src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Thu, 05 Jun 2008 15:57:56 -0700

author
ysr
date
Thu, 05 Jun 2008 15:57:56 -0700
changeset 777
37f87013dfd8
child 980
58054a18d735
permissions
-rw-r--r--

6711316: Open source the Garbage-First garbage collector
Summary: First mercurial integration of the code for the Garbage-First garbage collector.
Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr

     1 /*
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    50 class PopPreambleSummary;
    52 class PauseSummary {
    53   define_num_seq(total)
    54     define_num_seq(other)
    56 public:
    57   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    58   virtual PopPreambleSummary* pop_preamble_summary() { return NULL; }
    59 };
    61 class MainBodySummary {
    62   define_num_seq(satb_drain) // optional
    63   define_num_seq(parallel) // parallel only
    64     define_num_seq(ext_root_scan)
    65     define_num_seq(mark_stack_scan)
    66     define_num_seq(scan_only)
    67     define_num_seq(update_rs)
    68     define_num_seq(scan_rs)
    69     define_num_seq(scan_new_refs) // Only for temp use; added to
    70                                   // in parallel case.
    71     define_num_seq(obj_copy)
    72     define_num_seq(termination) // parallel only
    73     define_num_seq(parallel_other) // parallel only
    74   define_num_seq(mark_closure)
    75   define_num_seq(clear_ct)  // parallel only
    76 };
    78 class PopPreambleSummary {
    79   define_num_seq(pop_preamble)
    80     define_num_seq(pop_update_rs)
    81     define_num_seq(pop_scan_rs)
    82     define_num_seq(pop_closure_app)
    83     define_num_seq(pop_evacuation)
    84     define_num_seq(pop_other)
    85 };
    87 class NonPopSummary: public PauseSummary,
    88                      public MainBodySummary {
    89 public:
    90   virtual MainBodySummary*    main_body_summary()    { return this; }
    91 };
    93 class PopSummary: public PauseSummary,
    94                   public MainBodySummary,
    95                   public PopPreambleSummary {
    96 public:
    97   virtual MainBodySummary*    main_body_summary()    { return this; }
    98   virtual PopPreambleSummary* pop_preamble_summary() { return this; }
    99 };
   101 class NonPopAbandonedSummary: public PauseSummary {
   102 };
   104 class PopAbandonedSummary: public PauseSummary,
   105                            public PopPreambleSummary {
   106 public:
   107   virtual PopPreambleSummary* pop_preamble_summary() { return this; }
   108 };
   110 class G1CollectorPolicy: public CollectorPolicy {
   111 protected:
   112   // The number of pauses during the execution.
   113   long _n_pauses;
   115   // either equal to the number of parallel threads, if ParallelGCThreads
   116   // has been set, or 1 otherwise
   117   int _parallel_gc_threads;
   119   enum SomePrivateConstants {
   120     NumPrevPausesForHeuristics = 10,
   121     NumPrevGCsForHeuristics = 10,
   122     NumAPIs = HeapRegion::MaxAge
   123   };
   125   G1MMUTracker* _mmu_tracker;
   127   void initialize_flags();
   129   void initialize_all() {
   130     initialize_flags();
   131     initialize_size_info();
   132     initialize_perm_generation(PermGen::MarkSweepCompact);
   133   }
   135   virtual size_t default_init_heap_size() {
   136     // Pick some reasonable default.
   137     return 8*M;
   138   }
   141   double _cur_collection_start_sec;
   142   size_t _cur_collection_pause_used_at_start_bytes;
   143   size_t _cur_collection_pause_used_regions_at_start;
   144   size_t _prev_collection_pause_used_at_end_bytes;
   145   double _cur_collection_par_time_ms;
   146   double _cur_satb_drain_time_ms;
   147   double _cur_clear_ct_time_ms;
   148   bool   _satb_drain_time_set;
   149   double _cur_popular_preamble_start_ms;
   150   double _cur_popular_preamble_time_ms;
   151   double _cur_popular_compute_rc_time_ms;
   152   double _cur_popular_evac_time_ms;
   154   double _cur_CH_strong_roots_end_sec;
   155   double _cur_CH_strong_roots_dur_ms;
   156   double _cur_G1_strong_roots_end_sec;
   157   double _cur_G1_strong_roots_dur_ms;
   159   // Statistics for recent GC pauses.  See below for how indexed.
   160   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   161   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   162   TruncatedSeq* _recent_evac_times_ms;
   163   // These exclude marking times.
   164   TruncatedSeq* _recent_pause_times_ms;
   165   TruncatedSeq* _recent_gc_times_ms;
   167   TruncatedSeq* _recent_CS_bytes_used_before;
   168   TruncatedSeq* _recent_CS_bytes_surviving;
   170   TruncatedSeq* _recent_rs_sizes;
   172   TruncatedSeq* _concurrent_mark_init_times_ms;
   173   TruncatedSeq* _concurrent_mark_remark_times_ms;
   174   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   176   NonPopSummary*           _non_pop_summary;
   177   PopSummary*              _pop_summary;
   178   NonPopAbandonedSummary*  _non_pop_abandoned_summary;
   179   PopAbandonedSummary*     _pop_abandoned_summary;
   181   NumberSeq* _all_pause_times_ms;
   182   NumberSeq* _all_full_gc_times_ms;
   183   double _stop_world_start;
   184   NumberSeq* _all_stop_world_times_ms;
   185   NumberSeq* _all_yield_times_ms;
   187   size_t     _region_num_young;
   188   size_t     _region_num_tenured;
   189   size_t     _prev_region_num_young;
   190   size_t     _prev_region_num_tenured;
   192   NumberSeq* _all_mod_union_times_ms;
   194   int        _aux_num;
   195   NumberSeq* _all_aux_times_ms;
   196   double*    _cur_aux_start_times_ms;
   197   double*    _cur_aux_times_ms;
   198   bool*      _cur_aux_times_set;
   200   double* _par_last_ext_root_scan_times_ms;
   201   double* _par_last_mark_stack_scan_times_ms;
   202   double* _par_last_scan_only_times_ms;
   203   double* _par_last_scan_only_regions_scanned;
   204   double* _par_last_update_rs_start_times_ms;
   205   double* _par_last_update_rs_times_ms;
   206   double* _par_last_update_rs_processed_buffers;
   207   double* _par_last_scan_rs_start_times_ms;
   208   double* _par_last_scan_rs_times_ms;
   209   double* _par_last_scan_new_refs_times_ms;
   210   double* _par_last_obj_copy_times_ms;
   211   double* _par_last_termination_times_ms;
   213   // there are two pases during popular pauses, so we need to store
   214   // somewhere the results of the first pass
   215   double* _pop_par_last_update_rs_start_times_ms;
   216   double* _pop_par_last_update_rs_times_ms;
   217   double* _pop_par_last_update_rs_processed_buffers;
   218   double* _pop_par_last_scan_rs_start_times_ms;
   219   double* _pop_par_last_scan_rs_times_ms;
   220   double* _pop_par_last_closure_app_times_ms;
   222   double _pop_compute_rc_start;
   223   double _pop_evac_start;
   225   // indicates that we are in young GC mode
   226   bool _in_young_gc_mode;
   228   // indicates whether we are in full young or partially young GC mode
   229   bool _full_young_gcs;
   231   // if true, then it tries to dynamically adjust the length of the
   232   // young list
   233   bool _adaptive_young_list_length;
   234   size_t _young_list_min_length;
   235   size_t _young_list_target_length;
   236   size_t _young_list_so_prefix_length;
   237   size_t _young_list_fixed_length;
   239   size_t _young_cset_length;
   240   bool   _last_young_gc_full;
   242   double _target_pause_time_ms;
   244   unsigned              _full_young_pause_num;
   245   unsigned              _partial_young_pause_num;
   247   bool                  _during_marking;
   248   bool                  _in_marking_window;
   249   bool                  _in_marking_window_im;
   251   SurvRateGroup*        _short_lived_surv_rate_group;
   252   SurvRateGroup*        _survivor_surv_rate_group;
   253   // add here any more surv rate groups
   255   bool during_marking() {
   256     return _during_marking;
   257   }
   259   // <NEW PREDICTION>
   261 private:
   262   enum PredictionConstants {
   263     TruncatedSeqLength = 10
   264   };
   266   TruncatedSeq* _alloc_rate_ms_seq;
   267   double        _prev_collection_pause_end_ms;
   269   TruncatedSeq* _pending_card_diff_seq;
   270   TruncatedSeq* _rs_length_diff_seq;
   271   TruncatedSeq* _cost_per_card_ms_seq;
   272   TruncatedSeq* _cost_per_scan_only_region_ms_seq;
   273   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   274   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   275   TruncatedSeq* _cost_per_entry_ms_seq;
   276   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   277   TruncatedSeq* _cost_per_byte_ms_seq;
   278   TruncatedSeq* _constant_other_time_ms_seq;
   279   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   280   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   282   TruncatedSeq* _pending_cards_seq;
   283   TruncatedSeq* _scanned_cards_seq;
   284   TruncatedSeq* _rs_lengths_seq;
   286   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   287   TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
   289   TruncatedSeq* _young_gc_eff_seq;
   291   TruncatedSeq* _max_conc_overhead_seq;
   293   size_t _recorded_young_regions;
   294   size_t _recorded_scan_only_regions;
   295   size_t _recorded_non_young_regions;
   296   size_t _recorded_region_num;
   298   size_t _free_regions_at_end_of_collection;
   299   size_t _scan_only_regions_at_end_of_collection;
   301   size_t _recorded_rs_lengths;
   302   size_t _max_rs_lengths;
   304   size_t _recorded_marked_bytes;
   305   size_t _recorded_young_bytes;
   307   size_t _predicted_pending_cards;
   308   size_t _predicted_cards_scanned;
   309   size_t _predicted_rs_lengths;
   310   size_t _predicted_bytes_to_copy;
   312   double _predicted_survival_ratio;
   313   double _predicted_rs_update_time_ms;
   314   double _predicted_rs_scan_time_ms;
   315   double _predicted_scan_only_scan_time_ms;
   316   double _predicted_object_copy_time_ms;
   317   double _predicted_constant_other_time_ms;
   318   double _predicted_young_other_time_ms;
   319   double _predicted_non_young_other_time_ms;
   320   double _predicted_pause_time_ms;
   322   double _vtime_diff_ms;
   324   double _recorded_young_free_cset_time_ms;
   325   double _recorded_non_young_free_cset_time_ms;
   327   double _sigma;
   328   double _expensive_region_limit_ms;
   330   size_t _rs_lengths_prediction;
   332   size_t _known_garbage_bytes;
   333   double _known_garbage_ratio;
   335   double sigma() {
   336     return _sigma;
   337   }
   339   // A function that prevents us putting too much stock in small sample
   340   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   341   // of samples.  5 or more samples yields one; fewer scales linearly from
   342   // 2.0 at 1 sample to 1.0 at 5.
   343   double confidence_factor(int samples) {
   344     if (samples > 4) return 1.0;
   345     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   346   }
   348   double get_new_neg_prediction(TruncatedSeq* seq) {
   349     return seq->davg() - sigma() * seq->dsd();
   350   }
   352 #ifndef PRODUCT
   353   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   354 #endif // PRODUCT
   356 protected:
   357   double _pause_time_target_ms;
   358   double _recorded_young_cset_choice_time_ms;
   359   double _recorded_non_young_cset_choice_time_ms;
   360   bool   _within_target;
   361   size_t _pending_cards;
   362   size_t _max_pending_cards;
   364 public:
   366   void set_region_short_lived(HeapRegion* hr) {
   367     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   368   }
   370   void set_region_survivors(HeapRegion* hr) {
   371     hr->install_surv_rate_group(_survivor_surv_rate_group);
   372   }
   374 #ifndef PRODUCT
   375   bool verify_young_ages();
   376 #endif // PRODUCT
   378   void tag_scan_only(size_t short_lived_scan_only_length);
   380   double get_new_prediction(TruncatedSeq* seq) {
   381     return MAX2(seq->davg() + sigma() * seq->dsd(),
   382                 seq->davg() * confidence_factor(seq->num()));
   383   }
   385   size_t young_cset_length() {
   386     return _young_cset_length;
   387   }
   389   void record_max_rs_lengths(size_t rs_lengths) {
   390     _max_rs_lengths = rs_lengths;
   391   }
   393   size_t predict_pending_card_diff() {
   394     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   395     if (prediction < 0.00001)
   396       return 0;
   397     else
   398       return (size_t) prediction;
   399   }
   401   size_t predict_pending_cards() {
   402     size_t max_pending_card_num = _g1->max_pending_card_num();
   403     size_t diff = predict_pending_card_diff();
   404     size_t prediction;
   405     if (diff > max_pending_card_num)
   406       prediction = max_pending_card_num;
   407     else
   408       prediction = max_pending_card_num - diff;
   410     return prediction;
   411   }
   413   size_t predict_rs_length_diff() {
   414     return (size_t) get_new_prediction(_rs_length_diff_seq);
   415   }
   417   double predict_alloc_rate_ms() {
   418     return get_new_prediction(_alloc_rate_ms_seq);
   419   }
   421   double predict_cost_per_card_ms() {
   422     return get_new_prediction(_cost_per_card_ms_seq);
   423   }
   425   double predict_rs_update_time_ms(size_t pending_cards) {
   426     return (double) pending_cards * predict_cost_per_card_ms();
   427   }
   429   double predict_fully_young_cards_per_entry_ratio() {
   430     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   431   }
   433   double predict_partially_young_cards_per_entry_ratio() {
   434     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   435       return predict_fully_young_cards_per_entry_ratio();
   436     else
   437       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   438   }
   440   size_t predict_young_card_num(size_t rs_length) {
   441     return (size_t) ((double) rs_length *
   442                      predict_fully_young_cards_per_entry_ratio());
   443   }
   445   size_t predict_non_young_card_num(size_t rs_length) {
   446     return (size_t) ((double) rs_length *
   447                      predict_partially_young_cards_per_entry_ratio());
   448   }
   450   double predict_rs_scan_time_ms(size_t card_num) {
   451     if (full_young_gcs())
   452       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   453     else
   454       return predict_partially_young_rs_scan_time_ms(card_num);
   455   }
   457   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   458     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   459       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   460     else
   461       return (double) card_num *
   462         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   463   }
   465   double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
   466     if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
   467       return 1.5 * (double) scan_only_region_num *
   468         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   469     else
   470       return (double) scan_only_region_num *
   471         get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
   472   }
   474   double predict_scan_only_time_ms(size_t scan_only_region_num) {
   475     if (_in_marking_window_im)
   476       return predict_scan_only_time_ms_during_cm(scan_only_region_num);
   477     else
   478       return (double) scan_only_region_num *
   479         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   480   }
   482   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   483     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   484       return 1.1 * (double) bytes_to_copy *
   485         get_new_prediction(_cost_per_byte_ms_seq);
   486     else
   487       return (double) bytes_to_copy *
   488         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   489   }
   491   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   492     if (_in_marking_window && !_in_marking_window_im)
   493       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   494     else
   495       return (double) bytes_to_copy *
   496         get_new_prediction(_cost_per_byte_ms_seq);
   497   }
   499   double predict_constant_other_time_ms() {
   500     return get_new_prediction(_constant_other_time_ms_seq);
   501   }
   503   double predict_young_other_time_ms(size_t young_num) {
   504     return
   505       (double) young_num *
   506       get_new_prediction(_young_other_cost_per_region_ms_seq);
   507   }
   509   double predict_non_young_other_time_ms(size_t non_young_num) {
   510     return
   511       (double) non_young_num *
   512       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   513   }
   515   void check_if_region_is_too_expensive(double predicted_time_ms);
   517   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   518   double predict_base_elapsed_time_ms(size_t pending_cards);
   519   double predict_base_elapsed_time_ms(size_t pending_cards,
   520                                       size_t scanned_cards);
   521   size_t predict_bytes_to_copy(HeapRegion* hr);
   522   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   524   // for use by: calculate_optimal_so_length(length)
   525   void predict_gc_eff(size_t young_region_num,
   526                       size_t so_length,
   527                       double base_time_ms,
   528                       double *gc_eff,
   529                       double *pause_time_ms);
   531   // for use by: calculate_young_list_target_config(rs_length)
   532   bool predict_gc_eff(size_t young_region_num,
   533                       size_t so_length,
   534                       double base_time_with_so_ms,
   535                       size_t init_free_regions,
   536                       double target_pause_time_ms,
   537                       double* gc_eff);
   539   void start_recording_regions();
   540   void record_cset_region(HeapRegion* hr, bool young);
   541   void record_scan_only_regions(size_t scan_only_length);
   542   void end_recording_regions();
   544   void record_vtime_diff_ms(double vtime_diff_ms) {
   545     _vtime_diff_ms = vtime_diff_ms;
   546   }
   548   void record_young_free_cset_time_ms(double time_ms) {
   549     _recorded_young_free_cset_time_ms = time_ms;
   550   }
   552   void record_non_young_free_cset_time_ms(double time_ms) {
   553     _recorded_non_young_free_cset_time_ms = time_ms;
   554   }
   556   double predict_young_gc_eff() {
   557     return get_new_neg_prediction(_young_gc_eff_seq);
   558   }
   560   // </NEW PREDICTION>
   562 public:
   563   void cset_regions_freed() {
   564     bool propagate = _last_young_gc_full && !_in_marking_window;
   565     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   566     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   567     // also call it on any more surv rate groups
   568   }
   570   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   571     _known_garbage_bytes = known_garbage_bytes;
   572     size_t heap_bytes = _g1->capacity();
   573     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   574   }
   576   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   577     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   579     _known_garbage_bytes -= known_garbage_bytes;
   580     size_t heap_bytes = _g1->capacity();
   581     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   582   }
   584   G1MMUTracker* mmu_tracker() {
   585     return _mmu_tracker;
   586   }
   588   double predict_init_time_ms() {
   589     return get_new_prediction(_concurrent_mark_init_times_ms);
   590   }
   592   double predict_remark_time_ms() {
   593     return get_new_prediction(_concurrent_mark_remark_times_ms);
   594   }
   596   double predict_cleanup_time_ms() {
   597     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   598   }
   600   // Returns an estimate of the survival rate of the region at yg-age
   601   // "yg_age".
   602   double predict_yg_surv_rate(int age) {
   603     TruncatedSeq* seq = _short_lived_surv_rate_group->get_seq(age);
   604     if (seq->num() == 0)
   605       gclog_or_tty->print("BARF! age is %d", age);
   606     guarantee( seq->num() > 0, "invariant" );
   607     double pred = get_new_prediction(seq);
   608     if (pred > 1.0)
   609       pred = 1.0;
   610     return pred;
   611   }
   613   double accum_yg_surv_rate_pred(int age) {
   614     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   615   }
   617 protected:
   618   void print_stats (int level, const char* str, double value);
   619   void print_stats (int level, const char* str, int value);
   620   void print_par_stats (int level, const char* str, double* data) {
   621     print_par_stats(level, str, data, true);
   622   }
   623   void print_par_stats (int level, const char* str, double* data, bool summary);
   624   void print_par_buffers (int level, const char* str, double* data, bool summary);
   626   void check_other_times(int level,
   627                          NumberSeq* other_times_ms,
   628                          NumberSeq* calc_other_times_ms) const;
   630   void print_summary (PauseSummary* stats) const;
   631   void print_abandoned_summary(PauseSummary* non_pop_summary,
   632                                PauseSummary* pop_summary) const;
   634   void print_summary (int level, const char* str, NumberSeq* seq) const;
   635   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   637   double avg_value (double* data);
   638   double max_value (double* data);
   639   double sum_of_values (double* data);
   640   double max_sum (double* data1, double* data2);
   642   int _last_satb_drain_processed_buffers;
   643   int _last_update_rs_processed_buffers;
   644   double _last_pause_time_ms;
   646   size_t _bytes_in_to_space_before_gc;
   647   size_t _bytes_in_to_space_after_gc;
   648   size_t bytes_in_to_space_during_gc() {
   649     return
   650       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   651   }
   652   size_t _bytes_in_collection_set_before_gc;
   653   // Used to count used bytes in CS.
   654   friend class CountCSClosure;
   656   // Statistics kept per GC stoppage, pause or full.
   657   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   659   // We track markings.
   660   int _num_markings;
   661   double _mark_thread_startup_sec;       // Time at startup of marking thread
   663   // Add a new GC of the given duration and end time to the record.
   664   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   666   // The head of the list (via "next_in_collection_set()") representing the
   667   // current collection set.
   668   HeapRegion* _collection_set;
   669   size_t _collection_set_size;
   670   size_t _collection_set_bytes_used_before;
   672   // Info about marking.
   673   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   675   // The number of collection pauses at the end of the last mark.
   676   size_t _n_pauses_at_mark_end;
   678   // ==== This section is for stats related to starting Conc Refinement on time.
   679   size_t _conc_refine_enabled;
   680   size_t _conc_refine_zero_traversals;
   681   size_t _conc_refine_max_traversals;
   682   // In # of heap regions.
   683   size_t _conc_refine_current_delta;
   685   // At the beginning of a collection pause, update the variables above,
   686   // especially the "delta".
   687   void update_conc_refine_data();
   688   // ====
   690   // Stash a pointer to the g1 heap.
   691   G1CollectedHeap* _g1;
   693   // The average time in ms per collection pause, averaged over recent pauses.
   694   double recent_avg_time_for_pauses_ms();
   696   // The average time in ms for processing CollectedHeap strong roots, per
   697   // collection pause, averaged over recent pauses.
   698   double recent_avg_time_for_CH_strong_ms();
   700   // The average time in ms for processing the G1 remembered set, per
   701   // pause, averaged over recent pauses.
   702   double recent_avg_time_for_G1_strong_ms();
   704   // The average time in ms for "evacuating followers", per pause, averaged
   705   // over recent pauses.
   706   double recent_avg_time_for_evac_ms();
   708   // The number of "recent" GCs recorded in the number sequences
   709   int number_of_recent_gcs();
   711   // The average survival ratio, computed by the total number of bytes
   712   // suriviving / total number of bytes before collection over the last
   713   // several recent pauses.
   714   double recent_avg_survival_fraction();
   715   // The survival fraction of the most recent pause; if there have been no
   716   // pauses, returns 1.0.
   717   double last_survival_fraction();
   719   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   720   // one that may be higher than "recent_avg_survival_fraction".
   721   // This is conservative in several ways:
   722   //   If there have been few pauses, it will assume a potential high
   723   //     variance, and err on the side of caution.
   724   //   It puts a lower bound (currently 0.1) on the value it will return.
   725   //   To try to detect phase changes, if the most recent pause ("latest") has a
   726   //     higher-than average ("avg") survival rate, it returns that rate.
   727   // "work" version is a utility function; young is restricted to young regions.
   728   double conservative_avg_survival_fraction_work(double avg,
   729                                                  double latest);
   731   // The arguments are the two sequences that keep track of the number of bytes
   732   //   surviving and the total number of bytes before collection, resp.,
   733   //   over the last evereal recent pauses
   734   // Returns the survival rate for the category in the most recent pause.
   735   // If there have been no pauses, returns 1.0.
   736   double last_survival_fraction_work(TruncatedSeq* surviving,
   737                                      TruncatedSeq* before);
   739   // The arguments are the two sequences that keep track of the number of bytes
   740   //   surviving and the total number of bytes before collection, resp.,
   741   //   over the last several recent pauses
   742   // Returns the average survival ration over the last several recent pauses
   743   // If there have been no pauses, return 1.0
   744   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   745                                            TruncatedSeq* before);
   747   double conservative_avg_survival_fraction() {
   748     double avg = recent_avg_survival_fraction();
   749     double latest = last_survival_fraction();
   750     return conservative_avg_survival_fraction_work(avg, latest);
   751   }
   753   // The ratio of gc time to elapsed time, computed over recent pauses.
   754   double _recent_avg_pause_time_ratio;
   756   double recent_avg_pause_time_ratio() {
   757     return _recent_avg_pause_time_ratio;
   758   }
   760   // Number of pauses between concurrent marking.
   761   size_t _pauses_btwn_concurrent_mark;
   763   size_t _n_marks_since_last_pause;
   765   // True iff CM has been initiated.
   766   bool _conc_mark_initiated;
   768   // True iff CM should be initiated
   769   bool _should_initiate_conc_mark;
   770   bool _should_revert_to_full_young_gcs;
   771   bool _last_full_young_gc;
   773   // This set of variables tracks the collector efficiency, in order to
   774   // determine whether we should initiate a new marking.
   775   double _cur_mark_stop_world_time_ms;
   776   double _mark_init_start_sec;
   777   double _mark_remark_start_sec;
   778   double _mark_cleanup_start_sec;
   779   double _mark_closure_time_ms;
   781   void   calculate_young_list_min_length();
   782   void   calculate_young_list_target_config();
   783   void   calculate_young_list_target_config(size_t rs_lengths);
   784   size_t calculate_optimal_so_length(size_t young_list_length);
   786 public:
   788   G1CollectorPolicy();
   790   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   792   virtual CollectorPolicy::Name kind() {
   793     return CollectorPolicy::G1CollectorPolicyKind;
   794   }
   796   void check_prediction_validity();
   798   size_t bytes_in_collection_set() {
   799     return _bytes_in_collection_set_before_gc;
   800   }
   802   size_t bytes_in_to_space() {
   803     return bytes_in_to_space_during_gc();
   804   }
   806   unsigned calc_gc_alloc_time_stamp() {
   807     return _all_pause_times_ms->num() + 1;
   808   }
   810 protected:
   812   // Count the number of bytes used in the CS.
   813   void count_CS_bytes_used();
   815   // Together these do the base cleanup-recording work.  Subclasses might
   816   // want to put something between them.
   817   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   818                                                 size_t max_live_bytes);
   819   void record_concurrent_mark_cleanup_end_work2();
   821 public:
   823   virtual void init();
   825   virtual HeapWord* mem_allocate_work(size_t size,
   826                                       bool is_tlab,
   827                                       bool* gc_overhead_limit_was_exceeded);
   829   // This method controls how a collector handles one or more
   830   // of its generations being fully allocated.
   831   virtual HeapWord* satisfy_failed_allocation(size_t size,
   832                                               bool is_tlab);
   834   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   836   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   838   // The number of collection pauses so far.
   839   long n_pauses() const { return _n_pauses; }
   841   // Update the heuristic info to record a collection pause of the given
   842   // start time, where the given number of bytes were used at the start.
   843   // This may involve changing the desired size of a collection set.
   845   virtual void record_stop_world_start();
   847   virtual void record_collection_pause_start(double start_time_sec,
   848                                              size_t start_used);
   850   virtual void record_popular_pause_preamble_start();
   851   virtual void record_popular_pause_preamble_end();
   853   // Must currently be called while the world is stopped.
   854   virtual void record_concurrent_mark_init_start();
   855   virtual void record_concurrent_mark_init_end();
   856   void record_concurrent_mark_init_end_pre(double
   857                                            mark_init_elapsed_time_ms);
   859   void record_mark_closure_time(double mark_closure_time_ms);
   861   virtual void record_concurrent_mark_remark_start();
   862   virtual void record_concurrent_mark_remark_end();
   864   virtual void record_concurrent_mark_cleanup_start();
   865   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   866                                                   size_t max_live_bytes);
   867   virtual void record_concurrent_mark_cleanup_completed();
   869   virtual void record_concurrent_pause();
   870   virtual void record_concurrent_pause_end();
   872   virtual void record_collection_pause_end_CH_strong_roots();
   873   virtual void record_collection_pause_end_G1_strong_roots();
   875   virtual void record_collection_pause_end(bool popular, bool abandoned);
   877   // Record the fact that a full collection occurred.
   878   virtual void record_full_collection_start();
   879   virtual void record_full_collection_end();
   881   void record_ext_root_scan_time(int worker_i, double ms) {
   882     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   883   }
   885   void record_mark_stack_scan_time(int worker_i, double ms) {
   886     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   887   }
   889   void record_scan_only_time(int worker_i, double ms, int n) {
   890     _par_last_scan_only_times_ms[worker_i] = ms;
   891     _par_last_scan_only_regions_scanned[worker_i] = (double) n;
   892   }
   894   void record_satb_drain_time(double ms) {
   895     _cur_satb_drain_time_ms = ms;
   896     _satb_drain_time_set    = true;
   897   }
   899   void record_satb_drain_processed_buffers (int processed_buffers) {
   900     _last_satb_drain_processed_buffers = processed_buffers;
   901   }
   903   void record_mod_union_time(double ms) {
   904     _all_mod_union_times_ms->add(ms);
   905   }
   907   void record_update_rs_start_time(int thread, double ms) {
   908     _par_last_update_rs_start_times_ms[thread] = ms;
   909   }
   911   void record_update_rs_time(int thread, double ms) {
   912     _par_last_update_rs_times_ms[thread] = ms;
   913   }
   915   void record_update_rs_processed_buffers (int thread,
   916                                            double processed_buffers) {
   917     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   918   }
   920   void record_scan_rs_start_time(int thread, double ms) {
   921     _par_last_scan_rs_start_times_ms[thread] = ms;
   922   }
   924   void record_scan_rs_time(int thread, double ms) {
   925     _par_last_scan_rs_times_ms[thread] = ms;
   926   }
   928   void record_scan_new_refs_time(int thread, double ms) {
   929     _par_last_scan_new_refs_times_ms[thread] = ms;
   930   }
   932   double get_scan_new_refs_time(int thread) {
   933     return _par_last_scan_new_refs_times_ms[thread];
   934   }
   936   void reset_obj_copy_time(int thread) {
   937     _par_last_obj_copy_times_ms[thread] = 0.0;
   938   }
   940   void reset_obj_copy_time() {
   941     reset_obj_copy_time(0);
   942   }
   944   void record_obj_copy_time(int thread, double ms) {
   945     _par_last_obj_copy_times_ms[thread] += ms;
   946   }
   948   void record_obj_copy_time(double ms) {
   949     record_obj_copy_time(0, ms);
   950   }
   952   void record_termination_time(int thread, double ms) {
   953     _par_last_termination_times_ms[thread] = ms;
   954   }
   956   void record_termination_time(double ms) {
   957     record_termination_time(0, ms);
   958   }
   960   void record_pause_time(double ms) {
   961     _last_pause_time_ms = ms;
   962   }
   964   void record_clear_ct_time(double ms) {
   965     _cur_clear_ct_time_ms = ms;
   966   }
   968   void record_par_time(double ms) {
   969     _cur_collection_par_time_ms = ms;
   970   }
   972   void record_aux_start_time(int i) {
   973     guarantee(i < _aux_num, "should be within range");
   974     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   975   }
   977   void record_aux_end_time(int i) {
   978     guarantee(i < _aux_num, "should be within range");
   979     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   980     _cur_aux_times_set[i] = true;
   981     _cur_aux_times_ms[i] += ms;
   982   }
   984   void record_pop_compute_rc_start();
   985   void record_pop_compute_rc_end();
   987   void record_pop_evac_start();
   988   void record_pop_evac_end();
   990   // Record the fact that "bytes" bytes allocated in a region.
   991   void record_before_bytes(size_t bytes);
   992   void record_after_bytes(size_t bytes);
   994   // Returns "true" if this is a good time to do a collection pause.
   995   // The "word_size" argument, if non-zero, indicates the size of an
   996   // allocation request that is prompting this query.
   997   virtual bool should_do_collection_pause(size_t word_size) = 0;
   999   // Choose a new collection set.  Marks the chosen regions as being
  1000   // "in_collection_set", and links them together.  The head and number of
  1001   // the collection set are available via access methods.
  1002   // If "pop_region" is non-NULL, it is a popular region that has already
  1003   // been added to the collection set.
  1004   virtual void choose_collection_set(HeapRegion* pop_region = NULL) = 0;
  1006   void clear_collection_set() { _collection_set = NULL; }
  1008   // The head of the list (via "next_in_collection_set()") representing the
  1009   // current collection set.
  1010   HeapRegion* collection_set() { return _collection_set; }
  1012   // Sets the collection set to the given single region.
  1013   virtual void set_single_region_collection_set(HeapRegion* hr);
  1015   // The number of elements in the current collection set.
  1016   size_t collection_set_size() { return _collection_set_size; }
  1018   // Add "hr" to the CS.
  1019   void add_to_collection_set(HeapRegion* hr);
  1021   bool should_initiate_conc_mark()      { return _should_initiate_conc_mark; }
  1022   void set_should_initiate_conc_mark()  { _should_initiate_conc_mark = true; }
  1023   void unset_should_initiate_conc_mark(){ _should_initiate_conc_mark = false; }
  1025   void checkpoint_conc_overhead();
  1027   // If an expansion would be appropriate, because recent GC overhead had
  1028   // exceeded the desired limit, return an amount to expand by.
  1029   virtual size_t expansion_amount();
  1031   // note start of mark thread
  1032   void note_start_of_mark_thread();
  1034   // The marked bytes of the "r" has changed; reclassify it's desirability
  1035   // for marking.  Also asserts that "r" is eligible for a CS.
  1036   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
  1038 #ifndef PRODUCT
  1039   // Check any appropriate marked bytes info, asserting false if
  1040   // something's wrong, else returning "true".
  1041   virtual bool assertMarkedBytesDataOK() = 0;
  1042 #endif
  1044   // Print tracing information.
  1045   void print_tracing_info() const;
  1047   // Print stats on young survival ratio
  1048   void print_yg_surv_rate_info() const;
  1050   void finished_recalculating_age_indexes() {
  1051     _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1052     // do that for any other surv rate groups
  1055   bool should_add_next_region_to_young_list();
  1057   bool in_young_gc_mode() {
  1058     return _in_young_gc_mode;
  1060   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1061     _in_young_gc_mode = in_young_gc_mode;
  1064   bool full_young_gcs() {
  1065     return _full_young_gcs;
  1067   void set_full_young_gcs(bool full_young_gcs) {
  1068     _full_young_gcs = full_young_gcs;
  1071   bool adaptive_young_list_length() {
  1072     return _adaptive_young_list_length;
  1074   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1075     _adaptive_young_list_length = adaptive_young_list_length;
  1078   inline double get_gc_eff_factor() {
  1079     double ratio = _known_garbage_ratio;
  1081     double square = ratio * ratio;
  1082     // square = square * square;
  1083     double ret = square * 9.0 + 1.0;
  1084 #if 0
  1085     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1086 #endif // 0
  1087     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1088     return ret;
  1091   //
  1092   // Survivor regions policy.
  1093   //
  1094 protected:
  1096   // Current tenuring threshold, set to 0 if the collector reaches the
  1097   // maximum amount of suvivors regions.
  1098   int _tenuring_threshold;
  1100 public:
  1102   inline GCAllocPurpose
  1103     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1104       if (age < _tenuring_threshold && src_region->is_young()) {
  1105         return GCAllocForSurvived;
  1106       } else {
  1107         return GCAllocForTenured;
  1111   inline bool track_object_age(GCAllocPurpose purpose) {
  1112     return purpose == GCAllocForSurvived;
  1115   inline GCAllocPurpose alternative_purpose(int purpose) {
  1116     return GCAllocForTenured;
  1119   uint max_regions(int purpose);
  1121   // The limit on regions for a particular purpose is reached.
  1122   void note_alloc_region_limit_reached(int purpose) {
  1123     if (purpose == GCAllocForSurvived) {
  1124       _tenuring_threshold = 0;
  1128   void note_start_adding_survivor_regions() {
  1129     _survivor_surv_rate_group->start_adding_regions();
  1132   void note_stop_adding_survivor_regions() {
  1133     _survivor_surv_rate_group->stop_adding_regions();
  1135 };
  1137 // This encapsulates a particular strategy for a g1 Collector.
  1138 //
  1139 //      Start a concurrent mark when our heap size is n bytes
  1140 //            greater then our heap size was at the last concurrent
  1141 //            mark.  Where n is a function of the CMSTriggerRatio
  1142 //            and the MinHeapFreeRatio.
  1143 //
  1144 //      Start a g1 collection pause when we have allocated the
  1145 //            average number of bytes currently being freed in
  1146 //            a collection, but only if it is at least one region
  1147 //            full
  1148 //
  1149 //      Resize Heap based on desired
  1150 //      allocation space, where desired allocation space is
  1151 //      a function of survival rate and desired future to size.
  1152 //
  1153 //      Choose collection set by first picking all older regions
  1154 //      which have a survival rate which beats our projected young
  1155 //      survival rate.  Then fill out the number of needed regions
  1156 //      with young regions.
  1158 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1159   CollectionSetChooser* _collectionSetChooser;
  1160   // If the estimated is less then desirable, resize if possible.
  1161   void expand_if_possible(size_t numRegions);
  1163   virtual void choose_collection_set(HeapRegion* pop_region = NULL);
  1164   virtual void record_collection_pause_start(double start_time_sec,
  1165                                              size_t start_used);
  1166   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1167                                                   size_t max_live_bytes);
  1168   virtual void record_full_collection_end();
  1170 public:
  1171   G1CollectorPolicy_BestRegionsFirst() {
  1172     _collectionSetChooser = new CollectionSetChooser();
  1174   void record_collection_pause_end(bool popular, bool abandoned);
  1175   bool should_do_collection_pause(size_t word_size);
  1176   virtual void set_single_region_collection_set(HeapRegion* hr);
  1177   // This is not needed any more, after the CSet choosing code was
  1178   // changed to use the pause prediction work. But let's leave the
  1179   // hook in just in case.
  1180   void note_change_in_marked_bytes(HeapRegion* r) { }
  1181 #ifndef PRODUCT
  1182   bool assertMarkedBytesDataOK();
  1183 #endif
  1184 };
  1186 // This should move to some place more general...
  1188 // If we have "n" measurements, and we've kept track of their "sum" and the
  1189 // "sum_of_squares" of the measurements, this returns the variance of the
  1190 // sequence.
  1191 inline double variance(int n, double sum_of_squares, double sum) {
  1192   double n_d = (double)n;
  1193   double avg = sum/n_d;
  1194   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1197 // Local Variables: ***
  1198 // c-indentation-style: gnu ***
  1199 // End: ***

mercurial