src/share/vm/opto/escape.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1423
7e309ecb83ce
child 1497
dcdcc8c16e20
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

     1 /*
     2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_escape.cpp.incl"
    28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
    29   uint v = (targIdx << EdgeShift) + ((uint) et);
    30   if (_edges == NULL) {
    31      Arena *a = Compile::current()->comp_arena();
    32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
    33   }
    34   _edges->append_if_missing(v);
    35 }
    37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
    38   uint v = (targIdx << EdgeShift) + ((uint) et);
    40   _edges->remove(v);
    41 }
    43 #ifndef PRODUCT
    44 static const char *node_type_names[] = {
    45   "UnknownType",
    46   "JavaObject",
    47   "LocalVar",
    48   "Field"
    49 };
    51 static const char *esc_names[] = {
    52   "UnknownEscape",
    53   "NoEscape",
    54   "ArgEscape",
    55   "GlobalEscape"
    56 };
    58 static const char *edge_type_suffix[] = {
    59  "?", // UnknownEdge
    60  "P", // PointsToEdge
    61  "D", // DeferredEdge
    62  "F"  // FieldEdge
    63 };
    65 void PointsToNode::dump(bool print_state) const {
    66   NodeType nt = node_type();
    67   tty->print("%s ", node_type_names[(int) nt]);
    68   if (print_state) {
    69     EscapeState es = escape_state();
    70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
    71   }
    72   tty->print("[[");
    73   for (uint i = 0; i < edge_count(); i++) {
    74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    75   }
    76   tty->print("]]  ");
    77   if (_node == NULL)
    78     tty->print_cr("<null>");
    79   else
    80     _node->dump();
    81 }
    82 #endif
    84 ConnectionGraph::ConnectionGraph(Compile * C) :
    85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
    86   _processed(C->comp_arena()),
    87   _collecting(true),
    88   _compile(C),
    89   _node_map(C->comp_arena()) {
    91   _phantom_object = C->top()->_idx,
    92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
    94   // Add ConP(#NULL) and ConN(#NULL) nodes.
    95   PhaseGVN* igvn = C->initial_gvn();
    96   Node* oop_null = igvn->zerocon(T_OBJECT);
    97   _oop_null = oop_null->_idx;
    98   assert(_oop_null < C->unique(), "should be created already");
    99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   101   if (UseCompressedOops) {
   102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
   103     _noop_null = noop_null->_idx;
   104     assert(_noop_null < C->unique(), "should be created already");
   105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   106   }
   107 }
   109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   110   PointsToNode *f = ptnode_adr(from_i);
   111   PointsToNode *t = ptnode_adr(to_i);
   113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
   115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
   116   f->add_edge(to_i, PointsToNode::PointsToEdge);
   117 }
   119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
   120   PointsToNode *f = ptnode_adr(from_i);
   121   PointsToNode *t = ptnode_adr(to_i);
   123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
   125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
   126   // don't add a self-referential edge, this can occur during removal of
   127   // deferred edges
   128   if (from_i != to_i)
   129     f->add_edge(to_i, PointsToNode::DeferredEdge);
   130 }
   132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   133   const Type *adr_type = phase->type(adr);
   134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
   135       adr->in(AddPNode::Address)->is_Proj() &&
   136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
   137     // We are computing a raw address for a store captured by an Initialize
   138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
   139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   140     assert(offs != Type::OffsetBot ||
   141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
   142            "offset must be a constant or it is initialization of array");
   143     return offs;
   144   }
   145   const TypePtr *t_ptr = adr_type->isa_ptr();
   146   assert(t_ptr != NULL, "must be a pointer type");
   147   return t_ptr->offset();
   148 }
   150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   151   PointsToNode *f = ptnode_adr(from_i);
   152   PointsToNode *t = ptnode_adr(to_i);
   154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
   156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
   157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
   158   t->set_offset(offset);
   160   f->add_edge(to_i, PointsToNode::FieldEdge);
   161 }
   163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
   164   PointsToNode *npt = ptnode_adr(ni);
   165   PointsToNode::EscapeState old_es = npt->escape_state();
   166   if (es > old_es)
   167     npt->set_escape_state(es);
   168 }
   170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
   171                                PointsToNode::EscapeState es, bool done) {
   172   PointsToNode* ptadr = ptnode_adr(n->_idx);
   173   ptadr->_node = n;
   174   ptadr->set_node_type(nt);
   176   // inline set_escape_state(idx, es);
   177   PointsToNode::EscapeState old_es = ptadr->escape_state();
   178   if (es > old_es)
   179     ptadr->set_escape_state(es);
   181   if (done)
   182     _processed.set(n->_idx);
   183 }
   185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   186   uint idx = n->_idx;
   187   PointsToNode::EscapeState es;
   189   // If we are still collecting or there were no non-escaping allocations
   190   // we don't know the answer yet
   191   if (_collecting)
   192     return PointsToNode::UnknownEscape;
   194   // if the node was created after the escape computation, return
   195   // UnknownEscape
   196   if (idx >= nodes_size())
   197     return PointsToNode::UnknownEscape;
   199   es = ptnode_adr(idx)->escape_state();
   201   // if we have already computed a value, return it
   202   if (es != PointsToNode::UnknownEscape &&
   203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
   204     return es;
   206   // PointsTo() calls n->uncast() which can return a new ideal node.
   207   if (n->uncast()->_idx >= nodes_size())
   208     return PointsToNode::UnknownEscape;
   210   // compute max escape state of anything this node could point to
   211   VectorSet ptset(Thread::current()->resource_area());
   212   PointsTo(ptset, n, phase);
   213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   214     uint pt = i.elem;
   215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
   216     if (pes > es)
   217       es = pes;
   218   }
   219   // cache the computed escape state
   220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   221   ptnode_adr(idx)->set_escape_state(es);
   222   return es;
   223 }
   225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   226   VectorSet visited(Thread::current()->resource_area());
   227   GrowableArray<uint>  worklist;
   229 #ifdef ASSERT
   230   Node *orig_n = n;
   231 #endif
   233   n = n->uncast();
   234   PointsToNode* npt = ptnode_adr(n->_idx);
   236   // If we have a JavaObject, return just that object
   237   if (npt->node_type() == PointsToNode::JavaObject) {
   238     ptset.set(n->_idx);
   239     return;
   240   }
   241 #ifdef ASSERT
   242   if (npt->_node == NULL) {
   243     if (orig_n != n)
   244       orig_n->dump();
   245     n->dump();
   246     assert(npt->_node != NULL, "unregistered node");
   247   }
   248 #endif
   249   worklist.push(n->_idx);
   250   while(worklist.length() > 0) {
   251     int ni = worklist.pop();
   252     if (visited.test_set(ni))
   253       continue;
   255     PointsToNode* pn = ptnode_adr(ni);
   256     // ensure that all inputs of a Phi have been processed
   257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
   259     int edges_processed = 0;
   260     uint e_cnt = pn->edge_count();
   261     for (uint e = 0; e < e_cnt; e++) {
   262       uint etgt = pn->edge_target(e);
   263       PointsToNode::EdgeType et = pn->edge_type(e);
   264       if (et == PointsToNode::PointsToEdge) {
   265         ptset.set(etgt);
   266         edges_processed++;
   267       } else if (et == PointsToNode::DeferredEdge) {
   268         worklist.push(etgt);
   269         edges_processed++;
   270       } else {
   271         assert(false,"neither PointsToEdge or DeferredEdge");
   272       }
   273     }
   274     if (edges_processed == 0) {
   275       // no deferred or pointsto edges found.  Assume the value was set
   276       // outside this method.  Add the phantom object to the pointsto set.
   277       ptset.set(_phantom_object);
   278     }
   279   }
   280 }
   282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
   283   // This method is most expensive during ConnectionGraph construction.
   284   // Reuse vectorSet and an additional growable array for deferred edges.
   285   deferred_edges->clear();
   286   visited->Clear();
   288   visited->set(ni);
   289   PointsToNode *ptn = ptnode_adr(ni);
   291   // Mark current edges as visited and move deferred edges to separate array.
   292   for (uint i = 0; i < ptn->edge_count(); ) {
   293     uint t = ptn->edge_target(i);
   294 #ifdef ASSERT
   295     assert(!visited->test_set(t), "expecting no duplications");
   296 #else
   297     visited->set(t);
   298 #endif
   299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
   300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   301       deferred_edges->append(t);
   302     } else {
   303       i++;
   304     }
   305   }
   306   for (int next = 0; next < deferred_edges->length(); ++next) {
   307     uint t = deferred_edges->at(next);
   308     PointsToNode *ptt = ptnode_adr(t);
   309     uint e_cnt = ptt->edge_count();
   310     for (uint e = 0; e < e_cnt; e++) {
   311       uint etgt = ptt->edge_target(e);
   312       if (visited->test_set(etgt))
   313         continue;
   315       PointsToNode::EdgeType et = ptt->edge_type(e);
   316       if (et == PointsToNode::PointsToEdge) {
   317         add_pointsto_edge(ni, etgt);
   318         if(etgt == _phantom_object) {
   319           // Special case - field set outside (globally escaping).
   320           ptn->set_escape_state(PointsToNode::GlobalEscape);
   321         }
   322       } else if (et == PointsToNode::DeferredEdge) {
   323         deferred_edges->append(etgt);
   324       } else {
   325         assert(false,"invalid connection graph");
   326       }
   327     }
   328   }
   329 }
   332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
   333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   334 //  a pointsto edge is added if it is a JavaObject
   336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
   337   PointsToNode* an = ptnode_adr(adr_i);
   338   PointsToNode* to = ptnode_adr(to_i);
   339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
   341   for (uint fe = 0; fe < an->edge_count(); fe++) {
   342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   343     int fi = an->edge_target(fe);
   344     PointsToNode* pf = ptnode_adr(fi);
   345     int po = pf->offset();
   346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   347       if (deferred)
   348         add_deferred_edge(fi, to_i);
   349       else
   350         add_pointsto_edge(fi, to_i);
   351     }
   352   }
   353 }
   355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   356 // whose offset matches "offset".
   357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   358   PointsToNode* an = ptnode_adr(adr_i);
   359   for (uint fe = 0; fe < an->edge_count(); fe++) {
   360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   361     int fi = an->edge_target(fe);
   362     PointsToNode* pf = ptnode_adr(fi);
   363     int po = pf->offset();
   364     if (pf->edge_count() == 0) {
   365       // we have not seen any stores to this field, assume it was set outside this method
   366       add_pointsto_edge(fi, _phantom_object);
   367     }
   368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   369       add_deferred_edge(from_i, fi);
   370     }
   371   }
   372 }
   374 // Helper functions
   376 static Node* get_addp_base(Node *addp) {
   377   assert(addp->is_AddP(), "must be AddP");
   378   //
   379   // AddP cases for Base and Address inputs:
   380   // case #1. Direct object's field reference:
   381   //     Allocate
   382   //       |
   383   //     Proj #5 ( oop result )
   384   //       |
   385   //     CheckCastPP (cast to instance type)
   386   //      | |
   387   //     AddP  ( base == address )
   388   //
   389   // case #2. Indirect object's field reference:
   390   //      Phi
   391   //       |
   392   //     CastPP (cast to instance type)
   393   //      | |
   394   //     AddP  ( base == address )
   395   //
   396   // case #3. Raw object's field reference for Initialize node:
   397   //      Allocate
   398   //        |
   399   //      Proj #5 ( oop result )
   400   //  top   |
   401   //     \  |
   402   //     AddP  ( base == top )
   403   //
   404   // case #4. Array's element reference:
   405   //   {CheckCastPP | CastPP}
   406   //     |  | |
   407   //     |  AddP ( array's element offset )
   408   //     |  |
   409   //     AddP ( array's offset )
   410   //
   411   // case #5. Raw object's field reference for arraycopy stub call:
   412   //          The inline_native_clone() case when the arraycopy stub is called
   413   //          after the allocation before Initialize and CheckCastPP nodes.
   414   //      Allocate
   415   //        |
   416   //      Proj #5 ( oop result )
   417   //       | |
   418   //       AddP  ( base == address )
   419   //
   420   // case #6. Constant Pool, ThreadLocal, CastX2P or
   421   //          Raw object's field reference:
   422   //      {ConP, ThreadLocal, CastX2P, raw Load}
   423   //  top   |
   424   //     \  |
   425   //     AddP  ( base == top )
   426   //
   427   // case #7. Klass's field reference.
   428   //      LoadKlass
   429   //       | |
   430   //       AddP  ( base == address )
   431   //
   432   // case #8. narrow Klass's field reference.
   433   //      LoadNKlass
   434   //       |
   435   //      DecodeN
   436   //       | |
   437   //       AddP  ( base == address )
   438   //
   439   Node *base = addp->in(AddPNode::Base)->uncast();
   440   if (base->is_top()) { // The AddP case #3 and #6.
   441     base = addp->in(AddPNode::Address)->uncast();
   442     while (base->is_AddP()) {
   443       // Case #6 (unsafe access) may have several chained AddP nodes.
   444       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
   445       base = base->in(AddPNode::Address)->uncast();
   446     }
   447     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
   448            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
   449            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
   450            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
   451   }
   452   return base;
   453 }
   455 static Node* find_second_addp(Node* addp, Node* n) {
   456   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
   458   Node* addp2 = addp->raw_out(0);
   459   if (addp->outcnt() == 1 && addp2->is_AddP() &&
   460       addp2->in(AddPNode::Base) == n &&
   461       addp2->in(AddPNode::Address) == addp) {
   463     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
   464     //
   465     // Find array's offset to push it on worklist first and
   466     // as result process an array's element offset first (pushed second)
   467     // to avoid CastPP for the array's offset.
   468     // Otherwise the inserted CastPP (LocalVar) will point to what
   469     // the AddP (Field) points to. Which would be wrong since
   470     // the algorithm expects the CastPP has the same point as
   471     // as AddP's base CheckCastPP (LocalVar).
   472     //
   473     //    ArrayAllocation
   474     //     |
   475     //    CheckCastPP
   476     //     |
   477     //    memProj (from ArrayAllocation CheckCastPP)
   478     //     |  ||
   479     //     |  ||   Int (element index)
   480     //     |  ||    |   ConI (log(element size))
   481     //     |  ||    |   /
   482     //     |  ||   LShift
   483     //     |  ||  /
   484     //     |  AddP (array's element offset)
   485     //     |  |
   486     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
   487     //     | / /
   488     //     AddP (array's offset)
   489     //      |
   490     //     Load/Store (memory operation on array's element)
   491     //
   492     return addp2;
   493   }
   494   return NULL;
   495 }
   497 //
   498 // Adjust the type and inputs of an AddP which computes the
   499 // address of a field of an instance
   500 //
   501 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   502   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   503   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
   504   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   505   if (t == NULL) {
   506     // We are computing a raw address for a store captured by an Initialize
   507     // compute an appropriate address type (cases #3 and #5).
   508     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
   509     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
   510     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
   511     assert(offs != Type::OffsetBot, "offset must be a constant");
   512     t = base_t->add_offset(offs)->is_oopptr();
   513   }
   514   int inst_id =  base_t->instance_id();
   515   assert(!t->is_known_instance() || t->instance_id() == inst_id,
   516                              "old type must be non-instance or match new type");
   518   // The type 't' could be subclass of 'base_t'.
   519   // As result t->offset() could be large then base_t's size and it will
   520   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
   521   // constructor verifies correctness of the offset.
   522   //
   523   // It could happened on subclass's branch (from the type profiling
   524   // inlining) which was not eliminated during parsing since the exactness
   525   // of the allocation type was not propagated to the subclass type check.
   526   //
   527   // Or the type 't' could be not related to 'base_t' at all.
   528   // It could happened when CHA type is different from MDO type on a dead path
   529   // (for example, from instanceof check) which is not collapsed during parsing.
   530   //
   531   // Do nothing for such AddP node and don't process its users since
   532   // this code branch will go away.
   533   //
   534   if (!t->is_known_instance() &&
   535       !base_t->klass()->is_subtype_of(t->klass())) {
   536      return false; // bail out
   537   }
   539   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   540   // Do NOT remove the next call: ensure an new alias index is allocated
   541   // for the instance type
   542   int alias_idx = _compile->get_alias_index(tinst);
   543   igvn->set_type(addp, tinst);
   544   // record the allocation in the node map
   545   set_map(addp->_idx, get_map(base->_idx));
   547   // Set addp's Base and Address to 'base'.
   548   Node *abase = addp->in(AddPNode::Base);
   549   Node *adr   = addp->in(AddPNode::Address);
   550   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
   551       adr->in(0)->_idx == (uint)inst_id) {
   552     // Skip AddP cases #3 and #5.
   553   } else {
   554     assert(!abase->is_top(), "sanity"); // AddP case #3
   555     if (abase != base) {
   556       igvn->hash_delete(addp);
   557       addp->set_req(AddPNode::Base, base);
   558       if (abase == adr) {
   559         addp->set_req(AddPNode::Address, base);
   560       } else {
   561         // AddP case #4 (adr is array's element offset AddP node)
   562 #ifdef ASSERT
   563         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
   564         assert(adr->is_AddP() && atype != NULL &&
   565                atype->instance_id() == inst_id, "array's element offset should be processed first");
   566 #endif
   567       }
   568       igvn->hash_insert(addp);
   569     }
   570   }
   571   // Put on IGVN worklist since at least addp's type was changed above.
   572   record_for_optimizer(addp);
   573   return true;
   574 }
   576 //
   577 // Create a new version of orig_phi if necessary. Returns either the newly
   578 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   579 // phi was created.  Cache the last newly created phi in the node map.
   580 //
   581 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   582   Compile *C = _compile;
   583   new_created = false;
   584   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   585   // nothing to do if orig_phi is bottom memory or matches alias_idx
   586   if (phi_alias_idx == alias_idx) {
   587     return orig_phi;
   588   }
   589   // Have we recently created a Phi for this alias index?
   590   PhiNode *result = get_map_phi(orig_phi->_idx);
   591   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   592     return result;
   593   }
   594   // Previous check may fail when the same wide memory Phi was split into Phis
   595   // for different memory slices. Search all Phis for this region.
   596   if (result != NULL) {
   597     Node* region = orig_phi->in(0);
   598     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   599       Node* phi = region->fast_out(i);
   600       if (phi->is_Phi() &&
   601           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
   602         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
   603         return phi->as_Phi();
   604       }
   605     }
   606   }
   607   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   608     if (C->do_escape_analysis() == true && !C->failing()) {
   609       // Retry compilation without escape analysis.
   610       // If this is the first failure, the sentinel string will "stick"
   611       // to the Compile object, and the C2Compiler will see it and retry.
   612       C->record_failure(C2Compiler::retry_no_escape_analysis());
   613     }
   614     return NULL;
   615   }
   616   orig_phi_worklist.append_if_missing(orig_phi);
   617   const TypePtr *atype = C->get_adr_type(alias_idx);
   618   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   619   C->copy_node_notes_to(result, orig_phi);
   620   set_map_phi(orig_phi->_idx, result);
   621   igvn->set_type(result, result->bottom_type());
   622   record_for_optimizer(result);
   623   new_created = true;
   624   return result;
   625 }
   627 //
   628 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
   629 // specified alias index.
   630 //
   631 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   633   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   634   Compile *C = _compile;
   635   bool new_phi_created;
   636   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   637   if (!new_phi_created) {
   638     return result;
   639   }
   641   GrowableArray<PhiNode *>  phi_list;
   642   GrowableArray<uint>  cur_input;
   644   PhiNode *phi = orig_phi;
   645   uint idx = 1;
   646   bool finished = false;
   647   while(!finished) {
   648     while (idx < phi->req()) {
   649       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   650       if (mem != NULL && mem->is_Phi()) {
   651         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   652         if (new_phi_created) {
   653           // found an phi for which we created a new split, push current one on worklist and begin
   654           // processing new one
   655           phi_list.push(phi);
   656           cur_input.push(idx);
   657           phi = mem->as_Phi();
   658           result = newphi;
   659           idx = 1;
   660           continue;
   661         } else {
   662           mem = newphi;
   663         }
   664       }
   665       if (C->failing()) {
   666         return NULL;
   667       }
   668       result->set_req(idx++, mem);
   669     }
   670 #ifdef ASSERT
   671     // verify that the new Phi has an input for each input of the original
   672     assert( phi->req() == result->req(), "must have same number of inputs.");
   673     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   674 #endif
   675     // Check if all new phi's inputs have specified alias index.
   676     // Otherwise use old phi.
   677     for (uint i = 1; i < phi->req(); i++) {
   678       Node* in = result->in(i);
   679       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   680     }
   681     // we have finished processing a Phi, see if there are any more to do
   682     finished = (phi_list.length() == 0 );
   683     if (!finished) {
   684       phi = phi_list.pop();
   685       idx = cur_input.pop();
   686       PhiNode *prev_result = get_map_phi(phi->_idx);
   687       prev_result->set_req(idx++, result);
   688       result = prev_result;
   689     }
   690   }
   691   return result;
   692 }
   695 //
   696 // The next methods are derived from methods in MemNode.
   697 //
   698 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
   699   Node *mem = mmem;
   700   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   701   // means an array I have not precisely typed yet.  Do not do any
   702   // alias stuff with it any time soon.
   703   if( tinst->base() != Type::AnyPtr &&
   704       !(tinst->klass()->is_java_lang_Object() &&
   705         tinst->offset() == Type::OffsetBot) ) {
   706     mem = mmem->memory_at(alias_idx);
   707     // Update input if it is progress over what we have now
   708   }
   709   return mem;
   710 }
   712 //
   713 // Search memory chain of "mem" to find a MemNode whose address
   714 // is the specified alias index.
   715 //
   716 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
   717   if (orig_mem == NULL)
   718     return orig_mem;
   719   Compile* C = phase->C;
   720   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
   721   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
   722   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   723   Node *prev = NULL;
   724   Node *result = orig_mem;
   725   while (prev != result) {
   726     prev = result;
   727     if (result == start_mem)
   728       break;  // hit one of our sentinels
   729     if (result->is_Mem()) {
   730       const Type *at = phase->type(result->in(MemNode::Address));
   731       if (at != Type::TOP) {
   732         assert (at->isa_ptr() != NULL, "pointer type required.");
   733         int idx = C->get_alias_index(at->is_ptr());
   734         if (idx == alias_idx)
   735           break;
   736       }
   737       result = result->in(MemNode::Memory);
   738     }
   739     if (!is_instance)
   740       continue;  // don't search further for non-instance types
   741     // skip over a call which does not affect this memory slice
   742     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   743       Node *proj_in = result->in(0);
   744       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
   745         break;  // hit one of our sentinels
   746       } else if (proj_in->is_Call()) {
   747         CallNode *call = proj_in->as_Call();
   748         if (!call->may_modify(tinst, phase)) {
   749           result = call->in(TypeFunc::Memory);
   750         }
   751       } else if (proj_in->is_Initialize()) {
   752         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   753         // Stop if this is the initialization for the object instance which
   754         // which contains this memory slice, otherwise skip over it.
   755         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
   756           result = proj_in->in(TypeFunc::Memory);
   757         }
   758       } else if (proj_in->is_MemBar()) {
   759         result = proj_in->in(TypeFunc::Memory);
   760       }
   761     } else if (result->is_MergeMem()) {
   762       MergeMemNode *mmem = result->as_MergeMem();
   763       result = step_through_mergemem(mmem, alias_idx, tinst);
   764       if (result == mmem->base_memory()) {
   765         // Didn't find instance memory, search through general slice recursively.
   766         result = mmem->memory_at(C->get_general_index(alias_idx));
   767         result = find_inst_mem(result, alias_idx, orig_phis, phase);
   768         if (C->failing()) {
   769           return NULL;
   770         }
   771         mmem->set_memory_at(alias_idx, result);
   772       }
   773     } else if (result->is_Phi() &&
   774                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
   775       Node *un = result->as_Phi()->unique_input(phase);
   776       if (un != NULL) {
   777         result = un;
   778       } else {
   779         break;
   780       }
   781     } else if (result->Opcode() == Op_SCMemProj) {
   782       assert(result->in(0)->is_LoadStore(), "sanity");
   783       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
   784       if (at != Type::TOP) {
   785         assert (at->isa_ptr() != NULL, "pointer type required.");
   786         int idx = C->get_alias_index(at->is_ptr());
   787         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
   788         break;
   789       }
   790       result = result->in(0)->in(MemNode::Memory);
   791     }
   792   }
   793   if (result->is_Phi()) {
   794     PhiNode *mphi = result->as_Phi();
   795     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   796     const TypePtr *t = mphi->adr_type();
   797     if (C->get_alias_index(t) != alias_idx) {
   798       // Create a new Phi with the specified alias index type.
   799       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
   800     } else if (!is_instance) {
   801       // Push all non-instance Phis on the orig_phis worklist to update inputs
   802       // during Phase 4 if needed.
   803       orig_phis.append_if_missing(mphi);
   804     }
   805   }
   806   // the result is either MemNode, PhiNode, InitializeNode.
   807   return result;
   808 }
   811 //
   812 //  Convert the types of unescaped object to instance types where possible,
   813 //  propagate the new type information through the graph, and update memory
   814 //  edges and MergeMem inputs to reflect the new type.
   815 //
   816 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
   817 //  The processing is done in 4 phases:
   818 //
   819 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   820 //            types for the CheckCastPP for allocations where possible.
   821 //            Propagate the the new types through users as follows:
   822 //               casts and Phi:  push users on alloc_worklist
   823 //               AddP:  cast Base and Address inputs to the instance type
   824 //                      push any AddP users on alloc_worklist and push any memnode
   825 //                      users onto memnode_worklist.
   826 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   827 //            search the Memory chain for a store with the appropriate type
   828 //            address type.  If a Phi is found, create a new version with
   829 //            the appropriate memory slices from each of the Phi inputs.
   830 //            For stores, process the users as follows:
   831 //               MemNode:  push on memnode_worklist
   832 //               MergeMem: push on mergemem_worklist
   833 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
   834 //            moving the first node encountered of each  instance type to the
   835 //            the input corresponding to its alias index.
   836 //            appropriate memory slice.
   837 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
   838 //
   839 // In the following example, the CheckCastPP nodes are the cast of allocation
   840 // results and the allocation of node 29 is unescaped and eligible to be an
   841 // instance type.
   842 //
   843 // We start with:
   844 //
   845 //     7 Parm #memory
   846 //    10  ConI  "12"
   847 //    19  CheckCastPP   "Foo"
   848 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   849 //    29  CheckCastPP   "Foo"
   850 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
   851 //
   852 //    40  StoreP  25   7  20   ... alias_index=4
   853 //    50  StoreP  35  40  30   ... alias_index=4
   854 //    60  StoreP  45  50  20   ... alias_index=4
   855 //    70  LoadP    _  60  30   ... alias_index=4
   856 //    80  Phi     75  50  60   Memory alias_index=4
   857 //    90  LoadP    _  80  30   ... alias_index=4
   858 //   100  LoadP    _  80  20   ... alias_index=4
   859 //
   860 //
   861 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
   862 // and creating a new alias index for node 30.  This gives:
   863 //
   864 //     7 Parm #memory
   865 //    10  ConI  "12"
   866 //    19  CheckCastPP   "Foo"
   867 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   868 //    29  CheckCastPP   "Foo"  iid=24
   869 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   870 //
   871 //    40  StoreP  25   7  20   ... alias_index=4
   872 //    50  StoreP  35  40  30   ... alias_index=6
   873 //    60  StoreP  45  50  20   ... alias_index=4
   874 //    70  LoadP    _  60  30   ... alias_index=6
   875 //    80  Phi     75  50  60   Memory alias_index=4
   876 //    90  LoadP    _  80  30   ... alias_index=6
   877 //   100  LoadP    _  80  20   ... alias_index=4
   878 //
   879 // In phase 2, new memory inputs are computed for the loads and stores,
   880 // And a new version of the phi is created.  In phase 4, the inputs to
   881 // node 80 are updated and then the memory nodes are updated with the
   882 // values computed in phase 2.  This results in:
   883 //
   884 //     7 Parm #memory
   885 //    10  ConI  "12"
   886 //    19  CheckCastPP   "Foo"
   887 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   888 //    29  CheckCastPP   "Foo"  iid=24
   889 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   890 //
   891 //    40  StoreP  25  7   20   ... alias_index=4
   892 //    50  StoreP  35  7   30   ... alias_index=6
   893 //    60  StoreP  45  40  20   ... alias_index=4
   894 //    70  LoadP    _  50  30   ... alias_index=6
   895 //    80  Phi     75  40  60   Memory alias_index=4
   896 //   120  Phi     75  50  50   Memory alias_index=6
   897 //    90  LoadP    _ 120  30   ... alias_index=6
   898 //   100  LoadP    _  80  20   ... alias_index=4
   899 //
   900 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
   901   GrowableArray<Node *>  memnode_worklist;
   902   GrowableArray<Node *>  mergemem_worklist;
   903   GrowableArray<PhiNode *>  orig_phis;
   904   PhaseGVN  *igvn = _compile->initial_gvn();
   905   uint new_index_start = (uint) _compile->num_alias_types();
   906   VectorSet visited(Thread::current()->resource_area());
   907   VectorSet ptset(Thread::current()->resource_area());
   910   //  Phase 1:  Process possible allocations from alloc_worklist.
   911   //  Create instance types for the CheckCastPP for allocations where possible.
   912   //
   913   // (Note: don't forget to change the order of the second AddP node on
   914   //  the alloc_worklist if the order of the worklist processing is changed,
   915   //  see the comment in find_second_addp().)
   916   //
   917   while (alloc_worklist.length() != 0) {
   918     Node *n = alloc_worklist.pop();
   919     uint ni = n->_idx;
   920     const TypeOopPtr* tinst = NULL;
   921     if (n->is_Call()) {
   922       CallNode *alloc = n->as_Call();
   923       // copy escape information to call node
   924       PointsToNode* ptn = ptnode_adr(alloc->_idx);
   925       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   926       // We have an allocation or call which returns a Java object,
   927       // see if it is unescaped.
   928       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   929         continue;
   931       // Find CheckCastPP for the allocate or for the return value of a call
   932       n = alloc->result_cast();
   933       if (n == NULL) {            // No uses except Initialize node
   934         if (alloc->is_Allocate()) {
   935           // Set the scalar_replaceable flag for allocation
   936           // so it could be eliminated if it has no uses.
   937           alloc->as_Allocate()->_is_scalar_replaceable = true;
   938         }
   939         continue;
   940       }
   941       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
   942         assert(!alloc->is_Allocate(), "allocation should have unique type");
   943         continue;
   944       }
   946       // The inline code for Object.clone() casts the allocation result to
   947       // java.lang.Object and then to the actual type of the allocated
   948       // object. Detect this case and use the second cast.
   949       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
   950       // the allocation result is cast to java.lang.Object and then
   951       // to the actual Array type.
   952       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
   953           && (alloc->is_AllocateArray() ||
   954               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
   955         Node *cast2 = NULL;
   956         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   957           Node *use = n->fast_out(i);
   958           if (use->is_CheckCastPP()) {
   959             cast2 = use;
   960             break;
   961           }
   962         }
   963         if (cast2 != NULL) {
   964           n = cast2;
   965         } else {
   966           // Non-scalar replaceable if the allocation type is unknown statically
   967           // (reflection allocation), the object can't be restored during
   968           // deoptimization without precise type.
   969           continue;
   970         }
   971       }
   972       if (alloc->is_Allocate()) {
   973         // Set the scalar_replaceable flag for allocation
   974         // so it could be eliminated.
   975         alloc->as_Allocate()->_is_scalar_replaceable = true;
   976       }
   977       set_escape_state(n->_idx, es);
   978       // in order for an object to be scalar-replaceable, it must be:
   979       //   - a direct allocation (not a call returning an object)
   980       //   - non-escaping
   981       //   - eligible to be a unique type
   982       //   - not determined to be ineligible by escape analysis
   983       set_map(alloc->_idx, n);
   984       set_map(n->_idx, alloc);
   985       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   986       if (t == NULL)
   987         continue;  // not a TypeInstPtr
   988       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
   989       igvn->hash_delete(n);
   990       igvn->set_type(n,  tinst);
   991       n->raise_bottom_type(tinst);
   992       igvn->hash_insert(n);
   993       record_for_optimizer(n);
   994       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
   995           (t->isa_instptr() || t->isa_aryptr())) {
   997         // First, put on the worklist all Field edges from Connection Graph
   998         // which is more accurate then putting immediate users from Ideal Graph.
   999         for (uint e = 0; e < ptn->edge_count(); e++) {
  1000           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
  1001           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
  1002                  "only AddP nodes are Field edges in CG");
  1003           if (use->outcnt() > 0) { // Don't process dead nodes
  1004             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  1005             if (addp2 != NULL) {
  1006               assert(alloc->is_AllocateArray(),"array allocation was expected");
  1007               alloc_worklist.append_if_missing(addp2);
  1009             alloc_worklist.append_if_missing(use);
  1013         // An allocation may have an Initialize which has raw stores. Scan
  1014         // the users of the raw allocation result and push AddP users
  1015         // on alloc_worklist.
  1016         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  1017         assert (raw_result != NULL, "must have an allocation result");
  1018         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  1019           Node *use = raw_result->fast_out(i);
  1020           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  1021             Node* addp2 = find_second_addp(use, raw_result);
  1022             if (addp2 != NULL) {
  1023               assert(alloc->is_AllocateArray(),"array allocation was expected");
  1024               alloc_worklist.append_if_missing(addp2);
  1026             alloc_worklist.append_if_missing(use);
  1027           } else if (use->is_Initialize()) {
  1028             memnode_worklist.append_if_missing(use);
  1032     } else if (n->is_AddP()) {
  1033       ptset.Clear();
  1034       PointsTo(ptset, get_addp_base(n), igvn);
  1035       assert(ptset.Size() == 1, "AddP address is unique");
  1036       uint elem = ptset.getelem(); // Allocation node's index
  1037       if (elem == _phantom_object)
  1038         continue; // Assume the value was set outside this method.
  1039       Node *base = get_map(elem);  // CheckCastPP node
  1040       if (!split_AddP(n, base, igvn)) continue; // wrong type
  1041       tinst = igvn->type(base)->isa_oopptr();
  1042     } else if (n->is_Phi() ||
  1043                n->is_CheckCastPP() ||
  1044                n->is_EncodeP() ||
  1045                n->is_DecodeN() ||
  1046                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  1047       if (visited.test_set(n->_idx)) {
  1048         assert(n->is_Phi(), "loops only through Phi's");
  1049         continue;  // already processed
  1051       ptset.Clear();
  1052       PointsTo(ptset, n, igvn);
  1053       if (ptset.Size() == 1) {
  1054         uint elem = ptset.getelem(); // Allocation node's index
  1055         if (elem == _phantom_object)
  1056           continue; // Assume the value was set outside this method.
  1057         Node *val = get_map(elem);   // CheckCastPP node
  1058         TypeNode *tn = n->as_Type();
  1059         tinst = igvn->type(val)->isa_oopptr();
  1060         assert(tinst != NULL && tinst->is_known_instance() &&
  1061                (uint)tinst->instance_id() == elem , "instance type expected.");
  1063         const Type *tn_type = igvn->type(tn);
  1064         const TypeOopPtr *tn_t;
  1065         if (tn_type->isa_narrowoop()) {
  1066           tn_t = tn_type->make_ptr()->isa_oopptr();
  1067         } else {
  1068           tn_t = tn_type->isa_oopptr();
  1071         if (tn_t != NULL &&
  1072             tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
  1073           if (tn_type->isa_narrowoop()) {
  1074             tn_type = tinst->make_narrowoop();
  1075           } else {
  1076             tn_type = tinst;
  1078           igvn->hash_delete(tn);
  1079           igvn->set_type(tn, tn_type);
  1080           tn->set_type(tn_type);
  1081           igvn->hash_insert(tn);
  1082           record_for_optimizer(n);
  1083         } else {
  1084           continue; // wrong type
  1087     } else {
  1088       continue;
  1090     // push users on appropriate worklist
  1091     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1092       Node *use = n->fast_out(i);
  1093       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  1094         memnode_worklist.append_if_missing(use);
  1095       } else if (use->is_Initialize()) {
  1096         memnode_worklist.append_if_missing(use);
  1097       } else if (use->is_MergeMem()) {
  1098         mergemem_worklist.append_if_missing(use);
  1099       } else if (use->is_SafePoint() && tinst != NULL) {
  1100         // Look for MergeMem nodes for calls which reference unique allocation
  1101         // (through CheckCastPP nodes) even for debug info.
  1102         Node* m = use->in(TypeFunc::Memory);
  1103         uint iid = tinst->instance_id();
  1104         while (m->is_Proj() && m->in(0)->is_SafePoint() &&
  1105                m->in(0) != use && !m->in(0)->_idx != iid) {
  1106           m = m->in(0)->in(TypeFunc::Memory);
  1108         if (m->is_MergeMem()) {
  1109           mergemem_worklist.append_if_missing(m);
  1111       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  1112         Node* addp2 = find_second_addp(use, n);
  1113         if (addp2 != NULL) {
  1114           alloc_worklist.append_if_missing(addp2);
  1116         alloc_worklist.append_if_missing(use);
  1117       } else if (use->is_Phi() ||
  1118                  use->is_CheckCastPP() ||
  1119                  use->is_EncodeP() ||
  1120                  use->is_DecodeN() ||
  1121                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  1122         alloc_worklist.append_if_missing(use);
  1127   // New alias types were created in split_AddP().
  1128   uint new_index_end = (uint) _compile->num_alias_types();
  1130   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  1131   //            compute new values for Memory inputs  (the Memory inputs are not
  1132   //            actually updated until phase 4.)
  1133   if (memnode_worklist.length() == 0)
  1134     return;  // nothing to do
  1136   while (memnode_worklist.length() != 0) {
  1137     Node *n = memnode_worklist.pop();
  1138     if (visited.test_set(n->_idx))
  1139       continue;
  1140     if (n->is_Phi()) {
  1141       assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
  1142       // we don't need to do anything, but the users must be pushed if we haven't processed
  1143       // this Phi before
  1144     } else if (n->is_Initialize()) {
  1145       // we don't need to do anything, but the users of the memory projection must be pushed
  1146       n = n->as_Initialize()->proj_out(TypeFunc::Memory);
  1147       if (n == NULL)
  1148         continue;
  1149     } else {
  1150       assert(n->is_Mem(), "memory node required.");
  1151       Node *addr = n->in(MemNode::Address);
  1152       assert(addr->is_AddP(), "AddP required");
  1153       const Type *addr_t = igvn->type(addr);
  1154       if (addr_t == Type::TOP)
  1155         continue;
  1156       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  1157       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  1158       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  1159       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
  1160       if (_compile->failing()) {
  1161         return;
  1163       if (mem != n->in(MemNode::Memory)) {
  1164         set_map(n->_idx, mem);
  1165         ptnode_adr(n->_idx)->_node = n;
  1167       if (n->is_Load()) {
  1168         continue;  // don't push users
  1169       } else if (n->is_LoadStore()) {
  1170         // get the memory projection
  1171         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1172           Node *use = n->fast_out(i);
  1173           if (use->Opcode() == Op_SCMemProj) {
  1174             n = use;
  1175             break;
  1178         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  1181     // push user on appropriate worklist
  1182     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1183       Node *use = n->fast_out(i);
  1184       if (use->is_Phi()) {
  1185         memnode_worklist.append_if_missing(use);
  1186       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1187         memnode_worklist.append_if_missing(use);
  1188       } else if (use->is_Initialize()) {
  1189         memnode_worklist.append_if_missing(use);
  1190       } else if (use->is_MergeMem()) {
  1191         mergemem_worklist.append_if_missing(use);
  1196   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  1197   //            Walk each memory moving the first node encountered of each
  1198   //            instance type to the the input corresponding to its alias index.
  1199   while (mergemem_worklist.length() != 0) {
  1200     Node *n = mergemem_worklist.pop();
  1201     assert(n->is_MergeMem(), "MergeMem node required.");
  1202     if (visited.test_set(n->_idx))
  1203       continue;
  1204     MergeMemNode *nmm = n->as_MergeMem();
  1205     // Note: we don't want to use MergeMemStream here because we only want to
  1206     //  scan inputs which exist at the start, not ones we add during processing.
  1207     uint nslices = nmm->req();
  1208     igvn->hash_delete(nmm);
  1209     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1210       Node* mem = nmm->in(i);
  1211       Node* cur = NULL;
  1212       if (mem == NULL || mem->is_top())
  1213         continue;
  1214       while (mem->is_Mem()) {
  1215         const Type *at = igvn->type(mem->in(MemNode::Address));
  1216         if (at != Type::TOP) {
  1217           assert (at->isa_ptr() != NULL, "pointer type required.");
  1218           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  1219           if (idx == i) {
  1220             if (cur == NULL)
  1221               cur = mem;
  1222           } else {
  1223             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  1224               nmm->set_memory_at(idx, mem);
  1228         mem = mem->in(MemNode::Memory);
  1230       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1231       // Find any instance of the current type if we haven't encountered
  1232       // a value of the instance along the chain.
  1233       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1234         if((uint)_compile->get_general_index(ni) == i) {
  1235           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1236           if (nmm->is_empty_memory(m)) {
  1237             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
  1238             if (_compile->failing()) {
  1239               return;
  1241             nmm->set_memory_at(ni, result);
  1246     // Find the rest of instances values
  1247     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1248       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
  1249       Node* result = step_through_mergemem(nmm, ni, tinst);
  1250       if (result == nmm->base_memory()) {
  1251         // Didn't find instance memory, search through general slice recursively.
  1252         result = nmm->memory_at(igvn->C->get_general_index(ni));
  1253         result = find_inst_mem(result, ni, orig_phis, igvn);
  1254         if (_compile->failing()) {
  1255           return;
  1257         nmm->set_memory_at(ni, result);
  1260     igvn->hash_insert(nmm);
  1261     record_for_optimizer(nmm);
  1263     // Propagate new memory slices to following MergeMem nodes.
  1264     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1265       Node *use = n->fast_out(i);
  1266       if (use->is_Call()) {
  1267         CallNode* in = use->as_Call();
  1268         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1269           Node* m = in->proj_out(TypeFunc::Memory);
  1270           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1271             Node* mm = m->fast_out(j);
  1272             if (mm->is_MergeMem()) {
  1273               mergemem_worklist.append_if_missing(mm);
  1277         if (use->is_Allocate()) {
  1278           use = use->as_Allocate()->initialization();
  1279           if (use == NULL) {
  1280             continue;
  1284       if (use->is_Initialize()) {
  1285         InitializeNode* in = use->as_Initialize();
  1286         if (in->proj_out(TypeFunc::Memory) != NULL) {
  1287           Node* m = in->proj_out(TypeFunc::Memory);
  1288           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  1289             Node* mm = m->fast_out(j);
  1290             if (mm->is_MergeMem()) {
  1291               mergemem_worklist.append_if_missing(mm);
  1299   //  Phase 4:  Update the inputs of non-instance memory Phis and
  1300   //            the Memory input of memnodes
  1301   // First update the inputs of any non-instance Phi's from
  1302   // which we split out an instance Phi.  Note we don't have
  1303   // to recursively process Phi's encounted on the input memory
  1304   // chains as is done in split_memory_phi() since they  will
  1305   // also be processed here.
  1306   for (int j = 0; j < orig_phis.length(); j++) {
  1307     PhiNode *phi = orig_phis.at(j);
  1308     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1309     igvn->hash_delete(phi);
  1310     for (uint i = 1; i < phi->req(); i++) {
  1311       Node *mem = phi->in(i);
  1312       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
  1313       if (_compile->failing()) {
  1314         return;
  1316       if (mem != new_mem) {
  1317         phi->set_req(i, new_mem);
  1320     igvn->hash_insert(phi);
  1321     record_for_optimizer(phi);
  1324   // Update the memory inputs of MemNodes with the value we computed
  1325   // in Phase 2.
  1326   for (uint i = 0; i < nodes_size(); i++) {
  1327     Node *nmem = get_map(i);
  1328     if (nmem != NULL) {
  1329       Node *n = ptnode_adr(i)->_node;
  1330       if (n != NULL && n->is_Mem()) {
  1331         igvn->hash_delete(n);
  1332         n->set_req(MemNode::Memory, nmem);
  1333         igvn->hash_insert(n);
  1334         record_for_optimizer(n);
  1340 bool ConnectionGraph::has_candidates(Compile *C) {
  1341   // EA brings benefits only when the code has allocations and/or locks which
  1342   // are represented by ideal Macro nodes.
  1343   int cnt = C->macro_count();
  1344   for( int i=0; i < cnt; i++ ) {
  1345     Node *n = C->macro_node(i);
  1346     if ( n->is_Allocate() )
  1347       return true;
  1348     if( n->is_Lock() ) {
  1349       Node* obj = n->as_Lock()->obj_node()->uncast();
  1350       if( !(obj->is_Parm() || obj->is_Con()) )
  1351         return true;
  1354   return false;
  1357 bool ConnectionGraph::compute_escape() {
  1358   Compile* C = _compile;
  1360   // 1. Populate Connection Graph (CG) with Ideal nodes.
  1362   Unique_Node_List worklist_init;
  1363   worklist_init.map(C->unique(), NULL);  // preallocate space
  1365   // Initialize worklist
  1366   if (C->root() != NULL) {
  1367     worklist_init.push(C->root());
  1370   GrowableArray<int> cg_worklist;
  1371   PhaseGVN* igvn = C->initial_gvn();
  1372   bool has_allocations = false;
  1374   // Push all useful nodes onto CG list and set their type.
  1375   for( uint next = 0; next < worklist_init.size(); ++next ) {
  1376     Node* n = worklist_init.at(next);
  1377     record_for_escape_analysis(n, igvn);
  1378     // Only allocations and java static calls results are checked
  1379     // for an escape status. See process_call_result() below.
  1380     if (n->is_Allocate() || n->is_CallStaticJava() &&
  1381         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
  1382       has_allocations = true;
  1384     if(n->is_AddP())
  1385       cg_worklist.append(n->_idx);
  1386     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1387       Node* m = n->fast_out(i);   // Get user
  1388       worklist_init.push(m);
  1392   if (!has_allocations) {
  1393     _collecting = false;
  1394     return false; // Nothing to do.
  1397   // 2. First pass to create simple CG edges (doesn't require to walk CG).
  1398   uint delayed_size = _delayed_worklist.size();
  1399   for( uint next = 0; next < delayed_size; ++next ) {
  1400     Node* n = _delayed_worklist.at(next);
  1401     build_connection_graph(n, igvn);
  1404   // 3. Pass to create fields edges (Allocate -F-> AddP).
  1405   uint cg_length = cg_worklist.length();
  1406   for( uint next = 0; next < cg_length; ++next ) {
  1407     int ni = cg_worklist.at(next);
  1408     build_connection_graph(ptnode_adr(ni)->_node, igvn);
  1411   cg_worklist.clear();
  1412   cg_worklist.append(_phantom_object);
  1414   // 4. Build Connection Graph which need
  1415   //    to walk the connection graph.
  1416   for (uint ni = 0; ni < nodes_size(); ni++) {
  1417     PointsToNode* ptn = ptnode_adr(ni);
  1418     Node *n = ptn->_node;
  1419     if (n != NULL) { // Call, AddP, LoadP, StoreP
  1420       build_connection_graph(n, igvn);
  1421       if (ptn->node_type() != PointsToNode::UnknownType)
  1422         cg_worklist.append(n->_idx); // Collect CG nodes
  1426   VectorSet ptset(Thread::current()->resource_area());
  1427   GrowableArray<uint>  deferred_edges;
  1428   VectorSet visited(Thread::current()->resource_area());
  1430   // 5. Remove deferred edges from the graph and collect
  1431   //    information needed for type splitting.
  1432   cg_length = cg_worklist.length();
  1433   for( uint next = 0; next < cg_length; ++next ) {
  1434     int ni = cg_worklist.at(next);
  1435     PointsToNode* ptn = ptnode_adr(ni);
  1436     PointsToNode::NodeType nt = ptn->node_type();
  1437     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1438       remove_deferred(ni, &deferred_edges, &visited);
  1439       Node *n = ptn->_node;
  1440       if (n->is_AddP()) {
  1441         // Search for objects which are not scalar replaceable.
  1442         // Mark their escape state as ArgEscape to propagate the state
  1443         // to referenced objects.
  1444         // Note: currently there are no difference in compiler optimizations
  1445         // for ArgEscape objects and NoEscape objects which are not
  1446         // scalar replaceable.
  1448         int offset = ptn->offset();
  1449         Node *base = get_addp_base(n);
  1450         ptset.Clear();
  1451         PointsTo(ptset, base, igvn);
  1452         int ptset_size = ptset.Size();
  1454         // Check if a field's initializing value is recorded and add
  1455         // a corresponding NULL field's value if it is not recorded.
  1456         // Connection Graph does not record a default initialization by NULL
  1457         // captured by Initialize node.
  1458         //
  1459         // Note: it will disable scalar replacement in some cases:
  1460         //
  1461         //    Point p[] = new Point[1];
  1462         //    p[0] = new Point(); // Will be not scalar replaced
  1463         //
  1464         // but it will save us from incorrect optimizations in next cases:
  1465         //
  1466         //    Point p[] = new Point[1];
  1467         //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1468         //
  1469         // Without a control flow analysis we can't distinguish above cases.
  1470         //
  1471         if (offset != Type::OffsetBot && ptset_size == 1) {
  1472           uint elem = ptset.getelem(); // Allocation node's index
  1473           // It does not matter if it is not Allocation node since
  1474           // only non-escaping allocations are scalar replaced.
  1475           if (ptnode_adr(elem)->_node->is_Allocate() &&
  1476               ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
  1477             AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
  1478             InitializeNode* ini = alloc->initialization();
  1479             Node* value = NULL;
  1480             if (ini != NULL) {
  1481               BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
  1482               Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
  1483               if (store != NULL && store->is_Store())
  1484                 value = store->in(MemNode::ValueIn);
  1486             if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
  1487               // A field's initializing value was not recorded. Add NULL.
  1488               uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
  1489               add_pointsto_edge(ni, null_idx);
  1494         // An object is not scalar replaceable if the field which may point
  1495         // to it has unknown offset (unknown element of an array of objects).
  1496         //
  1497         if (offset == Type::OffsetBot) {
  1498           uint e_cnt = ptn->edge_count();
  1499           for (uint ei = 0; ei < e_cnt; ei++) {
  1500             uint npi = ptn->edge_target(ei);
  1501             set_escape_state(npi, PointsToNode::ArgEscape);
  1502             ptnode_adr(npi)->_scalar_replaceable = false;
  1506         // Currently an object is not scalar replaceable if a LoadStore node
  1507         // access its field since the field value is unknown after it.
  1508         //
  1509         bool has_LoadStore = false;
  1510         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1511           Node *use = n->fast_out(i);
  1512           if (use->is_LoadStore()) {
  1513             has_LoadStore = true;
  1514             break;
  1517         // An object is not scalar replaceable if the address points
  1518         // to unknown field (unknown element for arrays, offset is OffsetBot).
  1519         //
  1520         // Or the address may point to more then one object. This may produce
  1521         // the false positive result (set scalar_replaceable to false)
  1522         // since the flow-insensitive escape analysis can't separate
  1523         // the case when stores overwrite the field's value from the case
  1524         // when stores happened on different control branches.
  1525         //
  1526         if (ptset_size > 1 || ptset_size != 0 &&
  1527             (has_LoadStore || offset == Type::OffsetBot)) {
  1528           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1529             set_escape_state(j.elem, PointsToNode::ArgEscape);
  1530             ptnode_adr(j.elem)->_scalar_replaceable = false;
  1537   // 6. Propagate escape states.
  1538   GrowableArray<int>  worklist;
  1539   bool has_non_escaping_obj = false;
  1541   // push all GlobalEscape nodes on the worklist
  1542   for( uint next = 0; next < cg_length; ++next ) {
  1543     int nk = cg_worklist.at(next);
  1544     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
  1545       worklist.push(nk);
  1547   // mark all nodes reachable from GlobalEscape nodes
  1548   while(worklist.length() > 0) {
  1549     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1550     uint e_cnt = ptn->edge_count();
  1551     for (uint ei = 0; ei < e_cnt; ei++) {
  1552       uint npi = ptn->edge_target(ei);
  1553       PointsToNode *np = ptnode_adr(npi);
  1554       if (np->escape_state() < PointsToNode::GlobalEscape) {
  1555         np->set_escape_state(PointsToNode::GlobalEscape);
  1556         worklist.push(npi);
  1561   // push all ArgEscape nodes on the worklist
  1562   for( uint next = 0; next < cg_length; ++next ) {
  1563     int nk = cg_worklist.at(next);
  1564     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
  1565       worklist.push(nk);
  1567   // mark all nodes reachable from ArgEscape nodes
  1568   while(worklist.length() > 0) {
  1569     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1570     if (ptn->node_type() == PointsToNode::JavaObject)
  1571       has_non_escaping_obj = true; // Non GlobalEscape
  1572     uint e_cnt = ptn->edge_count();
  1573     for (uint ei = 0; ei < e_cnt; ei++) {
  1574       uint npi = ptn->edge_target(ei);
  1575       PointsToNode *np = ptnode_adr(npi);
  1576       if (np->escape_state() < PointsToNode::ArgEscape) {
  1577         np->set_escape_state(PointsToNode::ArgEscape);
  1578         worklist.push(npi);
  1583   GrowableArray<Node*> alloc_worklist;
  1585   // push all NoEscape nodes on the worklist
  1586   for( uint next = 0; next < cg_length; ++next ) {
  1587     int nk = cg_worklist.at(next);
  1588     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
  1589       worklist.push(nk);
  1591   // mark all nodes reachable from NoEscape nodes
  1592   while(worklist.length() > 0) {
  1593     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1594     if (ptn->node_type() == PointsToNode::JavaObject)
  1595       has_non_escaping_obj = true; // Non GlobalEscape
  1596     Node* n = ptn->_node;
  1597     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
  1598       // Push scalar replaceable allocations on alloc_worklist
  1599       // for processing in split_unique_types().
  1600       alloc_worklist.append(n);
  1602     uint e_cnt = ptn->edge_count();
  1603     for (uint ei = 0; ei < e_cnt; ei++) {
  1604       uint npi = ptn->edge_target(ei);
  1605       PointsToNode *np = ptnode_adr(npi);
  1606       if (np->escape_state() < PointsToNode::NoEscape) {
  1607         np->set_escape_state(PointsToNode::NoEscape);
  1608         worklist.push(npi);
  1613   _collecting = false;
  1614   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
  1616   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
  1617   if ( has_scalar_replaceable_candidates &&
  1618        C->AliasLevel() >= 3 && EliminateAllocations ) {
  1620     // Now use the escape information to create unique types for
  1621     // scalar replaceable objects.
  1622     split_unique_types(alloc_worklist);
  1624     if (C->failing())  return false;
  1626     // Clean up after split unique types.
  1627     ResourceMark rm;
  1628     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
  1630     C->print_method("After Escape Analysis", 2);
  1632 #ifdef ASSERT
  1633   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
  1634     tty->print("=== No allocations eliminated for ");
  1635     C->method()->print_short_name();
  1636     if(!EliminateAllocations) {
  1637       tty->print(" since EliminateAllocations is off ===");
  1638     } else if(!has_scalar_replaceable_candidates) {
  1639       tty->print(" since there are no scalar replaceable candidates ===");
  1640     } else if(C->AliasLevel() < 3) {
  1641       tty->print(" since AliasLevel < 3 ===");
  1643     tty->cr();
  1644 #endif
  1646   return has_non_escaping_obj;
  1649 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1651     switch (call->Opcode()) {
  1652 #ifdef ASSERT
  1653     case Op_Allocate:
  1654     case Op_AllocateArray:
  1655     case Op_Lock:
  1656     case Op_Unlock:
  1657       assert(false, "should be done already");
  1658       break;
  1659 #endif
  1660     case Op_CallLeafNoFP:
  1662       // Stub calls, objects do not escape but they are not scale replaceable.
  1663       // Adjust escape state for outgoing arguments.
  1664       const TypeTuple * d = call->tf()->domain();
  1665       VectorSet ptset(Thread::current()->resource_area());
  1666       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1667         const Type* at = d->field_at(i);
  1668         Node *arg = call->in(i)->uncast();
  1669         const Type *aat = phase->type(arg);
  1670         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
  1671           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
  1672                  aat->isa_ptr() != NULL, "expecting an Ptr");
  1673           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1674           if (arg->is_AddP()) {
  1675             //
  1676             // The inline_native_clone() case when the arraycopy stub is called
  1677             // after the allocation before Initialize and CheckCastPP nodes.
  1678             //
  1679             // Set AddP's base (Allocate) as not scalar replaceable since
  1680             // pointer to the base (with offset) is passed as argument.
  1681             //
  1682             arg = get_addp_base(arg);
  1684           ptset.Clear();
  1685           PointsTo(ptset, arg, phase);
  1686           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1687             uint pt = j.elem;
  1688             set_escape_state(pt, PointsToNode::ArgEscape);
  1692       break;
  1695     case Op_CallStaticJava:
  1696     // For a static call, we know exactly what method is being called.
  1697     // Use bytecode estimator to record the call's escape affects
  1699       ciMethod *meth = call->as_CallJava()->method();
  1700       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1701       // fall-through if not a Java method or no analyzer information
  1702       if (call_analyzer != NULL) {
  1703         const TypeTuple * d = call->tf()->domain();
  1704         VectorSet ptset(Thread::current()->resource_area());
  1705         bool copy_dependencies = false;
  1706         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1707           const Type* at = d->field_at(i);
  1708           int k = i - TypeFunc::Parms;
  1710           if (at->isa_oopptr() != NULL) {
  1711             Node *arg = call->in(i)->uncast();
  1713             bool global_escapes = false;
  1714             bool fields_escapes = false;
  1715             if (!call_analyzer->is_arg_stack(k)) {
  1716               // The argument global escapes, mark everything it could point to
  1717               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1718               global_escapes = true;
  1719             } else {
  1720               if (!call_analyzer->is_arg_local(k)) {
  1721                 // The argument itself doesn't escape, but any fields might
  1722                 fields_escapes = true;
  1724               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1725               copy_dependencies = true;
  1728             ptset.Clear();
  1729             PointsTo(ptset, arg, phase);
  1730             for( VectorSetI j(&ptset); j.test(); ++j ) {
  1731               uint pt = j.elem;
  1732               if (global_escapes) {
  1733                 //The argument global escapes, mark everything it could point to
  1734                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1735               } else {
  1736                 if (fields_escapes) {
  1737                   // The argument itself doesn't escape, but any fields might
  1738                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
  1740                 set_escape_state(pt, PointsToNode::ArgEscape);
  1745         if (copy_dependencies)
  1746           call_analyzer->copy_dependencies(_compile->dependencies());
  1747         break;
  1751     default:
  1752     // Fall-through here if not a Java method or no analyzer information
  1753     // or some other type of call, assume the worst case: all arguments
  1754     // globally escape.
  1756       // adjust escape state for  outgoing arguments
  1757       const TypeTuple * d = call->tf()->domain();
  1758       VectorSet ptset(Thread::current()->resource_area());
  1759       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1760         const Type* at = d->field_at(i);
  1761         if (at->isa_oopptr() != NULL) {
  1762           Node *arg = call->in(i)->uncast();
  1763           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1764           ptset.Clear();
  1765           PointsTo(ptset, arg, phase);
  1766           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1767             uint pt = j.elem;
  1768             set_escape_state(pt, PointsToNode::GlobalEscape);
  1775 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1776   CallNode   *call = resproj->in(0)->as_Call();
  1777   uint    call_idx = call->_idx;
  1778   uint resproj_idx = resproj->_idx;
  1780   switch (call->Opcode()) {
  1781     case Op_Allocate:
  1783       Node *k = call->in(AllocateNode::KlassNode);
  1784       const TypeKlassPtr *kt;
  1785       if (k->Opcode() == Op_LoadKlass) {
  1786         kt = k->as_Load()->type()->isa_klassptr();
  1787       } else {
  1788         // Also works for DecodeN(LoadNKlass).
  1789         kt = k->as_Type()->type()->isa_klassptr();
  1791       assert(kt != NULL, "TypeKlassPtr  required.");
  1792       ciKlass* cik = kt->klass();
  1793       ciInstanceKlass* ciik = cik->as_instance_klass();
  1795       PointsToNode::EscapeState es;
  1796       uint edge_to;
  1797       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1798         es = PointsToNode::GlobalEscape;
  1799         edge_to = _phantom_object; // Could not be worse
  1800       } else {
  1801         es = PointsToNode::NoEscape;
  1802         edge_to = call_idx;
  1804       set_escape_state(call_idx, es);
  1805       add_pointsto_edge(resproj_idx, edge_to);
  1806       _processed.set(resproj_idx);
  1807       break;
  1810     case Op_AllocateArray:
  1812       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
  1813       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
  1814         // Not scalar replaceable if the length is not constant or too big.
  1815         ptnode_adr(call_idx)->_scalar_replaceable = false;
  1817       set_escape_state(call_idx, PointsToNode::NoEscape);
  1818       add_pointsto_edge(resproj_idx, call_idx);
  1819       _processed.set(resproj_idx);
  1820       break;
  1823     case Op_CallStaticJava:
  1824     // For a static call, we know exactly what method is being called.
  1825     // Use bytecode estimator to record whether the call's return value escapes
  1827       bool done = true;
  1828       const TypeTuple *r = call->tf()->range();
  1829       const Type* ret_type = NULL;
  1831       if (r->cnt() > TypeFunc::Parms)
  1832         ret_type = r->field_at(TypeFunc::Parms);
  1834       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1835       //        _multianewarray functions return a TypeRawPtr.
  1836       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
  1837         _processed.set(resproj_idx);
  1838         break;  // doesn't return a pointer type
  1840       ciMethod *meth = call->as_CallJava()->method();
  1841       const TypeTuple * d = call->tf()->domain();
  1842       if (meth == NULL) {
  1843         // not a Java method, assume global escape
  1844         set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1845         add_pointsto_edge(resproj_idx, _phantom_object);
  1846       } else {
  1847         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1848         bool copy_dependencies = false;
  1850         if (call_analyzer->is_return_allocated()) {
  1851           // Returns a newly allocated unescaped object, simply
  1852           // update dependency information.
  1853           // Mark it as NoEscape so that objects referenced by
  1854           // it's fields will be marked as NoEscape at least.
  1855           set_escape_state(call_idx, PointsToNode::NoEscape);
  1856           add_pointsto_edge(resproj_idx, call_idx);
  1857           copy_dependencies = true;
  1858         } else if (call_analyzer->is_return_local()) {
  1859           // determine whether any arguments are returned
  1860           set_escape_state(call_idx, PointsToNode::NoEscape);
  1861           bool ret_arg = false;
  1862           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1863             const Type* at = d->field_at(i);
  1865             if (at->isa_oopptr() != NULL) {
  1866               Node *arg = call->in(i)->uncast();
  1868               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1869                 ret_arg = true;
  1870                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1871                 if (arg_esp->node_type() == PointsToNode::UnknownType)
  1872                   done = false;
  1873                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1874                   add_pointsto_edge(resproj_idx, arg->_idx);
  1875                 else
  1876                   add_deferred_edge(resproj_idx, arg->_idx);
  1877                 arg_esp->_hidden_alias = true;
  1881           if (done && !ret_arg) {
  1882             // Returns unknown object.
  1883             set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1884             add_pointsto_edge(resproj_idx, _phantom_object);
  1886           copy_dependencies = true;
  1887         } else {
  1888           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1889           add_pointsto_edge(resproj_idx, _phantom_object);
  1890           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1891             const Type* at = d->field_at(i);
  1892             if (at->isa_oopptr() != NULL) {
  1893               Node *arg = call->in(i)->uncast();
  1894               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1895               arg_esp->_hidden_alias = true;
  1899         if (copy_dependencies)
  1900           call_analyzer->copy_dependencies(_compile->dependencies());
  1902       if (done)
  1903         _processed.set(resproj_idx);
  1904       break;
  1907     default:
  1908     // Some other type of call, assume the worst case that the
  1909     // returned value, if any, globally escapes.
  1911       const TypeTuple *r = call->tf()->range();
  1912       if (r->cnt() > TypeFunc::Parms) {
  1913         const Type* ret_type = r->field_at(TypeFunc::Parms);
  1915         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1916         //        _multianewarray functions return a TypeRawPtr.
  1917         if (ret_type->isa_ptr() != NULL) {
  1918           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1919           add_pointsto_edge(resproj_idx, _phantom_object);
  1922       _processed.set(resproj_idx);
  1927 // Populate Connection Graph with Ideal nodes and create simple
  1928 // connection graph edges (do not need to check the node_type of inputs
  1929 // or to call PointsTo() to walk the connection graph).
  1930 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  1931   if (_processed.test(n->_idx))
  1932     return; // No need to redefine node's state.
  1934   if (n->is_Call()) {
  1935     // Arguments to allocation and locking don't escape.
  1936     if (n->is_Allocate()) {
  1937       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  1938       record_for_optimizer(n);
  1939     } else if (n->is_Lock() || n->is_Unlock()) {
  1940       // Put Lock and Unlock nodes on IGVN worklist to process them during
  1941       // the first IGVN optimization when escape information is still available.
  1942       record_for_optimizer(n);
  1943       _processed.set(n->_idx);
  1944     } else {
  1945       // Have to process call's arguments first.
  1946       PointsToNode::NodeType nt = PointsToNode::UnknownType;
  1948       // Check if a call returns an object.
  1949       const TypeTuple *r = n->as_Call()->tf()->range();
  1950       if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
  1951           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
  1952         // Note:  use isa_ptr() instead of isa_oopptr() here because
  1953         //        the _multianewarray functions return a TypeRawPtr.
  1954         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  1955           nt = PointsToNode::JavaObject;
  1958       add_node(n, nt, PointsToNode::UnknownEscape, false);
  1960     return;
  1963   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
  1964   // ThreadLocal has RawPrt type.
  1965   switch (n->Opcode()) {
  1966     case Op_AddP:
  1968       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
  1969       break;
  1971     case Op_CastX2P:
  1972     { // "Unsafe" memory access.
  1973       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  1974       break;
  1976     case Op_CastPP:
  1977     case Op_CheckCastPP:
  1978     case Op_EncodeP:
  1979     case Op_DecodeN:
  1981       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  1982       int ti = n->in(1)->_idx;
  1983       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  1984       if (nt == PointsToNode::UnknownType) {
  1985         _delayed_worklist.push(n); // Process it later.
  1986         break;
  1987       } else if (nt == PointsToNode::JavaObject) {
  1988         add_pointsto_edge(n->_idx, ti);
  1989       } else {
  1990         add_deferred_edge(n->_idx, ti);
  1992       _processed.set(n->_idx);
  1993       break;
  1995     case Op_ConP:
  1997       // assume all pointer constants globally escape except for null
  1998       PointsToNode::EscapeState es;
  1999       if (phase->type(n) == TypePtr::NULL_PTR)
  2000         es = PointsToNode::NoEscape;
  2001       else
  2002         es = PointsToNode::GlobalEscape;
  2004       add_node(n, PointsToNode::JavaObject, es, true);
  2005       break;
  2007     case Op_ConN:
  2009       // assume all narrow oop constants globally escape except for null
  2010       PointsToNode::EscapeState es;
  2011       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
  2012         es = PointsToNode::NoEscape;
  2013       else
  2014         es = PointsToNode::GlobalEscape;
  2016       add_node(n, PointsToNode::JavaObject, es, true);
  2017       break;
  2019     case Op_CreateEx:
  2021       // assume that all exception objects globally escape
  2022       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2023       break;
  2025     case Op_LoadKlass:
  2026     case Op_LoadNKlass:
  2028       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2029       break;
  2031     case Op_LoadP:
  2032     case Op_LoadN:
  2034       const Type *t = phase->type(n);
  2035       if (t->make_ptr() == NULL) {
  2036         _processed.set(n->_idx);
  2037         return;
  2039       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2040       break;
  2042     case Op_Parm:
  2044       _processed.set(n->_idx); // No need to redefine it state.
  2045       uint con = n->as_Proj()->_con;
  2046       if (con < TypeFunc::Parms)
  2047         return;
  2048       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
  2049       if (t->isa_ptr() == NULL)
  2050         return;
  2051       // We have to assume all input parameters globally escape
  2052       // (Note: passing 'false' since _processed is already set).
  2053       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
  2054       break;
  2056     case Op_Phi:
  2058       const Type *t = n->as_Phi()->type();
  2059       if (t->make_ptr() == NULL) {
  2060         // nothing to do if not an oop or narrow oop
  2061         _processed.set(n->_idx);
  2062         return;
  2064       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2065       uint i;
  2066       for (i = 1; i < n->req() ; i++) {
  2067         Node* in = n->in(i);
  2068         if (in == NULL)
  2069           continue;  // ignore NULL
  2070         in = in->uncast();
  2071         if (in->is_top() || in == n)
  2072           continue;  // ignore top or inputs which go back this node
  2073         int ti = in->_idx;
  2074         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2075         if (nt == PointsToNode::UnknownType) {
  2076           break;
  2077         } else if (nt == PointsToNode::JavaObject) {
  2078           add_pointsto_edge(n->_idx, ti);
  2079         } else {
  2080           add_deferred_edge(n->_idx, ti);
  2083       if (i >= n->req())
  2084         _processed.set(n->_idx);
  2085       else
  2086         _delayed_worklist.push(n);
  2087       break;
  2089     case Op_Proj:
  2091       // we are only interested in the result projection from a call
  2092       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2093         add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2094         process_call_result(n->as_Proj(), phase);
  2095         if (!_processed.test(n->_idx)) {
  2096           // The call's result may need to be processed later if the call
  2097           // returns it's argument and the argument is not processed yet.
  2098           _delayed_worklist.push(n);
  2100       } else {
  2101         _processed.set(n->_idx);
  2103       break;
  2105     case Op_Return:
  2107       if( n->req() > TypeFunc::Parms &&
  2108           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2109         // Treat Return value as LocalVar with GlobalEscape escape state.
  2110         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
  2111         int ti = n->in(TypeFunc::Parms)->_idx;
  2112         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2113         if (nt == PointsToNode::UnknownType) {
  2114           _delayed_worklist.push(n); // Process it later.
  2115           break;
  2116         } else if (nt == PointsToNode::JavaObject) {
  2117           add_pointsto_edge(n->_idx, ti);
  2118         } else {
  2119           add_deferred_edge(n->_idx, ti);
  2122       _processed.set(n->_idx);
  2123       break;
  2125     case Op_StoreP:
  2126     case Op_StoreN:
  2128       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2129       adr_type = adr_type->make_ptr();
  2130       if (adr_type->isa_oopptr()) {
  2131         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2132       } else {
  2133         Node* adr = n->in(MemNode::Address);
  2134         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
  2135             adr->in(AddPNode::Address)->is_Proj() &&
  2136             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2137           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2138           // We are computing a raw address for a store captured
  2139           // by an Initialize compute an appropriate address type.
  2140           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2141           assert(offs != Type::OffsetBot, "offset must be a constant");
  2142         } else {
  2143           _processed.set(n->_idx);
  2144           return;
  2147       break;
  2149     case Op_StorePConditional:
  2150     case Op_CompareAndSwapP:
  2151     case Op_CompareAndSwapN:
  2153       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2154       adr_type = adr_type->make_ptr();
  2155       if (adr_type->isa_oopptr()) {
  2156         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2157       } else {
  2158         _processed.set(n->_idx);
  2159         return;
  2161       break;
  2163     case Op_ThreadLocal:
  2165       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
  2166       break;
  2168     default:
  2170       // nothing to do
  2172   return;
  2175 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
  2176   uint n_idx = n->_idx;
  2178   // Don't set processed bit for AddP, LoadP, StoreP since
  2179   // they may need more then one pass to process.
  2180   if (_processed.test(n_idx))
  2181     return; // No need to redefine node's state.
  2183   if (n->is_Call()) {
  2184     CallNode *call = n->as_Call();
  2185     process_call_arguments(call, phase);
  2186     _processed.set(n_idx);
  2187     return;
  2190   switch (n->Opcode()) {
  2191     case Op_AddP:
  2193       Node *base = get_addp_base(n);
  2194       // Create a field edge to this node from everything base could point to.
  2195       VectorSet ptset(Thread::current()->resource_area());
  2196       PointsTo(ptset, base, phase);
  2197       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2198         uint pt = i.elem;
  2199         add_field_edge(pt, n_idx, address_offset(n, phase));
  2201       break;
  2203     case Op_CastX2P:
  2205       assert(false, "Op_CastX2P");
  2206       break;
  2208     case Op_CastPP:
  2209     case Op_CheckCastPP:
  2210     case Op_EncodeP:
  2211     case Op_DecodeN:
  2213       int ti = n->in(1)->_idx;
  2214       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2215         add_pointsto_edge(n_idx, ti);
  2216       } else {
  2217         add_deferred_edge(n_idx, ti);
  2219       _processed.set(n_idx);
  2220       break;
  2222     case Op_ConP:
  2224       assert(false, "Op_ConP");
  2225       break;
  2227     case Op_ConN:
  2229       assert(false, "Op_ConN");
  2230       break;
  2232     case Op_CreateEx:
  2234       assert(false, "Op_CreateEx");
  2235       break;
  2237     case Op_LoadKlass:
  2238     case Op_LoadNKlass:
  2240       assert(false, "Op_LoadKlass");
  2241       break;
  2243     case Op_LoadP:
  2244     case Op_LoadN:
  2246       const Type *t = phase->type(n);
  2247 #ifdef ASSERT
  2248       if (t->make_ptr() == NULL)
  2249         assert(false, "Op_LoadP");
  2250 #endif
  2252       Node* adr = n->in(MemNode::Address)->uncast();
  2253       const Type *adr_type = phase->type(adr);
  2254       Node* adr_base;
  2255       if (adr->is_AddP()) {
  2256         adr_base = get_addp_base(adr);
  2257       } else {
  2258         adr_base = adr;
  2261       // For everything "adr_base" could point to, create a deferred edge from
  2262       // this node to each field with the same offset.
  2263       VectorSet ptset(Thread::current()->resource_area());
  2264       PointsTo(ptset, adr_base, phase);
  2265       int offset = address_offset(adr, phase);
  2266       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2267         uint pt = i.elem;
  2268         add_deferred_edge_to_fields(n_idx, pt, offset);
  2270       break;
  2272     case Op_Parm:
  2274       assert(false, "Op_Parm");
  2275       break;
  2277     case Op_Phi:
  2279 #ifdef ASSERT
  2280       const Type *t = n->as_Phi()->type();
  2281       if (t->make_ptr() == NULL)
  2282         assert(false, "Op_Phi");
  2283 #endif
  2284       for (uint i = 1; i < n->req() ; i++) {
  2285         Node* in = n->in(i);
  2286         if (in == NULL)
  2287           continue;  // ignore NULL
  2288         in = in->uncast();
  2289         if (in->is_top() || in == n)
  2290           continue;  // ignore top or inputs which go back this node
  2291         int ti = in->_idx;
  2292         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2293         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
  2294         if (nt == PointsToNode::JavaObject) {
  2295           add_pointsto_edge(n_idx, ti);
  2296         } else {
  2297           add_deferred_edge(n_idx, ti);
  2300       _processed.set(n_idx);
  2301       break;
  2303     case Op_Proj:
  2305       // we are only interested in the result projection from a call
  2306       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2307         process_call_result(n->as_Proj(), phase);
  2308         assert(_processed.test(n_idx), "all call results should be processed");
  2309       } else {
  2310         assert(false, "Op_Proj");
  2312       break;
  2314     case Op_Return:
  2316 #ifdef ASSERT
  2317       if( n->req() <= TypeFunc::Parms ||
  2318           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2319         assert(false, "Op_Return");
  2321 #endif
  2322       int ti = n->in(TypeFunc::Parms)->_idx;
  2323       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2324         add_pointsto_edge(n_idx, ti);
  2325       } else {
  2326         add_deferred_edge(n_idx, ti);
  2328       _processed.set(n_idx);
  2329       break;
  2331     case Op_StoreP:
  2332     case Op_StoreN:
  2333     case Op_StorePConditional:
  2334     case Op_CompareAndSwapP:
  2335     case Op_CompareAndSwapN:
  2337       Node *adr = n->in(MemNode::Address);
  2338       const Type *adr_type = phase->type(adr)->make_ptr();
  2339 #ifdef ASSERT
  2340       if (!adr_type->isa_oopptr())
  2341         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  2342 #endif
  2344       assert(adr->is_AddP(), "expecting an AddP");
  2345       Node *adr_base = get_addp_base(adr);
  2346       Node *val = n->in(MemNode::ValueIn)->uncast();
  2347       // For everything "adr_base" could point to, create a deferred edge
  2348       // to "val" from each field with the same offset.
  2349       VectorSet ptset(Thread::current()->resource_area());
  2350       PointsTo(ptset, adr_base, phase);
  2351       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2352         uint pt = i.elem;
  2353         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  2355       break;
  2357     case Op_ThreadLocal:
  2359       assert(false, "Op_ThreadLocal");
  2360       break;
  2362     default:
  2364       // nothing to do
  2368 #ifndef PRODUCT
  2369 void ConnectionGraph::dump() {
  2370   PhaseGVN  *igvn = _compile->initial_gvn();
  2371   bool first = true;
  2373   uint size = nodes_size();
  2374   for (uint ni = 0; ni < size; ni++) {
  2375     PointsToNode *ptn = ptnode_adr(ni);
  2376     PointsToNode::NodeType ptn_type = ptn->node_type();
  2378     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  2379       continue;
  2380     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  2381     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  2382       if (first) {
  2383         tty->cr();
  2384         tty->print("======== Connection graph for ");
  2385         _compile->method()->print_short_name();
  2386         tty->cr();
  2387         first = false;
  2389       tty->print("%6d ", ni);
  2390       ptn->dump();
  2391       // Print all locals which reference this allocation
  2392       for (uint li = ni; li < size; li++) {
  2393         PointsToNode *ptn_loc = ptnode_adr(li);
  2394         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
  2395         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
  2396              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
  2397           ptnode_adr(li)->dump(false);
  2400       if (Verbose) {
  2401         // Print all fields which reference this allocation
  2402         for (uint i = 0; i < ptn->edge_count(); i++) {
  2403           uint ei = ptn->edge_target(i);
  2404           ptnode_adr(ei)->dump(false);
  2407       tty->cr();
  2411 #endif

mercurial