src/share/vm/opto/graphKit.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1420
685e959d09ea
child 1515
7c57aead6d3e
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_graphKit.cpp.incl"
    28 //----------------------------GraphKit-----------------------------------------
    29 // Main utility constructor.
    30 GraphKit::GraphKit(JVMState* jvms)
    31   : Phase(Phase::Parser),
    32     _env(C->env()),
    33     _gvn(*C->initial_gvn())
    34 {
    35   _exceptions = jvms->map()->next_exception();
    36   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
    37   set_jvms(jvms);
    38 }
    40 // Private constructor for parser.
    41 GraphKit::GraphKit()
    42   : Phase(Phase::Parser),
    43     _env(C->env()),
    44     _gvn(*C->initial_gvn())
    45 {
    46   _exceptions = NULL;
    47   set_map(NULL);
    48   debug_only(_sp = -99);
    49   debug_only(set_bci(-99));
    50 }
    54 //---------------------------clean_stack---------------------------------------
    55 // Clear away rubbish from the stack area of the JVM state.
    56 // This destroys any arguments that may be waiting on the stack.
    57 void GraphKit::clean_stack(int from_sp) {
    58   SafePointNode* map      = this->map();
    59   JVMState*      jvms     = this->jvms();
    60   int            stk_size = jvms->stk_size();
    61   int            stkoff   = jvms->stkoff();
    62   Node*          top      = this->top();
    63   for (int i = from_sp; i < stk_size; i++) {
    64     if (map->in(stkoff + i) != top) {
    65       map->set_req(stkoff + i, top);
    66     }
    67   }
    68 }
    71 //--------------------------------sync_jvms-----------------------------------
    72 // Make sure our current jvms agrees with our parse state.
    73 JVMState* GraphKit::sync_jvms() const {
    74   JVMState* jvms = this->jvms();
    75   jvms->set_bci(bci());       // Record the new bci in the JVMState
    76   jvms->set_sp(sp());         // Record the new sp in the JVMState
    77   assert(jvms_in_sync(), "jvms is now in sync");
    78   return jvms;
    79 }
    81 #ifdef ASSERT
    82 bool GraphKit::jvms_in_sync() const {
    83   Parse* parse = is_Parse();
    84   if (parse == NULL) {
    85     if (bci() !=      jvms()->bci())          return false;
    86     if (sp()  != (int)jvms()->sp())           return false;
    87     return true;
    88   }
    89   if (jvms()->method() != parse->method())    return false;
    90   if (jvms()->bci()    != parse->bci())       return false;
    91   int jvms_sp = jvms()->sp();
    92   if (jvms_sp          != parse->sp())        return false;
    93   int jvms_depth = jvms()->depth();
    94   if (jvms_depth       != parse->depth())     return false;
    95   return true;
    96 }
    98 // Local helper checks for special internal merge points
    99 // used to accumulate and merge exception states.
   100 // They are marked by the region's in(0) edge being the map itself.
   101 // Such merge points must never "escape" into the parser at large,
   102 // until they have been handed to gvn.transform.
   103 static bool is_hidden_merge(Node* reg) {
   104   if (reg == NULL)  return false;
   105   if (reg->is_Phi()) {
   106     reg = reg->in(0);
   107     if (reg == NULL)  return false;
   108   }
   109   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
   110 }
   112 void GraphKit::verify_map() const {
   113   if (map() == NULL)  return;  // null map is OK
   114   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
   115   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
   116   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
   117 }
   119 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
   120   assert(ex_map->next_exception() == NULL, "not already part of a chain");
   121   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
   122 }
   123 #endif
   125 //---------------------------stop_and_kill_map---------------------------------
   126 // Set _map to NULL, signalling a stop to further bytecode execution.
   127 // First smash the current map's control to a constant, to mark it dead.
   128 void GraphKit::stop_and_kill_map() {
   129   SafePointNode* dead_map = stop();
   130   if (dead_map != NULL) {
   131     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
   132     assert(dead_map->is_killed(), "must be so marked");
   133   }
   134 }
   137 //--------------------------------stopped--------------------------------------
   138 // Tell if _map is NULL, or control is top.
   139 bool GraphKit::stopped() {
   140   if (map() == NULL)           return true;
   141   else if (control() == top()) return true;
   142   else                         return false;
   143 }
   146 //-----------------------------has_ex_handler----------------------------------
   147 // Tell if this method or any caller method has exception handlers.
   148 bool GraphKit::has_ex_handler() {
   149   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
   150     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
   151       return true;
   152     }
   153   }
   154   return false;
   155 }
   157 //------------------------------save_ex_oop------------------------------------
   158 // Save an exception without blowing stack contents or other JVM state.
   159 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
   160   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
   161   ex_map->add_req(ex_oop);
   162   debug_only(verify_exception_state(ex_map));
   163 }
   165 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
   166   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
   167   Node* ex_oop = ex_map->in(ex_map->req()-1);
   168   if (clear_it)  ex_map->del_req(ex_map->req()-1);
   169   return ex_oop;
   170 }
   172 //-----------------------------saved_ex_oop------------------------------------
   173 // Recover a saved exception from its map.
   174 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
   175   return common_saved_ex_oop(ex_map, false);
   176 }
   178 //--------------------------clear_saved_ex_oop---------------------------------
   179 // Erase a previously saved exception from its map.
   180 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
   181   return common_saved_ex_oop(ex_map, true);
   182 }
   184 #ifdef ASSERT
   185 //---------------------------has_saved_ex_oop----------------------------------
   186 // Erase a previously saved exception from its map.
   187 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
   188   return ex_map->req() == ex_map->jvms()->endoff()+1;
   189 }
   190 #endif
   192 //-------------------------make_exception_state--------------------------------
   193 // Turn the current JVM state into an exception state, appending the ex_oop.
   194 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
   195   sync_jvms();
   196   SafePointNode* ex_map = stop();  // do not manipulate this map any more
   197   set_saved_ex_oop(ex_map, ex_oop);
   198   return ex_map;
   199 }
   202 //--------------------------add_exception_state--------------------------------
   203 // Add an exception to my list of exceptions.
   204 void GraphKit::add_exception_state(SafePointNode* ex_map) {
   205   if (ex_map == NULL || ex_map->control() == top()) {
   206     return;
   207   }
   208 #ifdef ASSERT
   209   verify_exception_state(ex_map);
   210   if (has_exceptions()) {
   211     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
   212   }
   213 #endif
   215   // If there is already an exception of exactly this type, merge with it.
   216   // In particular, null-checks and other low-level exceptions common up here.
   217   Node*       ex_oop  = saved_ex_oop(ex_map);
   218   const Type* ex_type = _gvn.type(ex_oop);
   219   if (ex_oop == top()) {
   220     // No action needed.
   221     return;
   222   }
   223   assert(ex_type->isa_instptr(), "exception must be an instance");
   224   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
   225     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
   226     // We check sp also because call bytecodes can generate exceptions
   227     // both before and after arguments are popped!
   228     if (ex_type2 == ex_type
   229         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
   230       combine_exception_states(ex_map, e2);
   231       return;
   232     }
   233   }
   235   // No pre-existing exception of the same type.  Chain it on the list.
   236   push_exception_state(ex_map);
   237 }
   239 //-----------------------add_exception_states_from-----------------------------
   240 void GraphKit::add_exception_states_from(JVMState* jvms) {
   241   SafePointNode* ex_map = jvms->map()->next_exception();
   242   if (ex_map != NULL) {
   243     jvms->map()->set_next_exception(NULL);
   244     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
   245       next_map = ex_map->next_exception();
   246       ex_map->set_next_exception(NULL);
   247       add_exception_state(ex_map);
   248     }
   249   }
   250 }
   252 //-----------------------transfer_exceptions_into_jvms-------------------------
   253 JVMState* GraphKit::transfer_exceptions_into_jvms() {
   254   if (map() == NULL) {
   255     // We need a JVMS to carry the exceptions, but the map has gone away.
   256     // Create a scratch JVMS, cloned from any of the exception states...
   257     if (has_exceptions()) {
   258       _map = _exceptions;
   259       _map = clone_map();
   260       _map->set_next_exception(NULL);
   261       clear_saved_ex_oop(_map);
   262       debug_only(verify_map());
   263     } else {
   264       // ...or created from scratch
   265       JVMState* jvms = new (C) JVMState(_method, NULL);
   266       jvms->set_bci(_bci);
   267       jvms->set_sp(_sp);
   268       jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
   269       set_jvms(jvms);
   270       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
   271       set_all_memory(top());
   272       while (map()->req() < jvms->endoff())  map()->add_req(top());
   273     }
   274     // (This is a kludge, in case you didn't notice.)
   275     set_control(top());
   276   }
   277   JVMState* jvms = sync_jvms();
   278   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
   279   jvms->map()->set_next_exception(_exceptions);
   280   _exceptions = NULL;   // done with this set of exceptions
   281   return jvms;
   282 }
   284 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
   285   assert(is_hidden_merge(dstphi), "must be a special merge node");
   286   assert(is_hidden_merge(srcphi), "must be a special merge node");
   287   uint limit = srcphi->req();
   288   for (uint i = PhiNode::Input; i < limit; i++) {
   289     dstphi->add_req(srcphi->in(i));
   290   }
   291 }
   292 static inline void add_one_req(Node* dstphi, Node* src) {
   293   assert(is_hidden_merge(dstphi), "must be a special merge node");
   294   assert(!is_hidden_merge(src), "must not be a special merge node");
   295   dstphi->add_req(src);
   296 }
   298 //-----------------------combine_exception_states------------------------------
   299 // This helper function combines exception states by building phis on a
   300 // specially marked state-merging region.  These regions and phis are
   301 // untransformed, and can build up gradually.  The region is marked by
   302 // having a control input of its exception map, rather than NULL.  Such
   303 // regions do not appear except in this function, and in use_exception_state.
   304 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
   305   if (failing())  return;  // dying anyway...
   306   JVMState* ex_jvms = ex_map->_jvms;
   307   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
   308   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
   309   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
   310   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
   311   assert(ex_map->req() == phi_map->req(), "matching maps");
   312   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
   313   Node*         hidden_merge_mark = root();
   314   Node*         region  = phi_map->control();
   315   MergeMemNode* phi_mem = phi_map->merged_memory();
   316   MergeMemNode* ex_mem  = ex_map->merged_memory();
   317   if (region->in(0) != hidden_merge_mark) {
   318     // The control input is not (yet) a specially-marked region in phi_map.
   319     // Make it so, and build some phis.
   320     region = new (C, 2) RegionNode(2);
   321     _gvn.set_type(region, Type::CONTROL);
   322     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
   323     region->init_req(1, phi_map->control());
   324     phi_map->set_control(region);
   325     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
   326     record_for_igvn(io_phi);
   327     _gvn.set_type(io_phi, Type::ABIO);
   328     phi_map->set_i_o(io_phi);
   329     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
   330       Node* m = mms.memory();
   331       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
   332       record_for_igvn(m_phi);
   333       _gvn.set_type(m_phi, Type::MEMORY);
   334       mms.set_memory(m_phi);
   335     }
   336   }
   338   // Either or both of phi_map and ex_map might already be converted into phis.
   339   Node* ex_control = ex_map->control();
   340   // if there is special marking on ex_map also, we add multiple edges from src
   341   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
   342   // how wide was the destination phi_map, originally?
   343   uint orig_width = region->req();
   345   if (add_multiple) {
   346     add_n_reqs(region, ex_control);
   347     add_n_reqs(phi_map->i_o(), ex_map->i_o());
   348   } else {
   349     // ex_map has no merges, so we just add single edges everywhere
   350     add_one_req(region, ex_control);
   351     add_one_req(phi_map->i_o(), ex_map->i_o());
   352   }
   353   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
   354     if (mms.is_empty()) {
   355       // get a copy of the base memory, and patch some inputs into it
   356       const TypePtr* adr_type = mms.adr_type(C);
   357       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
   358       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
   359       mms.set_memory(phi);
   360       // Prepare to append interesting stuff onto the newly sliced phi:
   361       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
   362     }
   363     // Append stuff from ex_map:
   364     if (add_multiple) {
   365       add_n_reqs(mms.memory(), mms.memory2());
   366     } else {
   367       add_one_req(mms.memory(), mms.memory2());
   368     }
   369   }
   370   uint limit = ex_map->req();
   371   for (uint i = TypeFunc::Parms; i < limit; i++) {
   372     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
   373     if (i == tos)  i = ex_jvms->monoff();
   374     Node* src = ex_map->in(i);
   375     Node* dst = phi_map->in(i);
   376     if (src != dst) {
   377       PhiNode* phi;
   378       if (dst->in(0) != region) {
   379         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
   380         record_for_igvn(phi);
   381         _gvn.set_type(phi, phi->type());
   382         phi_map->set_req(i, dst);
   383         // Prepare to append interesting stuff onto the new phi:
   384         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
   385       } else {
   386         assert(dst->is_Phi(), "nobody else uses a hidden region");
   387         phi = (PhiNode*)dst;
   388       }
   389       if (add_multiple && src->in(0) == ex_control) {
   390         // Both are phis.
   391         add_n_reqs(dst, src);
   392       } else {
   393         while (dst->req() < region->req())  add_one_req(dst, src);
   394       }
   395       const Type* srctype = _gvn.type(src);
   396       if (phi->type() != srctype) {
   397         const Type* dsttype = phi->type()->meet(srctype);
   398         if (phi->type() != dsttype) {
   399           phi->set_type(dsttype);
   400           _gvn.set_type(phi, dsttype);
   401         }
   402       }
   403     }
   404   }
   405 }
   407 //--------------------------use_exception_state--------------------------------
   408 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
   409   if (failing()) { stop(); return top(); }
   410   Node* region = phi_map->control();
   411   Node* hidden_merge_mark = root();
   412   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
   413   Node* ex_oop = clear_saved_ex_oop(phi_map);
   414   if (region->in(0) == hidden_merge_mark) {
   415     // Special marking for internal ex-states.  Process the phis now.
   416     region->set_req(0, region);  // now it's an ordinary region
   417     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
   418     // Note: Setting the jvms also sets the bci and sp.
   419     set_control(_gvn.transform(region));
   420     uint tos = jvms()->stkoff() + sp();
   421     for (uint i = 1; i < tos; i++) {
   422       Node* x = phi_map->in(i);
   423       if (x->in(0) == region) {
   424         assert(x->is_Phi(), "expected a special phi");
   425         phi_map->set_req(i, _gvn.transform(x));
   426       }
   427     }
   428     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
   429       Node* x = mms.memory();
   430       if (x->in(0) == region) {
   431         assert(x->is_Phi(), "nobody else uses a hidden region");
   432         mms.set_memory(_gvn.transform(x));
   433       }
   434     }
   435     if (ex_oop->in(0) == region) {
   436       assert(ex_oop->is_Phi(), "expected a special phi");
   437       ex_oop = _gvn.transform(ex_oop);
   438     }
   439   } else {
   440     set_jvms(phi_map->jvms());
   441   }
   443   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
   444   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
   445   return ex_oop;
   446 }
   448 //---------------------------------java_bc-------------------------------------
   449 Bytecodes::Code GraphKit::java_bc() const {
   450   ciMethod* method = this->method();
   451   int       bci    = this->bci();
   452   if (method != NULL && bci != InvocationEntryBci)
   453     return method->java_code_at_bci(bci);
   454   else
   455     return Bytecodes::_illegal;
   456 }
   458 //------------------------------builtin_throw----------------------------------
   459 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
   460   bool must_throw = true;
   462   if (env()->jvmti_can_post_exceptions()) {
   463     // Do not try anything fancy if we're notifying the VM on every throw.
   464     // Cf. case Bytecodes::_athrow in parse2.cpp.
   465     uncommon_trap(reason, Deoptimization::Action_none,
   466                   (ciKlass*)NULL, (char*)NULL, must_throw);
   467     return;
   468   }
   470   // If this particular condition has not yet happened at this
   471   // bytecode, then use the uncommon trap mechanism, and allow for
   472   // a future recompilation if several traps occur here.
   473   // If the throw is hot, try to use a more complicated inline mechanism
   474   // which keeps execution inside the compiled code.
   475   bool treat_throw_as_hot = false;
   476   ciMethodData* md = method()->method_data();
   478   if (ProfileTraps) {
   479     if (too_many_traps(reason)) {
   480       treat_throw_as_hot = true;
   481     }
   482     // (If there is no MDO at all, assume it is early in
   483     // execution, and that any deopts are part of the
   484     // startup transient, and don't need to be remembered.)
   486     // Also, if there is a local exception handler, treat all throws
   487     // as hot if there has been at least one in this method.
   488     if (C->trap_count(reason) != 0
   489         && method()->method_data()->trap_count(reason) != 0
   490         && has_ex_handler()) {
   491         treat_throw_as_hot = true;
   492     }
   493   }
   495   // If this throw happens frequently, an uncommon trap might cause
   496   // a performance pothole.  If there is a local exception handler,
   497   // and if this particular bytecode appears to be deoptimizing often,
   498   // let us handle the throw inline, with a preconstructed instance.
   499   // Note:   If the deopt count has blown up, the uncommon trap
   500   // runtime is going to flush this nmethod, not matter what.
   501   if (treat_throw_as_hot
   502       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
   503     // If the throw is local, we use a pre-existing instance and
   504     // punt on the backtrace.  This would lead to a missing backtrace
   505     // (a repeat of 4292742) if the backtrace object is ever asked
   506     // for its backtrace.
   507     // Fixing this remaining case of 4292742 requires some flavor of
   508     // escape analysis.  Leave that for the future.
   509     ciInstance* ex_obj = NULL;
   510     switch (reason) {
   511     case Deoptimization::Reason_null_check:
   512       ex_obj = env()->NullPointerException_instance();
   513       break;
   514     case Deoptimization::Reason_div0_check:
   515       ex_obj = env()->ArithmeticException_instance();
   516       break;
   517     case Deoptimization::Reason_range_check:
   518       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
   519       break;
   520     case Deoptimization::Reason_class_check:
   521       if (java_bc() == Bytecodes::_aastore) {
   522         ex_obj = env()->ArrayStoreException_instance();
   523       } else {
   524         ex_obj = env()->ClassCastException_instance();
   525       }
   526       break;
   527     }
   528     if (failing()) { stop(); return; }  // exception allocation might fail
   529     if (ex_obj != NULL) {
   530       // Cheat with a preallocated exception object.
   531       if (C->log() != NULL)
   532         C->log()->elem("hot_throw preallocated='1' reason='%s'",
   533                        Deoptimization::trap_reason_name(reason));
   534       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
   535       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
   537       // Clear the detail message of the preallocated exception object.
   538       // Weblogic sometimes mutates the detail message of exceptions
   539       // using reflection.
   540       int offset = java_lang_Throwable::get_detailMessage_offset();
   541       const TypePtr* adr_typ = ex_con->add_offset(offset);
   543       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
   544       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), ex_con, T_OBJECT);
   546       add_exception_state(make_exception_state(ex_node));
   547       return;
   548     }
   549   }
   551   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
   552   // It won't be much cheaper than bailing to the interp., since we'll
   553   // have to pass up all the debug-info, and the runtime will have to
   554   // create the stack trace.
   556   // Usual case:  Bail to interpreter.
   557   // Reserve the right to recompile if we haven't seen anything yet.
   559   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
   560   if (treat_throw_as_hot
   561       && (method()->method_data()->trap_recompiled_at(bci())
   562           || C->too_many_traps(reason))) {
   563     // We cannot afford to take more traps here.  Suffer in the interpreter.
   564     if (C->log() != NULL)
   565       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
   566                      Deoptimization::trap_reason_name(reason),
   567                      C->trap_count(reason));
   568     action = Deoptimization::Action_none;
   569   }
   571   // "must_throw" prunes the JVM state to include only the stack, if there
   572   // are no local exception handlers.  This should cut down on register
   573   // allocation time and code size, by drastically reducing the number
   574   // of in-edges on the call to the uncommon trap.
   576   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
   577 }
   580 //----------------------------PreserveJVMState---------------------------------
   581 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
   582   debug_only(kit->verify_map());
   583   _kit    = kit;
   584   _map    = kit->map();   // preserve the map
   585   _sp     = kit->sp();
   586   kit->set_map(clone_map ? kit->clone_map() : NULL);
   587 #ifdef ASSERT
   588   _bci    = kit->bci();
   589   Parse* parser = kit->is_Parse();
   590   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   591   _block  = block;
   592 #endif
   593 }
   594 PreserveJVMState::~PreserveJVMState() {
   595   GraphKit* kit = _kit;
   596 #ifdef ASSERT
   597   assert(kit->bci() == _bci, "bci must not shift");
   598   Parse* parser = kit->is_Parse();
   599   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   600   assert(block == _block,    "block must not shift");
   601 #endif
   602   kit->set_map(_map);
   603   kit->set_sp(_sp);
   604 }
   607 //-----------------------------BuildCutout-------------------------------------
   608 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
   609   : PreserveJVMState(kit)
   610 {
   611   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
   612   SafePointNode* outer_map = _map;   // preserved map is caller's
   613   SafePointNode* inner_map = kit->map();
   614   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
   615   outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
   616   inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
   617 }
   618 BuildCutout::~BuildCutout() {
   619   GraphKit* kit = _kit;
   620   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
   621 }
   623 //---------------------------PreserveReexecuteState----------------------------
   624 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
   625   assert(!kit->stopped(), "must call stopped() before");
   626   _kit    =    kit;
   627   _sp     =    kit->sp();
   628   _reexecute = kit->jvms()->_reexecute;
   629 }
   630 PreserveReexecuteState::~PreserveReexecuteState() {
   631   if (_kit->stopped()) return;
   632   _kit->jvms()->_reexecute = _reexecute;
   633   _kit->set_sp(_sp);
   634 }
   636 //------------------------------clone_map--------------------------------------
   637 // Implementation of PreserveJVMState
   638 //
   639 // Only clone_map(...) here. If this function is only used in the
   640 // PreserveJVMState class we may want to get rid of this extra
   641 // function eventually and do it all there.
   643 SafePointNode* GraphKit::clone_map() {
   644   if (map() == NULL)  return NULL;
   646   // Clone the memory edge first
   647   Node* mem = MergeMemNode::make(C, map()->memory());
   648   gvn().set_type_bottom(mem);
   650   SafePointNode *clonemap = (SafePointNode*)map()->clone();
   651   JVMState* jvms = this->jvms();
   652   JVMState* clonejvms = jvms->clone_shallow(C);
   653   clonemap->set_memory(mem);
   654   clonemap->set_jvms(clonejvms);
   655   clonejvms->set_map(clonemap);
   656   record_for_igvn(clonemap);
   657   gvn().set_type_bottom(clonemap);
   658   return clonemap;
   659 }
   662 //-----------------------------set_map_clone-----------------------------------
   663 void GraphKit::set_map_clone(SafePointNode* m) {
   664   _map = m;
   665   _map = clone_map();
   666   _map->set_next_exception(NULL);
   667   debug_only(verify_map());
   668 }
   671 //----------------------------kill_dead_locals---------------------------------
   672 // Detect any locals which are known to be dead, and force them to top.
   673 void GraphKit::kill_dead_locals() {
   674   // Consult the liveness information for the locals.  If any
   675   // of them are unused, then they can be replaced by top().  This
   676   // should help register allocation time and cut down on the size
   677   // of the deoptimization information.
   679   // This call is made from many of the bytecode handling
   680   // subroutines called from the Big Switch in do_one_bytecode.
   681   // Every bytecode which might include a slow path is responsible
   682   // for killing its dead locals.  The more consistent we
   683   // are about killing deads, the fewer useless phis will be
   684   // constructed for them at various merge points.
   686   // bci can be -1 (InvocationEntryBci).  We return the entry
   687   // liveness for the method.
   689   if (method() == NULL || method()->code_size() == 0) {
   690     // We are building a graph for a call to a native method.
   691     // All locals are live.
   692     return;
   693   }
   695   ResourceMark rm;
   697   // Consult the liveness information for the locals.  If any
   698   // of them are unused, then they can be replaced by top().  This
   699   // should help register allocation time and cut down on the size
   700   // of the deoptimization information.
   701   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
   703   int len = (int)live_locals.size();
   704   assert(len <= jvms()->loc_size(), "too many live locals");
   705   for (int local = 0; local < len; local++) {
   706     if (!live_locals.at(local)) {
   707       set_local(local, top());
   708     }
   709   }
   710 }
   712 #ifdef ASSERT
   713 //-------------------------dead_locals_are_killed------------------------------
   714 // Return true if all dead locals are set to top in the map.
   715 // Used to assert "clean" debug info at various points.
   716 bool GraphKit::dead_locals_are_killed() {
   717   if (method() == NULL || method()->code_size() == 0) {
   718     // No locals need to be dead, so all is as it should be.
   719     return true;
   720   }
   722   // Make sure somebody called kill_dead_locals upstream.
   723   ResourceMark rm;
   724   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   725     if (jvms->loc_size() == 0)  continue;  // no locals to consult
   726     SafePointNode* map = jvms->map();
   727     ciMethod* method = jvms->method();
   728     int       bci    = jvms->bci();
   729     if (jvms == this->jvms()) {
   730       bci = this->bci();  // it might not yet be synched
   731     }
   732     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
   733     int len = (int)live_locals.size();
   734     if (!live_locals.is_valid() || len == 0)
   735       // This method is trivial, or is poisoned by a breakpoint.
   736       return true;
   737     assert(len == jvms->loc_size(), "live map consistent with locals map");
   738     for (int local = 0; local < len; local++) {
   739       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
   740         if (PrintMiscellaneous && (Verbose || WizardMode)) {
   741           tty->print_cr("Zombie local %d: ", local);
   742           jvms->dump();
   743         }
   744         return false;
   745       }
   746     }
   747   }
   748   return true;
   749 }
   751 #endif //ASSERT
   753 // Helper function for enforcing certain bytecodes to reexecute if
   754 // deoptimization happens
   755 static bool should_reexecute_implied_by_bytecode(JVMState *jvms) {
   756   ciMethod* cur_method = jvms->method();
   757   int       cur_bci   = jvms->bci();
   758   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
   759     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   760     return Interpreter::bytecode_should_reexecute(code);
   761   } else
   762     return false;
   763 }
   765 // Helper function for adding JVMState and debug information to node
   766 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
   767   // Add the safepoint edges to the call (or other safepoint).
   769   // Make sure dead locals are set to top.  This
   770   // should help register allocation time and cut down on the size
   771   // of the deoptimization information.
   772   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
   774   // Walk the inline list to fill in the correct set of JVMState's
   775   // Also fill in the associated edges for each JVMState.
   777   JVMState* youngest_jvms = sync_jvms();
   779   // Do we need debug info here?  If it is a SafePoint and this method
   780   // cannot de-opt, then we do NOT need any debug info.
   781   bool full_info = (C->deopt_happens() || call->Opcode() != Op_SafePoint);
   783   // If we are guaranteed to throw, we can prune everything but the
   784   // input to the current bytecode.
   785   bool can_prune_locals = false;
   786   uint stack_slots_not_pruned = 0;
   787   int inputs = 0, depth = 0;
   788   if (must_throw) {
   789     assert(method() == youngest_jvms->method(), "sanity");
   790     if (compute_stack_effects(inputs, depth)) {
   791       can_prune_locals = true;
   792       stack_slots_not_pruned = inputs;
   793     }
   794   }
   796   if (env()->jvmti_can_examine_or_deopt_anywhere()) {
   797     // At any safepoint, this method can get breakpointed, which would
   798     // then require an immediate deoptimization.
   799     full_info = true;
   800     can_prune_locals = false;  // do not prune locals
   801     stack_slots_not_pruned = 0;
   802   }
   804   // do not scribble on the input jvms
   805   JVMState* out_jvms = youngest_jvms->clone_deep(C);
   806   call->set_jvms(out_jvms); // Start jvms list for call node
   808   // For a known set of bytecodes, the interpreter should reexecute them if
   809   // deoptimization happens. We set the reexecute state for them here
   810   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
   811       should_reexecute_implied_by_bytecode(out_jvms)) {
   812     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
   813   }
   815   // Presize the call:
   816   debug_only(uint non_debug_edges = call->req());
   817   call->add_req_batch(top(), youngest_jvms->debug_depth());
   818   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
   820   // Set up edges so that the call looks like this:
   821   //  Call [state:] ctl io mem fptr retadr
   822   //       [parms:] parm0 ... parmN
   823   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   824   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
   825   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   826   // Note that caller debug info precedes callee debug info.
   828   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
   829   uint debug_ptr = call->req();
   831   // Loop over the map input edges associated with jvms, add them
   832   // to the call node, & reset all offsets to match call node array.
   833   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
   834     uint debug_end   = debug_ptr;
   835     uint debug_start = debug_ptr - in_jvms->debug_size();
   836     debug_ptr = debug_start;  // back up the ptr
   838     uint p = debug_start;  // walks forward in [debug_start, debug_end)
   839     uint j, k, l;
   840     SafePointNode* in_map = in_jvms->map();
   841     out_jvms->set_map(call);
   843     if (can_prune_locals) {
   844       assert(in_jvms->method() == out_jvms->method(), "sanity");
   845       // If the current throw can reach an exception handler in this JVMS,
   846       // then we must keep everything live that can reach that handler.
   847       // As a quick and dirty approximation, we look for any handlers at all.
   848       if (in_jvms->method()->has_exception_handlers()) {
   849         can_prune_locals = false;
   850       }
   851     }
   853     // Add the Locals
   854     k = in_jvms->locoff();
   855     l = in_jvms->loc_size();
   856     out_jvms->set_locoff(p);
   857     if (full_info && !can_prune_locals) {
   858       for (j = 0; j < l; j++)
   859         call->set_req(p++, in_map->in(k+j));
   860     } else {
   861       p += l;  // already set to top above by add_req_batch
   862     }
   864     // Add the Expression Stack
   865     k = in_jvms->stkoff();
   866     l = in_jvms->sp();
   867     out_jvms->set_stkoff(p);
   868     if (full_info && !can_prune_locals) {
   869       for (j = 0; j < l; j++)
   870         call->set_req(p++, in_map->in(k+j));
   871     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
   872       // Divide stack into {S0,...,S1}, where S0 is set to top.
   873       uint s1 = stack_slots_not_pruned;
   874       stack_slots_not_pruned = 0;  // for next iteration
   875       if (s1 > l)  s1 = l;
   876       uint s0 = l - s1;
   877       p += s0;  // skip the tops preinstalled by add_req_batch
   878       for (j = s0; j < l; j++)
   879         call->set_req(p++, in_map->in(k+j));
   880     } else {
   881       p += l;  // already set to top above by add_req_batch
   882     }
   884     // Add the Monitors
   885     k = in_jvms->monoff();
   886     l = in_jvms->mon_size();
   887     out_jvms->set_monoff(p);
   888     for (j = 0; j < l; j++)
   889       call->set_req(p++, in_map->in(k+j));
   891     // Copy any scalar object fields.
   892     k = in_jvms->scloff();
   893     l = in_jvms->scl_size();
   894     out_jvms->set_scloff(p);
   895     for (j = 0; j < l; j++)
   896       call->set_req(p++, in_map->in(k+j));
   898     // Finish the new jvms.
   899     out_jvms->set_endoff(p);
   901     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
   902     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
   903     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
   904     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
   905     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
   906     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
   908     // Update the two tail pointers in parallel.
   909     out_jvms = out_jvms->caller();
   910     in_jvms  = in_jvms->caller();
   911   }
   913   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
   915   // Test the correctness of JVMState::debug_xxx accessors:
   916   assert(call->jvms()->debug_start() == non_debug_edges, "");
   917   assert(call->jvms()->debug_end()   == call->req(), "");
   918   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
   919 }
   921 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
   922   Bytecodes::Code code = java_bc();
   923   if (code == Bytecodes::_wide) {
   924     code = method()->java_code_at_bci(bci() + 1);
   925   }
   927   BasicType rtype = T_ILLEGAL;
   928   int       rsize = 0;
   930   if (code != Bytecodes::_illegal) {
   931     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
   932     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
   933     if (rtype < T_CONFLICT)
   934       rsize = type2size[rtype];
   935   }
   937   switch (code) {
   938   case Bytecodes::_illegal:
   939     return false;
   941   case Bytecodes::_ldc:
   942   case Bytecodes::_ldc_w:
   943   case Bytecodes::_ldc2_w:
   944     inputs = 0;
   945     break;
   947   case Bytecodes::_dup:         inputs = 1;  break;
   948   case Bytecodes::_dup_x1:      inputs = 2;  break;
   949   case Bytecodes::_dup_x2:      inputs = 3;  break;
   950   case Bytecodes::_dup2:        inputs = 2;  break;
   951   case Bytecodes::_dup2_x1:     inputs = 3;  break;
   952   case Bytecodes::_dup2_x2:     inputs = 4;  break;
   953   case Bytecodes::_swap:        inputs = 2;  break;
   954   case Bytecodes::_arraylength: inputs = 1;  break;
   956   case Bytecodes::_getstatic:
   957   case Bytecodes::_putstatic:
   958   case Bytecodes::_getfield:
   959   case Bytecodes::_putfield:
   960     {
   961       bool is_get = (depth >= 0), is_static = (depth & 1);
   962       bool ignore;
   963       ciBytecodeStream iter(method());
   964       iter.reset_to_bci(bci());
   965       iter.next();
   966       ciField* field = iter.get_field(ignore);
   967       int      size  = field->type()->size();
   968       inputs  = (is_static ? 0 : 1);
   969       if (is_get) {
   970         depth = size - inputs;
   971       } else {
   972         inputs += size;        // putxxx pops the value from the stack
   973         depth = - inputs;
   974       }
   975     }
   976     break;
   978   case Bytecodes::_invokevirtual:
   979   case Bytecodes::_invokespecial:
   980   case Bytecodes::_invokestatic:
   981   case Bytecodes::_invokedynamic:
   982   case Bytecodes::_invokeinterface:
   983     {
   984       bool is_static = (depth == 0);
   985       bool ignore;
   986       ciBytecodeStream iter(method());
   987       iter.reset_to_bci(bci());
   988       iter.next();
   989       ciMethod* method = iter.get_method(ignore);
   990       inputs = method->arg_size_no_receiver();
   991       if (!is_static)  inputs += 1;
   992       int size = method->return_type()->size();
   993       depth = size - inputs;
   994     }
   995     break;
   997   case Bytecodes::_multianewarray:
   998     {
   999       ciBytecodeStream iter(method());
  1000       iter.reset_to_bci(bci());
  1001       iter.next();
  1002       inputs = iter.get_dimensions();
  1003       assert(rsize == 1, "");
  1004       depth = rsize - inputs;
  1006     break;
  1008   case Bytecodes::_ireturn:
  1009   case Bytecodes::_lreturn:
  1010   case Bytecodes::_freturn:
  1011   case Bytecodes::_dreturn:
  1012   case Bytecodes::_areturn:
  1013     assert(rsize = -depth, "");
  1014     inputs = rsize;
  1015     break;
  1017   case Bytecodes::_jsr:
  1018   case Bytecodes::_jsr_w:
  1019     inputs = 0;
  1020     depth  = 1;                  // S.B. depth=1, not zero
  1021     break;
  1023   default:
  1024     // bytecode produces a typed result
  1025     inputs = rsize - depth;
  1026     assert(inputs >= 0, "");
  1027     break;
  1030 #ifdef ASSERT
  1031   // spot check
  1032   int outputs = depth + inputs;
  1033   assert(outputs >= 0, "sanity");
  1034   switch (code) {
  1035   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
  1036   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
  1037   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
  1038   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
  1039   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
  1041 #endif //ASSERT
  1043   return true;
  1048 //------------------------------basic_plus_adr---------------------------------
  1049 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
  1050   // short-circuit a common case
  1051   if (offset == intcon(0))  return ptr;
  1052   return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
  1055 Node* GraphKit::ConvI2L(Node* offset) {
  1056   // short-circuit a common case
  1057   jint offset_con = find_int_con(offset, Type::OffsetBot);
  1058   if (offset_con != Type::OffsetBot) {
  1059     return longcon((long) offset_con);
  1061   return _gvn.transform( new (C, 2) ConvI2LNode(offset));
  1063 Node* GraphKit::ConvL2I(Node* offset) {
  1064   // short-circuit a common case
  1065   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
  1066   if (offset_con != (jlong)Type::OffsetBot) {
  1067     return intcon((int) offset_con);
  1069   return _gvn.transform( new (C, 2) ConvL2INode(offset));
  1072 //-------------------------load_object_klass-----------------------------------
  1073 Node* GraphKit::load_object_klass(Node* obj) {
  1074   // Special-case a fresh allocation to avoid building nodes:
  1075   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
  1076   if (akls != NULL)  return akls;
  1077   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1078   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
  1081 //-------------------------load_array_length-----------------------------------
  1082 Node* GraphKit::load_array_length(Node* array) {
  1083   // Special-case a fresh allocation to avoid building nodes:
  1084   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
  1085   Node *alen;
  1086   if (alloc == NULL) {
  1087     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
  1088     alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
  1089   } else {
  1090     alen = alloc->Ideal_length();
  1091     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
  1092     if (ccast != alen) {
  1093       alen = _gvn.transform(ccast);
  1096   return alen;
  1099 //------------------------------do_null_check----------------------------------
  1100 // Helper function to do a NULL pointer check.  Returned value is
  1101 // the incoming address with NULL casted away.  You are allowed to use the
  1102 // not-null value only if you are control dependent on the test.
  1103 extern int explicit_null_checks_inserted,
  1104            explicit_null_checks_elided;
  1105 Node* GraphKit::null_check_common(Node* value, BasicType type,
  1106                                   // optional arguments for variations:
  1107                                   bool assert_null,
  1108                                   Node* *null_control) {
  1109   assert(!assert_null || null_control == NULL, "not both at once");
  1110   if (stopped())  return top();
  1111   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
  1112     // For some performance testing, we may wish to suppress null checking.
  1113     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
  1114     return value;
  1116   explicit_null_checks_inserted++;
  1118   // Construct NULL check
  1119   Node *chk = NULL;
  1120   switch(type) {
  1121     case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
  1122     case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
  1123     case T_ARRAY  : // fall through
  1124       type = T_OBJECT;  // simplify further tests
  1125     case T_OBJECT : {
  1126       const Type *t = _gvn.type( value );
  1128       const TypeOopPtr* tp = t->isa_oopptr();
  1129       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
  1130           // Only for do_null_check, not any of its siblings:
  1131           && !assert_null && null_control == NULL) {
  1132         // Usually, any field access or invocation on an unloaded oop type
  1133         // will simply fail to link, since the statically linked class is
  1134         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
  1135         // the static class is loaded but the sharper oop type is not.
  1136         // Rather than checking for this obscure case in lots of places,
  1137         // we simply observe that a null check on an unloaded class
  1138         // will always be followed by a nonsense operation, so we
  1139         // can just issue the uncommon trap here.
  1140         // Our access to the unloaded class will only be correct
  1141         // after it has been loaded and initialized, which requires
  1142         // a trip through the interpreter.
  1143 #ifndef PRODUCT
  1144         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
  1145 #endif
  1146         uncommon_trap(Deoptimization::Reason_unloaded,
  1147                       Deoptimization::Action_reinterpret,
  1148                       tp->klass(), "!loaded");
  1149         return top();
  1152       if (assert_null) {
  1153         // See if the type is contained in NULL_PTR.
  1154         // If so, then the value is already null.
  1155         if (t->higher_equal(TypePtr::NULL_PTR)) {
  1156           explicit_null_checks_elided++;
  1157           return value;           // Elided null assert quickly!
  1159       } else {
  1160         // See if mixing in the NULL pointer changes type.
  1161         // If so, then the NULL pointer was not allowed in the original
  1162         // type.  In other words, "value" was not-null.
  1163         if (t->meet(TypePtr::NULL_PTR) != t) {
  1164           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
  1165           explicit_null_checks_elided++;
  1166           return value;           // Elided null check quickly!
  1169       chk = new (C, 3) CmpPNode( value, null() );
  1170       break;
  1173     default      : ShouldNotReachHere();
  1175   assert(chk != NULL, "sanity check");
  1176   chk = _gvn.transform(chk);
  1178   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
  1179   BoolNode *btst = new (C, 2) BoolNode( chk, btest);
  1180   Node   *tst = _gvn.transform( btst );
  1182   //-----------
  1183   // if peephole optimizations occurred, a prior test existed.
  1184   // If a prior test existed, maybe it dominates as we can avoid this test.
  1185   if (tst != btst && type == T_OBJECT) {
  1186     // At this point we want to scan up the CFG to see if we can
  1187     // find an identical test (and so avoid this test altogether).
  1188     Node *cfg = control();
  1189     int depth = 0;
  1190     while( depth < 16 ) {       // Limit search depth for speed
  1191       if( cfg->Opcode() == Op_IfTrue &&
  1192           cfg->in(0)->in(1) == tst ) {
  1193         // Found prior test.  Use "cast_not_null" to construct an identical
  1194         // CastPP (and hence hash to) as already exists for the prior test.
  1195         // Return that casted value.
  1196         if (assert_null) {
  1197           replace_in_map(value, null());
  1198           return null();  // do not issue the redundant test
  1200         Node *oldcontrol = control();
  1201         set_control(cfg);
  1202         Node *res = cast_not_null(value);
  1203         set_control(oldcontrol);
  1204         explicit_null_checks_elided++;
  1205         return res;
  1207       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
  1208       if (cfg == NULL)  break;  // Quit at region nodes
  1209       depth++;
  1213   //-----------
  1214   // Branch to failure if null
  1215   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
  1216   Deoptimization::DeoptReason reason;
  1217   if (assert_null)
  1218     reason = Deoptimization::Reason_null_assert;
  1219   else if (type == T_OBJECT)
  1220     reason = Deoptimization::Reason_null_check;
  1221   else
  1222     reason = Deoptimization::Reason_div0_check;
  1224   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
  1225   // ciMethodData::has_trap_at will return a conservative -1 if any
  1226   // must-be-null assertion has failed.  This could cause performance
  1227   // problems for a method after its first do_null_assert failure.
  1228   // Consider using 'Reason_class_check' instead?
  1230   // To cause an implicit null check, we set the not-null probability
  1231   // to the maximum (PROB_MAX).  For an explicit check the probability
  1232   // is set to a smaller value.
  1233   if (null_control != NULL || too_many_traps(reason)) {
  1234     // probability is less likely
  1235     ok_prob =  PROB_LIKELY_MAG(3);
  1236   } else if (!assert_null &&
  1237              (ImplicitNullCheckThreshold > 0) &&
  1238              method() != NULL &&
  1239              (method()->method_data()->trap_count(reason)
  1240               >= (uint)ImplicitNullCheckThreshold)) {
  1241     ok_prob =  PROB_LIKELY_MAG(3);
  1244   if (null_control != NULL) {
  1245     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
  1246     Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
  1247     set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
  1248     if (null_true == top())
  1249       explicit_null_checks_elided++;
  1250     (*null_control) = null_true;
  1251   } else {
  1252     BuildCutout unless(this, tst, ok_prob);
  1253     // Check for optimizer eliding test at parse time
  1254     if (stopped()) {
  1255       // Failure not possible; do not bother making uncommon trap.
  1256       explicit_null_checks_elided++;
  1257     } else if (assert_null) {
  1258       uncommon_trap(reason,
  1259                     Deoptimization::Action_make_not_entrant,
  1260                     NULL, "assert_null");
  1261     } else {
  1262       replace_in_map(value, zerocon(type));
  1263       builtin_throw(reason);
  1267   // Must throw exception, fall-thru not possible?
  1268   if (stopped()) {
  1269     return top();               // No result
  1272   if (assert_null) {
  1273     // Cast obj to null on this path.
  1274     replace_in_map(value, zerocon(type));
  1275     return zerocon(type);
  1278   // Cast obj to not-null on this path, if there is no null_control.
  1279   // (If there is a null_control, a non-null value may come back to haunt us.)
  1280   if (type == T_OBJECT) {
  1281     Node* cast = cast_not_null(value, false);
  1282     if (null_control == NULL || (*null_control) == top())
  1283       replace_in_map(value, cast);
  1284     value = cast;
  1287   return value;
  1291 //------------------------------cast_not_null----------------------------------
  1292 // Cast obj to not-null on this path
  1293 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
  1294   const Type *t = _gvn.type(obj);
  1295   const Type *t_not_null = t->join(TypePtr::NOTNULL);
  1296   // Object is already not-null?
  1297   if( t == t_not_null ) return obj;
  1299   Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
  1300   cast->init_req(0, control());
  1301   cast = _gvn.transform( cast );
  1303   // Scan for instances of 'obj' in the current JVM mapping.
  1304   // These instances are known to be not-null after the test.
  1305   if (do_replace_in_map)
  1306     replace_in_map(obj, cast);
  1308   return cast;                  // Return casted value
  1312 //--------------------------replace_in_map-------------------------------------
  1313 void GraphKit::replace_in_map(Node* old, Node* neww) {
  1314   this->map()->replace_edge(old, neww);
  1316   // Note: This operation potentially replaces any edge
  1317   // on the map.  This includes locals, stack, and monitors
  1318   // of the current (innermost) JVM state.
  1320   // We can consider replacing in caller maps.
  1321   // The idea would be that an inlined function's null checks
  1322   // can be shared with the entire inlining tree.
  1323   // The expense of doing this is that the PreserveJVMState class
  1324   // would have to preserve caller states too, with a deep copy.
  1329 //=============================================================================
  1330 //--------------------------------memory---------------------------------------
  1331 Node* GraphKit::memory(uint alias_idx) {
  1332   MergeMemNode* mem = merged_memory();
  1333   Node* p = mem->memory_at(alias_idx);
  1334   _gvn.set_type(p, Type::MEMORY);  // must be mapped
  1335   return p;
  1338 //-----------------------------reset_memory------------------------------------
  1339 Node* GraphKit::reset_memory() {
  1340   Node* mem = map()->memory();
  1341   // do not use this node for any more parsing!
  1342   debug_only( map()->set_memory((Node*)NULL) );
  1343   return _gvn.transform( mem );
  1346 //------------------------------set_all_memory---------------------------------
  1347 void GraphKit::set_all_memory(Node* newmem) {
  1348   Node* mergemem = MergeMemNode::make(C, newmem);
  1349   gvn().set_type_bottom(mergemem);
  1350   map()->set_memory(mergemem);
  1353 //------------------------------set_all_memory_call----------------------------
  1354 void GraphKit::set_all_memory_call(Node* call) {
  1355   Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
  1356   set_all_memory(newmem);
  1359 //=============================================================================
  1360 //
  1361 // parser factory methods for MemNodes
  1362 //
  1363 // These are layered on top of the factory methods in LoadNode and StoreNode,
  1364 // and integrate with the parser's memory state and _gvn engine.
  1365 //
  1367 // factory methods in "int adr_idx"
  1368 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
  1369                           int adr_idx,
  1370                           bool require_atomic_access) {
  1371   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  1372   const TypePtr* adr_type = NULL; // debug-mode-only argument
  1373   debug_only(adr_type = C->get_adr_type(adr_idx));
  1374   Node* mem = memory(adr_idx);
  1375   Node* ld;
  1376   if (require_atomic_access && bt == T_LONG) {
  1377     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
  1378   } else {
  1379     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
  1381   return _gvn.transform(ld);
  1384 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
  1385                                 int adr_idx,
  1386                                 bool require_atomic_access) {
  1387   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1388   const TypePtr* adr_type = NULL;
  1389   debug_only(adr_type = C->get_adr_type(adr_idx));
  1390   Node *mem = memory(adr_idx);
  1391   Node* st;
  1392   if (require_atomic_access && bt == T_LONG) {
  1393     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
  1394   } else {
  1395     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
  1397   st = _gvn.transform(st);
  1398   set_memory(st, adr_idx);
  1399   // Back-to-back stores can only remove intermediate store with DU info
  1400   // so push on worklist for optimizer.
  1401   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
  1402     record_for_igvn(st);
  1404   return st;
  1408 void GraphKit::pre_barrier(Node* ctl,
  1409                            Node* obj,
  1410                            Node* adr,
  1411                            uint  adr_idx,
  1412                            Node* val,
  1413                            const TypeOopPtr* val_type,
  1414                            BasicType bt) {
  1415   BarrierSet* bs = Universe::heap()->barrier_set();
  1416   set_control(ctl);
  1417   switch (bs->kind()) {
  1418     case BarrierSet::G1SATBCT:
  1419     case BarrierSet::G1SATBCTLogging:
  1420       g1_write_barrier_pre(obj, adr, adr_idx, val, val_type, bt);
  1421       break;
  1423     case BarrierSet::CardTableModRef:
  1424     case BarrierSet::CardTableExtension:
  1425     case BarrierSet::ModRef:
  1426       break;
  1428     case BarrierSet::Other:
  1429     default      :
  1430       ShouldNotReachHere();
  1435 void GraphKit::post_barrier(Node* ctl,
  1436                             Node* store,
  1437                             Node* obj,
  1438                             Node* adr,
  1439                             uint  adr_idx,
  1440                             Node* val,
  1441                             BasicType bt,
  1442                             bool use_precise) {
  1443   BarrierSet* bs = Universe::heap()->barrier_set();
  1444   set_control(ctl);
  1445   switch (bs->kind()) {
  1446     case BarrierSet::G1SATBCT:
  1447     case BarrierSet::G1SATBCTLogging:
  1448       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
  1449       break;
  1451     case BarrierSet::CardTableModRef:
  1452     case BarrierSet::CardTableExtension:
  1453       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
  1454       break;
  1456     case BarrierSet::ModRef:
  1457       break;
  1459     case BarrierSet::Other:
  1460     default      :
  1461       ShouldNotReachHere();
  1466 Node* GraphKit::store_oop(Node* ctl,
  1467                           Node* obj,
  1468                           Node* adr,
  1469                           const TypePtr* adr_type,
  1470                           Node* val,
  1471                           const TypeOopPtr* val_type,
  1472                           BasicType bt,
  1473                           bool use_precise) {
  1475   set_control(ctl);
  1476   if (stopped()) return top(); // Dead path ?
  1478   assert(bt == T_OBJECT, "sanity");
  1479   assert(val != NULL, "not dead path");
  1480   uint adr_idx = C->get_alias_index(adr_type);
  1481   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1483   pre_barrier(control(), obj, adr, adr_idx, val, val_type, bt);
  1484   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
  1485   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
  1486   return store;
  1489 // Could be an array or object we don't know at compile time (unsafe ref.)
  1490 Node* GraphKit::store_oop_to_unknown(Node* ctl,
  1491                              Node* obj,   // containing obj
  1492                              Node* adr,  // actual adress to store val at
  1493                              const TypePtr* adr_type,
  1494                              Node* val,
  1495                              BasicType bt) {
  1496   Compile::AliasType* at = C->alias_type(adr_type);
  1497   const TypeOopPtr* val_type = NULL;
  1498   if (adr_type->isa_instptr()) {
  1499     if (at->field() != NULL) {
  1500       // known field.  This code is a copy of the do_put_xxx logic.
  1501       ciField* field = at->field();
  1502       if (!field->type()->is_loaded()) {
  1503         val_type = TypeInstPtr::BOTTOM;
  1504       } else {
  1505         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
  1508   } else if (adr_type->isa_aryptr()) {
  1509     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
  1511   if (val_type == NULL) {
  1512     val_type = TypeInstPtr::BOTTOM;
  1514   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
  1518 //-------------------------array_element_address-------------------------
  1519 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
  1520                                       const TypeInt* sizetype) {
  1521   uint shift  = exact_log2(type2aelembytes(elembt));
  1522   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
  1524   // short-circuit a common case (saves lots of confusing waste motion)
  1525   jint idx_con = find_int_con(idx, -1);
  1526   if (idx_con >= 0) {
  1527     intptr_t offset = header + ((intptr_t)idx_con << shift);
  1528     return basic_plus_adr(ary, offset);
  1531   // must be correct type for alignment purposes
  1532   Node* base  = basic_plus_adr(ary, header);
  1533 #ifdef _LP64
  1534   // The scaled index operand to AddP must be a clean 64-bit value.
  1535   // Java allows a 32-bit int to be incremented to a negative
  1536   // value, which appears in a 64-bit register as a large
  1537   // positive number.  Using that large positive number as an
  1538   // operand in pointer arithmetic has bad consequences.
  1539   // On the other hand, 32-bit overflow is rare, and the possibility
  1540   // can often be excluded, if we annotate the ConvI2L node with
  1541   // a type assertion that its value is known to be a small positive
  1542   // number.  (The prior range check has ensured this.)
  1543   // This assertion is used by ConvI2LNode::Ideal.
  1544   int index_max = max_jint - 1;  // array size is max_jint, index is one less
  1545   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
  1546   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
  1547   idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
  1548 #endif
  1549   Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
  1550   return basic_plus_adr(ary, base, scale);
  1553 //-------------------------load_array_element-------------------------
  1554 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
  1555   const Type* elemtype = arytype->elem();
  1556   BasicType elembt = elemtype->array_element_basic_type();
  1557   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
  1558   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
  1559   return ld;
  1562 //-------------------------set_arguments_for_java_call-------------------------
  1563 // Arguments (pre-popped from the stack) are taken from the JVMS.
  1564 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
  1565   // Add the call arguments:
  1566   uint nargs = call->method()->arg_size();
  1567   for (uint i = 0; i < nargs; i++) {
  1568     Node* arg = argument(i);
  1569     call->init_req(i + TypeFunc::Parms, arg);
  1573 //---------------------------set_edges_for_java_call---------------------------
  1574 // Connect a newly created call into the current JVMS.
  1575 // A return value node (if any) is returned from set_edges_for_java_call.
  1576 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw) {
  1578   // Add the predefined inputs:
  1579   call->init_req( TypeFunc::Control, control() );
  1580   call->init_req( TypeFunc::I_O    , i_o() );
  1581   call->init_req( TypeFunc::Memory , reset_memory() );
  1582   call->init_req( TypeFunc::FramePtr, frameptr() );
  1583   call->init_req( TypeFunc::ReturnAdr, top() );
  1585   add_safepoint_edges(call, must_throw);
  1587   Node* xcall = _gvn.transform(call);
  1589   if (xcall == top()) {
  1590     set_control(top());
  1591     return;
  1593   assert(xcall == call, "call identity is stable");
  1595   // Re-use the current map to produce the result.
  1597   set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
  1598   set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    )));
  1599   set_all_memory_call(xcall);
  1601   //return xcall;   // no need, caller already has it
  1604 Node* GraphKit::set_results_for_java_call(CallJavaNode* call) {
  1605   if (stopped())  return top();  // maybe the call folded up?
  1607   // Capture the return value, if any.
  1608   Node* ret;
  1609   if (call->method() == NULL ||
  1610       call->method()->return_type()->basic_type() == T_VOID)
  1611         ret = top();
  1612   else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  1614   // Note:  Since any out-of-line call can produce an exception,
  1615   // we always insert an I_O projection from the call into the result.
  1617   make_slow_call_ex(call, env()->Throwable_klass(), false);
  1619   return ret;
  1622 //--------------------set_predefined_input_for_runtime_call--------------------
  1623 // Reading and setting the memory state is way conservative here.
  1624 // The real problem is that I am not doing real Type analysis on memory,
  1625 // so I cannot distinguish card mark stores from other stores.  Across a GC
  1626 // point the Store Barrier and the card mark memory has to agree.  I cannot
  1627 // have a card mark store and its barrier split across the GC point from
  1628 // either above or below.  Here I get that to happen by reading ALL of memory.
  1629 // A better answer would be to separate out card marks from other memory.
  1630 // For now, return the input memory state, so that it can be reused
  1631 // after the call, if this call has restricted memory effects.
  1632 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
  1633   // Set fixed predefined input arguments
  1634   Node* memory = reset_memory();
  1635   call->init_req( TypeFunc::Control,   control()  );
  1636   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
  1637   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
  1638   call->init_req( TypeFunc::FramePtr,  frameptr() );
  1639   call->init_req( TypeFunc::ReturnAdr, top()      );
  1640   return memory;
  1643 //-------------------set_predefined_output_for_runtime_call--------------------
  1644 // Set control and memory (not i_o) from the call.
  1645 // If keep_mem is not NULL, use it for the output state,
  1646 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
  1647 // If hook_mem is NULL, this call produces no memory effects at all.
  1648 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
  1649 // then only that memory slice is taken from the call.
  1650 // In the last case, we must put an appropriate memory barrier before
  1651 // the call, so as to create the correct anti-dependencies on loads
  1652 // preceding the call.
  1653 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
  1654                                                       Node* keep_mem,
  1655                                                       const TypePtr* hook_mem) {
  1656   // no i/o
  1657   set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
  1658   if (keep_mem) {
  1659     // First clone the existing memory state
  1660     set_all_memory(keep_mem);
  1661     if (hook_mem != NULL) {
  1662       // Make memory for the call
  1663       Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
  1664       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
  1665       // We also use hook_mem to extract specific effects from arraycopy stubs.
  1666       set_memory(mem, hook_mem);
  1668     // ...else the call has NO memory effects.
  1670     // Make sure the call advertises its memory effects precisely.
  1671     // This lets us build accurate anti-dependences in gcm.cpp.
  1672     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
  1673            "call node must be constructed correctly");
  1674   } else {
  1675     assert(hook_mem == NULL, "");
  1676     // This is not a "slow path" call; all memory comes from the call.
  1677     set_all_memory_call(call);
  1681 //------------------------------increment_counter------------------------------
  1682 // for statistics: increment a VM counter by 1
  1684 void GraphKit::increment_counter(address counter_addr) {
  1685   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
  1686   increment_counter(adr1);
  1689 void GraphKit::increment_counter(Node* counter_addr) {
  1690   int adr_type = Compile::AliasIdxRaw;
  1691   Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
  1692   Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
  1693   store_to_memory( NULL, counter_addr, incr, T_INT, adr_type );
  1697 //------------------------------uncommon_trap----------------------------------
  1698 // Bail out to the interpreter in mid-method.  Implemented by calling the
  1699 // uncommon_trap blob.  This helper function inserts a runtime call with the
  1700 // right debug info.
  1701 void GraphKit::uncommon_trap(int trap_request,
  1702                              ciKlass* klass, const char* comment,
  1703                              bool must_throw,
  1704                              bool keep_exact_action) {
  1705   if (failing())  stop();
  1706   if (stopped())  return; // trap reachable?
  1708   // Note:  If ProfileTraps is true, and if a deopt. actually
  1709   // occurs here, the runtime will make sure an MDO exists.  There is
  1710   // no need to call method()->build_method_data() at this point.
  1712 #ifdef ASSERT
  1713   if (!must_throw) {
  1714     // Make sure the stack has at least enough depth to execute
  1715     // the current bytecode.
  1716     int inputs, ignore;
  1717     if (compute_stack_effects(inputs, ignore)) {
  1718       assert(sp() >= inputs, "must have enough JVMS stack to execute");
  1719       // It is a frequent error in library_call.cpp to issue an
  1720       // uncommon trap with the _sp value already popped.
  1723 #endif
  1725   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
  1726   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
  1728   switch (action) {
  1729   case Deoptimization::Action_maybe_recompile:
  1730   case Deoptimization::Action_reinterpret:
  1731     // Temporary fix for 6529811 to allow virtual calls to be sure they
  1732     // get the chance to go from mono->bi->mega
  1733     if (!keep_exact_action &&
  1734         Deoptimization::trap_request_index(trap_request) < 0 &&
  1735         too_many_recompiles(reason)) {
  1736       // This BCI is causing too many recompilations.
  1737       action = Deoptimization::Action_none;
  1738       trap_request = Deoptimization::make_trap_request(reason, action);
  1739     } else {
  1740       C->set_trap_can_recompile(true);
  1742     break;
  1743   case Deoptimization::Action_make_not_entrant:
  1744     C->set_trap_can_recompile(true);
  1745     break;
  1746 #ifdef ASSERT
  1747   case Deoptimization::Action_none:
  1748   case Deoptimization::Action_make_not_compilable:
  1749     break;
  1750   default:
  1751     assert(false, "bad action");
  1752 #endif
  1755   if (TraceOptoParse) {
  1756     char buf[100];
  1757     tty->print_cr("Uncommon trap %s at bci:%d",
  1758                   Deoptimization::format_trap_request(buf, sizeof(buf),
  1759                                                       trap_request), bci());
  1762   CompileLog* log = C->log();
  1763   if (log != NULL) {
  1764     int kid = (klass == NULL)? -1: log->identify(klass);
  1765     log->begin_elem("uncommon_trap bci='%d'", bci());
  1766     char buf[100];
  1767     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
  1768                                                           trap_request));
  1769     if (kid >= 0)         log->print(" klass='%d'", kid);
  1770     if (comment != NULL)  log->print(" comment='%s'", comment);
  1771     log->end_elem();
  1774   // Make sure any guarding test views this path as very unlikely
  1775   Node *i0 = control()->in(0);
  1776   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
  1777     IfNode *iff = i0->as_If();
  1778     float f = iff->_prob;   // Get prob
  1779     if (control()->Opcode() == Op_IfTrue) {
  1780       if (f > PROB_UNLIKELY_MAG(4))
  1781         iff->_prob = PROB_MIN;
  1782     } else {
  1783       if (f < PROB_LIKELY_MAG(4))
  1784         iff->_prob = PROB_MAX;
  1788   // Clear out dead values from the debug info.
  1789   kill_dead_locals();
  1791   // Now insert the uncommon trap subroutine call
  1792   address call_addr = SharedRuntime::uncommon_trap_blob()->instructions_begin();
  1793   const TypePtr* no_memory_effects = NULL;
  1794   // Pass the index of the class to be loaded
  1795   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
  1796                                  (must_throw ? RC_MUST_THROW : 0),
  1797                                  OptoRuntime::uncommon_trap_Type(),
  1798                                  call_addr, "uncommon_trap", no_memory_effects,
  1799                                  intcon(trap_request));
  1800   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
  1801          "must extract request correctly from the graph");
  1802   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
  1804   call->set_req(TypeFunc::ReturnAdr, returnadr());
  1805   // The debug info is the only real input to this call.
  1807   // Halt-and-catch fire here.  The above call should never return!
  1808   HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
  1809   _gvn.set_type_bottom(halt);
  1810   root()->add_req(halt);
  1812   stop_and_kill_map();
  1816 //--------------------------just_allocated_object------------------------------
  1817 // Report the object that was just allocated.
  1818 // It must be the case that there are no intervening safepoints.
  1819 // We use this to determine if an object is so "fresh" that
  1820 // it does not require card marks.
  1821 Node* GraphKit::just_allocated_object(Node* current_control) {
  1822   if (C->recent_alloc_ctl() == current_control)
  1823     return C->recent_alloc_obj();
  1824   return NULL;
  1828 void GraphKit::round_double_arguments(ciMethod* dest_method) {
  1829   // (Note:  TypeFunc::make has a cache that makes this fast.)
  1830   const TypeFunc* tf    = TypeFunc::make(dest_method);
  1831   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  1832   for (int j = 0; j < nargs; j++) {
  1833     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  1834     if( targ->basic_type() == T_DOUBLE ) {
  1835       // If any parameters are doubles, they must be rounded before
  1836       // the call, dstore_rounding does gvn.transform
  1837       Node *arg = argument(j);
  1838       arg = dstore_rounding(arg);
  1839       set_argument(j, arg);
  1844 void GraphKit::round_double_result(ciMethod* dest_method) {
  1845   // A non-strict method may return a double value which has an extended
  1846   // exponent, but this must not be visible in a caller which is 'strict'
  1847   // If a strict caller invokes a non-strict callee, round a double result
  1849   BasicType result_type = dest_method->return_type()->basic_type();
  1850   assert( method() != NULL, "must have caller context");
  1851   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
  1852     // Destination method's return value is on top of stack
  1853     // dstore_rounding() does gvn.transform
  1854     Node *result = pop_pair();
  1855     result = dstore_rounding(result);
  1856     push_pair(result);
  1860 // rounding for strict float precision conformance
  1861 Node* GraphKit::precision_rounding(Node* n) {
  1862   return UseStrictFP && _method->flags().is_strict()
  1863     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
  1864     ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
  1865     : n;
  1868 // rounding for strict double precision conformance
  1869 Node* GraphKit::dprecision_rounding(Node *n) {
  1870   return UseStrictFP && _method->flags().is_strict()
  1871     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
  1872     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  1873     : n;
  1876 // rounding for non-strict double stores
  1877 Node* GraphKit::dstore_rounding(Node* n) {
  1878   return Matcher::strict_fp_requires_explicit_rounding
  1879     && UseSSE <= 1
  1880     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
  1881     : n;
  1884 //=============================================================================
  1885 // Generate a fast path/slow path idiom.  Graph looks like:
  1886 // [foo] indicates that 'foo' is a parameter
  1887 //
  1888 //              [in]     NULL
  1889 //                 \    /
  1890 //                  CmpP
  1891 //                  Bool ne
  1892 //                   If
  1893 //                  /  \
  1894 //              True    False-<2>
  1895 //              / |
  1896 //             /  cast_not_null
  1897 //           Load  |    |   ^
  1898 //        [fast_test]   |   |
  1899 // gvn to   opt_test    |   |
  1900 //          /    \      |  <1>
  1901 //      True     False  |
  1902 //        |         \\  |
  1903 //   [slow_call]     \[fast_result]
  1904 //    Ctl   Val       \      \
  1905 //     |               \      \
  1906 //    Catch       <1>   \      \
  1907 //   /    \        ^     \      \
  1908 //  Ex    No_Ex    |      \      \
  1909 //  |       \   \  |       \ <2>  \
  1910 //  ...      \  [slow_res] |  |    \   [null_result]
  1911 //            \         \--+--+---  |  |
  1912 //             \           | /    \ | /
  1913 //              --------Region     Phi
  1914 //
  1915 //=============================================================================
  1916 // Code is structured as a series of driver functions all called 'do_XXX' that
  1917 // call a set of helper functions.  Helper functions first, then drivers.
  1919 //------------------------------null_check_oop---------------------------------
  1920 // Null check oop.  Set null-path control into Region in slot 3.
  1921 // Make a cast-not-nullness use the other not-null control.  Return cast.
  1922 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
  1923                                bool never_see_null) {
  1924   // Initial NULL check taken path
  1925   (*null_control) = top();
  1926   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
  1928   // Generate uncommon_trap:
  1929   if (never_see_null && (*null_control) != top()) {
  1930     // If we see an unexpected null at a check-cast we record it and force a
  1931     // recompile; the offending check-cast will be compiled to handle NULLs.
  1932     // If we see more than one offending BCI, then all checkcasts in the
  1933     // method will be compiled to handle NULLs.
  1934     PreserveJVMState pjvms(this);
  1935     set_control(*null_control);
  1936     replace_in_map(value, null());
  1937     uncommon_trap(Deoptimization::Reason_null_check,
  1938                   Deoptimization::Action_make_not_entrant);
  1939     (*null_control) = top();    // NULL path is dead
  1942   // Cast away null-ness on the result
  1943   return cast;
  1946 //------------------------------opt_iff----------------------------------------
  1947 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
  1948 // Return slow-path control.
  1949 Node* GraphKit::opt_iff(Node* region, Node* iff) {
  1950   IfNode *opt_iff = _gvn.transform(iff)->as_If();
  1952   // Fast path taken; set region slot 2
  1953   Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
  1954   region->init_req(2,fast_taken); // Capture fast-control
  1956   // Fast path not-taken, i.e. slow path
  1957   Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
  1958   return slow_taken;
  1961 //-----------------------------make_runtime_call-------------------------------
  1962 Node* GraphKit::make_runtime_call(int flags,
  1963                                   const TypeFunc* call_type, address call_addr,
  1964                                   const char* call_name,
  1965                                   const TypePtr* adr_type,
  1966                                   // The following parms are all optional.
  1967                                   // The first NULL ends the list.
  1968                                   Node* parm0, Node* parm1,
  1969                                   Node* parm2, Node* parm3,
  1970                                   Node* parm4, Node* parm5,
  1971                                   Node* parm6, Node* parm7) {
  1972   // Slow-path call
  1973   int size = call_type->domain()->cnt();
  1974   bool is_leaf = !(flags & RC_NO_LEAF);
  1975   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
  1976   if (call_name == NULL) {
  1977     assert(!is_leaf, "must supply name for leaf");
  1978     call_name = OptoRuntime::stub_name(call_addr);
  1980   CallNode* call;
  1981   if (!is_leaf) {
  1982     call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
  1983                                            bci(), adr_type);
  1984   } else if (flags & RC_NO_FP) {
  1985     call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  1986   } else {
  1987     call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
  1990   // The following is similar to set_edges_for_java_call,
  1991   // except that the memory effects of the call are restricted to AliasIdxRaw.
  1993   // Slow path call has no side-effects, uses few values
  1994   bool wide_in  = !(flags & RC_NARROW_MEM);
  1995   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
  1997   Node* prev_mem = NULL;
  1998   if (wide_in) {
  1999     prev_mem = set_predefined_input_for_runtime_call(call);
  2000   } else {
  2001     assert(!wide_out, "narrow in => narrow out");
  2002     Node* narrow_mem = memory(adr_type);
  2003     prev_mem = reset_memory();
  2004     map()->set_memory(narrow_mem);
  2005     set_predefined_input_for_runtime_call(call);
  2008   // Hook each parm in order.  Stop looking at the first NULL.
  2009   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  2010   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  2011   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  2012   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  2013   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  2014   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  2015   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  2016   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
  2017     /* close each nested if ===> */  } } } } } } } }
  2018   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
  2020   if (!is_leaf) {
  2021     // Non-leaves can block and take safepoints:
  2022     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
  2024   // Non-leaves can throw exceptions:
  2025   if (has_io) {
  2026     call->set_req(TypeFunc::I_O, i_o());
  2029   if (flags & RC_UNCOMMON) {
  2030     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
  2031     // (An "if" probability corresponds roughly to an unconditional count.
  2032     // Sort of.)
  2033     call->set_cnt(PROB_UNLIKELY_MAG(4));
  2036   Node* c = _gvn.transform(call);
  2037   assert(c == call, "cannot disappear");
  2039   if (wide_out) {
  2040     // Slow path call has full side-effects.
  2041     set_predefined_output_for_runtime_call(call);
  2042   } else {
  2043     // Slow path call has few side-effects, and/or sets few values.
  2044     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
  2047   if (has_io) {
  2048     set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
  2050   return call;
  2054 //------------------------------merge_memory-----------------------------------
  2055 // Merge memory from one path into the current memory state.
  2056 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
  2057   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
  2058     Node* old_slice = mms.force_memory();
  2059     Node* new_slice = mms.memory2();
  2060     if (old_slice != new_slice) {
  2061       PhiNode* phi;
  2062       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
  2063         phi = new_slice->as_Phi();
  2064         #ifdef ASSERT
  2065         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
  2066           old_slice = old_slice->in(new_path);
  2067         // Caller is responsible for ensuring that any pre-existing
  2068         // phis are already aware of old memory.
  2069         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
  2070         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
  2071         #endif
  2072         mms.set_memory(phi);
  2073       } else {
  2074         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
  2075         _gvn.set_type(phi, Type::MEMORY);
  2076         phi->set_req(new_path, new_slice);
  2077         mms.set_memory(_gvn.transform(phi));  // assume it is complete
  2083 //------------------------------make_slow_call_ex------------------------------
  2084 // Make the exception handler hookups for the slow call
  2085 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
  2086   if (stopped())  return;
  2088   // Make a catch node with just two handlers:  fall-through and catch-all
  2089   Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
  2090   Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
  2091   Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
  2092   Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
  2094   { PreserveJVMState pjvms(this);
  2095     set_control(excp);
  2096     set_i_o(i_o);
  2098     if (excp != top()) {
  2099       // Create an exception state also.
  2100       // Use an exact type if the caller has specified a specific exception.
  2101       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
  2102       Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
  2103       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
  2107   // Get the no-exception control from the CatchNode.
  2108   set_control(norm);
  2112 //-------------------------------gen_subtype_check-----------------------------
  2113 // Generate a subtyping check.  Takes as input the subtype and supertype.
  2114 // Returns 2 values: sets the default control() to the true path and returns
  2115 // the false path.  Only reads invariant memory; sets no (visible) memory.
  2116 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
  2117 // but that's not exposed to the optimizer.  This call also doesn't take in an
  2118 // Object; if you wish to check an Object you need to load the Object's class
  2119 // prior to coming here.
  2120 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
  2121   // Fast check for identical types, perhaps identical constants.
  2122   // The types can even be identical non-constants, in cases
  2123   // involving Array.newInstance, Object.clone, etc.
  2124   if (subklass == superklass)
  2125     return top();             // false path is dead; no test needed.
  2127   if (_gvn.type(superklass)->singleton()) {
  2128     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2129     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
  2131     // In the common case of an exact superklass, try to fold up the
  2132     // test before generating code.  You may ask, why not just generate
  2133     // the code and then let it fold up?  The answer is that the generated
  2134     // code will necessarily include null checks, which do not always
  2135     // completely fold away.  If they are also needless, then they turn
  2136     // into a performance loss.  Example:
  2137     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
  2138     // Here, the type of 'fa' is often exact, so the store check
  2139     // of fa[1]=x will fold up, without testing the nullness of x.
  2140     switch (static_subtype_check(superk, subk)) {
  2141     case SSC_always_false:
  2143         Node* always_fail = control();
  2144         set_control(top());
  2145         return always_fail;
  2147     case SSC_always_true:
  2148       return top();
  2149     case SSC_easy_test:
  2151         // Just do a direct pointer compare and be done.
  2152         Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
  2153         Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2154         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  2155         set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
  2156         return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2158     case SSC_full_test:
  2159       break;
  2160     default:
  2161       ShouldNotReachHere();
  2165   // %%% Possible further optimization:  Even if the superklass is not exact,
  2166   // if the subklass is the unique subtype of the superklass, the check
  2167   // will always succeed.  We could leave a dependency behind to ensure this.
  2169   // First load the super-klass's check-offset
  2170   Node *p1 = basic_plus_adr( superklass, superklass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() );
  2171   Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
  2172   int cacheoff_con = sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes();
  2173   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
  2175   // Load from the sub-klass's super-class display list, or a 1-word cache of
  2176   // the secondary superclass list, or a failing value with a sentinel offset
  2177   // if the super-klass is an interface or exceptionally deep in the Java
  2178   // hierarchy and we have to scan the secondary superclass list the hard way.
  2179   // Worst-case type is a little odd: NULL is allowed as a result (usually
  2180   // klass loads can never produce a NULL).
  2181   Node *chk_off_X = ConvI2X(chk_off);
  2182   Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
  2183   // For some types like interfaces the following loadKlass is from a 1-word
  2184   // cache which is mutable so can't use immutable memory.  Other
  2185   // types load from the super-class display table which is immutable.
  2186   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
  2187   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
  2189   // Compile speed common case: ARE a subtype and we canNOT fail
  2190   if( superklass == nkls )
  2191     return top();             // false path is dead; no test needed.
  2193   // See if we get an immediate positive hit.  Happens roughly 83% of the
  2194   // time.  Test to see if the value loaded just previously from the subklass
  2195   // is exactly the superklass.
  2196   Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
  2197   Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
  2198   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
  2199   Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
  2200   set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
  2202   // Compile speed common case: Check for being deterministic right now.  If
  2203   // chk_off is a constant and not equal to cacheoff then we are NOT a
  2204   // subklass.  In this case we need exactly the 1 test above and we can
  2205   // return those results immediately.
  2206   if (!might_be_cache) {
  2207     Node* not_subtype_ctrl = control();
  2208     set_control(iftrue1); // We need exactly the 1 test above
  2209     return not_subtype_ctrl;
  2212   // Gather the various success & failures here
  2213   RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
  2214   record_for_igvn(r_ok_subtype);
  2215   RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
  2216   record_for_igvn(r_not_subtype);
  2218   r_ok_subtype->init_req(1, iftrue1);
  2220   // Check for immediate negative hit.  Happens roughly 11% of the time (which
  2221   // is roughly 63% of the remaining cases).  Test to see if the loaded
  2222   // check-offset points into the subklass display list or the 1-element
  2223   // cache.  If it points to the display (and NOT the cache) and the display
  2224   // missed then it's not a subtype.
  2225   Node *cacheoff = _gvn.intcon(cacheoff_con);
  2226   Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
  2227   Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
  2228   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
  2229   r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
  2230   set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
  2232   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
  2233   // No performance impact (too rare) but allows sharing of secondary arrays
  2234   // which has some footprint reduction.
  2235   Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
  2236   Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
  2237   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
  2238   r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
  2239   set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
  2241   // -- Roads not taken here: --
  2242   // We could also have chosen to perform the self-check at the beginning
  2243   // of this code sequence, as the assembler does.  This would not pay off
  2244   // the same way, since the optimizer, unlike the assembler, can perform
  2245   // static type analysis to fold away many successful self-checks.
  2246   // Non-foldable self checks work better here in second position, because
  2247   // the initial primary superclass check subsumes a self-check for most
  2248   // types.  An exception would be a secondary type like array-of-interface,
  2249   // which does not appear in its own primary supertype display.
  2250   // Finally, we could have chosen to move the self-check into the
  2251   // PartialSubtypeCheckNode, and from there out-of-line in a platform
  2252   // dependent manner.  But it is worthwhile to have the check here,
  2253   // where it can be perhaps be optimized.  The cost in code space is
  2254   // small (register compare, branch).
  2256   // Now do a linear scan of the secondary super-klass array.  Again, no real
  2257   // performance impact (too rare) but it's gotta be done.
  2258   // Since the code is rarely used, there is no penalty for moving it
  2259   // out of line, and it can only improve I-cache density.
  2260   // The decision to inline or out-of-line this final check is platform
  2261   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
  2262   Node* psc = _gvn.transform(
  2263     new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
  2265   Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
  2266   Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
  2267   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
  2268   r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
  2269   r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
  2271   // Return false path; set default control to true path.
  2272   set_control( _gvn.transform(r_ok_subtype) );
  2273   return _gvn.transform(r_not_subtype);
  2276 //----------------------------static_subtype_check-----------------------------
  2277 // Shortcut important common cases when superklass is exact:
  2278 // (0) superklass is java.lang.Object (can occur in reflective code)
  2279 // (1) subklass is already limited to a subtype of superklass => always ok
  2280 // (2) subklass does not overlap with superklass => always fail
  2281 // (3) superklass has NO subtypes and we can check with a simple compare.
  2282 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
  2283   if (StressReflectiveCode) {
  2284     return SSC_full_test;       // Let caller generate the general case.
  2287   if (superk == env()->Object_klass()) {
  2288     return SSC_always_true;     // (0) this test cannot fail
  2291   ciType* superelem = superk;
  2292   if (superelem->is_array_klass())
  2293     superelem = superelem->as_array_klass()->base_element_type();
  2295   if (!subk->is_interface()) {  // cannot trust static interface types yet
  2296     if (subk->is_subtype_of(superk)) {
  2297       return SSC_always_true;   // (1) false path dead; no dynamic test needed
  2299     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
  2300         !superk->is_subtype_of(subk)) {
  2301       return SSC_always_false;
  2305   // If casting to an instance klass, it must have no subtypes
  2306   if (superk->is_interface()) {
  2307     // Cannot trust interfaces yet.
  2308     // %%% S.B. superk->nof_implementors() == 1
  2309   } else if (superelem->is_instance_klass()) {
  2310     ciInstanceKlass* ik = superelem->as_instance_klass();
  2311     if (!ik->has_subklass() && !ik->is_interface()) {
  2312       if (!ik->is_final()) {
  2313         // Add a dependency if there is a chance of a later subclass.
  2314         C->dependencies()->assert_leaf_type(ik);
  2316       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
  2318   } else {
  2319     // A primitive array type has no subtypes.
  2320     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
  2323   return SSC_full_test;
  2326 // Profile-driven exact type check:
  2327 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
  2328                                     float prob,
  2329                                     Node* *casted_receiver) {
  2330   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
  2331   Node* recv_klass = load_object_klass(receiver);
  2332   Node* want_klass = makecon(tklass);
  2333   Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
  2334   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  2335   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
  2336   set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
  2337   Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
  2339   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
  2340   assert(recv_xtype->klass_is_exact(), "");
  2342   // Subsume downstream occurrences of receiver with a cast to
  2343   // recv_xtype, since now we know what the type will be.
  2344   Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
  2345   (*casted_receiver) = _gvn.transform(cast);
  2346   // (User must make the replace_in_map call.)
  2348   return fail;
  2352 //-------------------------------gen_instanceof--------------------------------
  2353 // Generate an instance-of idiom.  Used by both the instance-of bytecode
  2354 // and the reflective instance-of call.
  2355 Node* GraphKit::gen_instanceof( Node *subobj, Node* superklass ) {
  2356   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2357   assert( !stopped(), "dead parse path should be checked in callers" );
  2358   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
  2359          "must check for not-null not-dead klass in callers");
  2361   // Make the merge point
  2362   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
  2363   RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2364   Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  2365   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2367   // Null check; get casted pointer; set region slot 3
  2368   Node* null_ctl = top();
  2369   Node* not_null_obj = null_check_oop(subobj, &null_ctl);
  2371   // If not_null_obj is dead, only null-path is taken
  2372   if (stopped()) {              // Doing instance-of on a NULL?
  2373     set_control(null_ctl);
  2374     return intcon(0);
  2376   region->init_req(_null_path, null_ctl);
  2377   phi   ->init_req(_null_path, intcon(0)); // Set null path value
  2379   // Load the object's klass
  2380   Node* obj_klass = load_object_klass(not_null_obj);
  2382   // Generate the subtype check
  2383   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
  2385   // Plug in the success path to the general merge in slot 1.
  2386   region->init_req(_obj_path, control());
  2387   phi   ->init_req(_obj_path, intcon(1));
  2389   // Plug in the failing path to the general merge in slot 2.
  2390   region->init_req(_fail_path, not_subtype_ctrl);
  2391   phi   ->init_req(_fail_path, intcon(0));
  2393   // Return final merged results
  2394   set_control( _gvn.transform(region) );
  2395   record_for_igvn(region);
  2396   return _gvn.transform(phi);
  2399 //-------------------------------gen_checkcast---------------------------------
  2400 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
  2401 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
  2402 // uncommon-trap paths work.  Adjust stack after this call.
  2403 // If failure_control is supplied and not null, it is filled in with
  2404 // the control edge for the cast failure.  Otherwise, an appropriate
  2405 // uncommon trap or exception is thrown.
  2406 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
  2407                               Node* *failure_control) {
  2408   kill_dead_locals();           // Benefit all the uncommon traps
  2409   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
  2410   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
  2412   // Fast cutout:  Check the case that the cast is vacuously true.
  2413   // This detects the common cases where the test will short-circuit
  2414   // away completely.  We do this before we perform the null check,
  2415   // because if the test is going to turn into zero code, we don't
  2416   // want a residual null check left around.  (Causes a slowdown,
  2417   // for example, in some objArray manipulations, such as a[i]=a[j].)
  2418   if (tk->singleton()) {
  2419     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
  2420     if (objtp != NULL && objtp->klass() != NULL) {
  2421       switch (static_subtype_check(tk->klass(), objtp->klass())) {
  2422       case SSC_always_true:
  2423         return obj;
  2424       case SSC_always_false:
  2425         // It needs a null check because a null will *pass* the cast check.
  2426         // A non-null value will always produce an exception.
  2427         return do_null_assert(obj, T_OBJECT);
  2432   ciProfileData* data = NULL;
  2433   if (failure_control == NULL) {        // use MDO in regular case only
  2434     assert(java_bc() == Bytecodes::_aastore ||
  2435            java_bc() == Bytecodes::_checkcast,
  2436            "interpreter profiles type checks only for these BCs");
  2437     data = method()->method_data()->bci_to_data(bci());
  2440   // Make the merge point
  2441   enum { _obj_path = 1, _null_path, PATH_LIMIT };
  2442   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  2443   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
  2444   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2446   // Use null-cast information if it is available
  2447   bool never_see_null = false;
  2448   // If we see an unexpected null at a check-cast we record it and force a
  2449   // recompile; the offending check-cast will be compiled to handle NULLs.
  2450   // If we see several offending BCIs, then all checkcasts in the
  2451   // method will be compiled to handle NULLs.
  2452   if (UncommonNullCast            // Cutout for this technique
  2453       && failure_control == NULL  // regular case
  2454       && obj != null()            // And not the -Xcomp stupid case?
  2455       && !too_many_traps(Deoptimization::Reason_null_check)) {
  2456     // Finally, check the "null_seen" bit from the interpreter.
  2457     if (data == NULL || !data->as_BitData()->null_seen()) {
  2458       never_see_null = true;
  2462   // Null check; get casted pointer; set region slot 3
  2463   Node* null_ctl = top();
  2464   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
  2466   // If not_null_obj is dead, only null-path is taken
  2467   if (stopped()) {              // Doing instance-of on a NULL?
  2468     set_control(null_ctl);
  2469     return null();
  2471   region->init_req(_null_path, null_ctl);
  2472   phi   ->init_req(_null_path, null());  // Set null path value
  2474   Node* cast_obj = NULL;        // the casted version of the object
  2476   // If the profile has seen exactly one type, narrow to that type.
  2477   // (The subsequent subtype check will always fold up.)
  2478   if (UseTypeProfile && TypeProfileCasts && data != NULL &&
  2479       // Counter has never been decremented (due to cast failure).
  2480       // ...This is a reasonable thing to expect.  It is true of
  2481       // all casts inserted by javac to implement generic types.
  2482       data->as_CounterData()->count() >= 0 &&
  2483       !too_many_traps(Deoptimization::Reason_class_check)) {
  2484     // (No, this isn't a call, but it's enough like a virtual call
  2485     // to use the same ciMethod accessor to get the profile info...)
  2486     ciCallProfile profile = method()->call_profile_at_bci(bci());
  2487     if (profile.count() >= 0 &&         // no cast failures here
  2488         profile.has_receiver(0) &&
  2489         profile.morphism() == 1) {
  2490       ciKlass* exact_kls = profile.receiver(0);
  2491       int ssc = static_subtype_check(tk->klass(), exact_kls);
  2492       if (ssc == SSC_always_true) {
  2493         // If we narrow the type to match what the type profile sees,
  2494         // we can then remove the rest of the cast.
  2495         // This is a win, even if the exact_kls is very specific,
  2496         // because downstream operations, such as method calls,
  2497         // will often benefit from the sharper type.
  2498         Node* exact_obj = not_null_obj; // will get updated in place...
  2499         Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2500                                               &exact_obj);
  2501         { PreserveJVMState pjvms(this);
  2502           set_control(slow_ctl);
  2503           uncommon_trap(Deoptimization::Reason_class_check,
  2504                         Deoptimization::Action_maybe_recompile);
  2506         if (failure_control != NULL) // failure is now impossible
  2507           (*failure_control) = top();
  2508         replace_in_map(not_null_obj, exact_obj);
  2509         // adjust the type of the phi to the exact klass:
  2510         phi->raise_bottom_type(_gvn.type(exact_obj)->meet(TypePtr::NULL_PTR));
  2511         cast_obj = exact_obj;
  2513       // assert(cast_obj != NULL)... except maybe the profile lied to us.
  2517   if (cast_obj == NULL) {
  2518     // Load the object's klass
  2519     Node* obj_klass = load_object_klass(not_null_obj);
  2521     // Generate the subtype check
  2522     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
  2524     // Plug in success path into the merge
  2525     cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
  2526                                                          not_null_obj, toop));
  2527     // Failure path ends in uncommon trap (or may be dead - failure impossible)
  2528     if (failure_control == NULL) {
  2529       if (not_subtype_ctrl != top()) { // If failure is possible
  2530         PreserveJVMState pjvms(this);
  2531         set_control(not_subtype_ctrl);
  2532         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
  2534     } else {
  2535       (*failure_control) = not_subtype_ctrl;
  2539   region->init_req(_obj_path, control());
  2540   phi   ->init_req(_obj_path, cast_obj);
  2542   // A merge of NULL or Casted-NotNull obj
  2543   Node* res = _gvn.transform(phi);
  2545   // Note I do NOT always 'replace_in_map(obj,result)' here.
  2546   //  if( tk->klass()->can_be_primary_super()  )
  2547     // This means that if I successfully store an Object into an array-of-String
  2548     // I 'forget' that the Object is really now known to be a String.  I have to
  2549     // do this because we don't have true union types for interfaces - if I store
  2550     // a Baz into an array-of-Interface and then tell the optimizer it's an
  2551     // Interface, I forget that it's also a Baz and cannot do Baz-like field
  2552     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
  2553   //  replace_in_map( obj, res );
  2555   // Return final merged results
  2556   set_control( _gvn.transform(region) );
  2557   record_for_igvn(region);
  2558   return res;
  2561 //------------------------------next_monitor-----------------------------------
  2562 // What number should be given to the next monitor?
  2563 int GraphKit::next_monitor() {
  2564   int current = jvms()->monitor_depth()* C->sync_stack_slots();
  2565   int next = current + C->sync_stack_slots();
  2566   // Keep the toplevel high water mark current:
  2567   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
  2568   return current;
  2571 //------------------------------insert_mem_bar---------------------------------
  2572 // Memory barrier to avoid floating things around
  2573 // The membar serves as a pinch point between both control and all memory slices.
  2574 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
  2575   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  2576   mb->init_req(TypeFunc::Control, control());
  2577   mb->init_req(TypeFunc::Memory,  reset_memory());
  2578   Node* membar = _gvn.transform(mb);
  2579   set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
  2580   set_all_memory_call(membar);
  2581   return membar;
  2584 //-------------------------insert_mem_bar_volatile----------------------------
  2585 // Memory barrier to avoid floating things around
  2586 // The membar serves as a pinch point between both control and memory(alias_idx).
  2587 // If you want to make a pinch point on all memory slices, do not use this
  2588 // function (even with AliasIdxBot); use insert_mem_bar() instead.
  2589 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
  2590   // When Parse::do_put_xxx updates a volatile field, it appends a series
  2591   // of MemBarVolatile nodes, one for *each* volatile field alias category.
  2592   // The first membar is on the same memory slice as the field store opcode.
  2593   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
  2594   // All the other membars (for other volatile slices, including AliasIdxBot,
  2595   // which stands for all unknown volatile slices) are control-dependent
  2596   // on the first membar.  This prevents later volatile loads or stores
  2597   // from sliding up past the just-emitted store.
  2599   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
  2600   mb->set_req(TypeFunc::Control,control());
  2601   if (alias_idx == Compile::AliasIdxBot) {
  2602     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
  2603   } else {
  2604     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
  2605     mb->set_req(TypeFunc::Memory, memory(alias_idx));
  2607   Node* membar = _gvn.transform(mb);
  2608   set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
  2609   if (alias_idx == Compile::AliasIdxBot) {
  2610     merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
  2611   } else {
  2612     set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
  2614   return membar;
  2617 //------------------------------shared_lock------------------------------------
  2618 // Emit locking code.
  2619 FastLockNode* GraphKit::shared_lock(Node* obj) {
  2620   // bci is either a monitorenter bc or InvocationEntryBci
  2621   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2622   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2624   if( !GenerateSynchronizationCode )
  2625     return NULL;                // Not locking things?
  2626   if (stopped())                // Dead monitor?
  2627     return NULL;
  2629   assert(dead_locals_are_killed(), "should kill locals before sync. point");
  2631   // Box the stack location
  2632   Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
  2633   Node* mem = reset_memory();
  2635   FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
  2636   if (PrintPreciseBiasedLockingStatistics) {
  2637     // Create the counters for this fast lock.
  2638     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  2640   // Add monitor to debug info for the slow path.  If we block inside the
  2641   // slow path and de-opt, we need the monitor hanging around
  2642   map()->push_monitor( flock );
  2644   const TypeFunc *tf = LockNode::lock_type();
  2645   LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
  2647   lock->init_req( TypeFunc::Control, control() );
  2648   lock->init_req( TypeFunc::Memory , mem );
  2649   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2650   lock->init_req( TypeFunc::FramePtr, frameptr() );
  2651   lock->init_req( TypeFunc::ReturnAdr, top() );
  2653   lock->init_req(TypeFunc::Parms + 0, obj);
  2654   lock->init_req(TypeFunc::Parms + 1, box);
  2655   lock->init_req(TypeFunc::Parms + 2, flock);
  2656   add_safepoint_edges(lock);
  2658   lock = _gvn.transform( lock )->as_Lock();
  2660   // lock has no side-effects, sets few values
  2661   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
  2663   insert_mem_bar(Op_MemBarAcquire);
  2665   // Add this to the worklist so that the lock can be eliminated
  2666   record_for_igvn(lock);
  2668 #ifndef PRODUCT
  2669   if (PrintLockStatistics) {
  2670     // Update the counter for this lock.  Don't bother using an atomic
  2671     // operation since we don't require absolute accuracy.
  2672     lock->create_lock_counter(map()->jvms());
  2673     int adr_type = Compile::AliasIdxRaw;
  2674     Node* counter_addr = makecon(TypeRawPtr::make(lock->counter()->addr()));
  2675     Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
  2676     Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
  2677     store_to_memory(control(), counter_addr, incr, T_INT, adr_type);
  2679 #endif
  2681   return flock;
  2685 //------------------------------shared_unlock----------------------------------
  2686 // Emit unlocking code.
  2687 void GraphKit::shared_unlock(Node* box, Node* obj) {
  2688   // bci is either a monitorenter bc or InvocationEntryBci
  2689   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  2690   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  2692   if( !GenerateSynchronizationCode )
  2693     return;
  2694   if (stopped()) {               // Dead monitor?
  2695     map()->pop_monitor();        // Kill monitor from debug info
  2696     return;
  2699   // Memory barrier to avoid floating things down past the locked region
  2700   insert_mem_bar(Op_MemBarRelease);
  2702   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
  2703   UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
  2704   uint raw_idx = Compile::AliasIdxRaw;
  2705   unlock->init_req( TypeFunc::Control, control() );
  2706   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
  2707   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  2708   unlock->init_req( TypeFunc::FramePtr, frameptr() );
  2709   unlock->init_req( TypeFunc::ReturnAdr, top() );
  2711   unlock->init_req(TypeFunc::Parms + 0, obj);
  2712   unlock->init_req(TypeFunc::Parms + 1, box);
  2713   unlock = _gvn.transform(unlock)->as_Unlock();
  2715   Node* mem = reset_memory();
  2717   // unlock has no side-effects, sets few values
  2718   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
  2720   // Kill monitor from debug info
  2721   map()->pop_monitor( );
  2724 //-------------------------------get_layout_helper-----------------------------
  2725 // If the given klass is a constant or known to be an array,
  2726 // fetch the constant layout helper value into constant_value
  2727 // and return (Node*)NULL.  Otherwise, load the non-constant
  2728 // layout helper value, and return the node which represents it.
  2729 // This two-faced routine is useful because allocation sites
  2730 // almost always feature constant types.
  2731 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
  2732   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
  2733   if (!StressReflectiveCode && inst_klass != NULL) {
  2734     ciKlass* klass = inst_klass->klass();
  2735     bool    xklass = inst_klass->klass_is_exact();
  2736     if (xklass || klass->is_array_klass()) {
  2737       jint lhelper = klass->layout_helper();
  2738       if (lhelper != Klass::_lh_neutral_value) {
  2739         constant_value = lhelper;
  2740         return (Node*) NULL;
  2744   constant_value = Klass::_lh_neutral_value;  // put in a known value
  2745   Node* lhp = basic_plus_adr(klass_node, klass_node, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc));
  2746   return make_load(NULL, lhp, TypeInt::INT, T_INT);
  2749 // We just put in an allocate/initialize with a big raw-memory effect.
  2750 // Hook selected additional alias categories on the initialization.
  2751 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
  2752                                 MergeMemNode* init_in_merge,
  2753                                 Node* init_out_raw) {
  2754   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
  2755   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
  2757   Node* prevmem = kit.memory(alias_idx);
  2758   init_in_merge->set_memory_at(alias_idx, prevmem);
  2759   kit.set_memory(init_out_raw, alias_idx);
  2762 //---------------------------set_output_for_allocation-------------------------
  2763 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
  2764                                           const TypeOopPtr* oop_type,
  2765                                           bool raw_mem_only) {
  2766   int rawidx = Compile::AliasIdxRaw;
  2767   alloc->set_req( TypeFunc::FramePtr, frameptr() );
  2768   add_safepoint_edges(alloc);
  2769   Node* allocx = _gvn.transform(alloc);
  2770   set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
  2771   // create memory projection for i_o
  2772   set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
  2773   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
  2775   // create a memory projection as for the normal control path
  2776   Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
  2777   set_memory(malloc, rawidx);
  2779   // a normal slow-call doesn't change i_o, but an allocation does
  2780   // we create a separate i_o projection for the normal control path
  2781   set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
  2782   Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
  2784   // put in an initialization barrier
  2785   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
  2786                                                  rawoop)->as_Initialize();
  2787   assert(alloc->initialization() == init,  "2-way macro link must work");
  2788   assert(init ->allocation()     == alloc, "2-way macro link must work");
  2789   if (ReduceFieldZeroing && !raw_mem_only) {
  2790     // Extract memory strands which may participate in the new object's
  2791     // initialization, and source them from the new InitializeNode.
  2792     // This will allow us to observe initializations when they occur,
  2793     // and link them properly (as a group) to the InitializeNode.
  2794     assert(init->in(InitializeNode::Memory) == malloc, "");
  2795     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
  2796     init->set_req(InitializeNode::Memory, minit_in);
  2797     record_for_igvn(minit_in); // fold it up later, if possible
  2798     Node* minit_out = memory(rawidx);
  2799     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
  2800     if (oop_type->isa_aryptr()) {
  2801       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
  2802       int            elemidx  = C->get_alias_index(telemref);
  2803       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
  2804     } else if (oop_type->isa_instptr()) {
  2805       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
  2806       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
  2807         ciField* field = ik->nonstatic_field_at(i);
  2808         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
  2809           continue;  // do not bother to track really large numbers of fields
  2810         // Find (or create) the alias category for this field:
  2811         int fieldidx = C->alias_type(field)->index();
  2812         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
  2817   // Cast raw oop to the real thing...
  2818   Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
  2819   javaoop = _gvn.transform(javaoop);
  2820   C->set_recent_alloc(control(), javaoop);
  2821   assert(just_allocated_object(control()) == javaoop, "just allocated");
  2823 #ifdef ASSERT
  2824   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
  2825     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
  2826            "Ideal_allocation works");
  2827     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
  2828            "Ideal_allocation works");
  2829     if (alloc->is_AllocateArray()) {
  2830       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
  2831              "Ideal_allocation works");
  2832       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
  2833              "Ideal_allocation works");
  2834     } else {
  2835       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
  2838 #endif //ASSERT
  2840   return javaoop;
  2843 //---------------------------new_instance--------------------------------------
  2844 // This routine takes a klass_node which may be constant (for a static type)
  2845 // or may be non-constant (for reflective code).  It will work equally well
  2846 // for either, and the graph will fold nicely if the optimizer later reduces
  2847 // the type to a constant.
  2848 // The optional arguments are for specialized use by intrinsics:
  2849 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
  2850 //  - If 'raw_mem_only', do not cast the result to an oop.
  2851 //  - If 'return_size_val', report the the total object size to the caller.
  2852 Node* GraphKit::new_instance(Node* klass_node,
  2853                              Node* extra_slow_test,
  2854                              bool raw_mem_only, // affect only raw memory
  2855                              Node* *return_size_val) {
  2856   // Compute size in doublewords
  2857   // The size is always an integral number of doublewords, represented
  2858   // as a positive bytewise size stored in the klass's layout_helper.
  2859   // The layout_helper also encodes (in a low bit) the need for a slow path.
  2860   jint  layout_con = Klass::_lh_neutral_value;
  2861   Node* layout_val = get_layout_helper(klass_node, layout_con);
  2862   int   layout_is_con = (layout_val == NULL);
  2864   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
  2865   // Generate the initial go-slow test.  It's either ALWAYS (return a
  2866   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
  2867   // case) a computed value derived from the layout_helper.
  2868   Node* initial_slow_test = NULL;
  2869   if (layout_is_con) {
  2870     assert(!StressReflectiveCode, "stress mode does not use these paths");
  2871     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
  2872     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
  2874   } else {   // reflective case
  2875     // This reflective path is used by Unsafe.allocateInstance.
  2876     // (It may be stress-tested by specifying StressReflectiveCode.)
  2877     // Basically, we want to get into the VM is there's an illegal argument.
  2878     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
  2879     initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
  2880     if (extra_slow_test != intcon(0)) {
  2881       initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
  2883     // (Macro-expander will further convert this to a Bool, if necessary.)
  2886   // Find the size in bytes.  This is easy; it's the layout_helper.
  2887   // The size value must be valid even if the slow path is taken.
  2888   Node* size = NULL;
  2889   if (layout_is_con) {
  2890     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
  2891   } else {   // reflective case
  2892     // This reflective path is used by clone and Unsafe.allocateInstance.
  2893     size = ConvI2X(layout_val);
  2895     // Clear the low bits to extract layout_helper_size_in_bytes:
  2896     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
  2897     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
  2898     size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
  2900   if (return_size_val != NULL) {
  2901     (*return_size_val) = size;
  2904   // This is a precise notnull oop of the klass.
  2905   // (Actually, it need not be precise if this is a reflective allocation.)
  2906   // It's what we cast the result to.
  2907   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
  2908   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
  2909   const TypeOopPtr* oop_type = tklass->as_instance_type();
  2911   // Now generate allocation code
  2913   // The entire memory state is needed for slow path of the allocation
  2914   // since GC and deoptimization can happened.
  2915   Node *mem = reset_memory();
  2916   set_all_memory(mem); // Create new memory state
  2918   AllocateNode* alloc
  2919     = new (C, AllocateNode::ParmLimit)
  2920         AllocateNode(C, AllocateNode::alloc_type(),
  2921                      control(), mem, i_o(),
  2922                      size, klass_node,
  2923                      initial_slow_test);
  2925   return set_output_for_allocation(alloc, oop_type, raw_mem_only);
  2928 //-------------------------------new_array-------------------------------------
  2929 // helper for both newarray and anewarray
  2930 // The 'length' parameter is (obviously) the length of the array.
  2931 // See comments on new_instance for the meaning of the other arguments.
  2932 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
  2933                           Node* length,         // number of array elements
  2934                           int   nargs,          // number of arguments to push back for uncommon trap
  2935                           bool raw_mem_only,    // affect only raw memory
  2936                           Node* *return_size_val) {
  2937   jint  layout_con = Klass::_lh_neutral_value;
  2938   Node* layout_val = get_layout_helper(klass_node, layout_con);
  2939   int   layout_is_con = (layout_val == NULL);
  2941   if (!layout_is_con && !StressReflectiveCode &&
  2942       !too_many_traps(Deoptimization::Reason_class_check)) {
  2943     // This is a reflective array creation site.
  2944     // Optimistically assume that it is a subtype of Object[],
  2945     // so that we can fold up all the address arithmetic.
  2946     layout_con = Klass::array_layout_helper(T_OBJECT);
  2947     Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
  2948     Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
  2949     { BuildCutout unless(this, bol_lh, PROB_MAX);
  2950       _sp += nargs;
  2951       uncommon_trap(Deoptimization::Reason_class_check,
  2952                     Deoptimization::Action_maybe_recompile);
  2954     layout_val = NULL;
  2955     layout_is_con = true;
  2958   // Generate the initial go-slow test.  Make sure we do not overflow
  2959   // if length is huge (near 2Gig) or negative!  We do not need
  2960   // exact double-words here, just a close approximation of needed
  2961   // double-words.  We can't add any offset or rounding bits, lest we
  2962   // take a size -1 of bytes and make it positive.  Use an unsigned
  2963   // compare, so negative sizes look hugely positive.
  2964   int fast_size_limit = FastAllocateSizeLimit;
  2965   if (layout_is_con) {
  2966     assert(!StressReflectiveCode, "stress mode does not use these paths");
  2967     // Increase the size limit if we have exact knowledge of array type.
  2968     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
  2969     fast_size_limit <<= (LogBytesPerLong - log2_esize);
  2972   Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
  2973   Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
  2974   if (initial_slow_test->is_Bool()) {
  2975     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
  2976     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
  2979   // --- Size Computation ---
  2980   // array_size = round_to_heap(array_header + (length << elem_shift));
  2981   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
  2982   // and round_to(x, y) == ((x + y-1) & ~(y-1))
  2983   // The rounding mask is strength-reduced, if possible.
  2984   int round_mask = MinObjAlignmentInBytes - 1;
  2985   Node* header_size = NULL;
  2986   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  2987   // (T_BYTE has the weakest alignment and size restrictions...)
  2988   if (layout_is_con) {
  2989     int       hsize  = Klass::layout_helper_header_size(layout_con);
  2990     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
  2991     BasicType etype  = Klass::layout_helper_element_type(layout_con);
  2992     if ((round_mask & ~right_n_bits(eshift)) == 0)
  2993       round_mask = 0;  // strength-reduce it if it goes away completely
  2994     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
  2995     assert(header_size_min <= hsize, "generic minimum is smallest");
  2996     header_size_min = hsize;
  2997     header_size = intcon(hsize + round_mask);
  2998   } else {
  2999     Node* hss   = intcon(Klass::_lh_header_size_shift);
  3000     Node* hsm   = intcon(Klass::_lh_header_size_mask);
  3001     Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
  3002     hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
  3003     Node* mask  = intcon(round_mask);
  3004     header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
  3007   Node* elem_shift = NULL;
  3008   if (layout_is_con) {
  3009     int eshift = Klass::layout_helper_log2_element_size(layout_con);
  3010     if (eshift != 0)
  3011       elem_shift = intcon(eshift);
  3012   } else {
  3013     // There is no need to mask or shift this value.
  3014     // The semantics of LShiftINode include an implicit mask to 0x1F.
  3015     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
  3016     elem_shift = layout_val;
  3019   // Transition to native address size for all offset calculations:
  3020   Node* lengthx = ConvI2X(length);
  3021   Node* headerx = ConvI2X(header_size);
  3022 #ifdef _LP64
  3023   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
  3024     if (tllen != NULL && tllen->_lo < 0) {
  3025       // Add a manual constraint to a positive range.  Cf. array_element_address.
  3026       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
  3027       if (size_max > tllen->_hi)  size_max = tllen->_hi;
  3028       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
  3029       lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
  3032 #endif
  3034   // Combine header size (plus rounding) and body size.  Then round down.
  3035   // This computation cannot overflow, because it is used only in two
  3036   // places, one where the length is sharply limited, and the other
  3037   // after a successful allocation.
  3038   Node* abody = lengthx;
  3039   if (elem_shift != NULL)
  3040     abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
  3041   Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
  3042   if (round_mask != 0) {
  3043     Node* mask = MakeConX(~round_mask);
  3044     size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
  3046   // else if round_mask == 0, the size computation is self-rounding
  3048   if (return_size_val != NULL) {
  3049     // This is the size
  3050     (*return_size_val) = size;
  3053   // Now generate allocation code
  3055   // The entire memory state is needed for slow path of the allocation
  3056   // since GC and deoptimization can happened.
  3057   Node *mem = reset_memory();
  3058   set_all_memory(mem); // Create new memory state
  3060   // Create the AllocateArrayNode and its result projections
  3061   AllocateArrayNode* alloc
  3062     = new (C, AllocateArrayNode::ParmLimit)
  3063         AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
  3064                           control(), mem, i_o(),
  3065                           size, klass_node,
  3066                           initial_slow_test,
  3067                           length);
  3069   // Cast to correct type.  Note that the klass_node may be constant or not,
  3070   // and in the latter case the actual array type will be inexact also.
  3071   // (This happens via a non-constant argument to inline_native_newArray.)
  3072   // In any case, the value of klass_node provides the desired array type.
  3073   const TypeInt* length_type = _gvn.find_int_type(length);
  3074   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
  3075   if (ary_type->isa_aryptr() && length_type != NULL) {
  3076     // Try to get a better type than POS for the size
  3077     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
  3080   Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
  3082   // Cast length on remaining path to be as narrow as possible
  3083   if (map()->find_edge(length) >= 0) {
  3084     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
  3085     if (ccast != length) {
  3086       _gvn.set_type_bottom(ccast);
  3087       record_for_igvn(ccast);
  3088       replace_in_map(length, ccast);
  3092   return javaoop;
  3095 // The following "Ideal_foo" functions are placed here because they recognize
  3096 // the graph shapes created by the functions immediately above.
  3098 //---------------------------Ideal_allocation----------------------------------
  3099 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
  3100 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
  3101   if (ptr == NULL) {     // reduce dumb test in callers
  3102     return NULL;
  3104   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
  3105     ptr = ptr->in(1);
  3106     if (ptr == NULL)  return NULL;
  3108   if (ptr->is_Proj()) {
  3109     Node* allo = ptr->in(0);
  3110     if (allo != NULL && allo->is_Allocate()) {
  3111       return allo->as_Allocate();
  3114   // Report failure to match.
  3115   return NULL;
  3118 // Fancy version which also strips off an offset (and reports it to caller).
  3119 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
  3120                                              intptr_t& offset) {
  3121   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
  3122   if (base == NULL)  return NULL;
  3123   return Ideal_allocation(base, phase);
  3126 // Trace Initialize <- Proj[Parm] <- Allocate
  3127 AllocateNode* InitializeNode::allocation() {
  3128   Node* rawoop = in(InitializeNode::RawAddress);
  3129   if (rawoop->is_Proj()) {
  3130     Node* alloc = rawoop->in(0);
  3131     if (alloc->is_Allocate()) {
  3132       return alloc->as_Allocate();
  3135   return NULL;
  3138 // Trace Allocate -> Proj[Parm] -> Initialize
  3139 InitializeNode* AllocateNode::initialization() {
  3140   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
  3141   if (rawoop == NULL)  return NULL;
  3142   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
  3143     Node* init = rawoop->fast_out(i);
  3144     if (init->is_Initialize()) {
  3145       assert(init->as_Initialize()->allocation() == this, "2-way link");
  3146       return init->as_Initialize();
  3149   return NULL;
  3152 //----------------------------- store barriers ----------------------------
  3153 #define __ ideal.
  3155 void GraphKit::sync_kit(IdealKit& ideal) {
  3156   // Final sync IdealKit and graphKit.
  3157   __ drain_delay_transform();
  3158   set_all_memory(__ merged_memory());
  3159   set_control(__ ctrl());
  3162 // vanilla/CMS post barrier
  3163 // Insert a write-barrier store.  This is to let generational GC work; we have
  3164 // to flag all oop-stores before the next GC point.
  3165 void GraphKit::write_barrier_post(Node* oop_store,
  3166                                   Node* obj,
  3167                                   Node* adr,
  3168                                   uint  adr_idx,
  3169                                   Node* val,
  3170                                   bool use_precise) {
  3171   // No store check needed if we're storing a NULL or an old object
  3172   // (latter case is probably a string constant). The concurrent
  3173   // mark sweep garbage collector, however, needs to have all nonNull
  3174   // oop updates flagged via card-marks.
  3175   if (val != NULL && val->is_Con()) {
  3176     // must be either an oop or NULL
  3177     const Type* t = val->bottom_type();
  3178     if (t == TypePtr::NULL_PTR || t == Type::TOP)
  3179       // stores of null never (?) need barriers
  3180       return;
  3181     ciObject* con = t->is_oopptr()->const_oop();
  3182     if (con != NULL
  3183         && con->is_perm()
  3184         && Universe::heap()->can_elide_permanent_oop_store_barriers())
  3185       // no store barrier needed, because no old-to-new ref created
  3186       return;
  3189   if (use_ReduceInitialCardMarks()
  3190       && obj == just_allocated_object(control())) {
  3191     // We can skip marks on a freshly-allocated object in Eden.
  3192     // Keep this code in sync with maybe_defer_card_mark() in runtime.cpp.
  3193     // That routine informs GC to take appropriate compensating steps
  3194     // so as to make this card-mark elision safe.
  3195     return;
  3198   if (!use_precise) {
  3199     // All card marks for a (non-array) instance are in one place:
  3200     adr = obj;
  3202   // (Else it's an array (or unknown), and we want more precise card marks.)
  3203   assert(adr != NULL, "");
  3205   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3207   // Convert the pointer to an int prior to doing math on it
  3208   Node* cast = __ CastPX(__ ctrl(), adr);
  3210   // Divide by card size
  3211   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
  3212          "Only one we handle so far.");
  3213   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3215   // Combine card table base and card offset
  3216   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
  3218   // Get the alias_index for raw card-mark memory
  3219   int adr_type = Compile::AliasIdxRaw;
  3220   // Smash zero into card
  3221   Node*   zero = __ ConI(0);
  3222   BasicType bt = T_BYTE;
  3223   if( !UseConcMarkSweepGC ) {
  3224     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
  3225   } else {
  3226     // Specialized path for CM store barrier
  3227     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
  3230   // Final sync IdealKit and GraphKit.
  3231   sync_kit(ideal);
  3234 // G1 pre/post barriers
  3235 void GraphKit::g1_write_barrier_pre(Node* obj,
  3236                                     Node* adr,
  3237                                     uint alias_idx,
  3238                                     Node* val,
  3239                                     const TypeOopPtr* val_type,
  3240                                     BasicType bt) {
  3241   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3243   Node* tls = __ thread(); // ThreadLocalStorage
  3245   Node* no_ctrl = NULL;
  3246   Node* no_base = __ top();
  3247   Node* zero = __ ConI(0);
  3249   float likely  = PROB_LIKELY(0.999);
  3250   float unlikely  = PROB_UNLIKELY(0.999);
  3252   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
  3253   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
  3255   // Offsets into the thread
  3256   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
  3257                                           PtrQueue::byte_offset_of_active());
  3258   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
  3259                                           PtrQueue::byte_offset_of_index());
  3260   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
  3261                                           PtrQueue::byte_offset_of_buf());
  3262   // Now the actual pointers into the thread
  3264   // set_control( ctl);
  3266   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
  3267   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3268   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
  3270   // Now some of the values
  3272   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
  3274   // if (!marking)
  3275   __ if_then(marking, BoolTest::ne, zero); {
  3276     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3278     const Type* t1 = adr->bottom_type();
  3279     const Type* t2 = val->bottom_type();
  3281     Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
  3282     // if (orig != NULL)
  3283     __ if_then(orig, BoolTest::ne, null()); {
  3284       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3286       // load original value
  3287       // alias_idx correct??
  3289       // is the queue for this thread full?
  3290       __ if_then(index, BoolTest::ne, zero, likely); {
  3292         // decrement the index
  3293         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
  3294         Node* next_indexX = next_index;
  3295 #ifdef _LP64
  3296         // We could refine the type for what it's worth
  3297         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3298         next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3299 #endif
  3301         // Now get the buffer location we will log the original value into and store it
  3302         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
  3303         __ store(__ ctrl(), log_addr, orig, T_OBJECT, Compile::AliasIdxRaw);
  3305         // update the index
  3306         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3308       } __ else_(); {
  3310         // logging buffer is full, call the runtime
  3311         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
  3312         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", orig, tls);
  3313       } __ end_if();  // (!index)
  3314     } __ end_if();  // (orig != NULL)
  3315   } __ end_if();  // (!marking)
  3317   // Final sync IdealKit and GraphKit.
  3318   sync_kit(ideal);
  3321 //
  3322 // Update the card table and add card address to the queue
  3323 //
  3324 void GraphKit::g1_mark_card(IdealKit& ideal,
  3325                             Node* card_adr,
  3326                             Node* oop_store,
  3327                             uint oop_alias_idx,
  3328                             Node* index,
  3329                             Node* index_adr,
  3330                             Node* buffer,
  3331                             const TypeFunc* tf) {
  3333   Node* zero = __ ConI(0);
  3334   Node* no_base = __ top();
  3335   BasicType card_bt = T_BYTE;
  3336   // Smash zero into card. MUST BE ORDERED WRT TO STORE
  3337   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
  3339   //  Now do the queue work
  3340   __ if_then(index, BoolTest::ne, zero); {
  3342     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
  3343     Node* next_indexX = next_index;
  3344 #ifdef _LP64
  3345     // We could refine the type for what it's worth
  3346     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
  3347     next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
  3348 #endif // _LP64
  3349     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
  3351     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
  3352     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
  3354   } __ else_(); {
  3355     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
  3356   } __ end_if();
  3360 void GraphKit::g1_write_barrier_post(Node* oop_store,
  3361                                      Node* obj,
  3362                                      Node* adr,
  3363                                      uint alias_idx,
  3364                                      Node* val,
  3365                                      BasicType bt,
  3366                                      bool use_precise) {
  3367   // If we are writing a NULL then we need no post barrier
  3369   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
  3370     // Must be NULL
  3371     const Type* t = val->bottom_type();
  3372     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
  3373     // No post barrier if writing NULLx
  3374     return;
  3377   if (!use_precise) {
  3378     // All card marks for a (non-array) instance are in one place:
  3379     adr = obj;
  3381   // (Else it's an array (or unknown), and we want more precise card marks.)
  3382   assert(adr != NULL, "");
  3384   IdealKit ideal(gvn(), control(), merged_memory(), true);
  3386   Node* tls = __ thread(); // ThreadLocalStorage
  3388   Node* no_ctrl = NULL;
  3389   Node* no_base = __ top();
  3390   float likely  = PROB_LIKELY(0.999);
  3391   float unlikely  = PROB_UNLIKELY(0.999);
  3392   Node* zero = __ ConI(0);
  3393   Node* zeroX = __ ConX(0);
  3395   // Get the alias_index for raw card-mark memory
  3396   const TypePtr* card_type = TypeRawPtr::BOTTOM;
  3398   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
  3400   // Offsets into the thread
  3401   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
  3402                                      PtrQueue::byte_offset_of_index());
  3403   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
  3404                                      PtrQueue::byte_offset_of_buf());
  3406   // Pointers into the thread
  3408   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3409   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
  3411   // Now some values
  3413   Node* index  = __ load(no_ctrl, index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
  3414   Node* buffer = __ load(no_ctrl, buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3417   // Convert the store obj pointer to an int prior to doing math on it
  3418   // Must use ctrl to prevent "integerized oop" existing across safepoint
  3419   Node* cast =  __ CastPX(__ ctrl(), adr);
  3421   // Divide pointer by card size
  3422   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3424   // Combine card table base and card offset
  3425   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
  3427   // If we know the value being stored does it cross regions?
  3429   if (val != NULL) {
  3430     // Does the store cause us to cross regions?
  3432     // Should be able to do an unsigned compare of region_size instead of
  3433     // and extra shift. Do we have an unsigned compare??
  3434     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
  3435     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
  3437     // if (xor_res == 0) same region so skip
  3438     __ if_then(xor_res, BoolTest::ne, zeroX); {
  3440       // No barrier if we are storing a NULL
  3441       __ if_then(val, BoolTest::ne, null(), unlikely); {
  3443         // Ok must mark the card if not already dirty
  3445         // load the original value of the card
  3446         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  3448         __ if_then(card_val, BoolTest::ne, zero); {
  3449           g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3450         } __ end_if();
  3451       } __ end_if();
  3452     } __ end_if();
  3453   } else {
  3454     // Object.clone() instrinsic uses this path.
  3455     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  3458   // Final sync IdealKit and GraphKit.
  3459   sync_kit(ideal);
  3461 #undef __

mercurial