src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Thu, 14 Mar 2013 09:37:38 +0100

author
tschatzl
date
Thu, 14 Mar 2013 09:37:38 +0100
changeset 4785
3c226052f7dc
parent 4743
82657b6a8cc0
child 4853
2e093b564241
permissions
-rw-r--r--

6733980: par compact - TraceGen1Time always shows 0.0000 seconds
Summary: Use the correct collector to retrieve accumulated gen1 trace time
Reviewed-by: johnc, jmasa

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
    27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
    28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
    36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
    38 #include "memory/gcLocker.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "runtime/handles.inline.hpp"
    41 #include "runtime/java.hpp"
    42 #include "runtime/vmThread.hpp"
    43 #include "services/memTracker.hpp"
    44 #include "utilities/vmError.hpp"
    46 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    47 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    48 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    49 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    50 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    51 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    53 static void trace_gen_sizes(const char* const str,
    54                             size_t og_min, size_t og_max,
    55                             size_t yg_min, size_t yg_max)
    56 {
    57   if (TracePageSizes) {
    58     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    59                   SIZE_FORMAT "," SIZE_FORMAT " "
    60                   SIZE_FORMAT,
    61                   str,
    62                   og_min / K, og_max / K,
    63                   yg_min / K, yg_max / K,
    64                   (og_max + yg_max) / K);
    65   }
    66 }
    68 jint ParallelScavengeHeap::initialize() {
    69   CollectedHeap::pre_initialize();
    71   // Cannot be initialized until after the flags are parsed
    72   // GenerationSizer flag_parser;
    73   _collector_policy = new GenerationSizer();
    75   size_t yg_min_size = _collector_policy->min_young_gen_size();
    76   size_t yg_max_size = _collector_policy->max_young_gen_size();
    77   size_t og_min_size = _collector_policy->min_old_gen_size();
    78   size_t og_max_size = _collector_policy->max_old_gen_size();
    80   trace_gen_sizes("ps heap raw",
    81                   og_min_size, og_max_size,
    82                   yg_min_size, yg_max_size);
    84   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    85                                                      yg_max_size + og_max_size,
    86                                                      8);
    88   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
    89   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
    91   // Update sizes to reflect the selected page size(s).
    92   //
    93   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
    94   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
    95   // move to the common code.
    96   yg_min_size = align_size_up(yg_min_size, yg_align);
    97   yg_max_size = align_size_up(yg_max_size, yg_align);
    98   size_t yg_cur_size =
    99     align_size_up(_collector_policy->young_gen_size(), yg_align);
   100   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
   102   og_min_size = align_size_up(og_min_size, og_align);
   103   // Align old gen size down to preserve specified heap size.
   104   assert(og_align == yg_align, "sanity");
   105   og_max_size = align_size_down(og_max_size, og_align);
   106   og_max_size = MAX2(og_max_size, og_min_size);
   107   size_t og_cur_size =
   108     align_size_down(_collector_policy->old_gen_size(), og_align);
   109   og_cur_size = MAX2(og_cur_size, og_min_size);
   111   trace_gen_sizes("ps heap rnd",
   112                   og_min_size, og_max_size,
   113                   yg_min_size, yg_max_size);
   115   const size_t heap_size = og_max_size + yg_max_size;
   117   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, og_align);
   119   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
   121   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   122                        og_max_size + yg_max_size, og_page_sz,
   123                        heap_rs.base(),
   124                        heap_rs.size());
   125   if (!heap_rs.is_reserved()) {
   126     vm_shutdown_during_initialization(
   127       "Could not reserve enough space for object heap");
   128     return JNI_ENOMEM;
   129   }
   131   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   132                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   134   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   135   _barrier_set = barrier_set;
   136   oopDesc::set_bs(_barrier_set);
   137   if (_barrier_set == NULL) {
   138     vm_shutdown_during_initialization(
   139       "Could not reserve enough space for barrier set");
   140     return JNI_ENOMEM;
   141   }
   143   // Initial young gen size is 4 Mb
   144   //
   145   // XXX - what about flag_parser.young_gen_size()?
   146   const size_t init_young_size = align_size_up(4 * M, yg_align);
   147   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   149   // Make up the generations
   150   // Calculate the maximum size that a generation can grow.  This
   151   // includes growth into the other generation.  Note that the
   152   // parameter _max_gen_size is kept as the maximum
   153   // size of the generation as the boundaries currently stand.
   154   // _max_gen_size is still used as that value.
   155   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   156   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   158   _gens = new AdjoiningGenerations(heap_rs,
   159                                    og_cur_size,
   160                                    og_min_size,
   161                                    og_max_size,
   162                                    yg_cur_size,
   163                                    yg_min_size,
   164                                    yg_max_size,
   165                                    yg_align);
   167   _old_gen = _gens->old_gen();
   168   _young_gen = _gens->young_gen();
   170   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   171   const size_t old_capacity = _old_gen->capacity_in_bytes();
   172   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   173   _size_policy =
   174     new PSAdaptiveSizePolicy(eden_capacity,
   175                              initial_promo_size,
   176                              young_gen()->to_space()->capacity_in_bytes(),
   177                              intra_heap_alignment(),
   178                              max_gc_pause_sec,
   179                              max_gc_minor_pause_sec,
   180                              GCTimeRatio
   181                              );
   183   assert(!UseAdaptiveGCBoundary ||
   184     (old_gen()->virtual_space()->high_boundary() ==
   185      young_gen()->virtual_space()->low_boundary()),
   186     "Boundaries must meet");
   187   // initialize the policy counters - 2 collectors, 3 generations
   188   _gc_policy_counters =
   189     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   190   _psh = this;
   192   // Set up the GCTaskManager
   193   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   195   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   196     return JNI_ENOMEM;
   197   }
   199   return JNI_OK;
   200 }
   202 void ParallelScavengeHeap::post_initialize() {
   203   // Need to init the tenuring threshold
   204   PSScavenge::initialize();
   205   if (UseParallelOldGC) {
   206     PSParallelCompact::post_initialize();
   207   } else {
   208     PSMarkSweep::initialize();
   209   }
   210   PSPromotionManager::initialize();
   211 }
   213 void ParallelScavengeHeap::update_counters() {
   214   young_gen()->update_counters();
   215   old_gen()->update_counters();
   216   MetaspaceCounters::update_performance_counters();
   217 }
   219 size_t ParallelScavengeHeap::capacity() const {
   220   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   221   return value;
   222 }
   224 size_t ParallelScavengeHeap::used() const {
   225   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   226   return value;
   227 }
   229 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   230   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   231 }
   234 size_t ParallelScavengeHeap::max_capacity() const {
   235   size_t estimated = reserved_region().byte_size();
   236   if (UseAdaptiveSizePolicy) {
   237     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   238   } else {
   239     estimated -= young_gen()->to_space()->capacity_in_bytes();
   240   }
   241   return MAX2(estimated, capacity());
   242 }
   244 bool ParallelScavengeHeap::is_in(const void* p) const {
   245   if (young_gen()->is_in(p)) {
   246     return true;
   247   }
   249   if (old_gen()->is_in(p)) {
   250     return true;
   251   }
   253   return false;
   254 }
   256 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   257   if (young_gen()->is_in_reserved(p)) {
   258     return true;
   259   }
   261   if (old_gen()->is_in_reserved(p)) {
   262     return true;
   263   }
   265   return false;
   266 }
   268 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
   269   return is_in_young((oop)addr);
   270 }
   272 #ifdef ASSERT
   273 // Don't implement this by using is_in_young().  This method is used
   274 // in some cases to check that is_in_young() is correct.
   275 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
   276   assert(is_in_reserved(p) || p == NULL,
   277     "Does not work if address is non-null and outside of the heap");
   278   // The order of the generations is old (low addr), young (high addr)
   279   return p >= old_gen()->reserved().end();
   280 }
   281 #endif
   283 // There are two levels of allocation policy here.
   284 //
   285 // When an allocation request fails, the requesting thread must invoke a VM
   286 // operation, transfer control to the VM thread, and await the results of a
   287 // garbage collection. That is quite expensive, and we should avoid doing it
   288 // multiple times if possible.
   289 //
   290 // To accomplish this, we have a basic allocation policy, and also a
   291 // failed allocation policy.
   292 //
   293 // The basic allocation policy controls how you allocate memory without
   294 // attempting garbage collection. It is okay to grab locks and
   295 // expand the heap, if that can be done without coming to a safepoint.
   296 // It is likely that the basic allocation policy will not be very
   297 // aggressive.
   298 //
   299 // The failed allocation policy is invoked from the VM thread after
   300 // the basic allocation policy is unable to satisfy a mem_allocate
   301 // request. This policy needs to cover the entire range of collection,
   302 // heap expansion, and out-of-memory conditions. It should make every
   303 // attempt to allocate the requested memory.
   305 // Basic allocation policy. Should never be called at a safepoint, or
   306 // from the VM thread.
   307 //
   308 // This method must handle cases where many mem_allocate requests fail
   309 // simultaneously. When that happens, only one VM operation will succeed,
   310 // and the rest will not be executed. For that reason, this method loops
   311 // during failed allocation attempts. If the java heap becomes exhausted,
   312 // we rely on the size_policy object to force a bail out.
   313 HeapWord* ParallelScavengeHeap::mem_allocate(
   314                                      size_t size,
   315                                      bool* gc_overhead_limit_was_exceeded) {
   316   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   317   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   318   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   320   // In general gc_overhead_limit_was_exceeded should be false so
   321   // set it so here and reset it to true only if the gc time
   322   // limit is being exceeded as checked below.
   323   *gc_overhead_limit_was_exceeded = false;
   325   HeapWord* result = young_gen()->allocate(size);
   327   uint loop_count = 0;
   328   uint gc_count = 0;
   330   while (result == NULL) {
   331     // We don't want to have multiple collections for a single filled generation.
   332     // To prevent this, each thread tracks the total_collections() value, and if
   333     // the count has changed, does not do a new collection.
   334     //
   335     // The collection count must be read only while holding the heap lock. VM
   336     // operations also hold the heap lock during collections. There is a lock
   337     // contention case where thread A blocks waiting on the Heap_lock, while
   338     // thread B is holding it doing a collection. When thread A gets the lock,
   339     // the collection count has already changed. To prevent duplicate collections,
   340     // The policy MUST attempt allocations during the same period it reads the
   341     // total_collections() value!
   342     {
   343       MutexLocker ml(Heap_lock);
   344       gc_count = Universe::heap()->total_collections();
   346       result = young_gen()->allocate(size);
   347       if (result != NULL) {
   348         return result;
   349       }
   351       // If certain conditions hold, try allocating from the old gen.
   352       result = mem_allocate_old_gen(size);
   353       if (result != NULL) {
   354         return result;
   355       }
   357       // Failed to allocate without a gc.
   358       if (GC_locker::is_active_and_needs_gc()) {
   359         // If this thread is not in a jni critical section, we stall
   360         // the requestor until the critical section has cleared and
   361         // GC allowed. When the critical section clears, a GC is
   362         // initiated by the last thread exiting the critical section; so
   363         // we retry the allocation sequence from the beginning of the loop,
   364         // rather than causing more, now probably unnecessary, GC attempts.
   365         JavaThread* jthr = JavaThread::current();
   366         if (!jthr->in_critical()) {
   367           MutexUnlocker mul(Heap_lock);
   368           GC_locker::stall_until_clear();
   369           continue;
   370         } else {
   371           if (CheckJNICalls) {
   372             fatal("Possible deadlock due to allocating while"
   373                   " in jni critical section");
   374           }
   375           return NULL;
   376         }
   377       }
   378     }
   380     if (result == NULL) {
   381       // Generate a VM operation
   382       VM_ParallelGCFailedAllocation op(size, gc_count);
   383       VMThread::execute(&op);
   385       // Did the VM operation execute? If so, return the result directly.
   386       // This prevents us from looping until time out on requests that can
   387       // not be satisfied.
   388       if (op.prologue_succeeded()) {
   389         assert(Universe::heap()->is_in_or_null(op.result()),
   390           "result not in heap");
   392         // If GC was locked out during VM operation then retry allocation
   393         // and/or stall as necessary.
   394         if (op.gc_locked()) {
   395           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   396           continue;  // retry and/or stall as necessary
   397         }
   399         // Exit the loop if the gc time limit has been exceeded.
   400         // The allocation must have failed above ("result" guarding
   401         // this path is NULL) and the most recent collection has exceeded the
   402         // gc overhead limit (although enough may have been collected to
   403         // satisfy the allocation).  Exit the loop so that an out-of-memory
   404         // will be thrown (return a NULL ignoring the contents of
   405         // op.result()),
   406         // but clear gc_overhead_limit_exceeded so that the next collection
   407         // starts with a clean slate (i.e., forgets about previous overhead
   408         // excesses).  Fill op.result() with a filler object so that the
   409         // heap remains parsable.
   410         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   411         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
   413         if (limit_exceeded && softrefs_clear) {
   414           *gc_overhead_limit_was_exceeded = true;
   415           size_policy()->set_gc_overhead_limit_exceeded(false);
   416           if (PrintGCDetails && Verbose) {
   417             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   418               "return NULL because gc_overhead_limit_exceeded is set");
   419           }
   420           if (op.result() != NULL) {
   421             CollectedHeap::fill_with_object(op.result(), size);
   422           }
   423           return NULL;
   424         }
   426         return op.result();
   427       }
   428     }
   430     // The policy object will prevent us from looping forever. If the
   431     // time spent in gc crosses a threshold, we will bail out.
   432     loop_count++;
   433     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   434         (loop_count % QueuedAllocationWarningCount == 0)) {
   435       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   436               " size=%d", loop_count, size);
   437     }
   438   }
   440   return result;
   441 }
   443 // A "death march" is a series of ultra-slow allocations in which a full gc is
   444 // done before each allocation, and after the full gc the allocation still
   445 // cannot be satisfied from the young gen.  This routine detects that condition;
   446 // it should be called after a full gc has been done and the allocation
   447 // attempted from the young gen. The parameter 'addr' should be the result of
   448 // that young gen allocation attempt.
   449 void
   450 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
   451   if (addr != NULL) {
   452     _death_march_count = 0;  // death march has ended
   453   } else if (_death_march_count == 0) {
   454     if (should_alloc_in_eden(size)) {
   455       _death_march_count = 1;    // death march has started
   456     }
   457   }
   458 }
   460 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
   461   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
   462     // Size is too big for eden, or gc is locked out.
   463     return old_gen()->allocate(size);
   464   }
   466   // If a "death march" is in progress, allocate from the old gen a limited
   467   // number of times before doing a GC.
   468   if (_death_march_count > 0) {
   469     if (_death_march_count < 64) {
   470       ++_death_march_count;
   471       return old_gen()->allocate(size);
   472     } else {
   473       _death_march_count = 0;
   474     }
   475   }
   476   return NULL;
   477 }
   479 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
   480   if (UseParallelOldGC) {
   481     // The do_full_collection() parameter clear_all_soft_refs
   482     // is interpreted here as maximum_compaction which will
   483     // cause SoftRefs to be cleared.
   484     bool maximum_compaction = clear_all_soft_refs;
   485     PSParallelCompact::invoke(maximum_compaction);
   486   } else {
   487     PSMarkSweep::invoke(clear_all_soft_refs);
   488   }
   489 }
   491 // Failed allocation policy. Must be called from the VM thread, and
   492 // only at a safepoint! Note that this method has policy for allocation
   493 // flow, and NOT collection policy. So we do not check for gc collection
   494 // time over limit here, that is the responsibility of the heap specific
   495 // collection methods. This method decides where to attempt allocations,
   496 // and when to attempt collections, but no collection specific policy.
   497 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
   498   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   499   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   500   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   501   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   503   // We assume that allocation in eden will fail unless we collect.
   505   // First level allocation failure, scavenge and allocate in young gen.
   506   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   507   const bool invoked_full_gc = PSScavenge::invoke();
   508   HeapWord* result = young_gen()->allocate(size);
   510   // Second level allocation failure.
   511   //   Mark sweep and allocate in young generation.
   512   if (result == NULL && !invoked_full_gc) {
   513     do_full_collection(false);
   514     result = young_gen()->allocate(size);
   515   }
   517   death_march_check(result, size);
   519   // Third level allocation failure.
   520   //   After mark sweep and young generation allocation failure,
   521   //   allocate in old generation.
   522   if (result == NULL) {
   523     result = old_gen()->allocate(size);
   524   }
   526   // Fourth level allocation failure. We're running out of memory.
   527   //   More complete mark sweep and allocate in young generation.
   528   if (result == NULL) {
   529     do_full_collection(true);
   530     result = young_gen()->allocate(size);
   531   }
   533   // Fifth level allocation failure.
   534   //   After more complete mark sweep, allocate in old generation.
   535   if (result == NULL) {
   536     result = old_gen()->allocate(size);
   537   }
   539   return result;
   540 }
   542 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   543   CollectedHeap::ensure_parsability(retire_tlabs);
   544   young_gen()->eden_space()->ensure_parsability();
   545 }
   547 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   548   return young_gen()->eden_space()->free_in_bytes();
   549 }
   551 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   552   return young_gen()->eden_space()->tlab_capacity(thr);
   553 }
   555 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   556   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   557 }
   559 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   560   return young_gen()->allocate(size);
   561 }
   563 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   564   CollectedHeap::accumulate_statistics_all_tlabs();
   565 }
   567 void ParallelScavengeHeap::resize_all_tlabs() {
   568   CollectedHeap::resize_all_tlabs();
   569 }
   571 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
   572   // We don't need barriers for stores to objects in the
   573   // young gen and, a fortiori, for initializing stores to
   574   // objects therein.
   575   return is_in_young(new_obj);
   576 }
   578 // This method is used by System.gc() and JVMTI.
   579 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   580   assert(!Heap_lock->owned_by_self(),
   581     "this thread should not own the Heap_lock");
   583   unsigned int gc_count      = 0;
   584   unsigned int full_gc_count = 0;
   585   {
   586     MutexLocker ml(Heap_lock);
   587     // This value is guarded by the Heap_lock
   588     gc_count      = Universe::heap()->total_collections();
   589     full_gc_count = Universe::heap()->total_full_collections();
   590   }
   592   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   593   VMThread::execute(&op);
   594 }
   596 void ParallelScavengeHeap::oop_iterate(ExtendedOopClosure* cl) {
   597   Unimplemented();
   598 }
   600 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   601   young_gen()->object_iterate(cl);
   602   old_gen()->object_iterate(cl);
   603 }
   606 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   607   if (young_gen()->is_in_reserved(addr)) {
   608     assert(young_gen()->is_in(addr),
   609            "addr should be in allocated part of young gen");
   610     // called from os::print_location by find or VMError
   611     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
   612     Unimplemented();
   613   } else if (old_gen()->is_in_reserved(addr)) {
   614     assert(old_gen()->is_in(addr),
   615            "addr should be in allocated part of old gen");
   616     return old_gen()->start_array()->object_start((HeapWord*)addr);
   617   }
   618   return 0;
   619 }
   621 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   622   return oop(addr)->size();
   623 }
   625 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   626   return block_start(addr) == addr;
   627 }
   629 jlong ParallelScavengeHeap::millis_since_last_gc() {
   630   return UseParallelOldGC ?
   631     PSParallelCompact::millis_since_last_gc() :
   632     PSMarkSweep::millis_since_last_gc();
   633 }
   635 void ParallelScavengeHeap::prepare_for_verify() {
   636   ensure_parsability(false);  // no need to retire TLABs for verification
   637 }
   639 void ParallelScavengeHeap::print_on(outputStream* st) const {
   640   young_gen()->print_on(st);
   641   old_gen()->print_on(st);
   642   MetaspaceAux::print_on(st);
   643 }
   645 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   646   PSScavenge::gc_task_manager()->threads_do(tc);
   647 }
   649 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   650   PSScavenge::gc_task_manager()->print_threads_on(st);
   651 }
   653 void ParallelScavengeHeap::print_tracing_info() const {
   654   if (TraceGen0Time) {
   655     double time = PSScavenge::accumulated_time()->seconds();
   656     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   657   }
   658   if (TraceGen1Time) {
   659     double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
   660     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   661   }
   662 }
   665 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
   666   // Why do we need the total_collections()-filter below?
   667   if (total_collections() > 0) {
   668     if (!silent) {
   669       gclog_or_tty->print("tenured ");
   670     }
   671     old_gen()->verify();
   673     if (!silent) {
   674       gclog_or_tty->print("eden ");
   675     }
   676     young_gen()->verify();
   677   }
   678 }
   680 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   681   if (PrintGCDetails && Verbose) {
   682     gclog_or_tty->print(" "  SIZE_FORMAT
   683                         "->" SIZE_FORMAT
   684                         "("  SIZE_FORMAT ")",
   685                         prev_used, used(), capacity());
   686   } else {
   687     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   688                         "->" SIZE_FORMAT "K"
   689                         "("  SIZE_FORMAT "K)",
   690                         prev_used / K, used() / K, capacity() / K);
   691   }
   692 }
   694 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   695   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   696   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   697   return _psh;
   698 }
   700 // Before delegating the resize to the young generation,
   701 // the reserved space for the young and old generations
   702 // may be changed to accomodate the desired resize.
   703 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   704     size_t survivor_size) {
   705   if (UseAdaptiveGCBoundary) {
   706     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   707       size_policy()->reset_bytes_absorbed_from_eden();
   708       return;  // The generation changed size already.
   709     }
   710     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   711   }
   713   // Delegate the resize to the generation.
   714   _young_gen->resize(eden_size, survivor_size);
   715 }
   717 // Before delegating the resize to the old generation,
   718 // the reserved space for the young and old generations
   719 // may be changed to accomodate the desired resize.
   720 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   721   if (UseAdaptiveGCBoundary) {
   722     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   723       size_policy()->reset_bytes_absorbed_from_eden();
   724       return;  // The generation changed size already.
   725     }
   726     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   727   }
   729   // Delegate the resize to the generation.
   730   _old_gen->resize(desired_free_space);
   731 }
   733 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
   734   // nothing particular
   735 }
   737 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
   738   // nothing particular
   739 }
   741 #ifndef PRODUCT
   742 void ParallelScavengeHeap::record_gen_tops_before_GC() {
   743   if (ZapUnusedHeapArea) {
   744     young_gen()->record_spaces_top();
   745     old_gen()->record_spaces_top();
   746   }
   747 }
   749 void ParallelScavengeHeap::gen_mangle_unused_area() {
   750   if (ZapUnusedHeapArea) {
   751     young_gen()->eden_space()->mangle_unused_area();
   752     young_gen()->to_space()->mangle_unused_area();
   753     young_gen()->from_space()->mangle_unused_area();
   754     old_gen()->object_space()->mangle_unused_area();
   755   }
   756 }
   757 #endif

mercurial