src/share/vm/memory/collectorPolicy.cpp

Thu, 05 Jun 2008 15:57:56 -0700

author
ysr
date
Thu, 05 Jun 2008 15:57:56 -0700
changeset 777
37f87013dfd8
parent 448
183f41cf8bfe
child 791
1ee8caae33af
permissions
-rw-r--r--

6711316: Open source the Garbage-First garbage collector
Summary: First mercurial integration of the code for the Garbage-First garbage collector.
Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_collectorPolicy.cpp.incl"
    28 // CollectorPolicy methods.
    30 void CollectorPolicy::initialize_flags() {
    31   if (PermSize > MaxPermSize) {
    32     MaxPermSize = PermSize;
    33   }
    34   PermSize = MAX2(min_alignment(), align_size_down_(PermSize, min_alignment()));
    35   MaxPermSize = align_size_up(MaxPermSize, max_alignment());
    37   MinPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MinPermHeapExpansion, min_alignment()));
    38   MaxPermHeapExpansion = MAX2(min_alignment(), align_size_down_(MaxPermHeapExpansion, min_alignment()));
    40   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
    42   SharedReadOnlySize = align_size_up(SharedReadOnlySize, max_alignment());
    43   SharedReadWriteSize = align_size_up(SharedReadWriteSize, max_alignment());
    44   SharedMiscDataSize = align_size_up(SharedMiscDataSize, max_alignment());
    46   assert(PermSize    % min_alignment() == 0, "permanent space alignment");
    47   assert(MaxPermSize % max_alignment() == 0, "maximum permanent space alignment");
    48   assert(SharedReadOnlySize % max_alignment() == 0, "read-only space alignment");
    49   assert(SharedReadWriteSize % max_alignment() == 0, "read-write space alignment");
    50   assert(SharedMiscDataSize % max_alignment() == 0, "misc-data space alignment");
    51   if (PermSize < M) {
    52     vm_exit_during_initialization("Too small initial permanent heap");
    53   }
    54 }
    56 void CollectorPolicy::initialize_size_info() {
    57   // User inputs from -mx and ms are aligned
    58   set_initial_heap_byte_size(Arguments::initial_heap_size());
    59   if (initial_heap_byte_size() == 0) {
    60     set_initial_heap_byte_size(NewSize + OldSize);
    61   }
    62   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
    63                                            min_alignment()));
    65   set_min_heap_byte_size(Arguments::min_heap_size());
    66   if (min_heap_byte_size() == 0) {
    67     set_min_heap_byte_size(NewSize + OldSize);
    68   }
    69   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
    70                                        min_alignment()));
    72   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
    74   // Check heap parameter properties
    75   if (initial_heap_byte_size() < M) {
    76     vm_exit_during_initialization("Too small initial heap");
    77   }
    78   // Check heap parameter properties
    79   if (min_heap_byte_size() < M) {
    80     vm_exit_during_initialization("Too small minimum heap");
    81   }
    82   if (initial_heap_byte_size() <= NewSize) {
    83      // make sure there is at least some room in old space
    84     vm_exit_during_initialization("Too small initial heap for new size specified");
    85   }
    86   if (max_heap_byte_size() < min_heap_byte_size()) {
    87     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
    88   }
    89   if (initial_heap_byte_size() < min_heap_byte_size()) {
    90     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
    91   }
    92   if (max_heap_byte_size() < initial_heap_byte_size()) {
    93     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
    94   }
    96   if (PrintGCDetails && Verbose) {
    97     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
    98       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
    99       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
   100   }
   101 }
   103 void CollectorPolicy::initialize_perm_generation(PermGen::Name pgnm) {
   104   _permanent_generation =
   105     new PermanentGenerationSpec(pgnm, PermSize, MaxPermSize,
   106                                 SharedReadOnlySize,
   107                                 SharedReadWriteSize,
   108                                 SharedMiscDataSize,
   109                                 SharedMiscCodeSize);
   110   if (_permanent_generation == NULL) {
   111     vm_exit_during_initialization("Unable to allocate gen spec");
   112   }
   113 }
   116 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
   117                                            int max_covered_regions) {
   118   switch (rem_set_name()) {
   119   case GenRemSet::CardTable: {
   120     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
   121     return res;
   122   }
   123   default:
   124     guarantee(false, "unrecognized GenRemSet::Name");
   125     return NULL;
   126   }
   127 }
   129 // GenCollectorPolicy methods.
   131 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
   132   size_t x = base_size / (NewRatio+1);
   133   size_t new_gen_size = x > min_alignment() ?
   134                      align_size_down(x, min_alignment()) :
   135                      min_alignment();
   136   return new_gen_size;
   137 }
   139 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
   140                                                  size_t maximum_size) {
   141   size_t alignment = min_alignment();
   142   size_t max_minus = maximum_size - alignment;
   143   return desired_size < max_minus ? desired_size : max_minus;
   144 }
   147 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
   148                                                 size_t init_promo_size,
   149                                                 size_t init_survivor_size) {
   150   const double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   151   _size_policy = new AdaptiveSizePolicy(init_eden_size,
   152                                         init_promo_size,
   153                                         init_survivor_size,
   154                                         max_gc_minor_pause_sec,
   155                                         GCTimeRatio);
   156 }
   158 size_t GenCollectorPolicy::compute_max_alignment() {
   159   // The card marking array and the offset arrays for old generations are
   160   // committed in os pages as well. Make sure they are entirely full (to
   161   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
   162   // byte entry and the os page size is 4096, the maximum heap size should
   163   // be 512*4096 = 2MB aligned.
   164   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
   166   // Parallel GC does its own alignment of the generations to avoid requiring a
   167   // large page (256M on some platforms) for the permanent generation.  The
   168   // other collectors should also be updated to do their own alignment and then
   169   // this use of lcm() should be removed.
   170   if (UseLargePages && !UseParallelGC) {
   171       // in presence of large pages we have to make sure that our
   172       // alignment is large page aware
   173       alignment = lcm(os::large_page_size(), alignment);
   174   }
   176   return alignment;
   177 }
   179 void GenCollectorPolicy::initialize_flags() {
   180   // All sizes must be multiples of the generation granularity.
   181   set_min_alignment((uintx) Generation::GenGrain);
   182   set_max_alignment(compute_max_alignment());
   183   assert(max_alignment() >= min_alignment() &&
   184          max_alignment() % min_alignment() == 0,
   185          "invalid alignment constraints");
   187   CollectorPolicy::initialize_flags();
   189   // All generational heaps have a youngest gen; handle those flags here.
   191   // Adjust max size parameters
   192   if (NewSize > MaxNewSize) {
   193     MaxNewSize = NewSize;
   194   }
   195   NewSize = align_size_down(NewSize, min_alignment());
   196   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
   198   // Check validity of heap flags
   199   assert(NewSize     % min_alignment() == 0, "eden space alignment");
   200   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
   202   if (NewSize < 3*min_alignment()) {
   203      // make sure there room for eden and two survivor spaces
   204     vm_exit_during_initialization("Too small new size specified");
   205   }
   206   if (SurvivorRatio < 1 || NewRatio < 1) {
   207     vm_exit_during_initialization("Invalid heap ratio specified");
   208   }
   209 }
   211 void TwoGenerationCollectorPolicy::initialize_flags() {
   212   GenCollectorPolicy::initialize_flags();
   214   OldSize = align_size_down(OldSize, min_alignment());
   215   if (NewSize + OldSize > MaxHeapSize) {
   216     MaxHeapSize = NewSize + OldSize;
   217   }
   218   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
   220   always_do_update_barrier = UseConcMarkSweepGC;
   221   BlockOffsetArrayUseUnallocatedBlock =
   222       BlockOffsetArrayUseUnallocatedBlock || ParallelGCThreads > 0;
   224   // Check validity of heap flags
   225   assert(OldSize     % min_alignment() == 0, "old space alignment");
   226   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
   227 }
   229 // Values set on the command line win over any ergonomically
   230 // set command line parameters.
   231 // Ergonomic choice of parameters are done before this
   232 // method is called.  Values for command line parameters such as NewSize
   233 // and MaxNewSize feed those ergonomic choices into this method.
   234 // This method makes the final generation sizings consistent with
   235 // themselves and with overall heap sizings.
   236 // In the absence of explicitly set command line flags, policies
   237 // such as the use of NewRatio are used to size the generation.
   238 void GenCollectorPolicy::initialize_size_info() {
   239   CollectorPolicy::initialize_size_info();
   241   // min_alignment() is used for alignment within a generation.
   242   // There is additional alignment done down stream for some
   243   // collectors that sometimes causes unwanted rounding up of
   244   // generations sizes.
   246   // Determine maximum size of gen0
   248   size_t max_new_size = 0;
   249   if (FLAG_IS_CMDLINE(MaxNewSize)) {
   250     if (MaxNewSize < min_alignment()) {
   251       max_new_size = min_alignment();
   252     } else if (MaxNewSize >= max_heap_byte_size()) {
   253       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
   254                                      min_alignment());
   255       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
   256         "greater than the entire heap (" SIZE_FORMAT "k).  A "
   257         "new generation size of " SIZE_FORMAT "k will be used.",
   258         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
   259     } else {
   260       max_new_size = align_size_down(MaxNewSize, min_alignment());
   261     }
   263   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
   264   // specially at this point to just use an ergonomically set
   265   // MaxNewSize to set max_new_size.  For cases with small
   266   // heaps such a policy often did not work because the MaxNewSize
   267   // was larger than the entire heap.  The interpretation given
   268   // to ergonomically set flags is that the flags are set
   269   // by different collectors for their own special needs but
   270   // are not allowed to badly shape the heap.  This allows the
   271   // different collectors to decide what's best for themselves
   272   // without having to factor in the overall heap shape.  It
   273   // can be the case in the future that the collectors would
   274   // only make "wise" ergonomics choices and this policy could
   275   // just accept those choices.  The choices currently made are
   276   // not always "wise".
   277   } else {
   278     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
   279     // Bound the maximum size by NewSize below (since it historically
   280     // would have been NewSize and because the NewRatio calculation could
   281     // yield a size that is too small) and bound it by MaxNewSize above.
   282     // Ergonomics plays here by previously calculating the desired
   283     // NewSize and MaxNewSize.
   284     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
   285   }
   286   assert(max_new_size > 0, "All paths should set max_new_size");
   288   // Given the maximum gen0 size, determine the initial and
   289   // minimum sizes.
   291   if (max_heap_byte_size() == min_heap_byte_size()) {
   292     // The maximum and minimum heap sizes are the same so
   293     // the generations minimum and initial must be the
   294     // same as its maximum.
   295     set_min_gen0_size(max_new_size);
   296     set_initial_gen0_size(max_new_size);
   297     set_max_gen0_size(max_new_size);
   298   } else {
   299     size_t desired_new_size = 0;
   300     if (!FLAG_IS_DEFAULT(NewSize)) {
   301       // If NewSize is set ergonomically (for example by cms), it
   302       // would make sense to use it.  If it is used, also use it
   303       // to set the initial size.  Although there is no reason
   304       // the minimum size and the initial size have to be the same,
   305       // the current implementation gets into trouble during the calculation
   306       // of the tenured generation sizes if they are different.
   307       // Note that this makes the initial size and the minimum size
   308       // generally small compared to the NewRatio calculation.
   309       _min_gen0_size = NewSize;
   310       desired_new_size = NewSize;
   311       max_new_size = MAX2(max_new_size, NewSize);
   312     } else {
   313       // For the case where NewSize is the default, use NewRatio
   314       // to size the minimum and initial generation sizes.
   315       // Use the default NewSize as the floor for these values.  If
   316       // NewRatio is overly large, the resulting sizes can be too
   317       // small.
   318       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
   319                           NewSize);
   320       desired_new_size =
   321         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
   322              NewSize);
   323     }
   325     assert(_min_gen0_size > 0, "Sanity check");
   326     set_initial_gen0_size(desired_new_size);
   327     set_max_gen0_size(max_new_size);
   329     // At this point the desirable initial and minimum sizes have been
   330     // determined without regard to the maximum sizes.
   332     // Bound the sizes by the corresponding overall heap sizes.
   333     set_min_gen0_size(
   334       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
   335     set_initial_gen0_size(
   336       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
   337     set_max_gen0_size(
   338       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
   340     // At this point all three sizes have been checked against the
   341     // maximum sizes but have not been checked for consistency
   342     // among the three.
   344     // Final check min <= initial <= max
   345     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
   346     set_initial_gen0_size(
   347       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
   348     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
   349   }
   351   if (PrintGCDetails && Verbose) {
   352     gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   353       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   354       min_gen0_size(), initial_gen0_size(), max_gen0_size());
   355   }
   356 }
   358 // Call this method during the sizing of the gen1 to make
   359 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
   360 // the most freedom in sizing because it is done before the
   361 // policy for gen1 is applied.  Once gen1 policies have been applied,
   362 // there may be conflicts in the shape of the heap and this method
   363 // is used to make the needed adjustments.  The application of the
   364 // policies could be more sophisticated (iterative for example) but
   365 // keeping it simple also seems a worthwhile goal.
   366 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
   367                                                      size_t* gen1_size_ptr,
   368                                                      size_t heap_size,
   369                                                      size_t min_gen0_size) {
   370   bool result = false;
   371   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
   372     if (((*gen0_size_ptr + OldSize) > heap_size) &&
   373        (heap_size - min_gen0_size) >= min_alignment()) {
   374       // Adjust gen0 down to accomodate OldSize
   375       *gen0_size_ptr = heap_size - min_gen0_size;
   376       *gen0_size_ptr =
   377         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
   378              min_alignment());
   379       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
   380       result = true;
   381     } else {
   382       *gen1_size_ptr = heap_size - *gen0_size_ptr;
   383       *gen1_size_ptr =
   384         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
   385                        min_alignment());
   386     }
   387   }
   388   return result;
   389 }
   391 // Minimum sizes of the generations may be different than
   392 // the initial sizes.  An inconsistently is permitted here
   393 // in the total size that can be specified explicitly by
   394 // command line specification of OldSize and NewSize and
   395 // also a command line specification of -Xms.  Issue a warning
   396 // but allow the values to pass.
   398 void TwoGenerationCollectorPolicy::initialize_size_info() {
   399   GenCollectorPolicy::initialize_size_info();
   401   // At this point the minimum, initial and maximum sizes
   402   // of the overall heap and of gen0 have been determined.
   403   // The maximum gen1 size can be determined from the maximum gen0
   404   // and maximum heap size since not explicit flags exits
   405   // for setting the gen1 maximum.
   406   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
   407   _max_gen1_size =
   408     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
   409          min_alignment());
   410   // If no explicit command line flag has been set for the
   411   // gen1 size, use what is left for gen1.
   412   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
   413     // The user has not specified any value or ergonomics
   414     // has chosen a value (which may or may not be consistent
   415     // with the overall heap size).  In either case make
   416     // the minimum, maximum and initial sizes consistent
   417     // with the gen0 sizes and the overall heap sizes.
   418     assert(min_heap_byte_size() > _min_gen0_size,
   419       "gen0 has an unexpected minimum size");
   420     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
   421     set_min_gen1_size(
   422       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
   423            min_alignment()));
   424     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
   425     set_initial_gen1_size(
   426       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
   427            min_alignment()));
   429   } else {
   430     // It's been explicitly set on the command line.  Use the
   431     // OldSize and then determine the consequences.
   432     set_min_gen1_size(OldSize);
   433     set_initial_gen1_size(OldSize);
   435     // If the user has explicitly set an OldSize that is inconsistent
   436     // with other command line flags, issue a warning.
   437     // The generation minimums and the overall heap mimimum should
   438     // be within one heap alignment.
   439     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
   440            min_heap_byte_size()) {
   441       warning("Inconsistency between minimum heap size and minimum "
   442           "generation sizes: using minimum heap = " SIZE_FORMAT,
   443           min_heap_byte_size());
   444     }
   445     if ((OldSize > _max_gen1_size)) {
   446       warning("Inconsistency between maximum heap size and maximum "
   447           "generation sizes: using maximum heap = " SIZE_FORMAT
   448           " -XX:OldSize flag is being ignored",
   449           max_heap_byte_size());
   450   }
   451     // If there is an inconsistency between the OldSize and the minimum and/or
   452     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
   453     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
   454                           min_heap_byte_size(), OldSize)) {
   455       if (PrintGCDetails && Verbose) {
   456         gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   457               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   458               min_gen0_size(), initial_gen0_size(), max_gen0_size());
   459       }
   460     }
   461     // Initial size
   462     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
   463                          initial_heap_byte_size(), OldSize)) {
   464       if (PrintGCDetails && Verbose) {
   465         gclog_or_tty->print_cr("Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
   466           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
   467           min_gen0_size(), initial_gen0_size(), max_gen0_size());
   468       }
   469     }
   470   }
   471   // Enforce the maximum gen1 size.
   472   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
   474   // Check that min gen1 <= initial gen1 <= max gen1
   475   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
   476   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
   478   if (PrintGCDetails && Verbose) {
   479     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
   480       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
   481       min_gen1_size(), initial_gen1_size(), max_gen1_size());
   482   }
   483 }
   485 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
   486                                         bool is_tlab,
   487                                         bool* gc_overhead_limit_was_exceeded) {
   488   GenCollectedHeap *gch = GenCollectedHeap::heap();
   490   debug_only(gch->check_for_valid_allocation_state());
   491   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
   492   HeapWord* result = NULL;
   494   // Loop until the allocation is satisified,
   495   // or unsatisfied after GC.
   496   for (int try_count = 1; /* return or throw */; try_count += 1) {
   497     HandleMark hm; // discard any handles allocated in each iteration
   499     // First allocation attempt is lock-free.
   500     Generation *gen0 = gch->get_gen(0);
   501     assert(gen0->supports_inline_contig_alloc(),
   502       "Otherwise, must do alloc within heap lock");
   503     if (gen0->should_allocate(size, is_tlab)) {
   504       result = gen0->par_allocate(size, is_tlab);
   505       if (result != NULL) {
   506         assert(gch->is_in_reserved(result), "result not in heap");
   507         return result;
   508       }
   509     }
   510     unsigned int gc_count_before;  // read inside the Heap_lock locked region
   511     {
   512       MutexLocker ml(Heap_lock);
   513       if (PrintGC && Verbose) {
   514         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
   515                       " attempting locked slow path allocation");
   516       }
   517       // Note that only large objects get a shot at being
   518       // allocated in later generations.
   519       bool first_only = ! should_try_older_generation_allocation(size);
   521       result = gch->attempt_allocation(size, is_tlab, first_only);
   522       if (result != NULL) {
   523         assert(gch->is_in_reserved(result), "result not in heap");
   524         return result;
   525       }
   527       // There are NULL's returned for different circumstances below.
   528       // In general gc_overhead_limit_was_exceeded should be false so
   529       // set it so here and reset it to true only if the gc time
   530       // limit is being exceeded as checked below.
   531       *gc_overhead_limit_was_exceeded = false;
   533       if (GC_locker::is_active_and_needs_gc()) {
   534         if (is_tlab) {
   535           return NULL;  // Caller will retry allocating individual object
   536         }
   537         if (!gch->is_maximal_no_gc()) {
   538           // Try and expand heap to satisfy request
   539           result = expand_heap_and_allocate(size, is_tlab);
   540           // result could be null if we are out of space
   541           if (result != NULL) {
   542             return result;
   543           }
   544         }
   546         // If this thread is not in a jni critical section, we stall
   547         // the requestor until the critical section has cleared and
   548         // GC allowed. When the critical section clears, a GC is
   549         // initiated by the last thread exiting the critical section; so
   550         // we retry the allocation sequence from the beginning of the loop,
   551         // rather than causing more, now probably unnecessary, GC attempts.
   552         JavaThread* jthr = JavaThread::current();
   553         if (!jthr->in_critical()) {
   554           MutexUnlocker mul(Heap_lock);
   555           // Wait for JNI critical section to be exited
   556           GC_locker::stall_until_clear();
   557           continue;
   558         } else {
   559           if (CheckJNICalls) {
   560             fatal("Possible deadlock due to allocating while"
   561                   " in jni critical section");
   562           }
   563           return NULL;
   564         }
   565       }
   567       // Read the gc count while the heap lock is held.
   568       gc_count_before = Universe::heap()->total_collections();
   569     }
   571     // Allocation has failed and a collection is about
   572     // to be done.  If the gc time limit was exceeded the
   573     // last time a collection was done, return NULL so
   574     // that an out-of-memory will be thrown.  Clear
   575     // gc_time_limit_exceeded so that subsequent attempts
   576     // at a collection will be made.
   577     if (size_policy()->gc_time_limit_exceeded()) {
   578       *gc_overhead_limit_was_exceeded = true;
   579       size_policy()->set_gc_time_limit_exceeded(false);
   580       return NULL;
   581     }
   583     VM_GenCollectForAllocation op(size,
   584                                   is_tlab,
   585                                   gc_count_before);
   586     VMThread::execute(&op);
   587     if (op.prologue_succeeded()) {
   588       result = op.result();
   589       if (op.gc_locked()) {
   590          assert(result == NULL, "must be NULL if gc_locked() is true");
   591          continue;  // retry and/or stall as necessary
   592       }
   593       assert(result == NULL || gch->is_in_reserved(result),
   594              "result not in heap");
   595       return result;
   596     }
   598     // Give a warning if we seem to be looping forever.
   599     if ((QueuedAllocationWarningCount > 0) &&
   600         (try_count % QueuedAllocationWarningCount == 0)) {
   601           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
   602                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
   603     }
   604   }
   605 }
   607 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
   608                                                        bool   is_tlab) {
   609   GenCollectedHeap *gch = GenCollectedHeap::heap();
   610   HeapWord* result = NULL;
   611   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
   612     Generation *gen = gch->get_gen(i);
   613     if (gen->should_allocate(size, is_tlab)) {
   614       result = gen->expand_and_allocate(size, is_tlab);
   615     }
   616   }
   617   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
   618   return result;
   619 }
   621 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
   622                                                         bool   is_tlab) {
   623   GenCollectedHeap *gch = GenCollectedHeap::heap();
   624   GCCauseSetter x(gch, GCCause::_allocation_failure);
   625   HeapWord* result = NULL;
   627   assert(size != 0, "Precondition violated");
   628   if (GC_locker::is_active_and_needs_gc()) {
   629     // GC locker is active; instead of a collection we will attempt
   630     // to expand the heap, if there's room for expansion.
   631     if (!gch->is_maximal_no_gc()) {
   632       result = expand_heap_and_allocate(size, is_tlab);
   633     }
   634     return result;   // could be null if we are out of space
   635   } else if (!gch->incremental_collection_will_fail()) {
   636     // The gc_prologues have not executed yet.  The value
   637     // for incremental_collection_will_fail() is the remanent
   638     // of the last collection.
   639     // Do an incremental collection.
   640     gch->do_collection(false            /* full */,
   641                        false            /* clear_all_soft_refs */,
   642                        size             /* size */,
   643                        is_tlab          /* is_tlab */,
   644                        number_of_generations() - 1 /* max_level */);
   645   } else {
   646     // Try a full collection; see delta for bug id 6266275
   647     // for the original code and why this has been simplified
   648     // with from-space allocation criteria modified and
   649     // such allocation moved out of the safepoint path.
   650     gch->do_collection(true             /* full */,
   651                        false            /* clear_all_soft_refs */,
   652                        size             /* size */,
   653                        is_tlab          /* is_tlab */,
   654                        number_of_generations() - 1 /* max_level */);
   655   }
   657   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
   659   if (result != NULL) {
   660     assert(gch->is_in_reserved(result), "result not in heap");
   661     return result;
   662   }
   664   // OK, collection failed, try expansion.
   665   result = expand_heap_and_allocate(size, is_tlab);
   666   if (result != NULL) {
   667     return result;
   668   }
   670   // If we reach this point, we're really out of memory. Try every trick
   671   // we can to reclaim memory. Force collection of soft references. Force
   672   // a complete compaction of the heap. Any additional methods for finding
   673   // free memory should be here, especially if they are expensive. If this
   674   // attempt fails, an OOM exception will be thrown.
   675   {
   676     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
   678     gch->do_collection(true             /* full */,
   679                        true             /* clear_all_soft_refs */,
   680                        size             /* size */,
   681                        is_tlab          /* is_tlab */,
   682                        number_of_generations() - 1 /* max_level */);
   683   }
   685   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
   686   if (result != NULL) {
   687     assert(gch->is_in_reserved(result), "result not in heap");
   688     return result;
   689   }
   691   // What else?  We might try synchronous finalization later.  If the total
   692   // space available is large enough for the allocation, then a more
   693   // complete compaction phase than we've tried so far might be
   694   // appropriate.
   695   return NULL;
   696 }
   698 size_t GenCollectorPolicy::large_typearray_limit() {
   699   return FastAllocateSizeLimit;
   700 }
   702 // Return true if any of the following is true:
   703 // . the allocation won't fit into the current young gen heap
   704 // . gc locker is occupied (jni critical section)
   705 // . heap memory is tight -- the most recent previous collection
   706 //   was a full collection because a partial collection (would
   707 //   have) failed and is likely to fail again
   708 bool GenCollectorPolicy::should_try_older_generation_allocation(
   709         size_t word_size) const {
   710   GenCollectedHeap* gch = GenCollectedHeap::heap();
   711   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
   712   return    (word_size > heap_word_size(gen0_capacity))
   713          || (GC_locker::is_active_and_needs_gc())
   714          || (   gch->last_incremental_collection_failed()
   715              && gch->incremental_collection_will_fail());
   716 }
   719 //
   720 // MarkSweepPolicy methods
   721 //
   723 MarkSweepPolicy::MarkSweepPolicy() {
   724   initialize_all();
   725 }
   727 void MarkSweepPolicy::initialize_generations() {
   728   initialize_perm_generation(PermGen::MarkSweepCompact);
   729   _generations = new GenerationSpecPtr[number_of_generations()];
   730   if (_generations == NULL)
   731     vm_exit_during_initialization("Unable to allocate gen spec");
   733   if (UseParNewGC && ParallelGCThreads > 0) {
   734     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
   735   } else {
   736     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
   737   }
   738   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
   740   if (_generations[0] == NULL || _generations[1] == NULL)
   741     vm_exit_during_initialization("Unable to allocate gen spec");
   742 }
   744 void MarkSweepPolicy::initialize_gc_policy_counters() {
   745   // initialize the policy counters - 2 collectors, 3 generations
   746   if (UseParNewGC && ParallelGCThreads > 0) {
   747     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
   748   }
   749   else {
   750     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
   751   }
   752 }

mercurial