src/cpu/x86/vm/templateTable_x86_64.cpp

Thu, 31 Mar 2011 02:31:57 -0700

author
twisti
date
Thu, 31 Mar 2011 02:31:57 -0700
changeset 2698
38fea01eb669
parent 2639
8033953d67ff
child 2784
92add02409c9
child 2807
bbe95b4337f1
permissions
-rw-r--r--

6817525: turn on method handle functionality by default for JSR 292
Summary: After appropriate testing, we need to turn on EnableMethodHandles and EnableInvokeDynamic by default.
Reviewed-by: never, kvn, jrose, phh

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No amd64 specific initialization
    46 }
    48 // Address computation: local variables
    50 static inline Address iaddress(int n) {
    51   return Address(r14, Interpreter::local_offset_in_bytes(n));
    52 }
    54 static inline Address laddress(int n) {
    55   return iaddress(n + 1);
    56 }
    58 static inline Address faddress(int n) {
    59   return iaddress(n);
    60 }
    62 static inline Address daddress(int n) {
    63   return laddress(n);
    64 }
    66 static inline Address aaddress(int n) {
    67   return iaddress(n);
    68 }
    70 static inline Address iaddress(Register r) {
    71   return Address(r14, r, Address::times_8);
    72 }
    74 static inline Address laddress(Register r) {
    75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    76 }
    78 static inline Address faddress(Register r) {
    79   return iaddress(r);
    80 }
    82 static inline Address daddress(Register r) {
    83   return laddress(r);
    84 }
    86 static inline Address aaddress(Register r) {
    87   return iaddress(r);
    88 }
    90 static inline Address at_rsp() {
    91   return Address(rsp, 0);
    92 }
    94 // At top of Java expression stack which may be different than esp().  It
    95 // isn't for category 1 objects.
    96 static inline Address at_tos   () {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    98 }
   100 static inline Address at_tos_p1() {
   101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   102 }
   104 static inline Address at_tos_p2() {
   105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   106 }
   108 static inline Address at_tos_p3() {
   109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   110 }
   112 // Condition conversion
   113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   114   switch (cc) {
   115   case TemplateTable::equal        : return Assembler::notEqual;
   116   case TemplateTable::not_equal    : return Assembler::equal;
   117   case TemplateTable::less         : return Assembler::greaterEqual;
   118   case TemplateTable::less_equal   : return Assembler::greater;
   119   case TemplateTable::greater      : return Assembler::lessEqual;
   120   case TemplateTable::greater_equal: return Assembler::less;
   121   }
   122   ShouldNotReachHere();
   123   return Assembler::zero;
   124 }
   127 // Miscelaneous helper routines
   128 // Store an oop (or NULL) at the address described by obj.
   129 // If val == noreg this means store a NULL
   131 static void do_oop_store(InterpreterMacroAssembler* _masm,
   132                          Address obj,
   133                          Register val,
   134                          BarrierSet::Name barrier,
   135                          bool precise) {
   136   assert(val == noreg || val == rax, "parameter is just for looks");
   137   switch (barrier) {
   138 #ifndef SERIALGC
   139     case BarrierSet::G1SATBCT:
   140     case BarrierSet::G1SATBCTLogging:
   141       {
   142         // flatten object address if needed
   143         if (obj.index() == noreg && obj.disp() == 0) {
   144           if (obj.base() != rdx) {
   145             __ movq(rdx, obj.base());
   146           }
   147         } else {
   148           __ leaq(rdx, obj);
   149         }
   150         __ g1_write_barrier_pre(rdx, r8, rbx, val != noreg);
   151         if (val == noreg) {
   152           __ store_heap_oop_null(Address(rdx, 0));
   153         } else {
   154           __ store_heap_oop(Address(rdx, 0), val);
   155           __ g1_write_barrier_post(rdx, val, r8, rbx);
   156         }
   158       }
   159       break;
   160 #endif // SERIALGC
   161     case BarrierSet::CardTableModRef:
   162     case BarrierSet::CardTableExtension:
   163       {
   164         if (val == noreg) {
   165           __ store_heap_oop_null(obj);
   166         } else {
   167           __ store_heap_oop(obj, val);
   168           // flatten object address if needed
   169           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   170             __ store_check(obj.base());
   171           } else {
   172             __ leaq(rdx, obj);
   173             __ store_check(rdx);
   174           }
   175         }
   176       }
   177       break;
   178     case BarrierSet::ModRef:
   179     case BarrierSet::Other:
   180       if (val == noreg) {
   181         __ store_heap_oop_null(obj);
   182       } else {
   183         __ store_heap_oop(obj, val);
   184       }
   185       break;
   186     default      :
   187       ShouldNotReachHere();
   189   }
   190 }
   192 Address TemplateTable::at_bcp(int offset) {
   193   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   194   return Address(r13, offset);
   195 }
   197 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   198                                    Register scratch,
   199                                    bool load_bc_into_scratch/*=true*/) {
   200   if (!RewriteBytecodes) {
   201     return;
   202   }
   203   // the pair bytecodes have already done the load.
   204   if (load_bc_into_scratch) {
   205     __ movl(bc, bytecode);
   206   }
   207   Label patch_done;
   208   if (JvmtiExport::can_post_breakpoint()) {
   209     Label fast_patch;
   210     // if a breakpoint is present we can't rewrite the stream directly
   211     __ movzbl(scratch, at_bcp(0));
   212     __ cmpl(scratch, Bytecodes::_breakpoint);
   213     __ jcc(Assembler::notEqual, fast_patch);
   214     __ get_method(scratch);
   215     // Let breakpoint table handling rewrite to quicker bytecode
   216     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, r13, bc);
   217 #ifndef ASSERT
   218     __ jmpb(patch_done);
   219 #else
   220     __ jmp(patch_done);
   221 #endif
   222     __ bind(fast_patch);
   223   }
   224 #ifdef ASSERT
   225   Label okay;
   226   __ load_unsigned_byte(scratch, at_bcp(0));
   227   __ cmpl(scratch, (int) Bytecodes::java_code(bytecode));
   228   __ jcc(Assembler::equal, okay);
   229   __ cmpl(scratch, bc);
   230   __ jcc(Assembler::equal, okay);
   231   __ stop("patching the wrong bytecode");
   232   __ bind(okay);
   233 #endif
   234   // patch bytecode
   235   __ movb(at_bcp(0), bc);
   236   __ bind(patch_done);
   237 }
   240 // Individual instructions
   242 void TemplateTable::nop() {
   243   transition(vtos, vtos);
   244   // nothing to do
   245 }
   247 void TemplateTable::shouldnotreachhere() {
   248   transition(vtos, vtos);
   249   __ stop("shouldnotreachhere bytecode");
   250 }
   252 void TemplateTable::aconst_null() {
   253   transition(vtos, atos);
   254   __ xorl(rax, rax);
   255 }
   257 void TemplateTable::iconst(int value) {
   258   transition(vtos, itos);
   259   if (value == 0) {
   260     __ xorl(rax, rax);
   261   } else {
   262     __ movl(rax, value);
   263   }
   264 }
   266 void TemplateTable::lconst(int value) {
   267   transition(vtos, ltos);
   268   if (value == 0) {
   269     __ xorl(rax, rax);
   270   } else {
   271     __ movl(rax, value);
   272   }
   273 }
   275 void TemplateTable::fconst(int value) {
   276   transition(vtos, ftos);
   277   static float one = 1.0f, two = 2.0f;
   278   switch (value) {
   279   case 0:
   280     __ xorps(xmm0, xmm0);
   281     break;
   282   case 1:
   283     __ movflt(xmm0, ExternalAddress((address) &one));
   284     break;
   285   case 2:
   286     __ movflt(xmm0, ExternalAddress((address) &two));
   287     break;
   288   default:
   289     ShouldNotReachHere();
   290     break;
   291   }
   292 }
   294 void TemplateTable::dconst(int value) {
   295   transition(vtos, dtos);
   296   static double one = 1.0;
   297   switch (value) {
   298   case 0:
   299     __ xorpd(xmm0, xmm0);
   300     break;
   301   case 1:
   302     __ movdbl(xmm0, ExternalAddress((address) &one));
   303     break;
   304   default:
   305     ShouldNotReachHere();
   306     break;
   307   }
   308 }
   310 void TemplateTable::bipush() {
   311   transition(vtos, itos);
   312   __ load_signed_byte(rax, at_bcp(1));
   313 }
   315 void TemplateTable::sipush() {
   316   transition(vtos, itos);
   317   __ load_unsigned_short(rax, at_bcp(1));
   318   __ bswapl(rax);
   319   __ sarl(rax, 16);
   320 }
   322 void TemplateTable::ldc(bool wide) {
   323   transition(vtos, vtos);
   324   Label call_ldc, notFloat, notClass, Done;
   326   if (wide) {
   327     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   328   } else {
   329     __ load_unsigned_byte(rbx, at_bcp(1));
   330   }
   332   __ get_cpool_and_tags(rcx, rax);
   333   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   334   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   336   // get type
   337   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   339   // unresolved string - get the resolved string
   340   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   341   __ jccb(Assembler::equal, call_ldc);
   343   // unresolved class - get the resolved class
   344   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   345   __ jccb(Assembler::equal, call_ldc);
   347   // unresolved class in error state - call into runtime to throw the error
   348   // from the first resolution attempt
   349   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   350   __ jccb(Assembler::equal, call_ldc);
   352   // resolved class - need to call vm to get java mirror of the class
   353   __ cmpl(rdx, JVM_CONSTANT_Class);
   354   __ jcc(Assembler::notEqual, notClass);
   356   __ bind(call_ldc);
   357   __ movl(c_rarg1, wide);
   358   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   359   __ push_ptr(rax);
   360   __ verify_oop(rax);
   361   __ jmp(Done);
   363   __ bind(notClass);
   364   __ cmpl(rdx, JVM_CONSTANT_Float);
   365   __ jccb(Assembler::notEqual, notFloat);
   366   // ftos
   367   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   368   __ push_f();
   369   __ jmp(Done);
   371   __ bind(notFloat);
   372 #ifdef ASSERT
   373   {
   374     Label L;
   375     __ cmpl(rdx, JVM_CONSTANT_Integer);
   376     __ jcc(Assembler::equal, L);
   377     __ cmpl(rdx, JVM_CONSTANT_String);
   378     __ jcc(Assembler::equal, L);
   379     __ stop("unexpected tag type in ldc");
   380     __ bind(L);
   381   }
   382 #endif
   383   // atos and itos
   384   Label isOop;
   385   __ cmpl(rdx, JVM_CONSTANT_Integer);
   386   __ jcc(Assembler::notEqual, isOop);
   387   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   388   __ push_i(rax);
   389   __ jmp(Done);
   391   __ bind(isOop);
   392   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   393   __ push_ptr(rax);
   395   if (VerifyOops) {
   396     __ verify_oop(rax);
   397   }
   399   __ bind(Done);
   400 }
   402 // Fast path for caching oop constants.
   403 // %%% We should use this to handle Class and String constants also.
   404 // %%% It will simplify the ldc/primitive path considerably.
   405 void TemplateTable::fast_aldc(bool wide) {
   406   transition(vtos, atos);
   408   if (!EnableInvokeDynamic) {
   409     // We should not encounter this bytecode if !EnableInvokeDynamic.
   410     // The verifier will stop it.  However, if we get past the verifier,
   411     // this will stop the thread in a reasonable way, without crashing the JVM.
   412     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   413                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   414     // the call_VM checks for exception, so we should never return here.
   415     __ should_not_reach_here();
   416     return;
   417   }
   419   const Register cache = rcx;
   420   const Register index = rdx;
   422   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   423   if (VerifyOops) {
   424     __ verify_oop(rax);
   425   }
   427   Label L_done, L_throw_exception;
   428   const Register con_klass_temp = rcx;  // same as cache
   429   const Register array_klass_temp = rdx;  // same as index
   430   __ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
   431   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   432   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
   433   __ jcc(Assembler::notEqual, L_done);
   434   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   435   __ jcc(Assembler::notEqual, L_throw_exception);
   436   __ xorptr(rax, rax);
   437   __ jmp(L_done);
   439   // Load the exception from the system-array which wraps it:
   440   __ bind(L_throw_exception);
   441   __ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   442   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   444   __ bind(L_done);
   445 }
   447 void TemplateTable::ldc2_w() {
   448   transition(vtos, vtos);
   449   Label Long, Done;
   450   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   452   __ get_cpool_and_tags(rcx, rax);
   453   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   454   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   456   // get type
   457   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   458           JVM_CONSTANT_Double);
   459   __ jccb(Assembler::notEqual, Long);
   460   // dtos
   461   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   462   __ push_d();
   463   __ jmpb(Done);
   465   __ bind(Long);
   466   // ltos
   467   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   468   __ push_l();
   470   __ bind(Done);
   471 }
   473 void TemplateTable::locals_index(Register reg, int offset) {
   474   __ load_unsigned_byte(reg, at_bcp(offset));
   475   __ negptr(reg);
   476 }
   478 void TemplateTable::iload() {
   479   transition(vtos, itos);
   480   if (RewriteFrequentPairs) {
   481     Label rewrite, done;
   482     const Register bc = c_rarg3;
   483     assert(rbx != bc, "register damaged");
   485     // get next byte
   486     __ load_unsigned_byte(rbx,
   487                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   488     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   489     // last two iloads in a pair.  Comparing against fast_iload means that
   490     // the next bytecode is neither an iload or a caload, and therefore
   491     // an iload pair.
   492     __ cmpl(rbx, Bytecodes::_iload);
   493     __ jcc(Assembler::equal, done);
   495     __ cmpl(rbx, Bytecodes::_fast_iload);
   496     __ movl(bc, Bytecodes::_fast_iload2);
   497     __ jccb(Assembler::equal, rewrite);
   499     // if _caload, rewrite to fast_icaload
   500     __ cmpl(rbx, Bytecodes::_caload);
   501     __ movl(bc, Bytecodes::_fast_icaload);
   502     __ jccb(Assembler::equal, rewrite);
   504     // rewrite so iload doesn't check again.
   505     __ movl(bc, Bytecodes::_fast_iload);
   507     // rewrite
   508     // bc: fast bytecode
   509     __ bind(rewrite);
   510     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   511     __ bind(done);
   512   }
   514   // Get the local value into tos
   515   locals_index(rbx);
   516   __ movl(rax, iaddress(rbx));
   517 }
   519 void TemplateTable::fast_iload2() {
   520   transition(vtos, itos);
   521   locals_index(rbx);
   522   __ movl(rax, iaddress(rbx));
   523   __ push(itos);
   524   locals_index(rbx, 3);
   525   __ movl(rax, iaddress(rbx));
   526 }
   528 void TemplateTable::fast_iload() {
   529   transition(vtos, itos);
   530   locals_index(rbx);
   531   __ movl(rax, iaddress(rbx));
   532 }
   534 void TemplateTable::lload() {
   535   transition(vtos, ltos);
   536   locals_index(rbx);
   537   __ movq(rax, laddress(rbx));
   538 }
   540 void TemplateTable::fload() {
   541   transition(vtos, ftos);
   542   locals_index(rbx);
   543   __ movflt(xmm0, faddress(rbx));
   544 }
   546 void TemplateTable::dload() {
   547   transition(vtos, dtos);
   548   locals_index(rbx);
   549   __ movdbl(xmm0, daddress(rbx));
   550 }
   552 void TemplateTable::aload() {
   553   transition(vtos, atos);
   554   locals_index(rbx);
   555   __ movptr(rax, aaddress(rbx));
   556 }
   558 void TemplateTable::locals_index_wide(Register reg) {
   559   __ movl(reg, at_bcp(2));
   560   __ bswapl(reg);
   561   __ shrl(reg, 16);
   562   __ negptr(reg);
   563 }
   565 void TemplateTable::wide_iload() {
   566   transition(vtos, itos);
   567   locals_index_wide(rbx);
   568   __ movl(rax, iaddress(rbx));
   569 }
   571 void TemplateTable::wide_lload() {
   572   transition(vtos, ltos);
   573   locals_index_wide(rbx);
   574   __ movq(rax, laddress(rbx));
   575 }
   577 void TemplateTable::wide_fload() {
   578   transition(vtos, ftos);
   579   locals_index_wide(rbx);
   580   __ movflt(xmm0, faddress(rbx));
   581 }
   583 void TemplateTable::wide_dload() {
   584   transition(vtos, dtos);
   585   locals_index_wide(rbx);
   586   __ movdbl(xmm0, daddress(rbx));
   587 }
   589 void TemplateTable::wide_aload() {
   590   transition(vtos, atos);
   591   locals_index_wide(rbx);
   592   __ movptr(rax, aaddress(rbx));
   593 }
   595 void TemplateTable::index_check(Register array, Register index) {
   596   // destroys rbx
   597   // check array
   598   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   599   // sign extend index for use by indexed load
   600   __ movl2ptr(index, index);
   601   // check index
   602   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   603   if (index != rbx) {
   604     // ??? convention: move aberrant index into ebx for exception message
   605     assert(rbx != array, "different registers");
   606     __ movl(rbx, index);
   607   }
   608   __ jump_cc(Assembler::aboveEqual,
   609              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   610 }
   612 void TemplateTable::iaload() {
   613   transition(itos, itos);
   614   __ pop_ptr(rdx);
   615   // eax: index
   616   // rdx: array
   617   index_check(rdx, rax); // kills rbx
   618   __ movl(rax, Address(rdx, rax,
   619                        Address::times_4,
   620                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   621 }
   623 void TemplateTable::laload() {
   624   transition(itos, ltos);
   625   __ pop_ptr(rdx);
   626   // eax: index
   627   // rdx: array
   628   index_check(rdx, rax); // kills rbx
   629   __ movq(rax, Address(rdx, rbx,
   630                        Address::times_8,
   631                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   632 }
   634 void TemplateTable::faload() {
   635   transition(itos, ftos);
   636   __ pop_ptr(rdx);
   637   // eax: index
   638   // rdx: array
   639   index_check(rdx, rax); // kills rbx
   640   __ movflt(xmm0, Address(rdx, rax,
   641                          Address::times_4,
   642                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   643 }
   645 void TemplateTable::daload() {
   646   transition(itos, dtos);
   647   __ pop_ptr(rdx);
   648   // eax: index
   649   // rdx: array
   650   index_check(rdx, rax); // kills rbx
   651   __ movdbl(xmm0, Address(rdx, rax,
   652                           Address::times_8,
   653                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   654 }
   656 void TemplateTable::aaload() {
   657   transition(itos, atos);
   658   __ pop_ptr(rdx);
   659   // eax: index
   660   // rdx: array
   661   index_check(rdx, rax); // kills rbx
   662   __ load_heap_oop(rax, Address(rdx, rax,
   663                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   664                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   665 }
   667 void TemplateTable::baload() {
   668   transition(itos, itos);
   669   __ pop_ptr(rdx);
   670   // eax: index
   671   // rdx: array
   672   index_check(rdx, rax); // kills rbx
   673   __ load_signed_byte(rax,
   674                       Address(rdx, rax,
   675                               Address::times_1,
   676                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   677 }
   679 void TemplateTable::caload() {
   680   transition(itos, itos);
   681   __ pop_ptr(rdx);
   682   // eax: index
   683   // rdx: array
   684   index_check(rdx, rax); // kills rbx
   685   __ load_unsigned_short(rax,
   686                          Address(rdx, rax,
   687                                  Address::times_2,
   688                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   689 }
   691 // iload followed by caload frequent pair
   692 void TemplateTable::fast_icaload() {
   693   transition(vtos, itos);
   694   // load index out of locals
   695   locals_index(rbx);
   696   __ movl(rax, iaddress(rbx));
   698   // eax: index
   699   // rdx: array
   700   __ pop_ptr(rdx);
   701   index_check(rdx, rax); // kills rbx
   702   __ load_unsigned_short(rax,
   703                          Address(rdx, rax,
   704                                  Address::times_2,
   705                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   706 }
   708 void TemplateTable::saload() {
   709   transition(itos, itos);
   710   __ pop_ptr(rdx);
   711   // eax: index
   712   // rdx: array
   713   index_check(rdx, rax); // kills rbx
   714   __ load_signed_short(rax,
   715                        Address(rdx, rax,
   716                                Address::times_2,
   717                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   718 }
   720 void TemplateTable::iload(int n) {
   721   transition(vtos, itos);
   722   __ movl(rax, iaddress(n));
   723 }
   725 void TemplateTable::lload(int n) {
   726   transition(vtos, ltos);
   727   __ movq(rax, laddress(n));
   728 }
   730 void TemplateTable::fload(int n) {
   731   transition(vtos, ftos);
   732   __ movflt(xmm0, faddress(n));
   733 }
   735 void TemplateTable::dload(int n) {
   736   transition(vtos, dtos);
   737   __ movdbl(xmm0, daddress(n));
   738 }
   740 void TemplateTable::aload(int n) {
   741   transition(vtos, atos);
   742   __ movptr(rax, aaddress(n));
   743 }
   745 void TemplateTable::aload_0() {
   746   transition(vtos, atos);
   747   // According to bytecode histograms, the pairs:
   748   //
   749   // _aload_0, _fast_igetfield
   750   // _aload_0, _fast_agetfield
   751   // _aload_0, _fast_fgetfield
   752   //
   753   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   754   // _aload_0 bytecode checks if the next bytecode is either
   755   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   756   // rewrites the current bytecode into a pair bytecode; otherwise it
   757   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   758   // the pair check anymore.
   759   //
   760   // Note: If the next bytecode is _getfield, the rewrite must be
   761   //       delayed, otherwise we may miss an opportunity for a pair.
   762   //
   763   // Also rewrite frequent pairs
   764   //   aload_0, aload_1
   765   //   aload_0, iload_1
   766   // These bytecodes with a small amount of code are most profitable
   767   // to rewrite
   768   if (RewriteFrequentPairs) {
   769     Label rewrite, done;
   770     const Register bc = c_rarg3;
   771     assert(rbx != bc, "register damaged");
   772     // get next byte
   773     __ load_unsigned_byte(rbx,
   774                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   776     // do actual aload_0
   777     aload(0);
   779     // if _getfield then wait with rewrite
   780     __ cmpl(rbx, Bytecodes::_getfield);
   781     __ jcc(Assembler::equal, done);
   783     // if _igetfield then reqrite to _fast_iaccess_0
   784     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   785            Bytecodes::_aload_0,
   786            "fix bytecode definition");
   787     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   788     __ movl(bc, Bytecodes::_fast_iaccess_0);
   789     __ jccb(Assembler::equal, rewrite);
   791     // if _agetfield then reqrite to _fast_aaccess_0
   792     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   793            Bytecodes::_aload_0,
   794            "fix bytecode definition");
   795     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   796     __ movl(bc, Bytecodes::_fast_aaccess_0);
   797     __ jccb(Assembler::equal, rewrite);
   799     // if _fgetfield then reqrite to _fast_faccess_0
   800     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   801            Bytecodes::_aload_0,
   802            "fix bytecode definition");
   803     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   804     __ movl(bc, Bytecodes::_fast_faccess_0);
   805     __ jccb(Assembler::equal, rewrite);
   807     // else rewrite to _fast_aload0
   808     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   809            Bytecodes::_aload_0,
   810            "fix bytecode definition");
   811     __ movl(bc, Bytecodes::_fast_aload_0);
   813     // rewrite
   814     // bc: fast bytecode
   815     __ bind(rewrite);
   816     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   818     __ bind(done);
   819   } else {
   820     aload(0);
   821   }
   822 }
   824 void TemplateTable::istore() {
   825   transition(itos, vtos);
   826   locals_index(rbx);
   827   __ movl(iaddress(rbx), rax);
   828 }
   830 void TemplateTable::lstore() {
   831   transition(ltos, vtos);
   832   locals_index(rbx);
   833   __ movq(laddress(rbx), rax);
   834 }
   836 void TemplateTable::fstore() {
   837   transition(ftos, vtos);
   838   locals_index(rbx);
   839   __ movflt(faddress(rbx), xmm0);
   840 }
   842 void TemplateTable::dstore() {
   843   transition(dtos, vtos);
   844   locals_index(rbx);
   845   __ movdbl(daddress(rbx), xmm0);
   846 }
   848 void TemplateTable::astore() {
   849   transition(vtos, vtos);
   850   __ pop_ptr(rax);
   851   locals_index(rbx);
   852   __ movptr(aaddress(rbx), rax);
   853 }
   855 void TemplateTable::wide_istore() {
   856   transition(vtos, vtos);
   857   __ pop_i();
   858   locals_index_wide(rbx);
   859   __ movl(iaddress(rbx), rax);
   860 }
   862 void TemplateTable::wide_lstore() {
   863   transition(vtos, vtos);
   864   __ pop_l();
   865   locals_index_wide(rbx);
   866   __ movq(laddress(rbx), rax);
   867 }
   869 void TemplateTable::wide_fstore() {
   870   transition(vtos, vtos);
   871   __ pop_f();
   872   locals_index_wide(rbx);
   873   __ movflt(faddress(rbx), xmm0);
   874 }
   876 void TemplateTable::wide_dstore() {
   877   transition(vtos, vtos);
   878   __ pop_d();
   879   locals_index_wide(rbx);
   880   __ movdbl(daddress(rbx), xmm0);
   881 }
   883 void TemplateTable::wide_astore() {
   884   transition(vtos, vtos);
   885   __ pop_ptr(rax);
   886   locals_index_wide(rbx);
   887   __ movptr(aaddress(rbx), rax);
   888 }
   890 void TemplateTable::iastore() {
   891   transition(itos, vtos);
   892   __ pop_i(rbx);
   893   __ pop_ptr(rdx);
   894   // eax: value
   895   // ebx: index
   896   // rdx: array
   897   index_check(rdx, rbx); // prefer index in ebx
   898   __ movl(Address(rdx, rbx,
   899                   Address::times_4,
   900                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   901           rax);
   902 }
   904 void TemplateTable::lastore() {
   905   transition(ltos, vtos);
   906   __ pop_i(rbx);
   907   __ pop_ptr(rdx);
   908   // rax: value
   909   // ebx: index
   910   // rdx: array
   911   index_check(rdx, rbx); // prefer index in ebx
   912   __ movq(Address(rdx, rbx,
   913                   Address::times_8,
   914                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   915           rax);
   916 }
   918 void TemplateTable::fastore() {
   919   transition(ftos, vtos);
   920   __ pop_i(rbx);
   921   __ pop_ptr(rdx);
   922   // xmm0: value
   923   // ebx:  index
   924   // rdx:  array
   925   index_check(rdx, rbx); // prefer index in ebx
   926   __ movflt(Address(rdx, rbx,
   927                    Address::times_4,
   928                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   929            xmm0);
   930 }
   932 void TemplateTable::dastore() {
   933   transition(dtos, vtos);
   934   __ pop_i(rbx);
   935   __ pop_ptr(rdx);
   936   // xmm0: value
   937   // ebx:  index
   938   // rdx:  array
   939   index_check(rdx, rbx); // prefer index in ebx
   940   __ movdbl(Address(rdx, rbx,
   941                    Address::times_8,
   942                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   943            xmm0);
   944 }
   946 void TemplateTable::aastore() {
   947   Label is_null, ok_is_subtype, done;
   948   transition(vtos, vtos);
   949   // stack: ..., array, index, value
   950   __ movptr(rax, at_tos());    // value
   951   __ movl(rcx, at_tos_p1()); // index
   952   __ movptr(rdx, at_tos_p2()); // array
   954   Address element_address(rdx, rcx,
   955                           UseCompressedOops? Address::times_4 : Address::times_8,
   956                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   958   index_check(rdx, rcx);     // kills rbx
   959   // do array store check - check for NULL value first
   960   __ testptr(rax, rax);
   961   __ jcc(Assembler::zero, is_null);
   963   // Move subklass into rbx
   964   __ load_klass(rbx, rax);
   965   // Move superklass into rax
   966   __ load_klass(rax, rdx);
   967   __ movptr(rax, Address(rax,
   968                          sizeof(oopDesc) +
   969                          objArrayKlass::element_klass_offset_in_bytes()));
   970   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
   971   __ lea(rdx, element_address);
   973   // Generate subtype check.  Blows rcx, rdi
   974   // Superklass in rax.  Subklass in rbx.
   975   __ gen_subtype_check(rbx, ok_is_subtype);
   977   // Come here on failure
   978   // object is at TOS
   979   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   981   // Come here on success
   982   __ bind(ok_is_subtype);
   984   // Get the value we will store
   985   __ movptr(rax, at_tos());
   986   // Now store using the appropriate barrier
   987   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   988   __ jmp(done);
   990   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
   991   __ bind(is_null);
   992   __ profile_null_seen(rbx);
   994   // Store a NULL
   995   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   997   // Pop stack arguments
   998   __ bind(done);
   999   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1002 void TemplateTable::bastore() {
  1003   transition(itos, vtos);
  1004   __ pop_i(rbx);
  1005   __ pop_ptr(rdx);
  1006   // eax: value
  1007   // ebx: index
  1008   // rdx: array
  1009   index_check(rdx, rbx); // prefer index in ebx
  1010   __ movb(Address(rdx, rbx,
  1011                   Address::times_1,
  1012                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1013           rax);
  1016 void TemplateTable::castore() {
  1017   transition(itos, vtos);
  1018   __ pop_i(rbx);
  1019   __ pop_ptr(rdx);
  1020   // eax: value
  1021   // ebx: index
  1022   // rdx: array
  1023   index_check(rdx, rbx);  // prefer index in ebx
  1024   __ movw(Address(rdx, rbx,
  1025                   Address::times_2,
  1026                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1027           rax);
  1030 void TemplateTable::sastore() {
  1031   castore();
  1034 void TemplateTable::istore(int n) {
  1035   transition(itos, vtos);
  1036   __ movl(iaddress(n), rax);
  1039 void TemplateTable::lstore(int n) {
  1040   transition(ltos, vtos);
  1041   __ movq(laddress(n), rax);
  1044 void TemplateTable::fstore(int n) {
  1045   transition(ftos, vtos);
  1046   __ movflt(faddress(n), xmm0);
  1049 void TemplateTable::dstore(int n) {
  1050   transition(dtos, vtos);
  1051   __ movdbl(daddress(n), xmm0);
  1054 void TemplateTable::astore(int n) {
  1055   transition(vtos, vtos);
  1056   __ pop_ptr(rax);
  1057   __ movptr(aaddress(n), rax);
  1060 void TemplateTable::pop() {
  1061   transition(vtos, vtos);
  1062   __ addptr(rsp, Interpreter::stackElementSize);
  1065 void TemplateTable::pop2() {
  1066   transition(vtos, vtos);
  1067   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1070 void TemplateTable::dup() {
  1071   transition(vtos, vtos);
  1072   __ load_ptr(0, rax);
  1073   __ push_ptr(rax);
  1074   // stack: ..., a, a
  1077 void TemplateTable::dup_x1() {
  1078   transition(vtos, vtos);
  1079   // stack: ..., a, b
  1080   __ load_ptr( 0, rax);  // load b
  1081   __ load_ptr( 1, rcx);  // load a
  1082   __ store_ptr(1, rax);  // store b
  1083   __ store_ptr(0, rcx);  // store a
  1084   __ push_ptr(rax);      // push b
  1085   // stack: ..., b, a, b
  1088 void TemplateTable::dup_x2() {
  1089   transition(vtos, vtos);
  1090   // stack: ..., a, b, c
  1091   __ load_ptr( 0, rax);  // load c
  1092   __ load_ptr( 2, rcx);  // load a
  1093   __ store_ptr(2, rax);  // store c in a
  1094   __ push_ptr(rax);      // push c
  1095   // stack: ..., c, b, c, c
  1096   __ load_ptr( 2, rax);  // load b
  1097   __ store_ptr(2, rcx);  // store a in b
  1098   // stack: ..., c, a, c, c
  1099   __ store_ptr(1, rax);  // store b in c
  1100   // stack: ..., c, a, b, c
  1103 void TemplateTable::dup2() {
  1104   transition(vtos, vtos);
  1105   // stack: ..., a, b
  1106   __ load_ptr(1, rax);  // load a
  1107   __ push_ptr(rax);     // push a
  1108   __ load_ptr(1, rax);  // load b
  1109   __ push_ptr(rax);     // push b
  1110   // stack: ..., a, b, a, b
  1113 void TemplateTable::dup2_x1() {
  1114   transition(vtos, vtos);
  1115   // stack: ..., a, b, c
  1116   __ load_ptr( 0, rcx);  // load c
  1117   __ load_ptr( 1, rax);  // load b
  1118   __ push_ptr(rax);      // push b
  1119   __ push_ptr(rcx);      // push c
  1120   // stack: ..., a, b, c, b, c
  1121   __ store_ptr(3, rcx);  // store c in b
  1122   // stack: ..., a, c, c, b, c
  1123   __ load_ptr( 4, rcx);  // load a
  1124   __ store_ptr(2, rcx);  // store a in 2nd c
  1125   // stack: ..., a, c, a, b, c
  1126   __ store_ptr(4, rax);  // store b in a
  1127   // stack: ..., b, c, a, b, c
  1130 void TemplateTable::dup2_x2() {
  1131   transition(vtos, vtos);
  1132   // stack: ..., a, b, c, d
  1133   __ load_ptr( 0, rcx);  // load d
  1134   __ load_ptr( 1, rax);  // load c
  1135   __ push_ptr(rax);      // push c
  1136   __ push_ptr(rcx);      // push d
  1137   // stack: ..., a, b, c, d, c, d
  1138   __ load_ptr( 4, rax);  // load b
  1139   __ store_ptr(2, rax);  // store b in d
  1140   __ store_ptr(4, rcx);  // store d in b
  1141   // stack: ..., a, d, c, b, c, d
  1142   __ load_ptr( 5, rcx);  // load a
  1143   __ load_ptr( 3, rax);  // load c
  1144   __ store_ptr(3, rcx);  // store a in c
  1145   __ store_ptr(5, rax);  // store c in a
  1146   // stack: ..., c, d, a, b, c, d
  1149 void TemplateTable::swap() {
  1150   transition(vtos, vtos);
  1151   // stack: ..., a, b
  1152   __ load_ptr( 1, rcx);  // load a
  1153   __ load_ptr( 0, rax);  // load b
  1154   __ store_ptr(0, rcx);  // store a in b
  1155   __ store_ptr(1, rax);  // store b in a
  1156   // stack: ..., b, a
  1159 void TemplateTable::iop2(Operation op) {
  1160   transition(itos, itos);
  1161   switch (op) {
  1162   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1163   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1164   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1165   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1166   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1167   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1168   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1169   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1170   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1171   default   : ShouldNotReachHere();
  1175 void TemplateTable::lop2(Operation op) {
  1176   transition(ltos, ltos);
  1177   switch (op) {
  1178   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1179   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1180   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1181   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1182   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1183   default   : ShouldNotReachHere();
  1187 void TemplateTable::idiv() {
  1188   transition(itos, itos);
  1189   __ movl(rcx, rax);
  1190   __ pop_i(rax);
  1191   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1192   //       they are not equal, one could do a normal division (no correction
  1193   //       needed), which may speed up this implementation for the common case.
  1194   //       (see also JVM spec., p.243 & p.271)
  1195   __ corrected_idivl(rcx);
  1198 void TemplateTable::irem() {
  1199   transition(itos, itos);
  1200   __ movl(rcx, rax);
  1201   __ pop_i(rax);
  1202   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1203   //       they are not equal, one could do a normal division (no correction
  1204   //       needed), which may speed up this implementation for the common case.
  1205   //       (see also JVM spec., p.243 & p.271)
  1206   __ corrected_idivl(rcx);
  1207   __ movl(rax, rdx);
  1210 void TemplateTable::lmul() {
  1211   transition(ltos, ltos);
  1212   __ pop_l(rdx);
  1213   __ imulq(rax, rdx);
  1216 void TemplateTable::ldiv() {
  1217   transition(ltos, ltos);
  1218   __ mov(rcx, rax);
  1219   __ pop_l(rax);
  1220   // generate explicit div0 check
  1221   __ testq(rcx, rcx);
  1222   __ jump_cc(Assembler::zero,
  1223              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1224   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1225   //       they are not equal, one could do a normal division (no correction
  1226   //       needed), which may speed up this implementation for the common case.
  1227   //       (see also JVM spec., p.243 & p.271)
  1228   __ corrected_idivq(rcx); // kills rbx
  1231 void TemplateTable::lrem() {
  1232   transition(ltos, ltos);
  1233   __ mov(rcx, rax);
  1234   __ pop_l(rax);
  1235   __ testq(rcx, rcx);
  1236   __ jump_cc(Assembler::zero,
  1237              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1238   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1239   //       they are not equal, one could do a normal division (no correction
  1240   //       needed), which may speed up this implementation for the common case.
  1241   //       (see also JVM spec., p.243 & p.271)
  1242   __ corrected_idivq(rcx); // kills rbx
  1243   __ mov(rax, rdx);
  1246 void TemplateTable::lshl() {
  1247   transition(itos, ltos);
  1248   __ movl(rcx, rax);                             // get shift count
  1249   __ pop_l(rax);                                 // get shift value
  1250   __ shlq(rax);
  1253 void TemplateTable::lshr() {
  1254   transition(itos, ltos);
  1255   __ movl(rcx, rax);                             // get shift count
  1256   __ pop_l(rax);                                 // get shift value
  1257   __ sarq(rax);
  1260 void TemplateTable::lushr() {
  1261   transition(itos, ltos);
  1262   __ movl(rcx, rax);                             // get shift count
  1263   __ pop_l(rax);                                 // get shift value
  1264   __ shrq(rax);
  1267 void TemplateTable::fop2(Operation op) {
  1268   transition(ftos, ftos);
  1269   switch (op) {
  1270   case add:
  1271     __ addss(xmm0, at_rsp());
  1272     __ addptr(rsp, Interpreter::stackElementSize);
  1273     break;
  1274   case sub:
  1275     __ movflt(xmm1, xmm0);
  1276     __ pop_f(xmm0);
  1277     __ subss(xmm0, xmm1);
  1278     break;
  1279   case mul:
  1280     __ mulss(xmm0, at_rsp());
  1281     __ addptr(rsp, Interpreter::stackElementSize);
  1282     break;
  1283   case div:
  1284     __ movflt(xmm1, xmm0);
  1285     __ pop_f(xmm0);
  1286     __ divss(xmm0, xmm1);
  1287     break;
  1288   case rem:
  1289     __ movflt(xmm1, xmm0);
  1290     __ pop_f(xmm0);
  1291     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1292     break;
  1293   default:
  1294     ShouldNotReachHere();
  1295     break;
  1299 void TemplateTable::dop2(Operation op) {
  1300   transition(dtos, dtos);
  1301   switch (op) {
  1302   case add:
  1303     __ addsd(xmm0, at_rsp());
  1304     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1305     break;
  1306   case sub:
  1307     __ movdbl(xmm1, xmm0);
  1308     __ pop_d(xmm0);
  1309     __ subsd(xmm0, xmm1);
  1310     break;
  1311   case mul:
  1312     __ mulsd(xmm0, at_rsp());
  1313     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1314     break;
  1315   case div:
  1316     __ movdbl(xmm1, xmm0);
  1317     __ pop_d(xmm0);
  1318     __ divsd(xmm0, xmm1);
  1319     break;
  1320   case rem:
  1321     __ movdbl(xmm1, xmm0);
  1322     __ pop_d(xmm0);
  1323     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1324     break;
  1325   default:
  1326     ShouldNotReachHere();
  1327     break;
  1331 void TemplateTable::ineg() {
  1332   transition(itos, itos);
  1333   __ negl(rax);
  1336 void TemplateTable::lneg() {
  1337   transition(ltos, ltos);
  1338   __ negq(rax);
  1341 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1342 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1343   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1344   // of 128-bits operands for SSE instructions.
  1345   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1346   // Store the value to a 128-bits operand.
  1347   operand[0] = lo;
  1348   operand[1] = hi;
  1349   return operand;
  1352 // Buffer for 128-bits masks used by SSE instructions.
  1353 static jlong float_signflip_pool[2*2];
  1354 static jlong double_signflip_pool[2*2];
  1356 void TemplateTable::fneg() {
  1357   transition(ftos, ftos);
  1358   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1359   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1362 void TemplateTable::dneg() {
  1363   transition(dtos, dtos);
  1364   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1365   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1368 void TemplateTable::iinc() {
  1369   transition(vtos, vtos);
  1370   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1371   locals_index(rbx);
  1372   __ addl(iaddress(rbx), rdx);
  1375 void TemplateTable::wide_iinc() {
  1376   transition(vtos, vtos);
  1377   __ movl(rdx, at_bcp(4)); // get constant
  1378   locals_index_wide(rbx);
  1379   __ bswapl(rdx); // swap bytes & sign-extend constant
  1380   __ sarl(rdx, 16);
  1381   __ addl(iaddress(rbx), rdx);
  1382   // Note: should probably use only one movl to get both
  1383   //       the index and the constant -> fix this
  1386 void TemplateTable::convert() {
  1387   // Checking
  1388 #ifdef ASSERT
  1390     TosState tos_in  = ilgl;
  1391     TosState tos_out = ilgl;
  1392     switch (bytecode()) {
  1393     case Bytecodes::_i2l: // fall through
  1394     case Bytecodes::_i2f: // fall through
  1395     case Bytecodes::_i2d: // fall through
  1396     case Bytecodes::_i2b: // fall through
  1397     case Bytecodes::_i2c: // fall through
  1398     case Bytecodes::_i2s: tos_in = itos; break;
  1399     case Bytecodes::_l2i: // fall through
  1400     case Bytecodes::_l2f: // fall through
  1401     case Bytecodes::_l2d: tos_in = ltos; break;
  1402     case Bytecodes::_f2i: // fall through
  1403     case Bytecodes::_f2l: // fall through
  1404     case Bytecodes::_f2d: tos_in = ftos; break;
  1405     case Bytecodes::_d2i: // fall through
  1406     case Bytecodes::_d2l: // fall through
  1407     case Bytecodes::_d2f: tos_in = dtos; break;
  1408     default             : ShouldNotReachHere();
  1410     switch (bytecode()) {
  1411     case Bytecodes::_l2i: // fall through
  1412     case Bytecodes::_f2i: // fall through
  1413     case Bytecodes::_d2i: // fall through
  1414     case Bytecodes::_i2b: // fall through
  1415     case Bytecodes::_i2c: // fall through
  1416     case Bytecodes::_i2s: tos_out = itos; break;
  1417     case Bytecodes::_i2l: // fall through
  1418     case Bytecodes::_f2l: // fall through
  1419     case Bytecodes::_d2l: tos_out = ltos; break;
  1420     case Bytecodes::_i2f: // fall through
  1421     case Bytecodes::_l2f: // fall through
  1422     case Bytecodes::_d2f: tos_out = ftos; break;
  1423     case Bytecodes::_i2d: // fall through
  1424     case Bytecodes::_l2d: // fall through
  1425     case Bytecodes::_f2d: tos_out = dtos; break;
  1426     default             : ShouldNotReachHere();
  1428     transition(tos_in, tos_out);
  1430 #endif // ASSERT
  1432   static const int64_t is_nan = 0x8000000000000000L;
  1434   // Conversion
  1435   switch (bytecode()) {
  1436   case Bytecodes::_i2l:
  1437     __ movslq(rax, rax);
  1438     break;
  1439   case Bytecodes::_i2f:
  1440     __ cvtsi2ssl(xmm0, rax);
  1441     break;
  1442   case Bytecodes::_i2d:
  1443     __ cvtsi2sdl(xmm0, rax);
  1444     break;
  1445   case Bytecodes::_i2b:
  1446     __ movsbl(rax, rax);
  1447     break;
  1448   case Bytecodes::_i2c:
  1449     __ movzwl(rax, rax);
  1450     break;
  1451   case Bytecodes::_i2s:
  1452     __ movswl(rax, rax);
  1453     break;
  1454   case Bytecodes::_l2i:
  1455     __ movl(rax, rax);
  1456     break;
  1457   case Bytecodes::_l2f:
  1458     __ cvtsi2ssq(xmm0, rax);
  1459     break;
  1460   case Bytecodes::_l2d:
  1461     __ cvtsi2sdq(xmm0, rax);
  1462     break;
  1463   case Bytecodes::_f2i:
  1465     Label L;
  1466     __ cvttss2sil(rax, xmm0);
  1467     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1468     __ jcc(Assembler::notEqual, L);
  1469     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1470     __ bind(L);
  1472     break;
  1473   case Bytecodes::_f2l:
  1475     Label L;
  1476     __ cvttss2siq(rax, xmm0);
  1477     // NaN or overflow/underflow?
  1478     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1479     __ jcc(Assembler::notEqual, L);
  1480     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1481     __ bind(L);
  1483     break;
  1484   case Bytecodes::_f2d:
  1485     __ cvtss2sd(xmm0, xmm0);
  1486     break;
  1487   case Bytecodes::_d2i:
  1489     Label L;
  1490     __ cvttsd2sil(rax, xmm0);
  1491     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1492     __ jcc(Assembler::notEqual, L);
  1493     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1494     __ bind(L);
  1496     break;
  1497   case Bytecodes::_d2l:
  1499     Label L;
  1500     __ cvttsd2siq(rax, xmm0);
  1501     // NaN or overflow/underflow?
  1502     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1503     __ jcc(Assembler::notEqual, L);
  1504     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1505     __ bind(L);
  1507     break;
  1508   case Bytecodes::_d2f:
  1509     __ cvtsd2ss(xmm0, xmm0);
  1510     break;
  1511   default:
  1512     ShouldNotReachHere();
  1516 void TemplateTable::lcmp() {
  1517   transition(ltos, itos);
  1518   Label done;
  1519   __ pop_l(rdx);
  1520   __ cmpq(rdx, rax);
  1521   __ movl(rax, -1);
  1522   __ jccb(Assembler::less, done);
  1523   __ setb(Assembler::notEqual, rax);
  1524   __ movzbl(rax, rax);
  1525   __ bind(done);
  1528 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1529   Label done;
  1530   if (is_float) {
  1531     // XXX get rid of pop here, use ... reg, mem32
  1532     __ pop_f(xmm1);
  1533     __ ucomiss(xmm1, xmm0);
  1534   } else {
  1535     // XXX get rid of pop here, use ... reg, mem64
  1536     __ pop_d(xmm1);
  1537     __ ucomisd(xmm1, xmm0);
  1539   if (unordered_result < 0) {
  1540     __ movl(rax, -1);
  1541     __ jccb(Assembler::parity, done);
  1542     __ jccb(Assembler::below, done);
  1543     __ setb(Assembler::notEqual, rdx);
  1544     __ movzbl(rax, rdx);
  1545   } else {
  1546     __ movl(rax, 1);
  1547     __ jccb(Assembler::parity, done);
  1548     __ jccb(Assembler::above, done);
  1549     __ movl(rax, 0);
  1550     __ jccb(Assembler::equal, done);
  1551     __ decrementl(rax);
  1553   __ bind(done);
  1556 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1557   __ get_method(rcx); // rcx holds method
  1558   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1559                                      // holds bumped taken count
  1561   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1562                              InvocationCounter::counter_offset();
  1563   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1564                               InvocationCounter::counter_offset();
  1565   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1567   // Load up edx with the branch displacement
  1568   __ movl(rdx, at_bcp(1));
  1569   __ bswapl(rdx);
  1571   if (!is_wide) {
  1572     __ sarl(rdx, 16);
  1574   __ movl2ptr(rdx, rdx);
  1576   // Handle all the JSR stuff here, then exit.
  1577   // It's much shorter and cleaner than intermingling with the non-JSR
  1578   // normal-branch stuff occurring below.
  1579   if (is_jsr) {
  1580     // Pre-load the next target bytecode into rbx
  1581     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1583     // compute return address as bci in rax
  1584     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1585                         in_bytes(constMethodOopDesc::codes_offset())));
  1586     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1587     // Adjust the bcp in r13 by the displacement in rdx
  1588     __ addptr(r13, rdx);
  1589     // jsr returns atos that is not an oop
  1590     __ push_i(rax);
  1591     __ dispatch_only(vtos);
  1592     return;
  1595   // Normal (non-jsr) branch handling
  1597   // Adjust the bcp in r13 by the displacement in rdx
  1598   __ addptr(r13, rdx);
  1600   assert(UseLoopCounter || !UseOnStackReplacement,
  1601          "on-stack-replacement requires loop counters");
  1602   Label backedge_counter_overflow;
  1603   Label profile_method;
  1604   Label dispatch;
  1605   if (UseLoopCounter) {
  1606     // increment backedge counter for backward branches
  1607     // rax: MDO
  1608     // ebx: MDO bumped taken-count
  1609     // rcx: method
  1610     // rdx: target offset
  1611     // r13: target bcp
  1612     // r14: locals pointer
  1613     __ testl(rdx, rdx);             // check if forward or backward branch
  1614     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1615     if (TieredCompilation) {
  1616       Label no_mdo;
  1617       int increment = InvocationCounter::count_increment;
  1618       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1619       if (ProfileInterpreter) {
  1620         // Are we profiling?
  1621         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1622         __ testptr(rbx, rbx);
  1623         __ jccb(Assembler::zero, no_mdo);
  1624         // Increment the MDO backedge counter
  1625         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1626                                            in_bytes(InvocationCounter::counter_offset()));
  1627         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1628                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1629         __ jmp(dispatch);
  1631       __ bind(no_mdo);
  1632       // Increment backedge counter in methodOop
  1633       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1634                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1635     } else {
  1636       // increment counter
  1637       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1638       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1639       __ movl(Address(rcx, be_offset), rax);        // store counter
  1641       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1642       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1643       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1645       if (ProfileInterpreter) {
  1646         // Test to see if we should create a method data oop
  1647         __ cmp32(rax,
  1648                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1649         __ jcc(Assembler::less, dispatch);
  1651         // if no method data exists, go to profile method
  1652         __ test_method_data_pointer(rax, profile_method);
  1654         if (UseOnStackReplacement) {
  1655           // check for overflow against ebx which is the MDO taken count
  1656           __ cmp32(rbx,
  1657                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1658           __ jcc(Assembler::below, dispatch);
  1660           // When ProfileInterpreter is on, the backedge_count comes
  1661           // from the methodDataOop, which value does not get reset on
  1662           // the call to frequency_counter_overflow().  To avoid
  1663           // excessive calls to the overflow routine while the method is
  1664           // being compiled, add a second test to make sure the overflow
  1665           // function is called only once every overflow_frequency.
  1666           const int overflow_frequency = 1024;
  1667           __ andl(rbx, overflow_frequency - 1);
  1668           __ jcc(Assembler::zero, backedge_counter_overflow);
  1671       } else {
  1672         if (UseOnStackReplacement) {
  1673           // check for overflow against eax, which is the sum of the
  1674           // counters
  1675           __ cmp32(rax,
  1676                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1677           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1682     __ bind(dispatch);
  1685   // Pre-load the next target bytecode into rbx
  1686   __ load_unsigned_byte(rbx, Address(r13, 0));
  1688   // continue with the bytecode @ target
  1689   // eax: return bci for jsr's, unused otherwise
  1690   // ebx: target bytecode
  1691   // r13: target bcp
  1692   __ dispatch_only(vtos);
  1694   if (UseLoopCounter) {
  1695     if (ProfileInterpreter) {
  1696       // Out-of-line code to allocate method data oop.
  1697       __ bind(profile_method);
  1698       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1699       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1700       __ set_method_data_pointer_for_bcp();
  1701       __ jmp(dispatch);
  1704     if (UseOnStackReplacement) {
  1705       // invocation counter overflow
  1706       __ bind(backedge_counter_overflow);
  1707       __ negptr(rdx);
  1708       __ addptr(rdx, r13); // branch bcp
  1709       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1710       __ call_VM(noreg,
  1711                  CAST_FROM_FN_PTR(address,
  1712                                   InterpreterRuntime::frequency_counter_overflow),
  1713                  rdx);
  1714       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1716       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1717       // ebx: target bytecode
  1718       // rdx: scratch
  1719       // r14: locals pointer
  1720       // r13: bcp
  1721       __ testptr(rax, rax);                        // test result
  1722       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1723       // nmethod may have been invalidated (VM may block upon call_VM return)
  1724       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1725       __ cmpl(rcx, InvalidOSREntryBci);
  1726       __ jcc(Assembler::equal, dispatch);
  1728       // We have the address of an on stack replacement routine in eax
  1729       // We need to prepare to execute the OSR method. First we must
  1730       // migrate the locals and monitors off of the stack.
  1732       __ mov(r13, rax);                             // save the nmethod
  1734       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1736       // eax is OSR buffer, move it to expected parameter location
  1737       __ mov(j_rarg0, rax);
  1739       // We use j_rarg definitions here so that registers don't conflict as parameter
  1740       // registers change across platforms as we are in the midst of a calling
  1741       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1743       const Register retaddr = j_rarg2;
  1744       const Register sender_sp = j_rarg1;
  1746       // pop the interpreter frame
  1747       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1748       __ leave();                                // remove frame anchor
  1749       __ pop(retaddr);                           // get return address
  1750       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1751       // Ensure compiled code always sees stack at proper alignment
  1752       __ andptr(rsp, -(StackAlignmentInBytes));
  1754       // unlike x86 we need no specialized return from compiled code
  1755       // to the interpreter or the call stub.
  1757       // push the return address
  1758       __ push(retaddr);
  1760       // and begin the OSR nmethod
  1761       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1767 void TemplateTable::if_0cmp(Condition cc) {
  1768   transition(itos, vtos);
  1769   // assume branch is more often taken than not (loops use backward branches)
  1770   Label not_taken;
  1771   __ testl(rax, rax);
  1772   __ jcc(j_not(cc), not_taken);
  1773   branch(false, false);
  1774   __ bind(not_taken);
  1775   __ profile_not_taken_branch(rax);
  1778 void TemplateTable::if_icmp(Condition cc) {
  1779   transition(itos, vtos);
  1780   // assume branch is more often taken than not (loops use backward branches)
  1781   Label not_taken;
  1782   __ pop_i(rdx);
  1783   __ cmpl(rdx, rax);
  1784   __ jcc(j_not(cc), not_taken);
  1785   branch(false, false);
  1786   __ bind(not_taken);
  1787   __ profile_not_taken_branch(rax);
  1790 void TemplateTable::if_nullcmp(Condition cc) {
  1791   transition(atos, vtos);
  1792   // assume branch is more often taken than not (loops use backward branches)
  1793   Label not_taken;
  1794   __ testptr(rax, rax);
  1795   __ jcc(j_not(cc), not_taken);
  1796   branch(false, false);
  1797   __ bind(not_taken);
  1798   __ profile_not_taken_branch(rax);
  1801 void TemplateTable::if_acmp(Condition cc) {
  1802   transition(atos, vtos);
  1803   // assume branch is more often taken than not (loops use backward branches)
  1804   Label not_taken;
  1805   __ pop_ptr(rdx);
  1806   __ cmpptr(rdx, rax);
  1807   __ jcc(j_not(cc), not_taken);
  1808   branch(false, false);
  1809   __ bind(not_taken);
  1810   __ profile_not_taken_branch(rax);
  1813 void TemplateTable::ret() {
  1814   transition(vtos, vtos);
  1815   locals_index(rbx);
  1816   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1817   __ profile_ret(rbx, rcx);
  1818   __ get_method(rax);
  1819   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1820   __ lea(r13, Address(r13, rbx, Address::times_1,
  1821                       constMethodOopDesc::codes_offset()));
  1822   __ dispatch_next(vtos);
  1825 void TemplateTable::wide_ret() {
  1826   transition(vtos, vtos);
  1827   locals_index_wide(rbx);
  1828   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1829   __ profile_ret(rbx, rcx);
  1830   __ get_method(rax);
  1831   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1832   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1833   __ dispatch_next(vtos);
  1836 void TemplateTable::tableswitch() {
  1837   Label default_case, continue_execution;
  1838   transition(itos, vtos);
  1839   // align r13
  1840   __ lea(rbx, at_bcp(BytesPerInt));
  1841   __ andptr(rbx, -BytesPerInt);
  1842   // load lo & hi
  1843   __ movl(rcx, Address(rbx, BytesPerInt));
  1844   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1845   __ bswapl(rcx);
  1846   __ bswapl(rdx);
  1847   // check against lo & hi
  1848   __ cmpl(rax, rcx);
  1849   __ jcc(Assembler::less, default_case);
  1850   __ cmpl(rax, rdx);
  1851   __ jcc(Assembler::greater, default_case);
  1852   // lookup dispatch offset
  1853   __ subl(rax, rcx);
  1854   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1855   __ profile_switch_case(rax, rbx, rcx);
  1856   // continue execution
  1857   __ bind(continue_execution);
  1858   __ bswapl(rdx);
  1859   __ movl2ptr(rdx, rdx);
  1860   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1861   __ addptr(r13, rdx);
  1862   __ dispatch_only(vtos);
  1863   // handle default
  1864   __ bind(default_case);
  1865   __ profile_switch_default(rax);
  1866   __ movl(rdx, Address(rbx, 0));
  1867   __ jmp(continue_execution);
  1870 void TemplateTable::lookupswitch() {
  1871   transition(itos, itos);
  1872   __ stop("lookupswitch bytecode should have been rewritten");
  1875 void TemplateTable::fast_linearswitch() {
  1876   transition(itos, vtos);
  1877   Label loop_entry, loop, found, continue_execution;
  1878   // bswap rax so we can avoid bswapping the table entries
  1879   __ bswapl(rax);
  1880   // align r13
  1881   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1882                                     // this instruction (change offsets
  1883                                     // below)
  1884   __ andptr(rbx, -BytesPerInt);
  1885   // set counter
  1886   __ movl(rcx, Address(rbx, BytesPerInt));
  1887   __ bswapl(rcx);
  1888   __ jmpb(loop_entry);
  1889   // table search
  1890   __ bind(loop);
  1891   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1892   __ jcc(Assembler::equal, found);
  1893   __ bind(loop_entry);
  1894   __ decrementl(rcx);
  1895   __ jcc(Assembler::greaterEqual, loop);
  1896   // default case
  1897   __ profile_switch_default(rax);
  1898   __ movl(rdx, Address(rbx, 0));
  1899   __ jmp(continue_execution);
  1900   // entry found -> get offset
  1901   __ bind(found);
  1902   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1903   __ profile_switch_case(rcx, rax, rbx);
  1904   // continue execution
  1905   __ bind(continue_execution);
  1906   __ bswapl(rdx);
  1907   __ movl2ptr(rdx, rdx);
  1908   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1909   __ addptr(r13, rdx);
  1910   __ dispatch_only(vtos);
  1913 void TemplateTable::fast_binaryswitch() {
  1914   transition(itos, vtos);
  1915   // Implementation using the following core algorithm:
  1916   //
  1917   // int binary_search(int key, LookupswitchPair* array, int n) {
  1918   //   // Binary search according to "Methodik des Programmierens" by
  1919   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1920   //   int i = 0;
  1921   //   int j = n;
  1922   //   while (i+1 < j) {
  1923   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1924   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1925   //     // where a stands for the array and assuming that the (inexisting)
  1926   //     // element a[n] is infinitely big.
  1927   //     int h = (i + j) >> 1;
  1928   //     // i < h < j
  1929   //     if (key < array[h].fast_match()) {
  1930   //       j = h;
  1931   //     } else {
  1932   //       i = h;
  1933   //     }
  1934   //   }
  1935   //   // R: a[i] <= key < a[i+1] or Q
  1936   //   // (i.e., if key is within array, i is the correct index)
  1937   //   return i;
  1938   // }
  1940   // Register allocation
  1941   const Register key   = rax; // already set (tosca)
  1942   const Register array = rbx;
  1943   const Register i     = rcx;
  1944   const Register j     = rdx;
  1945   const Register h     = rdi;
  1946   const Register temp  = rsi;
  1948   // Find array start
  1949   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1950                                           // get rid of this
  1951                                           // instruction (change
  1952                                           // offsets below)
  1953   __ andptr(array, -BytesPerInt);
  1955   // Initialize i & j
  1956   __ xorl(i, i);                            // i = 0;
  1957   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1959   // Convert j into native byteordering
  1960   __ bswapl(j);
  1962   // And start
  1963   Label entry;
  1964   __ jmp(entry);
  1966   // binary search loop
  1968     Label loop;
  1969     __ bind(loop);
  1970     // int h = (i + j) >> 1;
  1971     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1972     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1973     // if (key < array[h].fast_match()) {
  1974     //   j = h;
  1975     // } else {
  1976     //   i = h;
  1977     // }
  1978     // Convert array[h].match to native byte-ordering before compare
  1979     __ movl(temp, Address(array, h, Address::times_8));
  1980     __ bswapl(temp);
  1981     __ cmpl(key, temp);
  1982     // j = h if (key <  array[h].fast_match())
  1983     __ cmovl(Assembler::less, j, h);
  1984     // i = h if (key >= array[h].fast_match())
  1985     __ cmovl(Assembler::greaterEqual, i, h);
  1986     // while (i+1 < j)
  1987     __ bind(entry);
  1988     __ leal(h, Address(i, 1)); // i+1
  1989     __ cmpl(h, j);             // i+1 < j
  1990     __ jcc(Assembler::less, loop);
  1993   // end of binary search, result index is i (must check again!)
  1994   Label default_case;
  1995   // Convert array[i].match to native byte-ordering before compare
  1996   __ movl(temp, Address(array, i, Address::times_8));
  1997   __ bswapl(temp);
  1998   __ cmpl(key, temp);
  1999   __ jcc(Assembler::notEqual, default_case);
  2001   // entry found -> j = offset
  2002   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2003   __ profile_switch_case(i, key, array);
  2004   __ bswapl(j);
  2005   __ movl2ptr(j, j);
  2006   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2007   __ addptr(r13, j);
  2008   __ dispatch_only(vtos);
  2010   // default case -> j = default offset
  2011   __ bind(default_case);
  2012   __ profile_switch_default(i);
  2013   __ movl(j, Address(array, -2 * BytesPerInt));
  2014   __ bswapl(j);
  2015   __ movl2ptr(j, j);
  2016   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2017   __ addptr(r13, j);
  2018   __ dispatch_only(vtos);
  2022 void TemplateTable::_return(TosState state) {
  2023   transition(state, state);
  2024   assert(_desc->calls_vm(),
  2025          "inconsistent calls_vm information"); // call in remove_activation
  2027   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2028     assert(state == vtos, "only valid state");
  2029     __ movptr(c_rarg1, aaddress(0));
  2030     __ load_klass(rdi, c_rarg1);
  2031     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  2032     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2033     Label skip_register_finalizer;
  2034     __ jcc(Assembler::zero, skip_register_finalizer);
  2036     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2038     __ bind(skip_register_finalizer);
  2041   __ remove_activation(state, r13);
  2042   __ jmp(r13);
  2045 // ----------------------------------------------------------------------------
  2046 // Volatile variables demand their effects be made known to all CPU's
  2047 // in order.  Store buffers on most chips allow reads & writes to
  2048 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2049 // without some kind of memory barrier (i.e., it's not sufficient that
  2050 // the interpreter does not reorder volatile references, the hardware
  2051 // also must not reorder them).
  2052 //
  2053 // According to the new Java Memory Model (JMM):
  2054 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2055 //     writes act as aquire & release, so:
  2056 // (2) A read cannot let unrelated NON-volatile memory refs that
  2057 //     happen after the read float up to before the read.  It's OK for
  2058 //     non-volatile memory refs that happen before the volatile read to
  2059 //     float down below it.
  2060 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2061 //     memory refs that happen BEFORE the write float down to after the
  2062 //     write.  It's OK for non-volatile memory refs that happen after the
  2063 //     volatile write to float up before it.
  2064 //
  2065 // We only put in barriers around volatile refs (they are expensive),
  2066 // not _between_ memory refs (that would require us to track the
  2067 // flavor of the previous memory refs).  Requirements (2) and (3)
  2068 // require some barriers before volatile stores and after volatile
  2069 // loads.  These nearly cover requirement (1) but miss the
  2070 // volatile-store-volatile-load case.  This final case is placed after
  2071 // volatile-stores although it could just as well go before
  2072 // volatile-loads.
  2073 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2074                                      order_constraint) {
  2075   // Helper function to insert a is-volatile test and memory barrier
  2076   if (os::is_MP()) { // Not needed on single CPU
  2077     __ membar(order_constraint);
  2081 void TemplateTable::resolve_cache_and_index(int byte_no,
  2082                                             Register result,
  2083                                             Register Rcache,
  2084                                             Register index,
  2085                                             size_t index_size) {
  2086   const Register temp = rbx;
  2087   assert_different_registers(result, Rcache, index, temp);
  2089   Label resolved;
  2090   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2091   if (byte_no == f1_oop) {
  2092     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2093     // This kind of CP cache entry does not need to match the flags byte, because
  2094     // there is a 1-1 relation between bytecode type and CP entry type.
  2095     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2096     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2097     __ testptr(result, result);
  2098     __ jcc(Assembler::notEqual, resolved);
  2099   } else {
  2100     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2101     assert(result == noreg, "");  //else change code for setting result
  2102     const int shift_count = (1 + byte_no) * BitsPerByte;
  2103     __ movl(temp, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2104     __ shrl(temp, shift_count);
  2105     // have we resolved this bytecode?
  2106     __ andl(temp, 0xFF);
  2107     __ cmpl(temp, (int) bytecode());
  2108     __ jcc(Assembler::equal, resolved);
  2111   // resolve first time through
  2112   address entry;
  2113   switch (bytecode()) {
  2114   case Bytecodes::_getstatic:
  2115   case Bytecodes::_putstatic:
  2116   case Bytecodes::_getfield:
  2117   case Bytecodes::_putfield:
  2118     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2119     break;
  2120   case Bytecodes::_invokevirtual:
  2121   case Bytecodes::_invokespecial:
  2122   case Bytecodes::_invokestatic:
  2123   case Bytecodes::_invokeinterface:
  2124     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2125     break;
  2126   case Bytecodes::_invokedynamic:
  2127     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2128     break;
  2129   case Bytecodes::_fast_aldc:
  2130     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2131     break;
  2132   case Bytecodes::_fast_aldc_w:
  2133     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2134     break;
  2135   default:
  2136     ShouldNotReachHere();
  2137     break;
  2139   __ movl(temp, (int) bytecode());
  2140   __ call_VM(noreg, entry, temp);
  2142   // Update registers with resolved info
  2143   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2144   if (result != noreg)
  2145     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2146   __ bind(resolved);
  2149 // The Rcache and index registers must be set before call
  2150 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2151                                               Register cache,
  2152                                               Register index,
  2153                                               Register off,
  2154                                               Register flags,
  2155                                               bool is_static = false) {
  2156   assert_different_registers(cache, index, flags, off);
  2158   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2159   // Field offset
  2160   __ movptr(off, Address(cache, index, Address::times_8,
  2161                          in_bytes(cp_base_offset +
  2162                                   ConstantPoolCacheEntry::f2_offset())));
  2163   // Flags
  2164   __ movl(flags, Address(cache, index, Address::times_8,
  2165                          in_bytes(cp_base_offset +
  2166                                   ConstantPoolCacheEntry::flags_offset())));
  2168   // klass overwrite register
  2169   if (is_static) {
  2170     __ movptr(obj, Address(cache, index, Address::times_8,
  2171                            in_bytes(cp_base_offset +
  2172                                     ConstantPoolCacheEntry::f1_offset())));
  2176 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2177                                                Register method,
  2178                                                Register itable_index,
  2179                                                Register flags,
  2180                                                bool is_invokevirtual,
  2181                                                bool is_invokevfinal, /*unused*/
  2182                                                bool is_invokedynamic) {
  2183   // setup registers
  2184   const Register cache = rcx;
  2185   const Register index = rdx;
  2186   assert_different_registers(method, flags);
  2187   assert_different_registers(method, cache, index);
  2188   assert_different_registers(itable_index, flags);
  2189   assert_different_registers(itable_index, cache, index);
  2190   // determine constant pool cache field offsets
  2191   const int method_offset = in_bytes(
  2192     constantPoolCacheOopDesc::base_offset() +
  2193       (is_invokevirtual
  2194        ? ConstantPoolCacheEntry::f2_offset()
  2195        : ConstantPoolCacheEntry::f1_offset()));
  2196   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2197                                     ConstantPoolCacheEntry::flags_offset());
  2198   // access constant pool cache fields
  2199   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2200                                     ConstantPoolCacheEntry::f2_offset());
  2202   if (byte_no == f1_oop) {
  2203     // Resolved f1_oop goes directly into 'method' register.
  2204     assert(is_invokedynamic, "");
  2205     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2206   } else {
  2207     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2208     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2210   if (itable_index != noreg) {
  2211     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2213   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2217 // The registers cache and index expected to be set before call.
  2218 // Correct values of the cache and index registers are preserved.
  2219 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2220                                             bool is_static, bool has_tos) {
  2221   // do the JVMTI work here to avoid disturbing the register state below
  2222   // We use c_rarg registers here because we want to use the register used in
  2223   // the call to the VM
  2224   if (JvmtiExport::can_post_field_access()) {
  2225     // Check to see if a field access watch has been set before we
  2226     // take the time to call into the VM.
  2227     Label L1;
  2228     assert_different_registers(cache, index, rax);
  2229     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2230     __ testl(rax, rax);
  2231     __ jcc(Assembler::zero, L1);
  2233     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2235     // cache entry pointer
  2236     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2237     __ shll(c_rarg3, LogBytesPerWord);
  2238     __ addptr(c_rarg2, c_rarg3);
  2239     if (is_static) {
  2240       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2241     } else {
  2242       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2243       __ verify_oop(c_rarg1);
  2245     // c_rarg1: object pointer or NULL
  2246     // c_rarg2: cache entry pointer
  2247     // c_rarg3: jvalue object on the stack
  2248     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2249                                        InterpreterRuntime::post_field_access),
  2250                c_rarg1, c_rarg2, c_rarg3);
  2251     __ get_cache_and_index_at_bcp(cache, index, 1);
  2252     __ bind(L1);
  2256 void TemplateTable::pop_and_check_object(Register r) {
  2257   __ pop_ptr(r);
  2258   __ null_check(r);  // for field access must check obj.
  2259   __ verify_oop(r);
  2262 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2263   transition(vtos, vtos);
  2265   const Register cache = rcx;
  2266   const Register index = rdx;
  2267   const Register obj   = c_rarg3;
  2268   const Register off   = rbx;
  2269   const Register flags = rax;
  2270   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2272   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2273   jvmti_post_field_access(cache, index, is_static, false);
  2274   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2276   if (!is_static) {
  2277     // obj is on the stack
  2278     pop_and_check_object(obj);
  2281   const Address field(obj, off, Address::times_1);
  2283   Label Done, notByte, notInt, notShort, notChar,
  2284               notLong, notFloat, notObj, notDouble;
  2286   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2287   assert(btos == 0, "change code, btos != 0");
  2289   __ andl(flags, 0x0F);
  2290   __ jcc(Assembler::notZero, notByte);
  2291   // btos
  2292   __ load_signed_byte(rax, field);
  2293   __ push(btos);
  2294   // Rewrite bytecode to be faster
  2295   if (!is_static) {
  2296     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2298   __ jmp(Done);
  2300   __ bind(notByte);
  2301   __ cmpl(flags, atos);
  2302   __ jcc(Assembler::notEqual, notObj);
  2303   // atos
  2304   __ load_heap_oop(rax, field);
  2305   __ push(atos);
  2306   if (!is_static) {
  2307     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2309   __ jmp(Done);
  2311   __ bind(notObj);
  2312   __ cmpl(flags, itos);
  2313   __ jcc(Assembler::notEqual, notInt);
  2314   // itos
  2315   __ movl(rax, field);
  2316   __ push(itos);
  2317   // Rewrite bytecode to be faster
  2318   if (!is_static) {
  2319     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2321   __ jmp(Done);
  2323   __ bind(notInt);
  2324   __ cmpl(flags, ctos);
  2325   __ jcc(Assembler::notEqual, notChar);
  2326   // ctos
  2327   __ load_unsigned_short(rax, field);
  2328   __ push(ctos);
  2329   // Rewrite bytecode to be faster
  2330   if (!is_static) {
  2331     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2333   __ jmp(Done);
  2335   __ bind(notChar);
  2336   __ cmpl(flags, stos);
  2337   __ jcc(Assembler::notEqual, notShort);
  2338   // stos
  2339   __ load_signed_short(rax, field);
  2340   __ push(stos);
  2341   // Rewrite bytecode to be faster
  2342   if (!is_static) {
  2343     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2345   __ jmp(Done);
  2347   __ bind(notShort);
  2348   __ cmpl(flags, ltos);
  2349   __ jcc(Assembler::notEqual, notLong);
  2350   // ltos
  2351   __ movq(rax, field);
  2352   __ push(ltos);
  2353   // Rewrite bytecode to be faster
  2354   if (!is_static) {
  2355     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2357   __ jmp(Done);
  2359   __ bind(notLong);
  2360   __ cmpl(flags, ftos);
  2361   __ jcc(Assembler::notEqual, notFloat);
  2362   // ftos
  2363   __ movflt(xmm0, field);
  2364   __ push(ftos);
  2365   // Rewrite bytecode to be faster
  2366   if (!is_static) {
  2367     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2369   __ jmp(Done);
  2371   __ bind(notFloat);
  2372 #ifdef ASSERT
  2373   __ cmpl(flags, dtos);
  2374   __ jcc(Assembler::notEqual, notDouble);
  2375 #endif
  2376   // dtos
  2377   __ movdbl(xmm0, field);
  2378   __ push(dtos);
  2379   // Rewrite bytecode to be faster
  2380   if (!is_static) {
  2381     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2383 #ifdef ASSERT
  2384   __ jmp(Done);
  2386   __ bind(notDouble);
  2387   __ stop("Bad state");
  2388 #endif
  2390   __ bind(Done);
  2391   // [jk] not needed currently
  2392   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2393   //                                              Assembler::LoadStore));
  2397 void TemplateTable::getfield(int byte_no) {
  2398   getfield_or_static(byte_no, false);
  2401 void TemplateTable::getstatic(int byte_no) {
  2402   getfield_or_static(byte_no, true);
  2405 // The registers cache and index expected to be set before call.
  2406 // The function may destroy various registers, just not the cache and index registers.
  2407 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2408   transition(vtos, vtos);
  2410   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2412   if (JvmtiExport::can_post_field_modification()) {
  2413     // Check to see if a field modification watch has been set before
  2414     // we take the time to call into the VM.
  2415     Label L1;
  2416     assert_different_registers(cache, index, rax);
  2417     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2418     __ testl(rax, rax);
  2419     __ jcc(Assembler::zero, L1);
  2421     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2423     if (is_static) {
  2424       // Life is simple.  Null out the object pointer.
  2425       __ xorl(c_rarg1, c_rarg1);
  2426     } else {
  2427       // Life is harder. The stack holds the value on top, followed by
  2428       // the object.  We don't know the size of the value, though; it
  2429       // could be one or two words depending on its type. As a result,
  2430       // we must find the type to determine where the object is.
  2431       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2432                            Address::times_8,
  2433                            in_bytes(cp_base_offset +
  2434                                      ConstantPoolCacheEntry::flags_offset())));
  2435       __ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits);
  2436       // Make sure we don't need to mask rcx for tosBits after the
  2437       // above shift
  2438       ConstantPoolCacheEntry::verify_tosBits();
  2439       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2440       __ cmpl(c_rarg3, ltos);
  2441       __ cmovptr(Assembler::equal,
  2442                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2443       __ cmpl(c_rarg3, dtos);
  2444       __ cmovptr(Assembler::equal,
  2445                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2447     // cache entry pointer
  2448     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2449     __ shll(rscratch1, LogBytesPerWord);
  2450     __ addptr(c_rarg2, rscratch1);
  2451     // object (tos)
  2452     __ mov(c_rarg3, rsp);
  2453     // c_rarg1: object pointer set up above (NULL if static)
  2454     // c_rarg2: cache entry pointer
  2455     // c_rarg3: jvalue object on the stack
  2456     __ call_VM(noreg,
  2457                CAST_FROM_FN_PTR(address,
  2458                                 InterpreterRuntime::post_field_modification),
  2459                c_rarg1, c_rarg2, c_rarg3);
  2460     __ get_cache_and_index_at_bcp(cache, index, 1);
  2461     __ bind(L1);
  2465 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2466   transition(vtos, vtos);
  2468   const Register cache = rcx;
  2469   const Register index = rdx;
  2470   const Register obj   = rcx;
  2471   const Register off   = rbx;
  2472   const Register flags = rax;
  2473   const Register bc    = c_rarg3;
  2475   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2476   jvmti_post_field_mod(cache, index, is_static);
  2477   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2479   // [jk] not needed currently
  2480   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2481   //                                              Assembler::StoreStore));
  2483   Label notVolatile, Done;
  2484   __ movl(rdx, flags);
  2485   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2486   __ andl(rdx, 0x1);
  2488   // field address
  2489   const Address field(obj, off, Address::times_1);
  2491   Label notByte, notInt, notShort, notChar,
  2492         notLong, notFloat, notObj, notDouble;
  2494   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2496   assert(btos == 0, "change code, btos != 0");
  2497   __ andl(flags, 0x0f);
  2498   __ jcc(Assembler::notZero, notByte);
  2499   // btos
  2500   __ pop(btos);
  2501   if (!is_static) pop_and_check_object(obj);
  2502   __ movb(field, rax);
  2503   if (!is_static) {
  2504     patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx);
  2506   __ jmp(Done);
  2508   __ bind(notByte);
  2509   __ cmpl(flags, atos);
  2510   __ jcc(Assembler::notEqual, notObj);
  2511   // atos
  2512   __ pop(atos);
  2513   if (!is_static) pop_and_check_object(obj);
  2515   // Store into the field
  2516   do_oop_store(_masm, field, rax, _bs->kind(), false);
  2518   if (!is_static) {
  2519     patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx);
  2521   __ jmp(Done);
  2523   __ bind(notObj);
  2524   __ cmpl(flags, itos);
  2525   __ jcc(Assembler::notEqual, notInt);
  2526   // itos
  2527   __ pop(itos);
  2528   if (!is_static) pop_and_check_object(obj);
  2529   __ movl(field, rax);
  2530   if (!is_static) {
  2531     patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx);
  2533   __ jmp(Done);
  2535   __ bind(notInt);
  2536   __ cmpl(flags, ctos);
  2537   __ jcc(Assembler::notEqual, notChar);
  2538   // ctos
  2539   __ pop(ctos);
  2540   if (!is_static) pop_and_check_object(obj);
  2541   __ movw(field, rax);
  2542   if (!is_static) {
  2543     patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx);
  2545   __ jmp(Done);
  2547   __ bind(notChar);
  2548   __ cmpl(flags, stos);
  2549   __ jcc(Assembler::notEqual, notShort);
  2550   // stos
  2551   __ pop(stos);
  2552   if (!is_static) pop_and_check_object(obj);
  2553   __ movw(field, rax);
  2554   if (!is_static) {
  2555     patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx);
  2557   __ jmp(Done);
  2559   __ bind(notShort);
  2560   __ cmpl(flags, ltos);
  2561   __ jcc(Assembler::notEqual, notLong);
  2562   // ltos
  2563   __ pop(ltos);
  2564   if (!is_static) pop_and_check_object(obj);
  2565   __ movq(field, rax);
  2566   if (!is_static) {
  2567     patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx);
  2569   __ jmp(Done);
  2571   __ bind(notLong);
  2572   __ cmpl(flags, ftos);
  2573   __ jcc(Assembler::notEqual, notFloat);
  2574   // ftos
  2575   __ pop(ftos);
  2576   if (!is_static) pop_and_check_object(obj);
  2577   __ movflt(field, xmm0);
  2578   if (!is_static) {
  2579     patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx);
  2581   __ jmp(Done);
  2583   __ bind(notFloat);
  2584 #ifdef ASSERT
  2585   __ cmpl(flags, dtos);
  2586   __ jcc(Assembler::notEqual, notDouble);
  2587 #endif
  2588   // dtos
  2589   __ pop(dtos);
  2590   if (!is_static) pop_and_check_object(obj);
  2591   __ movdbl(field, xmm0);
  2592   if (!is_static) {
  2593     patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx);
  2596 #ifdef ASSERT
  2597   __ jmp(Done);
  2599   __ bind(notDouble);
  2600   __ stop("Bad state");
  2601 #endif
  2603   __ bind(Done);
  2604   // Check for volatile store
  2605   __ testl(rdx, rdx);
  2606   __ jcc(Assembler::zero, notVolatile);
  2607   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2608                                                Assembler::StoreStore));
  2610   __ bind(notVolatile);
  2613 void TemplateTable::putfield(int byte_no) {
  2614   putfield_or_static(byte_no, false);
  2617 void TemplateTable::putstatic(int byte_no) {
  2618   putfield_or_static(byte_no, true);
  2621 void TemplateTable::jvmti_post_fast_field_mod() {
  2622   if (JvmtiExport::can_post_field_modification()) {
  2623     // Check to see if a field modification watch has been set before
  2624     // we take the time to call into the VM.
  2625     Label L2;
  2626     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2627     __ testl(c_rarg3, c_rarg3);
  2628     __ jcc(Assembler::zero, L2);
  2629     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2630     __ verify_oop(rbx);
  2631     __ push_ptr(rbx);                 // put the object pointer back on tos
  2632     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2633     __ mov(c_rarg3, rsp);
  2634     const Address field(c_rarg3, 0);
  2636     switch (bytecode()) {          // load values into the jvalue object
  2637     case Bytecodes::_fast_aputfield: __ movq(field, rax); break;
  2638     case Bytecodes::_fast_lputfield: __ movq(field, rax); break;
  2639     case Bytecodes::_fast_iputfield: __ movl(field, rax); break;
  2640     case Bytecodes::_fast_bputfield: __ movb(field, rax); break;
  2641     case Bytecodes::_fast_sputfield: // fall through
  2642     case Bytecodes::_fast_cputfield: __ movw(field, rax); break;
  2643     case Bytecodes::_fast_fputfield: __ movflt(field, xmm0); break;
  2644     case Bytecodes::_fast_dputfield: __ movdbl(field, xmm0); break;
  2645     default:
  2646       ShouldNotReachHere();
  2649     // Save rax because call_VM() will clobber it, then use it for
  2650     // JVMTI purposes
  2651     __ push(rax);
  2652     // access constant pool cache entry
  2653     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2654     __ verify_oop(rbx);
  2655     // rbx: object pointer copied above
  2656     // c_rarg2: cache entry pointer
  2657     // c_rarg3: jvalue object on the stack
  2658     __ call_VM(noreg,
  2659                CAST_FROM_FN_PTR(address,
  2660                                 InterpreterRuntime::post_field_modification),
  2661                rbx, c_rarg2, c_rarg3);
  2662     __ pop(rax);     // restore lower value
  2663     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2664     __ bind(L2);
  2668 void TemplateTable::fast_storefield(TosState state) {
  2669   transition(state, vtos);
  2671   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2673   jvmti_post_fast_field_mod();
  2675   // access constant pool cache
  2676   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2678   // test for volatile with rdx
  2679   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2680                        in_bytes(base +
  2681                                 ConstantPoolCacheEntry::flags_offset())));
  2683   // replace index with field offset from cache entry
  2684   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2685                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2687   // [jk] not needed currently
  2688   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2689   //                                              Assembler::StoreStore));
  2691   Label notVolatile;
  2692   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2693   __ andl(rdx, 0x1);
  2695   // Get object from stack
  2696   pop_and_check_object(rcx);
  2698   // field address
  2699   const Address field(rcx, rbx, Address::times_1);
  2701   // access field
  2702   switch (bytecode()) {
  2703   case Bytecodes::_fast_aputfield:
  2704     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2705     break;
  2706   case Bytecodes::_fast_lputfield:
  2707     __ movq(field, rax);
  2708     break;
  2709   case Bytecodes::_fast_iputfield:
  2710     __ movl(field, rax);
  2711     break;
  2712   case Bytecodes::_fast_bputfield:
  2713     __ movb(field, rax);
  2714     break;
  2715   case Bytecodes::_fast_sputfield:
  2716     // fall through
  2717   case Bytecodes::_fast_cputfield:
  2718     __ movw(field, rax);
  2719     break;
  2720   case Bytecodes::_fast_fputfield:
  2721     __ movflt(field, xmm0);
  2722     break;
  2723   case Bytecodes::_fast_dputfield:
  2724     __ movdbl(field, xmm0);
  2725     break;
  2726   default:
  2727     ShouldNotReachHere();
  2730   // Check for volatile store
  2731   __ testl(rdx, rdx);
  2732   __ jcc(Assembler::zero, notVolatile);
  2733   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2734                                                Assembler::StoreStore));
  2735   __ bind(notVolatile);
  2739 void TemplateTable::fast_accessfield(TosState state) {
  2740   transition(atos, state);
  2742   // Do the JVMTI work here to avoid disturbing the register state below
  2743   if (JvmtiExport::can_post_field_access()) {
  2744     // Check to see if a field access watch has been set before we
  2745     // take the time to call into the VM.
  2746     Label L1;
  2747     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2748     __ testl(rcx, rcx);
  2749     __ jcc(Assembler::zero, L1);
  2750     // access constant pool cache entry
  2751     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2752     __ verify_oop(rax);
  2753     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2754     __ mov(c_rarg1, rax);
  2755     // c_rarg1: object pointer copied above
  2756     // c_rarg2: cache entry pointer
  2757     __ call_VM(noreg,
  2758                CAST_FROM_FN_PTR(address,
  2759                                 InterpreterRuntime::post_field_access),
  2760                c_rarg1, c_rarg2);
  2761     __ pop_ptr(rax); // restore object pointer
  2762     __ bind(L1);
  2765   // access constant pool cache
  2766   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2767   // replace index with field offset from cache entry
  2768   // [jk] not needed currently
  2769   // if (os::is_MP()) {
  2770   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2771   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2772   //                                 ConstantPoolCacheEntry::flags_offset())));
  2773   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2774   //   __ andl(rdx, 0x1);
  2775   // }
  2776   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2777                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2778                                   ConstantPoolCacheEntry::f2_offset())));
  2780   // rax: object
  2781   __ verify_oop(rax);
  2782   __ null_check(rax);
  2783   Address field(rax, rbx, Address::times_1);
  2785   // access field
  2786   switch (bytecode()) {
  2787   case Bytecodes::_fast_agetfield:
  2788     __ load_heap_oop(rax, field);
  2789     __ verify_oop(rax);
  2790     break;
  2791   case Bytecodes::_fast_lgetfield:
  2792     __ movq(rax, field);
  2793     break;
  2794   case Bytecodes::_fast_igetfield:
  2795     __ movl(rax, field);
  2796     break;
  2797   case Bytecodes::_fast_bgetfield:
  2798     __ movsbl(rax, field);
  2799     break;
  2800   case Bytecodes::_fast_sgetfield:
  2801     __ load_signed_short(rax, field);
  2802     break;
  2803   case Bytecodes::_fast_cgetfield:
  2804     __ load_unsigned_short(rax, field);
  2805     break;
  2806   case Bytecodes::_fast_fgetfield:
  2807     __ movflt(xmm0, field);
  2808     break;
  2809   case Bytecodes::_fast_dgetfield:
  2810     __ movdbl(xmm0, field);
  2811     break;
  2812   default:
  2813     ShouldNotReachHere();
  2815   // [jk] not needed currently
  2816   // if (os::is_MP()) {
  2817   //   Label notVolatile;
  2818   //   __ testl(rdx, rdx);
  2819   //   __ jcc(Assembler::zero, notVolatile);
  2820   //   __ membar(Assembler::LoadLoad);
  2821   //   __ bind(notVolatile);
  2822   //};
  2825 void TemplateTable::fast_xaccess(TosState state) {
  2826   transition(vtos, state);
  2828   // get receiver
  2829   __ movptr(rax, aaddress(0));
  2830   // access constant pool cache
  2831   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2832   __ movptr(rbx,
  2833             Address(rcx, rdx, Address::times_8,
  2834                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2835                              ConstantPoolCacheEntry::f2_offset())));
  2836   // make sure exception is reported in correct bcp range (getfield is
  2837   // next instruction)
  2838   __ increment(r13);
  2839   __ null_check(rax);
  2840   switch (state) {
  2841   case itos:
  2842     __ movl(rax, Address(rax, rbx, Address::times_1));
  2843     break;
  2844   case atos:
  2845     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2846     __ verify_oop(rax);
  2847     break;
  2848   case ftos:
  2849     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2850     break;
  2851   default:
  2852     ShouldNotReachHere();
  2855   // [jk] not needed currently
  2856   // if (os::is_MP()) {
  2857   //   Label notVolatile;
  2858   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2859   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2860   //                                 ConstantPoolCacheEntry::flags_offset())));
  2861   //   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2862   //   __ testl(rdx, 0x1);
  2863   //   __ jcc(Assembler::zero, notVolatile);
  2864   //   __ membar(Assembler::LoadLoad);
  2865   //   __ bind(notVolatile);
  2866   // }
  2868   __ decrement(r13);
  2873 //-----------------------------------------------------------------------------
  2874 // Calls
  2876 void TemplateTable::count_calls(Register method, Register temp) {
  2877   // implemented elsewhere
  2878   ShouldNotReachHere();
  2881 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2882   // determine flags
  2883   Bytecodes::Code code = bytecode();
  2884   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2885   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2886   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2887   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2888   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2889   const bool receiver_null_check = is_invokespecial;
  2890   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2891   // setup registers & access constant pool cache
  2892   const Register recv   = rcx;
  2893   const Register flags  = rdx;
  2894   assert_different_registers(method, index, recv, flags);
  2896   // save 'interpreter return address'
  2897   __ save_bcp();
  2899   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2901   // load receiver if needed (note: no return address pushed yet)
  2902   if (load_receiver) {
  2903     assert(!is_invokedynamic, "");
  2904     __ movl(recv, flags);
  2905     __ andl(recv, 0xFF);
  2906     Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1));
  2907     __ movptr(recv, recv_addr);
  2908     __ verify_oop(recv);
  2911   // do null check if needed
  2912   if (receiver_null_check) {
  2913     __ null_check(recv);
  2916   if (save_flags) {
  2917     __ movl(r13, flags);
  2920   // compute return type
  2921   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2922   // Make sure we don't need to mask flags for tosBits after the above shift
  2923   ConstantPoolCacheEntry::verify_tosBits();
  2924   // load return address
  2926     address table_addr;
  2927     if (is_invokeinterface || is_invokedynamic)
  2928       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2929     else
  2930       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2931     ExternalAddress table(table_addr);
  2932     __ lea(rscratch1, table);
  2933     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  2936   // push return address
  2937   __ push(flags);
  2939   // Restore flag field from the constant pool cache, and restore esi
  2940   // for later null checks.  r13 is the bytecode pointer
  2941   if (save_flags) {
  2942     __ movl(flags, r13);
  2943     __ restore_bcp();
  2948 void TemplateTable::invokevirtual_helper(Register index,
  2949                                          Register recv,
  2950                                          Register flags) {
  2951   // Uses temporary registers rax, rdx
  2952   assert_different_registers(index, recv, rax, rdx);
  2954   // Test for an invoke of a final method
  2955   Label notFinal;
  2956   __ movl(rax, flags);
  2957   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2958   __ jcc(Assembler::zero, notFinal);
  2960   const Register method = index;  // method must be rbx
  2961   assert(method == rbx,
  2962          "methodOop must be rbx for interpreter calling convention");
  2964   // do the call - the index is actually the method to call
  2965   __ verify_oop(method);
  2967   // It's final, need a null check here!
  2968   __ null_check(recv);
  2970   // profile this call
  2971   __ profile_final_call(rax);
  2973   __ jump_from_interpreted(method, rax);
  2975   __ bind(notFinal);
  2977   // get receiver klass
  2978   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2979   __ load_klass(rax, recv);
  2981   __ verify_oop(rax);
  2983   // profile this call
  2984   __ profile_virtual_call(rax, r14, rdx);
  2986   // get target methodOop & entry point
  2987   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2988   assert(vtableEntry::size() * wordSize == 8,
  2989          "adjust the scaling in the code below");
  2990   __ movptr(method, Address(rax, index,
  2991                                  Address::times_8,
  2992                                  base + vtableEntry::method_offset_in_bytes()));
  2993   __ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
  2994   __ jump_from_interpreted(method, rdx);
  2998 void TemplateTable::invokevirtual(int byte_no) {
  2999   transition(vtos, vtos);
  3000   assert(byte_no == f2_byte, "use this argument");
  3001   prepare_invoke(rbx, noreg, byte_no);
  3003   // rbx: index
  3004   // rcx: receiver
  3005   // rdx: flags
  3007   invokevirtual_helper(rbx, rcx, rdx);
  3011 void TemplateTable::invokespecial(int byte_no) {
  3012   transition(vtos, vtos);
  3013   assert(byte_no == f1_byte, "use this argument");
  3014   prepare_invoke(rbx, noreg, byte_no);
  3015   // do the call
  3016   __ verify_oop(rbx);
  3017   __ profile_call(rax);
  3018   __ jump_from_interpreted(rbx, rax);
  3022 void TemplateTable::invokestatic(int byte_no) {
  3023   transition(vtos, vtos);
  3024   assert(byte_no == f1_byte, "use this argument");
  3025   prepare_invoke(rbx, noreg, byte_no);
  3026   // do the call
  3027   __ verify_oop(rbx);
  3028   __ profile_call(rax);
  3029   __ jump_from_interpreted(rbx, rax);
  3032 void TemplateTable::fast_invokevfinal(int byte_no) {
  3033   transition(vtos, vtos);
  3034   assert(byte_no == f2_byte, "use this argument");
  3035   __ stop("fast_invokevfinal not used on amd64");
  3038 void TemplateTable::invokeinterface(int byte_no) {
  3039   transition(vtos, vtos);
  3040   assert(byte_no == f1_byte, "use this argument");
  3041   prepare_invoke(rax, rbx, byte_no);
  3043   // rax: Interface
  3044   // rbx: index
  3045   // rcx: receiver
  3046   // rdx: flags
  3048   // Special case of invokeinterface called for virtual method of
  3049   // java.lang.Object.  See cpCacheOop.cpp for details.
  3050   // This code isn't produced by javac, but could be produced by
  3051   // another compliant java compiler.
  3052   Label notMethod;
  3053   __ movl(r14, rdx);
  3054   __ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface));
  3055   __ jcc(Assembler::zero, notMethod);
  3057   invokevirtual_helper(rbx, rcx, rdx);
  3058   __ bind(notMethod);
  3060   // Get receiver klass into rdx - also a null check
  3061   __ restore_locals(); // restore r14
  3062   __ load_klass(rdx, rcx);
  3063   __ verify_oop(rdx);
  3065   // profile this call
  3066   __ profile_virtual_call(rdx, r13, r14);
  3068   Label no_such_interface, no_such_method;
  3070   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3071                              rdx, rax, rbx,
  3072                              // outputs: method, scan temp. reg
  3073                              rbx, r13,
  3074                              no_such_interface);
  3076   // rbx,: methodOop to call
  3077   // rcx: receiver
  3078   // Check for abstract method error
  3079   // Note: This should be done more efficiently via a throw_abstract_method_error
  3080   //       interpreter entry point and a conditional jump to it in case of a null
  3081   //       method.
  3082   __ testptr(rbx, rbx);
  3083   __ jcc(Assembler::zero, no_such_method);
  3085   // do the call
  3086   // rcx: receiver
  3087   // rbx,: methodOop
  3088   __ jump_from_interpreted(rbx, rdx);
  3089   __ should_not_reach_here();
  3091   // exception handling code follows...
  3092   // note: must restore interpreter registers to canonical
  3093   //       state for exception handling to work correctly!
  3095   __ bind(no_such_method);
  3096   // throw exception
  3097   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3098   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3099   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3100   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3101   // the call_VM checks for exception, so we should never return here.
  3102   __ should_not_reach_here();
  3104   __ bind(no_such_interface);
  3105   // throw exception
  3106   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3107   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3108   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3109   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3110                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3111   // the call_VM checks for exception, so we should never return here.
  3112   __ should_not_reach_here();
  3113   return;
  3116 void TemplateTable::invokedynamic(int byte_no) {
  3117   transition(vtos, vtos);
  3118   assert(byte_no == f1_oop, "use this argument");
  3120   if (!EnableInvokeDynamic) {
  3121     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3122     // The verifier will stop it.  However, if we get past the verifier,
  3123     // this will stop the thread in a reasonable way, without crashing the JVM.
  3124     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3125                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3126     // the call_VM checks for exception, so we should never return here.
  3127     __ should_not_reach_here();
  3128     return;
  3131   assert(byte_no == f1_oop, "use this argument");
  3132   prepare_invoke(rax, rbx, byte_no);
  3134   // rax: CallSite object (f1)
  3135   // rbx: unused (f2)
  3136   // rcx: receiver address
  3137   // rdx: flags (unused)
  3139   Register rax_callsite      = rax;
  3140   Register rcx_method_handle = rcx;
  3142   if (ProfileInterpreter) {
  3143     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3144     // profile this call
  3145     __ profile_call(r13);
  3148   __ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx)));
  3149   __ null_check(rcx_method_handle);
  3150   __ prepare_to_jump_from_interpreted();
  3151   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3155 //-----------------------------------------------------------------------------
  3156 // Allocation
  3158 void TemplateTable::_new() {
  3159   transition(vtos, atos);
  3160   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3161   Label slow_case;
  3162   Label done;
  3163   Label initialize_header;
  3164   Label initialize_object; // including clearing the fields
  3165   Label allocate_shared;
  3167   __ get_cpool_and_tags(rsi, rax);
  3168   // Make sure the class we're about to instantiate has been resolved.
  3169   // This is done before loading instanceKlass to be consistent with the order
  3170   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3171   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3172   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3173           JVM_CONSTANT_Class);
  3174   __ jcc(Assembler::notEqual, slow_case);
  3176   // get instanceKlass
  3177   __ movptr(rsi, Address(rsi, rdx,
  3178             Address::times_8, sizeof(constantPoolOopDesc)));
  3180   // make sure klass is initialized & doesn't have finalizer
  3181   // make sure klass is fully initialized
  3182   __ cmpl(Address(rsi,
  3183                   instanceKlass::init_state_offset_in_bytes() +
  3184                   sizeof(oopDesc)),
  3185           instanceKlass::fully_initialized);
  3186   __ jcc(Assembler::notEqual, slow_case);
  3188   // get instance_size in instanceKlass (scaled to a count of bytes)
  3189   __ movl(rdx,
  3190           Address(rsi,
  3191                   Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3192   // test to see if it has a finalizer or is malformed in some way
  3193   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3194   __ jcc(Assembler::notZero, slow_case);
  3196   // Allocate the instance
  3197   // 1) Try to allocate in the TLAB
  3198   // 2) if fail and the object is large allocate in the shared Eden
  3199   // 3) if the above fails (or is not applicable), go to a slow case
  3200   // (creates a new TLAB, etc.)
  3202   const bool allow_shared_alloc =
  3203     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3205   if (UseTLAB) {
  3206     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3207     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3208     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3209     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3210     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3211     if (ZeroTLAB) {
  3212       // the fields have been already cleared
  3213       __ jmp(initialize_header);
  3214     } else {
  3215       // initialize both the header and fields
  3216       __ jmp(initialize_object);
  3220   // Allocation in the shared Eden, if allowed.
  3221   //
  3222   // rdx: instance size in bytes
  3223   if (allow_shared_alloc) {
  3224     __ bind(allocate_shared);
  3226     ExternalAddress top((address)Universe::heap()->top_addr());
  3227     ExternalAddress end((address)Universe::heap()->end_addr());
  3229     const Register RtopAddr = rscratch1;
  3230     const Register RendAddr = rscratch2;
  3232     __ lea(RtopAddr, top);
  3233     __ lea(RendAddr, end);
  3234     __ movptr(rax, Address(RtopAddr, 0));
  3236     // For retries rax gets set by cmpxchgq
  3237     Label retry;
  3238     __ bind(retry);
  3239     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3240     __ cmpptr(rbx, Address(RendAddr, 0));
  3241     __ jcc(Assembler::above, slow_case);
  3243     // Compare rax with the top addr, and if still equal, store the new
  3244     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3245     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3246     //
  3247     // rax: object begin
  3248     // rbx: object end
  3249     // rdx: instance size in bytes
  3250     if (os::is_MP()) {
  3251       __ lock();
  3253     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3255     // if someone beat us on the allocation, try again, otherwise continue
  3256     __ jcc(Assembler::notEqual, retry);
  3258     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3261   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3262     // The object is initialized before the header.  If the object size is
  3263     // zero, go directly to the header initialization.
  3264     __ bind(initialize_object);
  3265     __ decrementl(rdx, sizeof(oopDesc));
  3266     __ jcc(Assembler::zero, initialize_header);
  3268     // Initialize object fields
  3269     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3270     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3272       Label loop;
  3273       __ bind(loop);
  3274       __ movq(Address(rax, rdx, Address::times_8,
  3275                       sizeof(oopDesc) - oopSize),
  3276               rcx);
  3277       __ decrementl(rdx);
  3278       __ jcc(Assembler::notZero, loop);
  3281     // initialize object header only.
  3282     __ bind(initialize_header);
  3283     if (UseBiasedLocking) {
  3284       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3285       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3286     } else {
  3287       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3288                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3290     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3291     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3292     __ store_klass(rax, rsi);      // store klass last
  3295       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3296       // Trigger dtrace event for fastpath
  3297       __ push(atos); // save the return value
  3298       __ call_VM_leaf(
  3299            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3300       __ pop(atos); // restore the return value
  3303     __ jmp(done);
  3307   // slow case
  3308   __ bind(slow_case);
  3309   __ get_constant_pool(c_rarg1);
  3310   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3311   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3312   __ verify_oop(rax);
  3314   // continue
  3315   __ bind(done);
  3318 void TemplateTable::newarray() {
  3319   transition(itos, atos);
  3320   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3321   __ movl(c_rarg2, rax);
  3322   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3323           c_rarg1, c_rarg2);
  3326 void TemplateTable::anewarray() {
  3327   transition(itos, atos);
  3328   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3329   __ get_constant_pool(c_rarg1);
  3330   __ movl(c_rarg3, rax);
  3331   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3332           c_rarg1, c_rarg2, c_rarg3);
  3335 void TemplateTable::arraylength() {
  3336   transition(atos, itos);
  3337   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3338   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3341 void TemplateTable::checkcast() {
  3342   transition(atos, atos);
  3343   Label done, is_null, ok_is_subtype, quicked, resolved;
  3344   __ testptr(rax, rax); // object is in rax
  3345   __ jcc(Assembler::zero, is_null);
  3347   // Get cpool & tags index
  3348   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3349   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3350   // See if bytecode has already been quicked
  3351   __ cmpb(Address(rdx, rbx,
  3352                   Address::times_1,
  3353                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3354           JVM_CONSTANT_Class);
  3355   __ jcc(Assembler::equal, quicked);
  3356   __ push(atos); // save receiver for result, and for GC
  3357   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3358   __ pop_ptr(rdx); // restore receiver
  3359   __ jmpb(resolved);
  3361   // Get superklass in rax and subklass in rbx
  3362   __ bind(quicked);
  3363   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3364   __ movptr(rax, Address(rcx, rbx,
  3365                        Address::times_8, sizeof(constantPoolOopDesc)));
  3367   __ bind(resolved);
  3368   __ load_klass(rbx, rdx);
  3370   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3371   // Superklass in rax.  Subklass in rbx.
  3372   __ gen_subtype_check(rbx, ok_is_subtype);
  3374   // Come here on failure
  3375   __ push_ptr(rdx);
  3376   // object is at TOS
  3377   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3379   // Come here on success
  3380   __ bind(ok_is_subtype);
  3381   __ mov(rax, rdx); // Restore object in rdx
  3383   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3384   if (ProfileInterpreter) {
  3385     __ jmp(done);
  3386     __ bind(is_null);
  3387     __ profile_null_seen(rcx);
  3388   } else {
  3389     __ bind(is_null);   // same as 'done'
  3391   __ bind(done);
  3394 void TemplateTable::instanceof() {
  3395   transition(atos, itos);
  3396   Label done, is_null, ok_is_subtype, quicked, resolved;
  3397   __ testptr(rax, rax);
  3398   __ jcc(Assembler::zero, is_null);
  3400   // Get cpool & tags index
  3401   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3402   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3403   // See if bytecode has already been quicked
  3404   __ cmpb(Address(rdx, rbx,
  3405                   Address::times_1,
  3406                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3407           JVM_CONSTANT_Class);
  3408   __ jcc(Assembler::equal, quicked);
  3410   __ push(atos); // save receiver for result, and for GC
  3411   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3412   __ pop_ptr(rdx); // restore receiver
  3413   __ verify_oop(rdx);
  3414   __ load_klass(rdx, rdx);
  3415   __ jmpb(resolved);
  3417   // Get superklass in rax and subklass in rdx
  3418   __ bind(quicked);
  3419   __ load_klass(rdx, rax);
  3420   __ movptr(rax, Address(rcx, rbx,
  3421                          Address::times_8, sizeof(constantPoolOopDesc)));
  3423   __ bind(resolved);
  3425   // Generate subtype check.  Blows rcx, rdi
  3426   // Superklass in rax.  Subklass in rdx.
  3427   __ gen_subtype_check(rdx, ok_is_subtype);
  3429   // Come here on failure
  3430   __ xorl(rax, rax);
  3431   __ jmpb(done);
  3432   // Come here on success
  3433   __ bind(ok_is_subtype);
  3434   __ movl(rax, 1);
  3436   // Collect counts on whether this test sees NULLs a lot or not.
  3437   if (ProfileInterpreter) {
  3438     __ jmp(done);
  3439     __ bind(is_null);
  3440     __ profile_null_seen(rcx);
  3441   } else {
  3442     __ bind(is_null);   // same as 'done'
  3444   __ bind(done);
  3445   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3446   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3449 //-----------------------------------------------------------------------------
  3450 // Breakpoints
  3451 void TemplateTable::_breakpoint() {
  3452   // Note: We get here even if we are single stepping..
  3453   // jbug inists on setting breakpoints at every bytecode
  3454   // even if we are in single step mode.
  3456   transition(vtos, vtos);
  3458   // get the unpatched byte code
  3459   __ get_method(c_rarg1);
  3460   __ call_VM(noreg,
  3461              CAST_FROM_FN_PTR(address,
  3462                               InterpreterRuntime::get_original_bytecode_at),
  3463              c_rarg1, r13);
  3464   __ mov(rbx, rax);
  3466   // post the breakpoint event
  3467   __ get_method(c_rarg1);
  3468   __ call_VM(noreg,
  3469              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3470              c_rarg1, r13);
  3472   // complete the execution of original bytecode
  3473   __ dispatch_only_normal(vtos);
  3476 //-----------------------------------------------------------------------------
  3477 // Exceptions
  3479 void TemplateTable::athrow() {
  3480   transition(atos, vtos);
  3481   __ null_check(rax);
  3482   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3485 //-----------------------------------------------------------------------------
  3486 // Synchronization
  3487 //
  3488 // Note: monitorenter & exit are symmetric routines; which is reflected
  3489 //       in the assembly code structure as well
  3490 //
  3491 // Stack layout:
  3492 //
  3493 // [expressions  ] <--- rsp               = expression stack top
  3494 // ..
  3495 // [expressions  ]
  3496 // [monitor entry] <--- monitor block top = expression stack bot
  3497 // ..
  3498 // [monitor entry]
  3499 // [frame data   ] <--- monitor block bot
  3500 // ...
  3501 // [saved rbp    ] <--- rbp
  3502 void TemplateTable::monitorenter() {
  3503   transition(atos, vtos);
  3505   // check for NULL object
  3506   __ null_check(rax);
  3508   const Address monitor_block_top(
  3509         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3510   const Address monitor_block_bot(
  3511         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3512   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3514   Label allocated;
  3516   // initialize entry pointer
  3517   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3519   // find a free slot in the monitor block (result in c_rarg1)
  3521     Label entry, loop, exit;
  3522     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3523                                      // starting with top-most entry
  3524     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3525                                      // of monitor block
  3526     __ jmpb(entry);
  3528     __ bind(loop);
  3529     // check if current entry is used
  3530     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3531     // if not used then remember entry in c_rarg1
  3532     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3533     // check if current entry is for same object
  3534     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3535     // if same object then stop searching
  3536     __ jccb(Assembler::equal, exit);
  3537     // otherwise advance to next entry
  3538     __ addptr(c_rarg3, entry_size);
  3539     __ bind(entry);
  3540     // check if bottom reached
  3541     __ cmpptr(c_rarg3, c_rarg2);
  3542     // if not at bottom then check this entry
  3543     __ jcc(Assembler::notEqual, loop);
  3544     __ bind(exit);
  3547   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3548   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3550   // allocate one if there's no free slot
  3552     Label entry, loop;
  3553     // 1. compute new pointers             // rsp: old expression stack top
  3554     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3555     __ subptr(rsp, entry_size);            // move expression stack top
  3556     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3557     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3558     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3559     __ jmp(entry);
  3560     // 2. move expression stack contents
  3561     __ bind(loop);
  3562     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3563                                                       // word from old location
  3564     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3565     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3566     __ bind(entry);
  3567     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3568     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3569                                             // copy next word
  3572   // call run-time routine
  3573   // c_rarg1: points to monitor entry
  3574   __ bind(allocated);
  3576   // Increment bcp to point to the next bytecode, so exception
  3577   // handling for async. exceptions work correctly.
  3578   // The object has already been poped from the stack, so the
  3579   // expression stack looks correct.
  3580   __ increment(r13);
  3582   // store object
  3583   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3584   __ lock_object(c_rarg1);
  3586   // check to make sure this monitor doesn't cause stack overflow after locking
  3587   __ save_bcp();  // in case of exception
  3588   __ generate_stack_overflow_check(0);
  3590   // The bcp has already been incremented. Just need to dispatch to
  3591   // next instruction.
  3592   __ dispatch_next(vtos);
  3596 void TemplateTable::monitorexit() {
  3597   transition(atos, vtos);
  3599   // check for NULL object
  3600   __ null_check(rax);
  3602   const Address monitor_block_top(
  3603         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3604   const Address monitor_block_bot(
  3605         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3606   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3608   Label found;
  3610   // find matching slot
  3612     Label entry, loop;
  3613     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3614                                      // starting with top-most entry
  3615     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3616                                      // of monitor block
  3617     __ jmpb(entry);
  3619     __ bind(loop);
  3620     // check if current entry is for same object
  3621     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3622     // if same object then stop searching
  3623     __ jcc(Assembler::equal, found);
  3624     // otherwise advance to next entry
  3625     __ addptr(c_rarg1, entry_size);
  3626     __ bind(entry);
  3627     // check if bottom reached
  3628     __ cmpptr(c_rarg1, c_rarg2);
  3629     // if not at bottom then check this entry
  3630     __ jcc(Assembler::notEqual, loop);
  3633   // error handling. Unlocking was not block-structured
  3634   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3635                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3636   __ should_not_reach_here();
  3638   // call run-time routine
  3639   // rsi: points to monitor entry
  3640   __ bind(found);
  3641   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3642   __ unlock_object(c_rarg1);
  3643   __ pop_ptr(rax); // discard object
  3647 // Wide instructions
  3648 void TemplateTable::wide() {
  3649   transition(vtos, vtos);
  3650   __ load_unsigned_byte(rbx, at_bcp(1));
  3651   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3652   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3653   // Note: the r13 increment step is part of the individual wide
  3654   // bytecode implementations
  3658 // Multi arrays
  3659 void TemplateTable::multianewarray() {
  3660   transition(vtos, atos);
  3661   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3662   // last dim is on top of stack; we want address of first one:
  3663   // first_addr = last_addr + (ndims - 1) * wordSize
  3664   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3665   call_VM(rax,
  3666           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3667           c_rarg1);
  3668   __ load_unsigned_byte(rbx, at_bcp(3));
  3669   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3671 #endif // !CC_INTERP

mercurial