src/share/vm/opto/chaitin.cpp

Fri, 16 Oct 2009 02:05:46 -0700

author
ysr
date
Fri, 16 Oct 2009 02:05:46 -0700
changeset 1462
39b01ab7035a
parent 1164
04fa5affa478
child 1443
e90521d61f9a
permissions
-rw-r--r--

6888898: CMS: ReduceInitialCardMarks unsafe in the presence of cms precleaning
6889757: G1: enable card mark elision for initializing writes from compiled code (ReduceInitialCardMarks)
Summary: Defer the (compiler-elided) card-mark upon a slow-path allocation until after the store and before the next subsequent safepoint; G1 now answers yes to can_elide_tlab_write_barriers().
Reviewed-by: jcoomes, kvn, never

     1 /*
     2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_chaitin.cpp.incl"
    28 //=============================================================================
    30 #ifndef PRODUCT
    31 void LRG::dump( ) const {
    32   ttyLocker ttyl;
    33   tty->print("%d ",num_regs());
    34   _mask.dump();
    35   if( _msize_valid ) {
    36     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    37     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    38   } else {
    39     tty->print(", #?(%d) ",_mask.Size());
    40   }
    42   tty->print("EffDeg: ");
    43   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    44   else tty->print("? ");
    46   if( is_multidef() ) {
    47     tty->print("MultiDef ");
    48     if (_defs != NULL) {
    49       tty->print("(");
    50       for (int i = 0; i < _defs->length(); i++) {
    51         tty->print("N%d ", _defs->at(i)->_idx);
    52       }
    53       tty->print(") ");
    54     }
    55   }
    56   else if( _def == 0 ) tty->print("Dead ");
    57   else tty->print("Def: N%d ",_def->_idx);
    59   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    60   // Flags
    61   if( _is_oop ) tty->print("Oop ");
    62   if( _is_float ) tty->print("Float ");
    63   if( _was_spilled1 ) tty->print("Spilled ");
    64   if( _was_spilled2 ) tty->print("Spilled2 ");
    65   if( _direct_conflict ) tty->print("Direct_conflict ");
    66   if( _fat_proj ) tty->print("Fat ");
    67   if( _was_lo ) tty->print("Lo ");
    68   if( _has_copy ) tty->print("Copy ");
    69   if( _at_risk ) tty->print("Risk ");
    71   if( _must_spill ) tty->print("Must_spill ");
    72   if( _is_bound ) tty->print("Bound ");
    73   if( _msize_valid ) {
    74     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    75   }
    77   tty->cr();
    78 }
    79 #endif
    81 //------------------------------score------------------------------------------
    82 // Compute score from cost and area.  Low score is best to spill.
    83 static double raw_score( double cost, double area ) {
    84   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
    85 }
    87 double LRG::score() const {
    88   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
    89   // Bigger area lowers score, encourages spilling this live range.
    90   // Bigger cost raise score, prevents spilling this live range.
    91   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
    92   // to turn a divide by a constant into a multiply by the reciprical).
    93   double score = raw_score( _cost, _area);
    95   // Account for area.  Basically, LRGs covering large areas are better
    96   // to spill because more other LRGs get freed up.
    97   if( _area == 0.0 )            // No area?  Then no progress to spill
    98     return 1e35;
   100   if( _was_spilled2 )           // If spilled once before, we are unlikely
   101     return score + 1e30;        // to make progress again.
   103   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   104     return score + 1e17;        // Probably no progress to spill
   106   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   107     return score + 1e10;        // Likely no progress to spill
   109   return score;
   110 }
   112 //------------------------------LRG_List---------------------------------------
   113 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   114   memset( _lidxs, 0, sizeof(uint)*max );
   115 }
   117 void LRG_List::extend( uint nidx, uint lidx ) {
   118   _nesting.check();
   119   if( nidx >= _max ) {
   120     uint size = 16;
   121     while( size <= nidx ) size <<=1;
   122     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   123     _max = size;
   124   }
   125   while( _cnt <= nidx )
   126     _lidxs[_cnt++] = 0;
   127   _lidxs[nidx] = lidx;
   128 }
   130 #define NUMBUCKS 3
   132 //------------------------------Chaitin----------------------------------------
   133 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   134   : PhaseRegAlloc(unique, cfg, matcher,
   135 #ifndef PRODUCT
   136        print_chaitin_statistics
   137 #else
   138        NULL
   139 #endif
   140        ),
   141     _names(unique), _uf_map(unique),
   142     _maxlrg(0), _live(0),
   143     _spilled_once(Thread::current()->resource_area()),
   144     _spilled_twice(Thread::current()->resource_area()),
   145     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
   146     _oldphi(unique)
   147 #ifndef PRODUCT
   148   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   149 #endif
   150 {
   151   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   153   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
   155   uint i,j;
   156   // Build a list of basic blocks, sorted by frequency
   157   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   158   // Experiment with sorting strategies to speed compilation
   159   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   160   Block **buckets[NUMBUCKS];             // Array of buckets
   161   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   162   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   163   for( i = 0; i < NUMBUCKS; i++ ) {
   164     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   165     buckcnt[i] = 0;
   166     // Bump by three orders of magnitude each time
   167     cutoff *= 0.001;
   168     buckval[i] = cutoff;
   169     for( j = 0; j < _cfg._num_blocks; j++ ) {
   170       buckets[i][j] = NULL;
   171     }
   172   }
   173   // Sort blocks into buckets
   174   for( i = 0; i < _cfg._num_blocks; i++ ) {
   175     for( j = 0; j < NUMBUCKS; j++ ) {
   176       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
   177         // Assign block to end of list for appropriate bucket
   178         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
   179         break;                      // kick out of inner loop
   180       }
   181     }
   182   }
   183   // Dump buckets into final block array
   184   uint blkcnt = 0;
   185   for( i = 0; i < NUMBUCKS; i++ ) {
   186     for( j = 0; j < buckcnt[i]; j++ ) {
   187       _blks[blkcnt++] = buckets[i][j];
   188     }
   189   }
   191   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
   192 }
   194 void PhaseChaitin::Register_Allocate() {
   196   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   197   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   198   // registers) is the outgoing argument area; above that is the spill/temp
   199   // area.  These are all "frame_slots".  Arg_slots start at the zero
   200   // stack_slots and count up to the known arg_size.  Frame_slots start at
   201   // the stack_slot #arg_size and go up.  After allocation I map stack
   202   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   203   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   205   _trip_cnt = 0;
   206   _alternate = 0;
   207   _matcher._allocation_started = true;
   209   ResourceArea live_arena;      // Arena for liveness & IFG info
   210   ResourceMark rm(&live_arena);
   212   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   213   // liveness is JUST for coalescing, then I can get some mileage by renaming
   214   // all copy-related live ranges low and then using the max copy-related
   215   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   216   // build a subset of LIVE and IFG just for copies.
   217   PhaseLive live(_cfg,_names,&live_arena);
   219   // Need IFG for coalescing and coloring
   220   PhaseIFG ifg( &live_arena );
   221   _ifg = &ifg;
   223   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
   225   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   226   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   227   // - effectively ending SSA form.  This requires either coalescing live
   228   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   229   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   230   // We will attempt to coalesce such "virtual copies" before we manifest
   231   // them for real.
   232   de_ssa();
   234 #ifdef ASSERT
   235   // Veify the graph before RA.
   236   verify(&live_arena);
   237 #endif
   239   {
   240     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   241     _live = NULL;                 // Mark live as being not available
   242     rm.reset_to_mark();           // Reclaim working storage
   243     IndexSet::reset_memory(C, &live_arena);
   244     ifg.init(_maxlrg);            // Empty IFG
   245     gather_lrg_masks( false );    // Collect LRG masks
   246     live.compute( _maxlrg );      // Compute liveness
   247     _live = &live;                // Mark LIVE as being available
   248   }
   250   // Base pointers are currently "used" by instructions which define new
   251   // derived pointers.  This makes base pointers live up to the where the
   252   // derived pointer is made, but not beyond.  Really, they need to be live
   253   // across any GC point where the derived value is live.  So this code looks
   254   // at all the GC points, and "stretches" the live range of any base pointer
   255   // to the GC point.
   256   if( stretch_base_pointer_live_ranges(&live_arena) ) {
   257     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
   258     // Since some live range stretched, I need to recompute live
   259     _live = NULL;
   260     rm.reset_to_mark();         // Reclaim working storage
   261     IndexSet::reset_memory(C, &live_arena);
   262     ifg.init(_maxlrg);
   263     gather_lrg_masks( false );
   264     live.compute( _maxlrg );
   265     _live = &live;
   266   }
   267   // Create the interference graph using virtual copies
   268   build_ifg_virtual( );  // Include stack slots this time
   270   // Aggressive (but pessimistic) copy coalescing.
   271   // This pass works on virtual copies.  Any virtual copies which are not
   272   // coalesced get manifested as actual copies
   273   {
   274     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   275     // faster.  Union requires a 'for all' operation which is slow on the
   276     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   277     // meaning I can visit all the Nodes neighbors less than a Node in time
   278     // O(# of neighbors), but I have to visit all the Nodes greater than a
   279     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   280     _ifg->SquareUp();
   282     PhaseAggressiveCoalesce coalesce( *this );
   283     coalesce.coalesce_driver( );
   284     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   285     // not match the Phi itself, insert a copy.
   286     coalesce.insert_copies(_matcher);
   287   }
   289   // After aggressive coalesce, attempt a first cut at coloring.
   290   // To color, we need the IFG and for that we need LIVE.
   291   {
   292     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   293     _live = NULL;
   294     rm.reset_to_mark();           // Reclaim working storage
   295     IndexSet::reset_memory(C, &live_arena);
   296     ifg.init(_maxlrg);
   297     gather_lrg_masks( true );
   298     live.compute( _maxlrg );
   299     _live = &live;
   300   }
   302   // Build physical interference graph
   303   uint must_spill = 0;
   304   must_spill = build_ifg_physical( &live_arena );
   305   // If we have a guaranteed spill, might as well spill now
   306   if( must_spill ) {
   307     if( !_maxlrg ) return;
   308     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   309     C->check_node_count(10*must_spill, "out of nodes before split");
   310     if (C->failing())  return;
   311     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   312     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   313     // or we failed to split
   314     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   315     if (C->failing())  return;
   317     NOT_PRODUCT( C->verify_graph_edges(); )
   319     compact();                  // Compact LRGs; return new lower max lrg
   321     {
   322       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   323       _live = NULL;
   324       rm.reset_to_mark();         // Reclaim working storage
   325       IndexSet::reset_memory(C, &live_arena);
   326       ifg.init(_maxlrg);          // Build a new interference graph
   327       gather_lrg_masks( true );   // Collect intersect mask
   328       live.compute( _maxlrg );    // Compute LIVE
   329       _live = &live;
   330     }
   331     build_ifg_physical( &live_arena );
   332     _ifg->SquareUp();
   333     _ifg->Compute_Effective_Degree();
   334     // Only do conservative coalescing if requested
   335     if( OptoCoalesce ) {
   336       // Conservative (and pessimistic) copy coalescing of those spills
   337       PhaseConservativeCoalesce coalesce( *this );
   338       // If max live ranges greater than cutoff, don't color the stack.
   339       // This cutoff can be larger than below since it is only done once.
   340       coalesce.coalesce_driver( );
   341     }
   342     compress_uf_map_for_nodes();
   344 #ifdef ASSERT
   345     verify(&live_arena, true);
   346 #endif
   347   } else {
   348     ifg.SquareUp();
   349     ifg.Compute_Effective_Degree();
   350 #ifdef ASSERT
   351     set_was_low();
   352 #endif
   353   }
   355   // Prepare for Simplify & Select
   356   cache_lrg_info();           // Count degree of LRGs
   358   // Simplify the InterFerence Graph by removing LRGs of low degree.
   359   // LRGs of low degree are trivially colorable.
   360   Simplify();
   362   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   363   // Return whether or not something spills.
   364   uint spills = Select( );
   366   // If we spill, split and recycle the entire thing
   367   while( spills ) {
   368     if( _trip_cnt++ > 24 ) {
   369       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   370       if( _trip_cnt > 27 ) {
   371         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   372         return;
   373       }
   374     }
   376     if( !_maxlrg ) return;
   377     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
   378     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   379     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
   380     if (C->failing())  return;
   382     compact();                  // Compact LRGs; return new lower max lrg
   384     // Nuke the live-ness and interference graph and LiveRanGe info
   385     {
   386       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   387       _live = NULL;
   388       rm.reset_to_mark();         // Reclaim working storage
   389       IndexSet::reset_memory(C, &live_arena);
   390       ifg.init(_maxlrg);
   392       // Create LiveRanGe array.
   393       // Intersect register masks for all USEs and DEFs
   394       gather_lrg_masks( true );
   395       live.compute( _maxlrg );
   396       _live = &live;
   397     }
   398     must_spill = build_ifg_physical( &live_arena );
   399     _ifg->SquareUp();
   400     _ifg->Compute_Effective_Degree();
   402     // Only do conservative coalescing if requested
   403     if( OptoCoalesce ) {
   404       // Conservative (and pessimistic) copy coalescing
   405       PhaseConservativeCoalesce coalesce( *this );
   406       // Check for few live ranges determines how aggressive coalesce is.
   407       coalesce.coalesce_driver( );
   408     }
   409     compress_uf_map_for_nodes();
   410 #ifdef ASSERT
   411     verify(&live_arena, true);
   412 #endif
   413     cache_lrg_info();           // Count degree of LRGs
   415     // Simplify the InterFerence Graph by removing LRGs of low degree.
   416     // LRGs of low degree are trivially colorable.
   417     Simplify();
   419     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   420     // Return whether or not something spills.
   421     spills = Select( );
   422   }
   424   // Count number of Simplify-Select trips per coloring success.
   425   _allocator_attempts += _trip_cnt + 1;
   426   _allocator_successes += 1;
   428   // Peephole remove copies
   429   post_allocate_copy_removal();
   431 #ifdef ASSERT
   432   // Veify the graph after RA.
   433   verify(&live_arena);
   434 #endif
   436   // max_reg is past the largest *register* used.
   437   // Convert that to a frame_slot number.
   438   if( _max_reg <= _matcher._new_SP )
   439     _framesize = C->out_preserve_stack_slots();
   440   else _framesize = _max_reg -_matcher._new_SP;
   441   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   443   // This frame must preserve the required fp alignment
   444   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   445   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   446 #ifndef PRODUCT
   447   _total_framesize += _framesize;
   448   if( (int)_framesize > _max_framesize )
   449     _max_framesize = _framesize;
   450 #endif
   452   // Convert CISC spills
   453   fixup_spills();
   455   // Log regalloc results
   456   CompileLog* log = Compile::current()->log();
   457   if (log != NULL) {
   458     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   459   }
   461   if (C->failing())  return;
   463   NOT_PRODUCT( C->verify_graph_edges(); )
   465   // Move important info out of the live_arena to longer lasting storage.
   466   alloc_node_regs(_names.Size());
   467   for( uint i=0; i < _names.Size(); i++ ) {
   468     if( _names[i] ) {           // Live range associated with Node?
   469       LRG &lrg = lrgs( _names[i] );
   470       if( lrg.num_regs() == 1 ) {
   471         _node_regs[i].set1( lrg.reg() );
   472       } else {                  // Must be a register-pair
   473         if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
   474           // Live ranges record the highest register in their mask.
   475           // We want the low register for the AD file writer's convenience.
   476           _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
   477         } else {                // Misaligned; extract 2 bits
   478           OptoReg::Name hi = lrg.reg(); // Get hi register
   479           lrg.Remove(hi);       // Yank from mask
   480           int lo = lrg.mask().find_first_elem(); // Find lo
   481           _node_regs[i].set_pair( hi, lo );
   482         }
   483       }
   484       if( lrg._is_oop ) _node_oops.set(i);
   485     } else {
   486       _node_regs[i].set_bad();
   487     }
   488   }
   490   // Done!
   491   _live = NULL;
   492   _ifg = NULL;
   493   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   494 }
   496 //------------------------------de_ssa-----------------------------------------
   497 void PhaseChaitin::de_ssa() {
   498   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   499   // number.  A few get the ZERO live range number.  These do not
   500   // get allocated, but instead rely on correct scheduling to ensure that
   501   // only one instance is simultaneously live at a time.
   502   uint lr_counter = 1;
   503   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   504     Block *b = _cfg._blocks[i];
   505     uint cnt = b->_nodes.size();
   507     // Handle all the normal Nodes in the block
   508     for( uint j = 0; j < cnt; j++ ) {
   509       Node *n = b->_nodes[j];
   510       // Pre-color to the zero live range, or pick virtual register
   511       const RegMask &rm = n->out_RegMask();
   512       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
   513     }
   514   }
   515   // Reset the Union-Find mapping to be identity
   516   reset_uf_map(lr_counter);
   517 }
   520 //------------------------------gather_lrg_masks-------------------------------
   521 // Gather LiveRanGe information, including register masks.  Modification of
   522 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   523 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   525   // Nail down the frame pointer live range
   526   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
   527   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   529   // For all blocks
   530   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   531     Block *b = _cfg._blocks[i];
   533     // For all instructions
   534     for( uint j = 1; j < b->_nodes.size(); j++ ) {
   535       Node *n = b->_nodes[j];
   536       uint input_edge_start =1; // Skip control most nodes
   537       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
   538       uint idx = n->is_Copy();
   540       // Get virtual register number, same as LiveRanGe index
   541       uint vreg = n2lidx(n);
   542       LRG &lrg = lrgs(vreg);
   543       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
   545         // Collect has-copy bit
   546         if( idx ) {
   547           lrg._has_copy = 1;
   548           uint clidx = n2lidx(n->in(idx));
   549           LRG &copy_src = lrgs(clidx);
   550           copy_src._has_copy = 1;
   551         }
   553         // Check for float-vs-int live range (used in register-pressure
   554         // calculations)
   555         const Type *n_type = n->bottom_type();
   556         if( n_type->is_floatingpoint() )
   557           lrg._is_float = 1;
   559         // Check for twice prior spilling.  Once prior spilling might have
   560         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   561         // further spilling is unlikely to make progress.
   562         if( _spilled_once.test(n->_idx) ) {
   563           lrg._was_spilled1 = 1;
   564           if( _spilled_twice.test(n->_idx) )
   565             lrg._was_spilled2 = 1;
   566         }
   568 #ifndef PRODUCT
   569         if (trace_spilling() && lrg._def != NULL) {
   570           // collect defs for MultiDef printing
   571           if (lrg._defs == NULL) {
   572             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
   573             lrg._defs->append(lrg._def);
   574           }
   575           lrg._defs->append(n);
   576         }
   577 #endif
   579         // Check for a single def LRG; these can spill nicely
   580         // via rematerialization.  Flag as NULL for no def found
   581         // yet, or 'n' for single def or -1 for many defs.
   582         lrg._def = lrg._def ? NodeSentinel : n;
   584         // Limit result register mask to acceptable registers
   585         const RegMask &rm = n->out_RegMask();
   586         lrg.AND( rm );
   587         // Check for bound register masks
   588         const RegMask &lrgmask = lrg.mask();
   589         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
   590           lrg._is_bound = 1;
   592         // Check for maximum frequency value
   593         if( lrg._maxfreq < b->_freq )
   594           lrg._maxfreq = b->_freq;
   596         int ireg = n->ideal_reg();
   597         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   598                 "oops must be in Op_RegP's" );
   599         // Check for oop-iness, or long/double
   600         // Check for multi-kill projection
   601         switch( ireg ) {
   602         case MachProjNode::fat_proj:
   603           // Fat projections have size equal to number of registers killed
   604           lrg.set_num_regs(rm.Size());
   605           lrg.set_reg_pressure(lrg.num_regs());
   606           lrg._fat_proj = 1;
   607           lrg._is_bound = 1;
   608           break;
   609         case Op_RegP:
   610 #ifdef _LP64
   611           lrg.set_num_regs(2);  // Size is 2 stack words
   612 #else
   613           lrg.set_num_regs(1);  // Size is 1 stack word
   614 #endif
   615           // Register pressure is tracked relative to the maximum values
   616           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   617           // and relative to other types which compete for the same regs.
   618           //
   619           // The following table contains suggested values based on the
   620           // architectures as defined in each .ad file.
   621           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   622           // compile-speed or performance.
   623           // Note1:
   624           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   625           // since .ad registers are defined as high and low halves.
   626           // These reg_pressure values remain compatible with the code
   627           // in is_high_pressure() which relates get_invalid_mask_size(),
   628           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   629           // Note2:
   630           // SPARC -d32 has 24 registers available for integral values,
   631           // but only 10 of these are safe for 64-bit longs.
   632           // Using set_reg_pressure(2) for both int and long means
   633           // the allocator will believe it can fit 26 longs into
   634           // registers.  Using 2 for longs and 1 for ints means the
   635           // allocator will attempt to put 52 integers into registers.
   636           // The settings below limit this problem to methods with
   637           // many long values which are being run on 32-bit SPARC.
   638           //
   639           // ------------------- reg_pressure --------------------
   640           // Each entry is reg_pressure_per_value,number_of_regs
   641           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   642           // IA32     2     1     1          1    1          6           6
   643           // IA64     1     1     1          1    1         50          41
   644           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   645           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   646           // AMD64    1     1     1          1    1         14          15
   647           // -----------------------------------------------------
   648 #if defined(SPARC)
   649           lrg.set_reg_pressure(2);  // use for v9 as well
   650 #else
   651           lrg.set_reg_pressure(1);  // normally one value per register
   652 #endif
   653           if( n_type->isa_oop_ptr() ) {
   654             lrg._is_oop = 1;
   655           }
   656           break;
   657         case Op_RegL:           // Check for long or double
   658         case Op_RegD:
   659           lrg.set_num_regs(2);
   660           // Define platform specific register pressure
   661 #ifdef SPARC
   662           lrg.set_reg_pressure(2);
   663 #elif defined(IA32)
   664           if( ireg == Op_RegL ) {
   665             lrg.set_reg_pressure(2);
   666           } else {
   667             lrg.set_reg_pressure(1);
   668           }
   669 #else
   670           lrg.set_reg_pressure(1);  // normally one value per register
   671 #endif
   672           // If this def of a double forces a mis-aligned double,
   673           // flag as '_fat_proj' - really flag as allowing misalignment
   674           // AND changes how we count interferences.  A mis-aligned
   675           // double can interfere with TWO aligned pairs, or effectively
   676           // FOUR registers!
   677           if( rm.is_misaligned_Pair() ) {
   678             lrg._fat_proj = 1;
   679             lrg._is_bound = 1;
   680           }
   681           break;
   682         case Op_RegF:
   683         case Op_RegI:
   684         case Op_RegN:
   685         case Op_RegFlags:
   686         case 0:                 // not an ideal register
   687           lrg.set_num_regs(1);
   688 #ifdef SPARC
   689           lrg.set_reg_pressure(2);
   690 #else
   691           lrg.set_reg_pressure(1);
   692 #endif
   693           break;
   694         default:
   695           ShouldNotReachHere();
   696         }
   697       }
   699       // Now do the same for inputs
   700       uint cnt = n->req();
   701       // Setup for CISC SPILLING
   702       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   703       if( UseCISCSpill && after_aggressive ) {
   704         inp = n->cisc_operand();
   705         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   706           // Convert operand number to edge index number
   707           inp = n->as_Mach()->operand_index(inp);
   708       }
   709       // Prepare register mask for each input
   710       for( uint k = input_edge_start; k < cnt; k++ ) {
   711         uint vreg = n2lidx(n->in(k));
   712         if( !vreg ) continue;
   714         // If this instruction is CISC Spillable, add the flags
   715         // bit to its appropriate input
   716         if( UseCISCSpill && after_aggressive && inp == k ) {
   717 #ifndef PRODUCT
   718           if( TraceCISCSpill ) {
   719             tty->print("  use_cisc_RegMask: ");
   720             n->dump();
   721           }
   722 #endif
   723           n->as_Mach()->use_cisc_RegMask();
   724         }
   726         LRG &lrg = lrgs(vreg);
   727         // // Testing for floating point code shape
   728         // Node *test = n->in(k);
   729         // if( test->is_Mach() ) {
   730         //   MachNode *m = test->as_Mach();
   731         //   int  op = m->ideal_Opcode();
   732         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   733         //     int zzz = 1;
   734         //   }
   735         // }
   737         // Limit result register mask to acceptable registers.
   738         // Do not limit registers from uncommon uses before
   739         // AggressiveCoalesce.  This effectively pre-virtual-splits
   740         // around uncommon uses of common defs.
   741         const RegMask &rm = n->in_RegMask(k);
   742         if( !after_aggressive &&
   743           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
   744           // Since we are BEFORE aggressive coalesce, leave the register
   745           // mask untrimmed by the call.  This encourages more coalescing.
   746           // Later, AFTER aggressive, this live range will have to spill
   747           // but the spiller handles slow-path calls very nicely.
   748         } else {
   749           lrg.AND( rm );
   750         }
   751         // Check for bound register masks
   752         const RegMask &lrgmask = lrg.mask();
   753         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
   754           lrg._is_bound = 1;
   755         // If this use of a double forces a mis-aligned double,
   756         // flag as '_fat_proj' - really flag as allowing misalignment
   757         // AND changes how we count interferences.  A mis-aligned
   758         // double can interfere with TWO aligned pairs, or effectively
   759         // FOUR registers!
   760         if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
   761           lrg._fat_proj = 1;
   762           lrg._is_bound = 1;
   763         }
   764         // if the LRG is an unaligned pair, we will have to spill
   765         // so clear the LRG's register mask if it is not already spilled
   766         if ( !n->is_SpillCopy() &&
   767                (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
   768                lrgmask.is_misaligned_Pair()) {
   769           lrg.Clear();
   770         }
   772         // Check for maximum frequency value
   773         if( lrg._maxfreq < b->_freq )
   774           lrg._maxfreq = b->_freq;
   776       } // End for all allocated inputs
   777     } // end for all instructions
   778   } // end for all blocks
   780   // Final per-liverange setup
   781   for( uint i2=0; i2<_maxlrg; i2++ ) {
   782     LRG &lrg = lrgs(i2);
   783     if( lrg.num_regs() == 2 && !lrg._fat_proj )
   784       lrg.ClearToPairs();
   785     lrg.compute_set_mask_size();
   786     if( lrg.not_free() ) {      // Handle case where we lose from the start
   787       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
   788       lrg._direct_conflict = 1;
   789     }
   790     lrg.set_degree(0);          // no neighbors in IFG yet
   791   }
   792 }
   794 //------------------------------set_was_low------------------------------------
   795 // Set the was-lo-degree bit.  Conservative coalescing should not change the
   796 // colorability of the graph.  If any live range was of low-degree before
   797 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
   798 // The bit is checked in Simplify.
   799 void PhaseChaitin::set_was_low() {
   800 #ifdef ASSERT
   801   for( uint i = 1; i < _maxlrg; i++ ) {
   802     int size = lrgs(i).num_regs();
   803     uint old_was_lo = lrgs(i)._was_lo;
   804     lrgs(i)._was_lo = 0;
   805     if( lrgs(i).lo_degree() ) {
   806       lrgs(i)._was_lo = 1;      // Trivially of low degree
   807     } else {                    // Else check the Brigg's assertion
   808       // Brigg's observation is that the lo-degree neighbors of a
   809       // hi-degree live range will not interfere with the color choices
   810       // of said hi-degree live range.  The Simplify reverse-stack-coloring
   811       // order takes care of the details.  Hence you do not have to count
   812       // low-degree neighbors when determining if this guy colors.
   813       int briggs_degree = 0;
   814       IndexSet *s = _ifg->neighbors(i);
   815       IndexSetIterator elements(s);
   816       uint lidx;
   817       while((lidx = elements.next()) != 0) {
   818         if( !lrgs(lidx).lo_degree() )
   819           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
   820       }
   821       if( briggs_degree < lrgs(i).degrees_of_freedom() )
   822         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
   823     }
   824     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
   825   }
   826 #endif
   827 }
   829 #define REGISTER_CONSTRAINED 16
   831 //------------------------------cache_lrg_info---------------------------------
   832 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
   833 void PhaseChaitin::cache_lrg_info( ) {
   835   for( uint i = 1; i < _maxlrg; i++ ) {
   836     LRG &lrg = lrgs(i);
   838     // Check for being of low degree: means we can be trivially colored.
   839     // Low degree, dead or must-spill guys just get to simplify right away
   840     if( lrg.lo_degree() ||
   841        !lrg.alive() ||
   842         lrg._must_spill ) {
   843       // Split low degree list into those guys that must get a
   844       // register and those that can go to register or stack.
   845       // The idea is LRGs that can go register or stack color first when
   846       // they have a good chance of getting a register.  The register-only
   847       // lo-degree live ranges always get a register.
   848       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
   849       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
   850         lrg._next = _lo_stk_degree;
   851         _lo_stk_degree = i;
   852       } else {
   853         lrg._next = _lo_degree;
   854         _lo_degree = i;
   855       }
   856     } else {                    // Else high degree
   857       lrgs(_hi_degree)._prev = i;
   858       lrg._next = _hi_degree;
   859       lrg._prev = 0;
   860       _hi_degree = i;
   861     }
   862   }
   863 }
   865 //------------------------------Pre-Simplify-----------------------------------
   866 // Simplify the IFG by removing LRGs of low degree that have NO copies
   867 void PhaseChaitin::Pre_Simplify( ) {
   869   // Warm up the lo-degree no-copy list
   870   int lo_no_copy = 0;
   871   for( uint i = 1; i < _maxlrg; i++ ) {
   872     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
   873         !lrgs(i).alive() ||
   874         lrgs(i)._must_spill ) {
   875       lrgs(i)._next = lo_no_copy;
   876       lo_no_copy = i;
   877     }
   878   }
   880   while( lo_no_copy ) {
   881     uint lo = lo_no_copy;
   882     lo_no_copy = lrgs(lo)._next;
   883     int size = lrgs(lo).num_regs();
   885     // Put the simplified guy on the simplified list.
   886     lrgs(lo)._next = _simplified;
   887     _simplified = lo;
   889     // Yank this guy from the IFG.
   890     IndexSet *adj = _ifg->remove_node( lo );
   892     // If any neighbors' degrees fall below their number of
   893     // allowed registers, then put that neighbor on the low degree
   894     // list.  Note that 'degree' can only fall and 'numregs' is
   895     // unchanged by this action.  Thus the two are equal at most once,
   896     // so LRGs hit the lo-degree worklists at most once.
   897     IndexSetIterator elements(adj);
   898     uint neighbor;
   899     while ((neighbor = elements.next()) != 0) {
   900       LRG *n = &lrgs(neighbor);
   901       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   903       // Check for just becoming of-low-degree
   904       if( n->just_lo_degree() && !n->_has_copy ) {
   905         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   906         // Put on lo-degree list
   907         n->_next = lo_no_copy;
   908         lo_no_copy = neighbor;
   909       }
   910     }
   911   } // End of while lo-degree no_copy worklist not empty
   913   // No more lo-degree no-copy live ranges to simplify
   914 }
   916 //------------------------------Simplify---------------------------------------
   917 // Simplify the IFG by removing LRGs of low degree.
   918 void PhaseChaitin::Simplify( ) {
   920   while( 1 ) {                  // Repeat till simplified it all
   921     // May want to explore simplifying lo_degree before _lo_stk_degree.
   922     // This might result in more spills coloring into registers during
   923     // Select().
   924     while( _lo_degree || _lo_stk_degree ) {
   925       // If possible, pull from lo_stk first
   926       uint lo;
   927       if( _lo_degree ) {
   928         lo = _lo_degree;
   929         _lo_degree = lrgs(lo)._next;
   930       } else {
   931         lo = _lo_stk_degree;
   932         _lo_stk_degree = lrgs(lo)._next;
   933       }
   935       // Put the simplified guy on the simplified list.
   936       lrgs(lo)._next = _simplified;
   937       _simplified = lo;
   938       // If this guy is "at risk" then mark his current neighbors
   939       if( lrgs(lo)._at_risk ) {
   940         IndexSetIterator elements(_ifg->neighbors(lo));
   941         uint datum;
   942         while ((datum = elements.next()) != 0) {
   943           lrgs(datum)._risk_bias = lo;
   944         }
   945       }
   947       // Yank this guy from the IFG.
   948       IndexSet *adj = _ifg->remove_node( lo );
   950       // If any neighbors' degrees fall below their number of
   951       // allowed registers, then put that neighbor on the low degree
   952       // list.  Note that 'degree' can only fall and 'numregs' is
   953       // unchanged by this action.  Thus the two are equal at most once,
   954       // so LRGs hit the lo-degree worklist at most once.
   955       IndexSetIterator elements(adj);
   956       uint neighbor;
   957       while ((neighbor = elements.next()) != 0) {
   958         LRG *n = &lrgs(neighbor);
   959 #ifdef ASSERT
   960         if( VerifyOpto || VerifyRegisterAllocator ) {
   961           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
   962         }
   963 #endif
   965         // Check for just becoming of-low-degree just counting registers.
   966         // _must_spill live ranges are already on the low degree list.
   967         if( n->just_lo_degree() && !n->_must_spill ) {
   968           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
   969           // Pull from hi-degree list
   970           uint prev = n->_prev;
   971           uint next = n->_next;
   972           if( prev ) lrgs(prev)._next = next;
   973           else _hi_degree = next;
   974           lrgs(next)._prev = prev;
   975           n->_next = _lo_degree;
   976           _lo_degree = neighbor;
   977         }
   978       }
   979     } // End of while lo-degree/lo_stk_degree worklist not empty
   981     // Check for got everything: is hi-degree list empty?
   982     if( !_hi_degree ) break;
   984     // Time to pick a potential spill guy
   985     uint lo_score = _hi_degree;
   986     double score = lrgs(lo_score).score();
   987     double area = lrgs(lo_score)._area;
   989     // Find cheapest guy
   990     debug_only( int lo_no_simplify=0; );
   991     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
   992       assert( !(*_ifg->_yanked)[i], "" );
   993       // It's just vaguely possible to move hi-degree to lo-degree without
   994       // going through a just-lo-degree stage: If you remove a double from
   995       // a float live range it's degree will drop by 2 and you can skip the
   996       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
   997       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
   998       if( lrgs(i).lo_degree() ) {
   999         lo_score = i;
  1000         break;
  1002       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1003       double iscore = lrgs(i).score();
  1004       double iarea = lrgs(i)._area;
  1006       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1007       // wins.  Ties happen because all live ranges in question have spilled
  1008       // a few times before and the spill-score adds a huge number which
  1009       // washes out the low order bits.  We are choosing the lesser of 2
  1010       // evils; in this case pick largest area to spill.
  1011       if( iscore < score ||
  1012           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
  1013         lo_score = i;
  1014         score = iscore;
  1015         area = iarea;
  1018     LRG *lo_lrg = &lrgs(lo_score);
  1019     // The live range we choose for spilling is either hi-degree, or very
  1020     // rarely it can be low-degree.  If we choose a hi-degree live range
  1021     // there better not be any lo-degree choices.
  1022     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1024     // Pull from hi-degree list
  1025     uint prev = lo_lrg->_prev;
  1026     uint next = lo_lrg->_next;
  1027     if( prev ) lrgs(prev)._next = next;
  1028     else _hi_degree = next;
  1029     lrgs(next)._prev = prev;
  1030     // Jam him on the lo-degree list, despite his high degree.
  1031     // Maybe he'll get a color, and maybe he'll spill.
  1032     // Only Select() will know.
  1033     lrgs(lo_score)._at_risk = true;
  1034     _lo_degree = lo_score;
  1035     lo_lrg->_next = 0;
  1037   } // End of while not simplified everything
  1041 //------------------------------bias_color-------------------------------------
  1042 // Choose a color using the biasing heuristic
  1043 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1045   // Check for "at_risk" LRG's
  1046   uint risk_lrg = Find(lrg._risk_bias);
  1047   if( risk_lrg != 0 ) {
  1048     // Walk the colored neighbors of the "at_risk" candidate
  1049     // Choose a color which is both legal and already taken by a neighbor
  1050     // of the "at_risk" candidate in order to improve the chances of the
  1051     // "at_risk" candidate of coloring
  1052     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1053     uint datum;
  1054     while ((datum = elements.next()) != 0) {
  1055       OptoReg::Name reg = lrgs(datum).reg();
  1056       // If this LRG's register is legal for us, choose it
  1057       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1058           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1059           (lrg.num_regs()==1 || // either size 1
  1060            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1061         return reg;
  1065   uint copy_lrg = Find(lrg._copy_bias);
  1066   if( copy_lrg != 0 ) {
  1067     // If he has a color,
  1068     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1069       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1070       //  And it is legal for you,
  1071       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
  1072           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
  1073           (lrg.num_regs()==1 || // either size 1
  1074            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
  1075         return reg;
  1076     } else if( chunk == 0 ) {
  1077       // Choose a color which is legal for him
  1078       RegMask tempmask = lrg.mask();
  1079       tempmask.AND(lrgs(copy_lrg).mask());
  1080       OptoReg::Name reg;
  1081       if( lrg.num_regs() == 1 ) {
  1082         reg = tempmask.find_first_elem();
  1083       } else {
  1084         tempmask.ClearToPairs();
  1085         reg = tempmask.find_first_pair();
  1087       if( OptoReg::is_valid(reg) )
  1088         return reg;
  1092   // If no bias info exists, just go with the register selection ordering
  1093   if( lrg.num_regs() == 2 ) {
  1094     // Find an aligned pair
  1095     return OptoReg::add(lrg.mask().find_first_pair(),chunk);
  1098   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1099   // copy removal to remove many more copies, by preventing a just-assigned
  1100   // register from being repeatedly assigned.
  1101   OptoReg::Name reg = lrg.mask().find_first_elem();
  1102   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1103     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1104     // SECOND element in the mask.
  1105     lrg.Remove(reg);
  1106     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1107     lrg.Insert(reg);
  1108     if( OptoReg::is_reg(reg2))
  1109       reg = reg2;
  1111   return OptoReg::add( reg, chunk );
  1114 //------------------------------choose_color-----------------------------------
  1115 // Choose a color in the current chunk
  1116 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1117   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1118   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1120   if( lrg.num_regs() == 1 ||    // Common Case
  1121       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1122     // Use a heuristic to "bias" the color choice
  1123     return bias_color(lrg, chunk);
  1125   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1127   // Fat-proj case or misaligned double argument.
  1128   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1129          lrg.num_regs() == 2,"fat projs exactly color" );
  1130   assert( !chunk, "always color in 1st chunk" );
  1131   // Return the highest element in the set.
  1132   return lrg.mask().find_last_elem();
  1135 //------------------------------Select-----------------------------------------
  1136 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1137 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1138 // everything going back is guaranteed a color.  Select that color.  If some
  1139 // hi-degree LRG cannot get a color then we record that we must spill.
  1140 uint PhaseChaitin::Select( ) {
  1141   uint spill_reg = LRG::SPILL_REG;
  1142   _max_reg = OptoReg::Name(0);  // Past max register used
  1143   while( _simplified ) {
  1144     // Pull next LRG from the simplified list - in reverse order of removal
  1145     uint lidx = _simplified;
  1146     LRG *lrg = &lrgs(lidx);
  1147     _simplified = lrg->_next;
  1150 #ifndef PRODUCT
  1151     if (trace_spilling()) {
  1152       ttyLocker ttyl;
  1153       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1154                     lrg->degrees_of_freedom());
  1155       lrg->dump();
  1157 #endif
  1159     // Re-insert into the IFG
  1160     _ifg->re_insert(lidx);
  1161     if( !lrg->alive() ) continue;
  1162     // capture allstackedness flag before mask is hacked
  1163     const int is_allstack = lrg->mask().is_AllStack();
  1165     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1166     // to avoid the GOTO, although the refactored code will not
  1167     // be much clearer.  We arrive here IFF we have a stack-based
  1168     // live range that cannot color in the current chunk, and it
  1169     // has to move into the next free stack chunk.
  1170     int chunk = 0;              // Current chunk is first chunk
  1171     retry_next_chunk:
  1173     // Remove neighbor colors
  1174     IndexSet *s = _ifg->neighbors(lidx);
  1176     debug_only(RegMask orig_mask = lrg->mask();)
  1177     IndexSetIterator elements(s);
  1178     uint neighbor;
  1179     while ((neighbor = elements.next()) != 0) {
  1180       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1181       // of its color will be a no-op, since the spill_reg chunk is in outer
  1182       // space.  Also, if neighbor is in a different chunk, this exclusion
  1183       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1184       // its chunk, a new chunk of color may be tried, in which case
  1185       // examination of neighbors is started again, at retry_next_chunk.)
  1186       LRG &nlrg = lrgs(neighbor);
  1187       OptoReg::Name nreg = nlrg.reg();
  1188       // Only subtract masks in the same chunk
  1189       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1190 #ifndef PRODUCT
  1191         uint size = lrg->mask().Size();
  1192         RegMask rm = lrg->mask();
  1193 #endif
  1194         lrg->SUBTRACT(nlrg.mask());
  1195 #ifndef PRODUCT
  1196         if (trace_spilling() && lrg->mask().Size() != size) {
  1197           ttyLocker ttyl;
  1198           tty->print("L%d ", lidx);
  1199           rm.dump();
  1200           tty->print(" intersected L%d ", neighbor);
  1201           nlrg.mask().dump();
  1202           tty->print(" removed ");
  1203           rm.SUBTRACT(lrg->mask());
  1204           rm.dump();
  1205           tty->print(" leaving ");
  1206           lrg->mask().dump();
  1207           tty->cr();
  1209 #endif
  1212     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1213     // Aligned pairs need aligned masks
  1214     if( lrg->num_regs() == 2 && !lrg->_fat_proj )
  1215       lrg->ClearToPairs();
  1217     // Check if a color is available and if so pick the color
  1218     OptoReg::Name reg = choose_color( *lrg, chunk );
  1219 #ifdef SPARC
  1220     debug_only(lrg->compute_set_mask_size());
  1221     assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1222 #endif
  1224     //---------------
  1225     // If we fail to color and the AllStack flag is set, trigger
  1226     // a chunk-rollover event
  1227     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1228       // Bump register mask up to next stack chunk
  1229       chunk += RegMask::CHUNK_SIZE;
  1230       lrg->Set_All();
  1232       goto retry_next_chunk;
  1235     //---------------
  1236     // Did we get a color?
  1237     else if( OptoReg::is_valid(reg)) {
  1238 #ifndef PRODUCT
  1239       RegMask avail_rm = lrg->mask();
  1240 #endif
  1242       // Record selected register
  1243       lrg->set_reg(reg);
  1245       if( reg >= _max_reg )     // Compute max register limit
  1246         _max_reg = OptoReg::add(reg,1);
  1247       // Fold reg back into normal space
  1248       reg = OptoReg::add(reg,-chunk);
  1250       // If the live range is not bound, then we actually had some choices
  1251       // to make.  In this case, the mask has more bits in it than the colors
  1252       // chosen.  Restrict the mask to just what was picked.
  1253       if( lrg->num_regs() == 1 ) { // Size 1 live range
  1254         lrg->Clear();           // Clear the mask
  1255         lrg->Insert(reg);       // Set regmask to match selected reg
  1256         lrg->set_mask_size(1);
  1257       } else if( !lrg->_fat_proj ) {
  1258         // For pairs, also insert the low bit of the pair
  1259         assert( lrg->num_regs() == 2, "unbound fatproj???" );
  1260         lrg->Clear();           // Clear the mask
  1261         lrg->Insert(reg);       // Set regmask to match selected reg
  1262         lrg->Insert(OptoReg::add(reg,-1));
  1263         lrg->set_mask_size(2);
  1264       } else {                  // Else fatproj
  1265         // mask must be equal to fatproj bits, by definition
  1267 #ifndef PRODUCT
  1268       if (trace_spilling()) {
  1269         ttyLocker ttyl;
  1270         tty->print("L%d selected ", lidx);
  1271         lrg->mask().dump();
  1272         tty->print(" from ");
  1273         avail_rm.dump();
  1274         tty->cr();
  1276 #endif
  1277       // Note that reg is the highest-numbered register in the newly-bound mask.
  1278     } // end color available case
  1280     //---------------
  1281     // Live range is live and no colors available
  1282     else {
  1283       assert( lrg->alive(), "" );
  1284       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1285               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1286       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1288       // Assign the special spillreg register
  1289       lrg->set_reg(OptoReg::Name(spill_reg++));
  1290       // Do not empty the regmask; leave mask_size lying around
  1291       // for use during Spilling
  1292 #ifndef PRODUCT
  1293       if( trace_spilling() ) {
  1294         ttyLocker ttyl;
  1295         tty->print("L%d spilling with neighbors: ", lidx);
  1296         s->dump();
  1297         debug_only(tty->print(" original mask: "));
  1298         debug_only(orig_mask.dump());
  1299         dump_lrg(lidx);
  1301 #endif
  1302     } // end spill case
  1306   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1310 //------------------------------copy_was_spilled-------------------------------
  1311 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1312 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1313   if( _spilled_once.test(src->_idx) ) {
  1314     _spilled_once.set(dst->_idx);
  1315     lrgs(Find(dst))._was_spilled1 = 1;
  1316     if( _spilled_twice.test(src->_idx) ) {
  1317       _spilled_twice.set(dst->_idx);
  1318       lrgs(Find(dst))._was_spilled2 = 1;
  1323 //------------------------------set_was_spilled--------------------------------
  1324 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1325 void PhaseChaitin::set_was_spilled( Node *n ) {
  1326   if( _spilled_once.test_set(n->_idx) )
  1327     _spilled_twice.set(n->_idx);
  1330 //------------------------------fixup_spills-----------------------------------
  1331 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1332 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1333 void PhaseChaitin::fixup_spills() {
  1334   // This function does only cisc spill work.
  1335   if( !UseCISCSpill ) return;
  1337   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1339   // Grab the Frame Pointer
  1340   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
  1342   // For all blocks
  1343   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1344     Block *b = _cfg._blocks[i];
  1346     // For all instructions in block
  1347     uint last_inst = b->end_idx();
  1348     for( uint j = 1; j <= last_inst; j++ ) {
  1349       Node *n = b->_nodes[j];
  1351       // Dead instruction???
  1352       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1353               C->top() == n ||  // Or the random TOP node
  1354               n->is_Proj(),     // Or a fat-proj kill node
  1355               "No dead instructions after post-alloc" );
  1357       int inp = n->cisc_operand();
  1358       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1359         // Convert operand number to edge index number
  1360         MachNode *mach = n->as_Mach();
  1361         inp = mach->operand_index(inp);
  1362         Node *src = n->in(inp);   // Value to load or store
  1363         LRG &lrg_cisc = lrgs( Find_const(src) );
  1364         OptoReg::Name src_reg = lrg_cisc.reg();
  1365         // Doubles record the HIGH register of an adjacent pair.
  1366         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1367         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1368           // This is a CISC Spill, get stack offset and construct new node
  1369 #ifndef PRODUCT
  1370           if( TraceCISCSpill ) {
  1371             tty->print("    reg-instr:  ");
  1372             n->dump();
  1374 #endif
  1375           int stk_offset = reg2offset(src_reg);
  1376           // Bailout if we might exceed node limit when spilling this instruction
  1377           C->check_node_count(0, "out of nodes fixing spills");
  1378           if (C->failing())  return;
  1379           // Transform node
  1380           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1381           cisc->set_req(inp,fp);          // Base register is frame pointer
  1382           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1383             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1384             cisc->ins_req(1,src);         // Requires a memory edge
  1386           b->_nodes.map(j,cisc);          // Insert into basic block
  1387           n->subsume_by(cisc); // Correct graph
  1388           //
  1389           ++_used_cisc_instructions;
  1390 #ifndef PRODUCT
  1391           if( TraceCISCSpill ) {
  1392             tty->print("    cisc-instr: ");
  1393             cisc->dump();
  1395 #endif
  1396         } else {
  1397 #ifndef PRODUCT
  1398           if( TraceCISCSpill ) {
  1399             tty->print("    using reg-instr: ");
  1400             n->dump();
  1402 #endif
  1403           ++_unused_cisc_instructions;    // input can be on stack
  1407     } // End of for all instructions
  1409   } // End of for all blocks
  1412 //------------------------------find_base_for_derived--------------------------
  1413 // Helper to stretch above; recursively discover the base Node for a
  1414 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1415 // to be recursive for derived Phis.
  1416 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1417   // See if already computed; if so return it
  1418   if( derived_base_map[derived->_idx] )
  1419     return derived_base_map[derived->_idx];
  1421   // See if this happens to be a base.
  1422   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1423   // pointers derived from NULL!  These are always along paths that
  1424   // can't happen at run-time but the optimizer cannot deduce it so
  1425   // we have to handle it gracefully.
  1426   assert(!derived->bottom_type()->isa_narrowoop() ||
  1427           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1428   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1429   // If its an OOP with a non-zero offset, then it is derived.
  1430   if( tj == NULL || tj->_offset == 0 ) {
  1431     derived_base_map[derived->_idx] = derived;
  1432     return derived;
  1434   // Derived is NULL+offset?  Base is NULL!
  1435   if( derived->is_Con() ) {
  1436     Node *base = _matcher.mach_null();
  1437     assert(base != NULL, "sanity");
  1438     if (base->in(0) == NULL) {
  1439       // Initialize it once and make it shared:
  1440       // set control to _root and place it into Start block
  1441       // (where top() node is placed).
  1442       base->init_req(0, _cfg._root);
  1443       Block *startb = _cfg._bbs[C->top()->_idx];
  1444       startb->_nodes.insert(startb->find_node(C->top()), base );
  1445       _cfg._bbs.map( base->_idx, startb );
  1446       assert (n2lidx(base) == 0, "should not have LRG yet");
  1448     if (n2lidx(base) == 0) {
  1449       new_lrg(base, maxlrg++);
  1451     assert(base->in(0) == _cfg._root &&
  1452            _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
  1453     derived_base_map[derived->_idx] = base;
  1454     return base;
  1457   // Check for AddP-related opcodes
  1458   if( !derived->is_Phi() ) {
  1459     assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
  1460     Node *base = derived->in(AddPNode::Base);
  1461     derived_base_map[derived->_idx] = base;
  1462     return base;
  1465   // Recursively find bases for Phis.
  1466   // First check to see if we can avoid a base Phi here.
  1467   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1468   uint i;
  1469   for( i = 2; i < derived->req(); i++ )
  1470     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1471       break;
  1472   // Went to the end without finding any different bases?
  1473   if( i == derived->req() ) {   // No need for a base Phi here
  1474     derived_base_map[derived->_idx] = base;
  1475     return base;
  1478   // Now we see we need a base-Phi here to merge the bases
  1479   const Type *t = base->bottom_type();
  1480   base = new (C, derived->req()) PhiNode( derived->in(0), t );
  1481   for( i = 1; i < derived->req(); i++ ) {
  1482     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1483     t = t->meet(base->in(i)->bottom_type());
  1485   base->as_Phi()->set_type(t);
  1487   // Search the current block for an existing base-Phi
  1488   Block *b = _cfg._bbs[derived->_idx];
  1489   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1490     Node *phi = b->_nodes[i];
  1491     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1492       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1493       _cfg._bbs.map( base->_idx, b );
  1494       new_lrg(base,maxlrg++);
  1495       break;
  1497     // See if Phi matches.
  1498     uint j;
  1499     for( j = 1; j < base->req(); j++ )
  1500       if( phi->in(j) != base->in(j) &&
  1501           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1502         break;
  1503     if( j == base->req() ) {    // All inputs match?
  1504       base = phi;               // Then use existing 'phi' and drop 'base'
  1505       break;
  1510   // Cache info for later passes
  1511   derived_base_map[derived->_idx] = base;
  1512   return base;
  1516 //------------------------------stretch_base_pointer_live_ranges---------------
  1517 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1518 // base pointer that is live across the Safepoint for oopmap building.  The
  1519 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1520 // required edge set.
  1521 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
  1522   int must_recompute_live = false;
  1523   uint maxlrg = _maxlrg;
  1524   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1525   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1527   // For all blocks in RPO do...
  1528   for( uint i=0; i<_cfg._num_blocks; i++ ) {
  1529     Block *b = _cfg._blocks[i];
  1530     // Note use of deep-copy constructor.  I cannot hammer the original
  1531     // liveout bits, because they are needed by the following coalesce pass.
  1532     IndexSet liveout(_live->live(b));
  1534     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
  1535       Node *n = b->_nodes[j-1];
  1537       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1538       // like to see in the same register.  Compare uses the loop-phi and so
  1539       // extends its live range BUT cannot be part of the cycle.  If this
  1540       // extended live range overlaps with the update of the loop-phi value
  1541       // we need both alive at the same time -- which requires at least 1
  1542       // copy.  But because Intel has only 2-address registers we end up with
  1543       // at least 2 copies, one before the loop-phi update instruction and
  1544       // one after.  Instead we split the input to the compare just after the
  1545       // phi.
  1546       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1547         Node *phi = n->in(1);
  1548         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1549           Block *phi_block = _cfg._bbs[phi->_idx];
  1550           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
  1551             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1552             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1553             insert_proj( phi_block, 1, spill, maxlrg++ );
  1554             n->set_req(1,spill);
  1555             must_recompute_live = true;
  1560       // Get value being defined
  1561       uint lidx = n2lidx(n);
  1562       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
  1563         // Remove from live-out set
  1564         liveout.remove(lidx);
  1566         // Copies do not define a new value and so do not interfere.
  1567         // Remove the copies source from the liveout set before interfering.
  1568         uint idx = n->is_Copy();
  1569         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
  1572       // Found a safepoint?
  1573       JVMState *jvms = n->jvms();
  1574       if( jvms ) {
  1575         // Now scan for a live derived pointer
  1576         IndexSetIterator elements(&liveout);
  1577         uint neighbor;
  1578         while ((neighbor = elements.next()) != 0) {
  1579           // Find reaching DEF for base and derived values
  1580           // This works because we are still in SSA during this call.
  1581           Node *derived = lrgs(neighbor)._def;
  1582           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1583           assert(!derived->bottom_type()->isa_narrowoop() ||
  1584                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1585           // If its an OOP with a non-zero offset, then it is derived.
  1586           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1587             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
  1588             assert( base->_idx < _names.Size(), "" );
  1589             // Add reaching DEFs of derived pointer and base pointer as a
  1590             // pair of inputs
  1591             n->add_req( derived );
  1592             n->add_req( base );
  1594             // See if the base pointer is already live to this point.
  1595             // Since I'm working on the SSA form, live-ness amounts to
  1596             // reaching def's.  So if I find the base's live range then
  1597             // I know the base's def reaches here.
  1598             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
  1599                  !liveout.member( n2lidx(base) ) ) && // not live) AND
  1600                  (n2lidx(base) > 0)                && // not a constant
  1601                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
  1602               // Base pointer is not currently live.  Since I stretched
  1603               // the base pointer to here and it crosses basic-block
  1604               // boundaries, the global live info is now incorrect.
  1605               // Recompute live.
  1606               must_recompute_live = true;
  1607             } // End of if base pointer is not live to debug info
  1609         } // End of scan all live data for derived ptrs crossing GC point
  1610       } // End of if found a GC point
  1612       // Make all inputs live
  1613       if( !n->is_Phi() ) {      // Phi function uses come from prior block
  1614         for( uint k = 1; k < n->req(); k++ ) {
  1615           uint lidx = n2lidx(n->in(k));
  1616           if( lidx < _maxlrg )
  1617             liveout.insert( lidx );
  1621     } // End of forall instructions in block
  1622     liveout.clear();  // Free the memory used by liveout.
  1624   } // End of forall blocks
  1625   _maxlrg = maxlrg;
  1627   // If I created a new live range I need to recompute live
  1628   if( maxlrg != _ifg->_maxlrg )
  1629     must_recompute_live = true;
  1631   return must_recompute_live != 0;
  1635 //------------------------------add_reference----------------------------------
  1636 // Extend the node to LRG mapping
  1637 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
  1638   _names.extend( node->_idx, n2lidx(old_node) );
  1641 //------------------------------dump-------------------------------------------
  1642 #ifndef PRODUCT
  1643 void PhaseChaitin::dump( const Node *n ) const {
  1644   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
  1645   tty->print("L%d",r);
  1646   if( r && n->Opcode() != Op_Phi ) {
  1647     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1648       tty->print("[");
  1649       OptoReg::Name second = get_reg_second(n);
  1650       if( OptoReg::is_valid(second) ) {
  1651         if( OptoReg::is_reg(second) )
  1652           tty->print("%s:",Matcher::regName[second]);
  1653         else
  1654           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1656       OptoReg::Name first = get_reg_first(n);
  1657       if( OptoReg::is_reg(first) )
  1658         tty->print("%s]",Matcher::regName[first]);
  1659       else
  1660          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1661     } else
  1662     n->out_RegMask().dump();
  1664   tty->print("/N%d\t",n->_idx);
  1665   tty->print("%s === ", n->Name());
  1666   uint k;
  1667   for( k = 0; k < n->req(); k++) {
  1668     Node *m = n->in(k);
  1669     if( !m ) tty->print("_ ");
  1670     else {
  1671       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1672       tty->print("L%d",r);
  1673       // Data MultiNode's can have projections with no real registers.
  1674       // Don't die while dumping them.
  1675       int op = n->Opcode();
  1676       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1677         if( _node_regs ) {
  1678           tty->print("[");
  1679           OptoReg::Name second = get_reg_second(n->in(k));
  1680           if( OptoReg::is_valid(second) ) {
  1681             if( OptoReg::is_reg(second) )
  1682               tty->print("%s:",Matcher::regName[second]);
  1683             else
  1684               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1685                          reg2offset_unchecked(second));
  1687           OptoReg::Name first = get_reg_first(n->in(k));
  1688           if( OptoReg::is_reg(first) )
  1689             tty->print("%s]",Matcher::regName[first]);
  1690           else
  1691             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1692                        reg2offset_unchecked(first));
  1693         } else
  1694           n->in_RegMask(k).dump();
  1696       tty->print("/N%d ",m->_idx);
  1699   if( k < n->len() && n->in(k) ) tty->print("| ");
  1700   for( ; k < n->len(); k++ ) {
  1701     Node *m = n->in(k);
  1702     if( !m ) break;
  1703     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
  1704     tty->print("L%d",r);
  1705     tty->print("/N%d ",m->_idx);
  1707   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1708   else n->dump_spec(tty);
  1709   if( _spilled_once.test(n->_idx ) ) {
  1710     tty->print(" Spill_1");
  1711     if( _spilled_twice.test(n->_idx ) )
  1712       tty->print(" Spill_2");
  1714   tty->print("\n");
  1717 void PhaseChaitin::dump( const Block * b ) const {
  1718   b->dump_head( &_cfg._bbs );
  1720   // For all instructions
  1721   for( uint j = 0; j < b->_nodes.size(); j++ )
  1722     dump(b->_nodes[j]);
  1723   // Print live-out info at end of block
  1724   if( _live ) {
  1725     tty->print("Liveout: ");
  1726     IndexSet *live = _live->live(b);
  1727     IndexSetIterator elements(live);
  1728     tty->print("{");
  1729     uint i;
  1730     while ((i = elements.next()) != 0) {
  1731       tty->print("L%d ", Find_const(i));
  1733     tty->print_cr("}");
  1735   tty->print("\n");
  1738 void PhaseChaitin::dump() const {
  1739   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  1740               _matcher._new_SP, _framesize );
  1742   // For all blocks
  1743   for( uint i = 0; i < _cfg._num_blocks; i++ )
  1744     dump(_cfg._blocks[i]);
  1745   // End of per-block dump
  1746   tty->print("\n");
  1748   if (!_ifg) {
  1749     tty->print("(No IFG.)\n");
  1750     return;
  1753   // Dump LRG array
  1754   tty->print("--- Live RanGe Array ---\n");
  1755   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
  1756     tty->print("L%d: ",i2);
  1757     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
  1758     else tty->print("new LRG");
  1760   tty->print_cr("");
  1762   // Dump lo-degree list
  1763   tty->print("Lo degree: ");
  1764   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  1765     tty->print("L%d ",i3);
  1766   tty->print_cr("");
  1768   // Dump lo-stk-degree list
  1769   tty->print("Lo stk degree: ");
  1770   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  1771     tty->print("L%d ",i4);
  1772   tty->print_cr("");
  1774   // Dump lo-degree list
  1775   tty->print("Hi degree: ");
  1776   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  1777     tty->print("L%d ",i5);
  1778   tty->print_cr("");
  1781 //------------------------------dump_degree_lists------------------------------
  1782 void PhaseChaitin::dump_degree_lists() const {
  1783   // Dump lo-degree list
  1784   tty->print("Lo degree: ");
  1785   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  1786     tty->print("L%d ",i);
  1787   tty->print_cr("");
  1789   // Dump lo-stk-degree list
  1790   tty->print("Lo stk degree: ");
  1791   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  1792     tty->print("L%d ",i2);
  1793   tty->print_cr("");
  1795   // Dump lo-degree list
  1796   tty->print("Hi degree: ");
  1797   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  1798     tty->print("L%d ",i3);
  1799   tty->print_cr("");
  1802 //------------------------------dump_simplified--------------------------------
  1803 void PhaseChaitin::dump_simplified() const {
  1804   tty->print("Simplified: ");
  1805   for( uint i = _simplified; i; i = lrgs(i)._next )
  1806     tty->print("L%d ",i);
  1807   tty->print_cr("");
  1810 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  1811   if ((int)reg < 0)
  1812     sprintf(buf, "<OptoReg::%d>", (int)reg);
  1813   else if (OptoReg::is_reg(reg))
  1814     strcpy(buf, Matcher::regName[reg]);
  1815   else
  1816     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  1817             pc->reg2offset(reg));
  1818   return buf+strlen(buf);
  1821 //------------------------------dump_register----------------------------------
  1822 // Dump a register name into a buffer.  Be intelligent if we get called
  1823 // before allocation is complete.
  1824 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  1825   if( !this ) {                 // Not got anything?
  1826     sprintf(buf,"N%d",n->_idx); // Then use Node index
  1827   } else if( _node_regs ) {
  1828     // Post allocation, use direct mappings, no LRG info available
  1829     print_reg( get_reg_first(n), this, buf );
  1830   } else {
  1831     uint lidx = Find_const(n); // Grab LRG number
  1832     if( !_ifg ) {
  1833       sprintf(buf,"L%d",lidx);  // No register binding yet
  1834     } else if( !lidx ) {        // Special, not allocated value
  1835       strcpy(buf,"Special");
  1836     } else if( (lrgs(lidx).num_regs() == 1)
  1837                 ? !lrgs(lidx).mask().is_bound1()
  1838                 : !lrgs(lidx).mask().is_bound2() ) {
  1839       sprintf(buf,"L%d",lidx); // No register binding yet
  1840     } else {                    // Hah!  We have a bound machine register
  1841       print_reg( lrgs(lidx).reg(), this, buf );
  1844   return buf+strlen(buf);
  1847 //----------------------dump_for_spill_split_recycle--------------------------
  1848 void PhaseChaitin::dump_for_spill_split_recycle() const {
  1849   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  1850     // Display which live ranges need to be split and the allocator's state
  1851     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  1852     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
  1853       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  1854         tty->print("L%d: ", bidx);
  1855         lrgs(bidx).dump();
  1858     tty->cr();
  1859     dump();
  1863 //------------------------------dump_frame------------------------------------
  1864 void PhaseChaitin::dump_frame() const {
  1865   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  1866   const TypeTuple *domain = C->tf()->domain();
  1867   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  1869   // Incoming arguments in registers dump
  1870   for( int k = 0; k < argcnt; k++ ) {
  1871     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  1872     if( OptoReg::is_reg(parmreg))  {
  1873       const char *reg_name = OptoReg::regname(parmreg);
  1874       tty->print("#r%3.3d %s", parmreg, reg_name);
  1875       parmreg = _matcher._parm_regs[k].second();
  1876       if( OptoReg::is_reg(parmreg))  {
  1877         tty->print(":%s", OptoReg::regname(parmreg));
  1879       tty->print("   : parm %d: ", k);
  1880       domain->field_at(k + TypeFunc::Parms)->dump();
  1881       tty->print_cr("");
  1885   // Check for un-owned padding above incoming args
  1886   OptoReg::Name reg = _matcher._new_SP;
  1887   if( reg > _matcher._in_arg_limit ) {
  1888     reg = OptoReg::add(reg, -1);
  1889     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  1892   // Incoming argument area dump
  1893   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  1894   while( reg > begin_in_arg ) {
  1895     reg = OptoReg::add(reg, -1);
  1896     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  1897     int j;
  1898     for( j = 0; j < argcnt; j++) {
  1899       if( _matcher._parm_regs[j].first() == reg ||
  1900           _matcher._parm_regs[j].second() == reg ) {
  1901         tty->print("parm %d: ",j);
  1902         domain->field_at(j + TypeFunc::Parms)->dump();
  1903         tty->print_cr("");
  1904         break;
  1907     if( j >= argcnt )
  1908       tty->print_cr("HOLE, owned by SELF");
  1911   // Old outgoing preserve area
  1912   while( reg > _matcher._old_SP ) {
  1913     reg = OptoReg::add(reg, -1);
  1914     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  1917   // Old SP
  1918   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  1919     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  1921   // Preserve area dump
  1922   reg = OptoReg::add(reg, -1);
  1923   while( OptoReg::is_stack(reg)) {
  1924     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  1925     if( _matcher.return_addr() == reg )
  1926       tty->print_cr("return address");
  1927     else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
  1928              VerifyStackAtCalls )
  1929       tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  1930     else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
  1931       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  1932     else
  1933       tty->print_cr("pad2, in_preserve");
  1934     reg = OptoReg::add(reg, -1);
  1937   // Spill area dump
  1938   reg = OptoReg::add(_matcher._new_SP, _framesize );
  1939   while( reg > _matcher._out_arg_limit ) {
  1940     reg = OptoReg::add(reg, -1);
  1941     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  1944   // Outgoing argument area dump
  1945   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  1946     reg = OptoReg::add(reg, -1);
  1947     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  1950   // Outgoing new preserve area
  1951   while( reg > _matcher._new_SP ) {
  1952     reg = OptoReg::add(reg, -1);
  1953     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  1955   tty->print_cr("#");
  1958 //------------------------------dump_bb----------------------------------------
  1959 void PhaseChaitin::dump_bb( uint pre_order ) const {
  1960   tty->print_cr("---dump of B%d---",pre_order);
  1961   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1962     Block *b = _cfg._blocks[i];
  1963     if( b->_pre_order == pre_order )
  1964       dump(b);
  1968 //------------------------------dump_lrg---------------------------------------
  1969 void PhaseChaitin::dump_lrg( uint lidx ) const {
  1970   tty->print_cr("---dump of L%d---",lidx);
  1972   if( _ifg ) {
  1973     if( lidx >= _maxlrg ) {
  1974       tty->print("Attempt to print live range index beyond max live range.\n");
  1975       return;
  1977     tty->print("L%d: ",lidx);
  1978     lrgs(lidx).dump( );
  1980   if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  1981     _ifg->neighbors(lidx)->dump();
  1982     tty->cr();
  1984   // For all blocks
  1985   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1986     Block *b = _cfg._blocks[i];
  1987     int dump_once = 0;
  1989     // For all instructions
  1990     for( uint j = 0; j < b->_nodes.size(); j++ ) {
  1991       Node *n = b->_nodes[j];
  1992       if( Find_const(n) == lidx ) {
  1993         if( !dump_once++ ) {
  1994           tty->cr();
  1995           b->dump_head( &_cfg._bbs );
  1997         dump(n);
  1998         continue;
  2000       uint cnt = n->req();
  2001       for( uint k = 1; k < cnt; k++ ) {
  2002         Node *m = n->in(k);
  2003         if (!m)  continue;  // be robust in the dumper
  2004         if( Find_const(m) == lidx ) {
  2005           if( !dump_once++ ) {
  2006             tty->cr();
  2007             b->dump_head( &_cfg._bbs );
  2009           dump(n);
  2013   } // End of per-block dump
  2014   tty->cr();
  2016 #endif // not PRODUCT
  2018 //------------------------------print_chaitin_statistics-------------------------------
  2019 int PhaseChaitin::_final_loads  = 0;
  2020 int PhaseChaitin::_final_stores = 0;
  2021 int PhaseChaitin::_final_memoves= 0;
  2022 int PhaseChaitin::_final_copies = 0;
  2023 double PhaseChaitin::_final_load_cost  = 0;
  2024 double PhaseChaitin::_final_store_cost = 0;
  2025 double PhaseChaitin::_final_memove_cost= 0;
  2026 double PhaseChaitin::_final_copy_cost  = 0;
  2027 int PhaseChaitin::_conserv_coalesce = 0;
  2028 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2029 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2030 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2031 int PhaseChaitin::_post_alloc = 0;
  2032 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2033 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2034 int PhaseChaitin::_used_cisc_instructions   = 0;
  2035 int PhaseChaitin::_unused_cisc_instructions = 0;
  2036 int PhaseChaitin::_allocator_attempts       = 0;
  2037 int PhaseChaitin::_allocator_successes      = 0;
  2039 #ifndef PRODUCT
  2040 uint PhaseChaitin::_high_pressure           = 0;
  2041 uint PhaseChaitin::_low_pressure            = 0;
  2043 void PhaseChaitin::print_chaitin_statistics() {
  2044   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2045   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2046   tty->print_cr("Adjusted spill cost = %7.0f.",
  2047                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2048                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2049   tty->print("Conservatively coalesced %d copies, %d pairs",
  2050                 _conserv_coalesce, _conserv_coalesce_pair);
  2051   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2052     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2053   tty->print_cr(", %d post alloc.", _post_alloc);
  2054   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2055     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2056                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2057   if( _used_cisc_instructions || _unused_cisc_instructions )
  2058     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2059                    _used_cisc_instructions, _unused_cisc_instructions);
  2060   if( _allocator_successes != 0 )
  2061     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2062   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2064 #endif // not PRODUCT

mercurial