl.sc_state.
  2187 // We'll need to use SafeFetch32() to read from the schedctl block.
  2188 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2189 //
  2190 // The return value from NotRunnable() is *advisory* -- the
  2191 // result is based on sampling and is not necessarily coherent.
  2192 // The caller must tolerate false-negative and false-positive errors.
  2193 // Spinning, in general, is probabilistic anyway.
  2196 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2197     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2198     if (!OwnerIsThread) return 0 ;
  2200     if (ox == NULL) return 0 ;
  2202     // Avoid transitive spinning ...
  2203     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2204     // Immediately after T1 acquires L it's possible that T2, also
  2205     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2206     // This occurs transiently after T1 acquired L but before
  2207     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2208     // its spin in this circumstance.
  2209     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2211     if (BlockedOn == 1) return 1 ;
  2212     if (BlockedOn != 0) {
  2213       return BlockedOn != intptr_t(this) && _owner == ox ;
  2216     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2217     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2218     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2219     return jst == _thread_blocked || jst == _thread_in_native ;
  2223 // -----------------------------------------------------------------------------
  2224 // WaitSet management ...
  2226 ObjectWaiter::ObjectWaiter(Thread* thread) {
  2227   _next     = NULL;
  2228   _prev     = NULL;
  2229   _notified = 0;
  2230   TState    = TS_RUN ;
  2231   _thread   = thread;
  2232   _event    = thread->_ParkEvent ;
  2233   _active   = false;
  2234   assert (_event != NULL, "invariant") ;
  2237 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
  2238   JavaThread *jt = (JavaThread *)this->_thread;
  2239   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
  2242 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
  2243   JavaThread *jt = (JavaThread *)this->_thread;
  2244   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
  2247 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  2248   assert(node != NULL, "should not dequeue NULL node");
  2249   assert(node->_prev == NULL, "node already in list");
  2250   assert(node->_next == NULL, "node already in list");
  2251   // put node at end of queue (circular doubly linked list)
  2252   if (_WaitSet == NULL) {
  2253     _WaitSet = node;
  2254     node->_prev = node;
  2255     node->_next = node;
  2256   } else {
  2257     ObjectWaiter* head = _WaitSet ;
  2258     ObjectWaiter* tail = head->_prev;
  2259     assert(tail->_next == head, "invariant check");
  2260     tail->_next = node;
  2261     head->_prev = node;
  2262     node->_next = head;
  2263     node->_prev = tail;
  2267 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  2268   // dequeue the very first waiter
  2269   ObjectWaiter* waiter = _WaitSet;
  2270   if (waiter) {
  2271     DequeueSpecificWaiter(waiter);
  2273   return waiter;
  2276 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  2277   assert(node != NULL, "should not dequeue NULL node");
  2278   assert(node->_prev != NULL, "node already removed from list");
  2279   assert(node->_next != NULL, "node already removed from list");
  2280   // when the waiter has woken up because of interrupt,
  2281   // timeout or other spurious wake-up, dequeue the
  2282   // waiter from waiting list
  2283   ObjectWaiter* next = node->_next;
  2284   if (next == node) {
  2285     assert(node->_prev == node, "invariant check");
  2286     _WaitSet = NULL;
  2287   } else {
  2288     ObjectWaiter* prev = node->_prev;
  2289     assert(prev->_next == node, "invariant check");
  2290     assert(next->_prev == node, "invariant check");
  2291     next->_prev = prev;
  2292     prev->_next = next;
  2293     if (_WaitSet == node) {
  2294       _WaitSet = next;
  2297   node->_next = NULL;
  2298   node->_prev = NULL;
  2301 // -----------------------------------------------------------------------------
  2302 // PerfData support
  2303 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
  2304 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
  2305 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
  2306 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
  2307 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
  2308 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
  2309 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
  2310 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
  2311 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
  2312 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
  2313 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
  2314 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
  2315 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
  2316 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
  2317 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
  2318 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
  2319 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
  2320 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
  2322 // One-shot global initialization for the sync subsystem.
  2323 // We could also defer initialization and initialize on-demand
  2324 // the first time we call inflate().  Initialization would
  2325 // be protected - like so many things - by the MonitorCache_lock.
  2327 void ObjectMonitor::Initialize () {
  2328   static int InitializationCompleted = 0 ;
  2329   assert (InitializationCompleted == 0, "invariant") ;
  2330   InitializationCompleted = 1 ;
  2331   if (UsePerfData) {
  2332       EXCEPTION_MARK ;
  2333       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2334       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
  2335       NEWPERFCOUNTER(_sync_Inflations) ;
  2336       NEWPERFCOUNTER(_sync_Deflations) ;
  2337       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
  2338       NEWPERFCOUNTER(_sync_FutileWakeups) ;
  2339       NEWPERFCOUNTER(_sync_Parks) ;
  2340       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
  2341       NEWPERFCOUNTER(_sync_Notifications) ;
  2342       NEWPERFCOUNTER(_sync_SlowEnter) ;
  2343       NEWPERFCOUNTER(_sync_SlowExit) ;
  2344       NEWPERFCOUNTER(_sync_SlowNotify) ;
  2345       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
  2346       NEWPERFCOUNTER(_sync_FailedSpins) ;
  2347       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
  2348       NEWPERFCOUNTER(_sync_PrivateA) ;
  2349       NEWPERFCOUNTER(_sync_PrivateB) ;
  2350       NEWPERFCOUNTER(_sync_MonInCirculation) ;
  2351       NEWPERFCOUNTER(_sync_MonScavenged) ;
  2352       NEWPERFVARIABLE(_sync_MonExtant) ;
  2353       #undef NEWPERFCOUNTER
  2358 // Compile-time asserts
  2359 // When possible, it's better to catch errors deterministically at
  2360 // compile-time than at runtime.  The down-side to using compile-time
  2361 // asserts is that error message -- often something about negative array
  2362 // indices -- is opaque.
  2364 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
  2366 void ObjectMonitor::ctAsserts() {
  2367   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
  2371 static char * kvGet (char * kvList, const char * Key) {
  2372     if (kvList == NULL) return NULL ;
  2373     size_t n = strlen (Key) ;
  2374     char * Search ;
  2375     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2376         if (strncmp (Search, Key, n) == 0) {
  2377             if (Search[n] == '=') return Search + n + 1 ;
  2378             if (Search[n] == 0)   return (char *) "1" ;
  2381     return NULL ;
  2384 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2385     char * v = kvGet (kvList, Key) ;
  2386     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2387     if (Knob_ReportSettings && v != NULL) {
  2388         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2389         ::fflush (stdout) ;
  2391     return rslt ;
  2394 void ObjectMonitor::DeferredInitialize () {
  2395   if (InitDone > 0) return ;
  2396   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2397       while (InitDone != 1) ;
  2398       return ;
  2401   // One-shot global initialization ...
  2402   // The initialization is idempotent, so we don't need locks.
  2403   // In the future consider doing this via os::init_2().
  2404   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2405   // of environment variables.  Start by converting ':' to NUL.
  2407   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2409   size_t sz = strlen (SyncKnobs) ;
  2410   char * knobs = (char *) malloc (sz + 2) ;
  2411   if (knobs == NULL) {
  2412      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
  2413      guarantee (0, "invariant") ;
  2415   strcpy (knobs, SyncKnobs) ;
  2416   knobs[sz+1] = 0 ;
  2417   for (char * p = knobs ; *p ; p++) {
  2418      if (*p == ':') *p = 0 ;
  2421   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2422   SETKNOB(ReportSettings) ;
  2423   SETKNOB(Verbose) ;
  2424   SETKNOB(FixedSpin) ;
  2425   SETKNOB(SpinLimit) ;
  2426   SETKNOB(SpinBase) ;
  2427   SETKNOB(SpinBackOff);
  2428   SETKNOB(CASPenalty) ;
  2429   SETKNOB(OXPenalty) ;
  2430   SETKNOB(LogSpins) ;
  2431   SETKNOB(SpinSetSucc) ;
  2432   SETKNOB(SuccEnabled) ;
  2433   SETKNOB(SuccRestrict) ;
  2434   SETKNOB(Penalty) ;
  2435   SETKNOB(Bonus) ;
  2436   SETKNOB(BonusB) ;
  2437   SETKNOB(Poverty) ;
  2438   SETKNOB(SpinAfterFutile) ;
  2439   SETKNOB(UsePause) ;
  2440   SETKNOB(SpinEarly) ;
  2441   SETKNOB(OState) ;
  2442   SETKNOB(MaxSpinners) ;
  2443   SETKNOB(PreSpin) ;
  2444   SETKNOB(ExitPolicy) ;
  2445   SETKNOB(QMode);
  2446   SETKNOB(ResetEvent) ;
  2447   SETKNOB(MoveNotifyee) ;
  2448   SETKNOB(FastHSSEC) ;
  2449   #undef SETKNOB
  2451   if (os::is_MP()) {
  2452      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2453      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2454      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2455   } else {
  2456      Knob_SpinLimit = 0 ;
  2457      Knob_SpinBase  = 0 ;
  2458      Knob_PreSpin   = 0 ;
  2459      Knob_FixedSpin = -1 ;
  2462   if (Knob_LogSpins == 0) {
  2463      ObjectMonitor::_sync_FailedSpins = NULL ;
  2466   free (knobs) ;
  2467   OrderAccess::fence() ;
  2468   InitDone = 1 ;
  2471 #ifndef PRODUCT
  2472 void ObjectMonitor::verify() {
  2475 void ObjectMonitor::print() {
  2477 #endif

mercurial