src/cpu/sparc/vm/assembler_sparc.cpp

Thu, 05 Jun 2008 15:57:56 -0700

author
ysr
date
Thu, 05 Jun 2008 15:57:56 -0700
changeset 777
37f87013dfd8
parent 559
b130b98db9cf
child 779
6aae2f9d0294
permissions
-rw-r--r--

6711316: Open source the Garbage-First garbage collector
Summary: First mercurial integration of the code for the Garbage-First garbage collector.
Reviewed-by: apetrusenko, iveresov, jmasa, sgoldman, tonyp, ysr

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_sparc.cpp.incl"
    28 // Implementation of Address
    30 Address::Address( addr_type t, int which ) {
    31   switch (t) {
    32    case extra_in_argument:
    33    case extra_out_argument:
    34      _base = t == extra_in_argument ? FP : SP;
    35      _hi   = 0;
    36 // Warning:  In LP64 mode, _disp will occupy more than 10 bits.
    37 //           This is inconsistent with the other constructors but op
    38 //           codes such as ld or ldx, only access disp() to get their
    39 //           simm13 argument.
    40      _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    41     break;
    42    default:
    43     ShouldNotReachHere();
    44     break;
    45   }
    46 }
    48 static const char* argumentNames[][2] = {
    49   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    50   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    51   {"A(n>9)","P(n>9)"}
    52 };
    54 const char* Argument::name() const {
    55   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    56   int num = number();
    57   if (num >= nofArgs)  num = nofArgs - 1;
    58   return argumentNames[num][is_in() ? 1 : 0];
    59 }
    61 void Assembler::print_instruction(int inst) {
    62   const char* s;
    63   switch (inv_op(inst)) {
    64   default:         s = "????"; break;
    65   case call_op:    s = "call"; break;
    66   case branch_op:
    67     switch (inv_op2(inst)) {
    68       case bpr_op2:    s = "bpr";  break;
    69       case fb_op2:     s = "fb";   break;
    70       case fbp_op2:    s = "fbp";  break;
    71       case br_op2:     s = "br";   break;
    72       case bp_op2:     s = "bp";   break;
    73       case cb_op2:     s = "cb";   break;
    74       default:         s = "????"; break;
    75     }
    76   }
    77   ::tty->print("%s", s);
    78 }
    81 // Patch instruction inst at offset inst_pos to refer to dest_pos
    82 // and return the resulting instruction.
    83 // We should have pcs, not offsets, but since all is relative, it will work out
    84 // OK.
    85 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
    87   int m; // mask for displacement field
    88   int v; // new value for displacement field
    89   const int word_aligned_ones = -4;
    90   switch (inv_op(inst)) {
    91   default: ShouldNotReachHere();
    92   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
    93   case branch_op:
    94     switch (inv_op2(inst)) {
    95       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
    96       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    97       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
    98       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
    99       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   100       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   101       default: ShouldNotReachHere();
   102     }
   103   }
   104   return  inst & ~m  |  v;
   105 }
   107 // Return the offset of the branch destionation of instruction inst
   108 // at offset pos.
   109 // Should have pcs, but since all is relative, it works out.
   110 int Assembler::branch_destination(int inst, int pos) {
   111   int r;
   112   switch (inv_op(inst)) {
   113   default: ShouldNotReachHere();
   114   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   115   case branch_op:
   116     switch (inv_op2(inst)) {
   117       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
   118       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   119       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   120       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   121       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   122       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   123       default: ShouldNotReachHere();
   124     }
   125   }
   126   return r;
   127 }
   129 int AbstractAssembler::code_fill_byte() {
   130   return 0x00;                  // illegal instruction 0x00000000
   131 }
   133 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   134   switch (in) {
   135   case rc_z:   return equal;
   136   case rc_lez: return lessEqual;
   137   case rc_lz:  return less;
   138   case rc_nz:  return notEqual;
   139   case rc_gz:  return greater;
   140   case rc_gez: return greaterEqual;
   141   default:
   142     ShouldNotReachHere();
   143   }
   144   return equal;
   145 }
   147 // Generate a bunch 'o stuff (including v9's
   148 #ifndef PRODUCT
   149 void Assembler::test_v9() {
   150   add(    G0, G1, G2 );
   151   add(    G3,  0, G4 );
   153   addcc(  G5, G6, G7 );
   154   addcc(  I0,  1, I1 );
   155   addc(   I2, I3, I4 );
   156   addc(   I5, -1, I6 );
   157   addccc( I7, L0, L1 );
   158   addccc( L2, (1 << 12) - 2, L3 );
   160   Label lbl1, lbl2, lbl3;
   162   bind(lbl1);
   164   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   165   delayed()->nop();
   166   bpr( rc_lez, false, pt, L5, lbl1);
   167   delayed()->nop();
   169   fb( f_never,     true, pc() + 4,  relocInfo::none);
   170   delayed()->nop();
   171   fb( f_notEqual, false, lbl2 );
   172   delayed()->nop();
   174   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   175   delayed()->nop();
   176   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   177   delayed()->nop();
   179   br( equal,  true, pc() + 1024, relocInfo::none);
   180   delayed()->nop();
   181   br( lessEqual, false, lbl1 );
   182   delayed()->nop();
   183   br( never, false, lbl1 );
   184   delayed()->nop();
   186   bp( less,               true, icc, pn, pc(), relocInfo::none);
   187   delayed()->nop();
   188   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   189   delayed()->nop();
   191   call( pc(), relocInfo::none);
   192   delayed()->nop();
   193   call( lbl3 );
   194   delayed()->nop();
   197   casa(  L6, L7, O0 );
   198   casxa( O1, O2, O3, 0 );
   200   udiv(   O4, O5, O7 );
   201   udiv(   G0, (1 << 12) - 1, G1 );
   202   sdiv(   G1, G2, G3 );
   203   sdiv(   G4, -((1 << 12) - 1), G5 );
   204   udivcc( G6, G7, I0 );
   205   udivcc( I1, -((1 << 12) - 2), I2 );
   206   sdivcc( I3, I4, I5 );
   207   sdivcc( I6, -((1 << 12) - 0), I7 );
   209   done();
   210   retry();
   212   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   213   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   215   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   216   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   218   ftox( FloatRegisterImpl::D, F2, F4 );
   219   ftoi( FloatRegisterImpl::Q, F4, F8 );
   221   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   223   fxtof( FloatRegisterImpl::S, F4, F5 );
   224   fitof( FloatRegisterImpl::D, F6, F8 );
   226   fmov( FloatRegisterImpl::Q, F16, F20 );
   227   fneg( FloatRegisterImpl::S, F6, F7 );
   228   fabs( FloatRegisterImpl::D, F10, F12 );
   230   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   231   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   232   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   234   fsqrt( FloatRegisterImpl::S, F13, F14 );
   236   flush( L0, L1 );
   237   flush( L2, -1 );
   239   flushw();
   241   illtrap( (1 << 22) - 2);
   243   impdep1( 17, (1 << 19) - 1 );
   244   impdep2( 3,  0 );
   246   jmpl( L3, L4, L5 );
   247   delayed()->nop();
   248   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   249   delayed()->nop();
   252   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   253   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   256   ldfsr(  O3, O4 );
   257   ldfsr(  O5, -1 );
   258   ldxfsr( O6, O7 );
   259   ldxfsr( I0, -1 );
   261   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   262   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   264   ldsb(  I4, I5, I6 );
   265   ldsb(  I7, -1, G0 );
   266   ldsh(  G1, G3, G4 );
   267   ldsh(  G5, -1, G6 );
   268   ldsw(  G7, L0, L1 );
   269   ldsw(  L2, -1, L3 );
   270   ldub(  L4, L5, L6 );
   271   ldub(  L7, -1, O0 );
   272   lduh(  O1, O2, O3 );
   273   lduh(  O4, -1, O5 );
   274   lduw(  O6, O7, G0 );
   275   lduw(  G1, -1, G2 );
   276   ldx(   G3, G4, G5 );
   277   ldx(   G6, -1, G7 );
   278   ldd(   I0, I1, I2 );
   279   ldd(   I3, -1, I4 );
   281   ldsba(  I5, I6, 2, I7 );
   282   ldsba(  L0, -1, L1 );
   283   ldsha(  L2, L3, 3, L4 );
   284   ldsha(  L5, -1, L6 );
   285   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   286   ldswa(  O2, -1, O3 );
   287   lduba(  O4, O5, 0, O6 );
   288   lduba(  O7, -1, I0 );
   289   lduha(  I1, I2, 1, I3 );
   290   lduha(  I4, -1, I5 );
   291   lduwa(  I6, I7, 2, L0 );
   292   lduwa(  L1, -1, L2 );
   293   ldxa(   L3, L4, 3, L5 );
   294   ldxa(   L6, -1, L7 );
   295   ldda(   G0, G1, 4, G2 );
   296   ldda(   G3, -1, G4 );
   298   ldstub(  G5, G6, G7 );
   299   ldstub(  O0, -1, O1 );
   301   ldstuba( O2, O3, 5, O4 );
   302   ldstuba( O5, -1, O6 );
   304   and3(    I0, L0, O0 );
   305   and3(    G7, -1, O7 );
   306   andcc(   L2, I2, G2 );
   307   andcc(   L4, -1, G4 );
   308   andn(    I5, I6, I7 );
   309   andn(    I6, -1, I7 );
   310   andncc(  I5, I6, I7 );
   311   andncc(  I7, -1, I6 );
   312   or3(     I5, I6, I7 );
   313   or3(     I7, -1, I6 );
   314   orcc(    I5, I6, I7 );
   315   orcc(    I7, -1, I6 );
   316   orn(     I5, I6, I7 );
   317   orn(     I7, -1, I6 );
   318   orncc(   I5, I6, I7 );
   319   orncc(   I7, -1, I6 );
   320   xor3(    I5, I6, I7 );
   321   xor3(    I7, -1, I6 );
   322   xorcc(   I5, I6, I7 );
   323   xorcc(   I7, -1, I6 );
   324   xnor(    I5, I6, I7 );
   325   xnor(    I7, -1, I6 );
   326   xnorcc(  I5, I6, I7 );
   327   xnorcc(  I7, -1, I6 );
   329   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   330   membar( StoreStore );
   331   membar( LoadStore );
   332   membar( StoreLoad );
   333   membar( LoadLoad );
   334   membar( Sync );
   335   membar( MemIssue );
   336   membar( Lookaside );
   338   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   339   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   341   movcc( overflowClear,  false, icc, I6, L4 );
   342   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   344   movr( rc_nz, I5, I6, I7 );
   345   movr( rc_gz, L1, -1,  L2 );
   347   mulx(  I5, I6, I7 );
   348   mulx(  I7, -1, I6 );
   349   sdivx( I5, I6, I7 );
   350   sdivx( I7, -1, I6 );
   351   udivx( I5, I6, I7 );
   352   udivx( I7, -1, I6 );
   354   umul(   I5, I6, I7 );
   355   umul(   I7, -1, I6 );
   356   smul(   I5, I6, I7 );
   357   smul(   I7, -1, I6 );
   358   umulcc( I5, I6, I7 );
   359   umulcc( I7, -1, I6 );
   360   smulcc( I5, I6, I7 );
   361   smulcc( I7, -1, I6 );
   363   mulscc(   I5, I6, I7 );
   364   mulscc(   I7, -1, I6 );
   366   nop();
   369   popc( G0,  G1);
   370   popc( -1, G2);
   372   prefetch(   L1, L2,    severalReads );
   373   prefetch(   L3, -1,    oneRead );
   374   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   375   prefetcha(  G2, -1,    oneWrite );
   377   rett( I7, I7);
   378   delayed()->nop();
   379   rett( G0, -1, relocInfo::none);
   380   delayed()->nop();
   382   save(    I5, I6, I7 );
   383   save(    I7, -1, I6 );
   384   restore( I5, I6, I7 );
   385   restore( I7, -1, I6 );
   387   saved();
   388   restored();
   390   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   392   sll(  I5, I6, I7 );
   393   sll(  I7, 31, I6 );
   394   srl(  I5, I6, I7 );
   395   srl(  I7,  0, I6 );
   396   sra(  I5, I6, I7 );
   397   sra(  I7, 30, I6 );
   398   sllx( I5, I6, I7 );
   399   sllx( I7, 63, I6 );
   400   srlx( I5, I6, I7 );
   401   srlx( I7,  0, I6 );
   402   srax( I5, I6, I7 );
   403   srax( I7, 62, I6 );
   405   sir( -1 );
   407   stbar();
   409   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   410   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   412   stfsr(  L1, L2 );
   413   stfsr(  I7, -1 );
   414   stxfsr( I6, I5 );
   415   stxfsr( L4, -1 );
   417   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   418   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   420   stb(  L5, O2, I7 );
   421   stb(  I7, I6, -1 );
   422   sth(  L5, O2, I7 );
   423   sth(  I7, I6, -1 );
   424   stw(  L5, O2, I7 );
   425   stw(  I7, I6, -1 );
   426   stx(  L5, O2, I7 );
   427   stx(  I7, I6, -1 );
   428   std(  L5, O2, I7 );
   429   std(  I7, I6, -1 );
   431   stba(  L5, O2, I7, 8 );
   432   stba(  I7, I6, -1    );
   433   stha(  L5, O2, I7, 9 );
   434   stha(  I7, I6, -1    );
   435   stwa(  L5, O2, I7, 0 );
   436   stwa(  I7, I6, -1    );
   437   stxa(  L5, O2, I7, 11 );
   438   stxa(  I7, I6, -1     );
   439   stda(  L5, O2, I7, 12 );
   440   stda(  I7, I6, -1     );
   442   sub(    I5, I6, I7 );
   443   sub(    I7, -1, I6 );
   444   subcc(  I5, I6, I7 );
   445   subcc(  I7, -1, I6 );
   446   subc(   I5, I6, I7 );
   447   subc(   I7, -1, I6 );
   448   subccc( I5, I6, I7 );
   449   subccc( I7, -1, I6 );
   451   swap( I5, I6, I7 );
   452   swap( I7, -1, I6 );
   454   swapa(   G0, G1, 13, G2 );
   455   swapa(   I7, -1,     I6 );
   457   taddcc(    I5, I6, I7 );
   458   taddcc(    I7, -1, I6 );
   459   taddcctv(  I5, I6, I7 );
   460   taddcctv(  I7, -1, I6 );
   462   tsubcc(    I5, I6, I7 );
   463   tsubcc(    I7, -1, I6 );
   464   tsubcctv(  I5, I6, I7 );
   465   tsubcctv(  I7, -1, I6 );
   467   trap( overflowClear, xcc, G0, G1 );
   468   trap( lessEqual,     icc, I7, 17 );
   470   bind(lbl2);
   471   bind(lbl3);
   473   code()->decode();
   474 }
   476 // Generate a bunch 'o stuff unique to V8
   477 void Assembler::test_v8_onlys() {
   478   Label lbl1;
   480   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   481   delayed()->nop();
   482   cb( cp_never,    true, lbl1);
   483   delayed()->nop();
   485   cpop1(1, 2, 3, 4);
   486   cpop2(5, 6, 7, 8);
   488   ldc( I0, I1, 31);
   489   ldc( I2, -1,  0);
   491   lddc( I4, I4, 30);
   492   lddc( I6,  0, 1 );
   494   ldcsr( L0, L1, 0);
   495   ldcsr( L1, (1 << 12) - 1, 17 );
   497   stc( 31, L4, L5);
   498   stc( 30, L6, -(1 << 12) );
   500   stdc( 0, L7, G0);
   501   stdc( 1, G1, 0 );
   503   stcsr( 16, G2, G3);
   504   stcsr( 17, G4, 1 );
   506   stdcq( 4, G5, G6);
   507   stdcq( 5, G7, -1 );
   509   bind(lbl1);
   511   code()->decode();
   512 }
   513 #endif
   515 // Implementation of MacroAssembler
   517 void MacroAssembler::null_check(Register reg, int offset) {
   518   if (needs_explicit_null_check((intptr_t)offset)) {
   519     // provoke OS NULL exception if reg = NULL by
   520     // accessing M[reg] w/o changing any registers
   521     ld_ptr(reg, 0, G0);
   522   }
   523   else {
   524     // nothing to do, (later) access of M[reg + offset]
   525     // will provoke OS NULL exception if reg = NULL
   526   }
   527 }
   529 // Ring buffer jumps
   531 #ifndef PRODUCT
   532 void MacroAssembler::ret(  bool trace )   { if (trace) {
   533                                                     mov(I7, O7); // traceable register
   534                                                     JMP(O7, 2 * BytesPerInstWord);
   535                                                   } else {
   536                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   537                                                   }
   538                                                 }
   540 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   541                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   542 #endif /* PRODUCT */
   545 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   546   assert_not_delayed();
   547   // This can only be traceable if r1 & r2 are visible after a window save
   548   if (TraceJumps) {
   549 #ifndef PRODUCT
   550     save_frame(0);
   551     verify_thread();
   552     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   553     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   554     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   555     add(O2, O1, O1);
   557     add(r1->after_save(), r2->after_save(), O2);
   558     set((intptr_t)file, O3);
   559     set(line, O4);
   560     Label L;
   561     // get nearby pc, store jmp target
   562     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   563     delayed()->st(O2, O1, 0);
   564     bind(L);
   566     // store nearby pc
   567     st(O7, O1, sizeof(intptr_t));
   568     // store file
   569     st(O3, O1, 2*sizeof(intptr_t));
   570     // store line
   571     st(O4, O1, 3*sizeof(intptr_t));
   572     add(O0, 1, O0);
   573     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   574     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   575     restore();
   576 #endif /* PRODUCT */
   577   }
   578   jmpl(r1, r2, G0);
   579 }
   580 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   581   assert_not_delayed();
   582   // This can only be traceable if r1 is visible after a window save
   583   if (TraceJumps) {
   584 #ifndef PRODUCT
   585     save_frame(0);
   586     verify_thread();
   587     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   588     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   589     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   590     add(O2, O1, O1);
   592     add(r1->after_save(), offset, O2);
   593     set((intptr_t)file, O3);
   594     set(line, O4);
   595     Label L;
   596     // get nearby pc, store jmp target
   597     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   598     delayed()->st(O2, O1, 0);
   599     bind(L);
   601     // store nearby pc
   602     st(O7, O1, sizeof(intptr_t));
   603     // store file
   604     st(O3, O1, 2*sizeof(intptr_t));
   605     // store line
   606     st(O4, O1, 3*sizeof(intptr_t));
   607     add(O0, 1, O0);
   608     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   609     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   610     restore();
   611 #endif /* PRODUCT */
   612   }
   613   jmp(r1, offset);
   614 }
   616 // This code sequence is relocatable to any address, even on LP64.
   617 void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
   618   assert_not_delayed();
   619   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   620   // variable length instruction streams.
   621   sethi(a, /*ForceRelocatable=*/ true);
   622   if (TraceJumps) {
   623 #ifndef PRODUCT
   624     // Must do the add here so relocation can find the remainder of the
   625     // value to be relocated.
   626     add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
   627     save_frame(0);
   628     verify_thread();
   629     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   630     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   631     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   632     add(O2, O1, O1);
   634     set((intptr_t)file, O3);
   635     set(line, O4);
   636     Label L;
   638     // get nearby pc, store jmp target
   639     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   640     delayed()->st(a.base()->after_save(), O1, 0);
   641     bind(L);
   643     // store nearby pc
   644     st(O7, O1, sizeof(intptr_t));
   645     // store file
   646     st(O3, O1, 2*sizeof(intptr_t));
   647     // store line
   648     st(O4, O1, 3*sizeof(intptr_t));
   649     add(O0, 1, O0);
   650     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   651     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   652     restore();
   653     jmpl(a.base(), G0, d);
   654 #else
   655     jmpl(a, d, offset);
   656 #endif /* PRODUCT */
   657   } else {
   658     jmpl(a, d, offset);
   659   }
   660 }
   662 void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
   663   jumpl( a, G0, offset, file, line );
   664 }
   667 // Convert to C varargs format
   668 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   669   // spill register-resident args to their memory slots
   670   // (SPARC calling convention requires callers to have already preallocated these)
   671   // Note that the inArg might in fact be an outgoing argument,
   672   // if a leaf routine or stub does some tricky argument shuffling.
   673   // This routine must work even though one of the saved arguments
   674   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   675   for (Argument savePtr = inArg;
   676        savePtr.is_register();
   677        savePtr = savePtr.successor()) {
   678     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   679   }
   680   // return the address of the first memory slot
   681   add(inArg.address_in_frame(), d);
   682 }
   684 // Conditional breakpoint (for assertion checks in assembly code)
   685 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   686   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   687 }
   689 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   690 void MacroAssembler::breakpoint_trap() {
   691   trap(ST_RESERVED_FOR_USER_0);
   692 }
   694 // flush windows (except current) using flushw instruction if avail.
   695 void MacroAssembler::flush_windows() {
   696   if (VM_Version::v9_instructions_work())  flushw();
   697   else                                     flush_windows_trap();
   698 }
   700 // Write serialization page so VM thread can do a pseudo remote membar
   701 // We use the current thread pointer to calculate a thread specific
   702 // offset to write to within the page. This minimizes bus traffic
   703 // due to cache line collision.
   704 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   705   Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
   706   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   707   if (Assembler::is_simm13(os::vm_page_size())) {
   708     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   709   }
   710   else {
   711     set((os::vm_page_size() - sizeof(int)), tmp1);
   712     and3(tmp2, tmp1, tmp2);
   713   }
   714   load_address(mem_serialize_page);
   715   st(G0, tmp1, tmp2);
   716 }
   720 void MacroAssembler::enter() {
   721   Unimplemented();
   722 }
   724 void MacroAssembler::leave() {
   725   Unimplemented();
   726 }
   728 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   729   if(VM_Version::v9_instructions_work()) {
   730     mulx (s1, s2, d);
   731   } else {
   732     smul (s1, s2, d);
   733   }
   734 }
   736 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   737   if(VM_Version::v9_instructions_work()) {
   738     mulx (s1, simm13a, d);
   739   } else {
   740     smul (s1, simm13a, d);
   741   }
   742 }
   745 #ifdef ASSERT
   746 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   747   const Register s1 = G3_scratch;
   748   const Register s2 = G4_scratch;
   749   Label get_psr_test;
   750   // Get the condition codes the V8 way.
   751   read_ccr_trap(s1);
   752   mov(ccr_save, s2);
   753   // This is a test of V8 which has icc but not xcc
   754   // so mask off the xcc bits
   755   and3(s2, 0xf, s2);
   756   // Compare condition codes from the V8 and V9 ways.
   757   subcc(s2, s1, G0);
   758   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   759   delayed()->breakpoint_trap();
   760   bind(get_psr_test);
   761 }
   763 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   764   const Register s1 = G3_scratch;
   765   const Register s2 = G4_scratch;
   766   Label set_psr_test;
   767   // Write out the saved condition codes the V8 way
   768   write_ccr_trap(ccr_save, s1, s2);
   769   // Read back the condition codes using the V9 instruction
   770   rdccr(s1);
   771   mov(ccr_save, s2);
   772   // This is a test of V8 which has icc but not xcc
   773   // so mask off the xcc bits
   774   and3(s2, 0xf, s2);
   775   and3(s1, 0xf, s1);
   776   // Compare the V8 way with the V9 way.
   777   subcc(s2, s1, G0);
   778   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   779   delayed()->breakpoint_trap();
   780   bind(set_psr_test);
   781 }
   782 #else
   783 #define read_ccr_v8_assert(x)
   784 #define write_ccr_v8_assert(x)
   785 #endif // ASSERT
   787 void MacroAssembler::read_ccr(Register ccr_save) {
   788   if (VM_Version::v9_instructions_work()) {
   789     rdccr(ccr_save);
   790     // Test code sequence used on V8.  Do not move above rdccr.
   791     read_ccr_v8_assert(ccr_save);
   792   } else {
   793     read_ccr_trap(ccr_save);
   794   }
   795 }
   797 void MacroAssembler::write_ccr(Register ccr_save) {
   798   if (VM_Version::v9_instructions_work()) {
   799     // Test code sequence used on V8.  Do not move below wrccr.
   800     write_ccr_v8_assert(ccr_save);
   801     wrccr(ccr_save);
   802   } else {
   803     const Register temp_reg1 = G3_scratch;
   804     const Register temp_reg2 = G4_scratch;
   805     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   806   }
   807 }
   810 // Calls to C land
   812 #ifdef ASSERT
   813 // a hook for debugging
   814 static Thread* reinitialize_thread() {
   815   return ThreadLocalStorage::thread();
   816 }
   817 #else
   818 #define reinitialize_thread ThreadLocalStorage::thread
   819 #endif
   821 #ifdef ASSERT
   822 address last_get_thread = NULL;
   823 #endif
   825 // call this when G2_thread is not known to be valid
   826 void MacroAssembler::get_thread() {
   827   save_frame(0);                // to avoid clobbering O0
   828   mov(G1, L0);                  // avoid clobbering G1
   829   mov(G5_method, L1);           // avoid clobbering G5
   830   mov(G3, L2);                  // avoid clobbering G3 also
   831   mov(G4, L5);                  // avoid clobbering G4
   832 #ifdef ASSERT
   833   Address last_get_thread_addr(L3, (address)&last_get_thread);
   834   sethi(last_get_thread_addr);
   835   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   836   st_ptr(L4, last_get_thread_addr);
   837 #endif
   838   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   839   delayed()->nop();
   840   mov(L0, G1);
   841   mov(L1, G5_method);
   842   mov(L2, G3);
   843   mov(L5, G4);
   844   restore(O0, 0, G2_thread);
   845 }
   847 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   848   Thread* correct_value = ThreadLocalStorage::thread();
   849   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   850   return correct_value;
   851 }
   853 void MacroAssembler::verify_thread() {
   854   if (VerifyThread) {
   855     // NOTE: this chops off the heads of the 64-bit O registers.
   856 #ifdef CC_INTERP
   857     save_frame(0);
   858 #else
   859     // make sure G2_thread contains the right value
   860     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   861     mov(G1, L1);                // avoid clobbering G1
   862     // G2 saved below
   863     mov(G3, L3);                // avoid clobbering G3
   864     mov(G4, L4);                // avoid clobbering G4
   865     mov(G5_method, L5);         // avoid clobbering G5_method
   866 #endif /* CC_INTERP */
   867 #if defined(COMPILER2) && !defined(_LP64)
   868     // Save & restore possible 64-bit Long arguments in G-regs
   869     srlx(G1,32,L0);
   870     srlx(G4,32,L6);
   871 #endif
   872     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   873     delayed()->mov(G2_thread, O0);
   875     mov(L1, G1);                // Restore G1
   876     // G2 restored below
   877     mov(L3, G3);                // restore G3
   878     mov(L4, G4);                // restore G4
   879     mov(L5, G5_method);         // restore G5_method
   880 #if defined(COMPILER2) && !defined(_LP64)
   881     // Save & restore possible 64-bit Long arguments in G-regs
   882     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   883     sllx(G1, 0,G1);             // Clear current high G1 bits
   884     or3 (G1,G2,G1);             // Recover 64-bit G1
   885     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   886     sllx(G4, 0,G4);             // Clear current high G4 bits
   887     or3 (G4,G2,G4);             // Recover 64-bit G4
   888 #endif
   889     restore(O0, 0, G2_thread);
   890   }
   891 }
   894 void MacroAssembler::save_thread(const Register thread_cache) {
   895   verify_thread();
   896   if (thread_cache->is_valid()) {
   897     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   898     mov(G2_thread, thread_cache);
   899   }
   900   if (VerifyThread) {
   901     // smash G2_thread, as if the VM were about to anyway
   902     set(0x67676767, G2_thread);
   903   }
   904 }
   907 void MacroAssembler::restore_thread(const Register thread_cache) {
   908   if (thread_cache->is_valid()) {
   909     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   910     mov(thread_cache, G2_thread);
   911     verify_thread();
   912   } else {
   913     // do it the slow way
   914     get_thread();
   915   }
   916 }
   919 // %%% maybe get rid of [re]set_last_Java_frame
   920 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   921   assert_not_delayed();
   922   Address flags(G2_thread,
   923                 0,
   924                 in_bytes(JavaThread::frame_anchor_offset()) +
   925                          in_bytes(JavaFrameAnchor::flags_offset()));
   926   Address pc_addr(G2_thread,
   927                   0,
   928                   in_bytes(JavaThread::last_Java_pc_offset()));
   930   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   931   // has_last_Java_frame is true and users will look at the rest of the fields.
   932   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   934 #ifdef ASSERT
   935   // Verify that flags was zeroed on return to Java
   936   Label PcOk;
   937   save_frame(0);                // to avoid clobbering O0
   938   ld_ptr(pc_addr, L0);
   939   tst(L0);
   940 #ifdef _LP64
   941   brx(Assembler::zero, false, Assembler::pt, PcOk);
   942 #else
   943   br(Assembler::zero, false, Assembler::pt, PcOk);
   944 #endif // _LP64
   945   delayed() -> nop();
   946   stop("last_Java_pc not zeroed before leaving Java");
   947   bind(PcOk);
   949   // Verify that flags was zeroed on return to Java
   950   Label FlagsOk;
   951   ld(flags, L0);
   952   tst(L0);
   953   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   954   delayed() -> restore();
   955   stop("flags not zeroed before leaving Java");
   956   bind(FlagsOk);
   957 #endif /* ASSERT */
   958   //
   959   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   960   // will always be set to NULL. It is set here so that if we are doing a call to
   961   // native (not VM) that we capture the known pc and don't have to rely on the
   962   // native call having a standard frame linkage where we can find the pc.
   964   if (last_Java_pc->is_valid()) {
   965     st_ptr(last_Java_pc, pc_addr);
   966   }
   968 #ifdef _LP64
   969 #ifdef ASSERT
   970   // Make sure that we have an odd stack
   971   Label StackOk;
   972   andcc(last_java_sp, 0x01, G0);
   973   br(Assembler::notZero, false, Assembler::pt, StackOk);
   974   delayed() -> nop();
   975   stop("Stack Not Biased in set_last_Java_frame");
   976   bind(StackOk);
   977 #endif // ASSERT
   978   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
   979   add( last_java_sp, STACK_BIAS, G4_scratch );
   980   st_ptr(G4_scratch,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   981 #else
   982   st_ptr(last_java_sp,    Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
   983 #endif // _LP64
   984 }
   986 void MacroAssembler::reset_last_Java_frame(void) {
   987   assert_not_delayed();
   989   Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
   990   Address pc_addr(G2_thread,
   991                   0,
   992                   in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
   993   Address flags(G2_thread,
   994                 0,
   995                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   997 #ifdef ASSERT
   998   // check that it WAS previously set
   999 #ifdef CC_INTERP
  1000     save_frame(0);
  1001 #else
  1002     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1003 #endif /* CC_INTERP */
  1004     ld_ptr(sp_addr, L0);
  1005     tst(L0);
  1006     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1007     restore();
  1008 #endif // ASSERT
  1010   st_ptr(G0, sp_addr);
  1011   // Always return last_Java_pc to zero
  1012   st_ptr(G0, pc_addr);
  1013   // Always null flags after return to Java
  1014   st(G0, flags);
  1018 void MacroAssembler::call_VM_base(
  1019   Register        oop_result,
  1020   Register        thread_cache,
  1021   Register        last_java_sp,
  1022   address         entry_point,
  1023   int             number_of_arguments,
  1024   bool            check_exceptions)
  1026   assert_not_delayed();
  1028   // determine last_java_sp register
  1029   if (!last_java_sp->is_valid()) {
  1030     last_java_sp = SP;
  1032   // debugging support
  1033   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1035   // 64-bit last_java_sp is biased!
  1036   set_last_Java_frame(last_java_sp, noreg);
  1037   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1038   save_thread(thread_cache);
  1039   // do the call
  1040   call(entry_point, relocInfo::runtime_call_type);
  1041   if (!VerifyThread)
  1042     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1043   else
  1044     delayed()->nop();             // (thread already passed)
  1045   restore_thread(thread_cache);
  1046   reset_last_Java_frame();
  1048   // check for pending exceptions. use Gtemp as scratch register.
  1049   if (check_exceptions) {
  1050     check_and_forward_exception(Gtemp);
  1053   // get oop result if there is one and reset the value in the thread
  1054   if (oop_result->is_valid()) {
  1055     get_vm_result(oop_result);
  1059 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1061   Label L;
  1063   check_and_handle_popframe(scratch_reg);
  1064   check_and_handle_earlyret(scratch_reg);
  1066   Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1067   ld_ptr(exception_addr, scratch_reg);
  1068   br_null(scratch_reg,false,pt,L);
  1069   delayed()->nop();
  1070   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1071   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1072   delayed()->nop();
  1073   bind(L);
  1077 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1081 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1085 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1086   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1090 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1091   // O0 is reserved for the thread
  1092   mov(arg_1, O1);
  1093   call_VM(oop_result, entry_point, 1, check_exceptions);
  1097 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1098   // O0 is reserved for the thread
  1099   mov(arg_1, O1);
  1100   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1101   call_VM(oop_result, entry_point, 2, check_exceptions);
  1105 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1106   // O0 is reserved for the thread
  1107   mov(arg_1, O1);
  1108   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1109   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1110   call_VM(oop_result, entry_point, 3, check_exceptions);
  1115 // Note: The following call_VM overloadings are useful when a "save"
  1116 // has already been performed by a stub, and the last Java frame is
  1117 // the previous one.  In that case, last_java_sp must be passed as FP
  1118 // instead of SP.
  1121 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1122   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1126 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1127   // O0 is reserved for the thread
  1128   mov(arg_1, O1);
  1129   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1133 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1134   // O0 is reserved for the thread
  1135   mov(arg_1, O1);
  1136   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1137   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1141 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1142   // O0 is reserved for the thread
  1143   mov(arg_1, O1);
  1144   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1145   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1146   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1151 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1152   assert_not_delayed();
  1153   save_thread(thread_cache);
  1154   // do the call
  1155   call(entry_point, relocInfo::runtime_call_type);
  1156   delayed()->nop();
  1157   restore_thread(thread_cache);
  1161 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1162   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1166 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1167   mov(arg_1, O0);
  1168   call_VM_leaf(thread_cache, entry_point, 1);
  1172 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1173   mov(arg_1, O0);
  1174   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1175   call_VM_leaf(thread_cache, entry_point, 2);
  1179 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1180   mov(arg_1, O0);
  1181   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1182   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1183   call_VM_leaf(thread_cache, entry_point, 3);
  1187 void MacroAssembler::get_vm_result(Register oop_result) {
  1188   verify_thread();
  1189   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1190   ld_ptr(    vm_result_addr, oop_result);
  1191   st_ptr(G0, vm_result_addr);
  1192   verify_oop(oop_result);
  1196 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1197   verify_thread();
  1198   Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
  1199   ld_ptr(vm_result_addr_2, oop_result);
  1200   st_ptr(G0, vm_result_addr_2);
  1201   verify_oop(oop_result);
  1205 // We require that C code which does not return a value in vm_result will
  1206 // leave it undisturbed.
  1207 void MacroAssembler::set_vm_result(Register oop_result) {
  1208   verify_thread();
  1209   Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
  1210   verify_oop(oop_result);
  1212 # ifdef ASSERT
  1213     // Check that we are not overwriting any other oop.
  1214 #ifdef CC_INTERP
  1215     save_frame(0);
  1216 #else
  1217     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1218 #endif /* CC_INTERP */
  1219     ld_ptr(vm_result_addr, L0);
  1220     tst(L0);
  1221     restore();
  1222     breakpoint_trap(notZero, Assembler::ptr_cc);
  1223     // }
  1224 # endif
  1226   st_ptr(oop_result, vm_result_addr);
  1230 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1231                                       Register tmp, Register obj) {
  1232 #ifdef _LP64
  1233   srlx(obj, CardTableModRefBS::card_shift, obj);
  1234 #else
  1235   srl(obj, CardTableModRefBS::card_shift, obj);
  1236 #endif
  1237   assert( tmp != obj, "need separate temp reg");
  1238   Address rs(tmp, (address)byte_map_base);
  1239   load_address(rs);
  1240   stb(G0, rs.base(), obj);
  1243 // %%% Note:  The following six instructions have been moved,
  1244 //            unchanged, from assembler_sparc.inline.hpp.
  1245 //            They will be refactored at a later date.
  1247 void MacroAssembler::sethi(intptr_t imm22a,
  1248                             Register d,
  1249                             bool ForceRelocatable,
  1250                             RelocationHolder const& rspec) {
  1251   Address adr( d, (address)imm22a, rspec );
  1252   MacroAssembler::sethi( adr, ForceRelocatable );
  1256 void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
  1257   address save_pc;
  1258   int shiftcnt;
  1259   // if addr of local, do not need to load it
  1260   assert(a.base() != FP  &&  a.base() != SP, "just use ld or st for locals");
  1261 #ifdef _LP64
  1262 # ifdef CHECK_DELAY
  1263   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1264 # endif
  1265   v9_dep();
  1266 //  ForceRelocatable = 1;
  1267   save_pc = pc();
  1268   if (a.hi32() == 0 && a.low32() >= 0) {
  1269     Assembler::sethi(a.low32(), a.base(), a.rspec());
  1271   else if (a.hi32() == -1) {
  1272     Assembler::sethi(~a.low32(), a.base(), a.rspec());
  1273     xor3(a.base(), ~low10(~0), a.base());
  1275   else {
  1276     Assembler::sethi(a.hi32(), a.base(), a.rspec() );   // 22
  1277     if ( a.hi32() & 0x3ff )                     // Any bits?
  1278       or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
  1279     if ( a.low32() & 0xFFFFFC00 ) {             // done?
  1280       if( (a.low32() >> 20) & 0xfff ) {         // Any bits set?
  1281         sllx(a.base(), 12, a.base());           // Make room for next 12 bits
  1282         or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
  1283         shiftcnt = 0;                           // We already shifted
  1285       else
  1286         shiftcnt = 12;
  1287       if( (a.low32() >> 10) & 0x3ff ) {
  1288         sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
  1289         or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
  1290         shiftcnt = 0;
  1292       else
  1293         shiftcnt = 10;
  1294       sllx(a.base(), shiftcnt+10 , a.base());           // Shift leaving disp field 0'd
  1296     else
  1297       sllx( a.base(), 32, a.base() );
  1299   // Pad out the instruction sequence so it can be
  1300   // patched later.
  1301   if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
  1302                             a.rtype() != relocInfo::runtime_call_type) ) {
  1303     while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
  1304       nop();
  1306 #else
  1307   Assembler::sethi(a.hi(), a.base(), a.rspec());
  1308 #endif
  1312 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
  1313 #ifdef _LP64
  1314   if (worst_case) return 7;
  1315   intptr_t iaddr = (intptr_t)a;
  1316   int hi32 = (int)(iaddr >> 32);
  1317   int lo32 = (int)(iaddr);
  1318   int inst_count;
  1319   if (hi32 == 0 && lo32 >= 0)
  1320     inst_count = 1;
  1321   else if (hi32 == -1)
  1322     inst_count = 2;
  1323   else {
  1324     inst_count = 2;
  1325     if ( hi32 & 0x3ff )
  1326       inst_count++;
  1327     if ( lo32 & 0xFFFFFC00 ) {
  1328       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
  1329       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
  1332   return BytesPerInstWord * inst_count;
  1333 #else
  1334   return BytesPerInstWord;
  1335 #endif
  1338 int MacroAssembler::worst_case_size_of_set() {
  1339   return size_of_sethi(NULL, true) + 1;
  1342 void MacroAssembler::set(intptr_t value, Register d,
  1343                          RelocationHolder const& rspec) {
  1344   Address val( d, (address)value, rspec);
  1346   if ( rspec.type() == relocInfo::none ) {
  1347     // can optimize
  1348     if (-4096 <= value  &&  value <= 4095) {
  1349       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1350       return;
  1352     if (inv_hi22(hi22(value)) == value) {
  1353       sethi(val);
  1354       return;
  1357   assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
  1358   sethi( val );
  1359   if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
  1360     add( d, value &  0x3ff, d, rspec);
  1364 void MacroAssembler::setsw(int value, Register d,
  1365                            RelocationHolder const& rspec) {
  1366   Address val( d, (address)value, rspec);
  1367   if ( rspec.type() == relocInfo::none ) {
  1368     // can optimize
  1369     if (-4096 <= value  &&  value <= 4095) {
  1370       or3(G0, value, d);
  1371       return;
  1373     if (inv_hi22(hi22(value)) == value) {
  1374       sethi( val );
  1375 #ifndef _LP64
  1376       if ( value < 0 ) {
  1377         assert_not_delayed();
  1378         sra (d, G0, d);
  1380 #endif
  1381       return;
  1384   assert_not_delayed();
  1385   sethi( val );
  1386   add( d, value &  0x3ff, d, rspec);
  1388   // (A negative value could be loaded in 2 insns with sethi/xor,
  1389   // but it would take a more complex relocation.)
  1390 #ifndef _LP64
  1391   if ( value < 0)
  1392     sra(d, G0, d);
  1393 #endif
  1396 // %%% End of moved six set instructions.
  1399 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1400   assert_not_delayed();
  1401   v9_dep();
  1403   int hi = (int)(value >> 32);
  1404   int lo = (int)(value & ~0);
  1405   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1406   if (Assembler::is_simm13(lo) && value == lo) {
  1407     or3(G0, lo, d);
  1408   } else if (hi == 0) {
  1409     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1410     if (low10(lo) != 0)
  1411       or3(d, low10(lo), d);
  1413   else if (hi == -1) {
  1414     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1415     xor3(d, low10(lo) ^ ~low10(~0), d);
  1417   else if (lo == 0) {
  1418     if (Assembler::is_simm13(hi)) {
  1419       or3(G0, hi, d);
  1420     } else {
  1421       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1422       if (low10(hi) != 0)
  1423         or3(d, low10(hi), d);
  1425     sllx(d, 32, d);
  1427   else {
  1428     Assembler::sethi(hi, tmp);
  1429     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1430     if (low10(hi) != 0)
  1431       or3 (tmp, low10(hi), tmp);
  1432     if (low10(lo) != 0)
  1433       or3 (  d, low10(lo),   d);
  1434     sllx(tmp, 32, tmp);
  1435     or3 (d, tmp, d);
  1439 // compute size in bytes of sparc frame, given
  1440 // number of extraWords
  1441 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1443   int nWords = frame::memory_parameter_word_sp_offset;
  1445   nWords += extraWords;
  1447   if (nWords & 1) ++nWords; // round up to double-word
  1449   return nWords * BytesPerWord;
  1453 // save_frame: given number of "extra" words in frame,
  1454 // issue approp. save instruction (p 200, v8 manual)
  1456 void MacroAssembler::save_frame(int extraWords = 0) {
  1457   int delta = -total_frame_size_in_bytes(extraWords);
  1458   if (is_simm13(delta)) {
  1459     save(SP, delta, SP);
  1460   } else {
  1461     set(delta, G3_scratch);
  1462     save(SP, G3_scratch, SP);
  1467 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1468   if (is_simm13(-size_in_bytes)) {
  1469     save(SP, -size_in_bytes, SP);
  1470   } else {
  1471     set(-size_in_bytes, G3_scratch);
  1472     save(SP, G3_scratch, SP);
  1477 void MacroAssembler::save_frame_and_mov(int extraWords,
  1478                                         Register s1, Register d1,
  1479                                         Register s2, Register d2) {
  1480   assert_not_delayed();
  1482   // The trick here is to use precisely the same memory word
  1483   // that trap handlers also use to save the register.
  1484   // This word cannot be used for any other purpose, but
  1485   // it works fine to save the register's value, whether or not
  1486   // an interrupt flushes register windows at any given moment!
  1487   Address s1_addr;
  1488   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1489     s1_addr = s1->address_in_saved_window();
  1490     st_ptr(s1, s1_addr);
  1493   Address s2_addr;
  1494   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1495     s2_addr = s2->address_in_saved_window();
  1496     st_ptr(s2, s2_addr);
  1499   save_frame(extraWords);
  1501   if (s1_addr.base() == SP) {
  1502     ld_ptr(s1_addr.after_save(), d1);
  1503   } else if (s1->is_valid()) {
  1504     mov(s1->after_save(), d1);
  1507   if (s2_addr.base() == SP) {
  1508     ld_ptr(s2_addr.after_save(), d2);
  1509   } else if (s2->is_valid()) {
  1510     mov(s2->after_save(), d2);
  1515 Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
  1516   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1517   int oop_index = oop_recorder()->allocate_index(obj);
  1518   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1522 Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
  1523   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1524   int oop_index = oop_recorder()->find_index(obj);
  1525   return Address(d, address(obj), oop_Relocation::spec(oop_index));
  1529 void MacroAssembler::align(int modulus) {
  1530   while (offset() % modulus != 0) nop();
  1534 void MacroAssembler::safepoint() {
  1535   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1539 void RegistersForDebugging::print(outputStream* s) {
  1540   int j;
  1541   for ( j = 0;  j < 8;  ++j )
  1542     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1543     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1544   s->cr();
  1546   for ( j = 0;  j < 8;  ++j )
  1547     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1548   s->cr();
  1550   for ( j = 0;  j < 8;  ++j )
  1551     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1552     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1553   s->cr();
  1555   for ( j = 0;  j < 8;  ++j )
  1556     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1557   s->cr();
  1559   // print out floats with compression
  1560   for (j = 0; j < 32; ) {
  1561     jfloat val = f[j];
  1562     int last = j;
  1563     for ( ;  last+1 < 32;  ++last ) {
  1564       char b1[1024], b2[1024];
  1565       sprintf(b1, "%f", val);
  1566       sprintf(b2, "%f", f[last+1]);
  1567       if (strcmp(b1, b2))
  1568         break;
  1570     s->print("f%d", j);
  1571     if ( j != last )  s->print(" - f%d", last);
  1572     s->print(" = %f", val);
  1573     s->fill_to(25);
  1574     s->print_cr(" (0x%x)", val);
  1575     j = last + 1;
  1577   s->cr();
  1579   // and doubles (evens only)
  1580   for (j = 0; j < 32; ) {
  1581     jdouble val = d[j];
  1582     int last = j;
  1583     for ( ;  last+1 < 32;  ++last ) {
  1584       char b1[1024], b2[1024];
  1585       sprintf(b1, "%f", val);
  1586       sprintf(b2, "%f", d[last+1]);
  1587       if (strcmp(b1, b2))
  1588         break;
  1590     s->print("d%d", 2 * j);
  1591     if ( j != last )  s->print(" - d%d", last);
  1592     s->print(" = %f", val);
  1593     s->fill_to(30);
  1594     s->print("(0x%x)", *(int*)&val);
  1595     s->fill_to(42);
  1596     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1597     j = last + 1;
  1599   s->cr();
  1602 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1603   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1604   a->flush_windows();
  1605   int i;
  1606   for (i = 0; i < 8; ++i) {
  1607     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1608     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1609     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1610     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1612   for (i = 0;  i < 32; ++i) {
  1613     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1615   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1616     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1620 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1621   for (int i = 1; i < 8;  ++i) {
  1622     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1624   for (int j = 0; j < 32; ++j) {
  1625     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1627   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1628     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1633 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1634 void MacroAssembler::push_fTOS() {
  1635   // %%%%%% need to implement this
  1638 // pops double TOS element from CPU stack and pushes on FPU stack
  1639 void MacroAssembler::pop_fTOS() {
  1640   // %%%%%% need to implement this
  1643 void MacroAssembler::empty_FPU_stack() {
  1644   // %%%%%% need to implement this
  1647 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1648   // plausibility check for oops
  1649   if (!VerifyOops) return;
  1651   if (reg == G0)  return;       // always NULL, which is always an oop
  1653   char buffer[64];
  1654 #ifdef COMPILER1
  1655   if (CommentedAssembly) {
  1656     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1657     block_comment(buffer);
  1659 #endif
  1661   int len = strlen(file) + strlen(msg) + 1 + 4;
  1662   sprintf(buffer, "%d", line);
  1663   len += strlen(buffer);
  1664   sprintf(buffer, " at offset %d ", offset());
  1665   len += strlen(buffer);
  1666   char * real_msg = new char[len];
  1667   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1669   // Call indirectly to solve generation ordering problem
  1670   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1672   // Make some space on stack above the current register window.
  1673   // Enough to hold 8 64-bit registers.
  1674   add(SP,-8*8,SP);
  1676   // Save some 64-bit registers; a normal 'save' chops the heads off
  1677   // of 64-bit longs in the 32-bit build.
  1678   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1679   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1680   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1681   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1683   set((intptr_t)real_msg, O1);
  1684   // Load address to call to into O7
  1685   load_ptr_contents(a, O7);
  1686   // Register call to verify_oop_subroutine
  1687   callr(O7, G0);
  1688   delayed()->nop();
  1689   // recover frame size
  1690   add(SP, 8*8,SP);
  1693 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1694   // plausibility check for oops
  1695   if (!VerifyOops) return;
  1697   char buffer[64];
  1698   sprintf(buffer, "%d", line);
  1699   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1700   sprintf(buffer, " at SP+%d ", addr.disp());
  1701   len += strlen(buffer);
  1702   char * real_msg = new char[len];
  1703   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1705   // Call indirectly to solve generation ordering problem
  1706   Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
  1708   // Make some space on stack above the current register window.
  1709   // Enough to hold 8 64-bit registers.
  1710   add(SP,-8*8,SP);
  1712   // Save some 64-bit registers; a normal 'save' chops the heads off
  1713   // of 64-bit longs in the 32-bit build.
  1714   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1715   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1716   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1717   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1719   set((intptr_t)real_msg, O1);
  1720   // Load address to call to into O7
  1721   load_ptr_contents(a, O7);
  1722   // Register call to verify_oop_subroutine
  1723   callr(O7, G0);
  1724   delayed()->nop();
  1725   // recover frame size
  1726   add(SP, 8*8,SP);
  1729 // side-door communication with signalHandler in os_solaris.cpp
  1730 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1732 // This macro is expanded just once; it creates shared code.  Contract:
  1733 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1734 // registers, including flags.  May not use a register 'save', as this blows
  1735 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1736 // call.
  1737 void MacroAssembler::verify_oop_subroutine() {
  1738   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1740   // Leaf call; no frame.
  1741   Label succeed, fail, null_or_fail;
  1743   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1744   // O0 is now the oop to be checked.  O7 is the return address.
  1745   Register O0_obj = O0;
  1747   // Save some more registers for temps.
  1748   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1749   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1750   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1751   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1753   // Save flags
  1754   Register O5_save_flags = O5;
  1755   rdccr( O5_save_flags );
  1757   { // count number of verifies
  1758     Register O2_adr   = O2;
  1759     Register O3_accum = O3;
  1760     Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
  1761     sethi(count_addr);
  1762     ld(count_addr, O3_accum);
  1763     inc(O3_accum);
  1764     st(O3_accum, count_addr);
  1767   Register O2_mask = O2;
  1768   Register O3_bits = O3;
  1769   Register O4_temp = O4;
  1771   // mark lower end of faulting range
  1772   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1773   _verify_oop_implicit_branch[0] = pc();
  1775   // We can't check the mark oop because it could be in the process of
  1776   // locking or unlocking while this is running.
  1777   set(Universe::verify_oop_mask (), O2_mask);
  1778   set(Universe::verify_oop_bits (), O3_bits);
  1780   // assert((obj & oop_mask) == oop_bits);
  1781   and3(O0_obj, O2_mask, O4_temp);
  1782   cmp(O4_temp, O3_bits);
  1783   brx(notEqual, false, pn, null_or_fail);
  1784   delayed()->nop();
  1786   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1787     // the null_or_fail case is useless; must test for null separately
  1788     br_null(O0_obj, false, pn, succeed);
  1789     delayed()->nop();
  1792   // Check the klassOop of this object for being in the right area of memory.
  1793   // Cannot do the load in the delay above slot in case O0 is null
  1794   load_klass(O0_obj, O0_obj);
  1795   // assert((klass & klass_mask) == klass_bits);
  1796   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1797     set(Universe::verify_klass_mask(), O2_mask);
  1798   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1799     set(Universe::verify_klass_bits(), O3_bits);
  1800   and3(O0_obj, O2_mask, O4_temp);
  1801   cmp(O4_temp, O3_bits);
  1802   brx(notEqual, false, pn, fail);
  1803   delayed()->nop();
  1804   // Check the klass's klass
  1805   load_klass(O0_obj, O0_obj);
  1806   and3(O0_obj, O2_mask, O4_temp);
  1807   cmp(O4_temp, O3_bits);
  1808   brx(notEqual, false, pn, fail);
  1809   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1811   // mark upper end of faulting range
  1812   _verify_oop_implicit_branch[1] = pc();
  1814   //-----------------------
  1815   // all tests pass
  1816   bind(succeed);
  1818   // Restore prior 64-bit registers
  1819   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1820   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1821   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1822   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1823   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1824   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1826   retl();                       // Leaf return; restore prior O7 in delay slot
  1827   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1829   //-----------------------
  1830   bind(null_or_fail);           // nulls are less common but OK
  1831   br_null(O0_obj, false, pt, succeed);
  1832   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1834   //-----------------------
  1835   // report failure:
  1836   bind(fail);
  1837   _verify_oop_implicit_branch[2] = pc();
  1839   wrccr( O5_save_flags ); // Restore CCR's
  1841   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1843   // stop_subroutine expects message pointer in I1.
  1844   mov(I1, O1);
  1846   // Restore prior 64-bit registers
  1847   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1848   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1849   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1850   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1851   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1852   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1854   // factor long stop-sequence into subroutine to save space
  1855   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1857   // call indirectly to solve generation ordering problem
  1858   Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1859   load_ptr_contents(a, O5);
  1860   jmpl(O5, 0, O7);
  1861   delayed()->nop();
  1865 void MacroAssembler::stop(const char* msg) {
  1866   // save frame first to get O7 for return address
  1867   // add one word to size in case struct is odd number of words long
  1868   // It must be doubleword-aligned for storing doubles into it.
  1870     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1872     // stop_subroutine expects message pointer in I1.
  1873     set((intptr_t)msg, O1);
  1875     // factor long stop-sequence into subroutine to save space
  1876     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1878     // call indirectly to solve generation ordering problem
  1879     Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
  1880     load_ptr_contents(a, O5);
  1881     jmpl(O5, 0, O7);
  1882     delayed()->nop();
  1884     breakpoint_trap();   // make stop actually stop rather than writing
  1885                          // unnoticeable results in the output files.
  1887     // restore(); done in callee to save space!
  1891 void MacroAssembler::warn(const char* msg) {
  1892   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1893   RegistersForDebugging::save_registers(this);
  1894   mov(O0, L0);
  1895   set((intptr_t)msg, O0);
  1896   call( CAST_FROM_FN_PTR(address, warning) );
  1897   delayed()->nop();
  1898 //  ret();
  1899 //  delayed()->restore();
  1900   RegistersForDebugging::restore_registers(this, L0);
  1901   restore();
  1905 void MacroAssembler::untested(const char* what) {
  1906   // We must be able to turn interactive prompting off
  1907   // in order to run automated test scripts on the VM
  1908   // Use the flag ShowMessageBoxOnError
  1910   char* b = new char[1024];
  1911   sprintf(b, "untested: %s", what);
  1913   if ( ShowMessageBoxOnError )   stop(b);
  1914   else                           warn(b);
  1918 void MacroAssembler::stop_subroutine() {
  1919   RegistersForDebugging::save_registers(this);
  1921   // for the sake of the debugger, stick a PC on the current frame
  1922   // (this assumes that the caller has performed an extra "save")
  1923   mov(I7, L7);
  1924   add(O7, -7 * BytesPerInt, I7);
  1926   save_frame(); // one more save to free up another O7 register
  1927   mov(I0, O1); // addr of reg save area
  1929   // We expect pointer to message in I1. Caller must set it up in O1
  1930   mov(I1, O0); // get msg
  1931   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1932   delayed()->nop();
  1934   restore();
  1936   RegistersForDebugging::restore_registers(this, O0);
  1938   save_frame(0);
  1939   call(CAST_FROM_FN_PTR(address,breakpoint));
  1940   delayed()->nop();
  1941   restore();
  1943   mov(L7, I7);
  1944   retl();
  1945   delayed()->restore(); // see stop above
  1949 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  1950   if ( ShowMessageBoxOnError ) {
  1951       JavaThreadState saved_state = JavaThread::current()->thread_state();
  1952       JavaThread::current()->set_thread_state(_thread_in_vm);
  1954         // In order to get locks work, we need to fake a in_VM state
  1955         ttyLocker ttyl;
  1956         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  1957         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  1958           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  1960         if (os::message_box(msg, "Execution stopped, print registers?"))
  1961           regs->print(::tty);
  1963       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  1965   else
  1966      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  1967   assert(false, "error");
  1971 #ifndef PRODUCT
  1972 void MacroAssembler::test() {
  1973   ResourceMark rm;
  1975   CodeBuffer cb("test", 10000, 10000);
  1976   MacroAssembler* a = new MacroAssembler(&cb);
  1977   VM_Version::allow_all();
  1978   a->test_v9();
  1979   a->test_v8_onlys();
  1980   VM_Version::revert();
  1982   StubRoutines::Sparc::test_stop_entry()();
  1984 #endif
  1987 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  1988   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  1989   Label no_extras;
  1990   br( negative, true, pt, no_extras ); // if neg, clear reg
  1991   delayed()->set( 0, Rresult);         // annuled, so only if taken
  1992   bind( no_extras );
  1996 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  1997 #ifdef _LP64
  1998   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  1999 #else
  2000   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2001 #endif
  2002   bclr(1, Rresult);
  2003   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2007 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2008   calc_frame_size(Rextra_words, Rresult);
  2009   neg(Rresult);
  2010   save(SP, Rresult, SP);
  2014 // ---------------------------------------------------------
  2015 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2016   switch (c) {
  2017     /*case zero: */
  2018     case Assembler::equal:        return Assembler::rc_z;
  2019     case Assembler::lessEqual:    return Assembler::rc_lez;
  2020     case Assembler::less:         return Assembler::rc_lz;
  2021     /*case notZero:*/
  2022     case Assembler::notEqual:     return Assembler::rc_nz;
  2023     case Assembler::greater:      return Assembler::rc_gz;
  2024     case Assembler::greaterEqual: return Assembler::rc_gez;
  2026   ShouldNotReachHere();
  2027   return Assembler::rc_z;
  2030 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2031 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
  2032   tst(s1);
  2033   br (c, a, p, L);
  2037 // Compares a pointer register with zero and branches on null.
  2038 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2039 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2040   assert_not_delayed();
  2041 #ifdef _LP64
  2042   bpr( rc_z, a, p, s1, L );
  2043 #else
  2044   tst(s1);
  2045   br ( zero, a, p, L );
  2046 #endif
  2049 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2050   assert_not_delayed();
  2051 #ifdef _LP64
  2052   bpr( rc_nz, a, p, s1, L );
  2053 #else
  2054   tst(s1);
  2055   br ( notZero, a, p, L );
  2056 #endif
  2059 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2060                                      Register s1, address d,
  2061                                      relocInfo::relocType rt ) {
  2062   if (VM_Version::v9_instructions_work()) {
  2063     bpr(rc, a, p, s1, d, rt);
  2064   } else {
  2065     tst(s1);
  2066     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
  2070 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
  2071                                      Register s1, Label& L ) {
  2072   if (VM_Version::v9_instructions_work()) {
  2073     bpr(rc, a, p, s1, L);
  2074   } else {
  2075     tst(s1);
  2076     br(reg_cond_to_cc_cond(rc), a, p, L);
  2081 // instruction sequences factored across compiler & interpreter
  2084 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2085                            Register Rb_hi, Register Rb_low,
  2086                            Register Rresult) {
  2088   Label check_low_parts, done;
  2090   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2091   br(equal, true, pt, check_low_parts);
  2092   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2094   // And, with an unsigned comparison, it does not matter if the numbers
  2095   // are negative or not.
  2096   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2097   // The second one is bigger (unsignedly).
  2099   // Other notes:  The first move in each triplet can be unconditional
  2100   // (and therefore probably prefetchable).
  2101   // And the equals case for the high part does not need testing,
  2102   // since that triplet is reached only after finding the high halves differ.
  2104   if (VM_Version::v9_instructions_work()) {
  2106                                     mov  (                     -1, Rresult);
  2107     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2109   else {
  2110     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2111     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2114   bind( check_low_parts );
  2116   if (VM_Version::v9_instructions_work()) {
  2117     mov(                               -1, Rresult);
  2118     movcc(equal,           false, icc,  0, Rresult);
  2119     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2121   else {
  2122                                                     set(-1, Rresult);
  2123     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2124     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2126   bind( done );
  2129 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2130   subcc(  G0, Rlow, Rlow );
  2131   subc(   G0, Rhi,  Rhi  );
  2134 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2135                            Register Rcount,
  2136                            Register Rout_high, Register Rout_low,
  2137                            Register Rtemp ) {
  2140   Register Ralt_count = Rtemp;
  2141   Register Rxfer_bits = Rtemp;
  2143   assert( Ralt_count != Rin_high
  2144       &&  Ralt_count != Rin_low
  2145       &&  Ralt_count != Rcount
  2146       &&  Rxfer_bits != Rin_low
  2147       &&  Rxfer_bits != Rin_high
  2148       &&  Rxfer_bits != Rcount
  2149       &&  Rxfer_bits != Rout_low
  2150       &&  Rout_low   != Rin_high,
  2151         "register alias checks");
  2153   Label big_shift, done;
  2155   // This code can be optimized to use the 64 bit shifts in V9.
  2156   // Here we use the 32 bit shifts.
  2158   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2159   subcc(Rcount,         31,             Ralt_count);
  2160   br(greater, true, pn, big_shift);
  2161   delayed()->
  2162   dec(Ralt_count);
  2164   // shift < 32 bits, Ralt_count = Rcount-31
  2166   // We get the transfer bits by shifting right by 32-count the low
  2167   // register. This is done by shifting right by 31-count and then by one
  2168   // more to take care of the special (rare) case where count is zero
  2169   // (shifting by 32 would not work).
  2171   neg(  Ralt_count                                 );
  2173   // The order of the next two instructions is critical in the case where
  2174   // Rin and Rout are the same and should not be reversed.
  2176   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
  2177   if (Rcount != Rout_low) {
  2178     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2180   sll(  Rin_high,       Rcount,         Rout_high  );
  2181   if (Rcount == Rout_low) {
  2182     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
  2184   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
  2185   ba (false, done);
  2186   delayed()->
  2187   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2189   // shift >= 32 bits, Ralt_count = Rcount-32
  2190   bind(big_shift);
  2191   sll(  Rin_low,        Ralt_count,     Rout_high  );
  2192   clr(  Rout_low                                   );
  2194   bind(done);
  2198 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2199                            Register Rcount,
  2200                            Register Rout_high, Register Rout_low,
  2201                            Register Rtemp ) {
  2203   Register Ralt_count = Rtemp;
  2204   Register Rxfer_bits = Rtemp;
  2206   assert( Ralt_count != Rin_high
  2207       &&  Ralt_count != Rin_low
  2208       &&  Ralt_count != Rcount
  2209       &&  Rxfer_bits != Rin_low
  2210       &&  Rxfer_bits != Rin_high
  2211       &&  Rxfer_bits != Rcount
  2212       &&  Rxfer_bits != Rout_high
  2213       &&  Rout_high  != Rin_low,
  2214         "register alias checks");
  2216   Label big_shift, done;
  2218   // This code can be optimized to use the 64 bit shifts in V9.
  2219   // Here we use the 32 bit shifts.
  2221   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2222   subcc(Rcount,         31,             Ralt_count);
  2223   br(greater, true, pn, big_shift);
  2224   delayed()->dec(Ralt_count);
  2226   // shift < 32 bits, Ralt_count = Rcount-31
  2228   // We get the transfer bits by shifting left by 32-count the high
  2229   // register. This is done by shifting left by 31-count and then by one
  2230   // more to take care of the special (rare) case where count is zero
  2231   // (shifting by 32 would not work).
  2233   neg(  Ralt_count                                  );
  2234   if (Rcount != Rout_low) {
  2235     srl(        Rin_low,        Rcount,         Rout_low    );
  2238   // The order of the next two instructions is critical in the case where
  2239   // Rin and Rout are the same and should not be reversed.
  2241   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2242   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
  2243   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2244   if (Rcount == Rout_low) {
  2245     srl(        Rin_low,        Rcount,         Rout_low    );
  2247   ba (false, done);
  2248   delayed()->
  2249   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2251   // shift >= 32 bits, Ralt_count = Rcount-32
  2252   bind(big_shift);
  2254   sra(  Rin_high,       Ralt_count,     Rout_low    );
  2255   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
  2257   bind( done );
  2262 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2263                             Register Rcount,
  2264                             Register Rout_high, Register Rout_low,
  2265                             Register Rtemp ) {
  2267   Register Ralt_count = Rtemp;
  2268   Register Rxfer_bits = Rtemp;
  2270   assert( Ralt_count != Rin_high
  2271       &&  Ralt_count != Rin_low
  2272       &&  Ralt_count != Rcount
  2273       &&  Rxfer_bits != Rin_low
  2274       &&  Rxfer_bits != Rin_high
  2275       &&  Rxfer_bits != Rcount
  2276       &&  Rxfer_bits != Rout_high
  2277       &&  Rout_high  != Rin_low,
  2278         "register alias checks");
  2280   Label big_shift, done;
  2282   // This code can be optimized to use the 64 bit shifts in V9.
  2283   // Here we use the 32 bit shifts.
  2285   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
  2286   subcc(Rcount,         31,             Ralt_count);
  2287   br(greater, true, pn, big_shift);
  2288   delayed()->dec(Ralt_count);
  2290   // shift < 32 bits, Ralt_count = Rcount-31
  2292   // We get the transfer bits by shifting left by 32-count the high
  2293   // register. This is done by shifting left by 31-count and then by one
  2294   // more to take care of the special (rare) case where count is zero
  2295   // (shifting by 32 would not work).
  2297   neg(  Ralt_count                                  );
  2298   if (Rcount != Rout_low) {
  2299     srl(        Rin_low,        Rcount,         Rout_low    );
  2302   // The order of the next two instructions is critical in the case where
  2303   // Rin and Rout are the same and should not be reversed.
  2305   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
  2306   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
  2307   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
  2308   if (Rcount == Rout_low) {
  2309     srl(        Rin_low,        Rcount,         Rout_low    );
  2311   ba (false, done);
  2312   delayed()->
  2313   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
  2315   // shift >= 32 bits, Ralt_count = Rcount-32
  2316   bind(big_shift);
  2318   srl(  Rin_high,       Ralt_count,     Rout_low    );
  2319   clr(  Rout_high                                   );
  2321   bind( done );
  2324 #ifdef _LP64
  2325 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2326   cmp(Ra, Rb);
  2327   mov(                       -1, Rresult);
  2328   movcc(equal,   false, xcc,  0, Rresult);
  2329   movcc(greater, false, xcc,  1, Rresult);
  2331 #endif
  2334 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2335                                 FloatRegister Fa, FloatRegister Fb,
  2336                                 Register Rresult) {
  2338   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2340   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2341   Condition eq =                          f_equal;
  2342   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2344   if (VM_Version::v9_instructions_work()) {
  2346     mov(                   -1, Rresult );
  2347     movcc( eq, true, fcc0,  0, Rresult );
  2348     movcc( gt, true, fcc0,  1, Rresult );
  2350   } else {
  2351     Label done;
  2353                                          set( -1, Rresult );
  2354     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2355     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2356     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2358     bind (done);
  2363 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2365   if (VM_Version::v9_instructions_work()) {
  2366     Assembler::fneg(w, s, d);
  2367   } else {
  2368     if (w == FloatRegisterImpl::S) {
  2369       Assembler::fneg(w, s, d);
  2370     } else if (w == FloatRegisterImpl::D) {
  2371       // number() does a sanity check on the alignment.
  2372       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2373         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2375       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2376       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2377     } else {
  2378       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2380       // number() does a sanity check on the alignment.
  2381       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2382         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2384       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2385       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2386       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2387       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2392 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2394   if (VM_Version::v9_instructions_work()) {
  2395     Assembler::fmov(w, s, d);
  2396   } else {
  2397     if (w == FloatRegisterImpl::S) {
  2398       Assembler::fmov(w, s, d);
  2399     } else if (w == FloatRegisterImpl::D) {
  2400       // number() does a sanity check on the alignment.
  2401       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2402         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2404       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2405       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2406     } else {
  2407       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2409       // number() does a sanity check on the alignment.
  2410       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2411         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2413       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2414       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2415       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2416       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2421 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2423   if (VM_Version::v9_instructions_work()) {
  2424     Assembler::fabs(w, s, d);
  2425   } else {
  2426     if (w == FloatRegisterImpl::S) {
  2427       Assembler::fabs(w, s, d);
  2428     } else if (w == FloatRegisterImpl::D) {
  2429       // number() does a sanity check on the alignment.
  2430       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2431         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2433       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2434       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2435     } else {
  2436       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2438       // number() does a sanity check on the alignment.
  2439       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2440        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2442       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2443       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2444       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2445       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2450 void MacroAssembler::save_all_globals_into_locals() {
  2451   mov(G1,L1);
  2452   mov(G2,L2);
  2453   mov(G3,L3);
  2454   mov(G4,L4);
  2455   mov(G5,L5);
  2456   mov(G6,L6);
  2457   mov(G7,L7);
  2460 void MacroAssembler::restore_globals_from_locals() {
  2461   mov(L1,G1);
  2462   mov(L2,G2);
  2463   mov(L3,G3);
  2464   mov(L4,G4);
  2465   mov(L5,G5);
  2466   mov(L6,G6);
  2467   mov(L7,G7);
  2470 // Use for 64 bit operation.
  2471 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2473   // store ptr_reg as the new top value
  2474 #ifdef _LP64
  2475   casx(top_ptr_reg, top_reg, ptr_reg);
  2476 #else
  2477   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2478 #endif // _LP64
  2481 // [RGV] This routine does not handle 64 bit operations.
  2482 //       use casx_under_lock() or casx directly!!!
  2483 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2485   // store ptr_reg as the new top value
  2486   if (VM_Version::v9_instructions_work()) {
  2487     cas(top_ptr_reg, top_reg, ptr_reg);
  2488   } else {
  2490     // If the register is not an out nor global, it is not visible
  2491     // after the save.  Allocate a register for it, save its
  2492     // value in the register save area (the save may not flush
  2493     // registers to the save area).
  2495     Register top_ptr_reg_after_save;
  2496     Register top_reg_after_save;
  2497     Register ptr_reg_after_save;
  2499     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2500       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2501     } else {
  2502       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2503       top_ptr_reg_after_save = L0;
  2504       st(top_ptr_reg, reg_save_addr);
  2507     if (top_reg->is_out() || top_reg->is_global()) {
  2508       top_reg_after_save = top_reg->after_save();
  2509     } else {
  2510       Address reg_save_addr = top_reg->address_in_saved_window();
  2511       top_reg_after_save = L1;
  2512       st(top_reg, reg_save_addr);
  2515     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2516       ptr_reg_after_save = ptr_reg->after_save();
  2517     } else {
  2518       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2519       ptr_reg_after_save = L2;
  2520       st(ptr_reg, reg_save_addr);
  2523     const Register& lock_reg = L3;
  2524     const Register& lock_ptr_reg = L4;
  2525     const Register& value_reg = L5;
  2526     const Register& yield_reg = L6;
  2527     const Register& yieldall_reg = L7;
  2529     save_frame();
  2531     if (top_ptr_reg_after_save == L0) {
  2532       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2535     if (top_reg_after_save == L1) {
  2536       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2539     if (ptr_reg_after_save == L2) {
  2540       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2543     Label(retry_get_lock);
  2544     Label(not_same);
  2545     Label(dont_yield);
  2547     assert(lock_addr, "lock_address should be non null for v8");
  2548     set((intptr_t)lock_addr, lock_ptr_reg);
  2549     // Initialize yield counter
  2550     mov(G0,yield_reg);
  2551     mov(G0, yieldall_reg);
  2552     set(StubRoutines::Sparc::locked, lock_reg);
  2554     bind(retry_get_lock);
  2555     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
  2556     br(Assembler::less, false, Assembler::pt, dont_yield);
  2557     delayed()->nop();
  2559     if(use_call_vm) {
  2560       Untested("Need to verify global reg consistancy");
  2561       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2562     } else {
  2563       // Save the regs and make space for a C call
  2564       save(SP, -96, SP);
  2565       save_all_globals_into_locals();
  2566       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2567       delayed()->mov(yieldall_reg, O0);
  2568       restore_globals_from_locals();
  2569       restore();
  2572     // reset the counter
  2573     mov(G0,yield_reg);
  2574     add(yieldall_reg, 1, yieldall_reg);
  2576     bind(dont_yield);
  2577     // try to get lock
  2578     swap(lock_ptr_reg, 0, lock_reg);
  2580     // did we get the lock?
  2581     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2582     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2583     delayed()->add(yield_reg,1,yield_reg);
  2585     // yes, got lock.  do we have the same top?
  2586     ld(top_ptr_reg_after_save, 0, value_reg);
  2587     cmp(value_reg, top_reg_after_save);
  2588     br(Assembler::notEqual, false, Assembler::pn, not_same);
  2589     delayed()->nop();
  2591     // yes, same top.
  2592     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2593     membar(Assembler::StoreStore);
  2595     bind(not_same);
  2596     mov(value_reg, ptr_reg_after_save);
  2597     st(lock_reg, lock_ptr_reg, 0); // unlock
  2599     restore();
  2603 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  2604                                           Label& done, Label* slow_case,
  2605                                           BiasedLockingCounters* counters) {
  2606   assert(UseBiasedLocking, "why call this otherwise?");
  2608   if (PrintBiasedLockingStatistics) {
  2609     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  2610     if (counters == NULL)
  2611       counters = BiasedLocking::counters();
  2614   Label cas_label;
  2616   // Biased locking
  2617   // See whether the lock is currently biased toward our thread and
  2618   // whether the epoch is still valid
  2619   // Note that the runtime guarantees sufficient alignment of JavaThread
  2620   // pointers to allow age to be placed into low bits
  2621   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  2622   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2623   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2624   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
  2625   delayed()->nop();
  2627   load_klass(obj_reg, temp_reg);
  2628   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2629   or3(G2_thread, temp_reg, temp_reg);
  2630   xor3(mark_reg, temp_reg, temp_reg);
  2631   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  2632   if (counters != NULL) {
  2633     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2634     // Reload mark_reg as we may need it later
  2635     ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
  2637   brx(Assembler::equal, true, Assembler::pt, done);
  2638   delayed()->nop();
  2640   Label try_revoke_bias;
  2641   Label try_rebias;
  2642   Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
  2643   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2645   // At this point we know that the header has the bias pattern and
  2646   // that we are not the bias owner in the current epoch. We need to
  2647   // figure out more details about the state of the header in order to
  2648   // know what operations can be legally performed on the object's
  2649   // header.
  2651   // If the low three bits in the xor result aren't clear, that means
  2652   // the prototype header is no longer biased and we have to revoke
  2653   // the bias on this object.
  2654   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  2655   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  2657   // Biasing is still enabled for this data type. See whether the
  2658   // epoch of the current bias is still valid, meaning that the epoch
  2659   // bits of the mark word are equal to the epoch bits of the
  2660   // prototype header. (Note that the prototype header's epoch bits
  2661   // only change at a safepoint.) If not, attempt to rebias the object
  2662   // toward the current thread. Note that we must be absolutely sure
  2663   // that the current epoch is invalid in order to do this because
  2664   // otherwise the manipulations it performs on the mark word are
  2665   // illegal.
  2666   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  2667   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  2669   // The epoch of the current bias is still valid but we know nothing
  2670   // about the owner; it might be set or it might be clear. Try to
  2671   // acquire the bias of the object using an atomic operation. If this
  2672   // fails we will go in to the runtime to revoke the object's bias.
  2673   // Note that we first construct the presumed unbiased header so we
  2674   // don't accidentally blow away another thread's valid bias.
  2675   delayed()->and3(mark_reg,
  2676                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  2677                   mark_reg);
  2678   or3(G2_thread, mark_reg, temp_reg);
  2679   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2680                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2681   // If the biasing toward our thread failed, this means that
  2682   // another thread succeeded in biasing it toward itself and we
  2683   // need to revoke that bias. The revocation will occur in the
  2684   // interpreter runtime in the slow case.
  2685   cmp(mark_reg, temp_reg);
  2686   if (counters != NULL) {
  2687     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  2689   if (slow_case != NULL) {
  2690     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2691     delayed()->nop();
  2693   br(Assembler::always, false, Assembler::pt, done);
  2694   delayed()->nop();
  2696   bind(try_rebias);
  2697   // At this point we know the epoch has expired, meaning that the
  2698   // current "bias owner", if any, is actually invalid. Under these
  2699   // circumstances _only_, we are allowed to use the current header's
  2700   // value as the comparison value when doing the cas to acquire the
  2701   // bias in the current epoch. In other words, we allow transfer of
  2702   // the bias from one thread to another directly in this situation.
  2703   //
  2704   // FIXME: due to a lack of registers we currently blow away the age
  2705   // bits in this situation. Should attempt to preserve them.
  2706   load_klass(obj_reg, temp_reg);
  2707   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2708   or3(G2_thread, temp_reg, temp_reg);
  2709   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2710                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2711   // If the biasing toward our thread failed, this means that
  2712   // another thread succeeded in biasing it toward itself and we
  2713   // need to revoke that bias. The revocation will occur in the
  2714   // interpreter runtime in the slow case.
  2715   cmp(mark_reg, temp_reg);
  2716   if (counters != NULL) {
  2717     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  2719   if (slow_case != NULL) {
  2720     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  2721     delayed()->nop();
  2723   br(Assembler::always, false, Assembler::pt, done);
  2724   delayed()->nop();
  2726   bind(try_revoke_bias);
  2727   // The prototype mark in the klass doesn't have the bias bit set any
  2728   // more, indicating that objects of this data type are not supposed
  2729   // to be biased any more. We are going to try to reset the mark of
  2730   // this object to the prototype value and fall through to the
  2731   // CAS-based locking scheme. Note that if our CAS fails, it means
  2732   // that another thread raced us for the privilege of revoking the
  2733   // bias of this particular object, so it's okay to continue in the
  2734   // normal locking code.
  2735   //
  2736   // FIXME: due to a lack of registers we currently blow away the age
  2737   // bits in this situation. Should attempt to preserve them.
  2738   load_klass(obj_reg, temp_reg);
  2739   ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  2740   casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  2741                   (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2742   // Fall through to the normal CAS-based lock, because no matter what
  2743   // the result of the above CAS, some thread must have succeeded in
  2744   // removing the bias bit from the object's header.
  2745   if (counters != NULL) {
  2746     cmp(mark_reg, temp_reg);
  2747     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  2750   bind(cas_label);
  2753 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  2754                                           bool allow_delay_slot_filling) {
  2755   // Check for biased locking unlock case, which is a no-op
  2756   // Note: we do not have to check the thread ID for two reasons.
  2757   // First, the interpreter checks for IllegalMonitorStateException at
  2758   // a higher level. Second, if the bias was revoked while we held the
  2759   // lock, the object could not be rebiased toward another thread, so
  2760   // the bias bit would be clear.
  2761   ld_ptr(mark_addr, temp_reg);
  2762   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  2763   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  2764   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  2765   delayed();
  2766   if (!allow_delay_slot_filling) {
  2767     nop();
  2772 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  2773 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  2775 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  2776   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
  2781 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  2782 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  2783 // The code could be tightened up considerably.
  2784 //
  2785 // box->dhw disposition - post-conditions at DONE_LABEL.
  2786 // -   Successful inflated lock:  box->dhw != 0.
  2787 //     Any non-zero value suffices.
  2788 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  2789 // -   Successful Stack-lock: box->dhw == mark.
  2790 //     box->dhw must contain the displaced mark word value
  2791 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  2792 //     The slow-path fast_enter() and slow_enter() operators
  2793 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  2794 // -   Biased: box->dhw is undefined
  2795 //
  2796 // SPARC refworkload performance - specifically jetstream and scimark - are
  2797 // extremely sensitive to the size of the code emitted by compiler_lock_object
  2798 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  2799 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  2800 // effect).
  2803 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
  2804                                           BiasedLockingCounters* counters) {
  2805    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  2807    verify_oop(Roop);
  2808    Label done ;
  2810    if (counters != NULL) {
  2811      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  2814    if (EmitSync & 1) {
  2815      mov    (3, Rscratch) ;
  2816      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2817      cmp    (SP, G0) ;
  2818      return ;
  2821    if (EmitSync & 2) {
  2823      // Fetch object's markword
  2824      ld_ptr(mark_addr, Rmark);
  2826      if (UseBiasedLocking) {
  2827         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2830      // Save Rbox in Rscratch to be used for the cas operation
  2831      mov(Rbox, Rscratch);
  2833      // set Rmark to markOop | markOopDesc::unlocked_value
  2834      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  2836      // Initialize the box.  (Must happen before we update the object mark!)
  2837      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2839      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  2840      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  2841      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  2842         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  2844      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  2845      // hence we are done
  2846      cmp(Rmark, Rscratch);
  2847 #ifdef _LP64
  2848      sub(Rscratch, STACK_BIAS, Rscratch);
  2849 #endif
  2850      brx(Assembler::equal, false, Assembler::pt, done);
  2851      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  2853      // we did not find an unlocked object so see if this is a recursive case
  2854      // sub(Rscratch, SP, Rscratch);
  2855      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2856      andcc(Rscratch, 0xfffff003, Rscratch);
  2857      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2858      bind (done) ;
  2859      return ;
  2862    Label Egress ;
  2864    if (EmitSync & 256) {
  2865       Label IsInflated ;
  2867       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2868       // Triage: biased, stack-locked, neutral, inflated
  2869       if (UseBiasedLocking) {
  2870         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2871         // Invariant: if control reaches this point in the emitted stream
  2872         // then Rmark has not been modified.
  2875       // Store mark into displaced mark field in the on-stack basic-lock "box"
  2876       // Critically, this must happen before the CAS
  2877       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  2878       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2879       andcc  (Rmark, 2, G0) ;
  2880       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2881       delayed() ->
  2883       // Try stack-lock acquisition.
  2884       // Beware: the 1st instruction is in a delay slot
  2885       mov    (Rbox,  Rscratch);
  2886       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2887       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2888       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2889       cmp    (Rmark, Rscratch);
  2890       brx    (Assembler::equal, false, Assembler::pt, done);
  2891       delayed()->sub(Rscratch, SP, Rscratch);
  2893       // Stack-lock attempt failed - check for recursive stack-lock.
  2894       // See the comments below about how we might remove this case.
  2895 #ifdef _LP64
  2896       sub    (Rscratch, STACK_BIAS, Rscratch);
  2897 #endif
  2898       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2899       andcc  (Rscratch, 0xfffff003, Rscratch);
  2900       br     (Assembler::always, false, Assembler::pt, done) ;
  2901       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2903       bind   (IsInflated) ;
  2904       if (EmitSync & 64) {
  2905          // If m->owner != null goto IsLocked
  2906          // Pessimistic form: Test-and-CAS vs CAS
  2907          // The optimistic form avoids RTS->RTO cache line upgrades.
  2908          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  2909          andcc  (Rscratch, Rscratch, G0) ;
  2910          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  2911          delayed()->nop() ;
  2912          // m->owner == null : it's unlocked.
  2915       // Try to CAS m->owner from null to Self
  2916       // Invariant: if we acquire the lock then _recursions should be 0.
  2917       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  2918       mov    (G2_thread, Rscratch) ;
  2919       casn   (Rmark, G0, Rscratch) ;
  2920       cmp    (Rscratch, G0) ;
  2921       // Intentional fall-through into done
  2922    } else {
  2923       // Aggressively avoid the Store-before-CAS penalty
  2924       // Defer the store into box->dhw until after the CAS
  2925       Label IsInflated, Recursive ;
  2927 // Anticipate CAS -- Avoid RTS->RTO upgrade
  2928 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2930       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
  2931       // Triage: biased, stack-locked, neutral, inflated
  2933       if (UseBiasedLocking) {
  2934         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  2935         // Invariant: if control reaches this point in the emitted stream
  2936         // then Rmark has not been modified.
  2938       andcc  (Rmark, 2, G0) ;
  2939       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
  2940       delayed()->                         // Beware - dangling delay-slot
  2942       // Try stack-lock acquisition.
  2943       // Transiently install BUSY (0) encoding in the mark word.
  2944       // if the CAS of 0 into the mark was successful then we execute:
  2945       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  2946       //   ST obj->mark = box    -- overwrite transient 0 value
  2947       // This presumes TSO, of course.
  2949       mov    (0, Rscratch) ;
  2950       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
  2951       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
  2952       casn   (mark_addr.base(), Rmark, Rscratch) ;
  2953 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
  2954       cmp    (Rscratch, Rmark) ;
  2955       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
  2956       delayed() ->
  2957         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2958       if (counters != NULL) {
  2959         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2961       br     (Assembler::always, false, Assembler::pt, done);
  2962       delayed() ->
  2963         st_ptr (Rbox, mark_addr) ;
  2965       bind   (Recursive) ;
  2966       // Stack-lock attempt failed - check for recursive stack-lock.
  2967       // Tests show that we can remove the recursive case with no impact
  2968       // on refworkload 0.83.  If we need to reduce the size of the code
  2969       // emitted by compiler_lock_object() the recursive case is perfect
  2970       // candidate.
  2971       //
  2972       // A more extreme idea is to always inflate on stack-lock recursion.
  2973       // This lets us eliminate the recursive checks in compiler_lock_object
  2974       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  2975       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  2976       // and showed a performance *increase*.  In the same experiment I eliminated
  2977       // the fast-path stack-lock code from the interpreter and always passed
  2978       // control to the "slow" operators in synchronizer.cpp.
  2980       // RScratch contains the fetched obj->mark value from the failed CASN.
  2981 #ifdef _LP64
  2982       sub    (Rscratch, STACK_BIAS, Rscratch);
  2983 #endif
  2984       sub(Rscratch, SP, Rscratch);
  2985       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  2986       andcc  (Rscratch, 0xfffff003, Rscratch);
  2987       if (counters != NULL) {
  2988         // Accounting needs the Rscratch register
  2989         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2990         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  2991         br     (Assembler::always, false, Assembler::pt, done) ;
  2992         delayed()->nop() ;
  2993       } else {
  2994         br     (Assembler::always, false, Assembler::pt, done) ;
  2995         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  2998       bind   (IsInflated) ;
  2999       if (EmitSync & 64) {
  3000          // If m->owner != null goto IsLocked
  3001          // Test-and-CAS vs CAS
  3002          // Pessimistic form avoids futile (doomed) CAS attempts
  3003          // The optimistic form avoids RTS->RTO cache line upgrades.
  3004          ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  3005          andcc  (Rscratch, Rscratch, G0) ;
  3006          brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3007          delayed()->nop() ;
  3008          // m->owner == null : it's unlocked.
  3011       // Try to CAS m->owner from null to Self
  3012       // Invariant: if we acquire the lock then _recursions should be 0.
  3013       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3014       mov    (G2_thread, Rscratch) ;
  3015       casn   (Rmark, G0, Rscratch) ;
  3016       cmp    (Rscratch, G0) ;
  3017       // ST box->displaced_header = NonZero.
  3018       // Any non-zero value suffices:
  3019       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3020       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3021       // Intentional fall-through into done
  3024    bind   (done) ;
  3027 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
  3028    Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
  3030    Label done ;
  3032    if (EmitSync & 4) {
  3033      cmp  (SP, G0) ;
  3034      return ;
  3037    if (EmitSync & 8) {
  3038      if (UseBiasedLocking) {
  3039         biased_locking_exit(mark_addr, Rscratch, done);
  3042      // Test first if it is a fast recursive unlock
  3043      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3044      cmp(Rmark, G0);
  3045      brx(Assembler::equal, false, Assembler::pt, done);
  3046      delayed()->nop();
  3048      // Check if it is still a light weight lock, this is is true if we see
  3049      // the stack address of the basicLock in the markOop of the object
  3050      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3051      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3052        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3053      br (Assembler::always, false, Assembler::pt, done);
  3054      delayed()->cmp(Rbox, Rmark);
  3055      bind (done) ;
  3056      return ;
  3059    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3060    // is too large performance rolls abruptly off a cliff.
  3061    // This could be related to inlining policies, code cache management, or
  3062    // I$ effects.
  3063    Label LStacked ;
  3065    if (UseBiasedLocking) {
  3066       // TODO: eliminate redundant LDs of obj->mark
  3067       biased_locking_exit(mark_addr, Rscratch, done);
  3070    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
  3071    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3072    andcc  (Rscratch, Rscratch, G0);
  3073    brx    (Assembler::zero, false, Assembler::pn, done);
  3074    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
  3075    andcc  (Rmark, 2, G0) ;
  3076    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
  3077    delayed()-> nop() ;
  3079    // It's inflated
  3080    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3081    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3082    // and stores within the critical section from reordering (floating)
  3083    // past the store that releases the lock.  But TSO is a strong memory model
  3084    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3085    // Note that we use 1-0 locking by default for the inflated case.  We
  3086    // close the resultant (and rare) race by having contented threads in
  3087    // monitorenter periodically poll _owner.
  3088    ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
  3089    ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
  3090    xor3   (Rscratch, G2_thread, Rscratch) ;
  3091    orcc   (Rbox, Rscratch, Rbox) ;
  3092    brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3093    delayed()->
  3094    ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
  3095    ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
  3096    orcc   (Rbox, Rscratch, G0) ;
  3097    if (EmitSync & 65536) {
  3098       Label LSucc ;
  3099       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
  3100       delayed()->nop() ;
  3101       br     (Assembler::always, false, Assembler::pt, done) ;
  3102       delayed()->
  3103       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3105       bind   (LSucc) ;
  3106       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3107       if (os::is_MP()) { membar (StoreLoad) ; }
  3108       ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
  3109       andcc  (Rscratch, Rscratch, G0) ;
  3110       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3111       delayed()-> andcc (G0, G0, G0) ;
  3112       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
  3113       mov    (G2_thread, Rscratch) ;
  3114       casn   (Rmark, G0, Rscratch) ;
  3115       cmp    (Rscratch, G0) ;
  3116       // invert icc.zf and goto done
  3117       brx    (Assembler::notZero, false, Assembler::pt, done) ;
  3118       delayed() -> cmp (G0, G0) ;
  3119       br     (Assembler::always, false, Assembler::pt, done);
  3120       delayed() -> cmp (G0, 1) ;
  3121    } else {
  3122       brx    (Assembler::notZero, false, Assembler::pn, done) ;
  3123       delayed()->nop() ;
  3124       br     (Assembler::always, false, Assembler::pt, done) ;
  3125       delayed()->
  3126       st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3129    bind   (LStacked) ;
  3130    // Consider: we could replace the expensive CAS in the exit
  3131    // path with a simple ST of the displaced mark value fetched from
  3132    // the on-stack basiclock box.  That admits a race where a thread T2
  3133    // in the slow lock path -- inflating with monitor M -- could race a
  3134    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3135    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3136    // inflated mark value M installed by T2, resulting in an orphan
  3137    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3138    // by having T2 periodically poll the object's mark word using timed wait
  3139    // operations.  If T2 discovers that a stomp has occurred it vacates
  3140    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3141    // In addition the monitor scavenger, which performs deflation,
  3142    // would also need to check for orpan monitors and stranded threads.
  3143    //
  3144    // Finally, inflation is also used when T2 needs to assign a hashCode
  3145    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3146    // an assigned hashCode value to be lost.  We can avoid that condition
  3147    // and provide the necessary hashCode stability invariants by ensuring
  3148    // that hashCode generation is idempotent between copying GCs.
  3149    // For example we could compute the hashCode of an object O as
  3150    // O's heap address XOR some high quality RNG value that is refreshed
  3151    // at GC-time.  The monitor scavenger would install the hashCode
  3152    // found in any orphan monitors.  Again, the mechanism admits a
  3153    // lost-update "stomp" WAW race but detects and recovers as needed.
  3154    //
  3155    // A prototype implementation showed excellent results, although
  3156    // the scavenger and timeout code was rather involved.
  3158    casn   (mark_addr.base(), Rbox, Rscratch) ;
  3159    cmp    (Rbox, Rscratch);
  3160    // Intentional fall through into done ...
  3162    bind   (done) ;
  3167 void MacroAssembler::print_CPU_state() {
  3168   // %%%%% need to implement this
  3171 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3172   // %%%%% need to implement this
  3175 void MacroAssembler::push_IU_state() {
  3176   // %%%%% need to implement this
  3180 void MacroAssembler::pop_IU_state() {
  3181   // %%%%% need to implement this
  3185 void MacroAssembler::push_FPU_state() {
  3186   // %%%%% need to implement this
  3190 void MacroAssembler::pop_FPU_state() {
  3191   // %%%%% need to implement this
  3195 void MacroAssembler::push_CPU_state() {
  3196   // %%%%% need to implement this
  3200 void MacroAssembler::pop_CPU_state() {
  3201   // %%%%% need to implement this
  3206 void MacroAssembler::verify_tlab() {
  3207 #ifdef ASSERT
  3208   if (UseTLAB && VerifyOops) {
  3209     Label next, next2, ok;
  3210     Register t1 = L0;
  3211     Register t2 = L1;
  3212     Register t3 = L2;
  3214     save_frame(0);
  3215     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3216     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3217     or3(t1, t2, t3);
  3218     cmp(t1, t2);
  3219     br(Assembler::greaterEqual, false, Assembler::pn, next);
  3220     delayed()->nop();
  3221     stop("assert(top >= start)");
  3222     should_not_reach_here();
  3224     bind(next);
  3225     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3226     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3227     or3(t3, t2, t3);
  3228     cmp(t1, t2);
  3229     br(Assembler::lessEqual, false, Assembler::pn, next2);
  3230     delayed()->nop();
  3231     stop("assert(top <= end)");
  3232     should_not_reach_here();
  3234     bind(next2);
  3235     and3(t3, MinObjAlignmentInBytesMask, t3);
  3236     cmp(t3, 0);
  3237     br(Assembler::lessEqual, false, Assembler::pn, ok);
  3238     delayed()->nop();
  3239     stop("assert(aligned)");
  3240     should_not_reach_here();
  3242     bind(ok);
  3243     restore();
  3245 #endif
  3249 void MacroAssembler::eden_allocate(
  3250   Register obj,                        // result: pointer to object after successful allocation
  3251   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3252   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3253   Register t1,                         // temp register
  3254   Register t2,                         // temp register
  3255   Label&   slow_case                   // continuation point if fast allocation fails
  3256 ){
  3257   // make sure arguments make sense
  3258   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3259   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3260   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3262   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3263     // No allocation in the shared eden.
  3264     br(Assembler::always, false, Assembler::pt, slow_case);
  3265     delayed()->nop();
  3266   } else {
  3267     // get eden boundaries
  3268     // note: we need both top & top_addr!
  3269     const Register top_addr = t1;
  3270     const Register end      = t2;
  3272     CollectedHeap* ch = Universe::heap();
  3273     set((intx)ch->top_addr(), top_addr);
  3274     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3275     ld_ptr(top_addr, delta, end);
  3276     ld_ptr(top_addr, 0, obj);
  3278     // try to allocate
  3279     Label retry;
  3280     bind(retry);
  3281 #ifdef ASSERT
  3282     // make sure eden top is properly aligned
  3284       Label L;
  3285       btst(MinObjAlignmentInBytesMask, obj);
  3286       br(Assembler::zero, false, Assembler::pt, L);
  3287       delayed()->nop();
  3288       stop("eden top is not properly aligned");
  3289       bind(L);
  3291 #endif // ASSERT
  3292     const Register free = end;
  3293     sub(end, obj, free);                                   // compute amount of free space
  3294     if (var_size_in_bytes->is_valid()) {
  3295       // size is unknown at compile time
  3296       cmp(free, var_size_in_bytes);
  3297       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3298       delayed()->add(obj, var_size_in_bytes, end);
  3299     } else {
  3300       // size is known at compile time
  3301       cmp(free, con_size_in_bytes);
  3302       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3303       delayed()->add(obj, con_size_in_bytes, end);
  3305     // Compare obj with the value at top_addr; if still equal, swap the value of
  3306     // end with the value at top_addr. If not equal, read the value at top_addr
  3307     // into end.
  3308     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3309     // if someone beat us on the allocation, try again, otherwise continue
  3310     cmp(obj, end);
  3311     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3312     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3314 #ifdef ASSERT
  3315     // make sure eden top is properly aligned
  3317       Label L;
  3318       const Register top_addr = t1;
  3320       set((intx)ch->top_addr(), top_addr);
  3321       ld_ptr(top_addr, 0, top_addr);
  3322       btst(MinObjAlignmentInBytesMask, top_addr);
  3323       br(Assembler::zero, false, Assembler::pt, L);
  3324       delayed()->nop();
  3325       stop("eden top is not properly aligned");
  3326       bind(L);
  3328 #endif // ASSERT
  3333 void MacroAssembler::tlab_allocate(
  3334   Register obj,                        // result: pointer to object after successful allocation
  3335   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3336   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3337   Register t1,                         // temp register
  3338   Label&   slow_case                   // continuation point if fast allocation fails
  3339 ){
  3340   // make sure arguments make sense
  3341   assert_different_registers(obj, var_size_in_bytes, t1);
  3342   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  3343   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3345   const Register free  = t1;
  3347   verify_tlab();
  3349   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  3351   // calculate amount of free space
  3352   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  3353   sub(free, obj, free);
  3355   Label done;
  3356   if (var_size_in_bytes == noreg) {
  3357     cmp(free, con_size_in_bytes);
  3358   } else {
  3359     cmp(free, var_size_in_bytes);
  3361   br(Assembler::less, false, Assembler::pn, slow_case);
  3362   // calculate the new top pointer
  3363   if (var_size_in_bytes == noreg) {
  3364     delayed()->add(obj, con_size_in_bytes, free);
  3365   } else {
  3366     delayed()->add(obj, var_size_in_bytes, free);
  3369   bind(done);
  3371 #ifdef ASSERT
  3372   // make sure new free pointer is properly aligned
  3374     Label L;
  3375     btst(MinObjAlignmentInBytesMask, free);
  3376     br(Assembler::zero, false, Assembler::pt, L);
  3377     delayed()->nop();
  3378     stop("updated TLAB free is not properly aligned");
  3379     bind(L);
  3381 #endif // ASSERT
  3383   // update the tlab top pointer
  3384   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3385   verify_tlab();
  3389 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  3390   Register top = O0;
  3391   Register t1 = G1;
  3392   Register t2 = G3;
  3393   Register t3 = O1;
  3394   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  3395   Label do_refill, discard_tlab;
  3397   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3398     // No allocation in the shared eden.
  3399     br(Assembler::always, false, Assembler::pt, slow_case);
  3400     delayed()->nop();
  3403   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  3404   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  3405   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  3407   // calculate amount of free space
  3408   sub(t1, top, t1);
  3409   srl_ptr(t1, LogHeapWordSize, t1);
  3411   // Retain tlab and allocate object in shared space if
  3412   // the amount free in the tlab is too large to discard.
  3413   cmp(t1, t2);
  3414   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  3416   // increment waste limit to prevent getting stuck on this slow path
  3417   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  3418   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3419   if (TLABStats) {
  3420     // increment number of slow_allocations
  3421     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  3422     add(t2, 1, t2);
  3423     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  3425   br(Assembler::always, false, Assembler::pt, try_eden);
  3426   delayed()->nop();
  3428   bind(discard_tlab);
  3429   if (TLABStats) {
  3430     // increment number of refills
  3431     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  3432     add(t2, 1, t2);
  3433     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  3434     // accumulate wastage
  3435     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  3436     add(t2, t1, t2);
  3437     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  3440   // if tlab is currently allocated (top or end != null) then
  3441   // fill [top, end + alignment_reserve) with array object
  3442   br_null(top, false, Assembler::pn, do_refill);
  3443   delayed()->nop();
  3445   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  3446   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  3447   // set klass to intArrayKlass
  3448   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  3449   ld_ptr(t2, 0, t2);
  3450   store_klass(t2, top);
  3451   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  3452   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  3453   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  3454   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  3455   verify_oop(top);
  3457   // refill the tlab with an eden allocation
  3458   bind(do_refill);
  3459   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  3460   sll_ptr(t1, LogHeapWordSize, t1);
  3461   // add object_size ??
  3462   eden_allocate(top, t1, 0, t2, t3, slow_case);
  3464   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  3465   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3466 #ifdef ASSERT
  3467   // check that tlab_size (t1) is still valid
  3469     Label ok;
  3470     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  3471     sll_ptr(t2, LogHeapWordSize, t2);
  3472     cmp(t1, t2);
  3473     br(Assembler::equal, false, Assembler::pt, ok);
  3474     delayed()->nop();
  3475     stop("assert(t1 == tlab_size)");
  3476     should_not_reach_here();
  3478     bind(ok);
  3480 #endif // ASSERT
  3481   add(top, t1, top); // t1 is tlab_size
  3482   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  3483   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  3484   verify_tlab();
  3485   br(Assembler::always, false, Assembler::pt, retry);
  3486   delayed()->nop();
  3489 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  3490   switch (cond) {
  3491     // Note some conditions are synonyms for others
  3492     case Assembler::never:                return Assembler::always;
  3493     case Assembler::zero:                 return Assembler::notZero;
  3494     case Assembler::lessEqual:            return Assembler::greater;
  3495     case Assembler::less:                 return Assembler::greaterEqual;
  3496     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  3497     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  3498     case Assembler::negative:             return Assembler::positive;
  3499     case Assembler::overflowSet:          return Assembler::overflowClear;
  3500     case Assembler::always:               return Assembler::never;
  3501     case Assembler::notZero:              return Assembler::zero;
  3502     case Assembler::greater:              return Assembler::lessEqual;
  3503     case Assembler::greaterEqual:         return Assembler::less;
  3504     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  3505     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  3506     case Assembler::positive:             return Assembler::negative;
  3507     case Assembler::overflowClear:        return Assembler::overflowSet;
  3510   ShouldNotReachHere(); return Assembler::overflowClear;
  3513 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  3514                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  3515   Condition negated_cond = negate_condition(cond);
  3516   Label L;
  3517   brx(negated_cond, false, Assembler::pt, L);
  3518   delayed()->nop();
  3519   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  3520   bind(L);
  3523 void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
  3524   Address counter_addr(Rtmp1, counter_ptr);
  3525   load_contents(counter_addr, Rtmp2);
  3526   inc(Rtmp2);
  3527   store_contents(Rtmp2, counter_addr);
  3530 SkipIfEqual::SkipIfEqual(
  3531     MacroAssembler* masm, Register temp, const bool* flag_addr,
  3532     Assembler::Condition condition) {
  3533   _masm = masm;
  3534   Address flag(temp, (address)flag_addr, relocInfo::none);
  3535   _masm->sethi(flag);
  3536   _masm->ldub(flag, temp);
  3537   _masm->tst(temp);
  3538   _masm->br(condition, false, Assembler::pt, _label);
  3539   _masm->delayed()->nop();
  3542 SkipIfEqual::~SkipIfEqual() {
  3543   _masm->bind(_label);
  3547 // Writes to stack successive pages until offset reached to check for
  3548 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  3549 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  3550                                      Register Rscratch) {
  3551   // Use stack pointer in temp stack pointer
  3552   mov(SP, Rtsp);
  3554   // Bang stack for total size given plus stack shadow page size.
  3555   // Bang one page at a time because a large size can overflow yellow and
  3556   // red zones (the bang will fail but stack overflow handling can't tell that
  3557   // it was a stack overflow bang vs a regular segv).
  3558   int offset = os::vm_page_size();
  3559   Register Roffset = Rscratch;
  3561   Label loop;
  3562   bind(loop);
  3563   set((-offset)+STACK_BIAS, Rscratch);
  3564   st(G0, Rtsp, Rscratch);
  3565   set(offset, Roffset);
  3566   sub(Rsize, Roffset, Rsize);
  3567   cmp(Rsize, G0);
  3568   br(Assembler::greater, false, Assembler::pn, loop);
  3569   delayed()->sub(Rtsp, Roffset, Rtsp);
  3571   // Bang down shadow pages too.
  3572   // The -1 because we already subtracted 1 page.
  3573   for (int i = 0; i< StackShadowPages-1; i++) {
  3574     set((-i*offset)+STACK_BIAS, Rscratch);
  3575     st(G0, Rtsp, Rscratch);
  3579 ///////////////////////////////////////////////////////////////////////////////////
  3580 #ifndef SERIALGC
  3582 static uint num_stores = 0;
  3583 static uint num_null_pre_stores = 0;
  3585 static void count_null_pre_vals(void* pre_val) {
  3586   num_stores++;
  3587   if (pre_val == NULL) num_null_pre_stores++;
  3588   if ((num_stores % 1000000) == 0) {
  3589     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
  3590                   num_stores, num_null_pre_stores,
  3591                   100.0*(float)num_null_pre_stores/(float)num_stores);
  3595 static address satb_log_enqueue_with_frame = 0;
  3596 static u_char* satb_log_enqueue_with_frame_end = 0;
  3598 static address satb_log_enqueue_frameless = 0;
  3599 static u_char* satb_log_enqueue_frameless_end = 0;
  3601 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  3603 // The calls to this don't work.  We'd need to do a fair amount of work to
  3604 // make it work.
  3605 static void check_index(int ind) {
  3606   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
  3607          "Invariants.")
  3610 static void generate_satb_log_enqueue(bool with_frame) {
  3611   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  3612   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
  3613   MacroAssembler masm(&buf);
  3614   address start = masm.pc();
  3615   Register pre_val;
  3617   Label refill, restart;
  3618   if (with_frame) {
  3619     masm.save_frame(0);
  3620     pre_val = I0;  // Was O0 before the save.
  3621   } else {
  3622     pre_val = O0;
  3624   int satb_q_index_byte_offset =
  3625     in_bytes(JavaThread::satb_mark_queue_offset() +
  3626              PtrQueue::byte_offset_of_index());
  3627   int satb_q_buf_byte_offset =
  3628     in_bytes(JavaThread::satb_mark_queue_offset() +
  3629              PtrQueue::byte_offset_of_buf());
  3630   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  3631          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  3632          "check sizes in assembly below");
  3634   masm.bind(restart);
  3635   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  3637   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
  3638   // If the branch is taken, no harm in executing this in the delay slot.
  3639   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  3640   masm.sub(L0, oopSize, L0);
  3642   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  3643   if (!with_frame) {
  3644     // Use return-from-leaf
  3645     masm.retl();
  3646     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3647   } else {
  3648     // Not delayed.
  3649     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  3651   if (with_frame) {
  3652     masm.ret();
  3653     masm.delayed()->restore();
  3655   masm.bind(refill);
  3657   address handle_zero =
  3658     CAST_FROM_FN_PTR(address,
  3659                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  3660   // This should be rare enough that we can afford to save all the
  3661   // scratch registers that the calling context might be using.
  3662   masm.mov(G1_scratch, L0);
  3663   masm.mov(G3_scratch, L1);
  3664   masm.mov(G4, L2);
  3665   // We need the value of O0 above (for the write into the buffer), so we
  3666   // save and restore it.
  3667   masm.mov(O0, L3);
  3668   // Since the call will overwrite O7, we save and restore that, as well.
  3669   masm.mov(O7, L4);
  3670   masm.call_VM_leaf(L5, handle_zero, G2_thread);
  3671   masm.mov(L0, G1_scratch);
  3672   masm.mov(L1, G3_scratch);
  3673   masm.mov(L2, G4);
  3674   masm.mov(L3, O0);
  3675   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  3676   masm.delayed()->mov(L4, O7);
  3678   if (with_frame) {
  3679     satb_log_enqueue_with_frame = start;
  3680     satb_log_enqueue_with_frame_end = masm.pc();
  3681   } else {
  3682     satb_log_enqueue_frameless = start;
  3683     satb_log_enqueue_frameless_end = masm.pc();
  3687 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  3688   if (with_frame) {
  3689     if (satb_log_enqueue_with_frame == 0) {
  3690       generate_satb_log_enqueue(with_frame);
  3691       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  3692       if (G1SATBPrintStubs) {
  3693         tty->print_cr("Generated with-frame satb enqueue:");
  3694         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  3695                              satb_log_enqueue_with_frame_end,
  3696                              tty);
  3699   } else {
  3700     if (satb_log_enqueue_frameless == 0) {
  3701       generate_satb_log_enqueue(with_frame);
  3702       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  3703       if (G1SATBPrintStubs) {
  3704         tty->print_cr("Generated frameless satb enqueue:");
  3705         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  3706                              satb_log_enqueue_frameless_end,
  3707                              tty);
  3713 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
  3714   assert(offset == 0 || index == noreg, "choose one");
  3716   if (G1DisablePreBarrier) return;
  3717   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
  3718   Label filtered;
  3719   // satb_log_barrier_work0(tmp, filtered);
  3720   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  3721     ld(G2,
  3722        in_bytes(JavaThread::satb_mark_queue_offset() +
  3723                 PtrQueue::byte_offset_of_active()),
  3724        tmp);
  3725   } else {
  3726     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  3727               "Assumption");
  3728     ldsb(G2,
  3729          in_bytes(JavaThread::satb_mark_queue_offset() +
  3730                   PtrQueue::byte_offset_of_active()),
  3731          tmp);
  3733   // Check on whether to annul.
  3734   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  3735   delayed() -> nop();
  3737   // satb_log_barrier_work1(tmp, offset);
  3738   if (index == noreg) {
  3739     if (Assembler::is_simm13(offset)) {
  3740       ld_ptr(obj, offset, tmp);
  3741     } else {
  3742       set(offset, tmp);
  3743       ld_ptr(obj, tmp, tmp);
  3745   } else {
  3746     ld_ptr(obj, index, tmp);
  3749   // satb_log_barrier_work2(obj, tmp, offset);
  3751   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
  3753   const Register pre_val = tmp;
  3755   if (G1SATBBarrierPrintNullPreVals) {
  3756     save_frame(0);
  3757     mov(pre_val, O0);
  3758     // Save G-regs that target may use.
  3759     mov(G1, L1);
  3760     mov(G2, L2);
  3761     mov(G3, L3);
  3762     mov(G4, L4);
  3763     mov(G5, L5);
  3764     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
  3765     delayed()->nop();
  3766     // Restore G-regs that target may have used.
  3767     mov(L1, G1);
  3768     mov(L2, G2);
  3769     mov(L3, G3);
  3770     mov(L4, G4);
  3771     mov(L5, G5);
  3772     restore(G0, G0, G0);
  3775   // Check on whether to annul.
  3776   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
  3777   delayed() -> nop();
  3779   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  3780   // case, pre_val will be a scratch G-reg, but there's some cases in which
  3781   // it's an O-reg.  In the first case, do a normal call.  In the latter,
  3782   // do a save here and call the frameless version.
  3784   guarantee(pre_val->is_global() || pre_val->is_out(),
  3785             "Or we need to think harder.");
  3786   if (pre_val->is_global() && !preserve_o_regs) {
  3787     generate_satb_log_enqueue_if_necessary(true); // with frame.
  3788     call(satb_log_enqueue_with_frame);
  3789     delayed()->mov(pre_val, O0);
  3790   } else {
  3791     generate_satb_log_enqueue_if_necessary(false); // with frameless.
  3792     save_frame(0);
  3793     call(satb_log_enqueue_frameless);
  3794     delayed()->mov(pre_val->after_save(), O0);
  3795     restore();
  3798   bind(filtered);
  3801 static jint num_ct_writes = 0;
  3802 static jint num_ct_writes_filtered_in_hr = 0;
  3803 static jint num_ct_writes_filtered_null = 0;
  3804 static jint num_ct_writes_filtered_pop = 0;
  3805 static G1CollectedHeap* g1 = NULL;
  3807 static Thread* count_ct_writes(void* filter_val, void* new_val) {
  3808   Atomic::inc(&num_ct_writes);
  3809   if (filter_val == NULL) {
  3810     Atomic::inc(&num_ct_writes_filtered_in_hr);
  3811   } else if (new_val == NULL) {
  3812     Atomic::inc(&num_ct_writes_filtered_null);
  3813   } else {
  3814     if (g1 == NULL) {
  3815       g1 = G1CollectedHeap::heap();
  3817     if ((HeapWord*)new_val < g1->popular_object_boundary()) {
  3818       Atomic::inc(&num_ct_writes_filtered_pop);
  3821   if ((num_ct_writes % 1000000) == 0) {
  3822     jint num_ct_writes_filtered =
  3823       num_ct_writes_filtered_in_hr +
  3824       num_ct_writes_filtered_null +
  3825       num_ct_writes_filtered_pop;
  3827     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
  3828                   "   (%5.2f%% intra-HR, %5.2f%% null, %5.2f%% popular).",
  3829                   num_ct_writes,
  3830                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
  3831                   100.0*(float)num_ct_writes_filtered_in_hr/
  3832                   (float)num_ct_writes,
  3833                   100.0*(float)num_ct_writes_filtered_null/
  3834                   (float)num_ct_writes,
  3835                   100.0*(float)num_ct_writes_filtered_pop/
  3836                   (float)num_ct_writes);
  3838   return Thread::current();
  3841 static address dirty_card_log_enqueue = 0;
  3842 static u_char* dirty_card_log_enqueue_end = 0;
  3844 // This gets to assume that o0 contains the object address.
  3845 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  3846   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  3847   CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
  3848   MacroAssembler masm(&buf);
  3849   address start = masm.pc();
  3851   Label not_already_dirty, restart, refill;
  3853 #ifdef _LP64
  3854   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
  3855 #else
  3856   masm.srl(O0, CardTableModRefBS::card_shift, O0);
  3857 #endif
  3858   Address rs(O1, (address)byte_map_base);
  3859   masm.load_address(rs); // O1 := <card table base>
  3860   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
  3862   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
  3863                       O2, not_already_dirty);
  3864   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
  3865   // case, harmless if not.
  3866   masm.delayed()->add(O0, O1, O3);
  3868   // We didn't take the branch, so we're already dirty: return.
  3869   // Use return-from-leaf
  3870   masm.retl();
  3871   masm.delayed()->nop();
  3873   // Not dirty.
  3874   masm.bind(not_already_dirty);
  3875   // First, dirty it.
  3876   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  3877   int dirty_card_q_index_byte_offset =
  3878     in_bytes(JavaThread::dirty_card_queue_offset() +
  3879              PtrQueue::byte_offset_of_index());
  3880   int dirty_card_q_buf_byte_offset =
  3881     in_bytes(JavaThread::dirty_card_queue_offset() +
  3882              PtrQueue::byte_offset_of_buf());
  3883   masm.bind(restart);
  3884   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  3886   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
  3887                       L0, refill);
  3888   // If the branch is taken, no harm in executing this in the delay slot.
  3889   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  3890   masm.sub(L0, oopSize, L0);
  3892   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
  3893   // Use return-from-leaf
  3894   masm.retl();
  3895   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  3897   masm.bind(refill);
  3898   address handle_zero =
  3899     CAST_FROM_FN_PTR(address,
  3900                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  3901   // This should be rare enough that we can afford to save all the
  3902   // scratch registers that the calling context might be using.
  3903   masm.mov(G1_scratch, L3);
  3904   masm.mov(G3_scratch, L5);
  3905   // We need the value of O3 above (for the write into the buffer), so we
  3906   // save and restore it.
  3907   masm.mov(O3, L6);
  3908   // Since the call will overwrite O7, we save and restore that, as well.
  3909   masm.mov(O7, L4);
  3911   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  3912   masm.mov(L3, G1_scratch);
  3913   masm.mov(L5, G3_scratch);
  3914   masm.mov(L6, O3);
  3915   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  3916   masm.delayed()->mov(L4, O7);
  3918   dirty_card_log_enqueue = start;
  3919   dirty_card_log_enqueue_end = masm.pc();
  3920   // XXX Should have a guarantee here about not going off the end!
  3921   // Does it already do so?  Do an experiment...
  3924 static inline void
  3925 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  3926   if (dirty_card_log_enqueue == 0) {
  3927     generate_dirty_card_log_enqueue(byte_map_base);
  3928     assert(dirty_card_log_enqueue != 0, "postcondition.");
  3929     if (G1SATBPrintStubs) {
  3930       tty->print_cr("Generated dirty_card enqueue:");
  3931       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  3932                            dirty_card_log_enqueue_end,
  3933                            tty);
  3939 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  3941   Label filtered;
  3942   MacroAssembler* post_filter_masm = this;
  3944   if (new_val == G0) return;
  3945   if (G1DisablePostBarrier) return;
  3947   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  3948   assert(bs->kind() == BarrierSet::G1SATBCT ||
  3949          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  3950   if (G1RSBarrierRegionFilter) {
  3951     xor3(store_addr, new_val, tmp);
  3952 #ifdef _LP64
  3953     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  3954 #else
  3955     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  3956 #endif
  3957     if (G1PrintCTFilterStats) {
  3958       guarantee(tmp->is_global(), "Or stats won't work...");
  3959       // This is a sleazy hack: I'm temporarily hijacking G2, which I
  3960       // promise to restore.
  3961       mov(new_val, G2);
  3962       save_frame(0);
  3963       mov(tmp, O0);
  3964       mov(G2, O1);
  3965       // Save G-regs that target may use.
  3966       mov(G1, L1);
  3967       mov(G2, L2);
  3968       mov(G3, L3);
  3969       mov(G4, L4);
  3970       mov(G5, L5);
  3971       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
  3972       delayed()->nop();
  3973       mov(O0, G2);
  3974       // Restore G-regs that target may have used.
  3975       mov(L1, G1);
  3976       mov(L3, G3);
  3977       mov(L4, G4);
  3978       mov(L5, G5);
  3979       restore(G0, G0, G0);
  3981     // XXX Should I predict this taken or not?  Does it mattern?
  3982     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
  3983     delayed()->nop();
  3986   // Now we decide how to generate the card table write.  If we're
  3987   // enqueueing, we call out to a generated function.  Otherwise, we do it
  3988   // inline here.
  3990   if (G1RSBarrierUseQueue) {
  3991     // If the "store_addr" register is an "in" or "local" register, move it to
  3992     // a scratch reg so we can pass it as an argument.
  3993     bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  3994     // Pick a scratch register different from "tmp".
  3995     Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  3996     // Make sure we use up the delay slot!
  3997     if (use_scr) {
  3998       post_filter_masm->mov(store_addr, scr);
  3999     } else {
  4000       post_filter_masm->nop();
  4002     generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4003     save_frame(0);
  4004     call(dirty_card_log_enqueue);
  4005     if (use_scr) {
  4006       delayed()->mov(scr, O0);
  4007     } else {
  4008       delayed()->mov(store_addr->after_save(), O0);
  4010     restore();
  4012   } else {
  4014 #ifdef _LP64
  4015     post_filter_masm->srlx(store_addr, CardTableModRefBS::card_shift, store_addr);
  4016 #else
  4017     post_filter_masm->srl(store_addr, CardTableModRefBS::card_shift, store_addr);
  4018 #endif
  4019     assert( tmp != store_addr, "need separate temp reg");
  4020     Address rs(tmp, (address)bs->byte_map_base);
  4021     load_address(rs);
  4022     stb(G0, rs.base(), store_addr);
  4025   bind(filtered);
  4029 #endif  // SERIALGC
  4030 ///////////////////////////////////////////////////////////////////////////////////
  4032 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4033   // If we're writing constant NULL, we can skip the write barrier.
  4034   if (new_val == G0) return;
  4035   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4036   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4037          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4038   card_table_write(bs->byte_map_base, tmp, store_addr);
  4041 void MacroAssembler::load_klass(Register s, Register d) {
  4042   // The number of bytes in this code is used by
  4043   // MachCallDynamicJavaNode::ret_addr_offset()
  4044   // if this changes, change that.
  4045   if (UseCompressedOops) {
  4046     lduw(s, oopDesc::klass_offset_in_bytes(), d);
  4047     decode_heap_oop_not_null(d);
  4048   } else {
  4049     ld_ptr(s, oopDesc::klass_offset_in_bytes(), d);
  4053 // ??? figure out src vs. dst!
  4054 void MacroAssembler::store_klass(Register d, Register s1) {
  4055   if (UseCompressedOops) {
  4056     assert(s1 != d, "not enough registers");
  4057     encode_heap_oop_not_null(d);
  4058     // Zero out entire klass field first.
  4059     st_ptr(G0, s1, oopDesc::klass_offset_in_bytes());
  4060     st(d, s1, oopDesc::klass_offset_in_bytes());
  4061   } else {
  4062     st_ptr(d, s1, oopDesc::klass_offset_in_bytes());
  4066 void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
  4067   if (UseCompressedOops) {
  4068     lduw(s, d, offset);
  4069     decode_heap_oop(d);
  4070   } else {
  4071     ld_ptr(s, d, offset);
  4075 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4076    if (UseCompressedOops) {
  4077     lduw(s1, s2, d);
  4078     decode_heap_oop(d, d);
  4079   } else {
  4080     ld_ptr(s1, s2, d);
  4084 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4085    if (UseCompressedOops) {
  4086     lduw(s1, simm13a, d);
  4087     decode_heap_oop(d, d);
  4088   } else {
  4089     ld_ptr(s1, simm13a, d);
  4093 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4094   if (UseCompressedOops) {
  4095     assert(s1 != d && s2 != d, "not enough registers");
  4096     encode_heap_oop(d);
  4097     st(d, s1, s2);
  4098   } else {
  4099     st_ptr(d, s1, s2);
  4103 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4104   if (UseCompressedOops) {
  4105     assert(s1 != d, "not enough registers");
  4106     encode_heap_oop(d);
  4107     st(d, s1, simm13a);
  4108   } else {
  4109     st_ptr(d, s1, simm13a);
  4113 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4114   if (UseCompressedOops) {
  4115     assert(a.base() != d, "not enough registers");
  4116     encode_heap_oop(d);
  4117     st(d, a, offset);
  4118   } else {
  4119     st_ptr(d, a, offset);
  4124 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4125   assert (UseCompressedOops, "must be compressed");
  4126   Label done;
  4127   if (src == dst) {
  4128     // optimize for frequent case src == dst
  4129     bpr(rc_nz, true, Assembler::pt, src, done);
  4130     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4131     bind(done);
  4132     srlx(src, LogMinObjAlignmentInBytes, dst);
  4133   } else {
  4134     bpr(rc_z, false, Assembler::pn, src, done);
  4135     delayed() -> mov(G0, dst);
  4136     // could be moved before branch, and annulate delay,
  4137     // but may add some unneeded work decoding null
  4138     sub(src, G6_heapbase, dst);
  4139     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4140     bind(done);
  4145 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4146   assert (UseCompressedOops, "must be compressed");
  4147   sub(r, G6_heapbase, r);
  4148   srlx(r, LogMinObjAlignmentInBytes, r);
  4151 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4152   assert (UseCompressedOops, "must be compressed");
  4153   sub(src, G6_heapbase, dst);
  4154   srlx(dst, LogMinObjAlignmentInBytes, dst);
  4157 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4158 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4159   assert (UseCompressedOops, "must be compressed");
  4160   Label done;
  4161   sllx(src, LogMinObjAlignmentInBytes, dst);
  4162   bpr(rc_nz, true, Assembler::pt, dst, done);
  4163   delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4164   bind(done);
  4167 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4168   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4169   // pd_code_size_limit.
  4170   assert (UseCompressedOops, "must be compressed");
  4171   sllx(r, LogMinObjAlignmentInBytes, r);
  4172   add(r, G6_heapbase, r);
  4175 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4176   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4177   // pd_code_size_limit.
  4178   assert (UseCompressedOops, "must be compressed");
  4179   sllx(src, LogMinObjAlignmentInBytes, dst);
  4180   add(dst, G6_heapbase, dst);
  4183 void MacroAssembler::reinit_heapbase() {
  4184   if (UseCompressedOops) {
  4185     // call indirectly to solve generation ordering problem
  4186     Address base(G6_heapbase, (address)Universe::heap_base_addr());
  4187     load_ptr_contents(base, G6_heapbase);

mercurial