src/share/vm/runtime/sharedRuntime.cpp

Thu, 05 Jun 2008 15:57:56 -0700

author
ysr
date
Thu, 05 Jun 2008 15:57:56 -0700
changeset 777
37f87013dfd8
parent 563
a76240c8b133
child 791
1ee8caae33af
permissions
-rw-r--r--

6711316: Open source the Garbage-First garbage collector
Summary: First mercurial integration of the code for the Garbage-First garbage collector.
Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime.cpp.incl"
    27 #include <math.h>
    29 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
    30 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
    31                       char*, int, char*, int, char*, int);
    32 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
    33                       char*, int, char*, int, char*, int);
    35 // Implementation of SharedRuntime
    37 #ifndef PRODUCT
    38 // For statistics
    39 int SharedRuntime::_ic_miss_ctr = 0;
    40 int SharedRuntime::_wrong_method_ctr = 0;
    41 int SharedRuntime::_resolve_static_ctr = 0;
    42 int SharedRuntime::_resolve_virtual_ctr = 0;
    43 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
    44 int SharedRuntime::_implicit_null_throws = 0;
    45 int SharedRuntime::_implicit_div0_throws = 0;
    46 int SharedRuntime::_throw_null_ctr = 0;
    48 int SharedRuntime::_nof_normal_calls = 0;
    49 int SharedRuntime::_nof_optimized_calls = 0;
    50 int SharedRuntime::_nof_inlined_calls = 0;
    51 int SharedRuntime::_nof_megamorphic_calls = 0;
    52 int SharedRuntime::_nof_static_calls = 0;
    53 int SharedRuntime::_nof_inlined_static_calls = 0;
    54 int SharedRuntime::_nof_interface_calls = 0;
    55 int SharedRuntime::_nof_optimized_interface_calls = 0;
    56 int SharedRuntime::_nof_inlined_interface_calls = 0;
    57 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
    58 int SharedRuntime::_nof_removable_exceptions = 0;
    60 int SharedRuntime::_new_instance_ctr=0;
    61 int SharedRuntime::_new_array_ctr=0;
    62 int SharedRuntime::_multi1_ctr=0;
    63 int SharedRuntime::_multi2_ctr=0;
    64 int SharedRuntime::_multi3_ctr=0;
    65 int SharedRuntime::_multi4_ctr=0;
    66 int SharedRuntime::_multi5_ctr=0;
    67 int SharedRuntime::_mon_enter_stub_ctr=0;
    68 int SharedRuntime::_mon_exit_stub_ctr=0;
    69 int SharedRuntime::_mon_enter_ctr=0;
    70 int SharedRuntime::_mon_exit_ctr=0;
    71 int SharedRuntime::_partial_subtype_ctr=0;
    72 int SharedRuntime::_jbyte_array_copy_ctr=0;
    73 int SharedRuntime::_jshort_array_copy_ctr=0;
    74 int SharedRuntime::_jint_array_copy_ctr=0;
    75 int SharedRuntime::_jlong_array_copy_ctr=0;
    76 int SharedRuntime::_oop_array_copy_ctr=0;
    77 int SharedRuntime::_checkcast_array_copy_ctr=0;
    78 int SharedRuntime::_unsafe_array_copy_ctr=0;
    79 int SharedRuntime::_generic_array_copy_ctr=0;
    80 int SharedRuntime::_slow_array_copy_ctr=0;
    81 int SharedRuntime::_find_handler_ctr=0;
    82 int SharedRuntime::_rethrow_ctr=0;
    84 int     SharedRuntime::_ICmiss_index                    = 0;
    85 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
    86 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
    88 void SharedRuntime::trace_ic_miss(address at) {
    89   for (int i = 0; i < _ICmiss_index; i++) {
    90     if (_ICmiss_at[i] == at) {
    91       _ICmiss_count[i]++;
    92       return;
    93     }
    94   }
    95   int index = _ICmiss_index++;
    96   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
    97   _ICmiss_at[index] = at;
    98   _ICmiss_count[index] = 1;
    99 }
   101 void SharedRuntime::print_ic_miss_histogram() {
   102   if (ICMissHistogram) {
   103     tty->print_cr ("IC Miss Histogram:");
   104     int tot_misses = 0;
   105     for (int i = 0; i < _ICmiss_index; i++) {
   106       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   107       tot_misses += _ICmiss_count[i];
   108     }
   109     tty->print_cr ("Total IC misses: %7d", tot_misses);
   110   }
   111 }
   112 #endif // PRODUCT
   114 #ifndef SERIALGC
   116 // G1 write-barrier pre: executed before a pointer store.
   117 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   118   if (orig == NULL) {
   119     assert(false, "should be optimized out");
   120     return;
   121   }
   122   // store the original value that was in the field reference
   123   thread->satb_mark_queue().enqueue(orig);
   124 JRT_END
   126 // G1 write-barrier post: executed after a pointer store.
   127 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   128   thread->dirty_card_queue().enqueue(card_addr);
   129 JRT_END
   131 #endif // !SERIALGC
   134 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   135   return x * y;
   136 JRT_END
   139 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   140   if (x == min_jlong && y == CONST64(-1)) {
   141     return x;
   142   } else {
   143     return x / y;
   144   }
   145 JRT_END
   148 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   149   if (x == min_jlong && y == CONST64(-1)) {
   150     return 0;
   151   } else {
   152     return x % y;
   153   }
   154 JRT_END
   157 const juint  float_sign_mask  = 0x7FFFFFFF;
   158 const juint  float_infinity   = 0x7F800000;
   159 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   160 const julong double_infinity  = CONST64(0x7FF0000000000000);
   162 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   163 #ifdef _WIN64
   164   // 64-bit Windows on amd64 returns the wrong values for
   165   // infinity operands.
   166   union { jfloat f; juint i; } xbits, ybits;
   167   xbits.f = x;
   168   ybits.f = y;
   169   // x Mod Infinity == x unless x is infinity
   170   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   171        ((ybits.i & float_sign_mask) == float_infinity) ) {
   172     return x;
   173   }
   174 #endif
   175   return ((jfloat)fmod((double)x,(double)y));
   176 JRT_END
   179 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   180 #ifdef _WIN64
   181   union { jdouble d; julong l; } xbits, ybits;
   182   xbits.d = x;
   183   ybits.d = y;
   184   // x Mod Infinity == x unless x is infinity
   185   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   186        ((ybits.l & double_sign_mask) == double_infinity) ) {
   187     return x;
   188   }
   189 #endif
   190   return ((jdouble)fmod((double)x,(double)y));
   191 JRT_END
   194 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   195   if (g_isnan(x)) {return 0;}
   196   jlong lltmp = (jlong)x;
   197   jint ltmp   = (jint)lltmp;
   198   if (ltmp == lltmp) {
   199     return ltmp;
   200   } else {
   201     if (x < 0) {
   202       return min_jint;
   203     } else {
   204       return max_jint;
   205     }
   206   }
   207 JRT_END
   210 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   211   if (g_isnan(x)) {return 0;}
   212   jlong lltmp = (jlong)x;
   213   if (lltmp != min_jlong) {
   214     return lltmp;
   215   } else {
   216     if (x < 0) {
   217       return min_jlong;
   218     } else {
   219       return max_jlong;
   220     }
   221   }
   222 JRT_END
   225 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   226   if (g_isnan(x)) {return 0;}
   227   jlong lltmp = (jlong)x;
   228   jint ltmp   = (jint)lltmp;
   229   if (ltmp == lltmp) {
   230     return ltmp;
   231   } else {
   232     if (x < 0) {
   233       return min_jint;
   234     } else {
   235       return max_jint;
   236     }
   237   }
   238 JRT_END
   241 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   242   if (g_isnan(x)) {return 0;}
   243   jlong lltmp = (jlong)x;
   244   if (lltmp != min_jlong) {
   245     return lltmp;
   246   } else {
   247     if (x < 0) {
   248       return min_jlong;
   249     } else {
   250       return max_jlong;
   251     }
   252   }
   253 JRT_END
   256 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   257   return (jfloat)x;
   258 JRT_END
   261 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   262   return (jfloat)x;
   263 JRT_END
   266 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   267   return (jdouble)x;
   268 JRT_END
   270 // Exception handling accross interpreter/compiler boundaries
   271 //
   272 // exception_handler_for_return_address(...) returns the continuation address.
   273 // The continuation address is the entry point of the exception handler of the
   274 // previous frame depending on the return address.
   276 address SharedRuntime::raw_exception_handler_for_return_address(address return_address) {
   277   assert(frame::verify_return_pc(return_address), "must be a return pc");
   279   // the fastest case first
   280   CodeBlob* blob = CodeCache::find_blob(return_address);
   281   if (blob != NULL && blob->is_nmethod()) {
   282     nmethod* code = (nmethod*)blob;
   283     assert(code != NULL, "nmethod must be present");
   284     // native nmethods don't have exception handlers
   285     assert(!code->is_native_method(), "no exception handler");
   286     assert(code->header_begin() != code->exception_begin(), "no exception handler");
   287     if (code->is_deopt_pc(return_address)) {
   288       return SharedRuntime::deopt_blob()->unpack_with_exception();
   289     } else {
   290       return code->exception_begin();
   291     }
   292   }
   294   // Entry code
   295   if (StubRoutines::returns_to_call_stub(return_address)) {
   296     return StubRoutines::catch_exception_entry();
   297   }
   298   // Interpreted code
   299   if (Interpreter::contains(return_address)) {
   300     return Interpreter::rethrow_exception_entry();
   301   }
   303   // Compiled code
   304   if (CodeCache::contains(return_address)) {
   305     CodeBlob* blob = CodeCache::find_blob(return_address);
   306     if (blob->is_nmethod()) {
   307       nmethod* code = (nmethod*)blob;
   308       assert(code != NULL, "nmethod must be present");
   309       assert(code->header_begin() != code->exception_begin(), "no exception handler");
   310       return code->exception_begin();
   311     }
   312     if (blob->is_runtime_stub()) {
   313       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
   314     }
   315   }
   316   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   317 #ifndef PRODUCT
   318   { ResourceMark rm;
   319     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   320     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   321     tty->print_cr("b) other problem");
   322   }
   323 #endif // PRODUCT
   324   ShouldNotReachHere();
   325   return NULL;
   326 }
   329 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(address return_address))
   330   return raw_exception_handler_for_return_address(return_address);
   331 JRT_END
   333 address SharedRuntime::get_poll_stub(address pc) {
   334   address stub;
   335   // Look up the code blob
   336   CodeBlob *cb = CodeCache::find_blob(pc);
   338   // Should be an nmethod
   339   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   341   // Look up the relocation information
   342   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   343     "safepoint polling: type must be poll" );
   345   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   346     "Only polling locations are used for safepoint");
   348   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   349   if (at_poll_return) {
   350     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   351            "polling page return stub not created yet");
   352     stub = SharedRuntime::polling_page_return_handler_blob()->instructions_begin();
   353   } else {
   354     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   355            "polling page safepoint stub not created yet");
   356     stub = SharedRuntime::polling_page_safepoint_handler_blob()->instructions_begin();
   357   }
   358 #ifndef PRODUCT
   359   if( TraceSafepoint ) {
   360     char buf[256];
   361     jio_snprintf(buf, sizeof(buf),
   362                  "... found polling page %s exception at pc = "
   363                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   364                  at_poll_return ? "return" : "loop",
   365                  (intptr_t)pc, (intptr_t)stub);
   366     tty->print_raw_cr(buf);
   367   }
   368 #endif // PRODUCT
   369   return stub;
   370 }
   373 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
   374   assert(caller.is_interpreted_frame(), "");
   375   int args_size = ArgumentSizeComputer(sig).size() + 1;
   376   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   377   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   378   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   379   return result;
   380 }
   383 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   384   if (JvmtiExport::can_post_exceptions()) {
   385     vframeStream vfst(thread, true);
   386     methodHandle method = methodHandle(thread, vfst.method());
   387     address bcp = method()->bcp_from(vfst.bci());
   388     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   389   }
   390   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   391 }
   393 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
   394   Handle h_exception = Exceptions::new_exception(thread, name, message);
   395   throw_and_post_jvmti_exception(thread, h_exception);
   396 }
   398 // ret_pc points into caller; we are returning caller's exception handler
   399 // for given exception
   400 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   401                                                     bool force_unwind, bool top_frame_only) {
   402   assert(nm != NULL, "must exist");
   403   ResourceMark rm;
   405   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   406   // determine handler bci, if any
   407   EXCEPTION_MARK;
   409   int handler_bci = -1;
   410   int scope_depth = 0;
   411   if (!force_unwind) {
   412     int bci = sd->bci();
   413     do {
   414       bool skip_scope_increment = false;
   415       // exception handler lookup
   416       KlassHandle ek (THREAD, exception->klass());
   417       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
   418       if (HAS_PENDING_EXCEPTION) {
   419         // We threw an exception while trying to find the exception handler.
   420         // Transfer the new exception to the exception handle which will
   421         // be set into thread local storage, and do another lookup for an
   422         // exception handler for this exception, this time starting at the
   423         // BCI of the exception handler which caused the exception to be
   424         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   425         // argument to ensure that the correct exception is thrown (4870175).
   426         exception = Handle(THREAD, PENDING_EXCEPTION);
   427         CLEAR_PENDING_EXCEPTION;
   428         if (handler_bci >= 0) {
   429           bci = handler_bci;
   430           handler_bci = -1;
   431           skip_scope_increment = true;
   432         }
   433       }
   434       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   435         sd = sd->sender();
   436         if (sd != NULL) {
   437           bci = sd->bci();
   438         }
   439         ++scope_depth;
   440       }
   441     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
   442   }
   444   // found handling method => lookup exception handler
   445   int catch_pco = ret_pc - nm->instructions_begin();
   447   ExceptionHandlerTable table(nm);
   448   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   449   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   450     // Allow abbreviated catch tables.  The idea is to allow a method
   451     // to materialize its exceptions without committing to the exact
   452     // routing of exceptions.  In particular this is needed for adding
   453     // a synthethic handler to unlock monitors when inlining
   454     // synchonized methods since the unlock path isn't represented in
   455     // the bytecodes.
   456     t = table.entry_for(catch_pco, -1, 0);
   457   }
   459 #ifdef COMPILER1
   460   if (nm->is_compiled_by_c1() && t == NULL && handler_bci == -1) {
   461     // Exception is not handled by this frame so unwind.  Note that
   462     // this is not the same as how C2 does this.  C2 emits a table
   463     // entry that dispatches to the unwind code in the nmethod.
   464     return NULL;
   465   }
   466 #endif /* COMPILER1 */
   469   if (t == NULL) {
   470     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   471     tty->print_cr("   Exception:");
   472     exception->print();
   473     tty->cr();
   474     tty->print_cr(" Compiled exception table :");
   475     table.print();
   476     nm->print_code();
   477     guarantee(false, "missing exception handler");
   478     return NULL;
   479   }
   481   return nm->instructions_begin() + t->pco();
   482 }
   484 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   485   // These errors occur only at call sites
   486   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   487 JRT_END
   489 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   490   // These errors occur only at call sites
   491   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   492 JRT_END
   494 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   495   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   496 JRT_END
   498 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   499   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   500 JRT_END
   502 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   503   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   504   // cache sites (when the callee activation is not yet set up) so we are at a call site
   505   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   506 JRT_END
   508 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   509   // We avoid using the normal exception construction in this case because
   510   // it performs an upcall to Java, and we're already out of stack space.
   511   klassOop k = SystemDictionary::StackOverflowError_klass();
   512   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
   513   Handle exception (thread, exception_oop);
   514   if (StackTraceInThrowable) {
   515     java_lang_Throwable::fill_in_stack_trace(exception);
   516   }
   517   throw_and_post_jvmti_exception(thread, exception);
   518 JRT_END
   520 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   521                                                            address pc,
   522                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   523 {
   524   address target_pc = NULL;
   526   if (Interpreter::contains(pc)) {
   527 #ifdef CC_INTERP
   528     // C++ interpreter doesn't throw implicit exceptions
   529     ShouldNotReachHere();
   530 #else
   531     switch (exception_kind) {
   532       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   533       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   534       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   535       default:                      ShouldNotReachHere();
   536     }
   537 #endif // !CC_INTERP
   538   } else {
   539     switch (exception_kind) {
   540       case STACK_OVERFLOW: {
   541         // Stack overflow only occurs upon frame setup; the callee is
   542         // going to be unwound. Dispatch to a shared runtime stub
   543         // which will cause the StackOverflowError to be fabricated
   544         // and processed.
   545         // For stack overflow in deoptimization blob, cleanup thread.
   546         if (thread->deopt_mark() != NULL) {
   547           Deoptimization::cleanup_deopt_info(thread, NULL);
   548         }
   549         return StubRoutines::throw_StackOverflowError_entry();
   550       }
   552       case IMPLICIT_NULL: {
   553         if (VtableStubs::contains(pc)) {
   554           // We haven't yet entered the callee frame. Fabricate an
   555           // exception and begin dispatching it in the caller. Since
   556           // the caller was at a call site, it's safe to destroy all
   557           // caller-saved registers, as these entry points do.
   558           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   559           guarantee(vt_stub != NULL, "unable to find SEGVing vtable stub");
   560           if (vt_stub->is_abstract_method_error(pc)) {
   561             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   562             return StubRoutines::throw_AbstractMethodError_entry();
   563           } else {
   564             return StubRoutines::throw_NullPointerException_at_call_entry();
   565           }
   566         } else {
   567           CodeBlob* cb = CodeCache::find_blob(pc);
   568           guarantee(cb != NULL, "exception happened outside interpreter, nmethods and vtable stubs (1)");
   570           // Exception happened in CodeCache. Must be either:
   571           // 1. Inline-cache check in C2I handler blob,
   572           // 2. Inline-cache check in nmethod, or
   573           // 3. Implict null exception in nmethod
   575           if (!cb->is_nmethod()) {
   576             guarantee(cb->is_adapter_blob(),
   577                       "exception happened outside interpreter, nmethods and vtable stubs (2)");
   578             // There is no handler here, so we will simply unwind.
   579             return StubRoutines::throw_NullPointerException_at_call_entry();
   580           }
   582           // Otherwise, it's an nmethod.  Consult its exception handlers.
   583           nmethod* nm = (nmethod*)cb;
   584           if (nm->inlinecache_check_contains(pc)) {
   585             // exception happened inside inline-cache check code
   586             // => the nmethod is not yet active (i.e., the frame
   587             // is not set up yet) => use return address pushed by
   588             // caller => don't push another return address
   589             return StubRoutines::throw_NullPointerException_at_call_entry();
   590           }
   592 #ifndef PRODUCT
   593           _implicit_null_throws++;
   594 #endif
   595           target_pc = nm->continuation_for_implicit_exception(pc);
   596           guarantee(target_pc != 0, "must have a continuation point");
   597         }
   599         break; // fall through
   600       }
   603       case IMPLICIT_DIVIDE_BY_ZERO: {
   604         nmethod* nm = CodeCache::find_nmethod(pc);
   605         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   606 #ifndef PRODUCT
   607         _implicit_div0_throws++;
   608 #endif
   609         target_pc = nm->continuation_for_implicit_exception(pc);
   610         guarantee(target_pc != 0, "must have a continuation point");
   611         break; // fall through
   612       }
   614       default: ShouldNotReachHere();
   615     }
   617     guarantee(target_pc != NULL, "must have computed destination PC for implicit exception");
   618     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   620     // for AbortVMOnException flag
   621     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   622     if (exception_kind == IMPLICIT_NULL) {
   623       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   624     } else {
   625       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   626     }
   627     return target_pc;
   628   }
   630   ShouldNotReachHere();
   631   return NULL;
   632 }
   635 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   636 {
   637   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   638 }
   639 JNI_END
   642 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   643   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   644 }
   647 #ifndef PRODUCT
   648 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   649   const frame f = thread->last_frame();
   650   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   651 #ifndef PRODUCT
   652   methodHandle mh(THREAD, f.interpreter_frame_method());
   653   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   654 #endif // !PRODUCT
   655   return preserve_this_value;
   656 JRT_END
   657 #endif // !PRODUCT
   660 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   661   os::yield_all(attempts);
   662 JRT_END
   665 // ---------------------------------------------------------------------------------------------------------
   666 // Non-product code
   667 #ifndef PRODUCT
   669 void SharedRuntime::verify_caller_frame(frame caller_frame, methodHandle callee_method) {
   670   ResourceMark rm;
   671   assert (caller_frame.is_interpreted_frame(), "sanity check");
   672   assert (callee_method->has_compiled_code(), "callee must be compiled");
   673   methodHandle caller_method (Thread::current(), caller_frame.interpreter_frame_method());
   674   jint bci = caller_frame.interpreter_frame_bci();
   675   methodHandle method = find_callee_method_inside_interpreter(caller_frame, caller_method, bci);
   676   assert (callee_method == method, "incorrect method");
   677 }
   679 methodHandle SharedRuntime::find_callee_method_inside_interpreter(frame caller_frame, methodHandle caller_method, int bci) {
   680   EXCEPTION_MARK;
   681   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller_method, bci);
   682   methodHandle staticCallee = bytecode->static_target(CATCH); // Non-product code
   684   bytecode = Bytecode_invoke_at(caller_method, bci);
   685   int bytecode_index = bytecode->index();
   686   Bytecodes::Code bc = bytecode->adjusted_invoke_code();
   688   Handle receiver;
   689   if (bc == Bytecodes::_invokeinterface ||
   690       bc == Bytecodes::_invokevirtual ||
   691       bc == Bytecodes::_invokespecial) {
   692     symbolHandle signature (THREAD, staticCallee->signature());
   693     receiver = Handle(THREAD, retrieve_receiver(signature, caller_frame));
   694   } else {
   695     receiver = Handle();
   696   }
   697   CallInfo result;
   698   constantPoolHandle constants (THREAD, caller_method->constants());
   699   LinkResolver::resolve_invoke(result, receiver, constants, bytecode_index, bc, CATCH); // Non-product code
   700   methodHandle calleeMethod = result.selected_method();
   701   return calleeMethod;
   702 }
   704 #endif  // PRODUCT
   707 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   708   assert(obj->is_oop(), "must be a valid oop");
   709   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
   710   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
   711 JRT_END
   714 jlong SharedRuntime::get_java_tid(Thread* thread) {
   715   if (thread != NULL) {
   716     if (thread->is_Java_thread()) {
   717       oop obj = ((JavaThread*)thread)->threadObj();
   718       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   719     }
   720   }
   721   return 0;
   722 }
   724 /**
   725  * This function ought to be a void function, but cannot be because
   726  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   727  * 6254741.  Once that is fixed we can remove the dummy return value.
   728  */
   729 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   730   return dtrace_object_alloc_base(Thread::current(), o);
   731 }
   733 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   734   assert(DTraceAllocProbes, "wrong call");
   735   Klass* klass = o->blueprint();
   736   int size = o->size();
   737   symbolOop name = klass->name();
   738   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   739                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   740   return 0;
   741 }
   743 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   744     JavaThread* thread, methodOopDesc* method))
   745   assert(DTraceMethodProbes, "wrong call");
   746   symbolOop kname = method->klass_name();
   747   symbolOop name = method->name();
   748   symbolOop sig = method->signature();
   749   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   750       kname->bytes(), kname->utf8_length(),
   751       name->bytes(), name->utf8_length(),
   752       sig->bytes(), sig->utf8_length());
   753   return 0;
   754 JRT_END
   756 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   757     JavaThread* thread, methodOopDesc* method))
   758   assert(DTraceMethodProbes, "wrong call");
   759   symbolOop kname = method->klass_name();
   760   symbolOop name = method->name();
   761   symbolOop sig = method->signature();
   762   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   763       kname->bytes(), kname->utf8_length(),
   764       name->bytes(), name->utf8_length(),
   765       sig->bytes(), sig->utf8_length());
   766   return 0;
   767 JRT_END
   770 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
   771 // for a call current in progress, i.e., arguments has been pushed on stack
   772 // put callee has not been invoked yet.  Used by: resolve virtual/static,
   773 // vtable updates, etc.  Caller frame must be compiled.
   774 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
   775   ResourceMark rm(THREAD);
   777   // last java frame on stack (which includes native call frames)
   778   vframeStream vfst(thread, true);  // Do not skip and javaCalls
   780   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
   781 }
   784 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
   785 // for a call current in progress, i.e., arguments has been pushed on stack
   786 // but callee has not been invoked yet.  Caller frame must be compiled.
   787 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
   788                                               vframeStream& vfst,
   789                                               Bytecodes::Code& bc,
   790                                               CallInfo& callinfo, TRAPS) {
   791   Handle receiver;
   792   Handle nullHandle;  //create a handy null handle for exception returns
   794   assert(!vfst.at_end(), "Java frame must exist");
   796   // Find caller and bci from vframe
   797   methodHandle caller (THREAD, vfst.method());
   798   int          bci    = vfst.bci();
   800   // Find bytecode
   801   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
   802   bc = bytecode->adjusted_invoke_code();
   803   int bytecode_index = bytecode->index();
   805   // Find receiver for non-static call
   806   if (bc != Bytecodes::_invokestatic) {
   807     // This register map must be update since we need to find the receiver for
   808     // compiled frames. The receiver might be in a register.
   809     RegisterMap reg_map2(thread);
   810     frame stubFrame   = thread->last_frame();
   811     // Caller-frame is a compiled frame
   812     frame callerFrame = stubFrame.sender(&reg_map2);
   814     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
   815     if (callee.is_null()) {
   816       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
   817     }
   818     // Retrieve from a compiled argument list
   819     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
   821     if (receiver.is_null()) {
   822       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
   823     }
   824   }
   826   // Resolve method. This is parameterized by bytecode.
   827   constantPoolHandle constants (THREAD, caller->constants());
   828   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
   829   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
   831 #ifdef ASSERT
   832   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
   833   if (bc != Bytecodes::_invokestatic) {
   834     assert(receiver.not_null(), "should have thrown exception");
   835     KlassHandle receiver_klass (THREAD, receiver->klass());
   836     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
   837                             // klass is already loaded
   838     KlassHandle static_receiver_klass (THREAD, rk);
   839     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
   840     if (receiver_klass->oop_is_instance()) {
   841       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
   842         tty->print_cr("ERROR: Klass not yet initialized!!");
   843         receiver_klass.print();
   844       }
   845       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
   846     }
   847   }
   848 #endif
   850   return receiver;
   851 }
   853 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
   854   ResourceMark rm(THREAD);
   855   // We need first to check if any Java activations (compiled, interpreted)
   856   // exist on the stack since last JavaCall.  If not, we need
   857   // to get the target method from the JavaCall wrapper.
   858   vframeStream vfst(thread, true);  // Do not skip any javaCalls
   859   methodHandle callee_method;
   860   if (vfst.at_end()) {
   861     // No Java frames were found on stack since we did the JavaCall.
   862     // Hence the stack can only contain an entry_frame.  We need to
   863     // find the target method from the stub frame.
   864     RegisterMap reg_map(thread, false);
   865     frame fr = thread->last_frame();
   866     assert(fr.is_runtime_frame(), "must be a runtimeStub");
   867     fr = fr.sender(&reg_map);
   868     assert(fr.is_entry_frame(), "must be");
   869     // fr is now pointing to the entry frame.
   870     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
   871     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
   872   } else {
   873     Bytecodes::Code bc;
   874     CallInfo callinfo;
   875     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
   876     callee_method = callinfo.selected_method();
   877   }
   878   assert(callee_method()->is_method(), "must be");
   879   return callee_method;
   880 }
   882 // Resolves a call.
   883 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
   884                                            bool is_virtual,
   885                                            bool is_optimized, TRAPS) {
   886   methodHandle callee_method;
   887   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   888   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
   889     int retry_count = 0;
   890     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
   891            callee_method->method_holder() != SystemDictionary::object_klass()) {
   892       // If has a pending exception then there is no need to re-try to
   893       // resolve this method.
   894       // If the method has been redefined, we need to try again.
   895       // Hack: we have no way to update the vtables of arrays, so don't
   896       // require that java.lang.Object has been updated.
   898       // It is very unlikely that method is redefined more than 100 times
   899       // in the middle of resolve. If it is looping here more than 100 times
   900       // means then there could be a bug here.
   901       guarantee((retry_count++ < 100),
   902                 "Could not resolve to latest version of redefined method");
   903       // method is redefined in the middle of resolve so re-try.
   904       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
   905     }
   906   }
   907   return callee_method;
   908 }
   910 // Resolves a call.  The compilers generate code for calls that go here
   911 // and are patched with the real destination of the call.
   912 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
   913                                            bool is_virtual,
   914                                            bool is_optimized, TRAPS) {
   916   ResourceMark rm(thread);
   917   RegisterMap cbl_map(thread, false);
   918   frame caller_frame = thread->last_frame().sender(&cbl_map);
   920   CodeBlob* cb = caller_frame.cb();
   921   guarantee(cb != NULL && cb->is_nmethod(), "must be called from nmethod");
   922   // make sure caller is not getting deoptimized
   923   // and removed before we are done with it.
   924   // CLEANUP - with lazy deopt shouldn't need this lock
   925   nmethodLocker caller_lock((nmethod*)cb);
   928   // determine call info & receiver
   929   // note: a) receiver is NULL for static calls
   930   //       b) an exception is thrown if receiver is NULL for non-static calls
   931   CallInfo call_info;
   932   Bytecodes::Code invoke_code = Bytecodes::_illegal;
   933   Handle receiver = find_callee_info(thread, invoke_code,
   934                                      call_info, CHECK_(methodHandle()));
   935   methodHandle callee_method = call_info.selected_method();
   937   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
   938          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
   940 #ifndef PRODUCT
   941   // tracing/debugging/statistics
   942   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
   943                 (is_virtual) ? (&_resolve_virtual_ctr) :
   944                                (&_resolve_static_ctr);
   945   Atomic::inc(addr);
   947   if (TraceCallFixup) {
   948     ResourceMark rm(thread);
   949     tty->print("resolving %s%s (%s) call to",
   950       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
   951       Bytecodes::name(invoke_code));
   952     callee_method->print_short_name(tty);
   953     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
   954   }
   955 #endif
   957   // Compute entry points. This might require generation of C2I converter
   958   // frames, so we cannot be holding any locks here. Furthermore, the
   959   // computation of the entry points is independent of patching the call.  We
   960   // always return the entry-point, but we only patch the stub if the call has
   961   // not been deoptimized.  Return values: For a virtual call this is an
   962   // (cached_oop, destination address) pair. For a static call/optimized
   963   // virtual this is just a destination address.
   965   StaticCallInfo static_call_info;
   966   CompiledICInfo virtual_call_info;
   969   // Make sure the callee nmethod does not get deoptimized and removed before
   970   // we are done patching the code.
   971   nmethod* nm = callee_method->code();
   972   nmethodLocker nl_callee(nm);
   973 #ifdef ASSERT
   974   address dest_entry_point = nm == NULL ? 0 : nm->entry_point(); // used below
   975 #endif
   977   if (is_virtual) {
   978     assert(receiver.not_null(), "sanity check");
   979     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
   980     KlassHandle h_klass(THREAD, receiver->klass());
   981     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
   982                      is_optimized, static_bound, virtual_call_info,
   983                      CHECK_(methodHandle()));
   984   } else {
   985     // static call
   986     CompiledStaticCall::compute_entry(callee_method, static_call_info);
   987   }
   989   // grab lock, check for deoptimization and potentially patch caller
   990   {
   991     MutexLocker ml_patch(CompiledIC_lock);
   993     // Now that we are ready to patch if the methodOop was redefined then
   994     // don't update call site and let the caller retry.
   996     if (!callee_method->is_old()) {
   997 #ifdef ASSERT
   998       // We must not try to patch to jump to an already unloaded method.
   999       if (dest_entry_point != 0) {
  1000         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1001                "should not unload nmethod while locked");
  1003 #endif
  1004       if (is_virtual) {
  1005         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1006         if (inline_cache->is_clean()) {
  1007           inline_cache->set_to_monomorphic(virtual_call_info);
  1009       } else {
  1010         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1011         if (ssc->is_clean()) ssc->set(static_call_info);
  1015   } // unlock CompiledIC_lock
  1017   return callee_method;
  1021 // Inline caches exist only in compiled code
  1022 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1023 #ifdef ASSERT
  1024   RegisterMap reg_map(thread, false);
  1025   frame stub_frame = thread->last_frame();
  1026   assert(stub_frame.is_runtime_frame(), "sanity check");
  1027   frame caller_frame = stub_frame.sender(&reg_map);
  1028   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1029 #endif /* ASSERT */
  1031   methodHandle callee_method;
  1032   JRT_BLOCK
  1033     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1034     // Return methodOop through TLS
  1035     thread->set_vm_result(callee_method());
  1036   JRT_BLOCK_END
  1037   // return compiled code entry point after potential safepoints
  1038   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1039   return callee_method->verified_code_entry();
  1040 JRT_END
  1043 // Handle call site that has been made non-entrant
  1044 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1045   // 6243940 We might end up in here if the callee is deoptimized
  1046   // as we race to call it.  We don't want to take a safepoint if
  1047   // the caller was interpreted because the caller frame will look
  1048   // interpreted to the stack walkers and arguments are now
  1049   // "compiled" so it is much better to make this transition
  1050   // invisible to the stack walking code. The i2c path will
  1051   // place the callee method in the callee_target. It is stashed
  1052   // there because if we try and find the callee by normal means a
  1053   // safepoint is possible and have trouble gc'ing the compiled args.
  1054   RegisterMap reg_map(thread, false);
  1055   frame stub_frame = thread->last_frame();
  1056   assert(stub_frame.is_runtime_frame(), "sanity check");
  1057   frame caller_frame = stub_frame.sender(&reg_map);
  1058   if (caller_frame.is_interpreted_frame() || caller_frame.is_entry_frame() ) {
  1059     methodOop callee = thread->callee_target();
  1060     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1061     thread->set_vm_result(callee);
  1062     thread->set_callee_target(NULL);
  1063     return callee->get_c2i_entry();
  1066   // Must be compiled to compiled path which is safe to stackwalk
  1067   methodHandle callee_method;
  1068   JRT_BLOCK
  1069     // Force resolving of caller (if we called from compiled frame)
  1070     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1071     thread->set_vm_result(callee_method());
  1072   JRT_BLOCK_END
  1073   // return compiled code entry point after potential safepoints
  1074   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1075   return callee_method->verified_code_entry();
  1076 JRT_END
  1079 // resolve a static call and patch code
  1080 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1081   methodHandle callee_method;
  1082   JRT_BLOCK
  1083     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1084     thread->set_vm_result(callee_method());
  1085   JRT_BLOCK_END
  1086   // return compiled code entry point after potential safepoints
  1087   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1088   return callee_method->verified_code_entry();
  1089 JRT_END
  1092 // resolve virtual call and update inline cache to monomorphic
  1093 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1094   methodHandle callee_method;
  1095   JRT_BLOCK
  1096     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1097     thread->set_vm_result(callee_method());
  1098   JRT_BLOCK_END
  1099   // return compiled code entry point after potential safepoints
  1100   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1101   return callee_method->verified_code_entry();
  1102 JRT_END
  1105 // Resolve a virtual call that can be statically bound (e.g., always
  1106 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1107 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1108   methodHandle callee_method;
  1109   JRT_BLOCK
  1110     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1111     thread->set_vm_result(callee_method());
  1112   JRT_BLOCK_END
  1113   // return compiled code entry point after potential safepoints
  1114   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1115   return callee_method->verified_code_entry();
  1116 JRT_END
  1122 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1123   ResourceMark rm(thread);
  1124   CallInfo call_info;
  1125   Bytecodes::Code bc;
  1127   // receiver is NULL for static calls. An exception is thrown for NULL
  1128   // receivers for non-static calls
  1129   Handle receiver = find_callee_info(thread, bc, call_info,
  1130                                      CHECK_(methodHandle()));
  1131   // Compiler1 can produce virtual call sites that can actually be statically bound
  1132   // If we fell thru to below we would think that the site was going megamorphic
  1133   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1134   // we'd try and do a vtable dispatch however methods that can be statically bound
  1135   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1136   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1137   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1138   // never to miss again. I don't believe C2 will produce code like this but if it
  1139   // did this would still be the correct thing to do for it too, hence no ifdef.
  1140   //
  1141   if (call_info.resolved_method()->can_be_statically_bound()) {
  1142     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1143     if (TraceCallFixup) {
  1144       RegisterMap reg_map(thread, false);
  1145       frame caller_frame = thread->last_frame().sender(&reg_map);
  1146       ResourceMark rm(thread);
  1147       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1148       callee_method->print_short_name(tty);
  1149       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1150       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1152     return callee_method;
  1155   methodHandle callee_method = call_info.selected_method();
  1157   bool should_be_mono = false;
  1159 #ifndef PRODUCT
  1160   Atomic::inc(&_ic_miss_ctr);
  1162   // Statistics & Tracing
  1163   if (TraceCallFixup) {
  1164     ResourceMark rm(thread);
  1165     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1166     callee_method->print_short_name(tty);
  1167     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1170   if (ICMissHistogram) {
  1171     MutexLocker m(VMStatistic_lock);
  1172     RegisterMap reg_map(thread, false);
  1173     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1174     // produce statistics under the lock
  1175     trace_ic_miss(f.pc());
  1177 #endif
  1179   // install an event collector so that when a vtable stub is created the
  1180   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1181   // event can't be posted when the stub is created as locks are held
  1182   // - instead the event will be deferred until the event collector goes
  1183   // out of scope.
  1184   JvmtiDynamicCodeEventCollector event_collector;
  1186   // Update inline cache to megamorphic. Skip update if caller has been
  1187   // made non-entrant or we are called from interpreted.
  1188   { MutexLocker ml_patch (CompiledIC_lock);
  1189     RegisterMap reg_map(thread, false);
  1190     frame caller_frame = thread->last_frame().sender(&reg_map);
  1191     CodeBlob* cb = caller_frame.cb();
  1192     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1193       // Not a non-entrant nmethod, so find inline_cache
  1194       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
  1195       bool should_be_mono = false;
  1196       if (inline_cache->is_optimized()) {
  1197         if (TraceCallFixup) {
  1198           ResourceMark rm(thread);
  1199           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1200           callee_method->print_short_name(tty);
  1201           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1203         should_be_mono = true;
  1204       } else {
  1205         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
  1206         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
  1208           if (receiver()->klass() == ic_oop->holder_klass()) {
  1209             // This isn't a real miss. We must have seen that compiled code
  1210             // is now available and we want the call site converted to a
  1211             // monomorphic compiled call site.
  1212             // We can't assert for callee_method->code() != NULL because it
  1213             // could have been deoptimized in the meantime
  1214             if (TraceCallFixup) {
  1215               ResourceMark rm(thread);
  1216               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1217               callee_method->print_short_name(tty);
  1218               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1220             should_be_mono = true;
  1225       if (should_be_mono) {
  1227         // We have a path that was monomorphic but was going interpreted
  1228         // and now we have (or had) a compiled entry. We correct the IC
  1229         // by using a new icBuffer.
  1230         CompiledICInfo info;
  1231         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1232         inline_cache->compute_monomorphic_entry(callee_method,
  1233                                                 receiver_klass,
  1234                                                 inline_cache->is_optimized(),
  1235                                                 false,
  1236                                                 info, CHECK_(methodHandle()));
  1237         inline_cache->set_to_monomorphic(info);
  1238       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1239         // Change to megamorphic
  1240         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1241       } else {
  1242         // Either clean or megamorphic
  1245   } // Release CompiledIC_lock
  1247   return callee_method;
  1250 //
  1251 // Resets a call-site in compiled code so it will get resolved again.
  1252 // This routines handles both virtual call sites, optimized virtual call
  1253 // sites, and static call sites. Typically used to change a call sites
  1254 // destination from compiled to interpreted.
  1255 //
  1256 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1257   ResourceMark rm(thread);
  1258   RegisterMap reg_map(thread, false);
  1259   frame stub_frame = thread->last_frame();
  1260   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1261   frame caller = stub_frame.sender(&reg_map);
  1263   // Do nothing if the frame isn't a live compiled frame.
  1264   // nmethod could be deoptimized by the time we get here
  1265   // so no update to the caller is needed.
  1267   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1269     address pc = caller.pc();
  1270     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
  1272     // Default call_addr is the location of the "basic" call.
  1273     // Determine the address of the call we a reresolving. With
  1274     // Inline Caches we will always find a recognizable call.
  1275     // With Inline Caches disabled we may or may not find a
  1276     // recognizable call. We will always find a call for static
  1277     // calls and for optimized virtual calls. For vanilla virtual
  1278     // calls it depends on the state of the UseInlineCaches switch.
  1279     //
  1280     // With Inline Caches disabled we can get here for a virtual call
  1281     // for two reasons:
  1282     //   1 - calling an abstract method. The vtable for abstract methods
  1283     //       will run us thru handle_wrong_method and we will eventually
  1284     //       end up in the interpreter to throw the ame.
  1285     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1286     //       call and between the time we fetch the entry address and
  1287     //       we jump to it the target gets deoptimized. Similar to 1
  1288     //       we will wind up in the interprter (thru a c2i with c2).
  1289     //
  1290     address call_addr = NULL;
  1292       // Get call instruction under lock because another thread may be
  1293       // busy patching it.
  1294       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1295       // Location of call instruction
  1296       if (NativeCall::is_call_before(pc)) {
  1297         NativeCall *ncall = nativeCall_before(pc);
  1298         call_addr = ncall->instruction_address();
  1302     // Check for static or virtual call
  1303     bool is_static_call = false;
  1304     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1305     // Make sure nmethod doesn't get deoptimized and removed until
  1306     // this is done with it.
  1307     // CLEANUP - with lazy deopt shouldn't need this lock
  1308     nmethodLocker nmlock(caller_nm);
  1310     if (call_addr != NULL) {
  1311       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1312       int ret = iter.next(); // Get item
  1313       if (ret) {
  1314         assert(iter.addr() == call_addr, "must find call");
  1315         if (iter.type() == relocInfo::static_call_type) {
  1316           is_static_call = true;
  1317         } else {
  1318           assert(iter.type() == relocInfo::virtual_call_type ||
  1319                  iter.type() == relocInfo::opt_virtual_call_type
  1320                 , "unexpected relocInfo. type");
  1322       } else {
  1323         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1326       // Cleaning the inline cache will force a new resolve. This is more robust
  1327       // than directly setting it to the new destination, since resolving of calls
  1328       // is always done through the same code path. (experience shows that it
  1329       // leads to very hard to track down bugs, if an inline cache gets updated
  1330       // to a wrong method). It should not be performance critical, since the
  1331       // resolve is only done once.
  1333       MutexLocker ml(CompiledIC_lock);
  1334       //
  1335       // We do not patch the call site if the nmethod has been made non-entrant
  1336       // as it is a waste of time
  1337       //
  1338       if (caller_nm->is_in_use()) {
  1339         if (is_static_call) {
  1340           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1341           ssc->set_to_clean();
  1342         } else {
  1343           // compiled, dispatched call (which used to call an interpreted method)
  1344           CompiledIC* inline_cache = CompiledIC_at(call_addr);
  1345           inline_cache->set_to_clean();
  1352   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1355 #ifndef PRODUCT
  1356   Atomic::inc(&_wrong_method_ctr);
  1358   if (TraceCallFixup) {
  1359     ResourceMark rm(thread);
  1360     tty->print("handle_wrong_method reresolving call to");
  1361     callee_method->print_short_name(tty);
  1362     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1364 #endif
  1366   return callee_method;
  1369 // ---------------------------------------------------------------------------
  1370 // We are calling the interpreter via a c2i. Normally this would mean that
  1371 // we were called by a compiled method. However we could have lost a race
  1372 // where we went int -> i2c -> c2i and so the caller could in fact be
  1373 // interpreted. If the caller is compiled we attampt to patch the caller
  1374 // so he no longer calls into the interpreter.
  1375 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
  1376   methodOop moop(method);
  1378   address entry_point = moop->from_compiled_entry();
  1380   // It's possible that deoptimization can occur at a call site which hasn't
  1381   // been resolved yet, in which case this function will be called from
  1382   // an nmethod that has been patched for deopt and we can ignore the
  1383   // request for a fixup.
  1384   // Also it is possible that we lost a race in that from_compiled_entry
  1385   // is now back to the i2c in that case we don't need to patch and if
  1386   // we did we'd leap into space because the callsite needs to use
  1387   // "to interpreter" stub in order to load up the methodOop. Don't
  1388   // ask me how I know this...
  1389   //
  1391   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1392   if ( !cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1393     return;
  1396   // There is a benign race here. We could be attempting to patch to a compiled
  1397   // entry point at the same time the callee is being deoptimized. If that is
  1398   // the case then entry_point may in fact point to a c2i and we'd patch the
  1399   // call site with the same old data. clear_code will set code() to NULL
  1400   // at the end of it. If we happen to see that NULL then we can skip trying
  1401   // to patch. If we hit the window where the callee has a c2i in the
  1402   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1403   // and patch the code with the same old data. Asi es la vida.
  1405   if (moop->code() == NULL) return;
  1407   if (((nmethod*)cb)->is_in_use()) {
  1409     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1410     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1411     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
  1412       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
  1413       //
  1414       // bug 6281185. We might get here after resolving a call site to a vanilla
  1415       // virtual call. Because the resolvee uses the verified entry it may then
  1416       // see compiled code and attempt to patch the site by calling us. This would
  1417       // then incorrectly convert the call site to optimized and its downhill from
  1418       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1419       // just made a call site that could be megamorphic into a monomorphic site
  1420       // for the rest of its life! Just another racing bug in the life of
  1421       // fixup_callers_callsite ...
  1422       //
  1423       RelocIterator iter(cb, call->instruction_address(), call->next_instruction_address());
  1424       iter.next();
  1425       assert(iter.has_current(), "must have a reloc at java call site");
  1426       relocInfo::relocType typ = iter.reloc()->type();
  1427       if ( typ != relocInfo::static_call_type &&
  1428            typ != relocInfo::opt_virtual_call_type &&
  1429            typ != relocInfo::static_stub_type) {
  1430         return;
  1432       address destination = call->destination();
  1433       if (destination != entry_point) {
  1434         CodeBlob* callee = CodeCache::find_blob(destination);
  1435         // callee == cb seems weird. It means calling interpreter thru stub.
  1436         if (callee == cb || callee->is_adapter_blob()) {
  1437           // static call or optimized virtual
  1438           if (TraceCallFixup) {
  1439             tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1440             moop->print_short_name(tty);
  1441             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1443           call->set_destination_mt_safe(entry_point);
  1444         } else {
  1445           if (TraceCallFixup) {
  1446             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1447             moop->print_short_name(tty);
  1448             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1450           // assert is too strong could also be resolve destinations.
  1451           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1453       } else {
  1454           if (TraceCallFixup) {
  1455             tty->print("already patched  callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1456             moop->print_short_name(tty);
  1457             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1463 IRT_END
  1466 // same as JVM_Arraycopy, but called directly from compiled code
  1467 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1468                                                 oopDesc* dest, jint dest_pos,
  1469                                                 jint length,
  1470                                                 JavaThread* thread)) {
  1471 #ifndef PRODUCT
  1472   _slow_array_copy_ctr++;
  1473 #endif
  1474   // Check if we have null pointers
  1475   if (src == NULL || dest == NULL) {
  1476     THROW(vmSymbols::java_lang_NullPointerException());
  1478   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1479   // even though the copy_array API also performs dynamic checks to ensure
  1480   // that src and dest are truly arrays (and are conformable).
  1481   // The copy_array mechanism is awkward and could be removed, but
  1482   // the compilers don't call this function except as a last resort,
  1483   // so it probably doesn't matter.
  1484   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
  1485                                         (arrayOopDesc*)dest, dest_pos,
  1486                                         length, thread);
  1488 JRT_END
  1490 char* SharedRuntime::generate_class_cast_message(
  1491     JavaThread* thread, const char* objName) {
  1493   // Get target class name from the checkcast instruction
  1494   vframeStream vfst(thread, true);
  1495   assert(!vfst.at_end(), "Java frame must exist");
  1496   Bytecode_checkcast* cc = Bytecode_checkcast_at(
  1497     vfst.method()->bcp_from(vfst.bci()));
  1498   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
  1499     cc->index(), thread));
  1500   return generate_class_cast_message(objName, targetKlass->external_name());
  1503 char* SharedRuntime::generate_class_cast_message(
  1504     const char* objName, const char* targetKlassName) {
  1505   const char* desc = " cannot be cast to ";
  1506   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1508   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1509   if (NULL == message) {
  1510     // Shouldn't happen, but don't cause even more problems if it does
  1511     message = const_cast<char*>(objName);
  1512   } else {
  1513     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1515   return message;
  1518 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1519   (void) JavaThread::current()->reguard_stack();
  1520 JRT_END
  1523 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1524 #ifndef PRODUCT
  1525 int SharedRuntime::_monitor_enter_ctr=0;
  1526 #endif
  1527 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1528   oop obj(_obj);
  1529 #ifndef PRODUCT
  1530   _monitor_enter_ctr++;             // monitor enter slow
  1531 #endif
  1532   if (PrintBiasedLockingStatistics) {
  1533     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1535   Handle h_obj(THREAD, obj);
  1536   if (UseBiasedLocking) {
  1537     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1538     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1539   } else {
  1540     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1542   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1543 JRT_END
  1545 #ifndef PRODUCT
  1546 int SharedRuntime::_monitor_exit_ctr=0;
  1547 #endif
  1548 // Handles the uncommon cases of monitor unlocking in compiled code
  1549 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1550    oop obj(_obj);
  1551 #ifndef PRODUCT
  1552   _monitor_exit_ctr++;              // monitor exit slow
  1553 #endif
  1554   Thread* THREAD = JavaThread::current();
  1555   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1556   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1557   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1558 #undef MIGHT_HAVE_PENDING
  1559 #ifdef MIGHT_HAVE_PENDING
  1560   // Save and restore any pending_exception around the exception mark.
  1561   // While the slow_exit must not throw an exception, we could come into
  1562   // this routine with one set.
  1563   oop pending_excep = NULL;
  1564   const char* pending_file;
  1565   int pending_line;
  1566   if (HAS_PENDING_EXCEPTION) {
  1567     pending_excep = PENDING_EXCEPTION;
  1568     pending_file  = THREAD->exception_file();
  1569     pending_line  = THREAD->exception_line();
  1570     CLEAR_PENDING_EXCEPTION;
  1572 #endif /* MIGHT_HAVE_PENDING */
  1575     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1576     EXCEPTION_MARK;
  1577     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1580 #ifdef MIGHT_HAVE_PENDING
  1581   if (pending_excep != NULL) {
  1582     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1584 #endif /* MIGHT_HAVE_PENDING */
  1585 JRT_END
  1587 #ifndef PRODUCT
  1589 void SharedRuntime::print_statistics() {
  1590   ttyLocker ttyl;
  1591   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1593   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1594   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1595   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1597   SharedRuntime::print_ic_miss_histogram();
  1599   if (CountRemovableExceptions) {
  1600     if (_nof_removable_exceptions > 0) {
  1601       Unimplemented(); // this counter is not yet incremented
  1602       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1606   // Dump the JRT_ENTRY counters
  1607   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1608   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1609   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1610   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1611   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1612   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1613   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1615   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1616   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1617   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1618   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1619   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1621   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1622   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1623   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1624   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1625   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1626   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1627   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1628   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1629   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1630   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1631   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1632   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1633   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1634   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1635   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1636   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1638   if (xtty != NULL)  xtty->tail("statistics");
  1641 inline double percent(int x, int y) {
  1642   return 100.0 * x / MAX2(y, 1);
  1645 class MethodArityHistogram {
  1646  public:
  1647   enum { MAX_ARITY = 256 };
  1648  private:
  1649   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1650   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1651   static int _max_arity;                      // max. arity seen
  1652   static int _max_size;                       // max. arg size seen
  1654   static void add_method_to_histogram(nmethod* nm) {
  1655     methodOop m = nm->method();
  1656     ArgumentCount args(m->signature());
  1657     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1658     int argsize = m->size_of_parameters();
  1659     arity   = MIN2(arity, MAX_ARITY-1);
  1660     argsize = MIN2(argsize, MAX_ARITY-1);
  1661     int count = nm->method()->compiled_invocation_count();
  1662     _arity_histogram[arity]  += count;
  1663     _size_histogram[argsize] += count;
  1664     _max_arity = MAX2(_max_arity, arity);
  1665     _max_size  = MAX2(_max_size, argsize);
  1668   void print_histogram_helper(int n, int* histo, const char* name) {
  1669     const int N = MIN2(5, n);
  1670     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1671     double sum = 0;
  1672     double weighted_sum = 0;
  1673     int i;
  1674     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1675     double rest = sum;
  1676     double percent = sum / 100;
  1677     for (i = 0; i <= N; i++) {
  1678       rest -= histo[i];
  1679       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1681     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1682     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1685   void print_histogram() {
  1686     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1687     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1688     tty->print_cr("\nSame for parameter size (in words):");
  1689     print_histogram_helper(_max_size, _size_histogram, "size");
  1690     tty->cr();
  1693  public:
  1694   MethodArityHistogram() {
  1695     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1696     _max_arity = _max_size = 0;
  1697     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1698     CodeCache::nmethods_do(add_method_to_histogram);
  1699     print_histogram();
  1701 };
  1703 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  1704 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  1705 int MethodArityHistogram::_max_arity;
  1706 int MethodArityHistogram::_max_size;
  1708 void SharedRuntime::print_call_statistics(int comp_total) {
  1709   tty->print_cr("Calls from compiled code:");
  1710   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  1711   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  1712   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  1713   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  1714   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  1715   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  1716   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  1717   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  1718   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  1719   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  1720   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  1721   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  1722   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  1723   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  1724   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  1725   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  1726   tty->cr();
  1727   tty->print_cr("Note 1: counter updates are not MT-safe.");
  1728   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  1729   tty->print_cr("        %% in nested categories are relative to their category");
  1730   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  1731   tty->cr();
  1733   MethodArityHistogram h;
  1735 #endif
  1738 // ---------------------------------------------------------------------------
  1739 // Implementation of AdapterHandlerLibrary
  1740 const char* AdapterHandlerEntry::name = "I2C/C2I adapters";
  1741 GrowableArray<uint64_t>* AdapterHandlerLibrary::_fingerprints = NULL;
  1742 GrowableArray<AdapterHandlerEntry* >* AdapterHandlerLibrary::_handlers = NULL;
  1743 const int AdapterHandlerLibrary_size = 16*K;
  1744 u_char                   AdapterHandlerLibrary::_buffer[AdapterHandlerLibrary_size + 32];
  1746 void AdapterHandlerLibrary::initialize() {
  1747   if (_fingerprints != NULL) return;
  1748   _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
  1749   _handlers = new(ResourceObj::C_HEAP)GrowableArray<AdapterHandlerEntry*>(32, true);
  1750   // Index 0 reserved for the slow path handler
  1751   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1752   _handlers->append(NULL);
  1754   // Create a special handler for abstract methods.  Abstract methods
  1755   // are never compiled so an i2c entry is somewhat meaningless, but
  1756   // fill it in with something appropriate just in case.  Pass handle
  1757   // wrong method for the c2i transitions.
  1758   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  1759   _fingerprints->append(0/*the never-allowed 0 fingerprint*/);
  1760   assert(_handlers->length() == AbstractMethodHandler, "in wrong slot");
  1761   _handlers->append(new AdapterHandlerEntry(StubRoutines::throw_AbstractMethodError_entry(),
  1762                                             wrong_method, wrong_method));
  1765 int AdapterHandlerLibrary::get_create_adapter_index(methodHandle method) {
  1766   // Use customized signature handler.  Need to lock around updates to the
  1767   // _fingerprints array (it is not safe for concurrent readers and a single
  1768   // writer: this can be fixed if it becomes a problem).
  1770   // Get the address of the ic_miss handlers before we grab the
  1771   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  1772   // was caused by the initialization of the stubs happening
  1773   // while we held the lock and then notifying jvmti while
  1774   // holding it. This just forces the initialization to be a little
  1775   // earlier.
  1776   address ic_miss = SharedRuntime::get_ic_miss_stub();
  1777   assert(ic_miss != NULL, "must have handler");
  1779   int result;
  1780   BufferBlob *B = NULL;
  1781   uint64_t fingerprint;
  1783     MutexLocker mu(AdapterHandlerLibrary_lock);
  1784     // make sure data structure is initialized
  1785     initialize();
  1787     if (method->is_abstract()) {
  1788       return AbstractMethodHandler;
  1791     // Lookup method signature's fingerprint
  1792     fingerprint = Fingerprinter(method).fingerprint();
  1793     assert( fingerprint != CONST64( 0), "no zero fingerprints allowed" );
  1794     // Fingerprints are small fixed-size condensed representations of
  1795     // signatures.  If the signature is too large, it won't fit in a
  1796     // fingerprint.  Signatures which cannot support a fingerprint get a new i2c
  1797     // adapter gen'd each time, instead of searching the cache for one.  This -1
  1798     // game can be avoided if I compared signatures instead of using
  1799     // fingerprints.  However, -1 fingerprints are very rare.
  1800     if( fingerprint != UCONST64(-1) ) { // If this is a cache-able fingerprint
  1801       // Turns out i2c adapters do not care what the return value is.  Mask it
  1802       // out so signatures that only differ in return type will share the same
  1803       // adapter.
  1804       fingerprint &= ~(SignatureIterator::result_feature_mask << SignatureIterator::static_feature_size);
  1805       // Search for a prior existing i2c/c2i adapter
  1806       int index = _fingerprints->find(fingerprint);
  1807       if( index >= 0 ) return index; // Found existing handlers?
  1808     } else {
  1809       // Annoyingly, I end up adding -1 fingerprints to the array of handlers,
  1810       // because I need a unique handler index.  It cannot be scanned for
  1811       // because all -1's look alike.  Instead, the matching index is passed out
  1812       // and immediately used to collect the 2 return values (the c2i and i2c
  1813       // adapters).
  1816     // Create I2C & C2I handlers
  1817     ResourceMark rm;
  1818     // Improve alignment slightly
  1819     u_char *buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1820     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1821     short buffer_locs[20];
  1822     buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  1823                                            sizeof(buffer_locs)/sizeof(relocInfo));
  1824     MacroAssembler _masm(&buffer);
  1826     // Fill in the signature array, for the calling-convention call.
  1827     int total_args_passed = method->size_of_parameters(); // All args on stack
  1829     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1830     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1831     int i=0;
  1832     if( !method->is_static() )  // Pass in receiver first
  1833       sig_bt[i++] = T_OBJECT;
  1834     for( SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  1835       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1836       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1837         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1839     assert( i==total_args_passed, "" );
  1841     // Now get the re-packed compiled-Java layout.
  1842     int comp_args_on_stack;
  1844     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  1845     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1847     AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  1848                                                                         total_args_passed,
  1849                                                                         comp_args_on_stack,
  1850                                                                         sig_bt,
  1851                                                                         regs);
  1853     B = BufferBlob::create(AdapterHandlerEntry::name, &buffer);
  1854     if (B == NULL) {
  1855       // CodeCache is full, disable compilation
  1856       // Ought to log this but compile log is only per compile thread
  1857       // and we're some non descript Java thread.
  1858       UseInterpreter = true;
  1859       if (UseCompiler || AlwaysCompileLoopMethods ) {
  1860 #ifndef PRODUCT
  1861         warning("CodeCache is full. Compiler has been disabled");
  1862         if (CompileTheWorld || ExitOnFullCodeCache) {
  1863           before_exit(JavaThread::current());
  1864           exit_globals(); // will delete tty
  1865           vm_direct_exit(CompileTheWorld ? 0 : 1);
  1867 #endif
  1868         UseCompiler               = false;
  1869         AlwaysCompileLoopMethods  = false;
  1871       return 0; // Out of CodeCache space (_handlers[0] == NULL)
  1873     entry->relocate(B->instructions_begin());
  1874 #ifndef PRODUCT
  1875     // debugging suppport
  1876     if (PrintAdapterHandlers) {
  1877       tty->cr();
  1878       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = 0x%llx, %d bytes generated)",
  1879                     _handlers->length(), (method->is_static() ? "static" : "receiver"),
  1880                     method->signature()->as_C_string(), fingerprint, buffer.code_size() );
  1881       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  1882       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + buffer.code_size());
  1884 #endif
  1886     // add handlers to library
  1887     _fingerprints->append(fingerprint);
  1888     _handlers->append(entry);
  1889     // set handler index
  1890     assert(_fingerprints->length() == _handlers->length(), "sanity check");
  1891     result = _fingerprints->length() - 1;
  1893   // Outside of the lock
  1894   if (B != NULL) {
  1895     char blob_id[256];
  1896     jio_snprintf(blob_id,
  1897                  sizeof(blob_id),
  1898                  "%s(" PTR64_FORMAT ")@" PTR_FORMAT,
  1899                  AdapterHandlerEntry::name,
  1900                  fingerprint,
  1901                  B->instructions_begin());
  1902     VTune::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1903     Forte::register_stub(blob_id, B->instructions_begin(), B->instructions_end());
  1905     if (JvmtiExport::should_post_dynamic_code_generated()) {
  1906       JvmtiExport::post_dynamic_code_generated(blob_id,
  1907                                                B->instructions_begin(),
  1908                                                B->instructions_end());
  1911   return result;
  1914 void AdapterHandlerEntry::relocate(address new_base) {
  1915     ptrdiff_t delta = new_base - _i2c_entry;
  1916     _i2c_entry += delta;
  1917     _c2i_entry += delta;
  1918     _c2i_unverified_entry += delta;
  1921 // Create a native wrapper for this native method.  The wrapper converts the
  1922 // java compiled calling convention to the native convention, handlizes
  1923 // arguments, and transitions to native.  On return from the native we transition
  1924 // back to java blocking if a safepoint is in progress.
  1925 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
  1926   ResourceMark rm;
  1927   nmethod* nm = NULL;
  1929   if (PrintCompilation) {
  1930     ttyLocker ttyl;
  1931     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
  1932     method->print_short_name(tty);
  1933     if (method->is_static()) {
  1934       tty->print(" (static)");
  1936     tty->cr();
  1939   assert(method->has_native_function(), "must have something valid to call!");
  1942     // perform the work while holding the lock, but perform any printing outside the lock
  1943     MutexLocker mu(AdapterHandlerLibrary_lock);
  1944     // See if somebody beat us to it
  1945     nm = method->code();
  1946     if (nm) {
  1947       return nm;
  1950     // Improve alignment slightly
  1951     u_char* buf = (u_char*)(((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  1952     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  1953     // Need a few relocation entries
  1954     double locs_buf[20];
  1955     buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  1956     MacroAssembler _masm(&buffer);
  1958     // Fill in the signature array, for the calling-convention call.
  1959     int total_args_passed = method->size_of_parameters();
  1961     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
  1962     VMRegPair  * regs   = NEW_RESOURCE_ARRAY(VMRegPair  ,total_args_passed);
  1963     int i=0;
  1964     if( !method->is_static() )  // Pass in receiver first
  1965       sig_bt[i++] = T_OBJECT;
  1966     SignatureStream ss(method->signature());
  1967     for( ; !ss.at_return_type(); ss.next()) {
  1968       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  1969       if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  1970         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  1972     assert( i==total_args_passed, "" );
  1973     BasicType ret_type = ss.type();
  1975     // Now get the compiled-Java layout as input arguments
  1976     int comp_args_on_stack;
  1977     comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  1979     // Generate the compiled-to-native wrapper code
  1980     nm = SharedRuntime::generate_native_wrapper(&_masm,
  1981                                                 method,
  1982                                                 total_args_passed,
  1983                                                 comp_args_on_stack,
  1984                                                 sig_bt,regs,
  1985                                                 ret_type);
  1988   // Must unlock before calling set_code
  1989   // Install the generated code.
  1990   if (nm != NULL) {
  1991     method->set_code(method, nm);
  1992     nm->post_compiled_method_load_event();
  1993   } else {
  1994     // CodeCache is full, disable compilation
  1995     // Ought to log this but compile log is only per compile thread
  1996     // and we're some non descript Java thread.
  1997     UseInterpreter = true;
  1998     if (UseCompiler || AlwaysCompileLoopMethods ) {
  1999 #ifndef PRODUCT
  2000       warning("CodeCache is full. Compiler has been disabled");
  2001       if (CompileTheWorld || ExitOnFullCodeCache) {
  2002         before_exit(JavaThread::current());
  2003         exit_globals(); // will delete tty
  2004         vm_direct_exit(CompileTheWorld ? 0 : 1);
  2006 #endif
  2007       UseCompiler               = false;
  2008       AlwaysCompileLoopMethods  = false;
  2011   return nm;
  2014 #ifdef HAVE_DTRACE_H
  2015 // Create a dtrace nmethod for this method.  The wrapper converts the
  2016 // java compiled calling convention to the native convention, makes a dummy call
  2017 // (actually nops for the size of the call instruction, which become a trap if
  2018 // probe is enabled). The returns to the caller. Since this all looks like a
  2019 // leaf no thread transition is needed.
  2021 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2022   ResourceMark rm;
  2023   nmethod* nm = NULL;
  2025   if (PrintCompilation) {
  2026     ttyLocker ttyl;
  2027     tty->print("---   n%s  ");
  2028     method->print_short_name(tty);
  2029     if (method->is_static()) {
  2030       tty->print(" (static)");
  2032     tty->cr();
  2036     // perform the work while holding the lock, but perform any printing
  2037     // outside the lock
  2038     MutexLocker mu(AdapterHandlerLibrary_lock);
  2039     // See if somebody beat us to it
  2040     nm = method->code();
  2041     if (nm) {
  2042       return nm;
  2045     // Improve alignment slightly
  2046     u_char* buf = (u_char*)
  2047         (((intptr_t)_buffer + CodeEntryAlignment-1) & ~(CodeEntryAlignment-1));
  2048     CodeBuffer buffer(buf, AdapterHandlerLibrary_size);
  2049     // Need a few relocation entries
  2050     double locs_buf[20];
  2051     buffer.insts()->initialize_shared_locs(
  2052         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2053     MacroAssembler _masm(&buffer);
  2055     // Generate the compiled-to-native wrapper code
  2056     nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2058   return nm;
  2061 // the dtrace method needs to convert java lang string to utf8 string.
  2062 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2063   typeArrayOop jlsValue  = java_lang_String::value(src);
  2064   int          jlsOffset = java_lang_String::offset(src);
  2065   int          jlsLen    = java_lang_String::length(src);
  2066   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2067                                            jlsValue->char_at_addr(jlsOffset);
  2068   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2070 #endif // ndef HAVE_DTRACE_H
  2072 // -------------------------------------------------------------------------
  2073 // Java-Java calling convention
  2074 // (what you use when Java calls Java)
  2076 //------------------------------name_for_receiver----------------------------------
  2077 // For a given signature, return the VMReg for parameter 0.
  2078 VMReg SharedRuntime::name_for_receiver() {
  2079   VMRegPair regs;
  2080   BasicType sig_bt = T_OBJECT;
  2081   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2082   // Return argument 0 register.  In the LP64 build pointers
  2083   // take 2 registers, but the VM wants only the 'main' name.
  2084   return regs.first();
  2087 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool is_static, int* arg_size) {
  2088   // This method is returning a data structure allocating as a
  2089   // ResourceObject, so do not put any ResourceMarks in here.
  2090   char *s = sig->as_C_string();
  2091   int len = (int)strlen(s);
  2092   *s++; len--;                  // Skip opening paren
  2093   char *t = s+len;
  2094   while( *(--t) != ')' ) ;      // Find close paren
  2096   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2097   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2098   int cnt = 0;
  2099   if (!is_static) {
  2100     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2103   while( s < t ) {
  2104     switch( *s++ ) {            // Switch on signature character
  2105     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2106     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2107     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2108     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2109     case 'I': sig_bt[cnt++] = T_INT;     break;
  2110     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2111     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2112     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2113     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2114     case 'L':                   // Oop
  2115       while( *s++ != ';'  ) ;   // Skip signature
  2116       sig_bt[cnt++] = T_OBJECT;
  2117       break;
  2118     case '[': {                 // Array
  2119       do {                      // Skip optional size
  2120         while( *s >= '0' && *s <= '9' ) s++;
  2121       } while( *s++ == '[' );   // Nested arrays?
  2122       // Skip element type
  2123       if( s[-1] == 'L' )
  2124         while( *s++ != ';'  ) ; // Skip signature
  2125       sig_bt[cnt++] = T_ARRAY;
  2126       break;
  2128     default : ShouldNotReachHere();
  2131   assert( cnt < 256, "grow table size" );
  2133   int comp_args_on_stack;
  2134   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2136   // the calling convention doesn't count out_preserve_stack_slots so
  2137   // we must add that in to get "true" stack offsets.
  2139   if (comp_args_on_stack) {
  2140     for (int i = 0; i < cnt; i++) {
  2141       VMReg reg1 = regs[i].first();
  2142       if( reg1->is_stack()) {
  2143         // Yuck
  2144         reg1 = reg1->bias(out_preserve_stack_slots());
  2146       VMReg reg2 = regs[i].second();
  2147       if( reg2->is_stack()) {
  2148         // Yuck
  2149         reg2 = reg2->bias(out_preserve_stack_slots());
  2151       regs[i].set_pair(reg2, reg1);
  2155   // results
  2156   *arg_size = cnt;
  2157   return regs;
  2160 // OSR Migration Code
  2161 //
  2162 // This code is used convert interpreter frames into compiled frames.  It is
  2163 // called from very start of a compiled OSR nmethod.  A temp array is
  2164 // allocated to hold the interesting bits of the interpreter frame.  All
  2165 // active locks are inflated to allow them to move.  The displaced headers and
  2166 // active interpeter locals are copied into the temp buffer.  Then we return
  2167 // back to the compiled code.  The compiled code then pops the current
  2168 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2169 // copies the interpreter locals and displaced headers where it wants.
  2170 // Finally it calls back to free the temp buffer.
  2171 //
  2172 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2174 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2176 #ifdef IA64
  2177   ShouldNotReachHere(); // NYI
  2178 #endif /* IA64 */
  2180   //
  2181   // This code is dependent on the memory layout of the interpreter local
  2182   // array and the monitors. On all of our platforms the layout is identical
  2183   // so this code is shared. If some platform lays the their arrays out
  2184   // differently then this code could move to platform specific code or
  2185   // the code here could be modified to copy items one at a time using
  2186   // frame accessor methods and be platform independent.
  2188   frame fr = thread->last_frame();
  2189   assert( fr.is_interpreted_frame(), "" );
  2190   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2192   // Figure out how many monitors are active.
  2193   int active_monitor_count = 0;
  2194   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2195        kptr < fr.interpreter_frame_monitor_begin();
  2196        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2197     if( kptr->obj() != NULL ) active_monitor_count++;
  2200   // QQQ we could place number of active monitors in the array so that compiled code
  2201   // could double check it.
  2203   methodOop moop = fr.interpreter_frame_method();
  2204   int max_locals = moop->max_locals();
  2205   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2206   int buf_size_words = max_locals + active_monitor_count*2;
  2207   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
  2209   // Copy the locals.  Order is preserved so that loading of longs works.
  2210   // Since there's no GC I can copy the oops blindly.
  2211   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2212   if (TaggedStackInterpreter) {
  2213     for (int i = 0; i < max_locals; i++) {
  2214       // copy only each local separately to the buffer avoiding the tag
  2215       buf[i] = *fr.interpreter_frame_local_at(max_locals-i-1);
  2217   } else {
  2218     Copy::disjoint_words(
  2219                        (HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2220                        (HeapWord*)&buf[0],
  2221                        max_locals);
  2224   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2225   int i = max_locals;
  2226   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2227        kptr2 < fr.interpreter_frame_monitor_begin();
  2228        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2229     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2230       BasicLock *lock = kptr2->lock();
  2231       // Inflate so the displaced header becomes position-independent
  2232       if (lock->displaced_header()->is_unlocked())
  2233         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2234       // Now the displaced header is free to move
  2235       buf[i++] = (intptr_t)lock->displaced_header();
  2236       buf[i++] = (intptr_t)kptr2->obj();
  2239   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2241   return buf;
  2242 JRT_END
  2244 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2245   FREE_C_HEAP_ARRAY(intptr_t,buf);
  2246 JRT_END
  2248 #ifndef PRODUCT
  2249 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2251   if (_handlers == NULL) return false;
  2253   for (int i = 0 ; i < _handlers->length() ; i++) {
  2254     AdapterHandlerEntry* a = get_entry(i);
  2255     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2257   return false;
  2260 void AdapterHandlerLibrary::print_handler(CodeBlob* b) {
  2262   for (int i = 0 ; i < _handlers->length() ; i++) {
  2263     AdapterHandlerEntry* a = get_entry(i);
  2264     if ( a != NULL && b == CodeCache::find_blob(a->get_i2c_entry()) ) {
  2265       tty->print("Adapter for signature: ");
  2266       // Fingerprinter::print(_fingerprints->at(i));
  2267       tty->print("0x%" FORMAT64_MODIFIER "x", _fingerprints->at(i));
  2268       tty->print_cr(" i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2269                     a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
  2271       return;
  2274   assert(false, "Should have found handler");
  2276 #endif /* PRODUCT */

mercurial