src/share/vm/memory/collectorPolicy.cpp

Mon, 21 Oct 2013 18:52:13 +0200

author
jwilhelm
date
Mon, 21 Oct 2013 18:52:13 +0200
changeset 6083
3aee6bc29547
parent 6082
4288e54fd145
child 6084
46d7652b223c
permissions
-rw-r--r--

8026852: Use restricted_align_down in collector policy code
Summary: Moved restricted_align_down to globalDefinitions and renamed it align_size_down_bounded
Reviewed-by: stefank, mgerdin, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
    28 #include "gc_implementation/shared/vmGCOperations.hpp"
    29 #include "memory/cardTableRS.hpp"
    30 #include "memory/collectorPolicy.hpp"
    31 #include "memory/gcLocker.inline.hpp"
    32 #include "memory/genCollectedHeap.hpp"
    33 #include "memory/generationSpec.hpp"
    34 #include "memory/space.hpp"
    35 #include "memory/universe.hpp"
    36 #include "runtime/arguments.hpp"
    37 #include "runtime/globals_extension.hpp"
    38 #include "runtime/handles.inline.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/thread.inline.hpp"
    41 #include "runtime/vmThread.hpp"
    42 #include "utilities/macros.hpp"
    43 #if INCLUDE_ALL_GCS
    44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    46 #endif // INCLUDE_ALL_GCS
    48 // CollectorPolicy methods.
    50 void CollectorPolicy::initialize_flags() {
    51   assert(_max_alignment >= _min_alignment,
    52          err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
    53                  _max_alignment, _min_alignment));
    54   assert(_max_alignment % _min_alignment == 0,
    55          err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
    56                  _max_alignment, _min_alignment));
    58   if (MaxHeapSize < InitialHeapSize) {
    59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
    60   }
    62   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, _min_alignment);
    63 }
    65 void CollectorPolicy::initialize_size_info() {
    66   // User inputs from -mx and ms must be aligned
    67   _min_heap_byte_size = align_size_up(Arguments::min_heap_size(), _min_alignment);
    68   _initial_heap_byte_size = align_size_up(InitialHeapSize, _min_alignment);
    69   _max_heap_byte_size = align_size_up(MaxHeapSize, _max_alignment);
    71   // Check heap parameter properties
    72   if (_initial_heap_byte_size < M) {
    73     vm_exit_during_initialization("Too small initial heap");
    74   }
    75   // Check heap parameter properties
    76   if (_min_heap_byte_size < M) {
    77     vm_exit_during_initialization("Too small minimum heap");
    78   }
    79   if (_initial_heap_byte_size <= NewSize) {
    80      // make sure there is at least some room in old space
    81     vm_exit_during_initialization("Too small initial heap for new size specified");
    82   }
    83   if (_max_heap_byte_size < _min_heap_byte_size) {
    84     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
    85   }
    86   if (_initial_heap_byte_size < _min_heap_byte_size) {
    87     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
    88   }
    89   if (_max_heap_byte_size < _initial_heap_byte_size) {
    90     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
    91   }
    93   if (PrintGCDetails && Verbose) {
    94     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
    95       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
    96       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
    97   }
    98 }
   100 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
   101   bool result = _should_clear_all_soft_refs;
   102   set_should_clear_all_soft_refs(false);
   103   return result;
   104 }
   106 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   107                                            int max_covered_regions) {
   108   return new CardTableRS(whole_heap, max_covered_regions);
   109 }
   111 void CollectorPolicy::cleared_all_soft_refs() {
   112   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
   113   // have been cleared in the last collection but if the gc overhear
   114   // limit continues to be near, SoftRefs should still be cleared.
   115   if (size_policy() != NULL) {
   116     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
   117   }
   118   _all_soft_refs_clear = true;
   119 }
   121 size_t CollectorPolicy::compute_max_alignment() {
   122   // The card marking array and the offset arrays for old generations are
   123   // committed in os pages as well. Make sure they are entirely full (to
   124   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   125   // byte entry and the os page size is 4096, the maximum heap size should
   126   // be 512*4096 = 2MB aligned.
   128   // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
   129   // is supported.
   130   // Requirements of any new remembered set implementations must be added here.
   131   size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
   133   // Parallel GC does its own alignment of the generations to avoid requiring a
   134   // large page (256M on some platforms) for the permanent generation.  The
   135   // other collectors should also be updated to do their own alignment and then
   136   // this use of lcm() should be removed.
   137   if (UseLargePages && !UseParallelGC) {
   138       // in presence of large pages we have to make sure that our
   139       // alignment is large page aware
   140       alignment = lcm(os::large_page_size(), alignment);
   141   }
   143   return alignment;
   144 }
   146 // GenCollectorPolicy methods.
   148 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   149   return align_size_down_bounded(base_size / (NewRatio + 1), _min_alignment);
   150 }
   152 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   153                                                  size_t maximum_size) {
   154   size_t alignment = _min_alignment;
   155   size_t max_minus = maximum_size - alignment;
   156   return desired_size < max_minus ? desired_size : max_minus;
   157 }
   160 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   161                                                 size_t init_promo_size,
   162                                                 size_t init_survivor_size) {
   163   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   164   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   165                                         init_promo_size,
   166                                         init_survivor_size,
   167                                         max_gc_pause_sec,
   168                                         GCTimeRatio);
   169 }
   171 void GenCollectorPolicy::initialize_flags() {
   172   // All sizes must be multiples of the generation granularity.
   173   _min_alignment = (uintx) Generation::GenGrain;
   174   _max_alignment = compute_max_alignment();
   176   CollectorPolicy::initialize_flags();
   178   // All generational heaps have a youngest gen; handle those flags here.
   180   // Adjust max size parameters
   181   if (NewSize > MaxNewSize) {
   182     MaxNewSize = NewSize;
   183   }
   184   NewSize = align_size_down(NewSize, _min_alignment);
   185   MaxNewSize = align_size_down(MaxNewSize, _min_alignment);
   187   // Check validity of heap flags
   188   assert(NewSize     % _min_alignment == 0, "eden space alignment");
   189   assert(MaxNewSize  % _min_alignment == 0, "survivor space alignment");
   191   if (NewSize < 3 * _min_alignment) {
   192      // make sure there room for eden and two survivor spaces
   193     vm_exit_during_initialization("Too small new size specified");
   194   }
   195   if (SurvivorRatio < 1 || NewRatio < 1) {
   196     vm_exit_during_initialization("Invalid young gen ratio specified");
   197   }
   198 }
   200 void TwoGenerationCollectorPolicy::initialize_flags() {
   201   GenCollectorPolicy::initialize_flags();
   203   OldSize = align_size_down(OldSize, _min_alignment);
   205   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
   206     // NewRatio will be used later to set the young generation size so we use
   207     // it to calculate how big the heap should be based on the requested OldSize
   208     // and NewRatio.
   209     assert(NewRatio > 0, "NewRatio should have been set up earlier");
   210     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
   212     calculated_heapsize = align_size_up(calculated_heapsize, _max_alignment);
   213     MaxHeapSize = calculated_heapsize;
   214     InitialHeapSize = calculated_heapsize;
   215   }
   216   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
   218   // adjust max heap size if necessary
   219   if (NewSize + OldSize > MaxHeapSize) {
   220     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   221       // somebody set a maximum heap size with the intention that we should not
   222       // exceed it. Adjust New/OldSize as necessary.
   223       uintx calculated_size = NewSize + OldSize;
   224       double shrink_factor = (double) MaxHeapSize / calculated_size;
   225       // align
   226       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
   227       // OldSize is already aligned because above we aligned MaxHeapSize to
   228       // _max_alignment, and we just made sure that NewSize is aligned to
   229       // _min_alignment. In initialize_flags() we verified that _max_alignment
   230       // is a multiple of _min_alignment.
   231       OldSize = MaxHeapSize - NewSize;
   232     } else {
   233       MaxHeapSize = NewSize + OldSize;
   234     }
   235   }
   236   // need to do this again
   237   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
   239   // adjust max heap size if necessary
   240   if (NewSize + OldSize > MaxHeapSize) {
   241     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
   242       // somebody set a maximum heap size with the intention that we should not
   243       // exceed it. Adjust New/OldSize as necessary.
   244       uintx calculated_size = NewSize + OldSize;
   245       double shrink_factor = (double) MaxHeapSize / calculated_size;
   246       // align
   247       NewSize = align_size_down((uintx) (NewSize * shrink_factor), _min_alignment);
   248       // OldSize is already aligned because above we aligned MaxHeapSize to
   249       // _max_alignment, and we just made sure that NewSize is aligned to
   250       // _min_alignment. In initialize_flags() we verified that _max_alignment
   251       // is a multiple of _min_alignment.
   252       OldSize = MaxHeapSize - NewSize;
   253     } else {
   254       MaxHeapSize = NewSize + OldSize;
   255     }
   256   }
   257   // need to do this again
   258   MaxHeapSize = align_size_up(MaxHeapSize, _max_alignment);
   260   always_do_update_barrier = UseConcMarkSweepGC;
   262   // Check validity of heap flags
   263   assert(OldSize     % _min_alignment == 0, "old space alignment");
   264   assert(MaxHeapSize % _max_alignment == 0, "maximum heap alignment");
   265 }
   267 // Values set on the command line win over any ergonomically
   268 // set command line parameters.
   269 // Ergonomic choice of parameters are done before this
   270 // method is called.  Values for command line parameters such as NewSize
   271 // and MaxNewSize feed those ergonomic choices into this method.
   272 // This method makes the final generation sizings consistent with
   273 // themselves and with overall heap sizings.
   274 // In the absence of explicitly set command line flags, policies
   275 // such as the use of NewRatio are used to size the generation.
   276 void GenCollectorPolicy::initialize_size_info() {
   277   CollectorPolicy::initialize_size_info();
   279   // _min_alignment is used for alignment within a generation.
   280   // There is additional alignment done down stream for some
   281   // collectors that sometimes causes unwanted rounding up of
   282   // generations sizes.
   284   // Determine maximum size of gen0
   286   size_t max_new_size = 0;
   287   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
   288     if (MaxNewSize < _min_alignment) {
   289       max_new_size = _min_alignment;
   290     }
   291     if (MaxNewSize >= _max_heap_byte_size) {
   292       max_new_size = align_size_down(_max_heap_byte_size - _min_alignment,
   293                                      _min_alignment);
   294       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   295         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   296         "new generation size of " SIZE_FORMAT "k will be used.",
   297         MaxNewSize/K, _max_heap_byte_size/K, max_new_size/K);
   298     } else {
   299       max_new_size = align_size_down(MaxNewSize, _min_alignment);
   300     }
   302   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   303   // specially at this point to just use an ergonomically set
   304   // MaxNewSize to set max_new_size.  For cases with small
   305   // heaps such a policy often did not work because the MaxNewSize
   306   // was larger than the entire heap.  The interpretation given
   307   // to ergonomically set flags is that the flags are set
   308   // by different collectors for their own special needs but
   309   // are not allowed to badly shape the heap.  This allows the
   310   // different collectors to decide what's best for themselves
   311   // without having to factor in the overall heap shape.  It
   312   // can be the case in the future that the collectors would
   313   // only make "wise" ergonomics choices and this policy could
   314   // just accept those choices.  The choices currently made are
   315   // not always "wise".
   316   } else {
   317     max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
   318     // Bound the maximum size by NewSize below (since it historically
   319     // would have been NewSize and because the NewRatio calculation could
   320     // yield a size that is too small) and bound it by MaxNewSize above.
   321     // Ergonomics plays here by previously calculating the desired
   322     // NewSize and MaxNewSize.
   323     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   324   }
   325   assert(max_new_size > 0, "All paths should set max_new_size");
   327   // Given the maximum gen0 size, determine the initial and
   328   // minimum gen0 sizes.
   330   if (_max_heap_byte_size == _min_heap_byte_size) {
   331     // The maximum and minimum heap sizes are the same so
   332     // the generations minimum and initial must be the
   333     // same as its maximum.
   334     _min_gen0_size = max_new_size;
   335     _initial_gen0_size = max_new_size;
   336     _max_gen0_size = max_new_size;
   337   } else {
   338     size_t desired_new_size = 0;
   339     if (!FLAG_IS_DEFAULT(NewSize)) {
   340       // If NewSize is set ergonomically (for example by cms), it
   341       // would make sense to use it.  If it is used, also use it
   342       // to set the initial size.  Although there is no reason
   343       // the minimum size and the initial size have to be the same,
   344       // the current implementation gets into trouble during the calculation
   345       // of the tenured generation sizes if they are different.
   346       // Note that this makes the initial size and the minimum size
   347       // generally small compared to the NewRatio calculation.
   348       _min_gen0_size = NewSize;
   349       desired_new_size = NewSize;
   350       max_new_size = MAX2(max_new_size, NewSize);
   351     } else {
   352       // For the case where NewSize is the default, use NewRatio
   353       // to size the minimum and initial generation sizes.
   354       // Use the default NewSize as the floor for these values.  If
   355       // NewRatio is overly large, the resulting sizes can be too
   356       // small.
   357       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
   358       desired_new_size =
   359         MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
   360     }
   362     assert(_min_gen0_size > 0, "Sanity check");
   363     _initial_gen0_size = desired_new_size;
   364     _max_gen0_size = max_new_size;
   366     // At this point the desirable initial and minimum sizes have been
   367     // determined without regard to the maximum sizes.
   369     // Bound the sizes by the corresponding overall heap sizes.
   370     _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
   371     _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
   372     _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
   374     // At this point all three sizes have been checked against the
   375     // maximum sizes but have not been checked for consistency
   376     // among the three.
   378     // Final check min <= initial <= max
   379     _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
   380     _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
   381     _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
   382   }
   384   if (PrintGCDetails && Verbose) {
   385     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   386       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   387       _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   388   }
   389 }
   391 // Call this method during the sizing of the gen1 to make
   392 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   393 // the most freedom in sizing because it is done before the
   394 // policy for gen1 is applied.  Once gen1 policies have been applied,
   395 // there may be conflicts in the shape of the heap and this method
   396 // is used to make the needed adjustments.  The application of the
   397 // policies could be more sophisticated (iterative for example) but
   398 // keeping it simple also seems a worthwhile goal.
   399 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   400                                                      size_t* gen1_size_ptr,
   401                                                      const size_t heap_size,
   402                                                      const size_t min_gen1_size) {
   403   bool result = false;
   405   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   406     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
   407         (heap_size >= min_gen1_size + _min_alignment)) {
   408       // Adjust gen0 down to accommodate min_gen1_size
   409       *gen0_size_ptr = align_size_down_bounded(heap_size - min_gen1_size, _min_alignment);
   410       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   411       result = true;
   412     } else {
   413       *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _min_alignment);
   414     }
   415   }
   416   return result;
   417 }
   419 // Minimum sizes of the generations may be different than
   420 // the initial sizes.  An inconsistently is permitted here
   421 // in the total size that can be specified explicitly by
   422 // command line specification of OldSize and NewSize and
   423 // also a command line specification of -Xms.  Issue a warning
   424 // but allow the values to pass.
   426 void TwoGenerationCollectorPolicy::initialize_size_info() {
   427   GenCollectorPolicy::initialize_size_info();
   429   // At this point the minimum, initial and maximum sizes
   430   // of the overall heap and of gen0 have been determined.
   431   // The maximum gen1 size can be determined from the maximum gen0
   432   // and maximum heap size since no explicit flags exits
   433   // for setting the gen1 maximum.
   434   _max_gen1_size = _max_heap_byte_size - _max_gen0_size;
   435   _max_gen1_size =
   436     MAX2((uintx)align_size_down(_max_gen1_size, _min_alignment), _min_alignment);
   437   // If no explicit command line flag has been set for the
   438   // gen1 size, use what is left for gen1.
   439   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   440     // The user has not specified any value or ergonomics
   441     // has chosen a value (which may or may not be consistent
   442     // with the overall heap size).  In either case make
   443     // the minimum, maximum and initial sizes consistent
   444     // with the gen0 sizes and the overall heap sizes.
   445     assert(_min_heap_byte_size > _min_gen0_size,
   446       "gen0 has an unexpected minimum size");
   447     _min_gen1_size = _min_heap_byte_size - _min_gen0_size;
   448     _min_gen1_size =
   449       MAX2((uintx)align_size_down(_min_gen1_size, _min_alignment), _min_alignment);
   450     _initial_gen1_size = _initial_heap_byte_size - _initial_gen0_size;
   451     _initial_gen1_size =
   452       MAX2((uintx)align_size_down(_initial_gen1_size, _min_alignment), _min_alignment);
   453   } else {
   454     // It's been explicitly set on the command line.  Use the
   455     // OldSize and then determine the consequences.
   456     _min_gen1_size = OldSize;
   457     _initial_gen1_size = OldSize;
   459     // If the user has explicitly set an OldSize that is inconsistent
   460     // with other command line flags, issue a warning.
   461     // The generation minimums and the overall heap mimimum should
   462     // be within one heap alignment.
   463     if ((_min_gen1_size + _min_gen0_size + _min_alignment) < _min_heap_byte_size) {
   464       warning("Inconsistency between minimum heap size and minimum "
   465               "generation sizes: using minimum heap = " SIZE_FORMAT,
   466               _min_heap_byte_size);
   467     }
   468     if ((OldSize > _max_gen1_size)) {
   469       warning("Inconsistency between maximum heap size and maximum "
   470               "generation sizes: using maximum heap = " SIZE_FORMAT
   471               " -XX:OldSize flag is being ignored",
   472               _max_heap_byte_size);
   473     }
   474     // If there is an inconsistency between the OldSize and the minimum and/or
   475     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   476     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   477                           _min_heap_byte_size, OldSize)) {
   478       if (PrintGCDetails && Verbose) {
   479         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   480               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   481               _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   482       }
   483     }
   484     // Initial size
   485     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   486                           _initial_heap_byte_size, OldSize)) {
   487       if (PrintGCDetails && Verbose) {
   488         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   489           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   490           _min_gen0_size, _initial_gen0_size, _max_gen0_size);
   491       }
   492     }
   493   }
   494   // Enforce the maximum gen1 size.
   495   _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
   497   // Check that min gen1 <= initial gen1 <= max gen1
   498   _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
   499   _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
   501   if (PrintGCDetails && Verbose) {
   502     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   503       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   504       _min_gen1_size, _initial_gen1_size, _max_gen1_size);
   505   }
   506 }
   508 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   509                                         bool is_tlab,
   510                                         bool* gc_overhead_limit_was_exceeded) {
   511   GenCollectedHeap *gch = GenCollectedHeap::heap();
   513   debug_only(gch->check_for_valid_allocation_state());
   514   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   516   // In general gc_overhead_limit_was_exceeded should be false so
   517   // set it so here and reset it to true only if the gc time
   518   // limit is being exceeded as checked below.
   519   *gc_overhead_limit_was_exceeded = false;
   521   HeapWord* result = NULL;
   523   // Loop until the allocation is satisified,
   524   // or unsatisfied after GC.
   525   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
   526     HandleMark hm; // discard any handles allocated in each iteration
   528     // First allocation attempt is lock-free.
   529     Generation *gen0 = gch->get_gen(0);
   530     assert(gen0->supports_inline_contig_alloc(),
   531       "Otherwise, must do alloc within heap lock");
   532     if (gen0->should_allocate(size, is_tlab)) {
   533       result = gen0->par_allocate(size, is_tlab);
   534       if (result != NULL) {
   535         assert(gch->is_in_reserved(result), "result not in heap");
   536         return result;
   537       }
   538     }
   539     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   540     {
   541       MutexLocker ml(Heap_lock);
   542       if (PrintGC && Verbose) {
   543         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   544                       " attempting locked slow path allocation");
   545       }
   546       // Note that only large objects get a shot at being
   547       // allocated in later generations.
   548       bool first_only = ! should_try_older_generation_allocation(size);
   550       result = gch->attempt_allocation(size, is_tlab, first_only);
   551       if (result != NULL) {
   552         assert(gch->is_in_reserved(result), "result not in heap");
   553         return result;
   554       }
   556       if (GC_locker::is_active_and_needs_gc()) {
   557         if (is_tlab) {
   558           return NULL;  // Caller will retry allocating individual object
   559         }
   560         if (!gch->is_maximal_no_gc()) {
   561           // Try and expand heap to satisfy request
   562           result = expand_heap_and_allocate(size, is_tlab);
   563           // result could be null if we are out of space
   564           if (result != NULL) {
   565             return result;
   566           }
   567         }
   569         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
   570           return NULL; // we didn't get to do a GC and we didn't get any memory
   571         }
   573         // If this thread is not in a jni critical section, we stall
   574         // the requestor until the critical section has cleared and
   575         // GC allowed. When the critical section clears, a GC is
   576         // initiated by the last thread exiting the critical section; so
   577         // we retry the allocation sequence from the beginning of the loop,
   578         // rather than causing more, now probably unnecessary, GC attempts.
   579         JavaThread* jthr = JavaThread::current();
   580         if (!jthr->in_critical()) {
   581           MutexUnlocker mul(Heap_lock);
   582           // Wait for JNI critical section to be exited
   583           GC_locker::stall_until_clear();
   584           gclocker_stalled_count += 1;
   585           continue;
   586         } else {
   587           if (CheckJNICalls) {
   588             fatal("Possible deadlock due to allocating while"
   589                   " in jni critical section");
   590           }
   591           return NULL;
   592         }
   593       }
   595       // Read the gc count while the heap lock is held.
   596       gc_count_before = Universe::heap()->total_collections();
   597     }
   599     VM_GenCollectForAllocation op(size,
   600                                   is_tlab,
   601                                   gc_count_before);
   602     VMThread::execute(&op);
   603     if (op.prologue_succeeded()) {
   604       result = op.result();
   605       if (op.gc_locked()) {
   606          assert(result == NULL, "must be NULL if gc_locked() is true");
   607          continue;  // retry and/or stall as necessary
   608       }
   610       // Allocation has failed and a collection
   611       // has been done.  If the gc time limit was exceeded the
   612       // this time, return NULL so that an out-of-memory
   613       // will be thrown.  Clear gc_overhead_limit_exceeded
   614       // so that the overhead exceeded does not persist.
   616       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   617       const bool softrefs_clear = all_soft_refs_clear();
   619       if (limit_exceeded && softrefs_clear) {
   620         *gc_overhead_limit_was_exceeded = true;
   621         size_policy()->set_gc_overhead_limit_exceeded(false);
   622         if (op.result() != NULL) {
   623           CollectedHeap::fill_with_object(op.result(), size);
   624         }
   625         return NULL;
   626       }
   627       assert(result == NULL || gch->is_in_reserved(result),
   628              "result not in heap");
   629       return result;
   630     }
   632     // Give a warning if we seem to be looping forever.
   633     if ((QueuedAllocationWarningCount > 0) &&
   634         (try_count % QueuedAllocationWarningCount == 0)) {
   635           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   636                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   637     }
   638   }
   639 }
   641 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   642                                                        bool   is_tlab) {
   643   GenCollectedHeap *gch = GenCollectedHeap::heap();
   644   HeapWord* result = NULL;
   645   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   646     Generation *gen = gch->get_gen(i);
   647     if (gen->should_allocate(size, is_tlab)) {
   648       result = gen->expand_and_allocate(size, is_tlab);
   649     }
   650   }
   651   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   652   return result;
   653 }
   655 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   656                                                         bool   is_tlab) {
   657   GenCollectedHeap *gch = GenCollectedHeap::heap();
   658   GCCauseSetter x(gch, GCCause::_allocation_failure);
   659   HeapWord* result = NULL;
   661   assert(size != 0, "Precondition violated");
   662   if (GC_locker::is_active_and_needs_gc()) {
   663     // GC locker is active; instead of a collection we will attempt
   664     // to expand the heap, if there's room for expansion.
   665     if (!gch->is_maximal_no_gc()) {
   666       result = expand_heap_and_allocate(size, is_tlab);
   667     }
   668     return result;   // could be null if we are out of space
   669   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
   670     // Do an incremental collection.
   671     gch->do_collection(false            /* full */,
   672                        false            /* clear_all_soft_refs */,
   673                        size             /* size */,
   674                        is_tlab          /* is_tlab */,
   675                        number_of_generations() - 1 /* max_level */);
   676   } else {
   677     if (Verbose && PrintGCDetails) {
   678       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
   679     }
   680     // Try a full collection; see delta for bug id 6266275
   681     // for the original code and why this has been simplified
   682     // with from-space allocation criteria modified and
   683     // such allocation moved out of the safepoint path.
   684     gch->do_collection(true             /* full */,
   685                        false            /* clear_all_soft_refs */,
   686                        size             /* size */,
   687                        is_tlab          /* is_tlab */,
   688                        number_of_generations() - 1 /* max_level */);
   689   }
   691   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   693   if (result != NULL) {
   694     assert(gch->is_in_reserved(result), "result not in heap");
   695     return result;
   696   }
   698   // OK, collection failed, try expansion.
   699   result = expand_heap_and_allocate(size, is_tlab);
   700   if (result != NULL) {
   701     return result;
   702   }
   704   // If we reach this point, we're really out of memory. Try every trick
   705   // we can to reclaim memory. Force collection of soft references. Force
   706   // a complete compaction of the heap. Any additional methods for finding
   707   // free memory should be here, especially if they are expensive. If this
   708   // attempt fails, an OOM exception will be thrown.
   709   {
   710     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   712     gch->do_collection(true             /* full */,
   713                        true             /* clear_all_soft_refs */,
   714                        size             /* size */,
   715                        is_tlab          /* is_tlab */,
   716                        number_of_generations() - 1 /* max_level */);
   717   }
   719   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   720   if (result != NULL) {
   721     assert(gch->is_in_reserved(result), "result not in heap");
   722     return result;
   723   }
   725   assert(!should_clear_all_soft_refs(),
   726     "Flag should have been handled and cleared prior to this point");
   728   // What else?  We might try synchronous finalization later.  If the total
   729   // space available is large enough for the allocation, then a more
   730   // complete compaction phase than we've tried so far might be
   731   // appropriate.
   732   return NULL;
   733 }
   735 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
   736                                                  ClassLoaderData* loader_data,
   737                                                  size_t word_size,
   738                                                  Metaspace::MetadataType mdtype) {
   739   uint loop_count = 0;
   740   uint gc_count = 0;
   741   uint full_gc_count = 0;
   743   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
   745   do {
   746     MetaWord* result = NULL;
   747     if (GC_locker::is_active_and_needs_gc()) {
   748       // If the GC_locker is active, just expand and allocate.
   749       // If that does not succeed, wait if this thread is not
   750       // in a critical section itself.
   751       result =
   752         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
   753                                                                mdtype);
   754       if (result != NULL) {
   755         return result;
   756       }
   757       JavaThread* jthr = JavaThread::current();
   758       if (!jthr->in_critical()) {
   759         // Wait for JNI critical section to be exited
   760         GC_locker::stall_until_clear();
   761         // The GC invoked by the last thread leaving the critical
   762         // section will be a young collection and a full collection
   763         // is (currently) needed for unloading classes so continue
   764         // to the next iteration to get a full GC.
   765         continue;
   766       } else {
   767         if (CheckJNICalls) {
   768           fatal("Possible deadlock due to allocating while"
   769                 " in jni critical section");
   770         }
   771         return NULL;
   772       }
   773     }
   775     {  // Need lock to get self consistent gc_count's
   776       MutexLocker ml(Heap_lock);
   777       gc_count      = Universe::heap()->total_collections();
   778       full_gc_count = Universe::heap()->total_full_collections();
   779     }
   781     // Generate a VM operation
   782     VM_CollectForMetadataAllocation op(loader_data,
   783                                        word_size,
   784                                        mdtype,
   785                                        gc_count,
   786                                        full_gc_count,
   787                                        GCCause::_metadata_GC_threshold);
   788     VMThread::execute(&op);
   790     // If GC was locked out, try again.  Check
   791     // before checking success because the prologue
   792     // could have succeeded and the GC still have
   793     // been locked out.
   794     if (op.gc_locked()) {
   795       continue;
   796     }
   798     if (op.prologue_succeeded()) {
   799       return op.result();
   800     }
   801     loop_count++;
   802     if ((QueuedAllocationWarningCount > 0) &&
   803         (loop_count % QueuedAllocationWarningCount == 0)) {
   804       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
   805               " size=%d", loop_count, word_size);
   806     }
   807   } while (true);  // Until a GC is done
   808 }
   810 // Return true if any of the following is true:
   811 // . the allocation won't fit into the current young gen heap
   812 // . gc locker is occupied (jni critical section)
   813 // . heap memory is tight -- the most recent previous collection
   814 //   was a full collection because a partial collection (would
   815 //   have) failed and is likely to fail again
   816 bool GenCollectorPolicy::should_try_older_generation_allocation(
   817         size_t word_size) const {
   818   GenCollectedHeap* gch = GenCollectedHeap::heap();
   819   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   820   return    (word_size > heap_word_size(gen0_capacity))
   821          || GC_locker::is_active_and_needs_gc()
   822          || gch->incremental_collection_failed();
   823 }
   826 //
   827 // MarkSweepPolicy methods
   828 //
   830 MarkSweepPolicy::MarkSweepPolicy() {
   831   initialize_all();
   832 }
   834 void MarkSweepPolicy::initialize_generations() {
   835   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
   836   if (_generations == NULL)
   837     vm_exit_during_initialization("Unable to allocate gen spec");
   839   if (UseParNewGC) {
   840     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   841   } else {
   842     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   843   }
   844   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   846   if (_generations[0] == NULL || _generations[1] == NULL)
   847     vm_exit_during_initialization("Unable to allocate gen spec");
   848 }
   850 void MarkSweepPolicy::initialize_gc_policy_counters() {
   851   // initialize the policy counters - 2 collectors, 3 generations
   852   if (UseParNewGC) {
   853     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   854   } else {
   855     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   856   }
   857 }

mercurial