src/share/vm/adlc/formssel.cpp

Thu, 05 Jun 2008 15:57:56 -0700

author
ysr
date
Thu, 05 Jun 2008 15:57:56 -0700
changeset 777
37f87013dfd8
parent 548
ba764ed4b6f2
child 779
6aae2f9d0294
permissions
-rw-r--r--

6711316: Open source the Garbage-First garbage collector
Summary: First mercurial integration of the code for the Garbage-First garbage collector.
Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr

     1 /*
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena) {
    34       _ftype = Form::INS;
    36       _matrule   = NULL;
    37       _insencode = NULL;
    38       _opcode    = NULL;
    39       _size      = NULL;
    40       _attribs   = NULL;
    41       _predicate = NULL;
    42       _exprule   = NULL;
    43       _rewrule   = NULL;
    44       _format    = NULL;
    45       _peephole  = NULL;
    46       _ins_pipe  = NULL;
    47       _uniq_idx  = NULL;
    48       _num_uniq  = 0;
    49       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    50       _cisc_spill_alternate = NULL;            // possible cisc replacement
    51       _cisc_reg_mask_name = NULL;
    52       _is_cisc_alternate = false;
    53       _is_short_branch = false;
    54       _short_branch_form = NULL;
    55       _alignment = 1;
    56 }
    58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    59   : _ident(id), _ideal_only(false),
    60     _localNames(instr->_localNames),
    61     _effects(instr->_effects) {
    62       _ftype = Form::INS;
    64       _matrule   = rule;
    65       _insencode = instr->_insencode;
    66       _opcode    = instr->_opcode;
    67       _size      = instr->_size;
    68       _attribs   = instr->_attribs;
    69       _predicate = instr->_predicate;
    70       _exprule   = instr->_exprule;
    71       _rewrule   = instr->_rewrule;
    72       _format    = instr->_format;
    73       _peephole  = instr->_peephole;
    74       _ins_pipe  = instr->_ins_pipe;
    75       _uniq_idx  = instr->_uniq_idx;
    76       _num_uniq  = instr->_num_uniq;
    77       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    78       _cisc_spill_alternate = NULL;            // possible cisc replacement
    79       _cisc_reg_mask_name = NULL;
    80       _is_cisc_alternate = false;
    81       _is_short_branch = false;
    82       _short_branch_form = NULL;
    83       _alignment = 1;
    84      // Copy parameters
    85      const char *name;
    86      instr->_parameters.reset();
    87      for (; (name = instr->_parameters.iter()) != NULL;)
    88        _parameters.addName(name);
    89 }
    91 InstructForm::~InstructForm() {
    92 }
    94 InstructForm *InstructForm::is_instruction() const {
    95   return (InstructForm*)this;
    96 }
    98 bool InstructForm::ideal_only() const {
    99   return _ideal_only;
   100 }
   102 bool InstructForm::sets_result() const {
   103   return (_matrule != NULL && _matrule->sets_result());
   104 }
   106 bool InstructForm::needs_projections() {
   107   _components.reset();
   108   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   109     if (comp->isa(Component::KILL)) {
   110       return true;
   111     }
   112   }
   113   return false;
   114 }
   117 bool InstructForm::has_temps() {
   118   if (_matrule) {
   119     // Examine each component to see if it is a TEMP
   120     _components.reset();
   121     // Skip the first component, if already handled as (SET dst (...))
   122     Component *comp = NULL;
   123     if (sets_result())  comp = _components.iter();
   124     while ((comp = _components.iter()) != NULL) {
   125       if (comp->isa(Component::TEMP)) {
   126         return true;
   127       }
   128     }
   129   }
   131   return false;
   132 }
   134 uint InstructForm::num_defs_or_kills() {
   135   uint   defs_or_kills = 0;
   137   _components.reset();
   138   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   139     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   140       ++defs_or_kills;
   141     }
   142   }
   144   return  defs_or_kills;
   145 }
   147 // This instruction has an expand rule?
   148 bool InstructForm::expands() const {
   149   return ( _exprule != NULL );
   150 }
   152 // This instruction has a peephole rule?
   153 Peephole *InstructForm::peepholes() const {
   154   return _peephole;
   155 }
   157 // This instruction has a peephole rule?
   158 void InstructForm::append_peephole(Peephole *peephole) {
   159   if( _peephole == NULL ) {
   160     _peephole = peephole;
   161   } else {
   162     _peephole->append_peephole(peephole);
   163   }
   164 }
   167 // ideal opcode enumeration
   168 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   169   if( !_matrule ) return "Node"; // Something weird
   170   // Chain rules do not really have ideal Opcodes; use their source
   171   // operand ideal Opcode instead.
   172   if( is_simple_chain_rule(globalNames) ) {
   173     const char *src = _matrule->_rChild->_opType;
   174     OperandForm *src_op = globalNames[src]->is_operand();
   175     assert( src_op, "Not operand class of chain rule" );
   176     if( !src_op->_matrule ) return "Node";
   177     return src_op->_matrule->_opType;
   178   }
   179   // Operand chain rules do not really have ideal Opcodes
   180   if( _matrule->is_chain_rule(globalNames) )
   181     return "Node";
   182   return strcmp(_matrule->_opType,"Set")
   183     ? _matrule->_opType
   184     : _matrule->_rChild->_opType;
   185 }
   187 // Recursive check on all operands' match rules in my match rule
   188 bool InstructForm::is_pinned(FormDict &globals) {
   189   if ( ! _matrule)  return false;
   191   int  index   = 0;
   192   if (_matrule->find_type("Goto",          index)) return true;
   193   if (_matrule->find_type("If",            index)) return true;
   194   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   195   if (_matrule->find_type("Return",        index)) return true;
   196   if (_matrule->find_type("Rethrow",       index)) return true;
   197   if (_matrule->find_type("TailCall",      index)) return true;
   198   if (_matrule->find_type("TailJump",      index)) return true;
   199   if (_matrule->find_type("Halt",          index)) return true;
   200   if (_matrule->find_type("Jump",          index)) return true;
   202   return is_parm(globals);
   203 }
   205 // Recursive check on all operands' match rules in my match rule
   206 bool InstructForm::is_projection(FormDict &globals) {
   207   if ( ! _matrule)  return false;
   209   int  index   = 0;
   210   if (_matrule->find_type("Goto",    index)) return true;
   211   if (_matrule->find_type("Return",  index)) return true;
   212   if (_matrule->find_type("Rethrow", index)) return true;
   213   if (_matrule->find_type("TailCall",index)) return true;
   214   if (_matrule->find_type("TailJump",index)) return true;
   215   if (_matrule->find_type("Halt",    index)) return true;
   217   return false;
   218 }
   220 // Recursive check on all operands' match rules in my match rule
   221 bool InstructForm::is_parm(FormDict &globals) {
   222   if ( ! _matrule)  return false;
   224   int  index   = 0;
   225   if (_matrule->find_type("Parm",index)) return true;
   227   return false;
   228 }
   231 // Return 'true' if this instruction matches an ideal 'Copy*' node
   232 int InstructForm::is_ideal_copy() const {
   233   return _matrule ? _matrule->is_ideal_copy() : 0;
   234 }
   236 // Return 'true' if this instruction is too complex to rematerialize.
   237 int InstructForm::is_expensive() const {
   238   // We can prove it is cheap if it has an empty encoding.
   239   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   240   if (is_empty_encoding())
   241     return 0;
   243   if (is_tls_instruction())
   244     return 1;
   246   if (_matrule == NULL)  return 0;
   248   return _matrule->is_expensive();
   249 }
   251 // Has an empty encoding if _size is a constant zero or there
   252 // are no ins_encode tokens.
   253 int InstructForm::is_empty_encoding() const {
   254   if (_insencode != NULL) {
   255     _insencode->reset();
   256     if (_insencode->encode_class_iter() == NULL) {
   257       return 1;
   258     }
   259   }
   260   if (_size != NULL && strcmp(_size, "0") == 0) {
   261     return 1;
   262   }
   263   return 0;
   264 }
   266 int InstructForm::is_tls_instruction() const {
   267   if (_ident != NULL &&
   268       ( ! strcmp( _ident,"tlsLoadP") ||
   269         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   270     return 1;
   271   }
   273   if (_matrule != NULL && _insencode != NULL) {
   274     const char* opType = _matrule->_opType;
   275     if (strcmp(opType, "Set")==0)
   276       opType = _matrule->_rChild->_opType;
   277     if (strcmp(opType,"ThreadLocal")==0) {
   278       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   279               (_ident == NULL ? "NULL" : _ident));
   280       return 1;
   281     }
   282   }
   284   return 0;
   285 }
   288 // Return 'true' if this instruction matches an ideal 'Copy*' node
   289 bool InstructForm::is_ideal_unlock() const {
   290   return _matrule ? _matrule->is_ideal_unlock() : false;
   291 }
   293 bool InstructForm::is_ideal_call_leaf() const {
   294   return _matrule ? _matrule->is_ideal_call_leaf() : false;
   295 }
   297 // Return 'true' if this instruction matches an ideal 'If' node
   298 bool InstructForm::is_ideal_if() const {
   299   if( _matrule == NULL ) return false;
   301   return _matrule->is_ideal_if();
   302 }
   304 // Return 'true' if this instruction matches an ideal 'FastLock' node
   305 bool InstructForm::is_ideal_fastlock() const {
   306   if( _matrule == NULL ) return false;
   308   return _matrule->is_ideal_fastlock();
   309 }
   311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   312 bool InstructForm::is_ideal_membar() const {
   313   if( _matrule == NULL ) return false;
   315   return _matrule->is_ideal_membar();
   316 }
   318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   319 bool InstructForm::is_ideal_loadPC() const {
   320   if( _matrule == NULL ) return false;
   322   return _matrule->is_ideal_loadPC();
   323 }
   325 // Return 'true' if this instruction matches an ideal 'Box' node
   326 bool InstructForm::is_ideal_box() const {
   327   if( _matrule == NULL ) return false;
   329   return _matrule->is_ideal_box();
   330 }
   332 // Return 'true' if this instruction matches an ideal 'Goto' node
   333 bool InstructForm::is_ideal_goto() const {
   334   if( _matrule == NULL ) return false;
   336   return _matrule->is_ideal_goto();
   337 }
   339 // Return 'true' if this instruction matches an ideal 'Jump' node
   340 bool InstructForm::is_ideal_jump() const {
   341   if( _matrule == NULL ) return false;
   343   return _matrule->is_ideal_jump();
   344 }
   346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
   347 //                    'CountedLoopEnd' | 'Jump'
   348 bool InstructForm::is_ideal_branch() const {
   349   if( _matrule == NULL ) return false;
   351   return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
   352 }
   355 // Return 'true' if this instruction matches an ideal 'Return' node
   356 bool InstructForm::is_ideal_return() const {
   357   if( _matrule == NULL ) return false;
   359   // Check MatchRule to see if the first entry is the ideal "Return" node
   360   int  index   = 0;
   361   if (_matrule->find_type("Return",index)) return true;
   362   if (_matrule->find_type("Rethrow",index)) return true;
   363   if (_matrule->find_type("TailCall",index)) return true;
   364   if (_matrule->find_type("TailJump",index)) return true;
   366   return false;
   367 }
   369 // Return 'true' if this instruction matches an ideal 'Halt' node
   370 bool InstructForm::is_ideal_halt() const {
   371   int  index   = 0;
   372   return _matrule && _matrule->find_type("Halt",index);
   373 }
   375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   376 bool InstructForm::is_ideal_safepoint() const {
   377   int  index   = 0;
   378   return _matrule && _matrule->find_type("SafePoint",index);
   379 }
   381 // Return 'true' if this instruction matches an ideal 'Nop' node
   382 bool InstructForm::is_ideal_nop() const {
   383   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   384 }
   386 bool InstructForm::is_ideal_control() const {
   387   if ( ! _matrule)  return false;
   389   return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
   390 }
   392 // Return 'true' if this instruction matches an ideal 'Call' node
   393 Form::CallType InstructForm::is_ideal_call() const {
   394   if( _matrule == NULL ) return Form::invalid_type;
   396   // Check MatchRule to see if the first entry is the ideal "Call" node
   397   int  idx   = 0;
   398   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   399   idx = 0;
   400   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   401   idx = 0;
   402   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   403   idx = 0;
   404   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   405   idx = 0;
   406   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   407   idx = 0;
   408   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   409   idx = 0;
   410   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   411   idx = 0;
   413   return Form::invalid_type;
   414 }
   416 // Return 'true' if this instruction matches an ideal 'Load?' node
   417 Form::DataType InstructForm::is_ideal_load() const {
   418   if( _matrule == NULL ) return Form::none;
   420   return  _matrule->is_ideal_load();
   421 }
   423 // Return 'true' if this instruction matches an ideal 'Load?' node
   424 Form::DataType InstructForm::is_ideal_store() const {
   425   if( _matrule == NULL ) return Form::none;
   427   return  _matrule->is_ideal_store();
   428 }
   430 // Return the input register that must match the output register
   431 // If this is not required, return 0
   432 uint InstructForm::two_address(FormDict &globals) {
   433   uint  matching_input = 0;
   434   if(_components.count() == 0) return 0;
   436   _components.reset();
   437   Component *comp = _components.iter();
   438   // Check if there is a DEF
   439   if( comp->isa(Component::DEF) ) {
   440     // Check that this is a register
   441     const char  *def_type = comp->_type;
   442     const Form  *form     = globals[def_type];
   443     OperandForm *op       = form->is_operand();
   444     if( op ) {
   445       if( op->constrained_reg_class() != NULL &&
   446           op->interface_type(globals) == Form::register_interface ) {
   447         // Remember the local name for equality test later
   448         const char *def_name = comp->_name;
   449         // Check if a component has the same name and is a USE
   450         do {
   451           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   452             return operand_position_format(def_name);
   453           }
   454         } while( (comp = _components.iter()) != NULL);
   455       }
   456     }
   457   }
   459   return 0;
   460 }
   463 // when chaining a constant to an instruction, returns 'true' and sets opType
   464 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   465   const char *dummy  = NULL;
   466   const char *dummy2 = NULL;
   467   return is_chain_of_constant(globals, dummy, dummy2);
   468 }
   469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   470                 const char * &opTypeParam) {
   471   const char *result = NULL;
   473   return is_chain_of_constant(globals, opTypeParam, result);
   474 }
   476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   477                 const char * &opTypeParam, const char * &resultParam) {
   478   Form::DataType  data_type = Form::none;
   479   if ( ! _matrule)  return data_type;
   481   // !!!!!
   482   // The source of the chain rule is 'position = 1'
   483   uint         position = 1;
   484   const char  *result   = NULL;
   485   const char  *name     = NULL;
   486   const char  *opType   = NULL;
   487   // Here base_operand is looking for an ideal type to be returned (opType).
   488   if ( _matrule->is_chain_rule(globals)
   489        && _matrule->base_operand(position, globals, result, name, opType) ) {
   490     data_type = ideal_to_const_type(opType);
   492     // if it isn't an ideal constant type, just return
   493     if ( data_type == Form::none ) return data_type;
   495     // Ideal constant types also adjust the opType parameter.
   496     resultParam = result;
   497     opTypeParam = opType;
   498     return data_type;
   499   }
   501   return data_type;
   502 }
   504 // Check if a simple chain rule
   505 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   506   if( _matrule && _matrule->sets_result()
   507       && _matrule->_rChild->_lChild == NULL
   508       && globals[_matrule->_rChild->_opType]
   509       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   510     return true;
   511   }
   512   return false;
   513 }
   515 // check for structural rematerialization
   516 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   517   bool   rematerialize = false;
   519   Form::DataType data_type = is_chain_of_constant(globals);
   520   if( data_type != Form::none )
   521     rematerialize = true;
   523   // Constants
   524   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   525     rematerialize = true;
   527   // Pseudo-constants (values easily available to the runtime)
   528   if (is_empty_encoding() && is_tls_instruction())
   529     rematerialize = true;
   531   // 1-input, 1-output, such as copies or increments.
   532   if( _components.count() == 2 &&
   533       _components[0]->is(Component::DEF) &&
   534       _components[1]->isa(Component::USE) )
   535     rematerialize = true;
   537   // Check for an ideal 'Load?' and eliminate rematerialize option
   538   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   539        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   540        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   541     rematerialize = false;
   542   }
   544   // Always rematerialize the flags.  They are more expensive to save &
   545   // restore than to recompute (and possibly spill the compare's inputs).
   546   if( _components.count() >= 1 ) {
   547     Component *c = _components[0];
   548     const Form *form = globals[c->_type];
   549     OperandForm *opform = form->is_operand();
   550     if( opform ) {
   551       // Avoid the special stack_slots register classes
   552       const char *rc_name = opform->constrained_reg_class();
   553       if( rc_name ) {
   554         if( strcmp(rc_name,"stack_slots") ) {
   555           // Check for ideal_type of RegFlags
   556           const char *type = opform->ideal_type( globals, registers );
   557           if( !strcmp(type,"RegFlags") )
   558             rematerialize = true;
   559         } else
   560           rematerialize = false; // Do not rematerialize things target stk
   561       }
   562     }
   563   }
   565   return rematerialize;
   566 }
   568 // loads from memory, so must check for anti-dependence
   569 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   570   // Machine independent loads must be checked for anti-dependences
   571   if( is_ideal_load() != Form::none )  return true;
   573   // !!!!! !!!!! !!!!!
   574   // TEMPORARY
   575   // if( is_simple_chain_rule(globals) )  return false;
   577   // String-compare uses many memorys edges, but writes none
   578   if( _matrule && _matrule->_rChild &&
   579       strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
   580     return true;
   582   // Check if instruction has a USE of a memory operand class, but no defs
   583   bool USE_of_memory  = false;
   584   bool DEF_of_memory  = false;
   585   Component     *comp = NULL;
   586   ComponentList &components = (ComponentList &)_components;
   588   components.reset();
   589   while( (comp = components.iter()) != NULL ) {
   590     const Form  *form = globals[comp->_type];
   591     if( !form ) continue;
   592     OpClassForm *op   = form->is_opclass();
   593     if( !op ) continue;
   594     if( form->interface_type(globals) == Form::memory_interface ) {
   595       if( comp->isa(Component::USE) ) USE_of_memory = true;
   596       if( comp->isa(Component::DEF) ) {
   597         OperandForm *oper = form->is_operand();
   598         if( oper && oper->is_user_name_for_sReg() ) {
   599           // Stack slots are unaliased memory handled by allocator
   600           oper = oper;  // debug stopping point !!!!!
   601         } else {
   602           DEF_of_memory = true;
   603         }
   604       }
   605     }
   606   }
   607   return (USE_of_memory && !DEF_of_memory);
   608 }
   611 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   612   if( _matrule == NULL ) return false;
   613   if( !_matrule->_opType ) return false;
   615   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   616   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   618   return false;
   619 }
   621 int InstructForm::memory_operand(FormDict &globals) const {
   622   // Machine independent loads must be checked for anti-dependences
   623   // Check if instruction has a USE of a memory operand class, or a def.
   624   int USE_of_memory  = 0;
   625   int DEF_of_memory  = 0;
   626   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   627   Component     *unique          = NULL;
   628   Component     *comp            = NULL;
   629   ComponentList &components      = (ComponentList &)_components;
   631   components.reset();
   632   while( (comp = components.iter()) != NULL ) {
   633     const Form  *form = globals[comp->_type];
   634     if( !form ) continue;
   635     OpClassForm *op   = form->is_opclass();
   636     if( !op ) continue;
   637     if( op->stack_slots_only(globals) )  continue;
   638     if( form->interface_type(globals) == Form::memory_interface ) {
   639       if( comp->isa(Component::DEF) ) {
   640         last_memory_DEF = comp->_name;
   641         DEF_of_memory++;
   642         unique = comp;
   643       } else if( comp->isa(Component::USE) ) {
   644         if( last_memory_DEF != NULL ) {
   645           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   646           last_memory_DEF = NULL;
   647         }
   648         USE_of_memory++;
   649         if (DEF_of_memory == 0)  // defs take precedence
   650           unique = comp;
   651       } else {
   652         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   653       }
   654     }
   655   }
   656   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   657   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   658   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   659   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   660     if( is_simple_chain_rule(globals) ) {
   661       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   662       //((InstructForm*)this)->dump();
   663       // Preceding code prints nothing on sparc and these insns on intel:
   664       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   665       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   666       return NO_MEMORY_OPERAND;
   667     }
   669     if( DEF_of_memory == 1 ) {
   670       assert(unique != NULL, "");
   671       if( USE_of_memory == 0 ) {
   672         // unique def, no uses
   673       } else {
   674         // // unique def, some uses
   675         // // must return bottom unless all uses match def
   676         // unique = NULL;
   677       }
   678     } else if( DEF_of_memory > 0 ) {
   679       // multiple defs, don't care about uses
   680       unique = NULL;
   681     } else if( USE_of_memory == 1) {
   682       // unique use, no defs
   683       assert(unique != NULL, "");
   684     } else if( USE_of_memory > 0 ) {
   685       // multiple uses, no defs
   686       unique = NULL;
   687     } else {
   688       assert(false, "bad case analysis");
   689     }
   690     // process the unique DEF or USE, if there is one
   691     if( unique == NULL ) {
   692       return MANY_MEMORY_OPERANDS;
   693     } else {
   694       int pos = components.operand_position(unique->_name);
   695       if( unique->isa(Component::DEF) ) {
   696         pos += 1;                // get corresponding USE from DEF
   697       }
   698       assert(pos >= 1, "I was just looking at it!");
   699       return pos;
   700     }
   701   }
   703   // missed the memory op??
   704   if( true ) {  // %%% should not be necessary
   705     if( is_ideal_store() != Form::none ) {
   706       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   707       ((InstructForm*)this)->dump();
   708       // pretend it has multiple defs and uses
   709       return MANY_MEMORY_OPERANDS;
   710     }
   711     if( is_ideal_load()  != Form::none ) {
   712       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   713       ((InstructForm*)this)->dump();
   714       // pretend it has multiple uses and no defs
   715       return MANY_MEMORY_OPERANDS;
   716     }
   717   }
   719   return NO_MEMORY_OPERAND;
   720 }
   723 // This instruction captures the machine-independent bottom_type
   724 // Expected use is for pointer vs oop determination for LoadP
   725 bool InstructForm::captures_bottom_type() const {
   726   if( _matrule && _matrule->_rChild &&
   727        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
   728         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
   729         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
   730         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
   731         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
   732         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
   733         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
   734   else if ( is_ideal_load() == Form::idealP )                return true;
   735   else if ( is_ideal_store() != Form::none  )                return true;
   737   return  false;
   738 }
   741 // Access instr_cost attribute or return NULL.
   742 const char* InstructForm::cost() {
   743   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   744     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   745       return cur->_val;
   746     }
   747   }
   748   return NULL;
   749 }
   751 // Return count of top-level operands.
   752 uint InstructForm::num_opnds() {
   753   int  num_opnds = _components.num_operands();
   755   // Need special handling for matching some ideal nodes
   756   // i.e. Matching a return node
   757   /*
   758   if( _matrule ) {
   759     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   760         strcmp(_matrule->_opType,"Halt"     )==0 )
   761       return 3;
   762   }
   763     */
   764   return num_opnds;
   765 }
   767 // Return count of unmatched operands.
   768 uint InstructForm::num_post_match_opnds() {
   769   uint  num_post_match_opnds = _components.count();
   770   uint  num_match_opnds = _components.match_count();
   771   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   773   return num_post_match_opnds;
   774 }
   776 // Return the number of leaves below this complex operand
   777 uint InstructForm::num_consts(FormDict &globals) const {
   778   if ( ! _matrule) return 0;
   780   // This is a recursive invocation on all operands in the matchrule
   781   return _matrule->num_consts(globals);
   782 }
   784 // Constants in match rule with specified type
   785 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   786   if ( ! _matrule) return 0;
   788   // This is a recursive invocation on all operands in the matchrule
   789   return _matrule->num_consts(globals, type);
   790 }
   793 // Return the register class associated with 'leaf'.
   794 const char *InstructForm::out_reg_class(FormDict &globals) {
   795   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   797   return NULL;
   798 }
   802 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   803 uint InstructForm::oper_input_base(FormDict &globals) {
   804   if( !_matrule ) return 1;     // Skip control for most nodes
   806   // Need special handling for matching some ideal nodes
   807   // i.e. Matching a return node
   808   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   809       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   810       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   811       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   812       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   813       strcmp(_matrule->_opType,"Halt"      )==0 )
   814     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   816   if( _matrule->_rChild &&
   817           strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
   818         // String compare takes 1 control and 4 memory edges.
   819     return 5;
   820   }
   822   // Check for handling of 'Memory' input/edge in the ideal world.
   823   // The AD file writer is shielded from knowledge of these edges.
   824   int base = 1;                 // Skip control
   825   base += _matrule->needs_ideal_memory_edge(globals);
   827   // Also skip the base-oop value for uses of derived oops.
   828   // The AD file writer is shielded from knowledge of these edges.
   829   base += needs_base_oop_edge(globals);
   831   return base;
   832 }
   834 // Implementation does not modify state of internal structures
   835 void InstructForm::build_components() {
   836   // Add top-level operands to the components
   837   if (_matrule)  _matrule->append_components(_localNames, _components);
   839   // Add parameters that "do not appear in match rule".
   840   bool has_temp = false;
   841   const char *name;
   842   const char *kill_name = NULL;
   843   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   844     OperandForm *opForm = (OperandForm*)_localNames[name];
   846     const Form *form = _effects[name];
   847     Effect     *e    = form ? form->is_effect() : NULL;
   848     if (e != NULL) {
   849       has_temp |= e->is(Component::TEMP);
   851       // KILLs must be declared after any TEMPs because TEMPs are real
   852       // uses so their operand numbering must directly follow the real
   853       // inputs from the match rule.  Fixing the numbering seems
   854       // complex so simply enforce the restriction during parse.
   855       if (kill_name != NULL &&
   856           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   857         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   858         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   859                              _ident, kill->_ident, kill_name);
   860       } else if (e->isa(Component::KILL)) {
   861         kill_name = name;
   862       }
   864       // TEMPs are real uses and need to be among the first parameters
   865       // listed, otherwise the numbering of operands and inputs gets
   866       // screwy, so enforce this restriction during parse.
   867       if (kill_name != NULL &&
   868           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   869         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   870         globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
   871                              _ident, kill->_ident, kill_name, opForm->_ident, name);
   872       } else if (e->isa(Component::KILL)) {
   873         kill_name = name;
   874       }
   875     }
   877     const Component *component  = _components.search(name);
   878     if ( component  == NULL ) {
   879       if (e) {
   880         _components.insert(name, opForm->_ident, e->_use_def, false);
   881         component = _components.search(name);
   882         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   883           const Form *form = globalAD->globalNames()[component->_type];
   884           assert( form, "component type must be a defined form");
   885           OperandForm *op   = form->is_operand();
   886           if (op->_interface && op->_interface->is_RegInterface()) {
   887             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   888                                  _ident, opForm->_ident, name);
   889           }
   890         }
   891       } else {
   892         // This would be a nice warning but it triggers in a few places in a benign way
   893         // if (_matrule != NULL && !expands()) {
   894         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   895         //                        _ident, opForm->_ident, name);
   896         // }
   897         _components.insert(name, opForm->_ident, Component::INVALID, false);
   898       }
   899     }
   900     else if (e) {
   901       // Component was found in the list
   902       // Check if there is a new effect that requires an extra component.
   903       // This happens when adding 'USE' to a component that is not yet one.
   904       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   905         if (component->isa(Component::USE) && _matrule) {
   906           const Form *form = globalAD->globalNames()[component->_type];
   907           assert( form, "component type must be a defined form");
   908           OperandForm *op   = form->is_operand();
   909           if (op->_interface && op->_interface->is_RegInterface()) {
   910             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   911                                  _ident, opForm->_ident, name);
   912           }
   913         }
   914         _components.insert(name, opForm->_ident, e->_use_def, false);
   915       } else {
   916         Component  *comp = (Component*)component;
   917         comp->promote_use_def_info(e->_use_def);
   918       }
   919       // Component positions are zero based.
   920       int  pos  = _components.operand_position(name);
   921       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   922               "Component::DEF can only occur in the first position");
   923     }
   924   }
   926   // Resolving the interactions between expand rules and TEMPs would
   927   // be complex so simply disallow it.
   928   if (_matrule == NULL && has_temp) {
   929     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   930   }
   932   return;
   933 }
   935 // Return zero-based position in component list;  -1 if not in list.
   936 int   InstructForm::operand_position(const char *name, int usedef) {
   937   return unique_opnds_idx(_components.operand_position(name, usedef));
   938 }
   940 int   InstructForm::operand_position_format(const char *name) {
   941   return unique_opnds_idx(_components.operand_position_format(name));
   942 }
   944 // Return zero-based position in component list; -1 if not in list.
   945 int   InstructForm::label_position() {
   946   return unique_opnds_idx(_components.label_position());
   947 }
   949 int   InstructForm::method_position() {
   950   return unique_opnds_idx(_components.method_position());
   951 }
   953 // Return number of relocation entries needed for this instruction.
   954 uint  InstructForm::reloc(FormDict &globals) {
   955   uint reloc_entries  = 0;
   956   // Check for "Call" nodes
   957   if ( is_ideal_call() )      ++reloc_entries;
   958   if ( is_ideal_return() )    ++reloc_entries;
   959   if ( is_ideal_safepoint() ) ++reloc_entries;
   962   // Check if operands MAYBE oop pointers, by checking for ConP elements
   963   // Proceed through the leaves of the match-tree and check for ConPs
   964   if ( _matrule != NULL ) {
   965     uint         position = 0;
   966     const char  *result   = NULL;
   967     const char  *name     = NULL;
   968     const char  *opType   = NULL;
   969     while (_matrule->base_operand(position, globals, result, name, opType)) {
   970       if ( strcmp(opType,"ConP") == 0 ) {
   971 #ifdef SPARC
   972         reloc_entries += 2; // 1 for sethi + 1 for setlo
   973 #else
   974         ++reloc_entries;
   975 #endif
   976       }
   977       ++position;
   978     }
   979   }
   981   // Above is only a conservative estimate
   982   // because it did not check contents of operand classes.
   983   // !!!!! !!!!!
   984   // Add 1 to reloc info for each operand class in the component list.
   985   Component  *comp;
   986   _components.reset();
   987   while ( (comp = _components.iter()) != NULL ) {
   988     const Form        *form = globals[comp->_type];
   989     assert( form, "Did not find component's type in global names");
   990     const OpClassForm *opc  = form->is_opclass();
   991     const OperandForm *oper = form->is_operand();
   992     if ( opc && (oper == NULL) ) {
   993       ++reloc_entries;
   994     } else if ( oper ) {
   995       // floats and doubles loaded out of method's constant pool require reloc info
   996       Form::DataType type = oper->is_base_constant(globals);
   997       if ( (type == Form::idealF) || (type == Form::idealD) ) {
   998         ++reloc_entries;
   999       }
  1003   // Float and Double constants may come from the CodeBuffer table
  1004   // and require relocatable addresses for access
  1005   // !!!!!
  1006   // Check for any component being an immediate float or double.
  1007   Form::DataType data_type = is_chain_of_constant(globals);
  1008   if( data_type==idealD || data_type==idealF ) {
  1009 #ifdef SPARC
  1010     // sparc required more relocation entries for floating constants
  1011     // (expires 9/98)
  1012     reloc_entries += 6;
  1013 #else
  1014     reloc_entries++;
  1015 #endif
  1018   return reloc_entries;
  1021 // Utility function defined in archDesc.cpp
  1022 extern bool is_def(int usedef);
  1024 // Return the result of reducing an instruction
  1025 const char *InstructForm::reduce_result() {
  1026   const char* result = "Universe";  // default
  1027   _components.reset();
  1028   Component *comp = _components.iter();
  1029   if (comp != NULL && comp->isa(Component::DEF)) {
  1030     result = comp->_type;
  1031     // Override this if the rule is a store operation:
  1032     if (_matrule && _matrule->_rChild &&
  1033         is_store_to_memory(_matrule->_rChild->_opType))
  1034       result = "Universe";
  1036   return result;
  1039 // Return the name of the operand on the right hand side of the binary match
  1040 // Return NULL if there is no right hand side
  1041 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1042   if( _matrule == NULL ) return NULL;
  1043   return  _matrule->reduce_right(globals);
  1046 // Similar for left
  1047 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1048   if( _matrule == NULL ) return NULL;
  1049   return  _matrule->reduce_left(globals);
  1053 // Base class for this instruction, MachNode except for calls
  1054 const char *InstructForm::mach_base_class()  const {
  1055   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1056     return "MachCallStaticJavaNode";
  1058   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1059     return "MachCallDynamicJavaNode";
  1061   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1062     return "MachCallRuntimeNode";
  1064   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1065     return "MachCallLeafNode";
  1067   else if (is_ideal_return()) {
  1068     return "MachReturnNode";
  1070   else if (is_ideal_halt()) {
  1071     return "MachHaltNode";
  1073   else if (is_ideal_safepoint()) {
  1074     return "MachSafePointNode";
  1076   else if (is_ideal_if()) {
  1077     return "MachIfNode";
  1079   else if (is_ideal_fastlock()) {
  1080     return "MachFastLockNode";
  1082   else if (is_ideal_nop()) {
  1083     return "MachNopNode";
  1085   else if (captures_bottom_type()) {
  1086     return "MachTypeNode";
  1087   } else {
  1088     return "MachNode";
  1090   assert( false, "ShouldNotReachHere()");
  1091   return NULL;
  1094 // Compare the instruction predicates for textual equality
  1095 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1096   const Predicate *pred1  = instr1->_predicate;
  1097   const Predicate *pred2  = instr2->_predicate;
  1098   if( pred1 == NULL && pred2 == NULL ) {
  1099     // no predicates means they are identical
  1100     return true;
  1102   if( pred1 != NULL && pred2 != NULL ) {
  1103     // compare the predicates
  1104     const char *str1 = pred1->_pred;
  1105     const char *str2 = pred2->_pred;
  1106     if( (str1 == NULL && str2 == NULL)
  1107         || (str1 != NULL && str2 != NULL && strcmp(str1,str2) == 0) ) {
  1108       return true;
  1112   return false;
  1115 // Check if this instruction can cisc-spill to 'alternate'
  1116 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1117   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1118   // Do not replace if a cisc-version has been found.
  1119   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1121   int         cisc_spill_operand = Maybe_cisc_spillable;
  1122   char       *result             = NULL;
  1123   char       *result2            = NULL;
  1124   const char *op_name            = NULL;
  1125   const char *reg_type           = NULL;
  1126   FormDict   &globals            = AD.globalNames();
  1127   cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1128   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1129     cisc_spill_operand = operand_position(op_name, Component::USE);
  1130     int def_oper  = operand_position(op_name, Component::DEF);
  1131     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1132       // Do not support cisc-spilling for destination operands and
  1133       // make sure they have the same number of operands.
  1134       _cisc_spill_alternate = instr;
  1135       instr->set_cisc_alternate(true);
  1136       if( AD._cisc_spill_debug ) {
  1137         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1138         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1140       // Record that a stack-version of the reg_mask is needed
  1141       // !!!!!
  1142       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1143       assert( oper != NULL, "cisc-spilling non operand");
  1144       const char *reg_class_name = oper->constrained_reg_class();
  1145       AD.set_stack_or_reg(reg_class_name);
  1146       const char *reg_mask_name  = AD.reg_mask(*oper);
  1147       set_cisc_reg_mask_name(reg_mask_name);
  1148       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1149     } else {
  1150       cisc_spill_operand = Not_cisc_spillable;
  1152   } else {
  1153     cisc_spill_operand = Not_cisc_spillable;
  1156   set_cisc_spill_operand(cisc_spill_operand);
  1157   return (cisc_spill_operand != Not_cisc_spillable);
  1160 // Check to see if this instruction can be replaced with the short branch
  1161 // instruction `short-branch'
  1162 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1163   if (_matrule != NULL &&
  1164       this != short_branch &&   // Don't match myself
  1165       !is_short_branch() &&     // Don't match another short branch variant
  1166       reduce_result() != NULL &&
  1167       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1168       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1169     // The instructions are equivalent.
  1170     if (AD._short_branch_debug) {
  1171       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1173     _short_branch_form = short_branch;
  1174     return true;
  1176   return false;
  1180 // --------------------------- FILE *output_routines
  1181 //
  1182 // Generate the format call for the replacement variable
  1183 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1184   // Find replacement variable's type
  1185   const Form *form   = _localNames[rep_var];
  1186   if (form == NULL) {
  1187     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
  1188     assert(false, "ShouldNotReachHere()");
  1190   OpClassForm *opc   = form->is_opclass();
  1191   assert( opc, "replacement variable was not found in local names");
  1192   // Lookup the index position of the replacement variable
  1193   int idx  = operand_position_format(rep_var);
  1194   if ( idx == -1 ) {
  1195     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
  1196     assert( false, "ShouldNotReachHere()");
  1199   if (is_noninput_operand(idx)) {
  1200     // This component isn't in the input array.  Print out the static
  1201     // name of the register.
  1202     OperandForm* oper = form->is_operand();
  1203     if (oper != NULL && oper->is_bound_register()) {
  1204       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1205       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
  1206     } else {
  1207       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1209   } else {
  1210     // Output the format call for this operand
  1211     fprintf(fp,"opnd_array(%d)->",idx);
  1212     if (idx == 0)
  1213       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1214     else
  1215       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1219 // Seach through operands to determine parameters unique positions.
  1220 void InstructForm::set_unique_opnds() {
  1221   uint* uniq_idx = NULL;
  1222   uint  nopnds = num_opnds();
  1223   uint  num_uniq = nopnds;
  1224   uint i;
  1225   if ( nopnds > 0 ) {
  1226     // Allocate index array with reserve.
  1227     uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
  1228     for( i = 0; i < nopnds+2; i++ ) {
  1229       uniq_idx[i] = i;
  1232   // Do it only if there is a match rule and no expand rule.  With an
  1233   // expand rule it is done by creating new mach node in Expand()
  1234   // method.
  1235   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
  1236     const char *name;
  1237     uint count;
  1238     bool has_dupl_use = false;
  1240     _parameters.reset();
  1241     while( (name = _parameters.iter()) != NULL ) {
  1242       count = 0;
  1243       uint position = 0;
  1244       uint uniq_position = 0;
  1245       _components.reset();
  1246       Component *comp = NULL;
  1247       if( sets_result() ) {
  1248         comp = _components.iter();
  1249         position++;
  1251       // The next code is copied from the method operand_position().
  1252       for (; (comp = _components.iter()) != NULL; ++position) {
  1253         // When the first component is not a DEF,
  1254         // leave space for the result operand!
  1255         if ( position==0 && (! comp->isa(Component::DEF)) ) {
  1256           ++position;
  1258         if( strcmp(name, comp->_name)==0 ) {
  1259           if( ++count > 1 ) {
  1260             uniq_idx[position] = uniq_position;
  1261             has_dupl_use = true;
  1262           } else {
  1263             uniq_position = position;
  1266         if( comp->isa(Component::DEF)
  1267             && comp->isa(Component::USE) ) {
  1268           ++position;
  1269           if( position != 1 )
  1270             --position;   // only use two slots for the 1st USE_DEF
  1274     if( has_dupl_use ) {
  1275       for( i = 1; i < nopnds; i++ )
  1276         if( i != uniq_idx[i] )
  1277           break;
  1278       int  j = i;
  1279       for( ; i < nopnds; i++ )
  1280         if( i == uniq_idx[i] )
  1281           uniq_idx[i] = j++;
  1282       num_uniq = j;
  1285   _uniq_idx = uniq_idx;
  1286   _num_uniq = num_uniq;
  1289 // Generate index values needed for determing the operand position
  1290 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1291   uint  idx = 0;                  // position of operand in match rule
  1292   int   cur_num_opnds = num_opnds();
  1294   // Compute the index into vector of operand pointers:
  1295   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1296   // idx1 starts at oper_input_base()
  1297   if ( cur_num_opnds >= 1 ) {
  1298     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
  1299     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1300     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
  1302     // Generate starting points for other unique operands if they exist
  1303     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1304       if( *receiver == 0 ) {
  1305         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
  1306                 prefix, idx, prefix, idx-1, idx-1 );
  1307       } else {
  1308         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
  1309                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1313   if( *receiver != 0 ) {
  1314     // This value is used by generate_peepreplace when copying a node.
  1315     // Don't emit it in other cases since it can hide bugs with the
  1316     // use invalid idx's.
  1317     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1322 // ---------------------------
  1323 bool InstructForm::verify() {
  1324   // !!!!! !!!!!
  1325   // Check that a "label" operand occurs last in the operand list, if present
  1326   return true;
  1329 void InstructForm::dump() {
  1330   output(stderr);
  1333 void InstructForm::output(FILE *fp) {
  1334   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1335   if (_matrule)   _matrule->output(fp);
  1336   if (_insencode) _insencode->output(fp);
  1337   if (_opcode)    _opcode->output(fp);
  1338   if (_attribs)   _attribs->output(fp);
  1339   if (_predicate) _predicate->output(fp);
  1340   if (_effects.Size()) {
  1341     fprintf(fp,"Effects\n");
  1342     _effects.dump();
  1344   if (_exprule)   _exprule->output(fp);
  1345   if (_rewrule)   _rewrule->output(fp);
  1346   if (_format)    _format->output(fp);
  1347   if (_peephole)  _peephole->output(fp);
  1350 void MachNodeForm::dump() {
  1351   output(stderr);
  1354 void MachNodeForm::output(FILE *fp) {
  1355   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1358 //------------------------------build_predicate--------------------------------
  1359 // Build instruction predicates.  If the user uses the same operand name
  1360 // twice, we need to check that the operands are pointer-eequivalent in
  1361 // the DFA during the labeling process.
  1362 Predicate *InstructForm::build_predicate() {
  1363   char buf[1024], *s=buf;
  1364   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1366   MatchNode *mnode =
  1367     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1368   mnode->count_instr_names(names);
  1370   uint first = 1;
  1371   // Start with the predicate supplied in the .ad file.
  1372   if( _predicate ) {
  1373     if( first ) first=0;
  1374     strcpy(s,"("); s += strlen(s);
  1375     strcpy(s,_predicate->_pred);
  1376     s += strlen(s);
  1377     strcpy(s,")"); s += strlen(s);
  1379   for( DictI i(&names); i.test(); ++i ) {
  1380     uintptr_t cnt = (uintptr_t)i._value;
  1381     if( cnt > 1 ) {             // Need a predicate at all?
  1382       assert( cnt == 2, "Unimplemented" );
  1383       // Handle many pairs
  1384       if( first ) first=0;
  1385       else {                    // All tests must pass, so use '&&'
  1386         strcpy(s," && ");
  1387         s += strlen(s);
  1389       // Add predicate to working buffer
  1390       sprintf(s,"/*%s*/(",(char*)i._key);
  1391       s += strlen(s);
  1392       mnode->build_instr_pred(s,(char*)i._key,0);
  1393       s += strlen(s);
  1394       strcpy(s," == "); s += strlen(s);
  1395       mnode->build_instr_pred(s,(char*)i._key,1);
  1396       s += strlen(s);
  1397       strcpy(s,")"); s += strlen(s);
  1400   if( s == buf ) s = NULL;
  1401   else {
  1402     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1403     s = strdup(buf);
  1405   return new Predicate(s);
  1408 //------------------------------EncodeForm-------------------------------------
  1409 // Constructor
  1410 EncodeForm::EncodeForm()
  1411   : _encClass(cmpstr,hashstr, Form::arena) {
  1413 EncodeForm::~EncodeForm() {
  1416 // record a new register class
  1417 EncClass *EncodeForm::add_EncClass(const char *className) {
  1418   EncClass *encClass = new EncClass(className);
  1419   _eclasses.addName(className);
  1420   _encClass.Insert(className,encClass);
  1421   return encClass;
  1424 // Lookup the function body for an encoding class
  1425 EncClass  *EncodeForm::encClass(const char *className) {
  1426   assert( className != NULL, "Must provide a defined encoding name");
  1428   EncClass *encClass = (EncClass*)_encClass[className];
  1429   return encClass;
  1432 // Lookup the function body for an encoding class
  1433 const char *EncodeForm::encClassBody(const char *className) {
  1434   if( className == NULL ) return NULL;
  1436   EncClass *encClass = (EncClass*)_encClass[className];
  1437   assert( encClass != NULL, "Encode Class is missing.");
  1438   encClass->_code.reset();
  1439   const char *code = (const char*)encClass->_code.iter();
  1440   assert( code != NULL, "Found an empty encode class body.");
  1442   return code;
  1445 // Lookup the function body for an encoding class
  1446 const char *EncodeForm::encClassPrototype(const char *className) {
  1447   assert( className != NULL, "Encode class name must be non NULL.");
  1449   return className;
  1452 void EncodeForm::dump() {                  // Debug printer
  1453   output(stderr);
  1456 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1457   const char *name;
  1458   fprintf(fp,"\n");
  1459   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1460   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1461     ((EncClass*)_encClass[name])->output(fp);
  1463   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1465 //------------------------------EncClass---------------------------------------
  1466 EncClass::EncClass(const char *name)
  1467   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1469 EncClass::~EncClass() {
  1472 // Add a parameter <type,name> pair
  1473 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1474   _parameter_type.addName( parameter_type );
  1475   _parameter_name.addName( parameter_name );
  1478 // Verify operand types in parameter list
  1479 bool EncClass::check_parameter_types(FormDict &globals) {
  1480   // !!!!!
  1481   return false;
  1484 // Add the decomposed "code" sections of an encoding's code-block
  1485 void EncClass::add_code(const char *code) {
  1486   _code.addName(code);
  1489 // Add the decomposed "replacement variables" of an encoding's code-block
  1490 void EncClass::add_rep_var(char *replacement_var) {
  1491   _code.addName(NameList::_signal);
  1492   _rep_vars.addName(replacement_var);
  1495 // Lookup the function body for an encoding class
  1496 int EncClass::rep_var_index(const char *rep_var) {
  1497   uint        position = 0;
  1498   const char *name     = NULL;
  1500   _parameter_name.reset();
  1501   while ( (name = _parameter_name.iter()) != NULL ) {
  1502     if ( strcmp(rep_var,name) == 0 ) return position;
  1503     ++position;
  1506   return -1;
  1509 // Check after parsing
  1510 bool EncClass::verify() {
  1511   // 1!!!!
  1512   // Check that each replacement variable, '$name' in architecture description
  1513   // is actually a local variable for this encode class, or a reserved name
  1514   // "primary, secondary, tertiary"
  1515   return true;
  1518 void EncClass::dump() {
  1519   output(stderr);
  1522 // Write info to output files
  1523 void EncClass::output(FILE *fp) {
  1524   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1526   // Output the parameter list
  1527   _parameter_type.reset();
  1528   _parameter_name.reset();
  1529   const char *type = _parameter_type.iter();
  1530   const char *name = _parameter_name.iter();
  1531   fprintf(fp, " ( ");
  1532   for ( ; (type != NULL) && (name != NULL);
  1533         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1534     fprintf(fp, " %s %s,", type, name);
  1536   fprintf(fp, " ) ");
  1538   // Output the code block
  1539   _code.reset();
  1540   _rep_vars.reset();
  1541   const char *code;
  1542   while ( (code = _code.iter()) != NULL ) {
  1543     if ( _code.is_signal(code) ) {
  1544       // A replacement variable
  1545       const char *rep_var = _rep_vars.iter();
  1546       fprintf(fp,"($%s)", rep_var);
  1547     } else {
  1548       // A section of code
  1549       fprintf(fp,"%s", code);
  1555 //------------------------------Opcode-----------------------------------------
  1556 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1557   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1560 Opcode::~Opcode() {
  1563 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1564   if( strcmp(param,"primary") == 0 ) {
  1565     return Opcode::PRIMARY;
  1567   else if( strcmp(param,"secondary") == 0 ) {
  1568     return Opcode::SECONDARY;
  1570   else if( strcmp(param,"tertiary") == 0 ) {
  1571     return Opcode::TERTIARY;
  1573   return Opcode::NOT_AN_OPCODE;
  1576 void Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1577   // Default values previously provided by MachNode::primary()...
  1578   const char *description = "default_opcode()";
  1579   const char *value       = "-1";
  1580   // Check if user provided any opcode definitions
  1581   if( this != NULL ) {
  1582     // Update 'value' if user provided a definition in the instruction
  1583     switch (desired_opcode) {
  1584     case PRIMARY:
  1585       description = "primary()";
  1586       if( _primary   != NULL)  { value = _primary;     }
  1587       break;
  1588     case SECONDARY:
  1589       description = "secondary()";
  1590       if( _secondary != NULL ) { value = _secondary;   }
  1591       break;
  1592     case TERTIARY:
  1593       description = "tertiary()";
  1594       if( _tertiary  != NULL ) { value = _tertiary;    }
  1595       break;
  1596     default:
  1597       assert( false, "ShouldNotReachHere();");
  1598       break;
  1601   fprintf(fp, "(%s /*%s*/)", value, description);
  1604 void Opcode::dump() {
  1605   output(stderr);
  1608 // Write info to output files
  1609 void Opcode::output(FILE *fp) {
  1610   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1611   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1612   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1615 //------------------------------InsEncode--------------------------------------
  1616 InsEncode::InsEncode() {
  1618 InsEncode::~InsEncode() {
  1621 // Add "encode class name" and its parameters
  1622 NameAndList *InsEncode::add_encode(char *encoding) {
  1623   assert( encoding != NULL, "Must provide name for encoding");
  1625   // add_parameter(NameList::_signal);
  1626   NameAndList *encode = new NameAndList(encoding);
  1627   _encoding.addName((char*)encode);
  1629   return encode;
  1632 // Access the list of encodings
  1633 void InsEncode::reset() {
  1634   _encoding.reset();
  1635   // _parameter.reset();
  1637 const char* InsEncode::encode_class_iter() {
  1638   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1639   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1641 // Obtain parameter name from zero based index
  1642 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1643   NameAndList *params = (NameAndList*)_encoding.current();
  1644   assert( params != NULL, "Internal Error");
  1645   const char *param = (*params)[param_no];
  1647   // Remove '$' if parser placed it there.
  1648   return ( param != NULL && *param == '$') ? (param+1) : param;
  1651 void InsEncode::dump() {
  1652   output(stderr);
  1655 // Write info to output files
  1656 void InsEncode::output(FILE *fp) {
  1657   NameAndList *encoding  = NULL;
  1658   const char  *parameter = NULL;
  1660   fprintf(fp,"InsEncode: ");
  1661   _encoding.reset();
  1663   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1664     // Output the encoding being used
  1665     fprintf(fp,"%s(", encoding->name() );
  1667     // Output its parameter list, if any
  1668     bool first_param = true;
  1669     encoding->reset();
  1670     while (  (parameter = encoding->iter()) != 0 ) {
  1671       // Output the ',' between parameters
  1672       if ( ! first_param )  fprintf(fp,", ");
  1673       first_param = false;
  1674       // Output the parameter
  1675       fprintf(fp,"%s", parameter);
  1676     } // done with parameters
  1677     fprintf(fp,")  ");
  1678   } // done with encodings
  1680   fprintf(fp,"\n");
  1683 //------------------------------Effect-----------------------------------------
  1684 static int effect_lookup(const char *name) {
  1685   if(!strcmp(name, "USE")) return Component::USE;
  1686   if(!strcmp(name, "DEF")) return Component::DEF;
  1687   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1688   if(!strcmp(name, "KILL")) return Component::KILL;
  1689   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1690   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1691   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1692   assert( false,"Invalid effect name specified\n");
  1693   return Component::INVALID;
  1696 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1697   _ftype = Form::EFF;
  1699 Effect::~Effect() {
  1702 // Dynamic type check
  1703 Effect *Effect::is_effect() const {
  1704   return (Effect*)this;
  1708 // True if this component is equal to the parameter.
  1709 bool Effect::is(int use_def_kill_enum) const {
  1710   return (_use_def == use_def_kill_enum ? true : false);
  1712 // True if this component is used/def'd/kill'd as the parameter suggests.
  1713 bool Effect::isa(int use_def_kill_enum) const {
  1714   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1717 void Effect::dump() {
  1718   output(stderr);
  1721 void Effect::output(FILE *fp) {          // Write info to output files
  1722   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1725 //------------------------------ExpandRule-------------------------------------
  1726 ExpandRule::ExpandRule() : _expand_instrs(),
  1727                            _newopconst(cmpstr, hashstr, Form::arena) {
  1728   _ftype = Form::EXP;
  1731 ExpandRule::~ExpandRule() {                  // Destructor
  1734 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1735   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1738 void ExpandRule::reset_instructions() {
  1739   _expand_instrs.reset();
  1742 NameAndList* ExpandRule::iter_instructions() {
  1743   return (NameAndList*)_expand_instrs.iter();
  1747 void ExpandRule::dump() {
  1748   output(stderr);
  1751 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1752   NameAndList *expand_instr = NULL;
  1753   const char *opid = NULL;
  1755   fprintf(fp,"\nExpand Rule:\n");
  1757   // Iterate over the instructions 'node' expands into
  1758   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1759     fprintf(fp,"%s(", expand_instr->name());
  1761     // iterate over the operand list
  1762     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1763       fprintf(fp,"%s ", opid);
  1765     fprintf(fp,");\n");
  1769 //------------------------------RewriteRule------------------------------------
  1770 RewriteRule::RewriteRule(char* params, char* block)
  1771   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1772 RewriteRule::~RewriteRule() {                 // Destructor
  1775 void RewriteRule::dump() {
  1776   output(stderr);
  1779 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1780   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1781           (_tempParams?_tempParams:""),
  1782           (_tempBlock?_tempBlock:""));
  1786 //==============================MachNodes======================================
  1787 //------------------------------MachNodeForm-----------------------------------
  1788 MachNodeForm::MachNodeForm(char *id)
  1789   : _ident(id) {
  1792 MachNodeForm::~MachNodeForm() {
  1795 MachNodeForm *MachNodeForm::is_machnode() const {
  1796   return (MachNodeForm*)this;
  1799 //==============================Operand Classes================================
  1800 //------------------------------OpClassForm------------------------------------
  1801 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1802   _ftype = Form::OPCLASS;
  1805 OpClassForm::~OpClassForm() {
  1808 bool OpClassForm::ideal_only() const { return 0; }
  1810 OpClassForm *OpClassForm::is_opclass() const {
  1811   return (OpClassForm*)this;
  1814 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1815   if( _oplst.count() == 0 ) return Form::no_interface;
  1817   // Check that my operands have the same interface type
  1818   Form::InterfaceType  interface;
  1819   bool  first = true;
  1820   NameList &op_list = (NameList &)_oplst;
  1821   op_list.reset();
  1822   const char *op_name;
  1823   while( (op_name = op_list.iter()) != NULL ) {
  1824     const Form  *form    = globals[op_name];
  1825     OperandForm *operand = form->is_operand();
  1826     assert( operand, "Entry in operand class that is not an operand");
  1827     if( first ) {
  1828       first     = false;
  1829       interface = operand->interface_type(globals);
  1830     } else {
  1831       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1834   return interface;
  1837 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1838   if( _oplst.count() == 0 ) return false;  // how?
  1840   NameList &op_list = (NameList &)_oplst;
  1841   op_list.reset();
  1842   const char *op_name;
  1843   while( (op_name = op_list.iter()) != NULL ) {
  1844     const Form  *form    = globals[op_name];
  1845     OperandForm *operand = form->is_operand();
  1846     assert( operand, "Entry in operand class that is not an operand");
  1847     if( !operand->stack_slots_only(globals) )  return false;
  1849   return true;
  1853 void OpClassForm::dump() {
  1854   output(stderr);
  1857 void OpClassForm::output(FILE *fp) {
  1858   const char *name;
  1859   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1860   fprintf(fp,"\nCount = %d\n", _oplst.count());
  1861   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  1862     fprintf(fp,"%s, ",name);
  1864   fprintf(fp,"\n");
  1868 //==============================Operands=======================================
  1869 //------------------------------OperandForm------------------------------------
  1870 OperandForm::OperandForm(const char* id)
  1871   : OpClassForm(id), _ideal_only(false),
  1872     _localNames(cmpstr, hashstr, Form::arena) {
  1873       _ftype = Form::OPER;
  1875       _matrule   = NULL;
  1876       _interface = NULL;
  1877       _attribs   = NULL;
  1878       _predicate = NULL;
  1879       _constraint= NULL;
  1880       _construct = NULL;
  1881       _format    = NULL;
  1883 OperandForm::OperandForm(const char* id, bool ideal_only)
  1884   : OpClassForm(id), _ideal_only(ideal_only),
  1885     _localNames(cmpstr, hashstr, Form::arena) {
  1886       _ftype = Form::OPER;
  1888       _matrule   = NULL;
  1889       _interface = NULL;
  1890       _attribs   = NULL;
  1891       _predicate = NULL;
  1892       _constraint= NULL;
  1893       _construct = NULL;
  1894       _format    = NULL;
  1896 OperandForm::~OperandForm() {
  1900 OperandForm *OperandForm::is_operand() const {
  1901   return (OperandForm*)this;
  1904 bool OperandForm::ideal_only() const {
  1905   return _ideal_only;
  1908 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  1909   if( _interface == NULL )  return Form::no_interface;
  1911   return _interface->interface_type(globals);
  1915 bool OperandForm::stack_slots_only(FormDict &globals) const {
  1916   if( _constraint == NULL )  return false;
  1917   return _constraint->stack_slots_only();
  1921 // Access op_cost attribute or return NULL.
  1922 const char* OperandForm::cost() {
  1923   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  1924     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  1925       return cur->_val;
  1928   return NULL;
  1931 // Return the number of leaves below this complex operand
  1932 uint OperandForm::num_leaves() const {
  1933   if ( ! _matrule) return 0;
  1935   int num_leaves = _matrule->_numleaves;
  1936   return num_leaves;
  1939 // Return the number of constants contained within this complex operand
  1940 uint OperandForm::num_consts(FormDict &globals) const {
  1941   if ( ! _matrule) return 0;
  1943   // This is a recursive invocation on all operands in the matchrule
  1944   return _matrule->num_consts(globals);
  1947 // Return the number of constants in match rule with specified type
  1948 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  1949   if ( ! _matrule) return 0;
  1951   // This is a recursive invocation on all operands in the matchrule
  1952   return _matrule->num_consts(globals, type);
  1955 // Return the number of pointer constants contained within this complex operand
  1956 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  1957   if ( ! _matrule) return 0;
  1959   // This is a recursive invocation on all operands in the matchrule
  1960   return _matrule->num_const_ptrs(globals);
  1963 uint OperandForm::num_edges(FormDict &globals) const {
  1964   uint edges  = 0;
  1965   uint leaves = num_leaves();
  1966   uint consts = num_consts(globals);
  1968   // If we are matching a constant directly, there are no leaves.
  1969   edges = ( leaves > consts ) ? leaves - consts : 0;
  1971   // !!!!!
  1972   // Special case operands that do not have a corresponding ideal node.
  1973   if( (edges == 0) && (consts == 0) ) {
  1974     if( constrained_reg_class() != NULL ) {
  1975       edges = 1;
  1976     } else {
  1977       if( _matrule
  1978           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  1979         const Form *form = globals[_matrule->_opType];
  1980         OperandForm *oper = form ? form->is_operand() : NULL;
  1981         if( oper ) {
  1982           return oper->num_edges(globals);
  1988   return edges;
  1992 // Check if this operand is usable for cisc-spilling
  1993 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  1994   const char *ideal = ideal_type(globals);
  1995   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  1996   return is_cisc_reg;
  1999 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2000   Form::InterfaceType my_interface = interface_type(globals);
  2001   return (my_interface == memory_interface);
  2005 // node matches ideal 'Bool'
  2006 bool OperandForm::is_ideal_bool() const {
  2007   if( _matrule == NULL ) return false;
  2009   return _matrule->is_ideal_bool();
  2012 // Require user's name for an sRegX to be stackSlotX
  2013 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2014   DataType data_type = none;
  2015   if( _ident != NULL ) {
  2016     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2017     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2018     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2019     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2020     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2022   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2024   return data_type;
  2028 // Return ideal type, if there is a single ideal type for this operand
  2029 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2030   const char *type = NULL;
  2031   if (ideal_only()) type = _ident;
  2032   else if( _matrule == NULL ) {
  2033     // Check for condition code register
  2034     const char *rc_name = constrained_reg_class();
  2035     // !!!!!
  2036     if (rc_name == NULL) return NULL;
  2037     // !!!!! !!!!!
  2038     // Check constraints on result's register class
  2039     if( registers ) {
  2040       RegClass *reg_class  = registers->getRegClass(rc_name);
  2041       assert( reg_class != NULL, "Register class is not defined");
  2043       // Check for ideal type of entries in register class, all are the same type
  2044       reg_class->reset();
  2045       RegDef *reg_def = reg_class->RegDef_iter();
  2046       assert( reg_def != NULL, "No entries in register class");
  2047       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2048       // Return substring that names the register's ideal type
  2049       type = reg_def->_idealtype + 3;
  2050       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2051       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2052       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2055   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2056     // This operand matches a single type, at the top level.
  2057     // Check for ideal type
  2058     type = _matrule->_opType;
  2059     if( strcmp(type,"Bool") == 0 )
  2060       return "Bool";
  2061     // transitive lookup
  2062     const Form *frm = globals[type];
  2063     OperandForm *op = frm->is_operand();
  2064     type = op->ideal_type(globals, registers);
  2066   return type;
  2070 // If there is a single ideal type for this interface field, return it.
  2071 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2072                                               const char *field) const {
  2073   const char  *ideal_type = NULL;
  2074   const char  *value      = NULL;
  2076   // Check if "field" is valid for this operand's interface
  2077   if ( ! is_interface_field(field, value) )   return ideal_type;
  2079   // !!!!! !!!!! !!!!!
  2080   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2082   // Else, lookup type of field's replacement variable
  2084   return ideal_type;
  2088 RegClass* OperandForm::get_RegClass() const {
  2089   if (_interface && !_interface->is_RegInterface()) return NULL;
  2090   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2094 bool OperandForm::is_bound_register() const {
  2095   RegClass *reg_class  = get_RegClass();
  2096   if (reg_class == NULL) return false;
  2098   const char * name = ideal_type(globalAD->globalNames());
  2099   if (name == NULL) return false;
  2101   int size = 0;
  2102   if (strcmp(name,"RegFlags")==0) size =  1;
  2103   if (strcmp(name,"RegI")==0) size =  1;
  2104   if (strcmp(name,"RegF")==0) size =  1;
  2105   if (strcmp(name,"RegD")==0) size =  2;
  2106   if (strcmp(name,"RegL")==0) size =  2;
  2107   if (strcmp(name,"RegN")==0) size =  1;
  2108   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2109   if (size == 0) return false;
  2110   return size == reg_class->size();
  2114 // Check if this is a valid field for this operand,
  2115 // Return 'true' if valid, and set the value to the string the user provided.
  2116 bool  OperandForm::is_interface_field(const char *field,
  2117                                       const char * &value) const {
  2118   return false;
  2122 // Return register class name if a constraint specifies the register class.
  2123 const char *OperandForm::constrained_reg_class() const {
  2124   const char *reg_class  = NULL;
  2125   if ( _constraint ) {
  2126     // !!!!!
  2127     Constraint *constraint = _constraint;
  2128     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2129       reg_class = _constraint->_arg;
  2133   return reg_class;
  2137 // Return the register class associated with 'leaf'.
  2138 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2139   const char *reg_class = NULL; // "RegMask::Empty";
  2141   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2142     reg_class = constrained_reg_class();
  2143     return reg_class;
  2145   const char *result   = NULL;
  2146   const char *name     = NULL;
  2147   const char *type     = NULL;
  2148   // iterate through all base operands
  2149   // until we reach the register that corresponds to "leaf"
  2150   // This function is not looking for an ideal type.  It needs the first
  2151   // level user type associated with the leaf.
  2152   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2153     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2154     OperandForm *oper = form ? form->is_operand() : NULL;
  2155     if( oper ) {
  2156       reg_class = oper->constrained_reg_class();
  2157       if( reg_class ) {
  2158         reg_class = reg_class;
  2159       } else {
  2160         // ShouldNotReachHere();
  2162     } else {
  2163       // ShouldNotReachHere();
  2166     // Increment our target leaf position if current leaf is not a candidate.
  2167     if( reg_class == NULL)    ++leaf;
  2168     // Exit the loop with the value of reg_class when at the correct index
  2169     if( idx == leaf )         break;
  2170     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2172   return reg_class;
  2176 // Recursive call to construct list of top-level operands.
  2177 // Implementation does not modify state of internal structures
  2178 void OperandForm::build_components() {
  2179   if (_matrule)  _matrule->append_components(_localNames, _components);
  2181   // Add parameters that "do not appear in match rule".
  2182   const char *name;
  2183   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2184     OperandForm *opForm = (OperandForm*)_localNames[name];
  2186     if ( _components.operand_position(name) == -1 ) {
  2187       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2191   return;
  2194 int OperandForm::operand_position(const char *name, int usedef) {
  2195   return _components.operand_position(name, usedef);
  2199 // Return zero-based position in component list, only counting constants;
  2200 // Return -1 if not in list.
  2201 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2202   // Iterate through components and count constants preceeding 'constant'
  2203   uint  position = 0;
  2204   Component *comp;
  2205   _components.reset();
  2206   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2207     // Special case for operands that take a single user-defined operand
  2208     // Skip the initial definition in the component list.
  2209     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2211     const char *type = comp->_type;
  2212     // Lookup operand form for replacement variable's type
  2213     const Form *form = globals[type];
  2214     assert( form != NULL, "Component's type not found");
  2215     OperandForm *oper = form ? form->is_operand() : NULL;
  2216     if( oper ) {
  2217       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2218         ++position;
  2223   // Check for being passed a component that was not in the list
  2224   if( comp != last )  position = -1;
  2226   return position;
  2228 // Provide position of constant by "name"
  2229 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2230   const Component *comp = _components.search(name);
  2231   int idx = constant_position( globals, comp );
  2233   return idx;
  2237 // Return zero-based position in component list, only counting constants;
  2238 // Return -1 if not in list.
  2239 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2240   // Iterate through components and count registers preceeding 'last'
  2241   uint  position = 0;
  2242   Component *comp;
  2243   _components.reset();
  2244   while( (comp = _components.iter()) != NULL
  2245          && (strcmp(comp->_name,reg_name) != 0) ) {
  2246     // Special case for operands that take a single user-defined operand
  2247     // Skip the initial definition in the component list.
  2248     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2250     const char *type = comp->_type;
  2251     // Lookup operand form for component's type
  2252     const Form *form = globals[type];
  2253     assert( form != NULL, "Component's type not found");
  2254     OperandForm *oper = form ? form->is_operand() : NULL;
  2255     if( oper ) {
  2256       if( oper->_matrule->is_base_register(globals) ) {
  2257         ++position;
  2262   return position;
  2266 const char *OperandForm::reduce_result()  const {
  2267   return _ident;
  2269 // Return the name of the operand on the right hand side of the binary match
  2270 // Return NULL if there is no right hand side
  2271 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2272   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2275 // Similar for left
  2276 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2277   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2281 // --------------------------- FILE *output_routines
  2282 //
  2283 // Output code for disp_is_oop, if true.
  2284 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2285   //  Check it is a memory interface with a non-user-constant disp field
  2286   if ( this->_interface == NULL ) return;
  2287   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2288   if ( mem_interface == NULL )    return;
  2289   const char   *disp  = mem_interface->_disp;
  2290   if ( *disp != '$' )             return;
  2292   // Lookup replacement variable in operand's component list
  2293   const char   *rep_var = disp + 1;
  2294   const Component *comp = this->_components.search(rep_var);
  2295   assert( comp != NULL, "Replacement variable not found in components");
  2296   // Lookup operand form for replacement variable's type
  2297   const char      *type = comp->_type;
  2298   Form            *form = (Form*)globals[type];
  2299   assert( form != NULL, "Replacement variable's type not found");
  2300   OperandForm     *op   = form->is_operand();
  2301   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2302   // Check if this is a ConP, which may require relocation
  2303   if ( op->is_base_constant(globals) == Form::idealP ) {
  2304     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2305     uint idx  = op->constant_position( globals, rep_var);
  2306     fprintf(fp,"  virtual bool disp_is_oop() const {", _ident);
  2307     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
  2308     fprintf(fp, " }\n");
  2312 // Generate code for internal and external format methods
  2313 //
  2314 // internal access to reg# node->_idx
  2315 // access to subsumed constant _c0, _c1,
  2316 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2317   Form::DataType dtype;
  2318   if (_matrule && (_matrule->is_base_register(globals) ||
  2319                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2320     // !!!!! !!!!!
  2321     fprintf(fp,    "{ char reg_str[128];\n");
  2322     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2323     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2324     fprintf(fp,"    }\n");
  2325   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2326     format_constant( fp, index, dtype );
  2327   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2328     // Special format for Stack Slot Register
  2329     fprintf(fp,    "{ char reg_str[128];\n");
  2330     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2331     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2332     fprintf(fp,"    }\n");
  2333   } else {
  2334     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2335     fflush(fp);
  2336     fprintf(stderr,"No format defined for %s\n", _ident);
  2337     dump();
  2338     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2342 // Similar to "int_format" but for cases where data is external to operand
  2343 // external access to reg# node->in(idx)->_idx,
  2344 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2345   Form::DataType dtype;
  2346   if (_matrule && (_matrule->is_base_register(globals) ||
  2347                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2348     fprintf(fp,    "{ char reg_str[128];\n");
  2349     fprintf(fp,"      ra->dump_register(node->in(idx");
  2350     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2351     fprintf(fp,                                       "),reg_str);\n");
  2352     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2353     fprintf(fp,"    }\n");
  2354   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2355     format_constant( fp, index, dtype );
  2356   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2357     // Special format for Stack Slot Register
  2358     fprintf(fp,    "{ char reg_str[128];\n");
  2359     fprintf(fp,"      ra->dump_register(node->in(idx");
  2360     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2361     fprintf(fp,                                       "),reg_str);\n");
  2362     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2363     fprintf(fp,"    }\n");
  2364   } else {
  2365     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2366     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2370 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2371   switch(const_type) {
  2372   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
  2373   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2374   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2375   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2376   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2377   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2378   default:
  2379     assert( false, "ShouldNotReachHere()");
  2383 // Return the operand form corresponding to the given index, else NULL.
  2384 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2385                                            uint      index) {
  2386   // !!!!!
  2387   // Check behavior on complex operands
  2388   uint n_consts = num_consts(globals);
  2389   if( n_consts > 0 ) {
  2390     uint i = 0;
  2391     const char *type;
  2392     Component  *comp;
  2393     _components.reset();
  2394     if ((comp = _components.iter()) == NULL) {
  2395       assert(n_consts == 1, "Bad component list detected.\n");
  2396       // Current operand is THE operand
  2397       if ( index == 0 ) {
  2398         return this;
  2400     } // end if NULL
  2401     else {
  2402       // Skip the first component, it can not be a DEF of a constant
  2403       do {
  2404         type = comp->base_type(globals);
  2405         // Check that "type" is a 'ConI', 'ConP', ...
  2406         if ( ideal_to_const_type(type) != Form::none ) {
  2407           // When at correct component, get corresponding Operand
  2408           if ( index == 0 ) {
  2409             return globals[comp->_type]->is_operand();
  2411           // Decrement number of constants to go
  2412           --index;
  2414       } while((comp = _components.iter()) != NULL);
  2418   // Did not find a constant for this index.
  2419   return NULL;
  2422 // If this operand has a single ideal type, return its type
  2423 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2424   const char *type_name = ideal_type(globals);
  2425   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2426                                     : Form::none;
  2427   return type;
  2430 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2431   if ( _matrule == NULL )    return Form::none;
  2433   return _matrule->is_base_constant(globals);
  2436 // "true" if this operand is a simple type that is swallowed
  2437 bool  OperandForm::swallowed(FormDict &globals) const {
  2438   Form::DataType type   = simple_type(globals);
  2439   if( type != Form::none ) {
  2440     return true;
  2443   return false;
  2446 // Output code to access the value of the index'th constant
  2447 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2448                                   uint const_index) {
  2449   OperandForm *oper = constant_operand(globals, const_index);
  2450   assert( oper, "Index exceeds number of constants in operand");
  2451   Form::DataType dtype = oper->is_base_constant(globals);
  2453   switch(dtype) {
  2454   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2455   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2456   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2457   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2458   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2459   default:
  2460     assert( false, "ShouldNotReachHere()");
  2465 void OperandForm::dump() {
  2466   output(stderr);
  2469 void OperandForm::output(FILE *fp) {
  2470   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2471   if (_matrule)    _matrule->dump();
  2472   if (_interface)  _interface->dump();
  2473   if (_attribs)    _attribs->dump();
  2474   if (_predicate)  _predicate->dump();
  2475   if (_constraint) _constraint->dump();
  2476   if (_construct)  _construct->dump();
  2477   if (_format)     _format->dump();
  2480 //------------------------------Constraint-------------------------------------
  2481 Constraint::Constraint(const char *func, const char *arg)
  2482   : _func(func), _arg(arg) {
  2484 Constraint::~Constraint() { /* not owner of char* */
  2487 bool Constraint::stack_slots_only() const {
  2488   return strcmp(_func, "ALLOC_IN_RC") == 0
  2489       && strcmp(_arg,  "stack_slots") == 0;
  2492 void Constraint::dump() {
  2493   output(stderr);
  2496 void Constraint::output(FILE *fp) {           // Write info to output files
  2497   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2498   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2501 //------------------------------Predicate--------------------------------------
  2502 Predicate::Predicate(char *pr)
  2503   : _pred(pr) {
  2505 Predicate::~Predicate() {
  2508 void Predicate::dump() {
  2509   output(stderr);
  2512 void Predicate::output(FILE *fp) {
  2513   fprintf(fp,"Predicate");  // Write to output files
  2515 //------------------------------Interface--------------------------------------
  2516 Interface::Interface(const char *name) : _name(name) {
  2518 Interface::~Interface() {
  2521 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2522   Interface *thsi = (Interface*)this;
  2523   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2524   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2525   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2526   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2528   return Form::no_interface;
  2531 RegInterface   *Interface::is_RegInterface() {
  2532   if ( strcmp(_name,"REG_INTER") != 0 )
  2533     return NULL;
  2534   return (RegInterface*)this;
  2536 MemInterface   *Interface::is_MemInterface() {
  2537   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2538   return (MemInterface*)this;
  2540 ConstInterface *Interface::is_ConstInterface() {
  2541   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2542   return (ConstInterface*)this;
  2544 CondInterface  *Interface::is_CondInterface() {
  2545   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2546   return (CondInterface*)this;
  2550 void Interface::dump() {
  2551   output(stderr);
  2554 // Write info to output files
  2555 void Interface::output(FILE *fp) {
  2556   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2559 //------------------------------RegInterface-----------------------------------
  2560 RegInterface::RegInterface() : Interface("REG_INTER") {
  2562 RegInterface::~RegInterface() {
  2565 void RegInterface::dump() {
  2566   output(stderr);
  2569 // Write info to output files
  2570 void RegInterface::output(FILE *fp) {
  2571   Interface::output(fp);
  2574 //------------------------------ConstInterface---------------------------------
  2575 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2577 ConstInterface::~ConstInterface() {
  2580 void ConstInterface::dump() {
  2581   output(stderr);
  2584 // Write info to output files
  2585 void ConstInterface::output(FILE *fp) {
  2586   Interface::output(fp);
  2589 //------------------------------MemInterface-----------------------------------
  2590 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2591   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2593 MemInterface::~MemInterface() {
  2594   // not owner of any character arrays
  2597 void MemInterface::dump() {
  2598   output(stderr);
  2601 // Write info to output files
  2602 void MemInterface::output(FILE *fp) {
  2603   Interface::output(fp);
  2604   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2605   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2606   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2607   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2608   // fprintf(fp,"\n");
  2611 //------------------------------CondInterface----------------------------------
  2612 CondInterface::CondInterface(char *equal,      char *not_equal,
  2613                              char *less,       char *greater_equal,
  2614                              char *less_equal, char *greater)
  2615   : Interface("COND_INTER"),
  2616     _equal(equal), _not_equal(not_equal),
  2617     _less(less), _greater_equal(greater_equal),
  2618     _less_equal(less_equal), _greater(greater) {
  2619       //
  2621 CondInterface::~CondInterface() {
  2622   // not owner of any character arrays
  2625 void CondInterface::dump() {
  2626   output(stderr);
  2629 // Write info to output files
  2630 void CondInterface::output(FILE *fp) {
  2631   Interface::output(fp);
  2632   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
  2633   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
  2634   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
  2635   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
  2636   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
  2637   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
  2638   // fprintf(fp,"\n");
  2641 //------------------------------ConstructRule----------------------------------
  2642 ConstructRule::ConstructRule(char *cnstr)
  2643   : _construct(cnstr) {
  2645 ConstructRule::~ConstructRule() {
  2648 void ConstructRule::dump() {
  2649   output(stderr);
  2652 void ConstructRule::output(FILE *fp) {
  2653   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2657 //==============================Shared Forms===================================
  2658 //------------------------------AttributeForm----------------------------------
  2659 int         AttributeForm::_insId   = 0;           // start counter at 0
  2660 int         AttributeForm::_opId    = 0;           // start counter at 0
  2661 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2662 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
  2663 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2665 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2666   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2667     if (type==OP_ATTR) {
  2668       id = ++_opId;
  2670     else if (type==INS_ATTR) {
  2671       id = ++_insId;
  2673     else assert( false,"");
  2675 AttributeForm::~AttributeForm() {
  2678 // Dynamic type check
  2679 AttributeForm *AttributeForm::is_attribute() const {
  2680   return (AttributeForm*)this;
  2684 // inlined  // int  AttributeForm::type() { return id;}
  2686 void AttributeForm::dump() {
  2687   output(stderr);
  2690 void AttributeForm::output(FILE *fp) {
  2691   if( _attrname && _attrdef ) {
  2692     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2693             _attrname, _attrdef);
  2695   else {
  2696     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2697             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2701 //------------------------------Component--------------------------------------
  2702 Component::Component(const char *name, const char *type, int usedef)
  2703   : _name(name), _type(type), _usedef(usedef) {
  2704     _ftype = Form::COMP;
  2706 Component::~Component() {
  2709 // True if this component is equal to the parameter.
  2710 bool Component::is(int use_def_kill_enum) const {
  2711   return (_usedef == use_def_kill_enum ? true : false);
  2713 // True if this component is used/def'd/kill'd as the parameter suggests.
  2714 bool Component::isa(int use_def_kill_enum) const {
  2715   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2718 // Extend this component with additional use/def/kill behavior
  2719 int Component::promote_use_def_info(int new_use_def) {
  2720   _usedef |= new_use_def;
  2722   return _usedef;
  2725 // Check the base type of this component, if it has one
  2726 const char *Component::base_type(FormDict &globals) {
  2727   const Form *frm = globals[_type];
  2728   if (frm == NULL) return NULL;
  2729   OperandForm *op = frm->is_operand();
  2730   if (op == NULL) return NULL;
  2731   if (op->ideal_only()) return op->_ident;
  2732   return (char *)op->ideal_type(globals);
  2735 void Component::dump() {
  2736   output(stderr);
  2739 void Component::output(FILE *fp) {
  2740   fprintf(fp,"Component:");  // Write to output files
  2741   fprintf(fp, "  name = %s", _name);
  2742   fprintf(fp, ", type = %s", _type);
  2743   const char * usedef = "Undefined Use/Def info";
  2744   switch (_usedef) {
  2745     case USE:      usedef = "USE";      break;
  2746     case USE_DEF:  usedef = "USE_DEF";  break;
  2747     case USE_KILL: usedef = "USE_KILL"; break;
  2748     case KILL:     usedef = "KILL";     break;
  2749     case TEMP:     usedef = "TEMP";     break;
  2750     case DEF:      usedef = "DEF";      break;
  2751     default: assert(false, "unknown effect");
  2753   fprintf(fp, ", use/def = %s\n", usedef);
  2757 //------------------------------ComponentList---------------------------------
  2758 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2760 ComponentList::~ComponentList() {
  2761   // // This list may not own its elements if copied via assignment
  2762   // Component *component;
  2763   // for (reset(); (component = iter()) != NULL;) {
  2764   //   delete component;
  2765   // }
  2768 void   ComponentList::insert(Component *component, bool mflag) {
  2769   NameList::addName((char *)component);
  2770   if(mflag) _matchcnt++;
  2772 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2773                              bool mflag) {
  2774   Component * component = new Component(name, opType, usedef);
  2775   insert(component, mflag);
  2777 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2778 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2779 Component *ComponentList::match_iter() {
  2780   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2781   return NULL;
  2783 Component *ComponentList::post_match_iter() {
  2784   Component *comp = iter();
  2785   // At end of list?
  2786   if ( comp == NULL ) {
  2787     return comp;
  2789   // In post-match components?
  2790   if (_iter > match_count()-1) {
  2791     return comp;
  2794   return post_match_iter();
  2797 void       ComponentList::reset()   { NameList::reset(); }
  2798 int        ComponentList::count()   { return NameList::count(); }
  2800 Component *ComponentList::operator[](int position) {
  2801   // Shortcut complete iteration if there are not enough entries
  2802   if (position >= count()) return NULL;
  2804   int        index     = 0;
  2805   Component *component = NULL;
  2806   for (reset(); (component = iter()) != NULL;) {
  2807     if (index == position) {
  2808       return component;
  2810     ++index;
  2813   return NULL;
  2816 const Component *ComponentList::search(const char *name) {
  2817   PreserveIter pi(this);
  2818   reset();
  2819   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2820     if( strcmp(comp->_name,name) == 0 ) return comp;
  2823   return NULL;
  2826 // Return number of USEs + number of DEFs
  2827 // When there are no components, or the first component is a USE,
  2828 // then we add '1' to hold a space for the 'result' operand.
  2829 int ComponentList::num_operands() {
  2830   PreserveIter pi(this);
  2831   uint       count = 1;           // result operand
  2832   uint       position = 0;
  2834   Component *component  = NULL;
  2835   for( reset(); (component = iter()) != NULL; ++position ) {
  2836     if( component->isa(Component::USE) ||
  2837         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2838       ++count;
  2842   return count;
  2845 // Return zero-based position in list;  -1 if not in list.
  2846 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2847 int ComponentList::operand_position(const char *name, int usedef) {
  2848   PreserveIter pi(this);
  2849   int position = 0;
  2850   int num_opnds = num_operands();
  2851   Component *component;
  2852   Component* preceding_non_use = NULL;
  2853   Component* first_def = NULL;
  2854   for (reset(); (component = iter()) != NULL; ++position) {
  2855     // When the first component is not a DEF,
  2856     // leave space for the result operand!
  2857     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2858       ++position;
  2859       ++num_opnds;
  2861     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  2862       // When the first entry in the component list is a DEF and a USE
  2863       // Treat them as being separate, a DEF first, then a USE
  2864       if( position==0
  2865           && usedef==Component::USE && component->isa(Component::DEF) ) {
  2866         assert(position+1 < num_opnds, "advertised index in bounds");
  2867         return position+1;
  2868       } else {
  2869         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  2870           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
  2872         if( position >= num_opnds ) {
  2873           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
  2875         assert(position < num_opnds, "advertised index in bounds");
  2876         return position;
  2879     if( component->isa(Component::DEF)
  2880         && component->isa(Component::USE) ) {
  2881       ++position;
  2882       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2884     if( component->isa(Component::DEF) && !first_def ) {
  2885       first_def = component;
  2887     if( !component->isa(Component::USE) && component != first_def ) {
  2888       preceding_non_use = component;
  2889     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  2890       preceding_non_use = NULL;
  2893   return Not_in_list;
  2896 // Find position for this name, regardless of use/def information
  2897 int ComponentList::operand_position(const char *name) {
  2898   PreserveIter pi(this);
  2899   int position = 0;
  2900   Component *component;
  2901   for (reset(); (component = iter()) != NULL; ++position) {
  2902     // When the first component is not a DEF,
  2903     // leave space for the result operand!
  2904     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2905       ++position;
  2907     if (strcmp(name, component->_name)==0) {
  2908       return position;
  2910     if( component->isa(Component::DEF)
  2911         && component->isa(Component::USE) ) {
  2912       ++position;
  2913       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2916   return Not_in_list;
  2919 int ComponentList::operand_position_format(const char *name) {
  2920   PreserveIter pi(this);
  2921   int  first_position = operand_position(name);
  2922   int  use_position   = operand_position(name, Component::USE);
  2924   return ((first_position < use_position) ? use_position : first_position);
  2927 int ComponentList::label_position() {
  2928   PreserveIter pi(this);
  2929   int position = 0;
  2930   reset();
  2931   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2932     // When the first component is not a DEF,
  2933     // leave space for the result operand!
  2934     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2935       ++position;
  2937     if (strcmp(comp->_type, "label")==0) {
  2938       return position;
  2940     if( comp->isa(Component::DEF)
  2941         && comp->isa(Component::USE) ) {
  2942       ++position;
  2943       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2947   return -1;
  2950 int ComponentList::method_position() {
  2951   PreserveIter pi(this);
  2952   int position = 0;
  2953   reset();
  2954   for( Component *comp; (comp = iter()) != NULL; ++position) {
  2955     // When the first component is not a DEF,
  2956     // leave space for the result operand!
  2957     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  2958       ++position;
  2960     if (strcmp(comp->_type, "method")==0) {
  2961       return position;
  2963     if( comp->isa(Component::DEF)
  2964         && comp->isa(Component::USE) ) {
  2965       ++position;
  2966       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2970   return -1;
  2973 void ComponentList::dump() { output(stderr); }
  2975 void ComponentList::output(FILE *fp) {
  2976   PreserveIter pi(this);
  2977   fprintf(fp, "\n");
  2978   Component *component;
  2979   for (reset(); (component = iter()) != NULL;) {
  2980     component->output(fp);
  2982   fprintf(fp, "\n");
  2985 //------------------------------MatchNode--------------------------------------
  2986 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  2987                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  2988   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  2989     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  2990     _commutative_id(0) {
  2991   _numleaves = (lChild ? lChild->_numleaves : 0)
  2992                + (rChild ? rChild->_numleaves : 0);
  2995 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  2996   : _AD(ad), _result(mnode._result), _name(mnode._name),
  2997     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  2998     _internalop(0), _numleaves(mnode._numleaves),
  2999     _commutative_id(mnode._commutative_id) {
  3002 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3003   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3004     _opType(mnode._opType),
  3005     _internalop(0), _numleaves(mnode._numleaves),
  3006     _commutative_id(mnode._commutative_id) {
  3007   if (mnode._lChild) {
  3008     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3009   } else {
  3010     _lChild = NULL;
  3012   if (mnode._rChild) {
  3013     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3014   } else {
  3015     _rChild = NULL;
  3019 MatchNode::~MatchNode() {
  3020   // // This node may not own its children if copied via assignment
  3021   // if( _lChild ) delete _lChild;
  3022   // if( _rChild ) delete _rChild;
  3025 bool  MatchNode::find_type(const char *type, int &position) const {
  3026   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3027   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3029   if (strcmp(type,_opType)==0)  {
  3030     return true;
  3031   } else {
  3032     ++position;
  3034   return false;
  3037 // Recursive call collecting info on top-level operands, not transitive.
  3038 // Implementation does not modify state of internal structures.
  3039 void MatchNode::append_components(FormDict &locals, ComponentList &components,
  3040                                   bool deflag) const {
  3041   int   usedef = deflag ? Component::DEF : Component::USE;
  3042   FormDict &globals = _AD.globalNames();
  3044   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3045   // Base case
  3046   if (_lChild==NULL && _rChild==NULL) {
  3047     // If _opType is not an operation, do not build a component for it #####
  3048     const Form *f = globals[_opType];
  3049     if( f != NULL ) {
  3050       // Add non-ideals that are operands, operand-classes,
  3051       if( ! f->ideal_only()
  3052           && (f->is_opclass() || f->is_operand()) ) {
  3053         components.insert(_name, _opType, usedef, true);
  3056     return;
  3058   // Promote results of "Set" to DEF
  3059   bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
  3060   if (_lChild) _lChild->append_components(locals, components, def_flag);
  3061   def_flag = false;   // only applies to component immediately following 'Set'
  3062   if (_rChild) _rChild->append_components(locals, components, def_flag);
  3065 // Find the n'th base-operand in the match node,
  3066 // recursively investigates match rules of user-defined operands.
  3067 //
  3068 // Implementation does not modify state of internal structures since they
  3069 // can be shared.
  3070 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3071                              const char * &result, const char * &name,
  3072                              const char * &opType) const {
  3073   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3074   // Base case
  3075   if (_lChild==NULL && _rChild==NULL) {
  3076     // Check for special case: "Universe", "label"
  3077     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3078       if (position == 0) {
  3079         result = _result;
  3080         name   = _name;
  3081         opType = _opType;
  3082         return 1;
  3083       } else {
  3084         -- position;
  3085         return 0;
  3089     const Form *form = globals[_opType];
  3090     MatchNode *matchNode = NULL;
  3091     // Check for user-defined type
  3092     if (form) {
  3093       // User operand or instruction?
  3094       OperandForm  *opForm = form->is_operand();
  3095       InstructForm *inForm = form->is_instruction();
  3096       if ( opForm ) {
  3097         matchNode = (MatchNode*)opForm->_matrule;
  3098       } else if ( inForm ) {
  3099         matchNode = (MatchNode*)inForm->_matrule;
  3102     // if this is user-defined, recurse on match rule
  3103     // User-defined operand and instruction forms have a match-rule.
  3104     if (matchNode) {
  3105       return (matchNode->base_operand(position,globals,result,name,opType));
  3106     } else {
  3107       // Either not a form, or a system-defined form (no match rule).
  3108       if (position==0) {
  3109         result = _result;
  3110         name   = _name;
  3111         opType = _opType;
  3112         return 1;
  3113       } else {
  3114         --position;
  3115         return 0;
  3119   } else {
  3120     // Examine the left child and right child as well
  3121     if (_lChild) {
  3122       if (_lChild->base_operand(position, globals, result, name, opType))
  3123         return 1;
  3126     if (_rChild) {
  3127       if (_rChild->base_operand(position, globals, result, name, opType))
  3128         return 1;
  3132   return 0;
  3135 // Recursive call on all operands' match rules in my match rule.
  3136 uint  MatchNode::num_consts(FormDict &globals) const {
  3137   uint        index      = 0;
  3138   uint        num_consts = 0;
  3139   const char *result;
  3140   const char *name;
  3141   const char *opType;
  3143   for (uint position = index;
  3144        base_operand(position,globals,result,name,opType); position = index) {
  3145     ++index;
  3146     if( ideal_to_const_type(opType) )        num_consts++;
  3149   return num_consts;
  3152 // Recursive call on all operands' match rules in my match rule.
  3153 // Constants in match rule subtree with specified type
  3154 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3155   uint        index      = 0;
  3156   uint        num_consts = 0;
  3157   const char *result;
  3158   const char *name;
  3159   const char *opType;
  3161   for (uint position = index;
  3162        base_operand(position,globals,result,name,opType); position = index) {
  3163     ++index;
  3164     if( ideal_to_const_type(opType) == type ) num_consts++;
  3167   return num_consts;
  3170 // Recursive call on all operands' match rules in my match rule.
  3171 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3172   return  num_consts( globals, Form::idealP );
  3175 bool  MatchNode::sets_result() const {
  3176   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3179 const char *MatchNode::reduce_right(FormDict &globals) const {
  3180   // If there is no right reduction, return NULL.
  3181   const char      *rightStr    = NULL;
  3183   // If we are a "Set", start from the right child.
  3184   const MatchNode *const mnode = sets_result() ?
  3185     (const MatchNode *const)this->_rChild :
  3186     (const MatchNode *const)this;
  3188   // If our right child exists, it is the right reduction
  3189   if ( mnode->_rChild ) {
  3190     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3191       : mnode->_rChild->_opType;
  3193   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3194   return rightStr;
  3197 const char *MatchNode::reduce_left(FormDict &globals) const {
  3198   // If there is no left reduction, return NULL.
  3199   const char  *leftStr  = NULL;
  3201   // If we are a "Set", start from the right child.
  3202   const MatchNode *const mnode = sets_result() ?
  3203     (const MatchNode *const)this->_rChild :
  3204     (const MatchNode *const)this;
  3206   // If our left child exists, it is the left reduction
  3207   if ( mnode->_lChild ) {
  3208     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3209       : mnode->_lChild->_opType;
  3210   } else {
  3211     // May be simple chain rule: (Set dst operand_form_source)
  3212     if ( sets_result() ) {
  3213       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3214       if( oper ) {
  3215         leftStr = mnode->_opType;
  3219   return leftStr;
  3222 //------------------------------count_instr_names------------------------------
  3223 // Count occurrences of operands names in the leaves of the instruction
  3224 // match rule.
  3225 void MatchNode::count_instr_names( Dict &names ) {
  3226   if( !this ) return;
  3227   if( _lChild ) _lChild->count_instr_names(names);
  3228   if( _rChild ) _rChild->count_instr_names(names);
  3229   if( !_lChild && !_rChild ) {
  3230     uintptr_t cnt = (uintptr_t)names[_name];
  3231     cnt++;                      // One more name found
  3232     names.Insert(_name,(void*)cnt);
  3236 //------------------------------build_instr_pred-------------------------------
  3237 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3238 // can skip some leading instances of 'name'.
  3239 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3240   if( _lChild ) {
  3241     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3242     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3243     if( cnt < 0 ) return cnt;   // Found it, all done
  3245   if( _rChild ) {
  3246     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3247     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3248     if( cnt < 0 ) return cnt;   // Found it, all done
  3250   if( !_lChild && !_rChild ) {  // Found a leaf
  3251     // Wrong name?  Give up...
  3252     if( strcmp(name,_name) ) return cnt;
  3253     if( !cnt ) strcpy(buf,"_leaf");
  3254     return cnt-1;
  3256   return cnt;
  3260 //------------------------------build_internalop-------------------------------
  3261 // Build string representation of subtree
  3262 void MatchNode::build_internalop( ) {
  3263   char *iop, *subtree;
  3264   const char *lstr, *rstr;
  3265   // Build string representation of subtree
  3266   // Operation lchildType rchildType
  3267   int len = (int)strlen(_opType) + 4;
  3268   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3269                        _lChild->_internalop : _lChild->_opType) : "";
  3270   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3271                        _rChild->_internalop : _rChild->_opType) : "";
  3272   len += (int)strlen(lstr) + (int)strlen(rstr);
  3273   subtree = (char *)malloc(len);
  3274   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3275   // Hash the subtree string in _internalOps; if a name exists, use it
  3276   iop = (char *)_AD._internalOps[subtree];
  3277   // Else create a unique name, and add it to the hash table
  3278   if (iop == NULL) {
  3279     iop = subtree;
  3280     _AD._internalOps.Insert(subtree, iop);
  3281     _AD._internalOpNames.addName(iop);
  3282     _AD._internalMatch.Insert(iop, this);
  3284   // Add the internal operand name to the MatchNode
  3285   _internalop = iop;
  3286   _result = iop;
  3290 void MatchNode::dump() {
  3291   output(stderr);
  3294 void MatchNode::output(FILE *fp) {
  3295   if (_lChild==0 && _rChild==0) {
  3296     fprintf(fp," %s",_name);    // operand
  3298   else {
  3299     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3300     if(_lChild) _lChild->output(fp); //               left operand
  3301     if(_rChild) _rChild->output(fp); //                    right operand
  3302     fprintf(fp,")");                 //                                 ")"
  3306 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3307   static const char *needs_ideal_memory_list[] = {
  3308     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
  3309     "StoreB","StoreC","Store" ,"StoreFP",
  3310     "LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3311     "LoadB" ,"LoadC" ,"LoadS" ,"Load"   ,
  3312     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
  3313     "Store8B","Store4B","Store8C","Store4C","Store2C",
  3314     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
  3315     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
  3316     "LoadRange", "LoadKlass", "LoadL_unaligned", "LoadD_unaligned",
  3317     "LoadPLocked", "LoadLLocked",
  3318     "StorePConditional", "StoreLConditional",
  3319     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3320     "StoreCM",
  3321     "ClearArray"
  3322   };
  3323   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3324   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
  3325     return 1;
  3326   if( _lChild ) {
  3327     const char *opType = _lChild->_opType;
  3328     for( int i=0; i<cnt; i++ )
  3329       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3330         return 1;
  3331     if( _lChild->needs_ideal_memory_edge(globals) )
  3332       return 1;
  3334   if( _rChild ) {
  3335     const char *opType = _rChild->_opType;
  3336     for( int i=0; i<cnt; i++ )
  3337       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3338         return 1;
  3339     if( _rChild->needs_ideal_memory_edge(globals) )
  3340       return 1;
  3343   return 0;
  3346 // TRUE if defines a derived oop, and so needs a base oop edge present
  3347 // post-matching.
  3348 int MatchNode::needs_base_oop_edge() const {
  3349   if( !strcmp(_opType,"AddP") ) return 1;
  3350   if( strcmp(_opType,"Set") ) return 0;
  3351   return !strcmp(_rChild->_opType,"AddP");
  3354 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3355   if( is_simple_chain_rule(globals) ) {
  3356     const char *src = _matrule->_rChild->_opType;
  3357     OperandForm *src_op = globals[src]->is_operand();
  3358     assert( src_op, "Not operand class of chain rule" );
  3359     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3360   }                             // Else check instruction
  3362   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3366 //-------------------------cisc spilling methods-------------------------------
  3367 // helper routines and methods for detecting cisc-spilling instructions
  3368 //-------------------------cisc_spill_merge------------------------------------
  3369 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3370   int cisc_spillable  = Maybe_cisc_spillable;
  3372   // Combine results of left and right checks
  3373   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3374     // neither side is spillable, nor prevents cisc spilling
  3375     cisc_spillable = Maybe_cisc_spillable;
  3377   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3378     // right side is spillable
  3379     cisc_spillable = right_spillable;
  3381   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3382     // left side is spillable
  3383     cisc_spillable = left_spillable;
  3385   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3386     // left or right prevents cisc spilling this instruction
  3387     cisc_spillable = Not_cisc_spillable;
  3389   else {
  3390     // Only allow one to spill
  3391     cisc_spillable = Not_cisc_spillable;
  3394   return cisc_spillable;
  3397 //-------------------------root_ops_match--------------------------------------
  3398 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3399   // Base Case: check that the current operands/operations match
  3400   assert( op1, "Must have op's name");
  3401   assert( op2, "Must have op's name");
  3402   const Form *form1 = globals[op1];
  3403   const Form *form2 = globals[op2];
  3405   return (form1 == form2);
  3408 //-------------------------cisc_spill_match------------------------------------
  3409 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3410 int  MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
  3411   int cisc_spillable  = Maybe_cisc_spillable;
  3412   int left_spillable  = Maybe_cisc_spillable;
  3413   int right_spillable = Maybe_cisc_spillable;
  3415   // Check that each has same number of operands at this level
  3416   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3417     return Not_cisc_spillable;
  3419   // Base Case: check that the current operands/operations match
  3420   // or are CISC spillable
  3421   assert( _opType, "Must have _opType");
  3422   assert( mRule2->_opType, "Must have _opType");
  3423   const Form *form  = globals[_opType];
  3424   const Form *form2 = globals[mRule2->_opType];
  3425   if( form == form2 ) {
  3426     cisc_spillable = Maybe_cisc_spillable;
  3427   } else {
  3428     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3429     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3430     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3431     // Detect reg vs (loadX memory)
  3432     if( form->is_cisc_reg(globals)
  3433         && form2_inst
  3434         && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
  3435         && (name_left != NULL)       // NOT (load)
  3436         && (name_right == NULL) ) {  // NOT (load memory foo)
  3437       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3438       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3439         cisc_spillable = Is_cisc_spillable;
  3440         operand        = _name;
  3441         reg_type       = _result;
  3442         return Is_cisc_spillable;
  3443       } else {
  3444         cisc_spillable = Not_cisc_spillable;
  3447     // Detect reg vs memory
  3448     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3449       cisc_spillable = Is_cisc_spillable;
  3450       operand        = _name;
  3451       reg_type       = _result;
  3452       return Is_cisc_spillable;
  3453     } else {
  3454       cisc_spillable = Not_cisc_spillable;
  3458   // If cisc is still possible, check rest of tree
  3459   if( cisc_spillable == Maybe_cisc_spillable ) {
  3460     // Check that each has same number of operands at this level
  3461     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3463     // Check left operands
  3464     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3465       left_spillable = Maybe_cisc_spillable;
  3466     } else {
  3467       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3470     // Check right operands
  3471     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3472       right_spillable =  Maybe_cisc_spillable;
  3473     } else {
  3474       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3477     // Combine results of left and right checks
  3478     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3481   return cisc_spillable;
  3484 //---------------------------cisc_spill_match----------------------------------
  3485 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3486 // This method handles the root of Match tree,
  3487 // general recursive checks done in MatchNode
  3488 int  MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
  3489                                  MatchRule *mRule2, const char * &operand,
  3490                                  const char * &reg_type) {
  3491   int cisc_spillable  = Maybe_cisc_spillable;
  3492   int left_spillable  = Maybe_cisc_spillable;
  3493   int right_spillable = Maybe_cisc_spillable;
  3495   // Check that each sets a result
  3496   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3497   // Check that each has same number of operands at this level
  3498   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3500   // Check left operands: at root, must be target of 'Set'
  3501   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3502     left_spillable = Not_cisc_spillable;
  3503   } else {
  3504     // Do not support cisc-spilling instruction's target location
  3505     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3506       left_spillable = Maybe_cisc_spillable;
  3507     } else {
  3508       left_spillable = Not_cisc_spillable;
  3512   // Check right operands: recursive walk to identify reg->mem operand
  3513   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3514     right_spillable =  Maybe_cisc_spillable;
  3515   } else {
  3516     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3519   // Combine results of left and right checks
  3520   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3522   return cisc_spillable;
  3525 //----------------------------- equivalent ------------------------------------
  3526 // Recursively check to see if two match rules are equivalent.
  3527 // This rule handles the root.
  3528 bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
  3529   // Check that each sets a result
  3530   if (sets_result() != mRule2->sets_result()) {
  3531     return false;
  3534   // Check that the current operands/operations match
  3535   assert( _opType, "Must have _opType");
  3536   assert( mRule2->_opType, "Must have _opType");
  3537   const Form *form  = globals[_opType];
  3538   const Form *form2 = globals[mRule2->_opType];
  3539   if( form != form2 ) {
  3540     return false;
  3543   if (_lChild ) {
  3544     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3545       return false;
  3546   } else if (mRule2->_lChild) {
  3547     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3550   if (_rChild ) {
  3551     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3552       return false;
  3553   } else if (mRule2->_rChild) {
  3554     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3557   // We've made it through the gauntlet.
  3558   return true;
  3561 //----------------------------- equivalent ------------------------------------
  3562 // Recursively check to see if two match rules are equivalent.
  3563 // This rule handles the operands.
  3564 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3565   if( !mNode2 )
  3566     return false;
  3568   // Check that the current operands/operations match
  3569   assert( _opType, "Must have _opType");
  3570   assert( mNode2->_opType, "Must have _opType");
  3571   const Form *form  = globals[_opType];
  3572   const Form *form2 = globals[mNode2->_opType];
  3573   return (form == form2);
  3576 //-------------------------- has_commutative_op -------------------------------
  3577 // Recursively check for commutative operations with subtree operands
  3578 // which could be swapped.
  3579 void MatchNode::count_commutative_op(int& count) {
  3580   static const char *commut_op_list[] = {
  3581     "AddI","AddL","AddF","AddD",
  3582     "AndI","AndL",
  3583     "MaxI","MinI",
  3584     "MulI","MulL","MulF","MulD",
  3585     "OrI" ,"OrL" ,
  3586     "XorI","XorL"
  3587   };
  3588   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3590   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3591     // Don't swap if right operand is an immediate constant.
  3592     bool is_const = false;
  3593     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3594       FormDict &globals = _AD.globalNames();
  3595       const Form *form = globals[_rChild->_opType];
  3596       if ( form ) {
  3597         OperandForm  *oper = form->is_operand();
  3598         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3599           is_const = true;
  3602     if( !is_const ) {
  3603       for( int i=0; i<cnt; i++ ) {
  3604         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3605           count++;
  3606           _commutative_id = count; // id should be > 0
  3607           break;
  3612   if( _lChild )
  3613     _lChild->count_commutative_op(count);
  3614   if( _rChild )
  3615     _rChild->count_commutative_op(count);
  3618 //-------------------------- swap_commutative_op ------------------------------
  3619 // Recursively swap specified commutative operation with subtree operands.
  3620 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3621   if( _commutative_id == id ) { // id should be > 0
  3622     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3623             "not swappable operation");
  3624     MatchNode* tmp = _lChild;
  3625     _lChild = _rChild;
  3626     _rChild = tmp;
  3627     // Don't exit here since we need to build internalop.
  3630   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3631   if( _lChild )
  3632     _lChild->swap_commutative_op(is_set, id);
  3633   if( _rChild )
  3634     _rChild->swap_commutative_op(is_set, id);
  3636   // If not the root, reduce this subtree to an internal operand
  3637   if( !atroot && (_lChild || _rChild) ) {
  3638     build_internalop();
  3642 //-------------------------- swap_commutative_op ------------------------------
  3643 // Recursively swap specified commutative operation with subtree operands.
  3644 void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3645   assert(match_rules_cnt < 100," too many match rule clones");
  3646   // Clone
  3647   MatchRule* clone = new MatchRule(_AD, this);
  3648   // Swap operands of commutative operation
  3649   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3650   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3651   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3652   clone->_result = buf;
  3654   clone->_next = this->_next;
  3655   this-> _next = clone;
  3656   if( (--count) > 0 ) {
  3657     this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
  3658     clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
  3662 //------------------------------MatchRule--------------------------------------
  3663 MatchRule::MatchRule(ArchDesc &ad)
  3664   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3665     _next = NULL;
  3668 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3669   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3670     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3671     _next = NULL;
  3674 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3675                      int numleaves)
  3676   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3677     _numchilds(0) {
  3678       _next = NULL;
  3679       mroot->_lChild = NULL;
  3680       mroot->_rChild = NULL;
  3681       delete mroot;
  3682       _numleaves = numleaves;
  3683       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3685 MatchRule::~MatchRule() {
  3688 // Recursive call collecting info on top-level operands, not transitive.
  3689 // Implementation does not modify state of internal structures.
  3690 void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
  3691   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3693   MatchNode::append_components(locals, components,
  3694                                false /* not necessarily a def */);
  3697 // Recursive call on all operands' match rules in my match rule.
  3698 // Implementation does not modify state of internal structures  since they
  3699 // can be shared.
  3700 // The MatchNode that is called first treats its
  3701 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3702                              const char *&result, const char * &name,
  3703                              const char * &opType)const{
  3704   uint position = position0;
  3706   return (MatchNode::base_operand( position, globals, result, name, opType));
  3710 bool MatchRule::is_base_register(FormDict &globals) const {
  3711   uint   position = 1;
  3712   const char  *result   = NULL;
  3713   const char  *name     = NULL;
  3714   const char  *opType   = NULL;
  3715   if (!base_operand(position, globals, result, name, opType)) {
  3716     position = 0;
  3717     if( base_operand(position, globals, result, name, opType) &&
  3718         (strcmp(opType,"RegI")==0 ||
  3719          strcmp(opType,"RegP")==0 ||
  3720          strcmp(opType,"RegN")==0 ||
  3721          strcmp(opType,"RegL")==0 ||
  3722          strcmp(opType,"RegF")==0 ||
  3723          strcmp(opType,"RegD")==0 ||
  3724          strcmp(opType,"Reg" )==0) ) {
  3725       return 1;
  3728   return 0;
  3731 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3732   uint         position = 1;
  3733   const char  *result   = NULL;
  3734   const char  *name     = NULL;
  3735   const char  *opType   = NULL;
  3736   if (!base_operand(position, globals, result, name, opType)) {
  3737     position = 0;
  3738     if (base_operand(position, globals, result, name, opType)) {
  3739       return ideal_to_const_type(opType);
  3742   return Form::none;
  3745 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3747   // Check for chain rule, and do not generate a match list for it
  3748   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3749     const Form *form = globals[_opType];
  3750     // If this is ideal, then it is a base match, not a chain rule.
  3751     if ( form && form->is_operand() && (!form->ideal_only())) {
  3752       return true;
  3755   // Check for "Set" form of chain rule, and do not generate a match list
  3756   if (_rChild) {
  3757     const char *rch = _rChild->_opType;
  3758     const Form *form = globals[rch];
  3759     if ((!strcmp(_opType,"Set") &&
  3760          ((form) && form->is_operand()))) {
  3761       return true;
  3764   return false;
  3767 int MatchRule::is_ideal_copy() const {
  3768   if( _rChild ) {
  3769     const char  *opType = _rChild->_opType;
  3770 #if 1
  3771     if( strcmp(opType,"CastIP")==0 )
  3772       return 1;
  3773 #else
  3774     if( strcmp(opType,"CastII")==0 )
  3775       return 1;
  3776     // Do not treat *CastPP this way, because it
  3777     // may transfer a raw pointer to an oop.
  3778     // If the register allocator were to coalesce this
  3779     // into a single LRG, the GC maps would be incorrect.
  3780     //if( strcmp(opType,"CastPP")==0 )
  3781     //  return 1;
  3782     //if( strcmp(opType,"CheckCastPP")==0 )
  3783     //  return 1;
  3784     //
  3785     // Do not treat CastX2P or CastP2X this way, because
  3786     // raw pointers and int types are treated differently
  3787     // when saving local & stack info for safepoints in
  3788     // Output().
  3789     //if( strcmp(opType,"CastX2P")==0 )
  3790     //  return 1;
  3791     //if( strcmp(opType,"CastP2X")==0 )
  3792     //  return 1;
  3793 #endif
  3795   if( is_chain_rule(_AD.globalNames()) &&
  3796       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3797     return 1;
  3798   return 0;
  3802 int MatchRule::is_expensive() const {
  3803   if( _rChild ) {
  3804     const char  *opType = _rChild->_opType;
  3805     if( strcmp(opType,"AtanD")==0 ||
  3806         strcmp(opType,"CosD")==0 ||
  3807         strcmp(opType,"DivD")==0 ||
  3808         strcmp(opType,"DivF")==0 ||
  3809         strcmp(opType,"DivI")==0 ||
  3810         strcmp(opType,"ExpD")==0 ||
  3811         strcmp(opType,"LogD")==0 ||
  3812         strcmp(opType,"Log10D")==0 ||
  3813         strcmp(opType,"ModD")==0 ||
  3814         strcmp(opType,"ModF")==0 ||
  3815         strcmp(opType,"ModI")==0 ||
  3816         strcmp(opType,"PowD")==0 ||
  3817         strcmp(opType,"SinD")==0 ||
  3818         strcmp(opType,"SqrtD")==0 ||
  3819         strcmp(opType,"TanD")==0 ||
  3820         strcmp(opType,"ConvD2F")==0 ||
  3821         strcmp(opType,"ConvD2I")==0 ||
  3822         strcmp(opType,"ConvD2L")==0 ||
  3823         strcmp(opType,"ConvF2D")==0 ||
  3824         strcmp(opType,"ConvF2I")==0 ||
  3825         strcmp(opType,"ConvF2L")==0 ||
  3826         strcmp(opType,"ConvI2D")==0 ||
  3827         strcmp(opType,"ConvI2F")==0 ||
  3828         strcmp(opType,"ConvI2L")==0 ||
  3829         strcmp(opType,"ConvL2D")==0 ||
  3830         strcmp(opType,"ConvL2F")==0 ||
  3831         strcmp(opType,"ConvL2I")==0 ||
  3832         strcmp(opType,"RoundDouble")==0 ||
  3833         strcmp(opType,"RoundFloat")==0 ||
  3834         strcmp(opType,"ReverseBytesI")==0 ||
  3835         strcmp(opType,"ReverseBytesL")==0 ||
  3836         strcmp(opType,"Replicate16B")==0 ||
  3837         strcmp(opType,"Replicate8B")==0 ||
  3838         strcmp(opType,"Replicate4B")==0 ||
  3839         strcmp(opType,"Replicate8C")==0 ||
  3840         strcmp(opType,"Replicate4C")==0 ||
  3841         strcmp(opType,"Replicate8S")==0 ||
  3842         strcmp(opType,"Replicate4S")==0 ||
  3843         strcmp(opType,"Replicate4I")==0 ||
  3844         strcmp(opType,"Replicate2I")==0 ||
  3845         strcmp(opType,"Replicate2L")==0 ||
  3846         strcmp(opType,"Replicate4F")==0 ||
  3847         strcmp(opType,"Replicate2F")==0 ||
  3848         strcmp(opType,"Replicate2D")==0 ||
  3849         0 /* 0 to line up columns nicely */ )
  3850       return 1;
  3852   return 0;
  3855 bool MatchRule::is_ideal_unlock() const {
  3856   if( !_opType ) return false;
  3857   return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
  3861 bool MatchRule::is_ideal_call_leaf() const {
  3862   if( !_opType ) return false;
  3863   return !strcmp(_opType,"CallLeaf")     ||
  3864          !strcmp(_opType,"CallLeafNoFP");
  3868 bool MatchRule::is_ideal_if() const {
  3869   if( !_opType ) return false;
  3870   return
  3871     !strcmp(_opType,"If"            ) ||
  3872     !strcmp(_opType,"CountedLoopEnd");
  3875 bool MatchRule::is_ideal_fastlock() const {
  3876   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3877     return (strcmp(_rChild->_opType,"FastLock") == 0);
  3879   return false;
  3882 bool MatchRule::is_ideal_membar() const {
  3883   if( !_opType ) return false;
  3884   return
  3885     !strcmp(_opType,"MemBarAcquire"  ) ||
  3886     !strcmp(_opType,"MemBarRelease"  ) ||
  3887     !strcmp(_opType,"MemBarVolatile" ) ||
  3888     !strcmp(_opType,"MemBarCPUOrder" ) ;
  3891 bool MatchRule::is_ideal_loadPC() const {
  3892   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3893     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  3895   return false;
  3898 bool MatchRule::is_ideal_box() const {
  3899   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3900     return (strcmp(_rChild->_opType,"Box") == 0);
  3902   return false;
  3905 bool MatchRule::is_ideal_goto() const {
  3906   bool   ideal_goto = false;
  3908   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  3909     ideal_goto = true;
  3911   return ideal_goto;
  3914 bool MatchRule::is_ideal_jump() const {
  3915   if( _opType ) {
  3916     if( !strcmp(_opType,"Jump") )
  3917       return true;
  3919   return false;
  3922 bool MatchRule::is_ideal_bool() const {
  3923   if( _opType ) {
  3924     if( !strcmp(_opType,"Bool") )
  3925       return true;
  3927   return false;
  3931 Form::DataType MatchRule::is_ideal_load() const {
  3932   Form::DataType ideal_load = Form::none;
  3934   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3935     const char *opType = _rChild->_opType;
  3936     ideal_load = is_load_from_memory(opType);
  3939   return ideal_load;
  3943 Form::DataType MatchRule::is_ideal_store() const {
  3944   Form::DataType ideal_store = Form::none;
  3946   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3947     const char *opType = _rChild->_opType;
  3948     ideal_store = is_store_to_memory(opType);
  3951   return ideal_store;
  3955 void MatchRule::dump() {
  3956   output(stderr);
  3959 void MatchRule::output(FILE *fp) {
  3960   fprintf(fp,"MatchRule: ( %s",_name);
  3961   if (_lChild) _lChild->output(fp);
  3962   if (_rChild) _rChild->output(fp);
  3963   fprintf(fp," )\n");
  3964   fprintf(fp,"   nesting depth = %d\n", _depth);
  3965   if (_result) fprintf(fp,"   Result Type = %s", _result);
  3966   fprintf(fp,"\n");
  3969 //------------------------------Attribute--------------------------------------
  3970 Attribute::Attribute(char *id, char* val, int type)
  3971   : _ident(id), _val(val), _atype(type) {
  3973 Attribute::~Attribute() {
  3976 int Attribute::int_val(ArchDesc &ad) {
  3977   // Make sure it is an integer constant:
  3978   int result = 0;
  3979   if (!_val || !ADLParser::is_int_token(_val, result)) {
  3980     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  3981                   _ident, _val ? _val : "");
  3983   return result;
  3986 void Attribute::dump() {
  3987   output(stderr);
  3988 } // Debug printer
  3990 // Write to output files
  3991 void Attribute::output(FILE *fp) {
  3992   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  3995 //------------------------------FormatRule----------------------------------
  3996 FormatRule::FormatRule(char *temp)
  3997   : _temp(temp) {
  3999 FormatRule::~FormatRule() {
  4002 void FormatRule::dump() {
  4003   output(stderr);
  4006 // Write to output files
  4007 void FormatRule::output(FILE *fp) {
  4008   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4009   fprintf(fp,"\n");

mercurial