src/cpu/sparc/vm/assembler_sparc.inline.hpp

Sat, 30 Oct 2010 13:08:23 -0700

author
jrose
date
Sat, 30 Oct 2010 13:08:23 -0700
changeset 2268
3b2dea75431e
parent 2266
fff777a71346
child 2314
f95d63e2154a
permissions
-rw-r--r--

6984311: JSR 292 needs optional bootstrap method parameters
Summary: Allow CONSTANT_InvokeDynamic nodes to have any number of extra operands.
Reviewed-by: twisti

     1 /*
     2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    26   jint& stub_inst = *(jint*) branch;
    27   stub_inst = patched_branch(target - branch, stub_inst, 0);
    28 }
    30 #ifndef PRODUCT
    31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    32   jint stub_inst = *(jint*) branch;
    33   print_instruction(stub_inst);
    34   ::tty->print("%s", " (unresolved)");
    35 }
    36 #endif // PRODUCT
    38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    41 inline int AddressLiteral::low10() const {
    42   return Assembler::low10(value());
    43 }
    46 // inlines for SPARC assembler -- dmu 5/97
    48 inline void Assembler::check_delay() {
    49 # ifdef CHECK_DELAY
    50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    51   delay_state = no_delay;
    52 # endif
    53 }
    55 inline void Assembler::emit_long(int x) {
    56   check_delay();
    57   AbstractAssembler::emit_long(x);
    58 }
    60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    61   relocate(rtype);
    62   emit_long(x);
    63 }
    65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    66   relocate(rspec);
    67   emit_long(x);
    68 }
    71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
    93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
    94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
    96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
    97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
    99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
   102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
   103   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
   104   else                  ldf(w, s1, s2.as_constant(), d);
   105 }
   107 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   108 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
   110 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   112 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   113 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   114 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   115 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   117 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   118 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   119 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   120 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   121 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   122 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   124 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   125 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   127 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   128 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   131 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   132 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   133 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   134 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   135 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   136 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   138 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   139 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   140 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   141 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   143 #ifdef _LP64
   144 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   145 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
   146 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
   147 #else
   148 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
   149 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
   150 #endif
   152 #ifdef ASSERT
   153   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   154 # ifdef _LP64
   155 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
   156 # else
   157 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
   158 # endif
   159 #endif
   161 inline void Assembler::ld(  const Address& a, Register d, int offset) {
   162   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
   163   else               {                          ld(  a.base(), a.disp() + offset, d); }
   164 }
   165 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
   166   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
   167   else               {                          ldsb(a.base(), a.disp() + offset, d); }
   168 }
   169 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
   170   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
   171   else               {                          ldsh(a.base(), a.disp() + offset, d); }
   172 }
   173 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
   174   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
   175   else               {                          ldsw(a.base(), a.disp() + offset, d); }
   176 }
   177 inline void Assembler::ldub(const Address& a, Register d, int offset) {
   178   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
   179   else               {                          ldub(a.base(), a.disp() + offset, d); }
   180 }
   181 inline void Assembler::lduh(const Address& a, Register d, int offset) {
   182   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
   183   else               {                          lduh(a.base(), a.disp() + offset, d); }
   184 }
   185 inline void Assembler::lduw(const Address& a, Register d, int offset) {
   186   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
   187   else               {                          lduw(a.base(), a.disp() + offset, d); }
   188 }
   189 inline void Assembler::ldd( const Address& a, Register d, int offset) {
   190   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
   191   else               {                          ldd( a.base(), a.disp() + offset, d); }
   192 }
   193 inline void Assembler::ldx( const Address& a, Register d, int offset) {
   194   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
   195   else               {                          ldx( a.base(), a.disp() + offset, d); }
   196 }
   198 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
   199 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
   200 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
   201 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
   202 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
   203 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
   204 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
   205 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
   206 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
   208 // form effective addresses this way:
   209 inline void Assembler::add(const Address& a, Register d, int offset) {
   210   if (a.has_index())   add(a.base(), a.index(),         d);
   211   else               { add(a.base(), a.disp() + offset, d, a.rspec(offset)); offset = 0; }
   212   if (offset != 0)     add(d,        offset,            d);
   213 }
   214 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
   215   if (s2.is_register())  add(s1, s2.as_register(),          d);
   216   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
   217   if (offset != 0)       add(d,  offset,                    d);
   218 }
   220 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
   221   if (s2.is_register())  andn(s1, s2.as_register(), d);
   222   else                   andn(s1, s2.as_constant(), d);
   223 }
   225 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   226 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   229 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   230 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   232 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   235 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   236 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   238 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   240   // pp 222
   242 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
   243   if (s2.is_register()) stf(w, d, s1, s2.as_register());
   244   else                  stf(w, d, s1, s2.as_constant());
   245 }
   247 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   248 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   250 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   252 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   253 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   254 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   255 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   257   // p 226
   259 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   260 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   261 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   262 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   263 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   264 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   267 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   268 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   269 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   270 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   272 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
   273 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
   275 #ifdef ASSERT
   276 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   277 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
   278 #endif
   280 inline void Assembler::stb(Register d, const Address& a, int offset) {
   281   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
   282   else               {                          stb(d, a.base(), a.disp() + offset); }
   283 }
   284 inline void Assembler::sth(Register d, const Address& a, int offset) {
   285   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
   286   else               {                          sth(d, a.base(), a.disp() + offset); }
   287 }
   288 inline void Assembler::stw(Register d, const Address& a, int offset) {
   289   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
   290   else               {                          stw(d, a.base(), a.disp() + offset); }
   291 }
   292 inline void Assembler::st( Register d, const Address& a, int offset) {
   293   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
   294   else               {                          st( d, a.base(), a.disp() + offset); }
   295 }
   296 inline void Assembler::std(Register d, const Address& a, int offset) {
   297   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
   298   else               {                          std(d, a.base(), a.disp() + offset); }
   299 }
   300 inline void Assembler::stx(Register d, const Address& a, int offset) {
   301   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
   302   else               {                          stx(d, a.base(), a.disp() + offset); }
   303 }
   305 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
   306 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
   307 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
   308 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
   309 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
   310 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
   312 // v8 p 99
   314 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   315 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   316 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   317 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   318 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   319 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   320 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   321 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   324 // pp 231
   326 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   327 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   329 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   332 // Use the right loads/stores for the platform
   333 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   334 #ifdef _LP64
   335   Assembler::ldx(s1, s2, d);
   336 #else
   337   Assembler::ld( s1, s2, d);
   338 #endif
   339 }
   341 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   342 #ifdef _LP64
   343   Assembler::ldx(s1, simm13a, d);
   344 #else
   345   Assembler::ld( s1, simm13a, d);
   346 #endif
   347 }
   349 #ifdef ASSERT
   350 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   351 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
   352   ld_ptr(s1, in_bytes(simm13a), d);
   353 }
   354 #endif
   356 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   357 #ifdef _LP64
   358   Assembler::ldx(s1, s2, d);
   359 #else
   360   Assembler::ld( s1, s2, d);
   361 #endif
   362 }
   364 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
   365 #ifdef _LP64
   366   Assembler::ldx(a, d, offset);
   367 #else
   368   Assembler::ld( a, d, offset);
   369 #endif
   370 }
   372 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   373 #ifdef _LP64
   374   Assembler::stx(d, s1, s2);
   375 #else
   376   Assembler::st( d, s1, s2);
   377 #endif
   378 }
   380 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   381 #ifdef _LP64
   382   Assembler::stx(d, s1, simm13a);
   383 #else
   384   Assembler::st( d, s1, simm13a);
   385 #endif
   386 }
   388 #ifdef ASSERT
   389 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
   390 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
   391   st_ptr(d, s1, in_bytes(simm13a));
   392 }
   393 #endif
   395 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
   396 #ifdef _LP64
   397   Assembler::stx(d, s1, s2);
   398 #else
   399   Assembler::st( d, s1, s2);
   400 #endif
   401 }
   403 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
   404 #ifdef _LP64
   405   Assembler::stx(d, a, offset);
   406 #else
   407   Assembler::st( d, a, offset);
   408 #endif
   409 }
   411 // Use the right loads/stores for the platform
   412 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   413 #ifdef _LP64
   414   Assembler::ldx(s1, s2, d);
   415 #else
   416   Assembler::ldd(s1, s2, d);
   417 #endif
   418 }
   420 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   421 #ifdef _LP64
   422   Assembler::ldx(s1, simm13a, d);
   423 #else
   424   Assembler::ldd(s1, simm13a, d);
   425 #endif
   426 }
   428 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
   429 #ifdef _LP64
   430   Assembler::ldx(s1, s2, d);
   431 #else
   432   Assembler::ldd(s1, s2, d);
   433 #endif
   434 }
   436 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
   437 #ifdef _LP64
   438   Assembler::ldx(a, d, offset);
   439 #else
   440   Assembler::ldd(a, d, offset);
   441 #endif
   442 }
   444 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   445 #ifdef _LP64
   446   Assembler::stx(d, s1, s2);
   447 #else
   448   Assembler::std(d, s1, s2);
   449 #endif
   450 }
   452 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   453 #ifdef _LP64
   454   Assembler::stx(d, s1, simm13a);
   455 #else
   456   Assembler::std(d, s1, simm13a);
   457 #endif
   458 }
   460 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
   461 #ifdef _LP64
   462   Assembler::stx(d, s1, s2);
   463 #else
   464   Assembler::std(d, s1, s2);
   465 #endif
   466 }
   468 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   469 #ifdef _LP64
   470   Assembler::stx(d, a, offset);
   471 #else
   472   Assembler::std(d, a, offset);
   473 #endif
   474 }
   476 // Functions for isolating 64 bit shifts for LP64
   478 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   479 #ifdef _LP64
   480   Assembler::sllx(s1, s2, d);
   481 #else
   482   Assembler::sll( s1, s2, d);
   483 #endif
   484 }
   486 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   487 #ifdef _LP64
   488   Assembler::sllx(s1, imm6a, d);
   489 #else
   490   Assembler::sll( s1, imm6a, d);
   491 #endif
   492 }
   494 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   495 #ifdef _LP64
   496   Assembler::srlx(s1, s2, d);
   497 #else
   498   Assembler::srl( s1, s2, d);
   499 #endif
   500 }
   502 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   503 #ifdef _LP64
   504   Assembler::srlx(s1, imm6a, d);
   505 #else
   506   Assembler::srl( s1, imm6a, d);
   507 #endif
   508 }
   510 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
   511   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
   512   else                   sll_ptr(s1, s2.as_constant(), d);
   513 }
   515 // Use the right branch for the platform
   517 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   518   if (VM_Version::v9_instructions_work())
   519     Assembler::bp(c, a, icc, p, d, rt);
   520   else
   521     Assembler::br(c, a, d, rt);
   522 }
   524 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   525   br(c, a, p, target(L));
   526 }
   529 // Branch that tests either xcc or icc depending on the
   530 // architecture compiled (LP64 or not)
   531 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   532 #ifdef _LP64
   533     Assembler::bp(c, a, xcc, p, d, rt);
   534 #else
   535     MacroAssembler::br(c, a, p, d, rt);
   536 #endif
   537 }
   539 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   540   brx(c, a, p, target(L));
   541 }
   543 inline void MacroAssembler::ba( bool a, Label& L ) {
   544   br(always, a, pt, L);
   545 }
   547 // Warning: V9 only functions
   548 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   549   Assembler::bp(c, a, cc, p, d, rt);
   550 }
   552 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   553   Assembler::bp(c, a, cc, p, L);
   554 }
   556 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   557   if (VM_Version::v9_instructions_work())
   558     fbp(c, a, fcc0, p, d, rt);
   559   else
   560     Assembler::fb(c, a, d, rt);
   561 }
   563 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   564   fb(c, a, p, target(L));
   565 }
   567 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   568   Assembler::fbp(c, a, cc, p, d, rt);
   569 }
   571 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   572   Assembler::fbp(c, a, cc, p, L);
   573 }
   575 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   576 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   578 // Call with a check to see if we need to deal with the added
   579 // expense of relocation and if we overflow the displacement
   580 // of the quick call instruction./
   581 // Check to see if we have to deal with relocations
   582 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   583 #ifdef _LP64
   584   intptr_t disp;
   585   // NULL is ok because it will be relocated later.
   586   // Must change NULL to a reachable address in order to
   587   // pass asserts here and in wdisp.
   588   if ( d == NULL )
   589     d = pc();
   591   // Is this address within range of the call instruction?
   592   // If not, use the expensive instruction sequence
   593   disp = (intptr_t)d - (intptr_t)pc();
   594   if ( disp != (intptr_t)(int32_t)disp ) {
   595     relocate(rt);
   596     AddressLiteral dest(d);
   597     jumpl_to(dest, O7, O7);
   598   }
   599   else {
   600     Assembler::call( d, rt );
   601   }
   602 #else
   603   Assembler::call( d, rt );
   604 #endif
   605 }
   607 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   608   MacroAssembler::call( target(L), rt);
   609 }
   613 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   614 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   616 // prefetch instruction
   617 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   618   if (VM_Version::v9_instructions_work())
   619     Assembler::bp( never, true, xcc, pt, d, rt );
   620 }
   621 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   624 // clobbers o7 on V8!!
   625 // returns delta from gotten pc to addr after
   626 inline int MacroAssembler::get_pc( Register d ) {
   627   int x = offset();
   628   if (VM_Version::v9_instructions_work())
   629     rdpc(d);
   630   else {
   631     Label lbl;
   632     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   633     if (d == O7)  delayed()->nop();
   634     else          delayed()->mov(O7, d);
   635     bind(lbl);
   636   }
   637   return offset() - x;
   638 }
   641 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   644 // Loads the current PC of the following instruction as an immediate value in
   645 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   646 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   647   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   648 #ifdef _LP64
   649   Unimplemented();
   650 #else
   651   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   652   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   653 #endif
   654   return thepc;
   655 }
   658 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
   659   assert_not_delayed();
   660   sethi(addrlit, d);
   661   ld(d, addrlit.low10() + offset, d);
   662 }
   665 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
   666   assert_not_delayed();
   667   sethi(addrlit, d);
   668   ld_ptr(d, addrlit.low10() + offset, d);
   669 }
   672 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   673   assert_not_delayed();
   674   sethi(addrlit, temp);
   675   st(s, temp, addrlit.low10() + offset);
   676 }
   679 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
   680   assert_not_delayed();
   681   sethi(addrlit, temp);
   682   st_ptr(s, temp, addrlit.low10() + offset);
   683 }
   686 // This code sequence is relocatable to any address, even on LP64.
   687 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
   688   assert_not_delayed();
   689   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   690   // variable length instruction streams.
   691   patchable_sethi(addrlit, temp);
   692   jmpl(temp, addrlit.low10() + offset, d);
   693 }
   696 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
   697   jumpl_to(addrlit, temp, G0, offset);
   698 }
   701 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
   702                                              int ld_offset, int jmp_offset) {
   703   assert_not_delayed();
   704   //sethi(al);                   // sethi is caller responsibility for this one
   705   ld_ptr(a, temp, ld_offset);
   706   jmp(temp, jmp_offset);
   707 }
   710 inline void MacroAssembler::set_oop(jobject obj, Register d) {
   711   set_oop(allocate_oop_address(obj), d);
   712 }
   715 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
   716   set_oop(constant_oop_address(obj), d);
   717 }
   720 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
   721   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   722   set(obj_addr, d);
   723 }
   726 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   727   if (a.is_register())
   728     mov(a.as_register(), d);
   729   else
   730     ld (a.as_address(),  d);
   731 }
   733 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   734   if (a.is_register())
   735     mov(s, a.as_register());
   736   else
   737     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   738 }
   740 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   741   if (a.is_register())
   742     mov(s, a.as_register());
   743   else
   744     st_ptr (s, a.as_address());
   745 }
   748 #ifdef _LP64
   749 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   750   if (a.is_float_register())
   751 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   752     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   753   else
   754     // Floats are stored in the high half of the stack entry
   755     // The low half is undefined per the ABI.
   756     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   757 }
   759 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   760   if (a.is_float_register())
   761 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   762     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   763   else
   764     stf(FloatRegisterImpl::D, s, a.as_address());
   765 }
   767 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   768   if (a.is_register())
   769     mov(s, a.as_register());
   770   else
   771     stx(s, a.as_address());
   772 }
   773 #endif
   775 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   776 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   777 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   778 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   780 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   781 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   782 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   783 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   785 // returns if membar generates anything, obviously this code should mirror
   786 // membar below.
   787 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   788   if( !os::is_MP() ) return false;  // Not needed on single CPU
   789   if( VM_Version::v9_instructions_work() ) {
   790     const Membar_mask_bits effective_mask =
   791         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   792     return (effective_mask != 0);
   793   } else {
   794     return true;
   795   }
   796 }
   798 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   799   // Uniprocessors do not need memory barriers
   800   if (!os::is_MP()) return;
   801   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   802   // 8.4.4.3, a.31 and a.50.
   803   if( VM_Version::v9_instructions_work() ) {
   804     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   805     // of the mmask subfield of const7a that does anything that isn't done
   806     // implicitly is StoreLoad.
   807     const Membar_mask_bits effective_mask =
   808         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   809     if ( effective_mask != 0 ) {
   810       Assembler::membar( effective_mask );
   811     }
   812   } else {
   813     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   814     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   815     // which guarantees that all stores behave as if an stbar were issued just after
   816     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   817     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   818     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   819     //
   820     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   821     // space.  Put one here to be on the safe side.
   822     Assembler::ldstub(SP, 0, G0);
   823   }
   824 }

mercurial