src/share/vm/opto/matcher.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1421
62001a362ce9
child 1496
09572fede9d1
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_matcher.cpp.incl"
    28 OptoReg::Name OptoReg::c_frame_pointer;
    32 const int Matcher::base2reg[Type::lastype] = {
    33   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
    34   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
    35   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
    36   0, 0/*abio*/,
    37   Op_RegP /* Return address */, 0, /* the memories */
    38   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
    39   0  /*bottom*/
    40 };
    42 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
    43 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
    44 RegMask Matcher::STACK_ONLY_mask;
    45 RegMask Matcher::c_frame_ptr_mask;
    46 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
    47 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
    49 //---------------------------Matcher-------------------------------------------
    50 Matcher::Matcher( Node_List &proj_list ) :
    51   PhaseTransform( Phase::Ins_Select ),
    52 #ifdef ASSERT
    53   _old2new_map(C->comp_arena()),
    54   _new2old_map(C->comp_arena()),
    55 #endif
    56   _shared_nodes(C->comp_arena()),
    57   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
    58   _swallowed(swallowed),
    59   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
    60   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
    61   _must_clone(must_clone), _proj_list(proj_list),
    62   _register_save_policy(register_save_policy),
    63   _c_reg_save_policy(c_reg_save_policy),
    64   _register_save_type(register_save_type),
    65   _ruleName(ruleName),
    66   _allocation_started(false),
    67   _states_arena(Chunk::medium_size),
    68   _visited(&_states_arena),
    69   _shared(&_states_arena),
    70   _dontcare(&_states_arena) {
    71   C->set_matcher(this);
    73   idealreg2spillmask[Op_RegI] = NULL;
    74   idealreg2spillmask[Op_RegN] = NULL;
    75   idealreg2spillmask[Op_RegL] = NULL;
    76   idealreg2spillmask[Op_RegF] = NULL;
    77   idealreg2spillmask[Op_RegD] = NULL;
    78   idealreg2spillmask[Op_RegP] = NULL;
    80   idealreg2debugmask[Op_RegI] = NULL;
    81   idealreg2debugmask[Op_RegN] = NULL;
    82   idealreg2debugmask[Op_RegL] = NULL;
    83   idealreg2debugmask[Op_RegF] = NULL;
    84   idealreg2debugmask[Op_RegD] = NULL;
    85   idealreg2debugmask[Op_RegP] = NULL;
    86   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
    87 }
    89 //------------------------------warp_incoming_stk_arg------------------------
    90 // This warps a VMReg into an OptoReg::Name
    91 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
    92   OptoReg::Name warped;
    93   if( reg->is_stack() ) {  // Stack slot argument?
    94     warped = OptoReg::add(_old_SP, reg->reg2stack() );
    95     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
    96     if( warped >= _in_arg_limit )
    97       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
    98     if (!RegMask::can_represent(warped)) {
    99       // the compiler cannot represent this method's calling sequence
   100       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
   101       return OptoReg::Bad;
   102     }
   103     return warped;
   104   }
   105   return OptoReg::as_OptoReg(reg);
   106 }
   108 //---------------------------compute_old_SP------------------------------------
   109 OptoReg::Name Compile::compute_old_SP() {
   110   int fixed    = fixed_slots();
   111   int preserve = in_preserve_stack_slots();
   112   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
   113 }
   117 #ifdef ASSERT
   118 void Matcher::verify_new_nodes_only(Node* xroot) {
   119   // Make sure that the new graph only references new nodes
   120   ResourceMark rm;
   121   Unique_Node_List worklist;
   122   VectorSet visited(Thread::current()->resource_area());
   123   worklist.push(xroot);
   124   while (worklist.size() > 0) {
   125     Node* n = worklist.pop();
   126     visited <<= n->_idx;
   127     assert(C->node_arena()->contains(n), "dead node");
   128     for (uint j = 0; j < n->req(); j++) {
   129       Node* in = n->in(j);
   130       if (in != NULL) {
   131         assert(C->node_arena()->contains(in), "dead node");
   132         if (!visited.test(in->_idx)) {
   133           worklist.push(in);
   134         }
   135       }
   136     }
   137   }
   138 }
   139 #endif
   142 //---------------------------match---------------------------------------------
   143 void Matcher::match( ) {
   144   if( MaxLabelRootDepth < 100 ) { // Too small?
   145     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
   146     MaxLabelRootDepth = 100;
   147   }
   148   // One-time initialization of some register masks.
   149   init_spill_mask( C->root()->in(1) );
   150   _return_addr_mask = return_addr();
   151 #ifdef _LP64
   152   // Pointers take 2 slots in 64-bit land
   153   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
   154 #endif
   156   // Map a Java-signature return type into return register-value
   157   // machine registers for 0, 1 and 2 returned values.
   158   const TypeTuple *range = C->tf()->range();
   159   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
   160     // Get ideal-register return type
   161     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
   162     // Get machine return register
   163     uint sop = C->start()->Opcode();
   164     OptoRegPair regs = return_value(ireg, false);
   166     // And mask for same
   167     _return_value_mask = RegMask(regs.first());
   168     if( OptoReg::is_valid(regs.second()) )
   169       _return_value_mask.Insert(regs.second());
   170   }
   172   // ---------------
   173   // Frame Layout
   175   // Need the method signature to determine the incoming argument types,
   176   // because the types determine which registers the incoming arguments are
   177   // in, and this affects the matched code.
   178   const TypeTuple *domain = C->tf()->domain();
   179   uint             argcnt = domain->cnt() - TypeFunc::Parms;
   180   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
   181   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
   182   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
   183   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
   184   uint i;
   185   for( i = 0; i<argcnt; i++ ) {
   186     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
   187   }
   189   // Pass array of ideal registers and length to USER code (from the AD file)
   190   // that will convert this to an array of register numbers.
   191   const StartNode *start = C->start();
   192   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
   193 #ifdef ASSERT
   194   // Sanity check users' calling convention.  Real handy while trying to
   195   // get the initial port correct.
   196   { for (uint i = 0; i<argcnt; i++) {
   197       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   198         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
   199         _parm_regs[i].set_bad();
   200         continue;
   201       }
   202       VMReg parm_reg = vm_parm_regs[i].first();
   203       assert(parm_reg->is_valid(), "invalid arg?");
   204       if (parm_reg->is_reg()) {
   205         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
   206         assert(can_be_java_arg(opto_parm_reg) ||
   207                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
   208                opto_parm_reg == inline_cache_reg(),
   209                "parameters in register must be preserved by runtime stubs");
   210       }
   211       for (uint j = 0; j < i; j++) {
   212         assert(parm_reg != vm_parm_regs[j].first(),
   213                "calling conv. must produce distinct regs");
   214       }
   215     }
   216   }
   217 #endif
   219   // Do some initial frame layout.
   221   // Compute the old incoming SP (may be called FP) as
   222   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
   223   _old_SP = C->compute_old_SP();
   224   assert( is_even(_old_SP), "must be even" );
   226   // Compute highest incoming stack argument as
   227   //   _old_SP + out_preserve_stack_slots + incoming argument size.
   228   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   229   assert( is_even(_in_arg_limit), "out_preserve must be even" );
   230   for( i = 0; i < argcnt; i++ ) {
   231     // Permit args to have no register
   232     _calling_convention_mask[i].Clear();
   233     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
   234       continue;
   235     }
   236     // calling_convention returns stack arguments as a count of
   237     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
   238     // the allocators point of view, taking into account all the
   239     // preserve area, locks & pad2.
   241     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
   242     if( OptoReg::is_valid(reg1))
   243       _calling_convention_mask[i].Insert(reg1);
   245     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
   246     if( OptoReg::is_valid(reg2))
   247       _calling_convention_mask[i].Insert(reg2);
   249     // Saved biased stack-slot register number
   250     _parm_regs[i].set_pair(reg2, reg1);
   251   }
   253   // Finally, make sure the incoming arguments take up an even number of
   254   // words, in case the arguments or locals need to contain doubleword stack
   255   // slots.  The rest of the system assumes that stack slot pairs (in
   256   // particular, in the spill area) which look aligned will in fact be
   257   // aligned relative to the stack pointer in the target machine.  Double
   258   // stack slots will always be allocated aligned.
   259   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
   261   // Compute highest outgoing stack argument as
   262   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
   263   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
   264   assert( is_even(_out_arg_limit), "out_preserve must be even" );
   266   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
   267     // the compiler cannot represent this method's calling sequence
   268     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
   269   }
   271   if (C->failing())  return;  // bailed out on incoming arg failure
   273   // ---------------
   274   // Collect roots of matcher trees.  Every node for which
   275   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
   276   // can be a valid interior of some tree.
   277   find_shared( C->root() );
   278   find_shared( C->top() );
   280   C->print_method("Before Matching");
   282   // Create new ideal node ConP #NULL even if it does exist in old space
   283   // to avoid false sharing if the corresponding mach node is not used.
   284   // The corresponding mach node is only used in rare cases for derived
   285   // pointers.
   286   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
   288   // Swap out to old-space; emptying new-space
   289   Arena *old = C->node_arena()->move_contents(C->old_arena());
   291   // Save debug and profile information for nodes in old space:
   292   _old_node_note_array = C->node_note_array();
   293   if (_old_node_note_array != NULL) {
   294     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
   295                            (C->comp_arena(), _old_node_note_array->length(),
   296                             0, NULL));
   297   }
   299   // Pre-size the new_node table to avoid the need for range checks.
   300   grow_new_node_array(C->unique());
   302   // Reset node counter so MachNodes start with _idx at 0
   303   int nodes = C->unique(); // save value
   304   C->set_unique(0);
   306   // Recursively match trees from old space into new space.
   307   // Correct leaves of new-space Nodes; they point to old-space.
   308   _visited.Clear();             // Clear visit bits for xform call
   309   C->set_cached_top_node(xform( C->top(), nodes ));
   310   if (!C->failing()) {
   311     Node* xroot =        xform( C->root(), 1 );
   312     if (xroot == NULL) {
   313       Matcher::soft_match_failure();  // recursive matching process failed
   314       C->record_method_not_compilable("instruction match failed");
   315     } else {
   316       // During matching shared constants were attached to C->root()
   317       // because xroot wasn't available yet, so transfer the uses to
   318       // the xroot.
   319       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
   320         Node* n = C->root()->fast_out(j);
   321         if (C->node_arena()->contains(n)) {
   322           assert(n->in(0) == C->root(), "should be control user");
   323           n->set_req(0, xroot);
   324           --j;
   325           --jmax;
   326         }
   327       }
   329       // Generate new mach node for ConP #NULL
   330       assert(new_ideal_null != NULL, "sanity");
   331       _mach_null = match_tree(new_ideal_null);
   332       // Don't set control, it will confuse GCM since there are no uses.
   333       // The control will be set when this node is used first time
   334       // in find_base_for_derived().
   335       assert(_mach_null != NULL, "");
   337       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
   339 #ifdef ASSERT
   340       verify_new_nodes_only(xroot);
   341 #endif
   342     }
   343   }
   344   if (C->top() == NULL || C->root() == NULL) {
   345     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
   346   }
   347   if (C->failing()) {
   348     // delete old;
   349     old->destruct_contents();
   350     return;
   351   }
   352   assert( C->top(), "" );
   353   assert( C->root(), "" );
   354   validate_null_checks();
   356   // Now smoke old-space
   357   NOT_DEBUG( old->destruct_contents() );
   359   // ------------------------
   360   // Set up save-on-entry registers
   361   Fixup_Save_On_Entry( );
   362 }
   365 //------------------------------Fixup_Save_On_Entry----------------------------
   366 // The stated purpose of this routine is to take care of save-on-entry
   367 // registers.  However, the overall goal of the Match phase is to convert into
   368 // machine-specific instructions which have RegMasks to guide allocation.
   369 // So what this procedure really does is put a valid RegMask on each input
   370 // to the machine-specific variations of all Return, TailCall and Halt
   371 // instructions.  It also adds edgs to define the save-on-entry values (and of
   372 // course gives them a mask).
   374 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
   375   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
   376   // Do all the pre-defined register masks
   377   rms[TypeFunc::Control  ] = RegMask::Empty;
   378   rms[TypeFunc::I_O      ] = RegMask::Empty;
   379   rms[TypeFunc::Memory   ] = RegMask::Empty;
   380   rms[TypeFunc::ReturnAdr] = ret_adr;
   381   rms[TypeFunc::FramePtr ] = fp;
   382   return rms;
   383 }
   385 //---------------------------init_first_stack_mask-----------------------------
   386 // Create the initial stack mask used by values spilling to the stack.
   387 // Disallow any debug info in outgoing argument areas by setting the
   388 // initial mask accordingly.
   389 void Matcher::init_first_stack_mask() {
   391   // Allocate storage for spill masks as masks for the appropriate load type.
   392   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
   393   idealreg2spillmask[Op_RegN] = &rms[0];
   394   idealreg2spillmask[Op_RegI] = &rms[1];
   395   idealreg2spillmask[Op_RegL] = &rms[2];
   396   idealreg2spillmask[Op_RegF] = &rms[3];
   397   idealreg2spillmask[Op_RegD] = &rms[4];
   398   idealreg2spillmask[Op_RegP] = &rms[5];
   399   idealreg2debugmask[Op_RegN] = &rms[6];
   400   idealreg2debugmask[Op_RegI] = &rms[7];
   401   idealreg2debugmask[Op_RegL] = &rms[8];
   402   idealreg2debugmask[Op_RegF] = &rms[9];
   403   idealreg2debugmask[Op_RegD] = &rms[10];
   404   idealreg2debugmask[Op_RegP] = &rms[11];
   406   OptoReg::Name i;
   408   // At first, start with the empty mask
   409   C->FIRST_STACK_mask().Clear();
   411   // Add in the incoming argument area
   412   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
   413   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
   414     C->FIRST_STACK_mask().Insert(i);
   416   // Add in all bits past the outgoing argument area
   417   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
   418             "must be able to represent all call arguments in reg mask");
   419   init = _out_arg_limit;
   420   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   421     C->FIRST_STACK_mask().Insert(i);
   423   // Finally, set the "infinite stack" bit.
   424   C->FIRST_STACK_mask().set_AllStack();
   426   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
   427 #ifdef _LP64
   428   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
   429    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
   430 #endif
   431   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
   432    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
   433   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
   434    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
   435   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
   436    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
   437   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
   438    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
   439   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
   440    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
   442   // Make up debug masks.  Any spill slot plus callee-save registers.
   443   // Caller-save registers are assumed to be trashable by the various
   444   // inline-cache fixup routines.
   445   *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
   446   *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
   447   *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
   448   *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
   449   *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
   450   *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
   452   // Prevent stub compilations from attempting to reference
   453   // callee-saved registers from debug info
   454   bool exclude_soe = !Compile::current()->is_method_compilation();
   456   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   457     // registers the caller has to save do not work
   458     if( _register_save_policy[i] == 'C' ||
   459         _register_save_policy[i] == 'A' ||
   460         (_register_save_policy[i] == 'E' && exclude_soe) ) {
   461       idealreg2debugmask[Op_RegN]->Remove(i);
   462       idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
   463       idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
   464       idealreg2debugmask[Op_RegF]->Remove(i); // masks
   465       idealreg2debugmask[Op_RegD]->Remove(i);
   466       idealreg2debugmask[Op_RegP]->Remove(i);
   467     }
   468   }
   469 }
   471 //---------------------------is_save_on_entry----------------------------------
   472 bool Matcher::is_save_on_entry( int reg ) {
   473   return
   474     _register_save_policy[reg] == 'E' ||
   475     _register_save_policy[reg] == 'A' || // Save-on-entry register?
   476     // Also save argument registers in the trampolining stubs
   477     (C->save_argument_registers() && is_spillable_arg(reg));
   478 }
   480 //---------------------------Fixup_Save_On_Entry-------------------------------
   481 void Matcher::Fixup_Save_On_Entry( ) {
   482   init_first_stack_mask();
   484   Node *root = C->root();       // Short name for root
   485   // Count number of save-on-entry registers.
   486   uint soe_cnt = number_of_saved_registers();
   487   uint i;
   489   // Find the procedure Start Node
   490   StartNode *start = C->start();
   491   assert( start, "Expect a start node" );
   493   // Save argument registers in the trampolining stubs
   494   if( C->save_argument_registers() )
   495     for( i = 0; i < _last_Mach_Reg; i++ )
   496       if( is_spillable_arg(i) )
   497         soe_cnt++;
   499   // Input RegMask array shared by all Returns.
   500   // The type for doubles and longs has a count of 2, but
   501   // there is only 1 returned value
   502   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
   503   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   504   // Returns have 0 or 1 returned values depending on call signature.
   505   // Return register is specified by return_value in the AD file.
   506   if (ret_edge_cnt > TypeFunc::Parms)
   507     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
   509   // Input RegMask array shared by all Rethrows.
   510   uint reth_edge_cnt = TypeFunc::Parms+1;
   511   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   512   // Rethrow takes exception oop only, but in the argument 0 slot.
   513   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
   514 #ifdef _LP64
   515   // Need two slots for ptrs in 64-bit land
   516   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
   517 #endif
   519   // Input RegMask array shared by all TailCalls
   520   uint tail_call_edge_cnt = TypeFunc::Parms+2;
   521   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   523   // Input RegMask array shared by all TailJumps
   524   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
   525   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   527   // TailCalls have 2 returned values (target & moop), whose masks come
   528   // from the usual MachNode/MachOper mechanism.  Find a sample
   529   // TailCall to extract these masks and put the correct masks into
   530   // the tail_call_rms array.
   531   for( i=1; i < root->req(); i++ ) {
   532     MachReturnNode *m = root->in(i)->as_MachReturn();
   533     if( m->ideal_Opcode() == Op_TailCall ) {
   534       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   535       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   536       break;
   537     }
   538   }
   540   // TailJumps have 2 returned values (target & ex_oop), whose masks come
   541   // from the usual MachNode/MachOper mechanism.  Find a sample
   542   // TailJump to extract these masks and put the correct masks into
   543   // the tail_jump_rms array.
   544   for( i=1; i < root->req(); i++ ) {
   545     MachReturnNode *m = root->in(i)->as_MachReturn();
   546     if( m->ideal_Opcode() == Op_TailJump ) {
   547       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
   548       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
   549       break;
   550     }
   551   }
   553   // Input RegMask array shared by all Halts
   554   uint halt_edge_cnt = TypeFunc::Parms;
   555   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
   557   // Capture the return input masks into each exit flavor
   558   for( i=1; i < root->req(); i++ ) {
   559     MachReturnNode *exit = root->in(i)->as_MachReturn();
   560     switch( exit->ideal_Opcode() ) {
   561       case Op_Return   : exit->_in_rms = ret_rms;  break;
   562       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
   563       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
   564       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
   565       case Op_Halt     : exit->_in_rms = halt_rms; break;
   566       default          : ShouldNotReachHere();
   567     }
   568   }
   570   // Next unused projection number from Start.
   571   int proj_cnt = C->tf()->domain()->cnt();
   573   // Do all the save-on-entry registers.  Make projections from Start for
   574   // them, and give them a use at the exit points.  To the allocator, they
   575   // look like incoming register arguments.
   576   for( i = 0; i < _last_Mach_Reg; i++ ) {
   577     if( is_save_on_entry(i) ) {
   579       // Add the save-on-entry to the mask array
   580       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
   581       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
   582       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
   583       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
   584       // Halts need the SOE registers, but only in the stack as debug info.
   585       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
   586       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
   588       Node *mproj;
   590       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
   591       // into a single RegD.
   592       if( (i&1) == 0 &&
   593           _register_save_type[i  ] == Op_RegF &&
   594           _register_save_type[i+1] == Op_RegF &&
   595           is_save_on_entry(i+1) ) {
   596         // Add other bit for double
   597         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   598         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   599         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   600         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   601         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   602         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
   603         proj_cnt += 2;          // Skip 2 for doubles
   604       }
   605       else if( (i&1) == 1 &&    // Else check for high half of double
   606                _register_save_type[i-1] == Op_RegF &&
   607                _register_save_type[i  ] == Op_RegF &&
   608                is_save_on_entry(i-1) ) {
   609         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   610         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   611         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   612         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   613         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   614         mproj = C->top();
   615       }
   616       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
   617       // into a single RegL.
   618       else if( (i&1) == 0 &&
   619           _register_save_type[i  ] == Op_RegI &&
   620           _register_save_type[i+1] == Op_RegI &&
   621         is_save_on_entry(i+1) ) {
   622         // Add other bit for long
   623         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
   624         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
   625         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
   626         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
   627         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
   628         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
   629         proj_cnt += 2;          // Skip 2 for longs
   630       }
   631       else if( (i&1) == 1 &&    // Else check for high half of long
   632                _register_save_type[i-1] == Op_RegI &&
   633                _register_save_type[i  ] == Op_RegI &&
   634                is_save_on_entry(i-1) ) {
   635         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
   636         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
   637         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
   638         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
   639         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
   640         mproj = C->top();
   641       } else {
   642         // Make a projection for it off the Start
   643         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
   644       }
   646       ret_edge_cnt ++;
   647       reth_edge_cnt ++;
   648       tail_call_edge_cnt ++;
   649       tail_jump_edge_cnt ++;
   650       halt_edge_cnt ++;
   652       // Add a use of the SOE register to all exit paths
   653       for( uint j=1; j < root->req(); j++ )
   654         root->in(j)->add_req(mproj);
   655     } // End of if a save-on-entry register
   656   } // End of for all machine registers
   657 }
   659 //------------------------------init_spill_mask--------------------------------
   660 void Matcher::init_spill_mask( Node *ret ) {
   661   if( idealreg2regmask[Op_RegI] ) return; // One time only init
   663   OptoReg::c_frame_pointer = c_frame_pointer();
   664   c_frame_ptr_mask = c_frame_pointer();
   665 #ifdef _LP64
   666   // pointers are twice as big
   667   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
   668 #endif
   670   // Start at OptoReg::stack0()
   671   STACK_ONLY_mask.Clear();
   672   OptoReg::Name init = OptoReg::stack2reg(0);
   673   // STACK_ONLY_mask is all stack bits
   674   OptoReg::Name i;
   675   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
   676     STACK_ONLY_mask.Insert(i);
   677   // Also set the "infinite stack" bit.
   678   STACK_ONLY_mask.set_AllStack();
   680   // Copy the register names over into the shared world
   681   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
   682     // SharedInfo::regName[i] = regName[i];
   683     // Handy RegMasks per machine register
   684     mreg2regmask[i].Insert(i);
   685   }
   687   // Grab the Frame Pointer
   688   Node *fp  = ret->in(TypeFunc::FramePtr);
   689   Node *mem = ret->in(TypeFunc::Memory);
   690   const TypePtr* atp = TypePtr::BOTTOM;
   691   // Share frame pointer while making spill ops
   692   set_shared(fp);
   694   // Compute generic short-offset Loads
   695 #ifdef _LP64
   696   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   697 #endif
   698   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
   699   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
   700   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
   701   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
   702   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
   703   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
   704          spillD != NULL && spillP != NULL, "");
   706   // Get the ADLC notion of the right regmask, for each basic type.
   707 #ifdef _LP64
   708   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
   709 #endif
   710   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
   711   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
   712   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
   713   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
   714   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
   715 }
   717 #ifdef ASSERT
   718 static void match_alias_type(Compile* C, Node* n, Node* m) {
   719   if (!VerifyAliases)  return;  // do not go looking for trouble by default
   720   const TypePtr* nat = n->adr_type();
   721   const TypePtr* mat = m->adr_type();
   722   int nidx = C->get_alias_index(nat);
   723   int midx = C->get_alias_index(mat);
   724   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
   725   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
   726     for (uint i = 1; i < n->req(); i++) {
   727       Node* n1 = n->in(i);
   728       const TypePtr* n1at = n1->adr_type();
   729       if (n1at != NULL) {
   730         nat = n1at;
   731         nidx = C->get_alias_index(n1at);
   732       }
   733     }
   734   }
   735   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
   736   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
   737     switch (n->Opcode()) {
   738     case Op_PrefetchRead:
   739     case Op_PrefetchWrite:
   740       nidx = Compile::AliasIdxRaw;
   741       nat = TypeRawPtr::BOTTOM;
   742       break;
   743     }
   744   }
   745   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
   746     switch (n->Opcode()) {
   747     case Op_ClearArray:
   748       midx = Compile::AliasIdxRaw;
   749       mat = TypeRawPtr::BOTTOM;
   750       break;
   751     }
   752   }
   753   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
   754     switch (n->Opcode()) {
   755     case Op_Return:
   756     case Op_Rethrow:
   757     case Op_Halt:
   758     case Op_TailCall:
   759     case Op_TailJump:
   760       nidx = Compile::AliasIdxBot;
   761       nat = TypePtr::BOTTOM;
   762       break;
   763     }
   764   }
   765   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
   766     switch (n->Opcode()) {
   767     case Op_StrComp:
   768     case Op_StrEquals:
   769     case Op_StrIndexOf:
   770     case Op_AryEq:
   771     case Op_MemBarVolatile:
   772     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
   773       nidx = Compile::AliasIdxTop;
   774       nat = NULL;
   775       break;
   776     }
   777   }
   778   if (nidx != midx) {
   779     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
   780       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
   781       n->dump();
   782       m->dump();
   783     }
   784     assert(C->subsume_loads() && C->must_alias(nat, midx),
   785            "must not lose alias info when matching");
   786   }
   787 }
   788 #endif
   791 //------------------------------MStack-----------------------------------------
   792 // State and MStack class used in xform() and find_shared() iterative methods.
   793 enum Node_State { Pre_Visit,  // node has to be pre-visited
   794                       Visit,  // visit node
   795                  Post_Visit,  // post-visit node
   796              Alt_Post_Visit   // alternative post-visit path
   797                 };
   799 class MStack: public Node_Stack {
   800   public:
   801     MStack(int size) : Node_Stack(size) { }
   803     void push(Node *n, Node_State ns) {
   804       Node_Stack::push(n, (uint)ns);
   805     }
   806     void push(Node *n, Node_State ns, Node *parent, int indx) {
   807       ++_inode_top;
   808       if ((_inode_top + 1) >= _inode_max) grow();
   809       _inode_top->node = parent;
   810       _inode_top->indx = (uint)indx;
   811       ++_inode_top;
   812       _inode_top->node = n;
   813       _inode_top->indx = (uint)ns;
   814     }
   815     Node *parent() {
   816       pop();
   817       return node();
   818     }
   819     Node_State state() const {
   820       return (Node_State)index();
   821     }
   822     void set_state(Node_State ns) {
   823       set_index((uint)ns);
   824     }
   825 };
   828 //------------------------------xform------------------------------------------
   829 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
   830 // Node in new-space.  Given a new-space Node, recursively walk his children.
   831 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
   832 Node *Matcher::xform( Node *n, int max_stack ) {
   833   // Use one stack to keep both: child's node/state and parent's node/index
   834   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
   835   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
   837   while (mstack.is_nonempty()) {
   838     n = mstack.node();          // Leave node on stack
   839     Node_State nstate = mstack.state();
   840     if (nstate == Visit) {
   841       mstack.set_state(Post_Visit);
   842       Node *oldn = n;
   843       // Old-space or new-space check
   844       if (!C->node_arena()->contains(n)) {
   845         // Old space!
   846         Node* m;
   847         if (has_new_node(n)) {  // Not yet Label/Reduced
   848           m = new_node(n);
   849         } else {
   850           if (!is_dontcare(n)) { // Matcher can match this guy
   851             // Calls match special.  They match alone with no children.
   852             // Their children, the incoming arguments, match normally.
   853             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
   854             if (C->failing())  return NULL;
   855             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
   856           } else {                  // Nothing the matcher cares about
   857             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
   858               // Convert to machine-dependent projection
   859               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
   860 #ifdef ASSERT
   861               _new2old_map.map(m->_idx, n);
   862 #endif
   863               if (m->in(0) != NULL) // m might be top
   864                 collect_null_checks(m, n);
   865             } else {                // Else just a regular 'ol guy
   866               m = n->clone();       // So just clone into new-space
   867 #ifdef ASSERT
   868               _new2old_map.map(m->_idx, n);
   869 #endif
   870               // Def-Use edges will be added incrementally as Uses
   871               // of this node are matched.
   872               assert(m->outcnt() == 0, "no Uses of this clone yet");
   873             }
   874           }
   876           set_new_node(n, m);       // Map old to new
   877           if (_old_node_note_array != NULL) {
   878             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
   879                                                   n->_idx);
   880             C->set_node_notes_at(m->_idx, nn);
   881           }
   882           debug_only(match_alias_type(C, n, m));
   883         }
   884         n = m;    // n is now a new-space node
   885         mstack.set_node(n);
   886       }
   888       // New space!
   889       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
   891       int i;
   892       // Put precedence edges on stack first (match them last).
   893       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
   894         Node *m = oldn->in(i);
   895         if (m == NULL) break;
   896         // set -1 to call add_prec() instead of set_req() during Step1
   897         mstack.push(m, Visit, n, -1);
   898       }
   900       // For constant debug info, I'd rather have unmatched constants.
   901       int cnt = n->req();
   902       JVMState* jvms = n->jvms();
   903       int debug_cnt = jvms ? jvms->debug_start() : cnt;
   905       // Now do only debug info.  Clone constants rather than matching.
   906       // Constants are represented directly in the debug info without
   907       // the need for executable machine instructions.
   908       // Monitor boxes are also represented directly.
   909       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
   910         Node *m = n->in(i);          // Get input
   911         int op = m->Opcode();
   912         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
   913         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
   914             op == Op_ConF || op == Op_ConD || op == Op_ConL
   915             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
   916             ) {
   917           m = m->clone();
   918 #ifdef ASSERT
   919           _new2old_map.map(m->_idx, n);
   920 #endif
   921           mstack.push(m, Post_Visit, n, i); // Don't need to visit
   922           mstack.push(m->in(0), Visit, m, 0);
   923         } else {
   924           mstack.push(m, Visit, n, i);
   925         }
   926       }
   928       // And now walk his children, and convert his inputs to new-space.
   929       for( ; i >= 0; --i ) { // For all normal inputs do
   930         Node *m = n->in(i);  // Get input
   931         if(m != NULL)
   932           mstack.push(m, Visit, n, i);
   933       }
   935     }
   936     else if (nstate == Post_Visit) {
   937       // Set xformed input
   938       Node *p = mstack.parent();
   939       if (p != NULL) { // root doesn't have parent
   940         int i = (int)mstack.index();
   941         if (i >= 0)
   942           p->set_req(i, n); // required input
   943         else if (i == -1)
   944           p->add_prec(n);   // precedence input
   945         else
   946           ShouldNotReachHere();
   947       }
   948       mstack.pop(); // remove processed node from stack
   949     }
   950     else {
   951       ShouldNotReachHere();
   952     }
   953   } // while (mstack.is_nonempty())
   954   return n; // Return new-space Node
   955 }
   957 //------------------------------warp_outgoing_stk_arg------------------------
   958 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
   959   // Convert outgoing argument location to a pre-biased stack offset
   960   if (reg->is_stack()) {
   961     OptoReg::Name warped = reg->reg2stack();
   962     // Adjust the stack slot offset to be the register number used
   963     // by the allocator.
   964     warped = OptoReg::add(begin_out_arg_area, warped);
   965     // Keep track of the largest numbered stack slot used for an arg.
   966     // Largest used slot per call-site indicates the amount of stack
   967     // that is killed by the call.
   968     if( warped >= out_arg_limit_per_call )
   969       out_arg_limit_per_call = OptoReg::add(warped,1);
   970     if (!RegMask::can_represent(warped)) {
   971       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
   972       return OptoReg::Bad;
   973     }
   974     return warped;
   975   }
   976   return OptoReg::as_OptoReg(reg);
   977 }
   980 //------------------------------match_sfpt-------------------------------------
   981 // Helper function to match call instructions.  Calls match special.
   982 // They match alone with no children.  Their children, the incoming
   983 // arguments, match normally.
   984 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
   985   MachSafePointNode *msfpt = NULL;
   986   MachCallNode      *mcall = NULL;
   987   uint               cnt;
   988   // Split out case for SafePoint vs Call
   989   CallNode *call;
   990   const TypeTuple *domain;
   991   ciMethod*        method = NULL;
   992   if( sfpt->is_Call() ) {
   993     call = sfpt->as_Call();
   994     domain = call->tf()->domain();
   995     cnt = domain->cnt();
   997     // Match just the call, nothing else
   998     MachNode *m = match_tree(call);
   999     if (C->failing())  return NULL;
  1000     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
  1002     // Copy data from the Ideal SafePoint to the machine version
  1003     mcall = m->as_MachCall();
  1005     mcall->set_tf(         call->tf());
  1006     mcall->set_entry_point(call->entry_point());
  1007     mcall->set_cnt(        call->cnt());
  1009     if( mcall->is_MachCallJava() ) {
  1010       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
  1011       const CallJavaNode *call_java =  call->as_CallJava();
  1012       method = call_java->method();
  1013       mcall_java->_method = method;
  1014       mcall_java->_bci = call_java->_bci;
  1015       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
  1016       if( mcall_java->is_MachCallStaticJava() )
  1017         mcall_java->as_MachCallStaticJava()->_name =
  1018          call_java->as_CallStaticJava()->_name;
  1019       if( mcall_java->is_MachCallDynamicJava() )
  1020         mcall_java->as_MachCallDynamicJava()->_vtable_index =
  1021          call_java->as_CallDynamicJava()->_vtable_index;
  1023     else if( mcall->is_MachCallRuntime() ) {
  1024       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
  1026     msfpt = mcall;
  1028   // This is a non-call safepoint
  1029   else {
  1030     call = NULL;
  1031     domain = NULL;
  1032     MachNode *mn = match_tree(sfpt);
  1033     if (C->failing())  return NULL;
  1034     msfpt = mn->as_MachSafePoint();
  1035     cnt = TypeFunc::Parms;
  1038   // Advertise the correct memory effects (for anti-dependence computation).
  1039   msfpt->set_adr_type(sfpt->adr_type());
  1041   // Allocate a private array of RegMasks.  These RegMasks are not shared.
  1042   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
  1043   // Empty them all.
  1044   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
  1046   // Do all the pre-defined non-Empty register masks
  1047   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
  1048   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
  1050   // Place first outgoing argument can possibly be put.
  1051   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
  1052   assert( is_even(begin_out_arg_area), "" );
  1053   // Compute max outgoing register number per call site.
  1054   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
  1055   // Calls to C may hammer extra stack slots above and beyond any arguments.
  1056   // These are usually backing store for register arguments for varargs.
  1057   if( call != NULL && call->is_CallRuntime() )
  1058     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
  1061   // Do the normal argument list (parameters) register masks
  1062   int argcnt = cnt - TypeFunc::Parms;
  1063   if( argcnt > 0 ) {          // Skip it all if we have no args
  1064     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
  1065     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
  1066     int i;
  1067     for( i = 0; i < argcnt; i++ ) {
  1068       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
  1070     // V-call to pick proper calling convention
  1071     call->calling_convention( sig_bt, parm_regs, argcnt );
  1073 #ifdef ASSERT
  1074     // Sanity check users' calling convention.  Really handy during
  1075     // the initial porting effort.  Fairly expensive otherwise.
  1076     { for (int i = 0; i<argcnt; i++) {
  1077       if( !parm_regs[i].first()->is_valid() &&
  1078           !parm_regs[i].second()->is_valid() ) continue;
  1079       VMReg reg1 = parm_regs[i].first();
  1080       VMReg reg2 = parm_regs[i].second();
  1081       for (int j = 0; j < i; j++) {
  1082         if( !parm_regs[j].first()->is_valid() &&
  1083             !parm_regs[j].second()->is_valid() ) continue;
  1084         VMReg reg3 = parm_regs[j].first();
  1085         VMReg reg4 = parm_regs[j].second();
  1086         if( !reg1->is_valid() ) {
  1087           assert( !reg2->is_valid(), "valid halvsies" );
  1088         } else if( !reg3->is_valid() ) {
  1089           assert( !reg4->is_valid(), "valid halvsies" );
  1090         } else {
  1091           assert( reg1 != reg2, "calling conv. must produce distinct regs");
  1092           assert( reg1 != reg3, "calling conv. must produce distinct regs");
  1093           assert( reg1 != reg4, "calling conv. must produce distinct regs");
  1094           assert( reg2 != reg3, "calling conv. must produce distinct regs");
  1095           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
  1096           assert( reg3 != reg4, "calling conv. must produce distinct regs");
  1101 #endif
  1103     // Visit each argument.  Compute its outgoing register mask.
  1104     // Return results now can have 2 bits returned.
  1105     // Compute max over all outgoing arguments both per call-site
  1106     // and over the entire method.
  1107     for( i = 0; i < argcnt; i++ ) {
  1108       // Address of incoming argument mask to fill in
  1109       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
  1110       if( !parm_regs[i].first()->is_valid() &&
  1111           !parm_regs[i].second()->is_valid() ) {
  1112         continue;               // Avoid Halves
  1114       // Grab first register, adjust stack slots and insert in mask.
  1115       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
  1116       if (OptoReg::is_valid(reg1))
  1117         rm->Insert( reg1 );
  1118       // Grab second register (if any), adjust stack slots and insert in mask.
  1119       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
  1120       if (OptoReg::is_valid(reg2))
  1121         rm->Insert( reg2 );
  1122     } // End of for all arguments
  1124     // Compute number of stack slots needed to restore stack in case of
  1125     // Pascal-style argument popping.
  1126     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
  1129   // Compute the max stack slot killed by any call.  These will not be
  1130   // available for debug info, and will be used to adjust FIRST_STACK_mask
  1131   // after all call sites have been visited.
  1132   if( _out_arg_limit < out_arg_limit_per_call)
  1133     _out_arg_limit = out_arg_limit_per_call;
  1135   if (mcall) {
  1136     // Kill the outgoing argument area, including any non-argument holes and
  1137     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
  1138     // Since the max-per-method covers the max-per-call-site and debug info
  1139     // is excluded on the max-per-method basis, debug info cannot land in
  1140     // this killed area.
  1141     uint r_cnt = mcall->tf()->range()->cnt();
  1142     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
  1143     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
  1144       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
  1145     } else {
  1146       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
  1147         proj->_rout.Insert(OptoReg::Name(i));
  1149     if( proj->_rout.is_NotEmpty() )
  1150       _proj_list.push(proj);
  1152   // Transfer the safepoint information from the call to the mcall
  1153   // Move the JVMState list
  1154   msfpt->set_jvms(sfpt->jvms());
  1155   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
  1156     jvms->set_map(sfpt);
  1159   // Debug inputs begin just after the last incoming parameter
  1160   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
  1161           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
  1163   // Move the OopMap
  1164   msfpt->_oop_map = sfpt->_oop_map;
  1166   // Registers killed by the call are set in the local scheduling pass
  1167   // of Global Code Motion.
  1168   return msfpt;
  1171 //---------------------------match_tree----------------------------------------
  1172 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
  1173 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
  1174 // making GotoNodes while building the CFG and in init_spill_mask() to identify
  1175 // a Load's result RegMask for memoization in idealreg2regmask[]
  1176 MachNode *Matcher::match_tree( const Node *n ) {
  1177   assert( n->Opcode() != Op_Phi, "cannot match" );
  1178   assert( !n->is_block_start(), "cannot match" );
  1179   // Set the mark for all locally allocated State objects.
  1180   // When this call returns, the _states_arena arena will be reset
  1181   // freeing all State objects.
  1182   ResourceMark rm( &_states_arena );
  1184   LabelRootDepth = 0;
  1186   // StoreNodes require their Memory input to match any LoadNodes
  1187   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
  1188 #ifdef ASSERT
  1189   Node* save_mem_node = _mem_node;
  1190   _mem_node = n->is_Store() ? (Node*)n : NULL;
  1191 #endif
  1192   // State object for root node of match tree
  1193   // Allocate it on _states_arena - stack allocation can cause stack overflow.
  1194   State *s = new (&_states_arena) State;
  1195   s->_kids[0] = NULL;
  1196   s->_kids[1] = NULL;
  1197   s->_leaf = (Node*)n;
  1198   // Label the input tree, allocating labels from top-level arena
  1199   Label_Root( n, s, n->in(0), mem );
  1200   if (C->failing())  return NULL;
  1202   // The minimum cost match for the whole tree is found at the root State
  1203   uint mincost = max_juint;
  1204   uint cost = max_juint;
  1205   uint i;
  1206   for( i = 0; i < NUM_OPERANDS; i++ ) {
  1207     if( s->valid(i) &&                // valid entry and
  1208         s->_cost[i] < cost &&         // low cost and
  1209         s->_rule[i] >= NUM_OPERANDS ) // not an operand
  1210       cost = s->_cost[mincost=i];
  1212   if (mincost == max_juint) {
  1213 #ifndef PRODUCT
  1214     tty->print("No matching rule for:");
  1215     s->dump();
  1216 #endif
  1217     Matcher::soft_match_failure();
  1218     return NULL;
  1220   // Reduce input tree based upon the state labels to machine Nodes
  1221   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
  1222 #ifdef ASSERT
  1223   _old2new_map.map(n->_idx, m);
  1224   _new2old_map.map(m->_idx, (Node*)n);
  1225 #endif
  1227   // Add any Matcher-ignored edges
  1228   uint cnt = n->req();
  1229   uint start = 1;
  1230   if( mem != (Node*)1 ) start = MemNode::Memory+1;
  1231   if( n->is_AddP() ) {
  1232     assert( mem == (Node*)1, "" );
  1233     start = AddPNode::Base+1;
  1235   for( i = start; i < cnt; i++ ) {
  1236     if( !n->match_edge(i) ) {
  1237       if( i < m->req() )
  1238         m->ins_req( i, n->in(i) );
  1239       else
  1240         m->add_req( n->in(i) );
  1244   debug_only( _mem_node = save_mem_node; )
  1245   return m;
  1249 //------------------------------match_into_reg---------------------------------
  1250 // Choose to either match this Node in a register or part of the current
  1251 // match tree.  Return true for requiring a register and false for matching
  1252 // as part of the current match tree.
  1253 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
  1255   const Type *t = m->bottom_type();
  1257   if( t->singleton() ) {
  1258     // Never force constants into registers.  Allow them to match as
  1259     // constants or registers.  Copies of the same value will share
  1260     // the same register.  See find_shared_node.
  1261     return false;
  1262   } else {                      // Not a constant
  1263     // Stop recursion if they have different Controls.
  1264     // Slot 0 of constants is not really a Control.
  1265     if( control && m->in(0) && control != m->in(0) ) {
  1267       // Actually, we can live with the most conservative control we
  1268       // find, if it post-dominates the others.  This allows us to
  1269       // pick up load/op/store trees where the load can float a little
  1270       // above the store.
  1271       Node *x = control;
  1272       const uint max_scan = 6;   // Arbitrary scan cutoff
  1273       uint j;
  1274       for( j=0; j<max_scan; j++ ) {
  1275         if( x->is_Region() )    // Bail out at merge points
  1276           return true;
  1277         x = x->in(0);
  1278         if( x == m->in(0) )     // Does 'control' post-dominate
  1279           break;                // m->in(0)?  If so, we can use it
  1281       if( j == max_scan )       // No post-domination before scan end?
  1282         return true;            // Then break the match tree up
  1284     if (m->is_DecodeN() && Matcher::clone_shift_expressions) {
  1285       // These are commonly used in address expressions and can
  1286       // efficiently fold into them on X64 in some cases.
  1287       return false;
  1291   // Not forceable cloning.  If shared, put it into a register.
  1292   return shared;
  1296 //------------------------------Instruction Selection--------------------------
  1297 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
  1298 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
  1299 // things the Matcher does not match (e.g., Memory), and things with different
  1300 // Controls (hence forced into different blocks).  We pass in the Control
  1301 // selected for this entire State tree.
  1303 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
  1304 // Store and the Load must have identical Memories (as well as identical
  1305 // pointers).  Since the Matcher does not have anything for Memory (and
  1306 // does not handle DAGs), I have to match the Memory input myself.  If the
  1307 // Tree root is a Store, I require all Loads to have the identical memory.
  1308 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
  1309   // Since Label_Root is a recursive function, its possible that we might run
  1310   // out of stack space.  See bugs 6272980 & 6227033 for more info.
  1311   LabelRootDepth++;
  1312   if (LabelRootDepth > MaxLabelRootDepth) {
  1313     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
  1314     return NULL;
  1316   uint care = 0;                // Edges matcher cares about
  1317   uint cnt = n->req();
  1318   uint i = 0;
  1320   // Examine children for memory state
  1321   // Can only subsume a child into your match-tree if that child's memory state
  1322   // is not modified along the path to another input.
  1323   // It is unsafe even if the other inputs are separate roots.
  1324   Node *input_mem = NULL;
  1325   for( i = 1; i < cnt; i++ ) {
  1326     if( !n->match_edge(i) ) continue;
  1327     Node *m = n->in(i);         // Get ith input
  1328     assert( m, "expect non-null children" );
  1329     if( m->is_Load() ) {
  1330       if( input_mem == NULL ) {
  1331         input_mem = m->in(MemNode::Memory);
  1332       } else if( input_mem != m->in(MemNode::Memory) ) {
  1333         input_mem = NodeSentinel;
  1338   for( i = 1; i < cnt; i++ ){// For my children
  1339     if( !n->match_edge(i) ) continue;
  1340     Node *m = n->in(i);         // Get ith input
  1341     // Allocate states out of a private arena
  1342     State *s = new (&_states_arena) State;
  1343     svec->_kids[care++] = s;
  1344     assert( care <= 2, "binary only for now" );
  1346     // Recursively label the State tree.
  1347     s->_kids[0] = NULL;
  1348     s->_kids[1] = NULL;
  1349     s->_leaf = m;
  1351     // Check for leaves of the State Tree; things that cannot be a part of
  1352     // the current tree.  If it finds any, that value is matched as a
  1353     // register operand.  If not, then the normal matching is used.
  1354     if( match_into_reg(n, m, control, i, is_shared(m)) ||
  1355         //
  1356         // Stop recursion if this is LoadNode and the root of this tree is a
  1357         // StoreNode and the load & store have different memories.
  1358         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
  1359         // Can NOT include the match of a subtree when its memory state
  1360         // is used by any of the other subtrees
  1361         (input_mem == NodeSentinel) ) {
  1362 #ifndef PRODUCT
  1363       // Print when we exclude matching due to different memory states at input-loads
  1364       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
  1365         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
  1366         tty->print_cr("invalid input_mem");
  1368 #endif
  1369       // Switch to a register-only opcode; this value must be in a register
  1370       // and cannot be subsumed as part of a larger instruction.
  1371       s->DFA( m->ideal_reg(), m );
  1373     } else {
  1374       // If match tree has no control and we do, adopt it for entire tree
  1375       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
  1376         control = m->in(0);         // Pick up control
  1377       // Else match as a normal part of the match tree.
  1378       control = Label_Root(m,s,control,mem);
  1379       if (C->failing()) return NULL;
  1384   // Call DFA to match this node, and return
  1385   svec->DFA( n->Opcode(), n );
  1387 #ifdef ASSERT
  1388   uint x;
  1389   for( x = 0; x < _LAST_MACH_OPER; x++ )
  1390     if( svec->valid(x) )
  1391       break;
  1393   if (x >= _LAST_MACH_OPER) {
  1394     n->dump();
  1395     svec->dump();
  1396     assert( false, "bad AD file" );
  1398 #endif
  1399   return control;
  1403 // Con nodes reduced using the same rule can share their MachNode
  1404 // which reduces the number of copies of a constant in the final
  1405 // program.  The register allocator is free to split uses later to
  1406 // split live ranges.
  1407 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
  1408   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
  1410   // See if this Con has already been reduced using this rule.
  1411   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
  1412   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
  1413   if (last != NULL && rule == last->rule()) {
  1414     // Don't expect control change for DecodeN
  1415     if (leaf->is_DecodeN())
  1416       return last;
  1417     // Get the new space root.
  1418     Node* xroot = new_node(C->root());
  1419     if (xroot == NULL) {
  1420       // This shouldn't happen give the order of matching.
  1421       return NULL;
  1424     // Shared constants need to have their control be root so they
  1425     // can be scheduled properly.
  1426     Node* control = last->in(0);
  1427     if (control != xroot) {
  1428       if (control == NULL || control == C->root()) {
  1429         last->set_req(0, xroot);
  1430       } else {
  1431         assert(false, "unexpected control");
  1432         return NULL;
  1435     return last;
  1437   return NULL;
  1441 //------------------------------ReduceInst-------------------------------------
  1442 // Reduce a State tree (with given Control) into a tree of MachNodes.
  1443 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
  1444 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
  1445 // Each MachNode has a number of complicated MachOper operands; each
  1446 // MachOper also covers a further tree of Ideal Nodes.
  1448 // The root of the Ideal match tree is always an instruction, so we enter
  1449 // the recursion here.  After building the MachNode, we need to recurse
  1450 // the tree checking for these cases:
  1451 // (1) Child is an instruction -
  1452 //     Build the instruction (recursively), add it as an edge.
  1453 //     Build a simple operand (register) to hold the result of the instruction.
  1454 // (2) Child is an interior part of an instruction -
  1455 //     Skip over it (do nothing)
  1456 // (3) Child is the start of a operand -
  1457 //     Build the operand, place it inside the instruction
  1458 //     Call ReduceOper.
  1459 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
  1460   assert( rule >= NUM_OPERANDS, "called with operand rule" );
  1462   MachNode* shared_node = find_shared_node(s->_leaf, rule);
  1463   if (shared_node != NULL) {
  1464     return shared_node;
  1467   // Build the object to represent this state & prepare for recursive calls
  1468   MachNode *mach = s->MachNodeGenerator( rule, C );
  1469   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
  1470   assert( mach->_opnds[0] != NULL, "Missing result operand" );
  1471   Node *leaf = s->_leaf;
  1472   // Check for instruction or instruction chain rule
  1473   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
  1474     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
  1475            "duplicating node that's already been matched");
  1476     // Instruction
  1477     mach->add_req( leaf->in(0) ); // Set initial control
  1478     // Reduce interior of complex instruction
  1479     ReduceInst_Interior( s, rule, mem, mach, 1 );
  1480   } else {
  1481     // Instruction chain rules are data-dependent on their inputs
  1482     mach->add_req(0);             // Set initial control to none
  1483     ReduceInst_Chain_Rule( s, rule, mem, mach );
  1486   // If a Memory was used, insert a Memory edge
  1487   if( mem != (Node*)1 ) {
  1488     mach->ins_req(MemNode::Memory,mem);
  1489 #ifdef ASSERT
  1490     // Verify adr type after matching memory operation
  1491     const MachOper* oper = mach->memory_operand();
  1492     if (oper != NULL && oper != (MachOper*)-1) {
  1493       // It has a unique memory operand.  Find corresponding ideal mem node.
  1494       Node* m = NULL;
  1495       if (leaf->is_Mem()) {
  1496         m = leaf;
  1497       } else {
  1498         m = _mem_node;
  1499         assert(m != NULL && m->is_Mem(), "expecting memory node");
  1501       const Type* mach_at = mach->adr_type();
  1502       // DecodeN node consumed by an address may have different type
  1503       // then its input. Don't compare types for such case.
  1504       if (m->adr_type() != mach_at &&
  1505           (m->in(MemNode::Address)->is_DecodeN() ||
  1506            m->in(MemNode::Address)->is_AddP() &&
  1507            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
  1508            m->in(MemNode::Address)->is_AddP() &&
  1509            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
  1510            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
  1511         mach_at = m->adr_type();
  1513       if (m->adr_type() != mach_at) {
  1514         m->dump();
  1515         tty->print_cr("mach:");
  1516         mach->dump(1);
  1518       assert(m->adr_type() == mach_at, "matcher should not change adr type");
  1520 #endif
  1523   // If the _leaf is an AddP, insert the base edge
  1524   if( leaf->is_AddP() )
  1525     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
  1527   uint num_proj = _proj_list.size();
  1529   // Perform any 1-to-many expansions required
  1530   MachNode *ex = mach->Expand(s,_proj_list);
  1531   if( ex != mach ) {
  1532     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
  1533     if( ex->in(1)->is_Con() )
  1534       ex->in(1)->set_req(0, C->root());
  1535     // Remove old node from the graph
  1536     for( uint i=0; i<mach->req(); i++ ) {
  1537       mach->set_req(i,NULL);
  1539 #ifdef ASSERT
  1540     _new2old_map.map(ex->_idx, s->_leaf);
  1541 #endif
  1544   // PhaseChaitin::fixup_spills will sometimes generate spill code
  1545   // via the matcher.  By the time, nodes have been wired into the CFG,
  1546   // and any further nodes generated by expand rules will be left hanging
  1547   // in space, and will not get emitted as output code.  Catch this.
  1548   // Also, catch any new register allocation constraints ("projections")
  1549   // generated belatedly during spill code generation.
  1550   if (_allocation_started) {
  1551     guarantee(ex == mach, "no expand rules during spill generation");
  1552     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
  1555   if (leaf->is_Con() || leaf->is_DecodeN()) {
  1556     // Record the con for sharing
  1557     _shared_nodes.map(leaf->_idx, ex);
  1560   return ex;
  1563 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
  1564   // 'op' is what I am expecting to receive
  1565   int op = _leftOp[rule];
  1566   // Operand type to catch childs result
  1567   // This is what my child will give me.
  1568   int opnd_class_instance = s->_rule[op];
  1569   // Choose between operand class or not.
  1570   // This is what I will receive.
  1571   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1572   // New rule for child.  Chase operand classes to get the actual rule.
  1573   int newrule = s->_rule[catch_op];
  1575   if( newrule < NUM_OPERANDS ) {
  1576     // Chain from operand or operand class, may be output of shared node
  1577     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
  1578             "Bad AD file: Instruction chain rule must chain from operand");
  1579     // Insert operand into array of operands for this instruction
  1580     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
  1582     ReduceOper( s, newrule, mem, mach );
  1583   } else {
  1584     // Chain from the result of an instruction
  1585     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
  1586     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1587     Node *mem1 = (Node*)1;
  1588     debug_only(Node *save_mem_node = _mem_node;)
  1589     mach->add_req( ReduceInst(s, newrule, mem1) );
  1590     debug_only(_mem_node = save_mem_node;)
  1592   return;
  1596 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
  1597   if( s->_leaf->is_Load() ) {
  1598     Node *mem2 = s->_leaf->in(MemNode::Memory);
  1599     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
  1600     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
  1601     mem = mem2;
  1603   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
  1604     if( mach->in(0) == NULL )
  1605       mach->set_req(0, s->_leaf->in(0));
  1608   // Now recursively walk the state tree & add operand list.
  1609   for( uint i=0; i<2; i++ ) {   // binary tree
  1610     State *newstate = s->_kids[i];
  1611     if( newstate == NULL ) break;      // Might only have 1 child
  1612     // 'op' is what I am expecting to receive
  1613     int op;
  1614     if( i == 0 ) {
  1615       op = _leftOp[rule];
  1616     } else {
  1617       op = _rightOp[rule];
  1619     // Operand type to catch childs result
  1620     // This is what my child will give me.
  1621     int opnd_class_instance = newstate->_rule[op];
  1622     // Choose between operand class or not.
  1623     // This is what I will receive.
  1624     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
  1625     // New rule for child.  Chase operand classes to get the actual rule.
  1626     int newrule = newstate->_rule[catch_op];
  1628     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
  1629       // Operand/operandClass
  1630       // Insert operand into array of operands for this instruction
  1631       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
  1632       ReduceOper( newstate, newrule, mem, mach );
  1634     } else {                    // Child is internal operand or new instruction
  1635       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
  1636         // internal operand --> call ReduceInst_Interior
  1637         // Interior of complex instruction.  Do nothing but recurse.
  1638         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
  1639       } else {
  1640         // instruction --> call build operand(  ) to catch result
  1641         //             --> ReduceInst( newrule )
  1642         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
  1643         Node *mem1 = (Node*)1;
  1644         debug_only(Node *save_mem_node = _mem_node;)
  1645         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
  1646         debug_only(_mem_node = save_mem_node;)
  1649     assert( mach->_opnds[num_opnds-1], "" );
  1651   return num_opnds;
  1654 // This routine walks the interior of possible complex operands.
  1655 // At each point we check our children in the match tree:
  1656 // (1) No children -
  1657 //     We are a leaf; add _leaf field as an input to the MachNode
  1658 // (2) Child is an internal operand -
  1659 //     Skip over it ( do nothing )
  1660 // (3) Child is an instruction -
  1661 //     Call ReduceInst recursively and
  1662 //     and instruction as an input to the MachNode
  1663 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
  1664   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
  1665   State *kid = s->_kids[0];
  1666   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
  1668   // Leaf?  And not subsumed?
  1669   if( kid == NULL && !_swallowed[rule] ) {
  1670     mach->add_req( s->_leaf );  // Add leaf pointer
  1671     return;                     // Bail out
  1674   if( s->_leaf->is_Load() ) {
  1675     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
  1676     mem = s->_leaf->in(MemNode::Memory);
  1677     debug_only(_mem_node = s->_leaf;)
  1679   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
  1680     if( !mach->in(0) )
  1681       mach->set_req(0,s->_leaf->in(0));
  1682     else {
  1683       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
  1687   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
  1688     int newrule;
  1689     if( i == 0 )
  1690       newrule = kid->_rule[_leftOp[rule]];
  1691     else
  1692       newrule = kid->_rule[_rightOp[rule]];
  1694     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
  1695       // Internal operand; recurse but do nothing else
  1696       ReduceOper( kid, newrule, mem, mach );
  1698     } else {                    // Child is a new instruction
  1699       // Reduce the instruction, and add a direct pointer from this
  1700       // machine instruction to the newly reduced one.
  1701       Node *mem1 = (Node*)1;
  1702       debug_only(Node *save_mem_node = _mem_node;)
  1703       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
  1704       debug_only(_mem_node = save_mem_node;)
  1710 // -------------------------------------------------------------------------
  1711 // Java-Java calling convention
  1712 // (what you use when Java calls Java)
  1714 //------------------------------find_receiver----------------------------------
  1715 // For a given signature, return the OptoReg for parameter 0.
  1716 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
  1717   VMRegPair regs;
  1718   BasicType sig_bt = T_OBJECT;
  1719   calling_convention(&sig_bt, &regs, 1, is_outgoing);
  1720   // Return argument 0 register.  In the LP64 build pointers
  1721   // take 2 registers, but the VM wants only the 'main' name.
  1722   return OptoReg::as_OptoReg(regs.first());
  1725 // A method-klass-holder may be passed in the inline_cache_reg
  1726 // and then expanded into the inline_cache_reg and a method_oop register
  1727 //   defined in ad_<arch>.cpp
  1730 //------------------------------find_shared------------------------------------
  1731 // Set bits if Node is shared or otherwise a root
  1732 void Matcher::find_shared( Node *n ) {
  1733   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
  1734   MStack mstack(C->unique() * 2);
  1735   // Mark nodes as address_visited if they are inputs to an address expression
  1736   VectorSet address_visited(Thread::current()->resource_area());
  1737   mstack.push(n, Visit);     // Don't need to pre-visit root node
  1738   while (mstack.is_nonempty()) {
  1739     n = mstack.node();       // Leave node on stack
  1740     Node_State nstate = mstack.state();
  1741     uint nop = n->Opcode();
  1742     if (nstate == Pre_Visit) {
  1743       if (address_visited.test(n->_idx)) { // Visited in address already?
  1744         // Flag as visited and shared now.
  1745         set_visited(n);
  1747       if (is_visited(n)) {   // Visited already?
  1748         // Node is shared and has no reason to clone.  Flag it as shared.
  1749         // This causes it to match into a register for the sharing.
  1750         set_shared(n);       // Flag as shared and
  1751         mstack.pop();        // remove node from stack
  1752         continue;
  1754       nstate = Visit; // Not already visited; so visit now
  1756     if (nstate == Visit) {
  1757       mstack.set_state(Post_Visit);
  1758       set_visited(n);   // Flag as visited now
  1759       bool mem_op = false;
  1761       switch( nop ) {  // Handle some opcodes special
  1762       case Op_Phi:             // Treat Phis as shared roots
  1763       case Op_Parm:
  1764       case Op_Proj:            // All handled specially during matching
  1765       case Op_SafePointScalarObject:
  1766         set_shared(n);
  1767         set_dontcare(n);
  1768         break;
  1769       case Op_If:
  1770       case Op_CountedLoopEnd:
  1771         mstack.set_state(Alt_Post_Visit); // Alternative way
  1772         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
  1773         // with matching cmp/branch in 1 instruction.  The Matcher needs the
  1774         // Bool and CmpX side-by-side, because it can only get at constants
  1775         // that are at the leaves of Match trees, and the Bool's condition acts
  1776         // as a constant here.
  1777         mstack.push(n->in(1), Visit);         // Clone the Bool
  1778         mstack.push(n->in(0), Pre_Visit);     // Visit control input
  1779         continue; // while (mstack.is_nonempty())
  1780       case Op_ConvI2D:         // These forms efficiently match with a prior
  1781       case Op_ConvI2F:         //   Load but not a following Store
  1782         if( n->in(1)->is_Load() &&        // Prior load
  1783             n->outcnt() == 1 &&           // Not already shared
  1784             n->unique_out()->is_Store() ) // Following store
  1785           set_shared(n);       // Force it to be a root
  1786         break;
  1787       case Op_ReverseBytesI:
  1788       case Op_ReverseBytesL:
  1789         if( n->in(1)->is_Load() &&        // Prior load
  1790             n->outcnt() == 1 )            // Not already shared
  1791           set_shared(n);                  // Force it to be a root
  1792         break;
  1793       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
  1794       case Op_IfFalse:
  1795       case Op_IfTrue:
  1796       case Op_MachProj:
  1797       case Op_MergeMem:
  1798       case Op_Catch:
  1799       case Op_CatchProj:
  1800       case Op_CProj:
  1801       case Op_JumpProj:
  1802       case Op_JProj:
  1803       case Op_NeverBranch:
  1804         set_dontcare(n);
  1805         break;
  1806       case Op_Jump:
  1807         mstack.push(n->in(1), Visit);         // Switch Value
  1808         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
  1809         continue;                             // while (mstack.is_nonempty())
  1810       case Op_StrComp:
  1811       case Op_StrEquals:
  1812       case Op_StrIndexOf:
  1813       case Op_AryEq:
  1814         set_shared(n); // Force result into register (it will be anyways)
  1815         break;
  1816       case Op_ConP: {  // Convert pointers above the centerline to NUL
  1817         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1818         const TypePtr* tp = tn->type()->is_ptr();
  1819         if (tp->_ptr == TypePtr::AnyNull) {
  1820           tn->set_type(TypePtr::NULL_PTR);
  1822         break;
  1824       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
  1825         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
  1826         const TypePtr* tp = tn->type()->make_ptr();
  1827         if (tp && tp->_ptr == TypePtr::AnyNull) {
  1828           tn->set_type(TypeNarrowOop::NULL_PTR);
  1830         break;
  1832       case Op_Binary:         // These are introduced in the Post_Visit state.
  1833         ShouldNotReachHere();
  1834         break;
  1835       case Op_StoreB:         // Do match these, despite no ideal reg
  1836       case Op_StoreC:
  1837       case Op_StoreCM:
  1838       case Op_StoreD:
  1839       case Op_StoreF:
  1840       case Op_StoreI:
  1841       case Op_StoreL:
  1842       case Op_StoreP:
  1843       case Op_StoreN:
  1844       case Op_Store16B:
  1845       case Op_Store8B:
  1846       case Op_Store4B:
  1847       case Op_Store8C:
  1848       case Op_Store4C:
  1849       case Op_Store2C:
  1850       case Op_Store4I:
  1851       case Op_Store2I:
  1852       case Op_Store2L:
  1853       case Op_Store4F:
  1854       case Op_Store2F:
  1855       case Op_Store2D:
  1856       case Op_ClearArray:
  1857       case Op_SafePoint:
  1858         mem_op = true;
  1859         break;
  1860       case Op_LoadB:
  1861       case Op_LoadUS:
  1862       case Op_LoadD:
  1863       case Op_LoadF:
  1864       case Op_LoadI:
  1865       case Op_LoadKlass:
  1866       case Op_LoadNKlass:
  1867       case Op_LoadL:
  1868       case Op_LoadS:
  1869       case Op_LoadP:
  1870       case Op_LoadN:
  1871       case Op_LoadRange:
  1872       case Op_LoadD_unaligned:
  1873       case Op_LoadL_unaligned:
  1874       case Op_Load16B:
  1875       case Op_Load8B:
  1876       case Op_Load4B:
  1877       case Op_Load4C:
  1878       case Op_Load2C:
  1879       case Op_Load8C:
  1880       case Op_Load8S:
  1881       case Op_Load4S:
  1882       case Op_Load2S:
  1883       case Op_Load4I:
  1884       case Op_Load2I:
  1885       case Op_Load2L:
  1886       case Op_Load4F:
  1887       case Op_Load2F:
  1888       case Op_Load2D:
  1889         mem_op = true;
  1890         // Must be root of match tree due to prior load conflict
  1891         if( C->subsume_loads() == false ) {
  1892           set_shared(n);
  1894         // Fall into default case
  1895       default:
  1896         if( !n->ideal_reg() )
  1897           set_dontcare(n);  // Unmatchable Nodes
  1898       } // end_switch
  1900       for(int i = n->req() - 1; i >= 0; --i) { // For my children
  1901         Node *m = n->in(i); // Get ith input
  1902         if (m == NULL) continue;  // Ignore NULLs
  1903         uint mop = m->Opcode();
  1905         // Must clone all producers of flags, or we will not match correctly.
  1906         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
  1907         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
  1908         // are also there, so we may match a float-branch to int-flags and
  1909         // expect the allocator to haul the flags from the int-side to the
  1910         // fp-side.  No can do.
  1911         if( _must_clone[mop] ) {
  1912           mstack.push(m, Visit);
  1913           continue; // for(int i = ...)
  1916         // Clone addressing expressions as they are "free" in most instructions
  1917         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
  1918           if (m->in(AddPNode::Base)->Opcode() == Op_DecodeN) {
  1919             // Bases used in addresses must be shared but since
  1920             // they are shared through a DecodeN they may appear
  1921             // to have a single use so force sharing here.
  1922             set_shared(m->in(AddPNode::Base)->in(1));
  1925           // Some inputs for address expression are not put on stack
  1926           // to avoid marking them as shared and forcing them into register
  1927           // if they are used only in address expressions.
  1928           // But they should be marked as shared if there are other uses
  1929           // besides address expressions.
  1931           Node *off = m->in(AddPNode::Offset);
  1932           if( off->is_Con() &&
  1933               // When there are other uses besides address expressions
  1934               // put it on stack and mark as shared.
  1935               !is_visited(m) ) {
  1936             address_visited.test_set(m->_idx); // Flag as address_visited
  1937             Node *adr = m->in(AddPNode::Address);
  1939             // Intel, ARM and friends can handle 2 adds in addressing mode
  1940             if( clone_shift_expressions && adr->is_AddP() &&
  1941                 // AtomicAdd is not an addressing expression.
  1942                 // Cheap to find it by looking for screwy base.
  1943                 !adr->in(AddPNode::Base)->is_top() &&
  1944                 // Are there other uses besides address expressions?
  1945                 !is_visited(adr) ) {
  1946               address_visited.set(adr->_idx); // Flag as address_visited
  1947               Node *shift = adr->in(AddPNode::Offset);
  1948               // Check for shift by small constant as well
  1949               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
  1950                   shift->in(2)->get_int() <= 3 &&
  1951                   // Are there other uses besides address expressions?
  1952                   !is_visited(shift) ) {
  1953                 address_visited.set(shift->_idx); // Flag as address_visited
  1954                 mstack.push(shift->in(2), Visit);
  1955                 Node *conv = shift->in(1);
  1956 #ifdef _LP64
  1957                 // Allow Matcher to match the rule which bypass
  1958                 // ConvI2L operation for an array index on LP64
  1959                 // if the index value is positive.
  1960                 if( conv->Opcode() == Op_ConvI2L &&
  1961                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
  1962                     // Are there other uses besides address expressions?
  1963                     !is_visited(conv) ) {
  1964                   address_visited.set(conv->_idx); // Flag as address_visited
  1965                   mstack.push(conv->in(1), Pre_Visit);
  1966                 } else
  1967 #endif
  1968                 mstack.push(conv, Pre_Visit);
  1969               } else {
  1970                 mstack.push(shift, Pre_Visit);
  1972               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
  1973               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
  1974             } else {  // Sparc, Alpha, PPC and friends
  1975               mstack.push(adr, Pre_Visit);
  1978             // Clone X+offset as it also folds into most addressing expressions
  1979             mstack.push(off, Visit);
  1980             mstack.push(m->in(AddPNode::Base), Pre_Visit);
  1981             continue; // for(int i = ...)
  1982           } // if( off->is_Con() )
  1983         }   // if( mem_op &&
  1984         mstack.push(m, Pre_Visit);
  1985       }     // for(int i = ...)
  1987     else if (nstate == Alt_Post_Visit) {
  1988       mstack.pop(); // Remove node from stack
  1989       // We cannot remove the Cmp input from the Bool here, as the Bool may be
  1990       // shared and all users of the Bool need to move the Cmp in parallel.
  1991       // This leaves both the Bool and the If pointing at the Cmp.  To
  1992       // prevent the Matcher from trying to Match the Cmp along both paths
  1993       // BoolNode::match_edge always returns a zero.
  1995       // We reorder the Op_If in a pre-order manner, so we can visit without
  1996       // accidentally sharing the Cmp (the Bool and the If make 2 users).
  1997       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
  1999     else if (nstate == Post_Visit) {
  2000       mstack.pop(); // Remove node from stack
  2002       // Now hack a few special opcodes
  2003       switch( n->Opcode() ) {       // Handle some opcodes special
  2004       case Op_StorePConditional:
  2005       case Op_StoreIConditional:
  2006       case Op_StoreLConditional:
  2007       case Op_CompareAndSwapI:
  2008       case Op_CompareAndSwapL:
  2009       case Op_CompareAndSwapP:
  2010       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
  2011         Node *newval = n->in(MemNode::ValueIn );
  2012         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
  2013         Node *pair = new (C, 3) BinaryNode( oldval, newval );
  2014         n->set_req(MemNode::ValueIn,pair);
  2015         n->del_req(LoadStoreNode::ExpectedIn);
  2016         break;
  2018       case Op_CMoveD:              // Convert trinary to binary-tree
  2019       case Op_CMoveF:
  2020       case Op_CMoveI:
  2021       case Op_CMoveL:
  2022       case Op_CMoveN:
  2023       case Op_CMoveP: {
  2024         // Restructure into a binary tree for Matching.  It's possible that
  2025         // we could move this code up next to the graph reshaping for IfNodes
  2026         // or vice-versa, but I do not want to debug this for Ladybird.
  2027         // 10/2/2000 CNC.
  2028         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
  2029         n->set_req(1,pair1);
  2030         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2031         n->set_req(2,pair2);
  2032         n->del_req(3);
  2033         break;
  2035       case Op_StrEquals: {
  2036         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2037         n->set_req(2,pair1);
  2038         n->set_req(3,n->in(4));
  2039         n->del_req(4);
  2040         break;
  2042       case Op_StrComp:
  2043       case Op_StrIndexOf: {
  2044         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
  2045         n->set_req(2,pair1);
  2046         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
  2047         n->set_req(3,pair2);
  2048         n->del_req(5);
  2049         n->del_req(4);
  2050         break;
  2052       default:
  2053         break;
  2056     else {
  2057       ShouldNotReachHere();
  2059   } // end of while (mstack.is_nonempty())
  2062 #ifdef ASSERT
  2063 // machine-independent root to machine-dependent root
  2064 void Matcher::dump_old2new_map() {
  2065   _old2new_map.dump();
  2067 #endif
  2069 //---------------------------collect_null_checks-------------------------------
  2070 // Find null checks in the ideal graph; write a machine-specific node for
  2071 // it.  Used by later implicit-null-check handling.  Actually collects
  2072 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
  2073 // value being tested.
  2074 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
  2075   Node *iff = proj->in(0);
  2076   if( iff->Opcode() == Op_If ) {
  2077     // During matching If's have Bool & Cmp side-by-side
  2078     BoolNode *b = iff->in(1)->as_Bool();
  2079     Node *cmp = iff->in(2);
  2080     int opc = cmp->Opcode();
  2081     if (opc != Op_CmpP && opc != Op_CmpN) return;
  2083     const Type* ct = cmp->in(2)->bottom_type();
  2084     if (ct == TypePtr::NULL_PTR ||
  2085         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
  2087       bool push_it = false;
  2088       if( proj->Opcode() == Op_IfTrue ) {
  2089         extern int all_null_checks_found;
  2090         all_null_checks_found++;
  2091         if( b->_test._test == BoolTest::ne ) {
  2092           push_it = true;
  2094       } else {
  2095         assert( proj->Opcode() == Op_IfFalse, "" );
  2096         if( b->_test._test == BoolTest::eq ) {
  2097           push_it = true;
  2100       if( push_it ) {
  2101         _null_check_tests.push(proj);
  2102         Node* val = cmp->in(1);
  2103 #ifdef _LP64
  2104         if (UseCompressedOops && !Matcher::clone_shift_expressions &&
  2105             val->bottom_type()->isa_narrowoop()) {
  2106           //
  2107           // Look for DecodeN node which should be pinned to orig_proj.
  2108           // On platforms (Sparc) which can not handle 2 adds
  2109           // in addressing mode we have to keep a DecodeN node and
  2110           // use it to do implicit NULL check in address.
  2111           //
  2112           // DecodeN node was pinned to non-null path (orig_proj) during
  2113           // CastPP transformation in final_graph_reshaping_impl().
  2114           //
  2115           uint cnt = orig_proj->outcnt();
  2116           for (uint i = 0; i < orig_proj->outcnt(); i++) {
  2117             Node* d = orig_proj->raw_out(i);
  2118             if (d->is_DecodeN() && d->in(1) == val) {
  2119               val = d;
  2120               val->set_req(0, NULL); // Unpin now.
  2121               break;
  2125 #endif
  2126         _null_check_tests.push(val);
  2132 //---------------------------validate_null_checks------------------------------
  2133 // Its possible that the value being NULL checked is not the root of a match
  2134 // tree.  If so, I cannot use the value in an implicit null check.
  2135 void Matcher::validate_null_checks( ) {
  2136   uint cnt = _null_check_tests.size();
  2137   for( uint i=0; i < cnt; i+=2 ) {
  2138     Node *test = _null_check_tests[i];
  2139     Node *val = _null_check_tests[i+1];
  2140     if (has_new_node(val)) {
  2141       // Is a match-tree root, so replace with the matched value
  2142       _null_check_tests.map(i+1, new_node(val));
  2143     } else {
  2144       // Yank from candidate list
  2145       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
  2146       _null_check_tests.map(i,_null_check_tests[--cnt]);
  2147       _null_check_tests.pop();
  2148       _null_check_tests.pop();
  2149       i-=2;
  2155 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
  2156 // acting as an Acquire and thus we don't need an Acquire here.  We
  2157 // retain the Node to act as a compiler ordering barrier.
  2158 bool Matcher::prior_fast_lock( const Node *acq ) {
  2159   Node *r = acq->in(0);
  2160   if( !r->is_Region() || r->req() <= 1 ) return false;
  2161   Node *proj = r->in(1);
  2162   if( !proj->is_Proj() ) return false;
  2163   Node *call = proj->in(0);
  2164   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
  2165     return false;
  2167   return true;
  2170 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
  2171 // acting as a Release and thus we don't need a Release here.  We
  2172 // retain the Node to act as a compiler ordering barrier.
  2173 bool Matcher::post_fast_unlock( const Node *rel ) {
  2174   Compile *C = Compile::current();
  2175   assert( rel->Opcode() == Op_MemBarRelease, "" );
  2176   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
  2177   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2178   Node *ctrl = NULL;
  2179   while( true ) {
  2180     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2181     assert( ctrl->is_Proj(), "only projections here" );
  2182     ProjNode *proj = (ProjNode*)ctrl;
  2183     if( proj->_con == TypeFunc::Control &&
  2184         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2185       break;
  2186     i++;
  2188   Node *iff = NULL;
  2189   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2190     Node *x = ctrl->fast_out(j);
  2191     if( x->is_If() && x->req() > 1 &&
  2192         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2193       iff = x;
  2194       break;
  2197   if( !iff ) return false;
  2198   Node *bol = iff->in(1);
  2199   // The iff might be some random subclass of If or bol might be Con-Top
  2200   if (!bol->is_Bool())  return false;
  2201   assert( bol->req() > 1, "" );
  2202   return (bol->in(1)->Opcode() == Op_FastUnlock);
  2205 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
  2206 // atomic instruction acting as a store_load barrier without any
  2207 // intervening volatile load, and thus we don't need a barrier here.
  2208 // We retain the Node to act as a compiler ordering barrier.
  2209 bool Matcher::post_store_load_barrier(const Node *vmb) {
  2210   Compile *C = Compile::current();
  2211   assert( vmb->is_MemBar(), "" );
  2212   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
  2213   const MemBarNode *mem = (const MemBarNode*)vmb;
  2215   // Get the Proj node, ctrl, that can be used to iterate forward
  2216   Node *ctrl = NULL;
  2217   DUIterator_Fast imax, i = mem->fast_outs(imax);
  2218   while( true ) {
  2219     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
  2220     assert( ctrl->is_Proj(), "only projections here" );
  2221     ProjNode *proj = (ProjNode*)ctrl;
  2222     if( proj->_con == TypeFunc::Control &&
  2223         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
  2224       break;
  2225     i++;
  2228   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
  2229     Node *x = ctrl->fast_out(j);
  2230     int xop = x->Opcode();
  2232     // We don't need current barrier if we see another or a lock
  2233     // before seeing volatile load.
  2234     //
  2235     // Op_Fastunlock previously appeared in the Op_* list below.
  2236     // With the advent of 1-0 lock operations we're no longer guaranteed
  2237     // that a monitor exit operation contains a serializing instruction.
  2239     if (xop == Op_MemBarVolatile ||
  2240         xop == Op_FastLock ||
  2241         xop == Op_CompareAndSwapL ||
  2242         xop == Op_CompareAndSwapP ||
  2243         xop == Op_CompareAndSwapN ||
  2244         xop == Op_CompareAndSwapI)
  2245       return true;
  2247     if (x->is_MemBar()) {
  2248       // We must retain this membar if there is an upcoming volatile
  2249       // load, which will be preceded by acquire membar.
  2250       if (xop == Op_MemBarAcquire)
  2251         return false;
  2252       // For other kinds of barriers, check by pretending we
  2253       // are them, and seeing if we can be removed.
  2254       else
  2255         return post_store_load_barrier((const MemBarNode*)x);
  2258     // Delicate code to detect case of an upcoming fastlock block
  2259     if( x->is_If() && x->req() > 1 &&
  2260         !C->node_arena()->contains(x) ) { // Unmatched old-space only
  2261       Node *iff = x;
  2262       Node *bol = iff->in(1);
  2263       // The iff might be some random subclass of If or bol might be Con-Top
  2264       if (!bol->is_Bool())  return false;
  2265       assert( bol->req() > 1, "" );
  2266       return (bol->in(1)->Opcode() == Op_FastUnlock);
  2268     // probably not necessary to check for these
  2269     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
  2270       return false;
  2272   return false;
  2275 //=============================================================================
  2276 //---------------------------State---------------------------------------------
  2277 State::State(void) {
  2278 #ifdef ASSERT
  2279   _id = 0;
  2280   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2281   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2282   //memset(_cost, -1, sizeof(_cost));
  2283   //memset(_rule, -1, sizeof(_rule));
  2284 #endif
  2285   memset(_valid, 0, sizeof(_valid));
  2288 #ifdef ASSERT
  2289 State::~State() {
  2290   _id = 99;
  2291   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
  2292   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
  2293   memset(_cost, -3, sizeof(_cost));
  2294   memset(_rule, -3, sizeof(_rule));
  2296 #endif
  2298 #ifndef PRODUCT
  2299 //---------------------------dump----------------------------------------------
  2300 void State::dump() {
  2301   tty->print("\n");
  2302   dump(0);
  2305 void State::dump(int depth) {
  2306   for( int j = 0; j < depth; j++ )
  2307     tty->print("   ");
  2308   tty->print("--N: ");
  2309   _leaf->dump();
  2310   uint i;
  2311   for( i = 0; i < _LAST_MACH_OPER; i++ )
  2312     // Check for valid entry
  2313     if( valid(i) ) {
  2314       for( int j = 0; j < depth; j++ )
  2315         tty->print("   ");
  2316         assert(_cost[i] != max_juint, "cost must be a valid value");
  2317         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
  2318         tty->print_cr("%s  %d  %s",
  2319                       ruleName[i], _cost[i], ruleName[_rule[i]] );
  2321   tty->print_cr("");
  2323   for( i=0; i<2; i++ )
  2324     if( _kids[i] )
  2325       _kids[i]->dump(depth+1);
  2327 #endif

mercurial