src/share/vm/opto/memnode.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1421
62001a362ce9
child 1497
dcdcc8c16e20
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_known_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
    98   Node *prev = NULL;
    99   Node *result = mchain;
   100   while (prev != result) {
   101     prev = result;
   102     if (result == start_mem)
   103       break;  // hit one of our sentinels
   104     // skip over a call which does not affect this memory slice
   105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   106       Node *proj_in = result->in(0);
   107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   108         break;  // hit one of our sentinels
   109       } else if (proj_in->is_Call()) {
   110         CallNode *call = proj_in->as_Call();
   111         if (!call->may_modify(t_adr, phase)) {
   112           result = call->in(TypeFunc::Memory);
   113         }
   114       } else if (proj_in->is_Initialize()) {
   115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   116         // Stop if this is the initialization for the object instance which
   117         // which contains this memory slice, otherwise skip over it.
   118         if (alloc != NULL && alloc->_idx != instance_id) {
   119           result = proj_in->in(TypeFunc::Memory);
   120         }
   121       } else if (proj_in->is_MemBar()) {
   122         result = proj_in->in(TypeFunc::Memory);
   123       } else {
   124         assert(false, "unexpected projection");
   125       }
   126     } else if (result->is_MergeMem()) {
   127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   128     }
   129   }
   130   return result;
   131 }
   133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   136   PhaseIterGVN *igvn = phase->is_IterGVN();
   137   Node *result = mchain;
   138   result = optimize_simple_memory_chain(result, t_adr, phase);
   139   if (is_instance && igvn != NULL  && result->is_Phi()) {
   140     PhiNode *mphi = result->as_Phi();
   141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   142     const TypePtr *t = mphi->adr_type();
   143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   145         t->is_oopptr()->cast_to_exactness(true)
   146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   148       // clone the Phi with our address type
   149       result = mphi->split_out_instance(t_adr, igvn);
   150     } else {
   151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   152     }
   153   }
   154   return result;
   155 }
   157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   158   uint alias_idx = phase->C->get_alias_index(tp);
   159   Node *mem = mmem;
   160 #ifdef ASSERT
   161   {
   162     // Check that current type is consistent with the alias index used during graph construction
   163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   164     bool consistent =  adr_check == NULL || adr_check->empty() ||
   165                        phase->C->must_alias(adr_check, alias_idx );
   166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   173       // don't assert if it is dead code.
   174       consistent = true;
   175     }
   176     if( !consistent ) {
   177       st->print("alias_idx==%d, adr_check==", alias_idx);
   178       if( adr_check == NULL ) {
   179         st->print("NULL");
   180       } else {
   181         adr_check->dump();
   182       }
   183       st->cr();
   184       print_alias_types();
   185       assert(consistent, "adr_check must match alias idx");
   186     }
   187   }
   188 #endif
   189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   190   // means an array I have not precisely typed yet.  Do not do any
   191   // alias stuff with it any time soon.
   192   const TypeOopPtr *tinst = tp->isa_oopptr();
   193   if( tp->base() != Type::AnyPtr &&
   194       !(tinst &&
   195         tinst->klass()->is_java_lang_Object() &&
   196         tinst->offset() == Type::OffsetBot) ) {
   197     // compress paths and change unreachable cycles to TOP
   198     // If not, we can update the input infinitely along a MergeMem cycle
   199     // Equivalent code in PhiNode::Ideal
   200     Node* m  = phase->transform(mmem);
   201     // If transformed to a MergeMem, get the desired slice
   202     // Otherwise the returned node represents memory for every slice
   203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   204     // Update input if it is progress over what we have now
   205   }
   206   return mem;
   207 }
   209 //--------------------------Ideal_common---------------------------------------
   210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   211 // Unhook non-raw memories from complete (macro-expanded) initializations.
   212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   213   // If our control input is a dead region, kill all below the region
   214   Node *ctl = in(MemNode::Control);
   215   if (ctl && remove_dead_region(phase, can_reshape))
   216     return this;
   217   ctl = in(MemNode::Control);
   218   // Don't bother trying to transform a dead node
   219   if( ctl && ctl->is_top() )  return NodeSentinel;
   221   PhaseIterGVN *igvn = phase->is_IterGVN();
   222   // Wait if control on the worklist.
   223   if (ctl && can_reshape && igvn != NULL) {
   224     Node* bol = NULL;
   225     Node* cmp = NULL;
   226     if (ctl->in(0)->is_If()) {
   227       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   228       bol = ctl->in(0)->in(1);
   229       if (bol->is_Bool())
   230         cmp = ctl->in(0)->in(1)->in(1);
   231     }
   232     if (igvn->_worklist.member(ctl) ||
   233         (bol != NULL && igvn->_worklist.member(bol)) ||
   234         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   235       // This control path may be dead.
   236       // Delay this memory node transformation until the control is processed.
   237       phase->is_IterGVN()->_worklist.push(this);
   238       return NodeSentinel; // caller will return NULL
   239     }
   240   }
   241   // Ignore if memory is dead, or self-loop
   242   Node *mem = in(MemNode::Memory);
   243   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   244   assert( mem != this, "dead loop in MemNode::Ideal" );
   246   Node *address = in(MemNode::Address);
   247   const Type *t_adr = phase->type( address );
   248   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   250   if( can_reshape && igvn != NULL &&
   251       (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
   252     // The address's base and type may change when the address is processed.
   253     // Delay this mem node transformation until the address is processed.
   254     phase->is_IterGVN()->_worklist.push(this);
   255     return NodeSentinel; // caller will return NULL
   256   }
   258 #ifdef ASSERT
   259   Node* base = NULL;
   260   if (address->is_AddP())
   261     base = address->in(AddPNode::Base);
   262   assert(base == NULL || t_adr->isa_rawptr() ||
   263         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   264 #endif
   266   // Avoid independent memory operations
   267   Node* old_mem = mem;
   269   // The code which unhooks non-raw memories from complete (macro-expanded)
   270   // initializations was removed. After macro-expansion all stores catched
   271   // by Initialize node became raw stores and there is no information
   272   // which memory slices they modify. So it is unsafe to move any memory
   273   // operation above these stores. Also in most cases hooked non-raw memories
   274   // were already unhooked by using information from detect_ptr_independence()
   275   // and find_previous_store().
   277   if (mem->is_MergeMem()) {
   278     MergeMemNode* mmem = mem->as_MergeMem();
   279     const TypePtr *tp = t_adr->is_ptr();
   281     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   282   }
   284   if (mem != old_mem) {
   285     set_req(MemNode::Memory, mem);
   286     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   287     return this;
   288   }
   290   // let the subclass continue analyzing...
   291   return NULL;
   292 }
   294 // Helper function for proving some simple control dominations.
   295 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   296 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   297 // is not a constant (dominated by the method's StartNode).
   298 // Used by MemNode::find_previous_store to prove that the
   299 // control input of a memory operation predates (dominates)
   300 // an allocation it wants to look past.
   301 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   302   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   303     return false; // Conservative answer for dead code
   305   // Check 'dom'. Skip Proj and CatchProj nodes.
   306   dom = dom->find_exact_control(dom);
   307   if (dom == NULL || dom->is_top())
   308     return false; // Conservative answer for dead code
   310   if (dom == sub) {
   311     // For the case when, for example, 'sub' is Initialize and the original
   312     // 'dom' is Proj node of the 'sub'.
   313     return false;
   314   }
   316   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   317     return true;
   319   // 'dom' dominates 'sub' if its control edge and control edges
   320   // of all its inputs dominate or equal to sub's control edge.
   322   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   323   // Or Region for the check in LoadNode::Ideal();
   324   // 'sub' should have sub->in(0) != NULL.
   325   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   326          sub->is_Region(), "expecting only these nodes");
   328   // Get control edge of 'sub'.
   329   Node* orig_sub = sub;
   330   sub = sub->find_exact_control(sub->in(0));
   331   if (sub == NULL || sub->is_top())
   332     return false; // Conservative answer for dead code
   334   assert(sub->is_CFG(), "expecting control");
   336   if (sub == dom)
   337     return true;
   339   if (sub->is_Start() || sub->is_Root())
   340     return false;
   342   {
   343     // Check all control edges of 'dom'.
   345     ResourceMark rm;
   346     Arena* arena = Thread::current()->resource_area();
   347     Node_List nlist(arena);
   348     Unique_Node_List dom_list(arena);
   350     dom_list.push(dom);
   351     bool only_dominating_controls = false;
   353     for (uint next = 0; next < dom_list.size(); next++) {
   354       Node* n = dom_list.at(next);
   355       if (n == orig_sub)
   356         return false; // One of dom's inputs dominated by sub.
   357       if (!n->is_CFG() && n->pinned()) {
   358         // Check only own control edge for pinned non-control nodes.
   359         n = n->find_exact_control(n->in(0));
   360         if (n == NULL || n->is_top())
   361           return false; // Conservative answer for dead code
   362         assert(n->is_CFG(), "expecting control");
   363         dom_list.push(n);
   364       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   365         only_dominating_controls = true;
   366       } else if (n->is_CFG()) {
   367         if (n->dominates(sub, nlist))
   368           only_dominating_controls = true;
   369         else
   370           return false;
   371       } else {
   372         // First, own control edge.
   373         Node* m = n->find_exact_control(n->in(0));
   374         if (m != NULL) {
   375           if (m->is_top())
   376             return false; // Conservative answer for dead code
   377           dom_list.push(m);
   378         }
   379         // Now, the rest of edges.
   380         uint cnt = n->req();
   381         for (uint i = 1; i < cnt; i++) {
   382           m = n->find_exact_control(n->in(i));
   383           if (m == NULL || m->is_top())
   384             continue;
   385           dom_list.push(m);
   386         }
   387       }
   388     }
   389     return only_dominating_controls;
   390   }
   391 }
   393 //---------------------detect_ptr_independence---------------------------------
   394 // Used by MemNode::find_previous_store to prove that two base
   395 // pointers are never equal.
   396 // The pointers are accompanied by their associated allocations,
   397 // if any, which have been previously discovered by the caller.
   398 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   399                                       Node* p2, AllocateNode* a2,
   400                                       PhaseTransform* phase) {
   401   // Attempt to prove that these two pointers cannot be aliased.
   402   // They may both manifestly be allocations, and they should differ.
   403   // Or, if they are not both allocations, they can be distinct constants.
   404   // Otherwise, one is an allocation and the other a pre-existing value.
   405   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   406     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   407   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   408     return (a1 != a2);
   409   } else if (a1 != NULL) {                  // one allocation a1
   410     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   411     return all_controls_dominate(p2, a1);
   412   } else { //(a2 != NULL)                   // one allocation a2
   413     return all_controls_dominate(p1, a2);
   414   }
   415   return false;
   416 }
   419 // The logic for reordering loads and stores uses four steps:
   420 // (a) Walk carefully past stores and initializations which we
   421 //     can prove are independent of this load.
   422 // (b) Observe that the next memory state makes an exact match
   423 //     with self (load or store), and locate the relevant store.
   424 // (c) Ensure that, if we were to wire self directly to the store,
   425 //     the optimizer would fold it up somehow.
   426 // (d) Do the rewiring, and return, depending on some other part of
   427 //     the optimizer to fold up the load.
   428 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   429 // specific to loads and stores, so they are handled by the callers.
   430 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   431 //
   432 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   433   Node*         ctrl   = in(MemNode::Control);
   434   Node*         adr    = in(MemNode::Address);
   435   intptr_t      offset = 0;
   436   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   437   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   439   if (offset == Type::OffsetBot)
   440     return NULL;            // cannot unalias unless there are precise offsets
   442   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   444   intptr_t size_in_bytes = memory_size();
   446   Node* mem = in(MemNode::Memory);   // start searching here...
   448   int cnt = 50;             // Cycle limiter
   449   for (;;) {                // While we can dance past unrelated stores...
   450     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   452     if (mem->is_Store()) {
   453       Node* st_adr = mem->in(MemNode::Address);
   454       intptr_t st_offset = 0;
   455       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   456       if (st_base == NULL)
   457         break;              // inscrutable pointer
   458       if (st_offset != offset && st_offset != Type::OffsetBot) {
   459         const int MAX_STORE = BytesPerLong;
   460         if (st_offset >= offset + size_in_bytes ||
   461             st_offset <= offset - MAX_STORE ||
   462             st_offset <= offset - mem->as_Store()->memory_size()) {
   463           // Success:  The offsets are provably independent.
   464           // (You may ask, why not just test st_offset != offset and be done?
   465           // The answer is that stores of different sizes can co-exist
   466           // in the same sequence of RawMem effects.  We sometimes initialize
   467           // a whole 'tile' of array elements with a single jint or jlong.)
   468           mem = mem->in(MemNode::Memory);
   469           continue;           // (a) advance through independent store memory
   470         }
   471       }
   472       if (st_base != base &&
   473           detect_ptr_independence(base, alloc,
   474                                   st_base,
   475                                   AllocateNode::Ideal_allocation(st_base, phase),
   476                                   phase)) {
   477         // Success:  The bases are provably independent.
   478         mem = mem->in(MemNode::Memory);
   479         continue;           // (a) advance through independent store memory
   480       }
   482       // (b) At this point, if the bases or offsets do not agree, we lose,
   483       // since we have not managed to prove 'this' and 'mem' independent.
   484       if (st_base == base && st_offset == offset) {
   485         return mem;         // let caller handle steps (c), (d)
   486       }
   488     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   489       InitializeNode* st_init = mem->in(0)->as_Initialize();
   490       AllocateNode*  st_alloc = st_init->allocation();
   491       if (st_alloc == NULL)
   492         break;              // something degenerated
   493       bool known_identical = false;
   494       bool known_independent = false;
   495       if (alloc == st_alloc)
   496         known_identical = true;
   497       else if (alloc != NULL)
   498         known_independent = true;
   499       else if (all_controls_dominate(this, st_alloc))
   500         known_independent = true;
   502       if (known_independent) {
   503         // The bases are provably independent: Either they are
   504         // manifestly distinct allocations, or else the control
   505         // of this load dominates the store's allocation.
   506         int alias_idx = phase->C->get_alias_index(adr_type());
   507         if (alias_idx == Compile::AliasIdxRaw) {
   508           mem = st_alloc->in(TypeFunc::Memory);
   509         } else {
   510           mem = st_init->memory(alias_idx);
   511         }
   512         continue;           // (a) advance through independent store memory
   513       }
   515       // (b) at this point, if we are not looking at a store initializing
   516       // the same allocation we are loading from, we lose.
   517       if (known_identical) {
   518         // From caller, can_see_stored_value will consult find_captured_store.
   519         return mem;         // let caller handle steps (c), (d)
   520       }
   522     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   523       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   524       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   525         CallNode *call = mem->in(0)->as_Call();
   526         if (!call->may_modify(addr_t, phase)) {
   527           mem = call->in(TypeFunc::Memory);
   528           continue;         // (a) advance through independent call memory
   529         }
   530       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   531         mem = mem->in(0)->in(TypeFunc::Memory);
   532         continue;           // (a) advance through independent MemBar memory
   533       } else if (mem->is_MergeMem()) {
   534         int alias_idx = phase->C->get_alias_index(adr_type());
   535         mem = mem->as_MergeMem()->memory_at(alias_idx);
   536         continue;           // (a) advance through independent MergeMem memory
   537       }
   538     }
   540     // Unless there is an explicit 'continue', we must bail out here,
   541     // because 'mem' is an inscrutable memory state (e.g., a call).
   542     break;
   543   }
   545   return NULL;              // bail out
   546 }
   548 //----------------------calculate_adr_type-------------------------------------
   549 // Helper function.  Notices when the given type of address hits top or bottom.
   550 // Also, asserts a cross-check of the type against the expected address type.
   551 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   552   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   553   #ifdef PRODUCT
   554   cross_check = NULL;
   555   #else
   556   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   557   #endif
   558   const TypePtr* tp = t->isa_ptr();
   559   if (tp == NULL) {
   560     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   561     return TypePtr::BOTTOM;           // touches lots of memory
   562   } else {
   563     #ifdef ASSERT
   564     // %%%% [phh] We don't check the alias index if cross_check is
   565     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   566     if (cross_check != NULL &&
   567         cross_check != TypePtr::BOTTOM &&
   568         cross_check != TypeRawPtr::BOTTOM) {
   569       // Recheck the alias index, to see if it has changed (due to a bug).
   570       Compile* C = Compile::current();
   571       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   572              "must stay in the original alias category");
   573       // The type of the address must be contained in the adr_type,
   574       // disregarding "null"-ness.
   575       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   576       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   577       assert(cross_check->meet(tp_notnull) == cross_check,
   578              "real address must not escape from expected memory type");
   579     }
   580     #endif
   581     return tp;
   582   }
   583 }
   585 //------------------------adr_phi_is_loop_invariant----------------------------
   586 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   587 // loop is loop invariant. Make a quick traversal of Phi and associated
   588 // CastPP nodes, looking to see if they are a closed group within the loop.
   589 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   590   // The idea is that the phi-nest must boil down to only CastPP nodes
   591   // with the same data. This implies that any path into the loop already
   592   // includes such a CastPP, and so the original cast, whatever its input,
   593   // must be covered by an equivalent cast, with an earlier control input.
   594   ResourceMark rm;
   596   // The loop entry input of the phi should be the unique dominating
   597   // node for every Phi/CastPP in the loop.
   598   Unique_Node_List closure;
   599   closure.push(adr_phi->in(LoopNode::EntryControl));
   601   // Add the phi node and the cast to the worklist.
   602   Unique_Node_List worklist;
   603   worklist.push(adr_phi);
   604   if( cast != NULL ){
   605     if( !cast->is_ConstraintCast() ) return false;
   606     worklist.push(cast);
   607   }
   609   // Begin recursive walk of phi nodes.
   610   while( worklist.size() ){
   611     // Take a node off the worklist
   612     Node *n = worklist.pop();
   613     if( !closure.member(n) ){
   614       // Add it to the closure.
   615       closure.push(n);
   616       // Make a sanity check to ensure we don't waste too much time here.
   617       if( closure.size() > 20) return false;
   618       // This node is OK if:
   619       //  - it is a cast of an identical value
   620       //  - or it is a phi node (then we add its inputs to the worklist)
   621       // Otherwise, the node is not OK, and we presume the cast is not invariant
   622       if( n->is_ConstraintCast() ){
   623         worklist.push(n->in(1));
   624       } else if( n->is_Phi() ) {
   625         for( uint i = 1; i < n->req(); i++ ) {
   626           worklist.push(n->in(i));
   627         }
   628       } else {
   629         return false;
   630       }
   631     }
   632   }
   634   // Quit when the worklist is empty, and we've found no offending nodes.
   635   return true;
   636 }
   638 //------------------------------Ideal_DU_postCCP-------------------------------
   639 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   640 // going away in this pass and we need to make this memory op depend on the
   641 // gating null check.
   642 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   643   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   644 }
   646 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   647 // some sense; we get to keep around the knowledge that an oop is not-null
   648 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   649 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   650 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   651 // some of the more trivial cases in the optimizer.  Removing more useless
   652 // Phi's started allowing Loads to illegally float above null checks.  I gave
   653 // up on this approach.  CNC 10/20/2000
   654 // This static method may be called not from MemNode (EncodePNode calls it).
   655 // Only the control edge of the node 'n' might be updated.
   656 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   657   Node *skipped_cast = NULL;
   658   // Need a null check?  Regular static accesses do not because they are
   659   // from constant addresses.  Array ops are gated by the range check (which
   660   // always includes a NULL check).  Just check field ops.
   661   if( n->in(MemNode::Control) == NULL ) {
   662     // Scan upwards for the highest location we can place this memory op.
   663     while( true ) {
   664       switch( adr->Opcode() ) {
   666       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   667         adr = adr->in(AddPNode::Base);
   668         continue;
   670       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   671         adr = adr->in(1);
   672         continue;
   674       case Op_CastPP:
   675         // If the CastPP is useless, just peek on through it.
   676         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   677           // Remember the cast that we've peeked though. If we peek
   678           // through more than one, then we end up remembering the highest
   679           // one, that is, if in a loop, the one closest to the top.
   680           skipped_cast = adr;
   681           adr = adr->in(1);
   682           continue;
   683         }
   684         // CastPP is going away in this pass!  We need this memory op to be
   685         // control-dependent on the test that is guarding the CastPP.
   686         ccp->hash_delete(n);
   687         n->set_req(MemNode::Control, adr->in(0));
   688         ccp->hash_insert(n);
   689         return n;
   691       case Op_Phi:
   692         // Attempt to float above a Phi to some dominating point.
   693         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   694           // If we've already peeked through a Cast (which could have set the
   695           // control), we can't float above a Phi, because the skipped Cast
   696           // may not be loop invariant.
   697           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   698             adr = adr->in(1);
   699             continue;
   700           }
   701         }
   703         // Intentional fallthrough!
   705         // No obvious dominating point.  The mem op is pinned below the Phi
   706         // by the Phi itself.  If the Phi goes away (no true value is merged)
   707         // then the mem op can float, but not indefinitely.  It must be pinned
   708         // behind the controls leading to the Phi.
   709       case Op_CheckCastPP:
   710         // These usually stick around to change address type, however a
   711         // useless one can be elided and we still need to pick up a control edge
   712         if (adr->in(0) == NULL) {
   713           // This CheckCastPP node has NO control and is likely useless. But we
   714           // need check further up the ancestor chain for a control input to keep
   715           // the node in place. 4959717.
   716           skipped_cast = adr;
   717           adr = adr->in(1);
   718           continue;
   719         }
   720         ccp->hash_delete(n);
   721         n->set_req(MemNode::Control, adr->in(0));
   722         ccp->hash_insert(n);
   723         return n;
   725         // List of "safe" opcodes; those that implicitly block the memory
   726         // op below any null check.
   727       case Op_CastX2P:          // no null checks on native pointers
   728       case Op_Parm:             // 'this' pointer is not null
   729       case Op_LoadP:            // Loading from within a klass
   730       case Op_LoadN:            // Loading from within a klass
   731       case Op_LoadKlass:        // Loading from within a klass
   732       case Op_LoadNKlass:       // Loading from within a klass
   733       case Op_ConP:             // Loading from a klass
   734       case Op_ConN:             // Loading from a klass
   735       case Op_CreateEx:         // Sucking up the guts of an exception oop
   736       case Op_Con:              // Reading from TLS
   737       case Op_CMoveP:           // CMoveP is pinned
   738       case Op_CMoveN:           // CMoveN is pinned
   739         break;                  // No progress
   741       case Op_Proj:             // Direct call to an allocation routine
   742       case Op_SCMemProj:        // Memory state from store conditional ops
   743 #ifdef ASSERT
   744         {
   745           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   746           const Node* call = adr->in(0);
   747           if (call->is_CallJava()) {
   748             const CallJavaNode* call_java = call->as_CallJava();
   749             const TypeTuple *r = call_java->tf()->range();
   750             assert(r->cnt() > TypeFunc::Parms, "must return value");
   751             const Type* ret_type = r->field_at(TypeFunc::Parms);
   752             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   753             // We further presume that this is one of
   754             // new_instance_Java, new_array_Java, or
   755             // the like, but do not assert for this.
   756           } else if (call->is_Allocate()) {
   757             // similar case to new_instance_Java, etc.
   758           } else if (!call->is_CallLeaf()) {
   759             // Projections from fetch_oop (OSR) are allowed as well.
   760             ShouldNotReachHere();
   761           }
   762         }
   763 #endif
   764         break;
   765       default:
   766         ShouldNotReachHere();
   767       }
   768       break;
   769     }
   770   }
   772   return  NULL;               // No progress
   773 }
   776 //=============================================================================
   777 uint LoadNode::size_of() const { return sizeof(*this); }
   778 uint LoadNode::cmp( const Node &n ) const
   779 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   780 const Type *LoadNode::bottom_type() const { return _type; }
   781 uint LoadNode::ideal_reg() const {
   782   return Matcher::base2reg[_type->base()];
   783 }
   785 #ifndef PRODUCT
   786 void LoadNode::dump_spec(outputStream *st) const {
   787   MemNode::dump_spec(st);
   788   if( !Verbose && !WizardMode ) {
   789     // standard dump does this in Verbose and WizardMode
   790     st->print(" #"); _type->dump_on(st);
   791   }
   792 }
   793 #endif
   796 //----------------------------LoadNode::make-----------------------------------
   797 // Polymorphic factory method:
   798 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   799   Compile* C = gvn.C;
   801   // sanity check the alias category against the created node type
   802   assert(!(adr_type->isa_oopptr() &&
   803            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   804          "use LoadKlassNode instead");
   805   assert(!(adr_type->isa_aryptr() &&
   806            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   807          "use LoadRangeNode instead");
   808   switch (bt) {
   809   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   810   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   811   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   812   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   813   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   814   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   815   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
   816   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
   817   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   818   case T_OBJECT:
   819 #ifdef _LP64
   820     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   821       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   822       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   823     } else
   824 #endif
   825     {
   826       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   827       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   828     }
   829   }
   830   ShouldNotReachHere();
   831   return (LoadNode*)NULL;
   832 }
   834 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   835   bool require_atomic = true;
   836   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   837 }
   842 //------------------------------hash-------------------------------------------
   843 uint LoadNode::hash() const {
   844   // unroll addition of interesting fields
   845   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   846 }
   848 //---------------------------can_see_stored_value------------------------------
   849 // This routine exists to make sure this set of tests is done the same
   850 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   851 // will change the graph shape in a way which makes memory alive twice at the
   852 // same time (uses the Oracle model of aliasing), then some
   853 // LoadXNode::Identity will fold things back to the equivalence-class model
   854 // of aliasing.
   855 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   856   Node* ld_adr = in(MemNode::Address);
   858   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   859   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   860   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   861       atp->field() != NULL && !atp->field()->is_volatile()) {
   862     uint alias_idx = atp->index();
   863     bool final = atp->field()->is_final();
   864     Node* result = NULL;
   865     Node* current = st;
   866     // Skip through chains of MemBarNodes checking the MergeMems for
   867     // new states for the slice of this load.  Stop once any other
   868     // kind of node is encountered.  Loads from final memory can skip
   869     // through any kind of MemBar but normal loads shouldn't skip
   870     // through MemBarAcquire since the could allow them to move out of
   871     // a synchronized region.
   872     while (current->is_Proj()) {
   873       int opc = current->in(0)->Opcode();
   874       if ((final && opc == Op_MemBarAcquire) ||
   875           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   876         Node* mem = current->in(0)->in(TypeFunc::Memory);
   877         if (mem->is_MergeMem()) {
   878           MergeMemNode* merge = mem->as_MergeMem();
   879           Node* new_st = merge->memory_at(alias_idx);
   880           if (new_st == merge->base_memory()) {
   881             // Keep searching
   882             current = merge->base_memory();
   883             continue;
   884           }
   885           // Save the new memory state for the slice and fall through
   886           // to exit.
   887           result = new_st;
   888         }
   889       }
   890       break;
   891     }
   892     if (result != NULL) {
   893       st = result;
   894     }
   895   }
   898   // Loop around twice in the case Load -> Initialize -> Store.
   899   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   900   for (int trip = 0; trip <= 1; trip++) {
   902     if (st->is_Store()) {
   903       Node* st_adr = st->in(MemNode::Address);
   904       if (!phase->eqv(st_adr, ld_adr)) {
   905         // Try harder before giving up...  Match raw and non-raw pointers.
   906         intptr_t st_off = 0;
   907         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   908         if (alloc == NULL)       return NULL;
   909         intptr_t ld_off = 0;
   910         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   911         if (alloc != allo2)      return NULL;
   912         if (ld_off != st_off)    return NULL;
   913         // At this point we have proven something like this setup:
   914         //  A = Allocate(...)
   915         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   916         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   917         // (Actually, we haven't yet proven the Q's are the same.)
   918         // In other words, we are loading from a casted version of
   919         // the same pointer-and-offset that we stored to.
   920         // Thus, we are able to replace L by V.
   921       }
   922       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   923       if (store_Opcode() != st->Opcode())
   924         return NULL;
   925       return st->in(MemNode::ValueIn);
   926     }
   928     intptr_t offset = 0;  // scratch
   930     // A load from a freshly-created object always returns zero.
   931     // (This can happen after LoadNode::Ideal resets the load's memory input
   932     // to find_captured_store, which returned InitializeNode::zero_memory.)
   933     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   934         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   935         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   936       // return a zero value for the load's basic type
   937       // (This is one of the few places where a generic PhaseTransform
   938       // can create new nodes.  Think of it as lazily manifesting
   939       // virtually pre-existing constants.)
   940       return phase->zerocon(memory_type());
   941     }
   943     // A load from an initialization barrier can match a captured store.
   944     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   945       InitializeNode* init = st->in(0)->as_Initialize();
   946       AllocateNode* alloc = init->allocation();
   947       if (alloc != NULL &&
   948           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   949         // examine a captured store value
   950         st = init->find_captured_store(offset, memory_size(), phase);
   951         if (st != NULL)
   952           continue;             // take one more trip around
   953       }
   954     }
   956     break;
   957   }
   959   return NULL;
   960 }
   962 //----------------------is_instance_field_load_with_local_phi------------------
   963 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   964   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   965       in(MemNode::Address)->is_AddP() ) {
   966     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   967     // Only instances.
   968     if( t_oop != NULL && t_oop->is_known_instance_field() &&
   969         t_oop->offset() != Type::OffsetBot &&
   970         t_oop->offset() != Type::OffsetTop) {
   971       return true;
   972     }
   973   }
   974   return false;
   975 }
   977 //------------------------------Identity---------------------------------------
   978 // Loads are identity if previous store is to same address
   979 Node *LoadNode::Identity( PhaseTransform *phase ) {
   980   // If the previous store-maker is the right kind of Store, and the store is
   981   // to the same address, then we are equal to the value stored.
   982   Node* mem = in(MemNode::Memory);
   983   Node* value = can_see_stored_value(mem, phase);
   984   if( value ) {
   985     // byte, short & char stores truncate naturally.
   986     // A load has to load the truncated value which requires
   987     // some sort of masking operation and that requires an
   988     // Ideal call instead of an Identity call.
   989     if (memory_size() < BytesPerInt) {
   990       // If the input to the store does not fit with the load's result type,
   991       // it must be truncated via an Ideal call.
   992       if (!phase->type(value)->higher_equal(phase->type(this)))
   993         return this;
   994     }
   995     // (This works even when value is a Con, but LoadNode::Value
   996     // usually runs first, producing the singleton type of the Con.)
   997     return value;
   998   }
  1000   // Search for an existing data phi which was generated before for the same
  1001   // instance's field to avoid infinite generation of phis in a loop.
  1002   Node *region = mem->in(0);
  1003   if (is_instance_field_load_with_local_phi(region)) {
  1004     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1005     int this_index  = phase->C->get_alias_index(addr_t);
  1006     int this_offset = addr_t->offset();
  1007     int this_id    = addr_t->is_oopptr()->instance_id();
  1008     const Type* this_type = bottom_type();
  1009     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1010       Node* phi = region->fast_out(i);
  1011       if (phi->is_Phi() && phi != mem &&
  1012           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1013         return phi;
  1018   return this;
  1022 // Returns true if the AliasType refers to the field that holds the
  1023 // cached box array.  Currently only handles the IntegerCache case.
  1024 static bool is_autobox_cache(Compile::AliasType* atp) {
  1025   if (atp != NULL && atp->field() != NULL) {
  1026     ciField* field = atp->field();
  1027     ciSymbol* klass = field->holder()->name();
  1028     if (field->name() == ciSymbol::cache_field_name() &&
  1029         field->holder()->uses_default_loader() &&
  1030         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1031       return true;
  1034   return false;
  1037 // Fetch the base value in the autobox array
  1038 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1039   if (atp != NULL && atp->field() != NULL) {
  1040     ciField* field = atp->field();
  1041     ciSymbol* klass = field->holder()->name();
  1042     if (field->name() == ciSymbol::cache_field_name() &&
  1043         field->holder()->uses_default_loader() &&
  1044         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1045       assert(field->is_constant(), "what?");
  1046       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1047       // Fetch the box object at the base of the array and get its value
  1048       ciInstance* box = array->obj_at(0)->as_instance();
  1049       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1050       if (ik->nof_nonstatic_fields() == 1) {
  1051         // This should be true nonstatic_field_at requires calling
  1052         // nof_nonstatic_fields so check it anyway
  1053         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1054         cache_offset = c.as_int();
  1056       return true;
  1059   return false;
  1062 // Returns true if the AliasType refers to the value field of an
  1063 // autobox object.  Currently only handles Integer.
  1064 static bool is_autobox_object(Compile::AliasType* atp) {
  1065   if (atp != NULL && atp->field() != NULL) {
  1066     ciField* field = atp->field();
  1067     ciSymbol* klass = field->holder()->name();
  1068     if (field->name() == ciSymbol::value_name() &&
  1069         field->holder()->uses_default_loader() &&
  1070         klass == ciSymbol::java_lang_Integer()) {
  1071       return true;
  1074   return false;
  1078 // We're loading from an object which has autobox behaviour.
  1079 // If this object is result of a valueOf call we'll have a phi
  1080 // merging a newly allocated object and a load from the cache.
  1081 // We want to replace this load with the original incoming
  1082 // argument to the valueOf call.
  1083 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1084   Node* base = in(Address)->in(AddPNode::Base);
  1085   if (base->is_Phi() && base->req() == 3) {
  1086     AllocateNode* allocation = NULL;
  1087     int allocation_index = -1;
  1088     int load_index = -1;
  1089     for (uint i = 1; i < base->req(); i++) {
  1090       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1091       if (allocation != NULL) {
  1092         allocation_index = i;
  1093         load_index = 3 - allocation_index;
  1094         break;
  1097     bool has_load = ( allocation != NULL &&
  1098                       (base->in(load_index)->is_Load() ||
  1099                        base->in(load_index)->is_DecodeN() &&
  1100                        base->in(load_index)->in(1)->is_Load()) );
  1101     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1102       // Push the loads from the phi that comes from valueOf up
  1103       // through it to allow elimination of the loads and the recovery
  1104       // of the original value.
  1105       Node* mem_phi = in(Memory);
  1106       Node* offset = in(Address)->in(AddPNode::Offset);
  1107       Node* region = base->in(0);
  1109       Node* in1 = clone();
  1110       Node* in1_addr = in1->in(Address)->clone();
  1111       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1112       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1113       in1_addr->set_req(AddPNode::Offset, offset);
  1114       in1->set_req(0, region->in(allocation_index));
  1115       in1->set_req(Address, in1_addr);
  1116       in1->set_req(Memory, mem_phi->in(allocation_index));
  1118       Node* in2 = clone();
  1119       Node* in2_addr = in2->in(Address)->clone();
  1120       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1121       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1122       in2_addr->set_req(AddPNode::Offset, offset);
  1123       in2->set_req(0, region->in(load_index));
  1124       in2->set_req(Address, in2_addr);
  1125       in2->set_req(Memory, mem_phi->in(load_index));
  1127       in1_addr = phase->transform(in1_addr);
  1128       in1 =      phase->transform(in1);
  1129       in2_addr = phase->transform(in2_addr);
  1130       in2 =      phase->transform(in2);
  1132       PhiNode* result = PhiNode::make_blank(region, this);
  1133       result->set_req(allocation_index, in1);
  1134       result->set_req(load_index, in2);
  1135       return result;
  1137   } else if (base->is_Load() ||
  1138              base->is_DecodeN() && base->in(1)->is_Load()) {
  1139     if (base->is_DecodeN()) {
  1140       // Get LoadN node which loads cached Integer object
  1141       base = base->in(1);
  1143     // Eliminate the load of Integer.value for integers from the cache
  1144     // array by deriving the value from the index into the array.
  1145     // Capture the offset of the load and then reverse the computation.
  1146     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1147     if (load_base->is_DecodeN()) {
  1148       // Get LoadN node which loads IntegerCache.cache field
  1149       load_base = load_base->in(1);
  1151     if (load_base != NULL) {
  1152       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1153       intptr_t cache_offset;
  1154       int shift = -1;
  1155       Node* cache = NULL;
  1156       if (is_autobox_cache(atp)) {
  1157         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1158         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1160       if (cache != NULL && base->in(Address)->is_AddP()) {
  1161         Node* elements[4];
  1162         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1163         int cache_low;
  1164         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1165           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1166           // Add up all the offsets making of the address of the load
  1167           Node* result = elements[0];
  1168           for (int i = 1; i < count; i++) {
  1169             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1171           // Remove the constant offset from the address and then
  1172           // remove the scaling of the offset to recover the original index.
  1173           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1174           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1175             // Peel the shift off directly but wrap it in a dummy node
  1176             // since Ideal can't return existing nodes
  1177             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1178           } else {
  1179             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1181 #ifdef _LP64
  1182           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1183 #endif
  1184           return result;
  1189   return NULL;
  1192 //------------------------------split_through_phi------------------------------
  1193 // Split instance field load through Phi.
  1194 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1195   Node* mem     = in(MemNode::Memory);
  1196   Node* address = in(MemNode::Address);
  1197   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1198   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1200   assert(mem->is_Phi() && (t_oop != NULL) &&
  1201          t_oop->is_known_instance_field(), "invalide conditions");
  1203   Node *region = mem->in(0);
  1204   if (region == NULL) {
  1205     return NULL; // Wait stable graph
  1207   uint cnt = mem->req();
  1208   for( uint i = 1; i < cnt; i++ ) {
  1209     Node *in = mem->in(i);
  1210     if( in == NULL ) {
  1211       return NULL; // Wait stable graph
  1214   // Check for loop invariant.
  1215   if (cnt == 3) {
  1216     for( uint i = 1; i < cnt; i++ ) {
  1217       Node *in = mem->in(i);
  1218       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1219       if (m == mem) {
  1220         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1221         return this;
  1225   // Split through Phi (see original code in loopopts.cpp).
  1226   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1228   // Do nothing here if Identity will find a value
  1229   // (to avoid infinite chain of value phis generation).
  1230   if ( !phase->eqv(this, this->Identity(phase)) )
  1231     return NULL;
  1233   // Skip the split if the region dominates some control edge of the address.
  1234   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1235     return NULL;
  1237   const Type* this_type = this->bottom_type();
  1238   int this_index  = phase->C->get_alias_index(addr_t);
  1239   int this_offset = addr_t->offset();
  1240   int this_iid    = addr_t->is_oopptr()->instance_id();
  1241   int wins = 0;
  1242   PhaseIterGVN *igvn = phase->is_IterGVN();
  1243   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1244   for( uint i = 1; i < region->req(); i++ ) {
  1245     Node *x;
  1246     Node* the_clone = NULL;
  1247     if( region->in(i) == phase->C->top() ) {
  1248       x = phase->C->top();      // Dead path?  Use a dead data op
  1249     } else {
  1250       x = this->clone();        // Else clone up the data op
  1251       the_clone = x;            // Remember for possible deletion.
  1252       // Alter data node to use pre-phi inputs
  1253       if( this->in(0) == region ) {
  1254         x->set_req( 0, region->in(i) );
  1255       } else {
  1256         x->set_req( 0, NULL );
  1258       for( uint j = 1; j < this->req(); j++ ) {
  1259         Node *in = this->in(j);
  1260         if( in->is_Phi() && in->in(0) == region )
  1261           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1264     // Check for a 'win' on some paths
  1265     const Type *t = x->Value(igvn);
  1267     bool singleton = t->singleton();
  1269     // See comments in PhaseIdealLoop::split_thru_phi().
  1270     if( singleton && t == Type::TOP ) {
  1271       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1274     if( singleton ) {
  1275       wins++;
  1276       x = igvn->makecon(t);
  1277     } else {
  1278       // We now call Identity to try to simplify the cloned node.
  1279       // Note that some Identity methods call phase->type(this).
  1280       // Make sure that the type array is big enough for
  1281       // our new node, even though we may throw the node away.
  1282       // (This tweaking with igvn only works because x is a new node.)
  1283       igvn->set_type(x, t);
  1284       // If x is a TypeNode, capture any more-precise type permanently into Node
  1285       // otherwise it will be not updated during igvn->transform since
  1286       // igvn->type(x) is set to x->Value() already.
  1287       x->raise_bottom_type(t);
  1288       Node *y = x->Identity(igvn);
  1289       if( y != x ) {
  1290         wins++;
  1291         x = y;
  1292       } else {
  1293         y = igvn->hash_find(x);
  1294         if( y ) {
  1295           wins++;
  1296           x = y;
  1297         } else {
  1298           // Else x is a new node we are keeping
  1299           // We do not need register_new_node_with_optimizer
  1300           // because set_type has already been called.
  1301           igvn->_worklist.push(x);
  1305     if (x != the_clone && the_clone != NULL)
  1306       igvn->remove_dead_node(the_clone);
  1307     phi->set_req(i, x);
  1309   if( wins > 0 ) {
  1310     // Record Phi
  1311     igvn->register_new_node_with_optimizer(phi);
  1312     return phi;
  1314   igvn->remove_dead_node(phi);
  1315   return NULL;
  1318 //------------------------------Ideal------------------------------------------
  1319 // If the load is from Field memory and the pointer is non-null, we can
  1320 // zero out the control input.
  1321 // If the offset is constant and the base is an object allocation,
  1322 // try to hook me up to the exact initializing store.
  1323 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1324   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1325   if (p)  return (p == NodeSentinel) ? NULL : p;
  1327   Node* ctrl    = in(MemNode::Control);
  1328   Node* address = in(MemNode::Address);
  1330   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1331   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1332   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1333       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1334     ctrl = ctrl->in(0);
  1335     set_req(MemNode::Control,ctrl);
  1338   intptr_t ignore = 0;
  1339   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1340   if (base != NULL
  1341       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1342     // Check for useless control edge in some common special cases
  1343     if (in(MemNode::Control) != NULL
  1344         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1345         && all_controls_dominate(base, phase->C->start())) {
  1346       // A method-invariant, non-null address (constant or 'this' argument).
  1347       set_req(MemNode::Control, NULL);
  1350     if (EliminateAutoBox && can_reshape) {
  1351       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1352       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1353       if (is_autobox_object(atp)) {
  1354         Node* result = eliminate_autobox(phase);
  1355         if (result != NULL) return result;
  1360   Node* mem = in(MemNode::Memory);
  1361   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1363   if (addr_t != NULL) {
  1364     // try to optimize our memory input
  1365     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1366     if (opt_mem != mem) {
  1367       set_req(MemNode::Memory, opt_mem);
  1368       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1369       return this;
  1371     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1372     if (can_reshape && opt_mem->is_Phi() &&
  1373         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1374       // Split instance field load through Phi.
  1375       Node* result = split_through_phi(phase);
  1376       if (result != NULL) return result;
  1380   // Check for prior store with a different base or offset; make Load
  1381   // independent.  Skip through any number of them.  Bail out if the stores
  1382   // are in an endless dead cycle and report no progress.  This is a key
  1383   // transform for Reflection.  However, if after skipping through the Stores
  1384   // we can't then fold up against a prior store do NOT do the transform as
  1385   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1386   // array memory alive twice: once for the hoisted Load and again after the
  1387   // bypassed Store.  This situation only works if EVERYBODY who does
  1388   // anti-dependence work knows how to bypass.  I.e. we need all
  1389   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1390   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1391   // fold up, do so.
  1392   Node* prev_mem = find_previous_store(phase);
  1393   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1394   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1395     // (c) See if we can fold up on the spot, but don't fold up here.
  1396     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1397     // just return a prior value, which is done by Identity calls.
  1398     if (can_see_stored_value(prev_mem, phase)) {
  1399       // Make ready for step (d):
  1400       set_req(MemNode::Memory, prev_mem);
  1401       return this;
  1405   return NULL;                  // No further progress
  1408 // Helper to recognize certain Klass fields which are invariant across
  1409 // some group of array types (e.g., int[] or all T[] where T < Object).
  1410 const Type*
  1411 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1412                                  ciKlass* klass) const {
  1413   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1414     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1415     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1416     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1417     return TypeInt::make(klass->modifier_flags());
  1419   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1420     // The field is Klass::_access_flags.  Return its (constant) value.
  1421     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1422     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1423     return TypeInt::make(klass->access_flags());
  1425   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1426     // The field is Klass::_layout_helper.  Return its constant value if known.
  1427     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1428     return TypeInt::make(klass->layout_helper());
  1431   // No match.
  1432   return NULL;
  1435 //------------------------------Value-----------------------------------------
  1436 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1437   // Either input is TOP ==> the result is TOP
  1438   Node* mem = in(MemNode::Memory);
  1439   const Type *t1 = phase->type(mem);
  1440   if (t1 == Type::TOP)  return Type::TOP;
  1441   Node* adr = in(MemNode::Address);
  1442   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1443   if (tp == NULL || tp->empty())  return Type::TOP;
  1444   int off = tp->offset();
  1445   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1447   // Try to guess loaded type from pointer type
  1448   if (tp->base() == Type::AryPtr) {
  1449     const Type *t = tp->is_aryptr()->elem();
  1450     // Don't do this for integer types. There is only potential profit if
  1451     // the element type t is lower than _type; that is, for int types, if _type is
  1452     // more restrictive than t.  This only happens here if one is short and the other
  1453     // char (both 16 bits), and in those cases we've made an intentional decision
  1454     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1455     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1456     //
  1457     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1458     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1459     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1460     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1461     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1462     // In fact, that could have been the original type of p1, and p1 could have
  1463     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1464     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1465     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1466         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1467       // t might actually be lower than _type, if _type is a unique
  1468       // concrete subclass of abstract class t.
  1469       // Make sure the reference is not into the header, by comparing
  1470       // the offset against the offset of the start of the array's data.
  1471       // Different array types begin at slightly different offsets (12 vs. 16).
  1472       // We choose T_BYTE as an example base type that is least restrictive
  1473       // as to alignment, which will therefore produce the smallest
  1474       // possible base offset.
  1475       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1476       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1477         const Type* jt = t->join(_type);
  1478         // In any case, do not allow the join, per se, to empty out the type.
  1479         if (jt->empty() && !t->empty()) {
  1480           // This can happen if a interface-typed array narrows to a class type.
  1481           jt = _type;
  1484         if (EliminateAutoBox && adr->is_AddP()) {
  1485           // The pointers in the autobox arrays are always non-null
  1486           Node* base = adr->in(AddPNode::Base);
  1487           if (base != NULL &&
  1488               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1489             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1490             if (is_autobox_cache(atp)) {
  1491               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1495         return jt;
  1498   } else if (tp->base() == Type::InstPtr) {
  1499     assert( off != Type::OffsetBot ||
  1500             // arrays can be cast to Objects
  1501             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1502             // unsafe field access may not have a constant offset
  1503             phase->C->has_unsafe_access(),
  1504             "Field accesses must be precise" );
  1505     // For oop loads, we expect the _type to be precise
  1506   } else if (tp->base() == Type::KlassPtr) {
  1507     assert( off != Type::OffsetBot ||
  1508             // arrays can be cast to Objects
  1509             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1510             // also allow array-loading from the primary supertype
  1511             // array during subtype checks
  1512             Opcode() == Op_LoadKlass,
  1513             "Field accesses must be precise" );
  1514     // For klass/static loads, we expect the _type to be precise
  1517   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1518   if (tkls != NULL && !StressReflectiveCode) {
  1519     ciKlass* klass = tkls->klass();
  1520     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1521       // We are loading a field from a Klass metaobject whose identity
  1522       // is known at compile time (the type is "exact" or "precise").
  1523       // Check for fields we know are maintained as constants by the VM.
  1524       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1525         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1526         // (Folds up type checking code.)
  1527         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1528         return TypeInt::make(klass->super_check_offset());
  1530       // Compute index into primary_supers array
  1531       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1532       // Check for overflowing; use unsigned compare to handle the negative case.
  1533       if( depth < ciKlass::primary_super_limit() ) {
  1534         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1535         // (Folds up type checking code.)
  1536         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1537         ciKlass *ss = klass->super_of_depth(depth);
  1538         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1540       const Type* aift = load_array_final_field(tkls, klass);
  1541       if (aift != NULL)  return aift;
  1542       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1543           && klass->is_array_klass()) {
  1544         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1545         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1546         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1547         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1549       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1550         // The field is Klass::_java_mirror.  Return its (constant) value.
  1551         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1552         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1553         return TypeInstPtr::make(klass->java_mirror());
  1557     // We can still check if we are loading from the primary_supers array at a
  1558     // shallow enough depth.  Even though the klass is not exact, entries less
  1559     // than or equal to its super depth are correct.
  1560     if (klass->is_loaded() ) {
  1561       ciType *inner = klass->klass();
  1562       while( inner->is_obj_array_klass() )
  1563         inner = inner->as_obj_array_klass()->base_element_type();
  1564       if( inner->is_instance_klass() &&
  1565           !inner->as_instance_klass()->flags().is_interface() ) {
  1566         // Compute index into primary_supers array
  1567         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1568         // Check for overflowing; use unsigned compare to handle the negative case.
  1569         if( depth < ciKlass::primary_super_limit() &&
  1570             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1571           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1572           // (Folds up type checking code.)
  1573           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1574           ciKlass *ss = klass->super_of_depth(depth);
  1575           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1580     // If the type is enough to determine that the thing is not an array,
  1581     // we can give the layout_helper a positive interval type.
  1582     // This will help short-circuit some reflective code.
  1583     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1584         && !klass->is_array_klass() // not directly typed as an array
  1585         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1586         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1587         ) {
  1588       // Note:  When interfaces are reliable, we can narrow the interface
  1589       // test to (klass != Serializable && klass != Cloneable).
  1590       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1591       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1592       // The key property of this type is that it folds up tests
  1593       // for array-ness, since it proves that the layout_helper is positive.
  1594       // Thus, a generic value like the basic object layout helper works fine.
  1595       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1599   // If we are loading from a freshly-allocated object, produce a zero,
  1600   // if the load is provably beyond the header of the object.
  1601   // (Also allow a variable load from a fresh array to produce zero.)
  1602   if (ReduceFieldZeroing) {
  1603     Node* value = can_see_stored_value(mem,phase);
  1604     if (value != NULL && value->is_Con())
  1605       return value->bottom_type();
  1608   const TypeOopPtr *tinst = tp->isa_oopptr();
  1609   if (tinst != NULL && tinst->is_known_instance_field()) {
  1610     // If we have an instance type and our memory input is the
  1611     // programs's initial memory state, there is no matching store,
  1612     // so just return a zero of the appropriate type
  1613     Node *mem = in(MemNode::Memory);
  1614     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1615       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1616       return Type::get_zero_type(_type->basic_type());
  1619   return _type;
  1622 //------------------------------match_edge-------------------------------------
  1623 // Do we Match on this edge index or not?  Match only the address.
  1624 uint LoadNode::match_edge(uint idx) const {
  1625   return idx == MemNode::Address;
  1628 //--------------------------LoadBNode::Ideal--------------------------------------
  1629 //
  1630 //  If the previous store is to the same address as this load,
  1631 //  and the value stored was larger than a byte, replace this load
  1632 //  with the value stored truncated to a byte.  If no truncation is
  1633 //  needed, the replacement is done in LoadNode::Identity().
  1634 //
  1635 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1636   Node* mem = in(MemNode::Memory);
  1637   Node* value = can_see_stored_value(mem,phase);
  1638   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1639     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1640     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1642   // Identity call will handle the case where truncation is not needed.
  1643   return LoadNode::Ideal(phase, can_reshape);
  1646 //--------------------------LoadUBNode::Ideal-------------------------------------
  1647 //
  1648 //  If the previous store is to the same address as this load,
  1649 //  and the value stored was larger than a byte, replace this load
  1650 //  with the value stored truncated to a byte.  If no truncation is
  1651 //  needed, the replacement is done in LoadNode::Identity().
  1652 //
  1653 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1654   Node* mem = in(MemNode::Memory);
  1655   Node* value = can_see_stored_value(mem, phase);
  1656   if (value && !phase->type(value)->higher_equal(_type))
  1657     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
  1658   // Identity call will handle the case where truncation is not needed.
  1659   return LoadNode::Ideal(phase, can_reshape);
  1662 //--------------------------LoadUSNode::Ideal-------------------------------------
  1663 //
  1664 //  If the previous store is to the same address as this load,
  1665 //  and the value stored was larger than a char, replace this load
  1666 //  with the value stored truncated to a char.  If no truncation is
  1667 //  needed, the replacement is done in LoadNode::Identity().
  1668 //
  1669 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1670   Node* mem = in(MemNode::Memory);
  1671   Node* value = can_see_stored_value(mem,phase);
  1672   if( value && !phase->type(value)->higher_equal( _type ) )
  1673     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1674   // Identity call will handle the case where truncation is not needed.
  1675   return LoadNode::Ideal(phase, can_reshape);
  1678 //--------------------------LoadSNode::Ideal--------------------------------------
  1679 //
  1680 //  If the previous store is to the same address as this load,
  1681 //  and the value stored was larger than a short, replace this load
  1682 //  with the value stored truncated to a short.  If no truncation is
  1683 //  needed, the replacement is done in LoadNode::Identity().
  1684 //
  1685 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1686   Node* mem = in(MemNode::Memory);
  1687   Node* value = can_see_stored_value(mem,phase);
  1688   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1689     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1690     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1692   // Identity call will handle the case where truncation is not needed.
  1693   return LoadNode::Ideal(phase, can_reshape);
  1696 //=============================================================================
  1697 //----------------------------LoadKlassNode::make------------------------------
  1698 // Polymorphic factory method:
  1699 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1700   Compile* C = gvn.C;
  1701   Node *ctl = NULL;
  1702   // sanity check the alias category against the created node type
  1703   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1704   assert(adr_type != NULL, "expecting TypeOopPtr");
  1705 #ifdef _LP64
  1706   if (adr_type->is_ptr_to_narrowoop()) {
  1707     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1708     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1710 #endif
  1711   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1712   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1715 //------------------------------Value------------------------------------------
  1716 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1717   return klass_value_common(phase);
  1720 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1721   // Either input is TOP ==> the result is TOP
  1722   const Type *t1 = phase->type( in(MemNode::Memory) );
  1723   if (t1 == Type::TOP)  return Type::TOP;
  1724   Node *adr = in(MemNode::Address);
  1725   const Type *t2 = phase->type( adr );
  1726   if (t2 == Type::TOP)  return Type::TOP;
  1727   const TypePtr *tp = t2->is_ptr();
  1728   if (TypePtr::above_centerline(tp->ptr()) ||
  1729       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1731   // Return a more precise klass, if possible
  1732   const TypeInstPtr *tinst = tp->isa_instptr();
  1733   if (tinst != NULL) {
  1734     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1735     int offset = tinst->offset();
  1736     if (ik == phase->C->env()->Class_klass()
  1737         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1738             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1739       // We are loading a special hidden field from a Class mirror object,
  1740       // the field which points to the VM's Klass metaobject.
  1741       ciType* t = tinst->java_mirror_type();
  1742       // java_mirror_type returns non-null for compile-time Class constants.
  1743       if (t != NULL) {
  1744         // constant oop => constant klass
  1745         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1746           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1748         if (!t->is_klass()) {
  1749           // a primitive Class (e.g., int.class) has NULL for a klass field
  1750           return TypePtr::NULL_PTR;
  1752         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1753         return TypeKlassPtr::make(t->as_klass());
  1755       // non-constant mirror, so we can't tell what's going on
  1757     if( !ik->is_loaded() )
  1758       return _type;             // Bail out if not loaded
  1759     if (offset == oopDesc::klass_offset_in_bytes()) {
  1760       if (tinst->klass_is_exact()) {
  1761         return TypeKlassPtr::make(ik);
  1763       // See if we can become precise: no subklasses and no interface
  1764       // (Note:  We need to support verified interfaces.)
  1765       if (!ik->is_interface() && !ik->has_subklass()) {
  1766         //assert(!UseExactTypes, "this code should be useless with exact types");
  1767         // Add a dependence; if any subclass added we need to recompile
  1768         if (!ik->is_final()) {
  1769           // %%% should use stronger assert_unique_concrete_subtype instead
  1770           phase->C->dependencies()->assert_leaf_type(ik);
  1772         // Return precise klass
  1773         return TypeKlassPtr::make(ik);
  1776       // Return root of possible klass
  1777       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1781   // Check for loading klass from an array
  1782   const TypeAryPtr *tary = tp->isa_aryptr();
  1783   if( tary != NULL ) {
  1784     ciKlass *tary_klass = tary->klass();
  1785     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1786         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1787       if (tary->klass_is_exact()) {
  1788         return TypeKlassPtr::make(tary_klass);
  1790       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1791       // If the klass is an object array, we defer the question to the
  1792       // array component klass.
  1793       if( ak->is_obj_array_klass() ) {
  1794         assert( ak->is_loaded(), "" );
  1795         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1796         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1797           ciInstanceKlass* ik = base_k->as_instance_klass();
  1798           // See if we can become precise: no subklasses and no interface
  1799           if (!ik->is_interface() && !ik->has_subklass()) {
  1800             //assert(!UseExactTypes, "this code should be useless with exact types");
  1801             // Add a dependence; if any subclass added we need to recompile
  1802             if (!ik->is_final()) {
  1803               phase->C->dependencies()->assert_leaf_type(ik);
  1805             // Return precise array klass
  1806             return TypeKlassPtr::make(ak);
  1809         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1810       } else {                  // Found a type-array?
  1811         //assert(!UseExactTypes, "this code should be useless with exact types");
  1812         assert( ak->is_type_array_klass(), "" );
  1813         return TypeKlassPtr::make(ak); // These are always precise
  1818   // Check for loading klass from an array klass
  1819   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1820   if (tkls != NULL && !StressReflectiveCode) {
  1821     ciKlass* klass = tkls->klass();
  1822     if( !klass->is_loaded() )
  1823       return _type;             // Bail out if not loaded
  1824     if( klass->is_obj_array_klass() &&
  1825         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1826       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1827       // // Always returning precise element type is incorrect,
  1828       // // e.g., element type could be object and array may contain strings
  1829       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1831       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1832       // according to the element type's subclassing.
  1833       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1835     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1836         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1837       ciKlass* sup = klass->as_instance_klass()->super();
  1838       // The field is Klass::_super.  Return its (constant) value.
  1839       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1840       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1844   // Bailout case
  1845   return LoadNode::Value(phase);
  1848 //------------------------------Identity---------------------------------------
  1849 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1850 // Also feed through the klass in Allocate(...klass...)._klass.
  1851 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1852   return klass_identity_common(phase);
  1855 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1856   Node* x = LoadNode::Identity(phase);
  1857   if (x != this)  return x;
  1859   // Take apart the address into an oop and and offset.
  1860   // Return 'this' if we cannot.
  1861   Node*    adr    = in(MemNode::Address);
  1862   intptr_t offset = 0;
  1863   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1864   if (base == NULL)     return this;
  1865   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1866   if (toop == NULL)     return this;
  1868   // We can fetch the klass directly through an AllocateNode.
  1869   // This works even if the klass is not constant (clone or newArray).
  1870   if (offset == oopDesc::klass_offset_in_bytes()) {
  1871     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1872     if (allocated_klass != NULL) {
  1873       return allocated_klass;
  1877   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1878   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1879   // See inline_native_Class_query for occurrences of these patterns.
  1880   // Java Example:  x.getClass().isAssignableFrom(y)
  1881   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1882   //
  1883   // This improves reflective code, often making the Class
  1884   // mirror go completely dead.  (Current exception:  Class
  1885   // mirrors may appear in debug info, but we could clean them out by
  1886   // introducing a new debug info operator for klassOop.java_mirror).
  1887   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1888       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1889           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1890     // We are loading a special hidden field from a Class mirror,
  1891     // the field which points to its Klass or arrayKlass metaobject.
  1892     if (base->is_Load()) {
  1893       Node* adr2 = base->in(MemNode::Address);
  1894       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1895       if (tkls != NULL && !tkls->empty()
  1896           && (tkls->klass()->is_instance_klass() ||
  1897               tkls->klass()->is_array_klass())
  1898           && adr2->is_AddP()
  1899           ) {
  1900         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1901         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1902           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1904         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1905           return adr2->in(AddPNode::Base);
  1911   return this;
  1915 //------------------------------Value------------------------------------------
  1916 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1917   const Type *t = klass_value_common(phase);
  1918   if (t == Type::TOP)
  1919     return t;
  1921   return t->make_narrowoop();
  1924 //------------------------------Identity---------------------------------------
  1925 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1926 // Also feed through the klass in Allocate(...klass...)._klass.
  1927 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1928   Node *x = klass_identity_common(phase);
  1930   const Type *t = phase->type( x );
  1931   if( t == Type::TOP ) return x;
  1932   if( t->isa_narrowoop()) return x;
  1934   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  1937 //------------------------------Value-----------------------------------------
  1938 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1939   // Either input is TOP ==> the result is TOP
  1940   const Type *t1 = phase->type( in(MemNode::Memory) );
  1941   if( t1 == Type::TOP ) return Type::TOP;
  1942   Node *adr = in(MemNode::Address);
  1943   const Type *t2 = phase->type( adr );
  1944   if( t2 == Type::TOP ) return Type::TOP;
  1945   const TypePtr *tp = t2->is_ptr();
  1946   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1947   const TypeAryPtr *tap = tp->isa_aryptr();
  1948   if( !tap ) return _type;
  1949   return tap->size();
  1952 //-------------------------------Ideal---------------------------------------
  1953 // Feed through the length in AllocateArray(...length...)._length.
  1954 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1955   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1956   if (p)  return (p == NodeSentinel) ? NULL : p;
  1958   // Take apart the address into an oop and and offset.
  1959   // Return 'this' if we cannot.
  1960   Node*    adr    = in(MemNode::Address);
  1961   intptr_t offset = 0;
  1962   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  1963   if (base == NULL)     return NULL;
  1964   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1965   if (tary == NULL)     return NULL;
  1967   // We can fetch the length directly through an AllocateArrayNode.
  1968   // This works even if the length is not constant (clone or newArray).
  1969   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1970     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  1971     if (alloc != NULL) {
  1972       Node* allocated_length = alloc->Ideal_length();
  1973       Node* len = alloc->make_ideal_length(tary, phase);
  1974       if (allocated_length != len) {
  1975         // New CastII improves on this.
  1976         return len;
  1981   return NULL;
  1984 //------------------------------Identity---------------------------------------
  1985 // Feed through the length in AllocateArray(...length...)._length.
  1986 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1987   Node* x = LoadINode::Identity(phase);
  1988   if (x != this)  return x;
  1990   // Take apart the address into an oop and and offset.
  1991   // Return 'this' if we cannot.
  1992   Node*    adr    = in(MemNode::Address);
  1993   intptr_t offset = 0;
  1994   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1995   if (base == NULL)     return this;
  1996   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1997   if (tary == NULL)     return this;
  1999   // We can fetch the length directly through an AllocateArrayNode.
  2000   // This works even if the length is not constant (clone or newArray).
  2001   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2002     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2003     if (alloc != NULL) {
  2004       Node* allocated_length = alloc->Ideal_length();
  2005       // Do not allow make_ideal_length to allocate a CastII node.
  2006       Node* len = alloc->make_ideal_length(tary, phase, false);
  2007       if (allocated_length == len) {
  2008         // Return allocated_length only if it would not be improved by a CastII.
  2009         return allocated_length;
  2014   return this;
  2018 //=============================================================================
  2019 //---------------------------StoreNode::make-----------------------------------
  2020 // Polymorphic factory method:
  2021 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2022   Compile* C = gvn.C;
  2024   switch (bt) {
  2025   case T_BOOLEAN:
  2026   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  2027   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  2028   case T_CHAR:
  2029   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  2030   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  2031   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  2032   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  2033   case T_ADDRESS:
  2034   case T_OBJECT:
  2035 #ifdef _LP64
  2036     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  2037         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  2038          adr->bottom_type()->isa_rawptr())) {
  2039       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2040       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  2041     } else
  2042 #endif
  2044       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  2047   ShouldNotReachHere();
  2048   return (StoreNode*)NULL;
  2051 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2052   bool require_atomic = true;
  2053   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2057 //--------------------------bottom_type----------------------------------------
  2058 const Type *StoreNode::bottom_type() const {
  2059   return Type::MEMORY;
  2062 //------------------------------hash-------------------------------------------
  2063 uint StoreNode::hash() const {
  2064   // unroll addition of interesting fields
  2065   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2067   // Since they are not commoned, do not hash them:
  2068   return NO_HASH;
  2071 //------------------------------Ideal------------------------------------------
  2072 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2073 // When a store immediately follows a relevant allocation/initialization,
  2074 // try to capture it into the initialization, or hoist it above.
  2075 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2076   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2077   if (p)  return (p == NodeSentinel) ? NULL : p;
  2079   Node* mem     = in(MemNode::Memory);
  2080   Node* address = in(MemNode::Address);
  2082   // Back-to-back stores to same address?  Fold em up.
  2083   // Generally unsafe if I have intervening uses...
  2084   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  2085     // Looking at a dead closed cycle of memory?
  2086     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2088     assert(Opcode() == mem->Opcode() ||
  2089            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2090            "no mismatched stores, except on raw memory");
  2092     if (mem->outcnt() == 1 &&           // check for intervening uses
  2093         mem->as_Store()->memory_size() <= this->memory_size()) {
  2094       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2095       // For example, 'mem' might be the final state at a conditional return.
  2096       // Or, 'mem' might be used by some node which is live at the same time
  2097       // 'this' is live, which might be unschedulable.  So, require exactly
  2098       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2099       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2100       if (can_reshape) {  // (%%% is this an anachronism?)
  2101         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2102                   phase->is_IterGVN());
  2103       } else {
  2104         // It's OK to do this in the parser, since DU info is always accurate,
  2105         // and the parser always refers to nodes via SafePointNode maps.
  2106         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2108       return this;
  2112   // Capture an unaliased, unconditional, simple store into an initializer.
  2113   // Or, if it is independent of the allocation, hoist it above the allocation.
  2114   if (ReduceFieldZeroing && /*can_reshape &&*/
  2115       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2116     InitializeNode* init = mem->in(0)->as_Initialize();
  2117     intptr_t offset = init->can_capture_store(this, phase);
  2118     if (offset > 0) {
  2119       Node* moved = init->capture_store(this, offset, phase);
  2120       // If the InitializeNode captured me, it made a raw copy of me,
  2121       // and I need to disappear.
  2122       if (moved != NULL) {
  2123         // %%% hack to ensure that Ideal returns a new node:
  2124         mem = MergeMemNode::make(phase->C, mem);
  2125         return mem;             // fold me away
  2130   return NULL;                  // No further progress
  2133 //------------------------------Value-----------------------------------------
  2134 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2135   // Either input is TOP ==> the result is TOP
  2136   const Type *t1 = phase->type( in(MemNode::Memory) );
  2137   if( t1 == Type::TOP ) return Type::TOP;
  2138   const Type *t2 = phase->type( in(MemNode::Address) );
  2139   if( t2 == Type::TOP ) return Type::TOP;
  2140   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2141   if( t3 == Type::TOP ) return Type::TOP;
  2142   return Type::MEMORY;
  2145 //------------------------------Identity---------------------------------------
  2146 // Remove redundant stores:
  2147 //   Store(m, p, Load(m, p)) changes to m.
  2148 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2149 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2150   Node* mem = in(MemNode::Memory);
  2151   Node* adr = in(MemNode::Address);
  2152   Node* val = in(MemNode::ValueIn);
  2154   // Load then Store?  Then the Store is useless
  2155   if (val->is_Load() &&
  2156       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2157       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2158       val->as_Load()->store_Opcode() == Opcode()) {
  2159     return mem;
  2162   // Two stores in a row of the same value?
  2163   if (mem->is_Store() &&
  2164       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2165       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2166       mem->Opcode() == Opcode()) {
  2167     return mem;
  2170   // Store of zero anywhere into a freshly-allocated object?
  2171   // Then the store is useless.
  2172   // (It must already have been captured by the InitializeNode.)
  2173   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2174     // a newly allocated object is already all-zeroes everywhere
  2175     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2176       return mem;
  2179     // the store may also apply to zero-bits in an earlier object
  2180     Node* prev_mem = find_previous_store(phase);
  2181     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2182     if (prev_mem != NULL) {
  2183       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2184       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2185         // prev_val and val might differ by a cast; it would be good
  2186         // to keep the more informative of the two.
  2187         return mem;
  2192   return this;
  2195 //------------------------------match_edge-------------------------------------
  2196 // Do we Match on this edge index or not?  Match only memory & value
  2197 uint StoreNode::match_edge(uint idx) const {
  2198   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2201 //------------------------------cmp--------------------------------------------
  2202 // Do not common stores up together.  They generally have to be split
  2203 // back up anyways, so do not bother.
  2204 uint StoreNode::cmp( const Node &n ) const {
  2205   return (&n == this);          // Always fail except on self
  2208 //------------------------------Ideal_masked_input-----------------------------
  2209 // Check for a useless mask before a partial-word store
  2210 // (StoreB ... (AndI valIn conIa) )
  2211 // If (conIa & mask == mask) this simplifies to
  2212 // (StoreB ... (valIn) )
  2213 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2214   Node *val = in(MemNode::ValueIn);
  2215   if( val->Opcode() == Op_AndI ) {
  2216     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2217     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2218       set_req(MemNode::ValueIn, val->in(1));
  2219       return this;
  2222   return NULL;
  2226 //------------------------------Ideal_sign_extended_input----------------------
  2227 // Check for useless sign-extension before a partial-word store
  2228 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2229 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2230 // (StoreB ... (valIn) )
  2231 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2232   Node *val = in(MemNode::ValueIn);
  2233   if( val->Opcode() == Op_RShiftI ) {
  2234     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2235     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2236       Node *shl = val->in(1);
  2237       if( shl->Opcode() == Op_LShiftI ) {
  2238         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2239         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2240           set_req(MemNode::ValueIn, shl->in(1));
  2241           return this;
  2246   return NULL;
  2249 //------------------------------value_never_loaded-----------------------------------
  2250 // Determine whether there are any possible loads of the value stored.
  2251 // For simplicity, we actually check if there are any loads from the
  2252 // address stored to, not just for loads of the value stored by this node.
  2253 //
  2254 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2255   Node *adr = in(Address);
  2256   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2257   if (adr_oop == NULL)
  2258     return false;
  2259   if (!adr_oop->is_known_instance_field())
  2260     return false; // if not a distinct instance, there may be aliases of the address
  2261   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2262     Node *use = adr->fast_out(i);
  2263     int opc = use->Opcode();
  2264     if (use->is_Load() || use->is_LoadStore()) {
  2265       return false;
  2268   return true;
  2271 //=============================================================================
  2272 //------------------------------Ideal------------------------------------------
  2273 // If the store is from an AND mask that leaves the low bits untouched, then
  2274 // we can skip the AND operation.  If the store is from a sign-extension
  2275 // (a left shift, then right shift) we can skip both.
  2276 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2277   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2278   if( progress != NULL ) return progress;
  2280   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2281   if( progress != NULL ) return progress;
  2283   // Finally check the default case
  2284   return StoreNode::Ideal(phase, can_reshape);
  2287 //=============================================================================
  2288 //------------------------------Ideal------------------------------------------
  2289 // If the store is from an AND mask that leaves the low bits untouched, then
  2290 // we can skip the AND operation
  2291 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2292   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2293   if( progress != NULL ) return progress;
  2295   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2296   if( progress != NULL ) return progress;
  2298   // Finally check the default case
  2299   return StoreNode::Ideal(phase, can_reshape);
  2302 //=============================================================================
  2303 //------------------------------Identity---------------------------------------
  2304 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2305   // No need to card mark when storing a null ptr
  2306   Node* my_store = in(MemNode::OopStore);
  2307   if (my_store->is_Store()) {
  2308     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2309     if( t1 == TypePtr::NULL_PTR ) {
  2310       return in(MemNode::Memory);
  2313   return this;
  2316 //=============================================================================
  2317 //------------------------------Ideal---------------------------------------
  2318 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2319   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2320   if (progress != NULL) return progress;
  2322   Node* my_store = in(MemNode::OopStore);
  2323   if (my_store->is_MergeMem()) {
  2324     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2325     set_req(MemNode::OopStore, mem);
  2326     return this;
  2329   return NULL;
  2332 //------------------------------Value-----------------------------------------
  2333 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2334   // Either input is TOP ==> the result is TOP
  2335   const Type *t = phase->type( in(MemNode::Memory) );
  2336   if( t == Type::TOP ) return Type::TOP;
  2337   t = phase->type( in(MemNode::Address) );
  2338   if( t == Type::TOP ) return Type::TOP;
  2339   t = phase->type( in(MemNode::ValueIn) );
  2340   if( t == Type::TOP ) return Type::TOP;
  2341   // If extra input is TOP ==> the result is TOP
  2342   t = phase->type( in(MemNode::OopStore) );
  2343   if( t == Type::TOP ) return Type::TOP;
  2345   return StoreNode::Value( phase );
  2349 //=============================================================================
  2350 //----------------------------------SCMemProjNode------------------------------
  2351 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2353   return bottom_type();
  2356 //=============================================================================
  2357 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2358   init_req(MemNode::Control, c  );
  2359   init_req(MemNode::Memory , mem);
  2360   init_req(MemNode::Address, adr);
  2361   init_req(MemNode::ValueIn, val);
  2362   init_req(         ExpectedIn, ex );
  2363   init_class_id(Class_LoadStore);
  2367 //=============================================================================
  2368 //-------------------------------adr_type--------------------------------------
  2369 // Do we Match on this edge index or not?  Do not match memory
  2370 const TypePtr* ClearArrayNode::adr_type() const {
  2371   Node *adr = in(3);
  2372   return MemNode::calculate_adr_type(adr->bottom_type());
  2375 //------------------------------match_edge-------------------------------------
  2376 // Do we Match on this edge index or not?  Do not match memory
  2377 uint ClearArrayNode::match_edge(uint idx) const {
  2378   return idx > 1;
  2381 //------------------------------Identity---------------------------------------
  2382 // Clearing a zero length array does nothing
  2383 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2384   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2387 //------------------------------Idealize---------------------------------------
  2388 // Clearing a short array is faster with stores
  2389 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2390   const int unit = BytesPerLong;
  2391   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2392   if (!t)  return NULL;
  2393   if (!t->is_con())  return NULL;
  2394   intptr_t raw_count = t->get_con();
  2395   intptr_t size = raw_count;
  2396   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2397   // Clearing nothing uses the Identity call.
  2398   // Negative clears are possible on dead ClearArrays
  2399   // (see jck test stmt114.stmt11402.val).
  2400   if (size <= 0 || size % unit != 0)  return NULL;
  2401   intptr_t count = size / unit;
  2402   // Length too long; use fast hardware clear
  2403   if (size > Matcher::init_array_short_size)  return NULL;
  2404   Node *mem = in(1);
  2405   if( phase->type(mem)==Type::TOP ) return NULL;
  2406   Node *adr = in(3);
  2407   const Type* at = phase->type(adr);
  2408   if( at==Type::TOP ) return NULL;
  2409   const TypePtr* atp = at->isa_ptr();
  2410   // adjust atp to be the correct array element address type
  2411   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2412   else              atp = atp->add_offset(Type::OffsetBot);
  2413   // Get base for derived pointer purposes
  2414   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2415   Node *base = adr->in(1);
  2417   Node *zero = phase->makecon(TypeLong::ZERO);
  2418   Node *off  = phase->MakeConX(BytesPerLong);
  2419   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2420   count--;
  2421   while( count-- ) {
  2422     mem = phase->transform(mem);
  2423     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2424     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2426   return mem;
  2429 //----------------------------clear_memory-------------------------------------
  2430 // Generate code to initialize object storage to zero.
  2431 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2432                                    intptr_t start_offset,
  2433                                    Node* end_offset,
  2434                                    PhaseGVN* phase) {
  2435   Compile* C = phase->C;
  2436   intptr_t offset = start_offset;
  2438   int unit = BytesPerLong;
  2439   if ((offset % unit) != 0) {
  2440     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2441     adr = phase->transform(adr);
  2442     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2443     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2444     mem = phase->transform(mem);
  2445     offset += BytesPerInt;
  2447   assert((offset % unit) == 0, "");
  2449   // Initialize the remaining stuff, if any, with a ClearArray.
  2450   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2453 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2454                                    Node* start_offset,
  2455                                    Node* end_offset,
  2456                                    PhaseGVN* phase) {
  2457   if (start_offset == end_offset) {
  2458     // nothing to do
  2459     return mem;
  2462   Compile* C = phase->C;
  2463   int unit = BytesPerLong;
  2464   Node* zbase = start_offset;
  2465   Node* zend  = end_offset;
  2467   // Scale to the unit required by the CPU:
  2468   if (!Matcher::init_array_count_is_in_bytes) {
  2469     Node* shift = phase->intcon(exact_log2(unit));
  2470     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2471     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2474   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2475   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2477   // Bulk clear double-words
  2478   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2479   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2480   return phase->transform(mem);
  2483 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2484                                    intptr_t start_offset,
  2485                                    intptr_t end_offset,
  2486                                    PhaseGVN* phase) {
  2487   if (start_offset == end_offset) {
  2488     // nothing to do
  2489     return mem;
  2492   Compile* C = phase->C;
  2493   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2494   intptr_t done_offset = end_offset;
  2495   if ((done_offset % BytesPerLong) != 0) {
  2496     done_offset -= BytesPerInt;
  2498   if (done_offset > start_offset) {
  2499     mem = clear_memory(ctl, mem, dest,
  2500                        start_offset, phase->MakeConX(done_offset), phase);
  2502   if (done_offset < end_offset) { // emit the final 32-bit store
  2503     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2504     adr = phase->transform(adr);
  2505     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2506     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2507     mem = phase->transform(mem);
  2508     done_offset += BytesPerInt;
  2510   assert(done_offset == end_offset, "");
  2511   return mem;
  2514 //=============================================================================
  2515 // Do we match on this edge? No memory edges
  2516 uint StrCompNode::match_edge(uint idx) const {
  2517   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
  2520 //------------------------------Ideal------------------------------------------
  2521 // Return a node which is more "ideal" than the current node.  Strip out
  2522 // control copies
  2523 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2524   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2527 //=============================================================================
  2528 // Do we match on this edge? No memory edges
  2529 uint StrEqualsNode::match_edge(uint idx) const {
  2530   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
  2533 //------------------------------Ideal------------------------------------------
  2534 // Return a node which is more "ideal" than the current node.  Strip out
  2535 // control copies
  2536 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2537   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2540 //=============================================================================
  2541 // Do we match on this edge? No memory edges
  2542 uint StrIndexOfNode::match_edge(uint idx) const {
  2543   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
  2546 //------------------------------Ideal------------------------------------------
  2547 // Return a node which is more "ideal" than the current node.  Strip out
  2548 // control copies
  2549 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2550   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2553 //=============================================================================
  2554 // Do we match on this edge? No memory edges
  2555 uint AryEqNode::match_edge(uint idx) const {
  2556   return idx == 2 || idx == 3; // StrEquals ary1 ary2
  2558 //------------------------------Ideal------------------------------------------
  2559 // Return a node which is more "ideal" than the current node.  Strip out
  2560 // control copies
  2561 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2562   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2565 //=============================================================================
  2566 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2567   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2568     _adr_type(C->get_adr_type(alias_idx))
  2570   init_class_id(Class_MemBar);
  2571   Node* top = C->top();
  2572   init_req(TypeFunc::I_O,top);
  2573   init_req(TypeFunc::FramePtr,top);
  2574   init_req(TypeFunc::ReturnAdr,top);
  2575   if (precedent != NULL)
  2576     init_req(TypeFunc::Parms, precedent);
  2579 //------------------------------cmp--------------------------------------------
  2580 uint MemBarNode::hash() const { return NO_HASH; }
  2581 uint MemBarNode::cmp( const Node &n ) const {
  2582   return (&n == this);          // Always fail except on self
  2585 //------------------------------make-------------------------------------------
  2586 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2587   int len = Precedent + (pn == NULL? 0: 1);
  2588   switch (opcode) {
  2589   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2590   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2591   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2592   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2593   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2594   default:                 ShouldNotReachHere(); return NULL;
  2598 //------------------------------Ideal------------------------------------------
  2599 // Return a node which is more "ideal" than the current node.  Strip out
  2600 // control copies
  2601 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2602   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2605 //------------------------------Value------------------------------------------
  2606 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2607   if( !in(0) ) return Type::TOP;
  2608   if( phase->type(in(0)) == Type::TOP )
  2609     return Type::TOP;
  2610   return TypeTuple::MEMBAR;
  2613 //------------------------------match------------------------------------------
  2614 // Construct projections for memory.
  2615 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2616   switch (proj->_con) {
  2617   case TypeFunc::Control:
  2618   case TypeFunc::Memory:
  2619     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2621   ShouldNotReachHere();
  2622   return NULL;
  2625 //===========================InitializeNode====================================
  2626 // SUMMARY:
  2627 // This node acts as a memory barrier on raw memory, after some raw stores.
  2628 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2629 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2630 // It can coalesce related raw stores into larger units (called 'tiles').
  2631 // It can avoid zeroing new storage for memory units which have raw inits.
  2632 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2633 //
  2634 // EXAMPLE:
  2635 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2636 //   ctl = incoming control; mem* = incoming memory
  2637 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2638 // First allocate uninitialized memory and fill in the header:
  2639 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2640 //   ctl := alloc.Control; mem* := alloc.Memory*
  2641 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2642 // Then initialize to zero the non-header parts of the raw memory block:
  2643 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2644 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2645 // After the initialize node executes, the object is ready for service:
  2646 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2647 // Suppose its body is immediately initialized as {1,2}:
  2648 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2649 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2650 //   mem.SLICE(#short[*]) := store2
  2651 //
  2652 // DETAILS:
  2653 // An InitializeNode collects and isolates object initialization after
  2654 // an AllocateNode and before the next possible safepoint.  As a
  2655 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2656 // down past any safepoint or any publication of the allocation.
  2657 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2658 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2659 //
  2660 // The semantics of the InitializeNode include an implicit zeroing of
  2661 // the new object from object header to the end of the object.
  2662 // (The object header and end are determined by the AllocateNode.)
  2663 //
  2664 // Certain stores may be added as direct inputs to the InitializeNode.
  2665 // These stores must update raw memory, and they must be to addresses
  2666 // derived from the raw address produced by AllocateNode, and with
  2667 // a constant offset.  They must be ordered by increasing offset.
  2668 // The first one is at in(RawStores), the last at in(req()-1).
  2669 // Unlike most memory operations, they are not linked in a chain,
  2670 // but are displayed in parallel as users of the rawmem output of
  2671 // the allocation.
  2672 //
  2673 // (See comments in InitializeNode::capture_store, which continue
  2674 // the example given above.)
  2675 //
  2676 // When the associated Allocate is macro-expanded, the InitializeNode
  2677 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2678 // may also be created at that point to represent any required zeroing.
  2679 // The InitializeNode is then marked 'complete', prohibiting further
  2680 // capturing of nearby memory operations.
  2681 //
  2682 // During macro-expansion, all captured initializations which store
  2683 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2684 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2685 // initialized in fewer memory operations.  Memory words which are
  2686 // covered by neither tiles nor non-constant stores are pre-zeroed
  2687 // by explicit stores of zero.  (The code shape happens to do all
  2688 // zeroing first, then all other stores, with both sequences occurring
  2689 // in order of ascending offsets.)
  2690 //
  2691 // Alternatively, code may be inserted between an AllocateNode and its
  2692 // InitializeNode, to perform arbitrary initialization of the new object.
  2693 // E.g., the object copying intrinsics insert complex data transfers here.
  2694 // The initialization must then be marked as 'complete' disable the
  2695 // built-in zeroing semantics and the collection of initializing stores.
  2696 //
  2697 // While an InitializeNode is incomplete, reads from the memory state
  2698 // produced by it are optimizable if they match the control edge and
  2699 // new oop address associated with the allocation/initialization.
  2700 // They return a stored value (if the offset matches) or else zero.
  2701 // A write to the memory state, if it matches control and address,
  2702 // and if it is to a constant offset, may be 'captured' by the
  2703 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2704 // inside the initialization, to the raw oop produced by the allocation.
  2705 // Operations on addresses which are provably distinct (e.g., to
  2706 // other AllocateNodes) are allowed to bypass the initialization.
  2707 //
  2708 // The effect of all this is to consolidate object initialization
  2709 // (both arrays and non-arrays, both piecewise and bulk) into a
  2710 // single location, where it can be optimized as a unit.
  2711 //
  2712 // Only stores with an offset less than TrackedInitializationLimit words
  2713 // will be considered for capture by an InitializeNode.  This puts a
  2714 // reasonable limit on the complexity of optimized initializations.
  2716 //---------------------------InitializeNode------------------------------------
  2717 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2718   : _is_complete(false),
  2719     MemBarNode(C, adr_type, rawoop)
  2721   init_class_id(Class_Initialize);
  2723   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2724   assert(in(RawAddress) == rawoop, "proper init");
  2725   // Note:  allocation() can be NULL, for secondary initialization barriers
  2728 // Since this node is not matched, it will be processed by the
  2729 // register allocator.  Declare that there are no constraints
  2730 // on the allocation of the RawAddress edge.
  2731 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2732   // This edge should be set to top, by the set_complete.  But be conservative.
  2733   if (idx == InitializeNode::RawAddress)
  2734     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2735   return RegMask::Empty;
  2738 Node* InitializeNode::memory(uint alias_idx) {
  2739   Node* mem = in(Memory);
  2740   if (mem->is_MergeMem()) {
  2741     return mem->as_MergeMem()->memory_at(alias_idx);
  2742   } else {
  2743     // incoming raw memory is not split
  2744     return mem;
  2748 bool InitializeNode::is_non_zero() {
  2749   if (is_complete())  return false;
  2750   remove_extra_zeroes();
  2751   return (req() > RawStores);
  2754 void InitializeNode::set_complete(PhaseGVN* phase) {
  2755   assert(!is_complete(), "caller responsibility");
  2756   _is_complete = true;
  2758   // After this node is complete, it contains a bunch of
  2759   // raw-memory initializations.  There is no need for
  2760   // it to have anything to do with non-raw memory effects.
  2761   // Therefore, tell all non-raw users to re-optimize themselves,
  2762   // after skipping the memory effects of this initialization.
  2763   PhaseIterGVN* igvn = phase->is_IterGVN();
  2764   if (igvn)  igvn->add_users_to_worklist(this);
  2767 // convenience function
  2768 // return false if the init contains any stores already
  2769 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2770   InitializeNode* init = initialization();
  2771   if (init == NULL || init->is_complete())  return false;
  2772   init->remove_extra_zeroes();
  2773   // for now, if this allocation has already collected any inits, bail:
  2774   if (init->is_non_zero())  return false;
  2775   init->set_complete(phase);
  2776   return true;
  2779 void InitializeNode::remove_extra_zeroes() {
  2780   if (req() == RawStores)  return;
  2781   Node* zmem = zero_memory();
  2782   uint fill = RawStores;
  2783   for (uint i = fill; i < req(); i++) {
  2784     Node* n = in(i);
  2785     if (n->is_top() || n == zmem)  continue;  // skip
  2786     if (fill < i)  set_req(fill, n);          // compact
  2787     ++fill;
  2789   // delete any empty spaces created:
  2790   while (fill < req()) {
  2791     del_req(fill);
  2795 // Helper for remembering which stores go with which offsets.
  2796 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2797   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2798   intptr_t offset = -1;
  2799   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2800                                                phase, offset);
  2801   if (base == NULL)     return -1;  // something is dead,
  2802   if (offset < 0)       return -1;  //        dead, dead
  2803   return offset;
  2806 // Helper for proving that an initialization expression is
  2807 // "simple enough" to be folded into an object initialization.
  2808 // Attempts to prove that a store's initial value 'n' can be captured
  2809 // within the initialization without creating a vicious cycle, such as:
  2810 //     { Foo p = new Foo(); p.next = p; }
  2811 // True for constants and parameters and small combinations thereof.
  2812 bool InitializeNode::detect_init_independence(Node* n,
  2813                                               bool st_is_pinned,
  2814                                               int& count) {
  2815   if (n == NULL)      return true;   // (can this really happen?)
  2816   if (n->is_Proj())   n = n->in(0);
  2817   if (n == this)      return false;  // found a cycle
  2818   if (n->is_Con())    return true;
  2819   if (n->is_Start())  return true;   // params, etc., are OK
  2820   if (n->is_Root())   return true;   // even better
  2822   Node* ctl = n->in(0);
  2823   if (ctl != NULL && !ctl->is_top()) {
  2824     if (ctl->is_Proj())  ctl = ctl->in(0);
  2825     if (ctl == this)  return false;
  2827     // If we already know that the enclosing memory op is pinned right after
  2828     // the init, then any control flow that the store has picked up
  2829     // must have preceded the init, or else be equal to the init.
  2830     // Even after loop optimizations (which might change control edges)
  2831     // a store is never pinned *before* the availability of its inputs.
  2832     if (!MemNode::all_controls_dominate(n, this))
  2833       return false;                  // failed to prove a good control
  2837   // Check data edges for possible dependencies on 'this'.
  2838   if ((count += 1) > 20)  return false;  // complexity limit
  2839   for (uint i = 1; i < n->req(); i++) {
  2840     Node* m = n->in(i);
  2841     if (m == NULL || m == n || m->is_top())  continue;
  2842     uint first_i = n->find_edge(m);
  2843     if (i != first_i)  continue;  // process duplicate edge just once
  2844     if (!detect_init_independence(m, st_is_pinned, count)) {
  2845       return false;
  2849   return true;
  2852 // Here are all the checks a Store must pass before it can be moved into
  2853 // an initialization.  Returns zero if a check fails.
  2854 // On success, returns the (constant) offset to which the store applies,
  2855 // within the initialized memory.
  2856 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2857   const int FAIL = 0;
  2858   if (st->req() != MemNode::ValueIn + 1)
  2859     return FAIL;                // an inscrutable StoreNode (card mark?)
  2860   Node* ctl = st->in(MemNode::Control);
  2861   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2862     return FAIL;                // must be unconditional after the initialization
  2863   Node* mem = st->in(MemNode::Memory);
  2864   if (!(mem->is_Proj() && mem->in(0) == this))
  2865     return FAIL;                // must not be preceded by other stores
  2866   Node* adr = st->in(MemNode::Address);
  2867   intptr_t offset;
  2868   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2869   if (alloc == NULL)
  2870     return FAIL;                // inscrutable address
  2871   if (alloc != allocation())
  2872     return FAIL;                // wrong allocation!  (store needs to float up)
  2873   Node* val = st->in(MemNode::ValueIn);
  2874   int complexity_count = 0;
  2875   if (!detect_init_independence(val, true, complexity_count))
  2876     return FAIL;                // stored value must be 'simple enough'
  2878   return offset;                // success
  2881 // Find the captured store in(i) which corresponds to the range
  2882 // [start..start+size) in the initialized object.
  2883 // If there is one, return its index i.  If there isn't, return the
  2884 // negative of the index where it should be inserted.
  2885 // Return 0 if the queried range overlaps an initialization boundary
  2886 // or if dead code is encountered.
  2887 // If size_in_bytes is zero, do not bother with overlap checks.
  2888 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2889                                                    int size_in_bytes,
  2890                                                    PhaseTransform* phase) {
  2891   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2893   if (is_complete())
  2894     return FAIL;                // arraycopy got here first; punt
  2896   assert(allocation() != NULL, "must be present");
  2898   // no negatives, no header fields:
  2899   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2901   // after a certain size, we bail out on tracking all the stores:
  2902   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2903   if (start >= ti_limit)  return FAIL;
  2905   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2906     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2908     Node*    st     = in(i);
  2909     intptr_t st_off = get_store_offset(st, phase);
  2910     if (st_off < 0) {
  2911       if (st != zero_memory()) {
  2912         return FAIL;            // bail out if there is dead garbage
  2914     } else if (st_off > start) {
  2915       // ...we are done, since stores are ordered
  2916       if (st_off < start + size_in_bytes) {
  2917         return FAIL;            // the next store overlaps
  2919       return -(int)i;           // not found; here is where to put it
  2920     } else if (st_off < start) {
  2921       if (size_in_bytes != 0 &&
  2922           start < st_off + MAX_STORE &&
  2923           start < st_off + st->as_Store()->memory_size()) {
  2924         return FAIL;            // the previous store overlaps
  2926     } else {
  2927       if (size_in_bytes != 0 &&
  2928           st->as_Store()->memory_size() != size_in_bytes) {
  2929         return FAIL;            // mismatched store size
  2931       return i;
  2934     ++i;
  2938 // Look for a captured store which initializes at the offset 'start'
  2939 // with the given size.  If there is no such store, and no other
  2940 // initialization interferes, then return zero_memory (the memory
  2941 // projection of the AllocateNode).
  2942 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2943                                           PhaseTransform* phase) {
  2944   assert(stores_are_sane(phase), "");
  2945   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2946   if (i == 0) {
  2947     return NULL;                // something is dead
  2948   } else if (i < 0) {
  2949     return zero_memory();       // just primordial zero bits here
  2950   } else {
  2951     Node* st = in(i);           // here is the store at this position
  2952     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2953     return st;
  2957 // Create, as a raw pointer, an address within my new object at 'offset'.
  2958 Node* InitializeNode::make_raw_address(intptr_t offset,
  2959                                        PhaseTransform* phase) {
  2960   Node* addr = in(RawAddress);
  2961   if (offset != 0) {
  2962     Compile* C = phase->C;
  2963     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2964                                                  phase->MakeConX(offset)) );
  2966   return addr;
  2969 // Clone the given store, converting it into a raw store
  2970 // initializing a field or element of my new object.
  2971 // Caller is responsible for retiring the original store,
  2972 // with subsume_node or the like.
  2973 //
  2974 // From the example above InitializeNode::InitializeNode,
  2975 // here are the old stores to be captured:
  2976 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2977 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2978 //
  2979 // Here is the changed code; note the extra edges on init:
  2980 //   alloc = (Allocate ...)
  2981 //   rawoop = alloc.RawAddress
  2982 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2983 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2984 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2985 //                      rawstore1 rawstore2)
  2986 //
  2987 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2988                                     PhaseTransform* phase) {
  2989   assert(stores_are_sane(phase), "");
  2991   if (start < 0)  return NULL;
  2992   assert(can_capture_store(st, phase) == start, "sanity");
  2994   Compile* C = phase->C;
  2995   int size_in_bytes = st->memory_size();
  2996   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2997   if (i == 0)  return NULL;     // bail out
  2998   Node* prev_mem = NULL;        // raw memory for the captured store
  2999   if (i > 0) {
  3000     prev_mem = in(i);           // there is a pre-existing store under this one
  3001     set_req(i, C->top());       // temporarily disconnect it
  3002     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3003   } else {
  3004     i = -i;                     // no pre-existing store
  3005     prev_mem = zero_memory();   // a slice of the newly allocated object
  3006     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3007       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3008     else
  3009       ins_req(i, C->top());     // build a new edge
  3011   Node* new_st = st->clone();
  3012   new_st->set_req(MemNode::Control, in(Control));
  3013   new_st->set_req(MemNode::Memory,  prev_mem);
  3014   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3015   new_st = phase->transform(new_st);
  3017   // At this point, new_st might have swallowed a pre-existing store
  3018   // at the same offset, or perhaps new_st might have disappeared,
  3019   // if it redundantly stored the same value (or zero to fresh memory).
  3021   // In any case, wire it in:
  3022   set_req(i, new_st);
  3024   // The caller may now kill the old guy.
  3025   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3026   assert(check_st == new_st || check_st == NULL, "must be findable");
  3027   assert(!is_complete(), "");
  3028   return new_st;
  3031 static bool store_constant(jlong* tiles, int num_tiles,
  3032                            intptr_t st_off, int st_size,
  3033                            jlong con) {
  3034   if ((st_off & (st_size-1)) != 0)
  3035     return false;               // strange store offset (assume size==2**N)
  3036   address addr = (address)tiles + st_off;
  3037   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3038   switch (st_size) {
  3039   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3040   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3041   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3042   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3043   default: return false;        // strange store size (detect size!=2**N here)
  3045   return true;                  // return success to caller
  3048 // Coalesce subword constants into int constants and possibly
  3049 // into long constants.  The goal, if the CPU permits,
  3050 // is to initialize the object with a small number of 64-bit tiles.
  3051 // Also, convert floating-point constants to bit patterns.
  3052 // Non-constants are not relevant to this pass.
  3053 //
  3054 // In terms of the running example on InitializeNode::InitializeNode
  3055 // and InitializeNode::capture_store, here is the transformation
  3056 // of rawstore1 and rawstore2 into rawstore12:
  3057 //   alloc = (Allocate ...)
  3058 //   rawoop = alloc.RawAddress
  3059 //   tile12 = 0x00010002
  3060 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3061 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3062 //
  3063 void
  3064 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3065                                         Node* size_in_bytes,
  3066                                         PhaseGVN* phase) {
  3067   Compile* C = phase->C;
  3069   assert(stores_are_sane(phase), "");
  3070   // Note:  After this pass, they are not completely sane,
  3071   // since there may be some overlaps.
  3073   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3075   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3076   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3077   size_limit = MIN2(size_limit, ti_limit);
  3078   size_limit = align_size_up(size_limit, BytesPerLong);
  3079   int num_tiles = size_limit / BytesPerLong;
  3081   // allocate space for the tile map:
  3082   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3083   jlong  tiles_buf[small_len];
  3084   Node*  nodes_buf[small_len];
  3085   jlong  inits_buf[small_len];
  3086   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3087                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3088   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3089                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3090   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3091                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3092   // tiles: exact bitwise model of all primitive constants
  3093   // nodes: last constant-storing node subsumed into the tiles model
  3094   // inits: which bytes (in each tile) are touched by any initializations
  3096   //// Pass A: Fill in the tile model with any relevant stores.
  3098   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3099   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3100   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3101   Node* zmem = zero_memory(); // initially zero memory state
  3102   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3103     Node* st = in(i);
  3104     intptr_t st_off = get_store_offset(st, phase);
  3106     // Figure out the store's offset and constant value:
  3107     if (st_off < header_size)             continue; //skip (ignore header)
  3108     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3109     int st_size = st->as_Store()->memory_size();
  3110     if (st_off + st_size > size_limit)    break;
  3112     // Record which bytes are touched, whether by constant or not.
  3113     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3114       continue;                 // skip (strange store size)
  3116     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3117     if (!val->singleton())                continue; //skip (non-con store)
  3118     BasicType type = val->basic_type();
  3120     jlong con = 0;
  3121     switch (type) {
  3122     case T_INT:    con = val->is_int()->get_con();  break;
  3123     case T_LONG:   con = val->is_long()->get_con(); break;
  3124     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3125     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3126     default:                              continue; //skip (odd store type)
  3129     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3130         st->Opcode() == Op_StoreL) {
  3131       continue;                 // This StoreL is already optimal.
  3134     // Store down the constant.
  3135     store_constant(tiles, num_tiles, st_off, st_size, con);
  3137     intptr_t j = st_off >> LogBytesPerLong;
  3139     if (type == T_INT && st_size == BytesPerInt
  3140         && (st_off & BytesPerInt) == BytesPerInt) {
  3141       jlong lcon = tiles[j];
  3142       if (!Matcher::isSimpleConstant64(lcon) &&
  3143           st->Opcode() == Op_StoreI) {
  3144         // This StoreI is already optimal by itself.
  3145         jint* intcon = (jint*) &tiles[j];
  3146         intcon[1] = 0;  // undo the store_constant()
  3148         // If the previous store is also optimal by itself, back up and
  3149         // undo the action of the previous loop iteration... if we can.
  3150         // But if we can't, just let the previous half take care of itself.
  3151         st = nodes[j];
  3152         st_off -= BytesPerInt;
  3153         con = intcon[0];
  3154         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3155           assert(st_off >= header_size, "still ignoring header");
  3156           assert(get_store_offset(st, phase) == st_off, "must be");
  3157           assert(in(i-1) == zmem, "must be");
  3158           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3159           assert(con == tcon->is_int()->get_con(), "must be");
  3160           // Undo the effects of the previous loop trip, which swallowed st:
  3161           intcon[0] = 0;        // undo store_constant()
  3162           set_req(i-1, st);     // undo set_req(i, zmem)
  3163           nodes[j] = NULL;      // undo nodes[j] = st
  3164           --old_subword;        // undo ++old_subword
  3166         continue;               // This StoreI is already optimal.
  3170     // This store is not needed.
  3171     set_req(i, zmem);
  3172     nodes[j] = st;              // record for the moment
  3173     if (st_size < BytesPerLong) // something has changed
  3174           ++old_subword;        // includes int/float, but who's counting...
  3175     else  ++old_long;
  3178   if ((old_subword + old_long) == 0)
  3179     return;                     // nothing more to do
  3181   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3182   // Be sure to insert them before overlapping non-constant stores.
  3183   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3184   for (int j = 0; j < num_tiles; j++) {
  3185     jlong con  = tiles[j];
  3186     jlong init = inits[j];
  3187     if (con == 0)  continue;
  3188     jint con0,  con1;           // split the constant, address-wise
  3189     jint init0, init1;          // split the init map, address-wise
  3190     { union { jlong con; jint intcon[2]; } u;
  3191       u.con = con;
  3192       con0  = u.intcon[0];
  3193       con1  = u.intcon[1];
  3194       u.con = init;
  3195       init0 = u.intcon[0];
  3196       init1 = u.intcon[1];
  3199     Node* old = nodes[j];
  3200     assert(old != NULL, "need the prior store");
  3201     intptr_t offset = (j * BytesPerLong);
  3203     bool split = !Matcher::isSimpleConstant64(con);
  3205     if (offset < header_size) {
  3206       assert(offset + BytesPerInt >= header_size, "second int counts");
  3207       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3208       split = true;             // only the second word counts
  3209       // Example:  int a[] = { 42 ... }
  3210     } else if (con0 == 0 && init0 == -1) {
  3211       split = true;             // first word is covered by full inits
  3212       // Example:  int a[] = { ... foo(), 42 ... }
  3213     } else if (con1 == 0 && init1 == -1) {
  3214       split = true;             // second word is covered by full inits
  3215       // Example:  int a[] = { ... 42, foo() ... }
  3218     // Here's a case where init0 is neither 0 nor -1:
  3219     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3220     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3221     // In this case the tile is not split; it is (jlong)42.
  3222     // The big tile is stored down, and then the foo() value is inserted.
  3223     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3225     Node* ctl = old->in(MemNode::Control);
  3226     Node* adr = make_raw_address(offset, phase);
  3227     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3229     // One or two coalesced stores to plop down.
  3230     Node*    st[2];
  3231     intptr_t off[2];
  3232     int  nst = 0;
  3233     if (!split) {
  3234       ++new_long;
  3235       off[nst] = offset;
  3236       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3237                                   phase->longcon(con), T_LONG);
  3238     } else {
  3239       // Omit either if it is a zero.
  3240       if (con0 != 0) {
  3241         ++new_int;
  3242         off[nst]  = offset;
  3243         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3244                                     phase->intcon(con0), T_INT);
  3246       if (con1 != 0) {
  3247         ++new_int;
  3248         offset += BytesPerInt;
  3249         adr = make_raw_address(offset, phase);
  3250         off[nst]  = offset;
  3251         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3252                                     phase->intcon(con1), T_INT);
  3256     // Insert second store first, then the first before the second.
  3257     // Insert each one just before any overlapping non-constant stores.
  3258     while (nst > 0) {
  3259       Node* st1 = st[--nst];
  3260       C->copy_node_notes_to(st1, old);
  3261       st1 = phase->transform(st1);
  3262       offset = off[nst];
  3263       assert(offset >= header_size, "do not smash header");
  3264       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3265       guarantee(ins_idx != 0, "must re-insert constant store");
  3266       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3267       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3268         set_req(--ins_idx, st1);
  3269       else
  3270         ins_req(ins_idx, st1);
  3274   if (PrintCompilation && WizardMode)
  3275     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3276                   old_subword, old_long, new_int, new_long);
  3277   if (C->log() != NULL)
  3278     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3279                    old_subword, old_long, new_int, new_long);
  3281   // Clean up any remaining occurrences of zmem:
  3282   remove_extra_zeroes();
  3285 // Explore forward from in(start) to find the first fully initialized
  3286 // word, and return its offset.  Skip groups of subword stores which
  3287 // together initialize full words.  If in(start) is itself part of a
  3288 // fully initialized word, return the offset of in(start).  If there
  3289 // are no following full-word stores, or if something is fishy, return
  3290 // a negative value.
  3291 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3292   int       int_map = 0;
  3293   intptr_t  int_map_off = 0;
  3294   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3296   for (uint i = start, limit = req(); i < limit; i++) {
  3297     Node* st = in(i);
  3299     intptr_t st_off = get_store_offset(st, phase);
  3300     if (st_off < 0)  break;  // return conservative answer
  3302     int st_size = st->as_Store()->memory_size();
  3303     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3304       return st_off;            // we found a complete word init
  3307     // update the map:
  3309     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3310     if (this_int_off != int_map_off) {
  3311       // reset the map:
  3312       int_map = 0;
  3313       int_map_off = this_int_off;
  3316     int subword_off = st_off - this_int_off;
  3317     int_map |= right_n_bits(st_size) << subword_off;
  3318     if ((int_map & FULL_MAP) == FULL_MAP) {
  3319       return this_int_off;      // we found a complete word init
  3322     // Did this store hit or cross the word boundary?
  3323     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3324     if (next_int_off == this_int_off + BytesPerInt) {
  3325       // We passed the current int, without fully initializing it.
  3326       int_map_off = next_int_off;
  3327       int_map >>= BytesPerInt;
  3328     } else if (next_int_off > this_int_off + BytesPerInt) {
  3329       // We passed the current and next int.
  3330       return this_int_off + BytesPerInt;
  3334   return -1;
  3338 // Called when the associated AllocateNode is expanded into CFG.
  3339 // At this point, we may perform additional optimizations.
  3340 // Linearize the stores by ascending offset, to make memory
  3341 // activity as coherent as possible.
  3342 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3343                                       intptr_t header_size,
  3344                                       Node* size_in_bytes,
  3345                                       PhaseGVN* phase) {
  3346   assert(!is_complete(), "not already complete");
  3347   assert(stores_are_sane(phase), "");
  3348   assert(allocation() != NULL, "must be present");
  3350   remove_extra_zeroes();
  3352   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3353     // reduce instruction count for common initialization patterns
  3354     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3356   Node* zmem = zero_memory();   // initially zero memory state
  3357   Node* inits = zmem;           // accumulating a linearized chain of inits
  3358   #ifdef ASSERT
  3359   intptr_t first_offset = allocation()->minimum_header_size();
  3360   intptr_t last_init_off = first_offset;  // previous init offset
  3361   intptr_t last_init_end = first_offset;  // previous init offset+size
  3362   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3363   #endif
  3364   intptr_t zeroes_done = header_size;
  3366   bool do_zeroing = true;       // we might give up if inits are very sparse
  3367   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3369   if (ZeroTLAB)  do_zeroing = false;
  3370   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3372   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3373     Node* st = in(i);
  3374     intptr_t st_off = get_store_offset(st, phase);
  3375     if (st_off < 0)
  3376       break;                    // unknown junk in the inits
  3377     if (st->in(MemNode::Memory) != zmem)
  3378       break;                    // complicated store chains somehow in list
  3380     int st_size = st->as_Store()->memory_size();
  3381     intptr_t next_init_off = st_off + st_size;
  3383     if (do_zeroing && zeroes_done < next_init_off) {
  3384       // See if this store needs a zero before it or under it.
  3385       intptr_t zeroes_needed = st_off;
  3387       if (st_size < BytesPerInt) {
  3388         // Look for subword stores which only partially initialize words.
  3389         // If we find some, we must lay down some word-level zeroes first,
  3390         // underneath the subword stores.
  3391         //
  3392         // Examples:
  3393         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3394         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3395         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3396         //
  3397         // Note:  coalesce_subword_stores may have already done this,
  3398         // if it was prompted by constant non-zero subword initializers.
  3399         // But this case can still arise with non-constant stores.
  3401         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3403         // In the examples above:
  3404         //   in(i)          p   q   r   s     x   y     z
  3405         //   st_off        12  13  14  15    12  13    14
  3406         //   st_size        1   1   1   1     1   1     1
  3407         //   next_full_s.  12  16  16  16    16  16    16
  3408         //   z's_done      12  16  16  16    12  16    12
  3409         //   z's_needed    12  16  16  16    16  16    16
  3410         //   zsize          0   0   0   0     4   0     4
  3411         if (next_full_store < 0) {
  3412           // Conservative tack:  Zero to end of current word.
  3413           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3414         } else {
  3415           // Zero to beginning of next fully initialized word.
  3416           // Or, don't zero at all, if we are already in that word.
  3417           assert(next_full_store >= zeroes_needed, "must go forward");
  3418           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3419           zeroes_needed = next_full_store;
  3423       if (zeroes_needed > zeroes_done) {
  3424         intptr_t zsize = zeroes_needed - zeroes_done;
  3425         // Do some incremental zeroing on rawmem, in parallel with inits.
  3426         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3427         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3428                                               zeroes_done, zeroes_needed,
  3429                                               phase);
  3430         zeroes_done = zeroes_needed;
  3431         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3432           do_zeroing = false;   // leave the hole, next time
  3436     // Collect the store and move on:
  3437     st->set_req(MemNode::Memory, inits);
  3438     inits = st;                 // put it on the linearized chain
  3439     set_req(i, zmem);           // unhook from previous position
  3441     if (zeroes_done == st_off)
  3442       zeroes_done = next_init_off;
  3444     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3446     #ifdef ASSERT
  3447     // Various order invariants.  Weaker than stores_are_sane because
  3448     // a large constant tile can be filled in by smaller non-constant stores.
  3449     assert(st_off >= last_init_off, "inits do not reverse");
  3450     last_init_off = st_off;
  3451     const Type* val = NULL;
  3452     if (st_size >= BytesPerInt &&
  3453         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3454         (int)val->basic_type() < (int)T_OBJECT) {
  3455       assert(st_off >= last_tile_end, "tiles do not overlap");
  3456       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3457       last_tile_end = MAX2(last_tile_end, next_init_off);
  3458     } else {
  3459       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3460       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3461       assert(st_off      >= last_init_end, "inits do not overlap");
  3462       last_init_end = next_init_off;  // it's a non-tile
  3464     #endif //ASSERT
  3467   remove_extra_zeroes();        // clear out all the zmems left over
  3468   add_req(inits);
  3470   if (!ZeroTLAB) {
  3471     // If anything remains to be zeroed, zero it all now.
  3472     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3473     // if it is the last unused 4 bytes of an instance, forget about it
  3474     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3475     if (zeroes_done + BytesPerLong >= size_limit) {
  3476       assert(allocation() != NULL, "");
  3477       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3478       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3479       if (zeroes_done == k->layout_helper())
  3480         zeroes_done = size_limit;
  3482     if (zeroes_done < size_limit) {
  3483       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3484                                             zeroes_done, size_in_bytes, phase);
  3488   set_complete(phase);
  3489   return rawmem;
  3493 #ifdef ASSERT
  3494 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3495   if (is_complete())
  3496     return true;                // stores could be anything at this point
  3497   assert(allocation() != NULL, "must be present");
  3498   intptr_t last_off = allocation()->minimum_header_size();
  3499   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3500     Node* st = in(i);
  3501     intptr_t st_off = get_store_offset(st, phase);
  3502     if (st_off < 0)  continue;  // ignore dead garbage
  3503     if (last_off > st_off) {
  3504       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3505       this->dump(2);
  3506       assert(false, "ascending store offsets");
  3507       return false;
  3509     last_off = st_off + st->as_Store()->memory_size();
  3511   return true;
  3513 #endif //ASSERT
  3518 //============================MergeMemNode=====================================
  3519 //
  3520 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3521 // contributing store or call operations.  Each contributor provides the memory
  3522 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3523 // if a MergeMem has an input X for alias category #6, then any memory reference
  3524 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3525 // to using the MergeMem as a whole.
  3526 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3527 //
  3528 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3529 //
  3530 // In one special case (and more cases in the future), alias categories overlap.
  3531 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3532 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3533 // it is exactly equivalent to that state W:
  3534 //   MergeMem(<Bot>: W) <==> W
  3535 //
  3536 // Usually, the merge has more than one input.  In that case, where inputs
  3537 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3538 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3539 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3540 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3541 //
  3542 // A merge can take a "wide" memory state as one of its narrow inputs.
  3543 // This simply means that the merge observes out only the relevant parts of
  3544 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3545 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3546 //
  3547 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3548 // and that memory slices "leak through":
  3549 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3550 //
  3551 // But, in such a cascade, repeated memory slices can "block the leak":
  3552 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3553 //
  3554 // In the last example, Y is not part of the combined memory state of the
  3555 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3556 // memory states from arising, so you can be sure that the state Y is somehow
  3557 // a precursor to state Y'.
  3558 //
  3559 //
  3560 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3561 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3562 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3563 // Compile::alias_type (and kin) produce and manage these indexes.
  3564 //
  3565 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3566 // (Note that this provides quick access to the top node inside MergeMem methods,
  3567 // without the need to reach out via TLS to Compile::current.)
  3568 //
  3569 // As a consequence of what was just described, a MergeMem that represents a full
  3570 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3571 // containing all alias categories.
  3572 //
  3573 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3574 //
  3575 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3576 // a memory state for the alias type <N>, or else the top node, meaning that
  3577 // there is no particular input for that alias type.  Note that the length of
  3578 // a MergeMem is variable, and may be extended at any time to accommodate new
  3579 // memory states at larger alias indexes.  When merges grow, they are of course
  3580 // filled with "top" in the unused in() positions.
  3581 //
  3582 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3583 // (Top was chosen because it works smoothly with passes like GCM.)
  3584 //
  3585 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3586 // the type of random VM bits like TLS references.)  Since it is always the
  3587 // first non-Bot memory slice, some low-level loops use it to initialize an
  3588 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3589 //
  3590 //
  3591 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3592 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3593 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3594 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3595 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3596 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3597 //
  3598 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3599 // really that different from the other memory inputs.  An abbreviation called
  3600 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3601 //
  3602 //
  3603 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3604 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3605 // that "emerges though" the base memory will be marked as excluding the alias types
  3606 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3607 //
  3608 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3609 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3610 //
  3611 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3612 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3613 // actually a disjoint union of memory states, rather than an overlay.
  3614 //
  3616 //------------------------------MergeMemNode-----------------------------------
  3617 Node* MergeMemNode::make_empty_memory() {
  3618   Node* empty_memory = (Node*) Compile::current()->top();
  3619   assert(empty_memory->is_top(), "correct sentinel identity");
  3620   return empty_memory;
  3623 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3624   init_class_id(Class_MergeMem);
  3625   // all inputs are nullified in Node::Node(int)
  3626   // set_input(0, NULL);  // no control input
  3628   // Initialize the edges uniformly to top, for starters.
  3629   Node* empty_mem = make_empty_memory();
  3630   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3631     init_req(i,empty_mem);
  3633   assert(empty_memory() == empty_mem, "");
  3635   if( new_base != NULL && new_base->is_MergeMem() ) {
  3636     MergeMemNode* mdef = new_base->as_MergeMem();
  3637     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3638     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3639       mms.set_memory(mms.memory2());
  3641     assert(base_memory() == mdef->base_memory(), "");
  3642   } else {
  3643     set_base_memory(new_base);
  3647 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3648 // If mem is itself a MergeMem, populate the result with the same edges.
  3649 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3650   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3653 //------------------------------cmp--------------------------------------------
  3654 uint MergeMemNode::hash() const { return NO_HASH; }
  3655 uint MergeMemNode::cmp( const Node &n ) const {
  3656   return (&n == this);          // Always fail except on self
  3659 //------------------------------Identity---------------------------------------
  3660 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3661   // Identity if this merge point does not record any interesting memory
  3662   // disambiguations.
  3663   Node* base_mem = base_memory();
  3664   Node* empty_mem = empty_memory();
  3665   if (base_mem != empty_mem) {  // Memory path is not dead?
  3666     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3667       Node* mem = in(i);
  3668       if (mem != empty_mem && mem != base_mem) {
  3669         return this;            // Many memory splits; no change
  3673   return base_mem;              // No memory splits; ID on the one true input
  3676 //------------------------------Ideal------------------------------------------
  3677 // This method is invoked recursively on chains of MergeMem nodes
  3678 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3679   // Remove chain'd MergeMems
  3680   //
  3681   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3682   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3683   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3684   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3685   Node *progress = NULL;
  3688   Node* old_base = base_memory();
  3689   Node* empty_mem = empty_memory();
  3690   if (old_base == empty_mem)
  3691     return NULL; // Dead memory path.
  3693   MergeMemNode* old_mbase;
  3694   if (old_base != NULL && old_base->is_MergeMem())
  3695     old_mbase = old_base->as_MergeMem();
  3696   else
  3697     old_mbase = NULL;
  3698   Node* new_base = old_base;
  3700   // simplify stacked MergeMems in base memory
  3701   if (old_mbase)  new_base = old_mbase->base_memory();
  3703   // the base memory might contribute new slices beyond my req()
  3704   if (old_mbase)  grow_to_match(old_mbase);
  3706   // Look carefully at the base node if it is a phi.
  3707   PhiNode* phi_base;
  3708   if (new_base != NULL && new_base->is_Phi())
  3709     phi_base = new_base->as_Phi();
  3710   else
  3711     phi_base = NULL;
  3713   Node*    phi_reg = NULL;
  3714   uint     phi_len = (uint)-1;
  3715   if (phi_base != NULL && !phi_base->is_copy()) {
  3716     // do not examine phi if degraded to a copy
  3717     phi_reg = phi_base->region();
  3718     phi_len = phi_base->req();
  3719     // see if the phi is unfinished
  3720     for (uint i = 1; i < phi_len; i++) {
  3721       if (phi_base->in(i) == NULL) {
  3722         // incomplete phi; do not look at it yet!
  3723         phi_reg = NULL;
  3724         phi_len = (uint)-1;
  3725         break;
  3730   // Note:  We do not call verify_sparse on entry, because inputs
  3731   // can normalize to the base_memory via subsume_node or similar
  3732   // mechanisms.  This method repairs that damage.
  3734   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3736   // Look at each slice.
  3737   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3738     Node* old_in = in(i);
  3739     // calculate the old memory value
  3740     Node* old_mem = old_in;
  3741     if (old_mem == empty_mem)  old_mem = old_base;
  3742     assert(old_mem == memory_at(i), "");
  3744     // maybe update (reslice) the old memory value
  3746     // simplify stacked MergeMems
  3747     Node* new_mem = old_mem;
  3748     MergeMemNode* old_mmem;
  3749     if (old_mem != NULL && old_mem->is_MergeMem())
  3750       old_mmem = old_mem->as_MergeMem();
  3751     else
  3752       old_mmem = NULL;
  3753     if (old_mmem == this) {
  3754       // This can happen if loops break up and safepoints disappear.
  3755       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3756       // safepoint can be rewritten to a merge of the same BotPtr with
  3757       // the BotPtr phi coming into the loop.  If that phi disappears
  3758       // also, we can end up with a self-loop of the mergemem.
  3759       // In general, if loops degenerate and memory effects disappear,
  3760       // a mergemem can be left looking at itself.  This simply means
  3761       // that the mergemem's default should be used, since there is
  3762       // no longer any apparent effect on this slice.
  3763       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3764       //       from start.  Update the input to TOP.
  3765       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3767     else if (old_mmem != NULL) {
  3768       new_mem = old_mmem->memory_at(i);
  3770     // else preceding memory was not a MergeMem
  3772     // replace equivalent phis (unfortunately, they do not GVN together)
  3773     if (new_mem != NULL && new_mem != new_base &&
  3774         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3775       if (new_mem->is_Phi()) {
  3776         PhiNode* phi_mem = new_mem->as_Phi();
  3777         for (uint i = 1; i < phi_len; i++) {
  3778           if (phi_base->in(i) != phi_mem->in(i)) {
  3779             phi_mem = NULL;
  3780             break;
  3783         if (phi_mem != NULL) {
  3784           // equivalent phi nodes; revert to the def
  3785           new_mem = new_base;
  3790     // maybe store down a new value
  3791     Node* new_in = new_mem;
  3792     if (new_in == new_base)  new_in = empty_mem;
  3794     if (new_in != old_in) {
  3795       // Warning:  Do not combine this "if" with the previous "if"
  3796       // A memory slice might have be be rewritten even if it is semantically
  3797       // unchanged, if the base_memory value has changed.
  3798       set_req(i, new_in);
  3799       progress = this;          // Report progress
  3803   if (new_base != old_base) {
  3804     set_req(Compile::AliasIdxBot, new_base);
  3805     // Don't use set_base_memory(new_base), because we need to update du.
  3806     assert(base_memory() == new_base, "");
  3807     progress = this;
  3810   if( base_memory() == this ) {
  3811     // a self cycle indicates this memory path is dead
  3812     set_req(Compile::AliasIdxBot, empty_mem);
  3815   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3816   // Recursion must occur after the self cycle check above
  3817   if( base_memory()->is_MergeMem() ) {
  3818     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3819     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3820     if( m != NULL && (m->is_top() ||
  3821         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3822       // propagate rollup of dead cycle to self
  3823       set_req(Compile::AliasIdxBot, empty_mem);
  3827   if( base_memory() == empty_mem ) {
  3828     progress = this;
  3829     // Cut inputs during Parse phase only.
  3830     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3831     if( !can_reshape ) {
  3832       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3833         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3838   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3839     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3840     // transform should be attempted. Look for this->phi->this cycle.
  3841     uint merge_width = req();
  3842     if (merge_width > Compile::AliasIdxRaw) {
  3843       PhiNode* phi = base_memory()->as_Phi();
  3844       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3845         if (phi->in(i) == this) {
  3846           phase->is_IterGVN()->_worklist.push(phi);
  3847           break;
  3853   assert(progress || verify_sparse(), "please, no dups of base");
  3854   return progress;
  3857 //-------------------------set_base_memory-------------------------------------
  3858 void MergeMemNode::set_base_memory(Node *new_base) {
  3859   Node* empty_mem = empty_memory();
  3860   set_req(Compile::AliasIdxBot, new_base);
  3861   assert(memory_at(req()) == new_base, "must set default memory");
  3862   // Clear out other occurrences of new_base:
  3863   if (new_base != empty_mem) {
  3864     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3865       if (in(i) == new_base)  set_req(i, empty_mem);
  3870 //------------------------------out_RegMask------------------------------------
  3871 const RegMask &MergeMemNode::out_RegMask() const {
  3872   return RegMask::Empty;
  3875 //------------------------------dump_spec--------------------------------------
  3876 #ifndef PRODUCT
  3877 void MergeMemNode::dump_spec(outputStream *st) const {
  3878   st->print(" {");
  3879   Node* base_mem = base_memory();
  3880   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3881     Node* mem = memory_at(i);
  3882     if (mem == base_mem) { st->print(" -"); continue; }
  3883     st->print( " N%d:", mem->_idx );
  3884     Compile::current()->get_adr_type(i)->dump_on(st);
  3886   st->print(" }");
  3888 #endif // !PRODUCT
  3891 #ifdef ASSERT
  3892 static bool might_be_same(Node* a, Node* b) {
  3893   if (a == b)  return true;
  3894   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3895   // phis shift around during optimization
  3896   return true;  // pretty stupid...
  3899 // verify a narrow slice (either incoming or outgoing)
  3900 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3901   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3902   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3903   if (Node::in_dump())      return;  // muzzle asserts when printing
  3904   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3905   assert(n != NULL, "");
  3906   // Elide intervening MergeMem's
  3907   while (n->is_MergeMem()) {
  3908     n = n->as_MergeMem()->memory_at(alias_idx);
  3910   Compile* C = Compile::current();
  3911   const TypePtr* n_adr_type = n->adr_type();
  3912   if (n == m->empty_memory()) {
  3913     // Implicit copy of base_memory()
  3914   } else if (n_adr_type != TypePtr::BOTTOM) {
  3915     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3916     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3917   } else {
  3918     // A few places like make_runtime_call "know" that VM calls are narrow,
  3919     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3920     bool expected_wide_mem = false;
  3921     if (n == m->base_memory()) {
  3922       expected_wide_mem = true;
  3923     } else if (alias_idx == Compile::AliasIdxRaw ||
  3924                n == m->memory_at(Compile::AliasIdxRaw)) {
  3925       expected_wide_mem = true;
  3926     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3927       // memory can "leak through" calls on channels that
  3928       // are write-once.  Allow this also.
  3929       expected_wide_mem = true;
  3931     assert(expected_wide_mem, "expected narrow slice replacement");
  3934 #else // !ASSERT
  3935 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3936 #endif
  3939 //-----------------------------memory_at---------------------------------------
  3940 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3941   assert(alias_idx >= Compile::AliasIdxRaw ||
  3942          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3943          "must avoid base_memory and AliasIdxTop");
  3945   // Otherwise, it is a narrow slice.
  3946   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3947   Compile *C = Compile::current();
  3948   if (is_empty_memory(n)) {
  3949     // the array is sparse; empty slots are the "top" node
  3950     n = base_memory();
  3951     assert(Node::in_dump()
  3952            || n == NULL || n->bottom_type() == Type::TOP
  3953            || n->adr_type() == TypePtr::BOTTOM
  3954            || n->adr_type() == TypeRawPtr::BOTTOM
  3955            || Compile::current()->AliasLevel() == 0,
  3956            "must be a wide memory");
  3957     // AliasLevel == 0 if we are organizing the memory states manually.
  3958     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3959   } else {
  3960     // make sure the stored slice is sane
  3961     #ifdef ASSERT
  3962     if (is_error_reported() || Node::in_dump()) {
  3963     } else if (might_be_same(n, base_memory())) {
  3964       // Give it a pass:  It is a mostly harmless repetition of the base.
  3965       // This can arise normally from node subsumption during optimization.
  3966     } else {
  3967       verify_memory_slice(this, alias_idx, n);
  3969     #endif
  3971   return n;
  3974 //---------------------------set_memory_at-------------------------------------
  3975 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3976   verify_memory_slice(this, alias_idx, n);
  3977   Node* empty_mem = empty_memory();
  3978   if (n == base_memory())  n = empty_mem;  // collapse default
  3979   uint need_req = alias_idx+1;
  3980   if (req() < need_req) {
  3981     if (n == empty_mem)  return;  // already the default, so do not grow me
  3982     // grow the sparse array
  3983     do {
  3984       add_req(empty_mem);
  3985     } while (req() < need_req);
  3987   set_req( alias_idx, n );
  3992 //--------------------------iteration_setup------------------------------------
  3993 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3994   if (other != NULL) {
  3995     grow_to_match(other);
  3996     // invariant:  the finite support of mm2 is within mm->req()
  3997     #ifdef ASSERT
  3998     for (uint i = req(); i < other->req(); i++) {
  3999       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4001     #endif
  4003   // Replace spurious copies of base_memory by top.
  4004   Node* base_mem = base_memory();
  4005   if (base_mem != NULL && !base_mem->is_top()) {
  4006     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4007       if (in(i) == base_mem)
  4008         set_req(i, empty_memory());
  4013 //---------------------------grow_to_match-------------------------------------
  4014 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4015   Node* empty_mem = empty_memory();
  4016   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4017   // look for the finite support of the other memory
  4018   for (uint i = other->req(); --i >= req(); ) {
  4019     if (other->in(i) != empty_mem) {
  4020       uint new_len = i+1;
  4021       while (req() < new_len)  add_req(empty_mem);
  4022       break;
  4027 //---------------------------verify_sparse-------------------------------------
  4028 #ifndef PRODUCT
  4029 bool MergeMemNode::verify_sparse() const {
  4030   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4031   Node* base_mem = base_memory();
  4032   // The following can happen in degenerate cases, since empty==top.
  4033   if (is_empty_memory(base_mem))  return true;
  4034   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4035     assert(in(i) != NULL, "sane slice");
  4036     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4038   return true;
  4041 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4042   Node* n;
  4043   n = mm->in(idx);
  4044   if (mem == n)  return true;  // might be empty_memory()
  4045   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4046   if (mem == n)  return true;
  4047   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4048     if (mem == n)  return true;
  4049     if (n == NULL)  break;
  4051   return false;
  4053 #endif // !PRODUCT

mercurial