src/cpu/x86/vm/templateInterpreter_x86_32.cpp

Thu, 31 Mar 2011 02:31:57 -0700

author
twisti
date
Thu, 31 Mar 2011 02:31:57 -0700
changeset 2698
38fea01eb669
parent 2552
638119ce7cfd
child 2784
92add02409c9
permissions
-rw-r--r--

6817525: turn on method handle functionality by default for JSR 292
Summary: After appropriate testing, we need to turn on EnableMethodHandles and EnableInvokeDynamic by default.
Reviewed-by: never, kvn, jrose, phh

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodDataOop.hpp"
    34 #include "oops/methodOop.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    48 #define __ _masm->
    51 #ifndef CC_INTERP
    52 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    53 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    54 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    56 //------------------------------------------------------------------------------------------------------------------------
    58 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    59   address entry = __ pc();
    61   // Note: There should be a minimal interpreter frame set up when stack
    62   // overflow occurs since we check explicitly for it now.
    63   //
    64 #ifdef ASSERT
    65   { Label L;
    66     __ lea(rax, Address(rbp,
    67                 frame::interpreter_frame_monitor_block_top_offset * wordSize));
    68     __ cmpptr(rax, rsp);  // rax, = maximal rsp for current rbp,
    69                         //  (stack grows negative)
    70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    71     __ stop ("interpreter frame not set up");
    72     __ bind(L);
    73   }
    74 #endif // ASSERT
    75   // Restore bcp under the assumption that the current frame is still
    76   // interpreted
    77   __ restore_bcp();
    79   // expression stack must be empty before entering the VM if an exception
    80   // happened
    81   __ empty_expression_stack();
    82   __ empty_FPU_stack();
    83   // throw exception
    84   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
    85   return entry;
    86 }
    88 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    89   address entry = __ pc();
    90   // expression stack must be empty before entering the VM if an exception happened
    91   __ empty_expression_stack();
    92   __ empty_FPU_stack();
    93   // setup parameters
    94   // ??? convention: expect aberrant index in register rbx,
    95   __ lea(rax, ExternalAddress((address)name));
    96   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), rax, rbx);
    97   return entry;
    98 }
   100 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   101   address entry = __ pc();
   102   // object is at TOS
   103   __ pop(rax);
   104   // expression stack must be empty before entering the VM if an exception
   105   // happened
   106   __ empty_expression_stack();
   107   __ empty_FPU_stack();
   108   __ call_VM(noreg,
   109              CAST_FROM_FN_PTR(address,
   110                               InterpreterRuntime::throw_ClassCastException),
   111              rax);
   112   return entry;
   113 }
   115 // Arguments are: required type at TOS+4, failing object (or NULL) at TOS.
   116 address TemplateInterpreterGenerator::generate_WrongMethodType_handler() {
   117   address entry = __ pc();
   119   __ pop(rbx);                  // actual failing object is at TOS
   120   __ pop(rax);                  // required type is at TOS+4
   122   __ verify_oop(rbx);
   123   __ verify_oop(rax);
   125   // Various method handle types use interpreter registers as temps.
   126   __ restore_bcp();
   127   __ restore_locals();
   129   // Expression stack must be empty before entering the VM for an exception.
   130   __ empty_expression_stack();
   131   __ empty_FPU_stack();
   132   __ call_VM(noreg,
   133              CAST_FROM_FN_PTR(address,
   134                               InterpreterRuntime::throw_WrongMethodTypeException),
   135              // pass required type, failing object (or NULL)
   136              rax, rbx);
   137   return entry;
   138 }
   141 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   142   assert(!pass_oop || message == NULL, "either oop or message but not both");
   143   address entry = __ pc();
   144   if (pass_oop) {
   145     // object is at TOS
   146     __ pop(rbx);
   147   }
   148   // expression stack must be empty before entering the VM if an exception happened
   149   __ empty_expression_stack();
   150   __ empty_FPU_stack();
   151   // setup parameters
   152   __ lea(rax, ExternalAddress((address)name));
   153   if (pass_oop) {
   154     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), rax, rbx);
   155   } else {
   156     if (message != NULL) {
   157       __ lea(rbx, ExternalAddress((address)message));
   158     } else {
   159       __ movptr(rbx, NULL_WORD);
   160     }
   161     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), rax, rbx);
   162   }
   163   // throw exception
   164   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   165   return entry;
   166 }
   169 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   170   address entry = __ pc();
   171   // NULL last_sp until next java call
   172   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   173   __ dispatch_next(state);
   174   return entry;
   175 }
   178 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
   179   TosState incoming_state = state;
   180   address entry = __ pc();
   182 #ifdef COMPILER2
   183   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   184   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   185     for (int i = 1; i < 8; i++) {
   186         __ ffree(i);
   187     }
   188   } else if (UseSSE < 2) {
   189     __ empty_FPU_stack();
   190   }
   191 #endif
   192   if ((incoming_state == ftos && UseSSE < 1) || (incoming_state == dtos && UseSSE < 2)) {
   193     __ MacroAssembler::verify_FPU(1, "generate_return_entry_for compiled");
   194   } else {
   195     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
   196   }
   198   // In SSE mode, interpreter returns FP results in xmm0 but they need
   199   // to end up back on the FPU so it can operate on them.
   200   if (incoming_state == ftos && UseSSE >= 1) {
   201     __ subptr(rsp, wordSize);
   202     __ movflt(Address(rsp, 0), xmm0);
   203     __ fld_s(Address(rsp, 0));
   204     __ addptr(rsp, wordSize);
   205   } else if (incoming_state == dtos && UseSSE >= 2) {
   206     __ subptr(rsp, 2*wordSize);
   207     __ movdbl(Address(rsp, 0), xmm0);
   208     __ fld_d(Address(rsp, 0));
   209     __ addptr(rsp, 2*wordSize);
   210   }
   212   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_return_entry_for in interpreter");
   214   // Restore stack bottom in case i2c adjusted stack
   215   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   216   // and NULL it as marker that rsp is now tos until next java call
   217   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   219   __ restore_bcp();
   220   __ restore_locals();
   222   Label L_got_cache, L_giant_index;
   223   if (EnableInvokeDynamic) {
   224     __ cmpb(Address(rsi, 0), Bytecodes::_invokedynamic);
   225     __ jcc(Assembler::equal, L_giant_index);
   226   }
   227   __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u2));
   228   __ bind(L_got_cache);
   229   __ movl(rbx, Address(rbx, rcx,
   230                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() +
   231                     ConstantPoolCacheEntry::flags_offset()));
   232   __ andptr(rbx, 0xFF);
   233   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));
   234   __ dispatch_next(state, step);
   236   // out of the main line of code...
   237   if (EnableInvokeDynamic) {
   238     __ bind(L_giant_index);
   239     __ get_cache_and_index_at_bcp(rbx, rcx, 1, sizeof(u4));
   240     __ jmp(L_got_cache);
   241   }
   243   return entry;
   244 }
   247 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   248   address entry = __ pc();
   250   // In SSE mode, FP results are in xmm0
   251   if (state == ftos && UseSSE > 0) {
   252     __ subptr(rsp, wordSize);
   253     __ movflt(Address(rsp, 0), xmm0);
   254     __ fld_s(Address(rsp, 0));
   255     __ addptr(rsp, wordSize);
   256   } else if (state == dtos && UseSSE >= 2) {
   257     __ subptr(rsp, 2*wordSize);
   258     __ movdbl(Address(rsp, 0), xmm0);
   259     __ fld_d(Address(rsp, 0));
   260     __ addptr(rsp, 2*wordSize);
   261   }
   263   __ MacroAssembler::verify_FPU(state == ftos || state == dtos ? 1 : 0, "generate_deopt_entry_for in interpreter");
   265   // The stack is not extended by deopt but we must NULL last_sp as this
   266   // entry is like a "return".
   267   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
   268   __ restore_bcp();
   269   __ restore_locals();
   270   // handle exceptions
   271   { Label L;
   272     const Register thread = rcx;
   273     __ get_thread(thread);
   274     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   275     __ jcc(Assembler::zero, L);
   276     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   277     __ should_not_reach_here();
   278     __ bind(L);
   279   }
   280   __ dispatch_next(state, step);
   281   return entry;
   282 }
   285 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   286   int i = 0;
   287   switch (type) {
   288     case T_BOOLEAN: i = 0; break;
   289     case T_CHAR   : i = 1; break;
   290     case T_BYTE   : i = 2; break;
   291     case T_SHORT  : i = 3; break;
   292     case T_INT    : // fall through
   293     case T_LONG   : // fall through
   294     case T_VOID   : i = 4; break;
   295     case T_FLOAT  : i = 5; break;  // have to treat float and double separately for SSE
   296     case T_DOUBLE : i = 6; break;
   297     case T_OBJECT : // fall through
   298     case T_ARRAY  : i = 7; break;
   299     default       : ShouldNotReachHere();
   300   }
   301   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   302   return i;
   303 }
   306 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   307   address entry = __ pc();
   308   switch (type) {
   309     case T_BOOLEAN: __ c2bool(rax);            break;
   310     case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
   311     case T_BYTE   : __ sign_extend_byte (rax); break;
   312     case T_SHORT  : __ sign_extend_short(rax); break;
   313     case T_INT    : /* nothing to do */        break;
   314     case T_DOUBLE :
   315     case T_FLOAT  :
   316       { const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
   317         __ pop(t);                            // remove return address first
   318         // Must return a result for interpreter or compiler. In SSE
   319         // mode, results are returned in xmm0 and the FPU stack must
   320         // be empty.
   321         if (type == T_FLOAT && UseSSE >= 1) {
   322           // Load ST0
   323           __ fld_d(Address(rsp, 0));
   324           // Store as float and empty fpu stack
   325           __ fstp_s(Address(rsp, 0));
   326           // and reload
   327           __ movflt(xmm0, Address(rsp, 0));
   328         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
   329           __ movdbl(xmm0, Address(rsp, 0));
   330         } else {
   331           // restore ST0
   332           __ fld_d(Address(rsp, 0));
   333         }
   334         // and pop the temp
   335         __ addptr(rsp, 2 * wordSize);
   336         __ push(t);                           // restore return address
   337       }
   338       break;
   339     case T_OBJECT :
   340       // retrieve result from frame
   341       __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   342       // and verify it
   343       __ verify_oop(rax);
   344       break;
   345     default       : ShouldNotReachHere();
   346   }
   347   __ ret(0);                                   // return from result handler
   348   return entry;
   349 }
   351 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   352   address entry = __ pc();
   353   __ push(state);
   354   __ call_VM(noreg, runtime_entry);
   355   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   356   return entry;
   357 }
   360 // Helpers for commoning out cases in the various type of method entries.
   361 //
   363 // increment invocation count & check for overflow
   364 //
   365 // Note: checking for negative value instead of overflow
   366 //       so we have a 'sticky' overflow test
   367 //
   368 // rbx,: method
   369 // rcx: invocation counter
   370 //
   371 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   372   const Address invocation_counter(rbx, in_bytes(methodOopDesc::invocation_counter_offset()) +
   373                                         in_bytes(InvocationCounter::counter_offset()));
   374   // Note: In tiered we increment either counters in methodOop or in MDO depending if we're profiling or not.
   375   if (TieredCompilation) {
   376     int increment = InvocationCounter::count_increment;
   377     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   378     Label no_mdo, done;
   379     if (ProfileInterpreter) {
   380       // Are we profiling?
   381       __ movptr(rax, Address(rbx, methodOopDesc::method_data_offset()));
   382       __ testptr(rax, rax);
   383       __ jccb(Assembler::zero, no_mdo);
   384       // Increment counter in the MDO
   385       const Address mdo_invocation_counter(rax, in_bytes(methodDataOopDesc::invocation_counter_offset()) +
   386                                                 in_bytes(InvocationCounter::counter_offset()));
   387       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   388       __ jmpb(done);
   389     }
   390     __ bind(no_mdo);
   391     // Increment counter in methodOop (we don't need to load it, it's in rcx).
   392     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx, true, Assembler::zero, overflow);
   393     __ bind(done);
   394   } else {
   395     const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() +
   396                                           InvocationCounter::counter_offset());
   398     if (ProfileInterpreter) { // %%% Merge this into methodDataOop
   399       __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
   400     }
   401     // Update standard invocation counters
   402     __ movl(rax, backedge_counter);               // load backedge counter
   404     __ incrementl(rcx, InvocationCounter::count_increment);
   405     __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
   407     __ movl(invocation_counter, rcx);             // save invocation count
   408     __ addl(rcx, rax);                            // add both counters
   410     // profile_method is non-null only for interpreted method so
   411     // profile_method != NULL == !native_call
   412     // BytecodeInterpreter only calls for native so code is elided.
   414     if (ProfileInterpreter && profile_method != NULL) {
   415       // Test to see if we should create a method data oop
   416       __ cmp32(rcx,
   417                ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   418       __ jcc(Assembler::less, *profile_method_continue);
   420       // if no method data exists, go to profile_method
   421       __ test_method_data_pointer(rax, *profile_method);
   422     }
   424     __ cmp32(rcx,
   425              ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   426     __ jcc(Assembler::aboveEqual, *overflow);
   427   }
   428 }
   430 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   432   // Asm interpreter on entry
   433   // rdi - locals
   434   // rsi - bcp
   435   // rbx, - method
   436   // rdx - cpool
   437   // rbp, - interpreter frame
   439   // C++ interpreter on entry
   440   // rsi - new interpreter state pointer
   441   // rbp - interpreter frame pointer
   442   // rbx - method
   444   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   445   // rbx, - method
   446   // rcx - rcvr (assuming there is one)
   447   // top of stack return address of interpreter caller
   448   // rsp - sender_sp
   450   // C++ interpreter only
   451   // rsi - previous interpreter state pointer
   453   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   455   // InterpreterRuntime::frequency_counter_overflow takes one argument
   456   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
   457   // The call returns the address of the verified entry point for the method or NULL
   458   // if the compilation did not complete (either went background or bailed out).
   459   __ movptr(rax, (intptr_t)false);
   460   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
   462   __ movptr(rbx, Address(rbp, method_offset));   // restore methodOop
   464   // Preserve invariant that rsi/rdi contain bcp/locals of sender frame
   465   // and jump to the interpreted entry.
   466   __ jmp(*do_continue, relocInfo::none);
   468 }
   470 void InterpreterGenerator::generate_stack_overflow_check(void) {
   471   // see if we've got enough room on the stack for locals plus overhead.
   472   // the expression stack grows down incrementally, so the normal guard
   473   // page mechanism will work for that.
   474   //
   475   // Registers live on entry:
   476   //
   477   // Asm interpreter
   478   // rdx: number of additional locals this frame needs (what we must check)
   479   // rbx,: methodOop
   481   // destroyed on exit
   482   // rax,
   484   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
   485   // generate_method_entry) so the guard should work for them too.
   486   //
   488   // monitor entry size: see picture of stack set (generate_method_entry) and frame_x86.hpp
   489   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
   491   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
   492   // be sure to change this if you add/subtract anything to/from the overhead area
   493   const int overhead_size = -(frame::interpreter_frame_initial_sp_offset*wordSize) + entry_size;
   495   const int page_size = os::vm_page_size();
   497   Label after_frame_check;
   499   // see if the frame is greater than one page in size. If so,
   500   // then we need to verify there is enough stack space remaining
   501   // for the additional locals.
   502   __ cmpl(rdx, (page_size - overhead_size)/Interpreter::stackElementSize);
   503   __ jcc(Assembler::belowEqual, after_frame_check);
   505   // compute rsp as if this were going to be the last frame on
   506   // the stack before the red zone
   508   Label after_frame_check_pop;
   510   __ push(rsi);
   512   const Register thread = rsi;
   514   __ get_thread(thread);
   516   const Address stack_base(thread, Thread::stack_base_offset());
   517   const Address stack_size(thread, Thread::stack_size_offset());
   519   // locals + overhead, in bytes
   520   __ lea(rax, Address(noreg, rdx, Interpreter::stackElementScale(), overhead_size));
   522 #ifdef ASSERT
   523   Label stack_base_okay, stack_size_okay;
   524   // verify that thread stack base is non-zero
   525   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   526   __ jcc(Assembler::notEqual, stack_base_okay);
   527   __ stop("stack base is zero");
   528   __ bind(stack_base_okay);
   529   // verify that thread stack size is non-zero
   530   __ cmpptr(stack_size, 0);
   531   __ jcc(Assembler::notEqual, stack_size_okay);
   532   __ stop("stack size is zero");
   533   __ bind(stack_size_okay);
   534 #endif
   536   // Add stack base to locals and subtract stack size
   537   __ addptr(rax, stack_base);
   538   __ subptr(rax, stack_size);
   540   // Use the maximum number of pages we might bang.
   541   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   542                                                                               (StackRedPages+StackYellowPages);
   543   __ addptr(rax, max_pages * page_size);
   545   // check against the current stack bottom
   546   __ cmpptr(rsp, rax);
   547   __ jcc(Assembler::above, after_frame_check_pop);
   549   __ pop(rsi);  // get saved bcp / (c++ prev state ).
   551   __ pop(rax);  // get return address
   552   __ jump(ExternalAddress(Interpreter::throw_StackOverflowError_entry()));
   554   // all done with frame size check
   555   __ bind(after_frame_check_pop);
   556   __ pop(rsi);
   558   __ bind(after_frame_check);
   559 }
   561 // Allocate monitor and lock method (asm interpreter)
   562 // rbx, - methodOop
   563 //
   564 void InterpreterGenerator::lock_method(void) {
   565   // synchronize method
   566   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   567   const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   568   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   570   #ifdef ASSERT
   571     { Label L;
   572       __ movl(rax, access_flags);
   573       __ testl(rax, JVM_ACC_SYNCHRONIZED);
   574       __ jcc(Assembler::notZero, L);
   575       __ stop("method doesn't need synchronization");
   576       __ bind(L);
   577     }
   578   #endif // ASSERT
   579   // get synchronization object
   580   { Label done;
   581     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   582     __ movl(rax, access_flags);
   583     __ testl(rax, JVM_ACC_STATIC);
   584     __ movptr(rax, Address(rdi, Interpreter::local_offset_in_bytes(0)));  // get receiver (assume this is frequent case)
   585     __ jcc(Assembler::zero, done);
   586     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
   587     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   588     __ movptr(rax, Address(rax, mirror_offset));
   589     __ bind(done);
   590   }
   591   // add space for monitor & lock
   592   __ subptr(rsp, entry_size);                                           // add space for a monitor entry
   593   __ movptr(monitor_block_top, rsp);                                    // set new monitor block top
   594   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
   595   __ mov(rdx, rsp);                                                    // object address
   596   __ lock_object(rdx);
   597 }
   599 //
   600 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
   601 // and for native methods hence the shared code.
   603 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   604   // initialize fixed part of activation frame
   605   __ push(rax);                                       // save return address
   606   __ enter();                                         // save old & set new rbp,
   609   __ push(rsi);                                       // set sender sp
   610   __ push((int32_t)NULL_WORD);                        // leave last_sp as null
   611   __ movptr(rsi, Address(rbx,methodOopDesc::const_offset())); // get constMethodOop
   612   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset())); // get codebase
   613   __ push(rbx);                                      // save methodOop
   614   if (ProfileInterpreter) {
   615     Label method_data_continue;
   616     __ movptr(rdx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
   617     __ testptr(rdx, rdx);
   618     __ jcc(Assembler::zero, method_data_continue);
   619     __ addptr(rdx, in_bytes(methodDataOopDesc::data_offset()));
   620     __ bind(method_data_continue);
   621     __ push(rdx);                                       // set the mdp (method data pointer)
   622   } else {
   623     __ push(0);
   624   }
   626   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
   627   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
   628   __ push(rdx);                                       // set constant pool cache
   629   __ push(rdi);                                       // set locals pointer
   630   if (native_call) {
   631     __ push(0);                                       // no bcp
   632   } else {
   633     __ push(rsi);                                     // set bcp
   634     }
   635   __ push(0);                                         // reserve word for pointer to expression stack bottom
   636   __ movptr(Address(rsp, 0), rsp);                    // set expression stack bottom
   637 }
   639 // End of helpers
   641 //
   642 // Various method entries
   643 //------------------------------------------------------------------------------------------------------------------------
   644 //
   645 //
   647 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
   649 address InterpreterGenerator::generate_accessor_entry(void) {
   651   // rbx,: methodOop
   652   // rcx: receiver (preserve for slow entry into asm interpreter)
   654   // rsi: senderSP must preserved for slow path, set SP to it on fast path
   656   address entry_point = __ pc();
   657   Label xreturn_path;
   659   // do fastpath for resolved accessor methods
   660   if (UseFastAccessorMethods) {
   661     Label slow_path;
   662     // If we need a safepoint check, generate full interpreter entry.
   663     ExternalAddress state(SafepointSynchronize::address_of_state());
   664     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   665              SafepointSynchronize::_not_synchronized);
   667     __ jcc(Assembler::notEqual, slow_path);
   668     // ASM/C++ Interpreter
   669     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
   670     // Note: We can only use this code if the getfield has been resolved
   671     //       and if we don't have a null-pointer exception => check for
   672     //       these conditions first and use slow path if necessary.
   673     // rbx,: method
   674     // rcx: receiver
   675     __ movptr(rax, Address(rsp, wordSize));
   677     // check if local 0 != NULL and read field
   678     __ testptr(rax, rax);
   679     __ jcc(Assembler::zero, slow_path);
   681     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
   682     // read first instruction word and extract bytecode @ 1 and index @ 2
   683     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
   684     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
   685     // Shift codes right to get the index on the right.
   686     // The bytecode fetched looks like <index><0xb4><0x2a>
   687     __ shrl(rdx, 2*BitsPerByte);
   688     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   689     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
   691     // rax,: local 0
   692     // rbx,: method
   693     // rcx: receiver - do not destroy since it is needed for slow path!
   694     // rcx: scratch
   695     // rdx: constant pool cache index
   696     // rdi: constant pool cache
   697     // rsi: sender sp
   699     // check if getfield has been resolved and read constant pool cache entry
   700     // check the validity of the cache entry by testing whether _indices field
   701     // contains Bytecode::_getfield in b1 byte.
   702     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
   703     __ movl(rcx,
   704             Address(rdi,
   705                     rdx,
   706                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
   707     __ shrl(rcx, 2*BitsPerByte);
   708     __ andl(rcx, 0xFF);
   709     __ cmpl(rcx, Bytecodes::_getfield);
   710     __ jcc(Assembler::notEqual, slow_path);
   712     // Note: constant pool entry is not valid before bytecode is resolved
   713     __ movptr(rcx,
   714               Address(rdi,
   715                       rdx,
   716                       Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
   717     __ movl(rdx,
   718             Address(rdi,
   719                     rdx,
   720                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   722     Label notByte, notShort, notChar;
   723     const Address field_address (rax, rcx, Address::times_1);
   725     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   726     // because they are different sizes.
   727     // Use the type from the constant pool cache
   728     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
   729     // Make sure we don't need to mask rdx for tosBits after the above shift
   730     ConstantPoolCacheEntry::verify_tosBits();
   731     __ cmpl(rdx, btos);
   732     __ jcc(Assembler::notEqual, notByte);
   733     __ load_signed_byte(rax, field_address);
   734     __ jmp(xreturn_path);
   736     __ bind(notByte);
   737     __ cmpl(rdx, stos);
   738     __ jcc(Assembler::notEqual, notShort);
   739     __ load_signed_short(rax, field_address);
   740     __ jmp(xreturn_path);
   742     __ bind(notShort);
   743     __ cmpl(rdx, ctos);
   744     __ jcc(Assembler::notEqual, notChar);
   745     __ load_unsigned_short(rax, field_address);
   746     __ jmp(xreturn_path);
   748     __ bind(notChar);
   749 #ifdef ASSERT
   750     Label okay;
   751     __ cmpl(rdx, atos);
   752     __ jcc(Assembler::equal, okay);
   753     __ cmpl(rdx, itos);
   754     __ jcc(Assembler::equal, okay);
   755     __ stop("what type is this?");
   756     __ bind(okay);
   757 #endif // ASSERT
   758     // All the rest are a 32 bit wordsize
   759     // This is ok for now. Since fast accessors should be going away
   760     __ movptr(rax, field_address);
   762     __ bind(xreturn_path);
   764     // _ireturn/_areturn
   765     __ pop(rdi);                               // get return address
   766     __ mov(rsp, rsi);                          // set sp to sender sp
   767     __ jmp(rdi);
   769     // generate a vanilla interpreter entry as the slow path
   770     __ bind(slow_path);
   772     (void) generate_normal_entry(false);
   773     return entry_point;
   774   }
   775   return NULL;
   777 }
   779 //
   780 // Interpreter stub for calling a native method. (asm interpreter)
   781 // This sets up a somewhat different looking stack for calling the native method
   782 // than the typical interpreter frame setup.
   783 //
   785 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   786   // determine code generation flags
   787   bool inc_counter  = UseCompiler || CountCompiledCalls;
   789   // rbx,: methodOop
   790   // rsi: sender sp
   791   // rsi: previous interpreter state (C++ interpreter) must preserve
   792   address entry_point = __ pc();
   795   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
   796   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
   797   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
   799   // get parameter size (always needed)
   800   __ load_unsigned_short(rcx, size_of_parameters);
   802   // native calls don't need the stack size check since they have no expression stack
   803   // and the arguments are already on the stack and we only add a handful of words
   804   // to the stack
   806   // rbx,: methodOop
   807   // rcx: size of parameters
   808   // rsi: sender sp
   810   __ pop(rax);                                       // get return address
   811   // for natives the size of locals is zero
   813   // compute beginning of parameters (rdi)
   814   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
   817   // add 2 zero-initialized slots for native calls
   818   // NULL result handler
   819   __ push((int32_t)NULL_WORD);
   820   // NULL oop temp (mirror or jni oop result)
   821   __ push((int32_t)NULL_WORD);
   823   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
   824   // initialize fixed part of activation frame
   826   generate_fixed_frame(true);
   828   // make sure method is native & not abstract
   829 #ifdef ASSERT
   830   __ movl(rax, access_flags);
   831   {
   832     Label L;
   833     __ testl(rax, JVM_ACC_NATIVE);
   834     __ jcc(Assembler::notZero, L);
   835     __ stop("tried to execute non-native method as native");
   836     __ bind(L);
   837   }
   838   { Label L;
   839     __ testl(rax, JVM_ACC_ABSTRACT);
   840     __ jcc(Assembler::zero, L);
   841     __ stop("tried to execute abstract method in interpreter");
   842     __ bind(L);
   843   }
   844 #endif
   846   // Since at this point in the method invocation the exception handler
   847   // would try to exit the monitor of synchronized methods which hasn't
   848   // been entered yet, we set the thread local variable
   849   // _do_not_unlock_if_synchronized to true. The remove_activation will
   850   // check this flag.
   852   __ get_thread(rax);
   853   const Address do_not_unlock_if_synchronized(rax,
   854         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   855   __ movbool(do_not_unlock_if_synchronized, true);
   857   // increment invocation count & check for overflow
   858   Label invocation_counter_overflow;
   859   if (inc_counter) {
   860     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   861   }
   863   Label continue_after_compile;
   864   __ bind(continue_after_compile);
   866   bang_stack_shadow_pages(true);
   868   // reset the _do_not_unlock_if_synchronized flag
   869   __ get_thread(rax);
   870   __ movbool(do_not_unlock_if_synchronized, false);
   872   // check for synchronized methods
   873   // Must happen AFTER invocation_counter check and stack overflow check,
   874   // so method is not locked if overflows.
   875   //
   876   if (synchronized) {
   877     lock_method();
   878   } else {
   879     // no synchronization necessary
   880 #ifdef ASSERT
   881       { Label L;
   882         __ movl(rax, access_flags);
   883         __ testl(rax, JVM_ACC_SYNCHRONIZED);
   884         __ jcc(Assembler::zero, L);
   885         __ stop("method needs synchronization");
   886         __ bind(L);
   887       }
   888 #endif
   889   }
   891   // start execution
   892 #ifdef ASSERT
   893   { Label L;
   894     const Address monitor_block_top (rbp,
   895                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
   896     __ movptr(rax, monitor_block_top);
   897     __ cmpptr(rax, rsp);
   898     __ jcc(Assembler::equal, L);
   899     __ stop("broken stack frame setup in interpreter");
   900     __ bind(L);
   901   }
   902 #endif
   904   // jvmti/dtrace support
   905   __ notify_method_entry();
   907   // work registers
   908   const Register method = rbx;
   909   const Register thread = rdi;
   910   const Register t      = rcx;
   912   // allocate space for parameters
   913   __ get_method(method);
   914   __ verify_oop(method);
   915   __ load_unsigned_short(t, Address(method, methodOopDesc::size_of_parameters_offset()));
   916   __ shlptr(t, Interpreter::logStackElementSize);
   917   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
   918   __ subptr(rsp, t);
   919   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
   921   // get signature handler
   922   { Label L;
   923     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   924     __ testptr(t, t);
   925     __ jcc(Assembler::notZero, L);
   926     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
   927     __ get_method(method);
   928     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
   929     __ bind(L);
   930   }
   932   // call signature handler
   933   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rdi, "adjust this code");
   934   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
   935   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t  , "adjust this code");
   936   // The generated handlers do not touch RBX (the method oop).
   937   // However, large signatures cannot be cached and are generated
   938   // each time here.  The slow-path generator will blow RBX
   939   // sometime, so we must reload it after the call.
   940   __ call(t);
   941   __ get_method(method);        // slow path call blows RBX on DevStudio 5.0
   943   // result handler is in rax,
   944   // set result handler
   945   __ movptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize), rax);
   947   // pass mirror handle if static call
   948   { Label L;
   949     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   950     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
   951     __ testl(t, JVM_ACC_STATIC);
   952     __ jcc(Assembler::zero, L);
   953     // get mirror
   954     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
   955     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
   956     __ movptr(t, Address(t, mirror_offset));
   957     // copy mirror into activation frame
   958     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize), t);
   959     // pass handle to mirror
   960     __ lea(t, Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
   961     __ movptr(Address(rsp, wordSize), t);
   962     __ bind(L);
   963   }
   965   // get native function entry point
   966   { Label L;
   967     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   968     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
   969     __ cmpptr(rax, unsatisfied.addr());
   970     __ jcc(Assembler::notEqual, L);
   971     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
   972     __ get_method(method);
   973     __ verify_oop(method);
   974     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
   975     __ bind(L);
   976   }
   978   // pass JNIEnv
   979   __ get_thread(thread);
   980   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
   981   __ movptr(Address(rsp, 0), t);
   983   // set_last_Java_frame_before_call
   984   // It is enough that the pc()
   985   // points into the right code segment. It does not have to be the correct return pc.
   986   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
   988   // change thread state
   989 #ifdef ASSERT
   990   { Label L;
   991     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
   992     __ cmpl(t, _thread_in_Java);
   993     __ jcc(Assembler::equal, L);
   994     __ stop("Wrong thread state in native stub");
   995     __ bind(L);
   996   }
   997 #endif
   999   // Change state to native
  1000   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
  1001   __ call(rax);
  1003   // result potentially in rdx:rax or ST0
  1005   // Either restore the MXCSR register after returning from the JNI Call
  1006   // or verify that it wasn't changed.
  1007   if (VM_Version::supports_sse()) {
  1008     if (RestoreMXCSROnJNICalls) {
  1009       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
  1011     else if (CheckJNICalls ) {
  1012       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
  1016   // Either restore the x87 floating pointer control word after returning
  1017   // from the JNI call or verify that it wasn't changed.
  1018   if (CheckJNICalls) {
  1019     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
  1022   // save potential result in ST(0) & rdx:rax
  1023   // (if result handler is the T_FLOAT or T_DOUBLE handler, result must be in ST0 -
  1024   // the check is necessary to avoid potential Intel FPU overflow problems by saving/restoring 'empty' FPU registers)
  1025   // It is safe to do this push because state is _thread_in_native and return address will be found
  1026   // via _last_native_pc and not via _last_jave_sp
  1028   // NOTE: the order of theses push(es) is known to frame::interpreter_frame_result.
  1029   // If the order changes or anything else is added to the stack the code in
  1030   // interpreter_frame_result will have to be changed.
  1032   { Label L;
  1033     Label push_double;
  1034     ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
  1035     ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
  1036     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1037               float_handler.addr());
  1038     __ jcc(Assembler::equal, push_double);
  1039     __ cmpptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset + 1)*wordSize),
  1040               double_handler.addr());
  1041     __ jcc(Assembler::notEqual, L);
  1042     __ bind(push_double);
  1043     __ push(dtos);
  1044     __ bind(L);
  1046   __ push(ltos);
  1048   // change thread state
  1049   __ get_thread(thread);
  1050   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
  1051   if(os::is_MP()) {
  1052     if (UseMembar) {
  1053       // Force this write out before the read below
  1054       __ membar(Assembler::Membar_mask_bits(
  1055            Assembler::LoadLoad | Assembler::LoadStore |
  1056            Assembler::StoreLoad | Assembler::StoreStore));
  1057     } else {
  1058       // Write serialization page so VM thread can do a pseudo remote membar.
  1059       // We use the current thread pointer to calculate a thread specific
  1060       // offset to write to within the page. This minimizes bus traffic
  1061       // due to cache line collision.
  1062       __ serialize_memory(thread, rcx);
  1066   if (AlwaysRestoreFPU) {
  1067     //  Make sure the control word is correct.
  1068     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1071   // check for safepoint operation in progress and/or pending suspend requests
  1072   { Label Continue;
  1074     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1075              SafepointSynchronize::_not_synchronized);
  1077     Label L;
  1078     __ jcc(Assembler::notEqual, L);
  1079     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
  1080     __ jcc(Assembler::equal, Continue);
  1081     __ bind(L);
  1083     // Don't use call_VM as it will see a possible pending exception and forward it
  1084     // and never return here preventing us from clearing _last_native_pc down below.
  1085     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
  1086     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
  1087     // by hand.
  1088     //
  1089     __ push(thread);
  1090     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
  1091                                             JavaThread::check_special_condition_for_native_trans)));
  1092     __ increment(rsp, wordSize);
  1093     __ get_thread(thread);
  1095     __ bind(Continue);
  1098   // change thread state
  1099   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1101   __ reset_last_Java_frame(thread, true, true);
  1103   // reset handle block
  1104   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
  1105   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
  1107   // If result was an oop then unbox and save it in the frame
  1108   { Label L;
  1109     Label no_oop, store_result;
  1110     ExternalAddress handler(AbstractInterpreter::result_handler(T_OBJECT));
  1111     __ cmpptr(Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize),
  1112               handler.addr());
  1113     __ jcc(Assembler::notEqual, no_oop);
  1114     __ cmpptr(Address(rsp, 0), (int32_t)NULL_WORD);
  1115     __ pop(ltos);
  1116     __ testptr(rax, rax);
  1117     __ jcc(Assembler::zero, store_result);
  1118     // unbox
  1119     __ movptr(rax, Address(rax, 0));
  1120     __ bind(store_result);
  1121     __ movptr(Address(rbp, (frame::interpreter_frame_oop_temp_offset)*wordSize), rax);
  1122     // keep stack depth as expected by pushing oop which will eventually be discarded
  1123     __ push(ltos);
  1124     __ bind(no_oop);
  1128      Label no_reguard;
  1129      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
  1130      __ jcc(Assembler::notEqual, no_reguard);
  1132      __ pusha();
  1133      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1134      __ popa();
  1136      __ bind(no_reguard);
  1139   // restore rsi to have legal interpreter frame,
  1140   // i.e., bci == 0 <=> rsi == code_base()
  1141   // Can't call_VM until bcp is within reasonable.
  1142   __ get_method(method);      // method is junk from thread_in_native to now.
  1143   __ verify_oop(method);
  1144   __ movptr(rsi, Address(method,methodOopDesc::const_offset()));   // get constMethodOop
  1145   __ lea(rsi, Address(rsi,constMethodOopDesc::codes_offset()));    // get codebase
  1147   // handle exceptions (exception handling will handle unlocking!)
  1148   { Label L;
  1149     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  1150     __ jcc(Assembler::zero, L);
  1151     // Note: At some point we may want to unify this with the code used in call_VM_base();
  1152     //       i.e., we should use the StubRoutines::forward_exception code. For now this
  1153     //       doesn't work here because the rsp is not correctly set at this point.
  1154     __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1155     __ should_not_reach_here();
  1156     __ bind(L);
  1159   // do unlocking if necessary
  1160   { Label L;
  1161     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
  1162     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1163     __ jcc(Assembler::zero, L);
  1164     // the code below should be shared with interpreter macro assembler implementation
  1165     { Label unlock;
  1166       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
  1167       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
  1168       const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
  1170       __ lea(rdx, monitor);                   // address of first monitor
  1172       __ movptr(t, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
  1173       __ testptr(t, t);
  1174       __ jcc(Assembler::notZero, unlock);
  1176       // Entry already unlocked, need to throw exception
  1177       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1178       __ should_not_reach_here();
  1180       __ bind(unlock);
  1181       __ unlock_object(rdx);
  1183     __ bind(L);
  1186   // jvmti/dtrace support
  1187   // Note: This must happen _after_ handling/throwing any exceptions since
  1188   //       the exception handler code notifies the runtime of method exits
  1189   //       too. If this happens before, method entry/exit notifications are
  1190   //       not properly paired (was bug - gri 11/22/99).
  1191   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1193   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
  1194   __ pop(ltos);
  1195   __ movptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1196   __ call(t);
  1198   // remove activation
  1199   __ movptr(t, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1200   __ leave();                                // remove frame anchor
  1201   __ pop(rdi);                               // get return address
  1202   __ mov(rsp, t);                            // set sp to sender sp
  1203   __ jmp(rdi);
  1205   if (inc_counter) {
  1206     // Handle overflow of counter and compile method
  1207     __ bind(invocation_counter_overflow);
  1208     generate_counter_overflow(&continue_after_compile);
  1211   return entry_point;
  1214 //
  1215 // Generic interpreted method entry to (asm) interpreter
  1216 //
  1217 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1218   // determine code generation flags
  1219   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1221   // rbx,: methodOop
  1222   // rsi: sender sp
  1223   address entry_point = __ pc();
  1226   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
  1227   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
  1228   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
  1229   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
  1231   // get parameter size (always needed)
  1232   __ load_unsigned_short(rcx, size_of_parameters);
  1234   // rbx,: methodOop
  1235   // rcx: size of parameters
  1237   // rsi: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1239   __ load_unsigned_short(rdx, size_of_locals);       // get size of locals in words
  1240   __ subl(rdx, rcx);                                // rdx = no. of additional locals
  1242   // see if we've got enough room on the stack for locals plus overhead.
  1243   generate_stack_overflow_check();
  1245   // get return address
  1246   __ pop(rax);
  1248   // compute beginning of parameters (rdi)
  1249   __ lea(rdi, Address(rsp, rcx, Interpreter::stackElementScale(), -wordSize));
  1251   // rdx - # of additional locals
  1252   // allocate space for locals
  1253   // explicitly initialize locals
  1255     Label exit, loop;
  1256     __ testl(rdx, rdx);
  1257     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
  1258     __ bind(loop);
  1259     __ push((int32_t)NULL_WORD);                      // initialize local variables
  1260     __ decrement(rdx);                                // until everything initialized
  1261     __ jcc(Assembler::greater, loop);
  1262     __ bind(exit);
  1265   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
  1266   // initialize fixed part of activation frame
  1267   generate_fixed_frame(false);
  1269   // make sure method is not native & not abstract
  1270 #ifdef ASSERT
  1271   __ movl(rax, access_flags);
  1273     Label L;
  1274     __ testl(rax, JVM_ACC_NATIVE);
  1275     __ jcc(Assembler::zero, L);
  1276     __ stop("tried to execute native method as non-native");
  1277     __ bind(L);
  1279   { Label L;
  1280     __ testl(rax, JVM_ACC_ABSTRACT);
  1281     __ jcc(Assembler::zero, L);
  1282     __ stop("tried to execute abstract method in interpreter");
  1283     __ bind(L);
  1285 #endif
  1287   // Since at this point in the method invocation the exception handler
  1288   // would try to exit the monitor of synchronized methods which hasn't
  1289   // been entered yet, we set the thread local variable
  1290   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1291   // check this flag.
  1293   __ get_thread(rax);
  1294   const Address do_not_unlock_if_synchronized(rax,
  1295         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1296   __ movbool(do_not_unlock_if_synchronized, true);
  1298   // increment invocation count & check for overflow
  1299   Label invocation_counter_overflow;
  1300   Label profile_method;
  1301   Label profile_method_continue;
  1302   if (inc_counter) {
  1303     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1304     if (ProfileInterpreter) {
  1305       __ bind(profile_method_continue);
  1308   Label continue_after_compile;
  1309   __ bind(continue_after_compile);
  1311   bang_stack_shadow_pages(false);
  1313   // reset the _do_not_unlock_if_synchronized flag
  1314   __ get_thread(rax);
  1315   __ movbool(do_not_unlock_if_synchronized, false);
  1317   // check for synchronized methods
  1318   // Must happen AFTER invocation_counter check and stack overflow check,
  1319   // so method is not locked if overflows.
  1320   //
  1321   if (synchronized) {
  1322     // Allocate monitor and lock method
  1323     lock_method();
  1324   } else {
  1325     // no synchronization necessary
  1326 #ifdef ASSERT
  1327       { Label L;
  1328         __ movl(rax, access_flags);
  1329         __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1330         __ jcc(Assembler::zero, L);
  1331         __ stop("method needs synchronization");
  1332         __ bind(L);
  1334 #endif
  1337   // start execution
  1338 #ifdef ASSERT
  1339   { Label L;
  1340      const Address monitor_block_top (rbp,
  1341                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1342     __ movptr(rax, monitor_block_top);
  1343     __ cmpptr(rax, rsp);
  1344     __ jcc(Assembler::equal, L);
  1345     __ stop("broken stack frame setup in interpreter");
  1346     __ bind(L);
  1348 #endif
  1350   // jvmti support
  1351   __ notify_method_entry();
  1353   __ dispatch_next(vtos);
  1355   // invocation counter overflow
  1356   if (inc_counter) {
  1357     if (ProfileInterpreter) {
  1358       // We have decided to profile this method in the interpreter
  1359       __ bind(profile_method);
  1360       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1361       __ set_method_data_pointer_for_bcp();
  1362       __ get_method(rbx);
  1363       __ jmp(profile_method_continue);
  1365     // Handle overflow of counter and compile method
  1366     __ bind(invocation_counter_overflow);
  1367     generate_counter_overflow(&continue_after_compile);
  1370   return entry_point;
  1373 //------------------------------------------------------------------------------------------------------------------------
  1374 // Entry points
  1375 //
  1376 // Here we generate the various kind of entries into the interpreter.
  1377 // The two main entry type are generic bytecode methods and native call method.
  1378 // These both come in synchronized and non-synchronized versions but the
  1379 // frame layout they create is very similar. The other method entry
  1380 // types are really just special purpose entries that are really entry
  1381 // and interpretation all in one. These are for trivial methods like
  1382 // accessor, empty, or special math methods.
  1383 //
  1384 // When control flow reaches any of the entry types for the interpreter
  1385 // the following holds ->
  1386 //
  1387 // Arguments:
  1388 //
  1389 // rbx,: methodOop
  1390 // rcx: receiver
  1391 //
  1392 //
  1393 // Stack layout immediately at entry
  1394 //
  1395 // [ return address     ] <--- rsp
  1396 // [ parameter n        ]
  1397 //   ...
  1398 // [ parameter 1        ]
  1399 // [ expression stack   ] (caller's java expression stack)
  1401 // Assuming that we don't go to one of the trivial specialized
  1402 // entries the stack will look like below when we are ready to execute
  1403 // the first bytecode (or call the native routine). The register usage
  1404 // will be as the template based interpreter expects (see interpreter_x86.hpp).
  1405 //
  1406 // local variables follow incoming parameters immediately; i.e.
  1407 // the return address is moved to the end of the locals).
  1408 //
  1409 // [ monitor entry      ] <--- rsp
  1410 //   ...
  1411 // [ monitor entry      ]
  1412 // [ expr. stack bottom ]
  1413 // [ saved rsi          ]
  1414 // [ current rdi        ]
  1415 // [ methodOop          ]
  1416 // [ saved rbp,          ] <--- rbp,
  1417 // [ return address     ]
  1418 // [ local variable m   ]
  1419 //   ...
  1420 // [ local variable 1   ]
  1421 // [ parameter n        ]
  1422 //   ...
  1423 // [ parameter 1        ] <--- rdi
  1425 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  1426   // determine code generation flags
  1427   bool synchronized = false;
  1428   address entry_point = NULL;
  1430   switch (kind) {
  1431     case Interpreter::zerolocals             :                                                                             break;
  1432     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1433     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
  1434     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
  1435     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
  1436     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
  1437     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
  1438     case Interpreter::method_handle          : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
  1440     case Interpreter::java_lang_math_sin     : // fall thru
  1441     case Interpreter::java_lang_math_cos     : // fall thru
  1442     case Interpreter::java_lang_math_tan     : // fall thru
  1443     case Interpreter::java_lang_math_abs     : // fall thru
  1444     case Interpreter::java_lang_math_log     : // fall thru
  1445     case Interpreter::java_lang_math_log10   : // fall thru
  1446     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
  1447     default                                  : ShouldNotReachHere();                                                       break;
  1450   if (entry_point) return entry_point;
  1452   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
  1456 // These should never be compiled since the interpreter will prefer
  1457 // the compiled version to the intrinsic version.
  1458 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1459   switch (method_kind(m)) {
  1460     case Interpreter::java_lang_math_sin     : // fall thru
  1461     case Interpreter::java_lang_math_cos     : // fall thru
  1462     case Interpreter::java_lang_math_tan     : // fall thru
  1463     case Interpreter::java_lang_math_abs     : // fall thru
  1464     case Interpreter::java_lang_math_log     : // fall thru
  1465     case Interpreter::java_lang_math_log10   : // fall thru
  1466     case Interpreter::java_lang_math_sqrt    :
  1467       return false;
  1468     default:
  1469       return true;
  1473 // How much stack a method activation needs in words.
  1474 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  1476   const int stub_code = 4;  // see generate_call_stub
  1477   // Save space for one monitor to get into the interpreted method in case
  1478   // the method is synchronized
  1479   int monitor_size    = method->is_synchronized() ?
  1480                                 1*frame::interpreter_frame_monitor_size() : 0;
  1482   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
  1483   // be sure to change this if you add/subtract anything to/from the overhead area
  1484   const int overhead_size = -frame::interpreter_frame_initial_sp_offset;
  1486   const int extra_stack = methodOopDesc::extra_stack_entries();
  1487   const int method_stack = (method->max_locals() + method->max_stack() + extra_stack) *
  1488                            Interpreter::stackElementWords;
  1489   return overhead_size + method_stack + stub_code;
  1492 // asm based interpreter deoptimization helpers
  1494 int AbstractInterpreter::layout_activation(methodOop method,
  1495                                            int tempcount,
  1496                                            int popframe_extra_args,
  1497                                            int moncount,
  1498                                            int callee_param_count,
  1499                                            int callee_locals,
  1500                                            frame* caller,
  1501                                            frame* interpreter_frame,
  1502                                            bool is_top_frame) {
  1503   // Note: This calculation must exactly parallel the frame setup
  1504   // in AbstractInterpreterGenerator::generate_method_entry.
  1505   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  1506   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  1507   // as determined by a previous call to this method.
  1508   // It is also guaranteed to be walkable even though it is in a skeletal state
  1509   // NOTE: return size is in words not bytes
  1511   // fixed size of an interpreter frame:
  1512   int max_locals = method->max_locals() * Interpreter::stackElementWords;
  1513   int extra_locals = (method->max_locals() - method->size_of_parameters()) *
  1514                      Interpreter::stackElementWords;
  1516   int overhead = frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset;
  1518   // Our locals were accounted for by the caller (or last_frame_adjust on the transistion)
  1519   // Since the callee parameters already account for the callee's params we only need to account for
  1520   // the extra locals.
  1523   int size = overhead +
  1524          ((callee_locals - callee_param_count)*Interpreter::stackElementWords) +
  1525          (moncount*frame::interpreter_frame_monitor_size()) +
  1526          tempcount*Interpreter::stackElementWords + popframe_extra_args;
  1528   if (interpreter_frame != NULL) {
  1529 #ifdef ASSERT
  1530     if (!EnableInvokeDynamic)
  1531       // @@@ FIXME: Should we correct interpreter_frame_sender_sp in the calling sequences?
  1532       // Probably, since deoptimization doesn't work yet.
  1533       assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
  1534     assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable(2)");
  1535 #endif
  1537     interpreter_frame->interpreter_frame_set_method(method);
  1538     // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
  1539     // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
  1540     // and sender_sp is fp+8
  1541     intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
  1543     interpreter_frame->interpreter_frame_set_locals(locals);
  1544     BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
  1545     BasicObjectLock* monbot = montop - moncount;
  1546     interpreter_frame->interpreter_frame_set_monitor_end(monbot);
  1548     // Set last_sp
  1549     intptr_t*  rsp = (intptr_t*) monbot  -
  1550                      tempcount*Interpreter::stackElementWords -
  1551                      popframe_extra_args;
  1552     interpreter_frame->interpreter_frame_set_last_sp(rsp);
  1554     // All frames but the initial (oldest) interpreter frame we fill in have a
  1555     // value for sender_sp that allows walking the stack but isn't
  1556     // truly correct. Correct the value here.
  1558     if (extra_locals != 0 &&
  1559         interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
  1560       interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
  1562     *interpreter_frame->interpreter_frame_cache_addr() =
  1563       method->constants()->cache();
  1565   return size;
  1569 //------------------------------------------------------------------------------------------------------------------------
  1570 // Exceptions
  1572 void TemplateInterpreterGenerator::generate_throw_exception() {
  1573   // Entry point in previous activation (i.e., if the caller was interpreted)
  1574   Interpreter::_rethrow_exception_entry = __ pc();
  1575   const Register thread = rcx;
  1577   // Restore sp to interpreter_frame_last_sp even though we are going
  1578   // to empty the expression stack for the exception processing.
  1579   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1580   // rax,: exception
  1581   // rdx: return address/pc that threw exception
  1582   __ restore_bcp();                              // rsi points to call/send
  1583   __ restore_locals();
  1585   // Entry point for exceptions thrown within interpreter code
  1586   Interpreter::_throw_exception_entry = __ pc();
  1587   // expression stack is undefined here
  1588   // rax,: exception
  1589   // rsi: exception bcp
  1590   __ verify_oop(rax);
  1592   // expression stack must be empty before entering the VM in case of an exception
  1593   __ empty_expression_stack();
  1594   __ empty_FPU_stack();
  1595   // find exception handler address and preserve exception oop
  1596   __ call_VM(rdx, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), rax);
  1597   // rax,: exception handler entry point
  1598   // rdx: preserved exception oop
  1599   // rsi: bcp for exception handler
  1600   __ push_ptr(rdx);                              // push exception which is now the only value on the stack
  1601   __ jmp(rax);                                   // jump to exception handler (may be _remove_activation_entry!)
  1603   // If the exception is not handled in the current frame the frame is removed and
  1604   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
  1605   //
  1606   // Note: At this point the bci is still the bxi for the instruction which caused
  1607   //       the exception and the expression stack is empty. Thus, for any VM calls
  1608   //       at this point, GC will find a legal oop map (with empty expression stack).
  1610   // In current activation
  1611   // tos: exception
  1612   // rsi: exception bcp
  1614   //
  1615   // JVMTI PopFrame support
  1616   //
  1618    Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1619   __ empty_expression_stack();
  1620   __ empty_FPU_stack();
  1621   // Set the popframe_processing bit in pending_popframe_condition indicating that we are
  1622   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1623   // popframe handling cycles.
  1624   __ get_thread(thread);
  1625   __ movl(rdx, Address(thread, JavaThread::popframe_condition_offset()));
  1626   __ orl(rdx, JavaThread::popframe_processing_bit);
  1627   __ movl(Address(thread, JavaThread::popframe_condition_offset()), rdx);
  1630     // Check to see whether we are returning to a deoptimized frame.
  1631     // (The PopFrame call ensures that the caller of the popped frame is
  1632     // either interpreted or compiled and deoptimizes it if compiled.)
  1633     // In this case, we can't call dispatch_next() after the frame is
  1634     // popped, but instead must save the incoming arguments and restore
  1635     // them after deoptimization has occurred.
  1636     //
  1637     // Note that we don't compare the return PC against the
  1638     // deoptimization blob's unpack entry because of the presence of
  1639     // adapter frames in C2.
  1640     Label caller_not_deoptimized;
  1641     __ movptr(rdx, Address(rbp, frame::return_addr_offset * wordSize));
  1642     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), rdx);
  1643     __ testl(rax, rax);
  1644     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1646     // Compute size of arguments for saving when returning to deoptimized caller
  1647     __ get_method(rax);
  1648     __ verify_oop(rax);
  1649     __ load_unsigned_short(rax, Address(rax, in_bytes(methodOopDesc::size_of_parameters_offset())));
  1650     __ shlptr(rax, Interpreter::logStackElementSize);
  1651     __ restore_locals();
  1652     __ subptr(rdi, rax);
  1653     __ addptr(rdi, wordSize);
  1654     // Save these arguments
  1655     __ get_thread(thread);
  1656     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), thread, rax, rdi);
  1658     __ remove_activation(vtos, rdx,
  1659                          /* throw_monitor_exception */ false,
  1660                          /* install_monitor_exception */ false,
  1661                          /* notify_jvmdi */ false);
  1663     // Inform deoptimization that it is responsible for restoring these arguments
  1664     __ get_thread(thread);
  1665     __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_force_deopt_reexecution_bit);
  1667     // Continue in deoptimization handler
  1668     __ jmp(rdx);
  1670     __ bind(caller_not_deoptimized);
  1673   __ remove_activation(vtos, rdx,
  1674                        /* throw_monitor_exception */ false,
  1675                        /* install_monitor_exception */ false,
  1676                        /* notify_jvmdi */ false);
  1678   // Finish with popframe handling
  1679   // A previous I2C followed by a deoptimization might have moved the
  1680   // outgoing arguments further up the stack. PopFrame expects the
  1681   // mutations to those outgoing arguments to be preserved and other
  1682   // constraints basically require this frame to look exactly as
  1683   // though it had previously invoked an interpreted activation with
  1684   // no space between the top of the expression stack (current
  1685   // last_sp) and the top of stack. Rather than force deopt to
  1686   // maintain this kind of invariant all the time we call a small
  1687   // fixup routine to move the mutated arguments onto the top of our
  1688   // expression stack if necessary.
  1689   __ mov(rax, rsp);
  1690   __ movptr(rbx, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1691   __ get_thread(thread);
  1692   // PC must point into interpreter here
  1693   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
  1694   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), thread, rax, rbx);
  1695   __ get_thread(thread);
  1696   __ reset_last_Java_frame(thread, true, true);
  1697   // Restore the last_sp and null it out
  1698   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1699   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
  1701   __ restore_bcp();
  1702   __ restore_locals();
  1703   // The method data pointer was incremented already during
  1704   // call profiling. We have to restore the mdp for the current bcp.
  1705   if (ProfileInterpreter) {
  1706     __ set_method_data_pointer_for_bcp();
  1709   // Clear the popframe condition flag
  1710   __ get_thread(thread);
  1711   __ movl(Address(thread, JavaThread::popframe_condition_offset()), JavaThread::popframe_inactive);
  1713   __ dispatch_next(vtos);
  1714   // end of PopFrame support
  1716   Interpreter::_remove_activation_entry = __ pc();
  1718   // preserve exception over this code sequence
  1719   __ pop_ptr(rax);
  1720   __ get_thread(thread);
  1721   __ movptr(Address(thread, JavaThread::vm_result_offset()), rax);
  1722   // remove the activation (without doing throws on illegalMonitorExceptions)
  1723   __ remove_activation(vtos, rdx, false, true, false);
  1724   // restore exception
  1725   __ get_thread(thread);
  1726   __ movptr(rax, Address(thread, JavaThread::vm_result_offset()));
  1727   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
  1728   __ verify_oop(rax);
  1730   // Inbetween activations - previous activation type unknown yet
  1731   // compute continuation point - the continuation point expects
  1732   // the following registers set up:
  1733   //
  1734   // rax: exception
  1735   // rdx: return address/pc that threw exception
  1736   // rsp: expression stack of caller
  1737   // rbp: rbp, of caller
  1738   __ push(rax);                                  // save exception
  1739   __ push(rdx);                                  // save return address
  1740   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, rdx);
  1741   __ mov(rbx, rax);                              // save exception handler
  1742   __ pop(rdx);                                   // restore return address
  1743   __ pop(rax);                                   // restore exception
  1744   // Note that an "issuing PC" is actually the next PC after the call
  1745   __ jmp(rbx);                                   // jump to exception handler of caller
  1749 //
  1750 // JVMTI ForceEarlyReturn support
  1751 //
  1752 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1753   address entry = __ pc();
  1754   const Register thread = rcx;
  1756   __ restore_bcp();
  1757   __ restore_locals();
  1758   __ empty_expression_stack();
  1759   __ empty_FPU_stack();
  1760   __ load_earlyret_value(state);
  1762   __ get_thread(thread);
  1763   __ movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
  1764   const Address cond_addr(rcx, JvmtiThreadState::earlyret_state_offset());
  1766   // Clear the earlyret state
  1767   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1769   __ remove_activation(state, rsi,
  1770                        false, /* throw_monitor_exception */
  1771                        false, /* install_monitor_exception */
  1772                        true); /* notify_jvmdi */
  1773   __ jmp(rsi);
  1774   return entry;
  1775 } // end of ForceEarlyReturn support
  1778 //------------------------------------------------------------------------------------------------------------------------
  1779 // Helper for vtos entry point generation
  1781 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  1782   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1783   Label L;
  1784   fep = __ pc(); __ push(ftos); __ jmp(L);
  1785   dep = __ pc(); __ push(dtos); __ jmp(L);
  1786   lep = __ pc(); __ push(ltos); __ jmp(L);
  1787   aep = __ pc(); __ push(atos); __ jmp(L);
  1788   bep = cep = sep =             // fall through
  1789   iep = __ pc(); __ push(itos); // fall through
  1790   vep = __ pc(); __ bind(L);    // fall through
  1791   generate_and_dispatch(t);
  1794 //------------------------------------------------------------------------------------------------------------------------
  1795 // Generation of individual instructions
  1797 // helpers for generate_and_dispatch
  1801 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1802  : TemplateInterpreterGenerator(code) {
  1803    generate_all(); // down here so it can be "virtual"
  1806 //------------------------------------------------------------------------------------------------------------------------
  1808 // Non-product code
  1809 #ifndef PRODUCT
  1810 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1811   address entry = __ pc();
  1813   // prepare expression stack
  1814   __ pop(rcx);          // pop return address so expression stack is 'pure'
  1815   __ push(state);       // save tosca
  1817   // pass tosca registers as arguments & call tracer
  1818   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), rcx, rax, rdx);
  1819   __ mov(rcx, rax);     // make sure return address is not destroyed by pop(state)
  1820   __ pop(state);        // restore tosca
  1822   // return
  1823   __ jmp(rcx);
  1825   return entry;
  1829 void TemplateInterpreterGenerator::count_bytecode() {
  1830   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  1834 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1835   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  1839 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1840   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  1841   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  1842   __ orl(rbx, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1843   ExternalAddress table((address) BytecodePairHistogram::_counters);
  1844   Address index(noreg, rbx, Address::times_4);
  1845   __ incrementl(ArrayAddress(table, index));
  1849 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  1850   // Call a little run-time stub to avoid blow-up for each bytecode.
  1851   // The run-time runtime saves the right registers, depending on
  1852   // the tosca in-state for the given template.
  1853   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  1854          "entry must have been generated");
  1855   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  1859 void TemplateInterpreterGenerator::stop_interpreter_at() {
  1860   Label L;
  1861   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  1862            StopInterpreterAt);
  1863   __ jcc(Assembler::notEqual, L);
  1864   __ int3();
  1865   __ bind(L);
  1867 #endif // !PRODUCT
  1868 #endif // CC_INTERP

mercurial