src/os/windows/vm/os_windows.cpp

Fri, 03 Feb 2012 12:08:55 -0800

author
jcoomes
date
Fri, 03 Feb 2012 12:08:55 -0800
changeset 3502
379b22e03c32
parent 3481
de268c8a8075
parent 3499
aa3d708d67c4
child 3606
da4be62fb889
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // Must be at least Windows 2000 or XP to use VectoredExceptions and IsDebuggerPresent
    26 #define _WIN32_WINNT 0x500
    28 // no precompiled headers
    29 #include "classfile/classLoader.hpp"
    30 #include "classfile/systemDictionary.hpp"
    31 #include "classfile/vmSymbols.hpp"
    32 #include "code/icBuffer.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "interpreter/interpreter.hpp"
    36 #include "jvm_windows.h"
    37 #include "memory/allocation.inline.hpp"
    38 #include "memory/filemap.hpp"
    39 #include "mutex_windows.inline.hpp"
    40 #include "oops/oop.inline.hpp"
    41 #include "os_share_windows.hpp"
    42 #include "prims/jniFastGetField.hpp"
    43 #include "prims/jvm.h"
    44 #include "prims/jvm_misc.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/extendedPC.hpp"
    47 #include "runtime/globals.hpp"
    48 #include "runtime/interfaceSupport.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/mutexLocker.hpp"
    52 #include "runtime/objectMonitor.hpp"
    53 #include "runtime/osThread.hpp"
    54 #include "runtime/perfMemory.hpp"
    55 #include "runtime/sharedRuntime.hpp"
    56 #include "runtime/statSampler.hpp"
    57 #include "runtime/stubRoutines.hpp"
    58 #include "runtime/threadCritical.hpp"
    59 #include "runtime/timer.hpp"
    60 #include "services/attachListener.hpp"
    61 #include "services/runtimeService.hpp"
    62 #include "thread_windows.inline.hpp"
    63 #include "utilities/decoder.hpp"
    64 #include "utilities/defaultStream.hpp"
    65 #include "utilities/events.hpp"
    66 #include "utilities/growableArray.hpp"
    67 #include "utilities/vmError.hpp"
    68 #ifdef TARGET_ARCH_x86
    69 # include "assembler_x86.inline.hpp"
    70 # include "nativeInst_x86.hpp"
    71 #endif
    72 #ifdef COMPILER1
    73 #include "c1/c1_Runtime1.hpp"
    74 #endif
    75 #ifdef COMPILER2
    76 #include "opto/runtime.hpp"
    77 #endif
    79 #ifdef _DEBUG
    80 #include <crtdbg.h>
    81 #endif
    84 #include <windows.h>
    85 #include <sys/types.h>
    86 #include <sys/stat.h>
    87 #include <sys/timeb.h>
    88 #include <objidl.h>
    89 #include <shlobj.h>
    91 #include <malloc.h>
    92 #include <signal.h>
    93 #include <direct.h>
    94 #include <errno.h>
    95 #include <fcntl.h>
    96 #include <io.h>
    97 #include <process.h>              // For _beginthreadex(), _endthreadex()
    98 #include <imagehlp.h>             // For os::dll_address_to_function_name
   100 /* for enumerating dll libraries */
   101 #include <vdmdbg.h>
   103 // for timer info max values which include all bits
   104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   106 // For DLL loading/load error detection
   107 // Values of PE COFF
   108 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
   109 #define IMAGE_FILE_SIGNATURE_LENGTH 4
   111 static HANDLE main_process;
   112 static HANDLE main_thread;
   113 static int    main_thread_id;
   115 static FILETIME process_creation_time;
   116 static FILETIME process_exit_time;
   117 static FILETIME process_user_time;
   118 static FILETIME process_kernel_time;
   120 #ifdef _WIN64
   121 PVOID  topLevelVectoredExceptionHandler = NULL;
   122 #endif
   124 #ifdef _M_IA64
   125 #define __CPU__ ia64
   126 #elif _M_AMD64
   127 #define __CPU__ amd64
   128 #else
   129 #define __CPU__ i486
   130 #endif
   132 // save DLL module handle, used by GetModuleFileName
   134 HINSTANCE vm_lib_handle;
   136 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
   137   switch (reason) {
   138     case DLL_PROCESS_ATTACH:
   139       vm_lib_handle = hinst;
   140       if(ForceTimeHighResolution)
   141         timeBeginPeriod(1L);
   142       break;
   143     case DLL_PROCESS_DETACH:
   144       if(ForceTimeHighResolution)
   145         timeEndPeriod(1L);
   146 #ifdef _WIN64
   147       if (topLevelVectoredExceptionHandler != NULL) {
   148         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
   149         topLevelVectoredExceptionHandler = NULL;
   150       }
   151 #endif
   152       break;
   153     default:
   154       break;
   155   }
   156   return true;
   157 }
   159 static inline double fileTimeAsDouble(FILETIME* time) {
   160   const double high  = (double) ((unsigned int) ~0);
   161   const double split = 10000000.0;
   162   double result = (time->dwLowDateTime / split) +
   163                    time->dwHighDateTime * (high/split);
   164   return result;
   165 }
   167 // Implementation of os
   169 bool os::getenv(const char* name, char* buffer, int len) {
   170  int result = GetEnvironmentVariable(name, buffer, len);
   171  return result > 0 && result < len;
   172 }
   175 // No setuid programs under Windows.
   176 bool os::have_special_privileges() {
   177   return false;
   178 }
   181 // This method is  a periodic task to check for misbehaving JNI applications
   182 // under CheckJNI, we can add any periodic checks here.
   183 // For Windows at the moment does nothing
   184 void os::run_periodic_checks() {
   185   return;
   186 }
   188 #ifndef _WIN64
   189 // previous UnhandledExceptionFilter, if there is one
   190 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
   192 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
   193 #endif
   194 void os::init_system_properties_values() {
   195   /* sysclasspath, java_home, dll_dir */
   196   {
   197       char *home_path;
   198       char *dll_path;
   199       char *pslash;
   200       char *bin = "\\bin";
   201       char home_dir[MAX_PATH];
   203       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
   204           os::jvm_path(home_dir, sizeof(home_dir));
   205           // Found the full path to jvm[_g].dll.
   206           // Now cut the path to <java_home>/jre if we can.
   207           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
   208           pslash = strrchr(home_dir, '\\');
   209           if (pslash != NULL) {
   210               *pslash = '\0';                 /* get rid of \{client|server} */
   211               pslash = strrchr(home_dir, '\\');
   212               if (pslash != NULL)
   213                   *pslash = '\0';             /* get rid of \bin */
   214           }
   215       }
   217       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
   218       if (home_path == NULL)
   219           return;
   220       strcpy(home_path, home_dir);
   221       Arguments::set_java_home(home_path);
   223       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
   224       if (dll_path == NULL)
   225           return;
   226       strcpy(dll_path, home_dir);
   227       strcat(dll_path, bin);
   228       Arguments::set_dll_dir(dll_path);
   230       if (!set_boot_path('\\', ';'))
   231           return;
   232   }
   234   /* library_path */
   235   #define EXT_DIR "\\lib\\ext"
   236   #define BIN_DIR "\\bin"
   237   #define PACKAGE_DIR "\\Sun\\Java"
   238   {
   239     /* Win32 library search order (See the documentation for LoadLibrary):
   240      *
   241      * 1. The directory from which application is loaded.
   242      * 2. The system wide Java Extensions directory (Java only)
   243      * 3. System directory (GetSystemDirectory)
   244      * 4. Windows directory (GetWindowsDirectory)
   245      * 5. The PATH environment variable
   246      * 6. The current directory
   247      */
   249     char *library_path;
   250     char tmp[MAX_PATH];
   251     char *path_str = ::getenv("PATH");
   253     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
   254         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
   256     library_path[0] = '\0';
   258     GetModuleFileName(NULL, tmp, sizeof(tmp));
   259     *(strrchr(tmp, '\\')) = '\0';
   260     strcat(library_path, tmp);
   262     GetWindowsDirectory(tmp, sizeof(tmp));
   263     strcat(library_path, ";");
   264     strcat(library_path, tmp);
   265     strcat(library_path, PACKAGE_DIR BIN_DIR);
   267     GetSystemDirectory(tmp, sizeof(tmp));
   268     strcat(library_path, ";");
   269     strcat(library_path, tmp);
   271     GetWindowsDirectory(tmp, sizeof(tmp));
   272     strcat(library_path, ";");
   273     strcat(library_path, tmp);
   275     if (path_str) {
   276         strcat(library_path, ";");
   277         strcat(library_path, path_str);
   278     }
   280     strcat(library_path, ";.");
   282     Arguments::set_library_path(library_path);
   283     FREE_C_HEAP_ARRAY(char, library_path);
   284   }
   286   /* Default extensions directory */
   287   {
   288     char path[MAX_PATH];
   289     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
   290     GetWindowsDirectory(path, MAX_PATH);
   291     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
   292         path, PACKAGE_DIR, EXT_DIR);
   293     Arguments::set_ext_dirs(buf);
   294   }
   295   #undef EXT_DIR
   296   #undef BIN_DIR
   297   #undef PACKAGE_DIR
   299   /* Default endorsed standards directory. */
   300   {
   301     #define ENDORSED_DIR "\\lib\\endorsed"
   302     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
   303     char * buf = NEW_C_HEAP_ARRAY(char, len);
   304     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
   305     Arguments::set_endorsed_dirs(buf);
   306     #undef ENDORSED_DIR
   307   }
   309 #ifndef _WIN64
   310   // set our UnhandledExceptionFilter and save any previous one
   311   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
   312 #endif
   314   // Done
   315   return;
   316 }
   318 void os::breakpoint() {
   319   DebugBreak();
   320 }
   322 // Invoked from the BREAKPOINT Macro
   323 extern "C" void breakpoint() {
   324   os::breakpoint();
   325 }
   327 // Returns an estimate of the current stack pointer. Result must be guaranteed
   328 // to point into the calling threads stack, and be no lower than the current
   329 // stack pointer.
   331 address os::current_stack_pointer() {
   332   int dummy;
   333   address sp = (address)&dummy;
   334   return sp;
   335 }
   337 // os::current_stack_base()
   338 //
   339 //   Returns the base of the stack, which is the stack's
   340 //   starting address.  This function must be called
   341 //   while running on the stack of the thread being queried.
   343 address os::current_stack_base() {
   344   MEMORY_BASIC_INFORMATION minfo;
   345   address stack_bottom;
   346   size_t stack_size;
   348   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   349   stack_bottom =  (address)minfo.AllocationBase;
   350   stack_size = minfo.RegionSize;
   352   // Add up the sizes of all the regions with the same
   353   // AllocationBase.
   354   while( 1 )
   355   {
   356     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
   357     if ( stack_bottom == (address)minfo.AllocationBase )
   358       stack_size += minfo.RegionSize;
   359     else
   360       break;
   361   }
   363 #ifdef _M_IA64
   364   // IA64 has memory and register stacks
   365   stack_size = stack_size / 2;
   366 #endif
   367   return stack_bottom + stack_size;
   368 }
   370 size_t os::current_stack_size() {
   371   size_t sz;
   372   MEMORY_BASIC_INFORMATION minfo;
   373   VirtualQuery(&minfo, &minfo, sizeof(minfo));
   374   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
   375   return sz;
   376 }
   378 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
   379   const struct tm* time_struct_ptr = localtime(clock);
   380   if (time_struct_ptr != NULL) {
   381     *res = *time_struct_ptr;
   382     return res;
   383   }
   384   return NULL;
   385 }
   387 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
   389 // Thread start routine for all new Java threads
   390 static unsigned __stdcall java_start(Thread* thread) {
   391   // Try to randomize the cache line index of hot stack frames.
   392   // This helps when threads of the same stack traces evict each other's
   393   // cache lines. The threads can be either from the same JVM instance, or
   394   // from different JVM instances. The benefit is especially true for
   395   // processors with hyperthreading technology.
   396   static int counter = 0;
   397   int pid = os::current_process_id();
   398   _alloca(((pid ^ counter++) & 7) * 128);
   400   OSThread* osthr = thread->osthread();
   401   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
   403   if (UseNUMA) {
   404     int lgrp_id = os::numa_get_group_id();
   405     if (lgrp_id != -1) {
   406       thread->set_lgrp_id(lgrp_id);
   407     }
   408   }
   411   if (UseVectoredExceptions) {
   412     // If we are using vectored exception we don't need to set a SEH
   413     thread->run();
   414   }
   415   else {
   416     // Install a win32 structured exception handler around every thread created
   417     // by VM, so VM can genrate error dump when an exception occurred in non-
   418     // Java thread (e.g. VM thread).
   419     __try {
   420        thread->run();
   421     } __except(topLevelExceptionFilter(
   422                (_EXCEPTION_POINTERS*)_exception_info())) {
   423         // Nothing to do.
   424     }
   425   }
   427   // One less thread is executing
   428   // When the VMThread gets here, the main thread may have already exited
   429   // which frees the CodeHeap containing the Atomic::add code
   430   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
   431     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
   432   }
   434   return 0;
   435 }
   437 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
   438   // Allocate the OSThread object
   439   OSThread* osthread = new OSThread(NULL, NULL);
   440   if (osthread == NULL) return NULL;
   442   // Initialize support for Java interrupts
   443   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   444   if (interrupt_event == NULL) {
   445     delete osthread;
   446     return NULL;
   447   }
   448   osthread->set_interrupt_event(interrupt_event);
   450   // Store info on the Win32 thread into the OSThread
   451   osthread->set_thread_handle(thread_handle);
   452   osthread->set_thread_id(thread_id);
   454   if (UseNUMA) {
   455     int lgrp_id = os::numa_get_group_id();
   456     if (lgrp_id != -1) {
   457       thread->set_lgrp_id(lgrp_id);
   458     }
   459   }
   461   // Initial thread state is INITIALIZED, not SUSPENDED
   462   osthread->set_state(INITIALIZED);
   464   return osthread;
   465 }
   468 bool os::create_attached_thread(JavaThread* thread) {
   469 #ifdef ASSERT
   470   thread->verify_not_published();
   471 #endif
   472   HANDLE thread_h;
   473   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
   474                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
   475     fatal("DuplicateHandle failed\n");
   476   }
   477   OSThread* osthread = create_os_thread(thread, thread_h,
   478                                         (int)current_thread_id());
   479   if (osthread == NULL) {
   480      return false;
   481   }
   483   // Initial thread state is RUNNABLE
   484   osthread->set_state(RUNNABLE);
   486   thread->set_osthread(osthread);
   487   return true;
   488 }
   490 bool os::create_main_thread(JavaThread* thread) {
   491 #ifdef ASSERT
   492   thread->verify_not_published();
   493 #endif
   494   if (_starting_thread == NULL) {
   495     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
   496      if (_starting_thread == NULL) {
   497         return false;
   498      }
   499   }
   501   // The primordial thread is runnable from the start)
   502   _starting_thread->set_state(RUNNABLE);
   504   thread->set_osthread(_starting_thread);
   505   return true;
   506 }
   508 // Allocate and initialize a new OSThread
   509 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   510   unsigned thread_id;
   512   // Allocate the OSThread object
   513   OSThread* osthread = new OSThread(NULL, NULL);
   514   if (osthread == NULL) {
   515     return false;
   516   }
   518   // Initialize support for Java interrupts
   519   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
   520   if (interrupt_event == NULL) {
   521     delete osthread;
   522     return NULL;
   523   }
   524   osthread->set_interrupt_event(interrupt_event);
   525   osthread->set_interrupted(false);
   527   thread->set_osthread(osthread);
   529   if (stack_size == 0) {
   530     switch (thr_type) {
   531     case os::java_thread:
   532       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
   533       if (JavaThread::stack_size_at_create() > 0)
   534         stack_size = JavaThread::stack_size_at_create();
   535       break;
   536     case os::compiler_thread:
   537       if (CompilerThreadStackSize > 0) {
   538         stack_size = (size_t)(CompilerThreadStackSize * K);
   539         break;
   540       } // else fall through:
   541         // use VMThreadStackSize if CompilerThreadStackSize is not defined
   542     case os::vm_thread:
   543     case os::pgc_thread:
   544     case os::cgc_thread:
   545     case os::watcher_thread:
   546       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   547       break;
   548     }
   549   }
   551   // Create the Win32 thread
   552   //
   553   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
   554   // does not specify stack size. Instead, it specifies the size of
   555   // initially committed space. The stack size is determined by
   556   // PE header in the executable. If the committed "stack_size" is larger
   557   // than default value in the PE header, the stack is rounded up to the
   558   // nearest multiple of 1MB. For example if the launcher has default
   559   // stack size of 320k, specifying any size less than 320k does not
   560   // affect the actual stack size at all, it only affects the initial
   561   // commitment. On the other hand, specifying 'stack_size' larger than
   562   // default value may cause significant increase in memory usage, because
   563   // not only the stack space will be rounded up to MB, but also the
   564   // entire space is committed upfront.
   565   //
   566   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
   567   // for CreateThread() that can treat 'stack_size' as stack size. However we
   568   // are not supposed to call CreateThread() directly according to MSDN
   569   // document because JVM uses C runtime library. The good news is that the
   570   // flag appears to work with _beginthredex() as well.
   572 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
   573 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
   574 #endif
   576   HANDLE thread_handle =
   577     (HANDLE)_beginthreadex(NULL,
   578                            (unsigned)stack_size,
   579                            (unsigned (__stdcall *)(void*)) java_start,
   580                            thread,
   581                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
   582                            &thread_id);
   583   if (thread_handle == NULL) {
   584     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
   585     // without the flag.
   586     thread_handle =
   587     (HANDLE)_beginthreadex(NULL,
   588                            (unsigned)stack_size,
   589                            (unsigned (__stdcall *)(void*)) java_start,
   590                            thread,
   591                            CREATE_SUSPENDED,
   592                            &thread_id);
   593   }
   594   if (thread_handle == NULL) {
   595     // Need to clean up stuff we've allocated so far
   596     CloseHandle(osthread->interrupt_event());
   597     thread->set_osthread(NULL);
   598     delete osthread;
   599     return NULL;
   600   }
   602   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
   604   // Store info on the Win32 thread into the OSThread
   605   osthread->set_thread_handle(thread_handle);
   606   osthread->set_thread_id(thread_id);
   608   // Initial thread state is INITIALIZED, not SUSPENDED
   609   osthread->set_state(INITIALIZED);
   611   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
   612   return true;
   613 }
   616 // Free Win32 resources related to the OSThread
   617 void os::free_thread(OSThread* osthread) {
   618   assert(osthread != NULL, "osthread not set");
   619   CloseHandle(osthread->thread_handle());
   620   CloseHandle(osthread->interrupt_event());
   621   delete osthread;
   622 }
   625 static int    has_performance_count = 0;
   626 static jlong first_filetime;
   627 static jlong initial_performance_count;
   628 static jlong performance_frequency;
   631 jlong as_long(LARGE_INTEGER x) {
   632   jlong result = 0; // initialization to avoid warning
   633   set_high(&result, x.HighPart);
   634   set_low(&result,  x.LowPart);
   635   return result;
   636 }
   639 jlong os::elapsed_counter() {
   640   LARGE_INTEGER count;
   641   if (has_performance_count) {
   642     QueryPerformanceCounter(&count);
   643     return as_long(count) - initial_performance_count;
   644   } else {
   645     FILETIME wt;
   646     GetSystemTimeAsFileTime(&wt);
   647     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
   648   }
   649 }
   652 jlong os::elapsed_frequency() {
   653   if (has_performance_count) {
   654     return performance_frequency;
   655   } else {
   656    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
   657    return 10000000;
   658   }
   659 }
   662 julong os::available_memory() {
   663   return win32::available_memory();
   664 }
   666 julong os::win32::available_memory() {
   667   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
   668   // value if total memory is larger than 4GB
   669   MEMORYSTATUSEX ms;
   670   ms.dwLength = sizeof(ms);
   671   GlobalMemoryStatusEx(&ms);
   673   return (julong)ms.ullAvailPhys;
   674 }
   676 julong os::physical_memory() {
   677   return win32::physical_memory();
   678 }
   680 julong os::allocatable_physical_memory(julong size) {
   681 #ifdef _LP64
   682   return size;
   683 #else
   684   // Limit to 1400m because of the 2gb address space wall
   685   return MIN2(size, (julong)1400*M);
   686 #endif
   687 }
   689 // VC6 lacks DWORD_PTR
   690 #if _MSC_VER < 1300
   691 typedef UINT_PTR DWORD_PTR;
   692 #endif
   694 int os::active_processor_count() {
   695   DWORD_PTR lpProcessAffinityMask = 0;
   696   DWORD_PTR lpSystemAffinityMask = 0;
   697   int proc_count = processor_count();
   698   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
   699       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
   700     // Nof active processors is number of bits in process affinity mask
   701     int bitcount = 0;
   702     while (lpProcessAffinityMask != 0) {
   703       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
   704       bitcount++;
   705     }
   706     return bitcount;
   707   } else {
   708     return proc_count;
   709   }
   710 }
   712 void os::set_native_thread_name(const char *name) {
   713   // Not yet implemented.
   714   return;
   715 }
   717 bool os::distribute_processes(uint length, uint* distribution) {
   718   // Not yet implemented.
   719   return false;
   720 }
   722 bool os::bind_to_processor(uint processor_id) {
   723   // Not yet implemented.
   724   return false;
   725 }
   727 static void initialize_performance_counter() {
   728   LARGE_INTEGER count;
   729   if (QueryPerformanceFrequency(&count)) {
   730     has_performance_count = 1;
   731     performance_frequency = as_long(count);
   732     QueryPerformanceCounter(&count);
   733     initial_performance_count = as_long(count);
   734   } else {
   735     has_performance_count = 0;
   736     FILETIME wt;
   737     GetSystemTimeAsFileTime(&wt);
   738     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   739   }
   740 }
   743 double os::elapsedTime() {
   744   return (double) elapsed_counter() / (double) elapsed_frequency();
   745 }
   748 // Windows format:
   749 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
   750 // Java format:
   751 //   Java standards require the number of milliseconds since 1/1/1970
   753 // Constant offset - calculated using offset()
   754 static jlong  _offset   = 116444736000000000;
   755 // Fake time counter for reproducible results when debugging
   756 static jlong  fake_time = 0;
   758 #ifdef ASSERT
   759 // Just to be safe, recalculate the offset in debug mode
   760 static jlong _calculated_offset = 0;
   761 static int   _has_calculated_offset = 0;
   763 jlong offset() {
   764   if (_has_calculated_offset) return _calculated_offset;
   765   SYSTEMTIME java_origin;
   766   java_origin.wYear          = 1970;
   767   java_origin.wMonth         = 1;
   768   java_origin.wDayOfWeek     = 0; // ignored
   769   java_origin.wDay           = 1;
   770   java_origin.wHour          = 0;
   771   java_origin.wMinute        = 0;
   772   java_origin.wSecond        = 0;
   773   java_origin.wMilliseconds  = 0;
   774   FILETIME jot;
   775   if (!SystemTimeToFileTime(&java_origin, &jot)) {
   776     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
   777   }
   778   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
   779   _has_calculated_offset = 1;
   780   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
   781   return _calculated_offset;
   782 }
   783 #else
   784 jlong offset() {
   785   return _offset;
   786 }
   787 #endif
   789 jlong windows_to_java_time(FILETIME wt) {
   790   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
   791   return (a - offset()) / 10000;
   792 }
   794 FILETIME java_to_windows_time(jlong l) {
   795   jlong a = (l * 10000) + offset();
   796   FILETIME result;
   797   result.dwHighDateTime = high(a);
   798   result.dwLowDateTime  = low(a);
   799   return result;
   800 }
   802 // For now, we say that Windows does not support vtime.  I have no idea
   803 // whether it can actually be made to (DLD, 9/13/05).
   805 bool os::supports_vtime() { return false; }
   806 bool os::enable_vtime() { return false; }
   807 bool os::vtime_enabled() { return false; }
   808 double os::elapsedVTime() {
   809   // better than nothing, but not much
   810   return elapsedTime();
   811 }
   813 jlong os::javaTimeMillis() {
   814   if (UseFakeTimers) {
   815     return fake_time++;
   816   } else {
   817     FILETIME wt;
   818     GetSystemTimeAsFileTime(&wt);
   819     return windows_to_java_time(wt);
   820   }
   821 }
   823 jlong os::javaTimeNanos() {
   824   if (!has_performance_count) {
   825     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
   826   } else {
   827     LARGE_INTEGER current_count;
   828     QueryPerformanceCounter(&current_count);
   829     double current = as_long(current_count);
   830     double freq = performance_frequency;
   831     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
   832     return time;
   833   }
   834 }
   836 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
   837   if (!has_performance_count) {
   838     // javaTimeMillis() doesn't have much percision,
   839     // but it is not going to wrap -- so all 64 bits
   840     info_ptr->max_value = ALL_64_BITS;
   842     // this is a wall clock timer, so may skip
   843     info_ptr->may_skip_backward = true;
   844     info_ptr->may_skip_forward = true;
   845   } else {
   846     jlong freq = performance_frequency;
   847     if (freq < NANOSECS_PER_SEC) {
   848       // the performance counter is 64 bits and we will
   849       // be multiplying it -- so no wrap in 64 bits
   850       info_ptr->max_value = ALL_64_BITS;
   851     } else if (freq > NANOSECS_PER_SEC) {
   852       // use the max value the counter can reach to
   853       // determine the max value which could be returned
   854       julong max_counter = (julong)ALL_64_BITS;
   855       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
   856     } else {
   857       // the performance counter is 64 bits and we will
   858       // be using it directly -- so no wrap in 64 bits
   859       info_ptr->max_value = ALL_64_BITS;
   860     }
   862     // using a counter, so no skipping
   863     info_ptr->may_skip_backward = false;
   864     info_ptr->may_skip_forward = false;
   865   }
   866   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
   867 }
   869 char* os::local_time_string(char *buf, size_t buflen) {
   870   SYSTEMTIME st;
   871   GetLocalTime(&st);
   872   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
   873                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
   874   return buf;
   875 }
   877 bool os::getTimesSecs(double* process_real_time,
   878                      double* process_user_time,
   879                      double* process_system_time) {
   880   HANDLE h_process = GetCurrentProcess();
   881   FILETIME create_time, exit_time, kernel_time, user_time;
   882   BOOL result = GetProcessTimes(h_process,
   883                                &create_time,
   884                                &exit_time,
   885                                &kernel_time,
   886                                &user_time);
   887   if (result != 0) {
   888     FILETIME wt;
   889     GetSystemTimeAsFileTime(&wt);
   890     jlong rtc_millis = windows_to_java_time(wt);
   891     jlong user_millis = windows_to_java_time(user_time);
   892     jlong system_millis = windows_to_java_time(kernel_time);
   893     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
   894     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
   895     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
   896     return true;
   897   } else {
   898     return false;
   899   }
   900 }
   902 void os::shutdown() {
   904   // allow PerfMemory to attempt cleanup of any persistent resources
   905   perfMemory_exit();
   907   // flush buffered output, finish log files
   908   ostream_abort();
   910   // Check for abort hook
   911   abort_hook_t abort_hook = Arguments::abort_hook();
   912   if (abort_hook != NULL) {
   913     abort_hook();
   914   }
   915 }
   918 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   919                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
   921 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
   922   HINSTANCE dbghelp;
   923   EXCEPTION_POINTERS ep;
   924   MINIDUMP_EXCEPTION_INFORMATION mei;
   925   MINIDUMP_EXCEPTION_INFORMATION* pmei;
   927   HANDLE hProcess = GetCurrentProcess();
   928   DWORD processId = GetCurrentProcessId();
   929   HANDLE dumpFile;
   930   MINIDUMP_TYPE dumpType;
   931   static const char* cwd;
   933   // If running on a client version of Windows and user has not explicitly enabled dumping
   934   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
   935     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
   936     return;
   937     // If running on a server version of Windows and user has explictly disabled dumping
   938   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
   939     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
   940     return;
   941   }
   943   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
   945   if (dbghelp == NULL) {
   946     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
   947     return;
   948   }
   950   _MiniDumpWriteDump = CAST_TO_FN_PTR(
   951     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
   952     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
   953     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
   955   if (_MiniDumpWriteDump == NULL) {
   956     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
   957     return;
   958   }
   960   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
   962 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
   963 // API_VERSION_NUMBER 11 or higher contains the ones we want though
   964 #if API_VERSION_NUMBER >= 11
   965   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
   966     MiniDumpWithUnloadedModules);
   967 #endif
   969   cwd = get_current_directory(NULL, 0);
   970   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
   971   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
   973   if (dumpFile == INVALID_HANDLE_VALUE) {
   974     VMError::report_coredump_status("Failed to create file for dumping", false);
   975     return;
   976   }
   977   if (exceptionRecord != NULL && contextRecord != NULL) {
   978     ep.ContextRecord = (PCONTEXT) contextRecord;
   979     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
   981     mei.ThreadId = GetCurrentThreadId();
   982     mei.ExceptionPointers = &ep;
   983     pmei = &mei;
   984   } else {
   985     pmei = NULL;
   986   }
   989   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
   990   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
   991   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
   992       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
   993     VMError::report_coredump_status("Call to MiniDumpWriteDump() failed", false);
   994   } else {
   995     VMError::report_coredump_status(buffer, true);
   996   }
   998   CloseHandle(dumpFile);
   999 }
  1003 void os::abort(bool dump_core)
  1005   os::shutdown();
  1006   // no core dump on Windows
  1007   ::exit(1);
  1010 // Die immediately, no exit hook, no abort hook, no cleanup.
  1011 void os::die() {
  1012   _exit(-1);
  1015 // Directory routines copied from src/win32/native/java/io/dirent_md.c
  1016 //  * dirent_md.c       1.15 00/02/02
  1017 //
  1018 // The declarations for DIR and struct dirent are in jvm_win32.h.
  1020 /* Caller must have already run dirname through JVM_NativePath, which removes
  1021    duplicate slashes and converts all instances of '/' into '\\'. */
  1023 DIR *
  1024 os::opendir(const char *dirname)
  1026     assert(dirname != NULL, "just checking");   // hotspot change
  1027     DIR *dirp = (DIR *)malloc(sizeof(DIR));
  1028     DWORD fattr;                                // hotspot change
  1029     char alt_dirname[4] = { 0, 0, 0, 0 };
  1031     if (dirp == 0) {
  1032         errno = ENOMEM;
  1033         return 0;
  1036     /*
  1037      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
  1038      * as a directory in FindFirstFile().  We detect this case here and
  1039      * prepend the current drive name.
  1040      */
  1041     if (dirname[1] == '\0' && dirname[0] == '\\') {
  1042         alt_dirname[0] = _getdrive() + 'A' - 1;
  1043         alt_dirname[1] = ':';
  1044         alt_dirname[2] = '\\';
  1045         alt_dirname[3] = '\0';
  1046         dirname = alt_dirname;
  1049     dirp->path = (char *)malloc(strlen(dirname) + 5);
  1050     if (dirp->path == 0) {
  1051         free(dirp);
  1052         errno = ENOMEM;
  1053         return 0;
  1055     strcpy(dirp->path, dirname);
  1057     fattr = GetFileAttributes(dirp->path);
  1058     if (fattr == 0xffffffff) {
  1059         free(dirp->path);
  1060         free(dirp);
  1061         errno = ENOENT;
  1062         return 0;
  1063     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
  1064         free(dirp->path);
  1065         free(dirp);
  1066         errno = ENOTDIR;
  1067         return 0;
  1070     /* Append "*.*", or possibly "\\*.*", to path */
  1071     if (dirp->path[1] == ':'
  1072         && (dirp->path[2] == '\0'
  1073             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
  1074         /* No '\\' needed for cases like "Z:" or "Z:\" */
  1075         strcat(dirp->path, "*.*");
  1076     } else {
  1077         strcat(dirp->path, "\\*.*");
  1080     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
  1081     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1082         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
  1083             free(dirp->path);
  1084             free(dirp);
  1085             errno = EACCES;
  1086             return 0;
  1089     return dirp;
  1092 /* parameter dbuf unused on Windows */
  1094 struct dirent *
  1095 os::readdir(DIR *dirp, dirent *dbuf)
  1097     assert(dirp != NULL, "just checking");      // hotspot change
  1098     if (dirp->handle == INVALID_HANDLE_VALUE) {
  1099         return 0;
  1102     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
  1104     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
  1105         if (GetLastError() == ERROR_INVALID_HANDLE) {
  1106             errno = EBADF;
  1107             return 0;
  1109         FindClose(dirp->handle);
  1110         dirp->handle = INVALID_HANDLE_VALUE;
  1113     return &dirp->dirent;
  1116 int
  1117 os::closedir(DIR *dirp)
  1119     assert(dirp != NULL, "just checking");      // hotspot change
  1120     if (dirp->handle != INVALID_HANDLE_VALUE) {
  1121         if (!FindClose(dirp->handle)) {
  1122             errno = EBADF;
  1123             return -1;
  1125         dirp->handle = INVALID_HANDLE_VALUE;
  1127     free(dirp->path);
  1128     free(dirp);
  1129     return 0;
  1132 // This must be hard coded because it's the system's temporary
  1133 // directory not the java application's temp directory, ala java.io.tmpdir.
  1134 const char* os::get_temp_directory() {
  1135   static char path_buf[MAX_PATH];
  1136   if (GetTempPath(MAX_PATH, path_buf)>0)
  1137     return path_buf;
  1138   else{
  1139     path_buf[0]='\0';
  1140     return path_buf;
  1144 static bool file_exists(const char* filename) {
  1145   if (filename == NULL || strlen(filename) == 0) {
  1146     return false;
  1148   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
  1151 void os::dll_build_name(char *buffer, size_t buflen,
  1152                         const char* pname, const char* fname) {
  1153   const size_t pnamelen = pname ? strlen(pname) : 0;
  1154   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
  1156   // Quietly truncates on buffer overflow. Should be an error.
  1157   if (pnamelen + strlen(fname) + 10 > buflen) {
  1158     *buffer = '\0';
  1159     return;
  1162   if (pnamelen == 0) {
  1163     jio_snprintf(buffer, buflen, "%s.dll", fname);
  1164   } else if (c == ':' || c == '\\') {
  1165     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
  1166   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1167     int n;
  1168     char** pelements = split_path(pname, &n);
  1169     for (int i = 0 ; i < n ; i++) {
  1170       char* path = pelements[i];
  1171       // Really shouldn't be NULL, but check can't hurt
  1172       size_t plen = (path == NULL) ? 0 : strlen(path);
  1173       if (plen == 0) {
  1174         continue; // skip the empty path values
  1176       const char lastchar = path[plen - 1];
  1177       if (lastchar == ':' || lastchar == '\\') {
  1178         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
  1179       } else {
  1180         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
  1182       if (file_exists(buffer)) {
  1183         break;
  1186     // release the storage
  1187     for (int i = 0 ; i < n ; i++) {
  1188       if (pelements[i] != NULL) {
  1189         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1192     if (pelements != NULL) {
  1193       FREE_C_HEAP_ARRAY(char*, pelements);
  1195   } else {
  1196     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
  1200 // Needs to be in os specific directory because windows requires another
  1201 // header file <direct.h>
  1202 const char* os::get_current_directory(char *buf, int buflen) {
  1203   return _getcwd(buf, buflen);
  1206 //-----------------------------------------------------------
  1207 // Helper functions for fatal error handler
  1208 #ifdef _WIN64
  1209 // Helper routine which returns true if address in
  1210 // within the NTDLL address space.
  1211 //
  1212 static bool _addr_in_ntdll( address addr )
  1214   HMODULE hmod;
  1215   MODULEINFO minfo;
  1217   hmod = GetModuleHandle("NTDLL.DLL");
  1218   if ( hmod == NULL ) return false;
  1219   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
  1220                                &minfo, sizeof(MODULEINFO)) )
  1221     return false;
  1223   if ( (addr >= minfo.lpBaseOfDll) &&
  1224        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
  1225     return true;
  1226   else
  1227     return false;
  1229 #endif
  1232 // Enumerate all modules for a given process ID
  1233 //
  1234 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
  1235 // different API for doing this. We use PSAPI.DLL on NT based
  1236 // Windows and ToolHelp on 95/98/Me.
  1238 // Callback function that is called by enumerate_modules() on
  1239 // every DLL module.
  1240 // Input parameters:
  1241 //    int       pid,
  1242 //    char*     module_file_name,
  1243 //    address   module_base_addr,
  1244 //    unsigned  module_size,
  1245 //    void*     param
  1246 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
  1248 // enumerate_modules for Windows NT, using PSAPI
  1249 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
  1251   HANDLE   hProcess ;
  1253 # define MAX_NUM_MODULES 128
  1254   HMODULE     modules[MAX_NUM_MODULES];
  1255   static char filename[ MAX_PATH ];
  1256   int         result = 0;
  1258   if (!os::PSApiDll::PSApiAvailable()) {
  1259     return 0;
  1262   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
  1263                          FALSE, pid ) ;
  1264   if (hProcess == NULL) return 0;
  1266   DWORD size_needed;
  1267   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
  1268                            sizeof(modules), &size_needed)) {
  1269       CloseHandle( hProcess );
  1270       return 0;
  1273   // number of modules that are currently loaded
  1274   int num_modules = size_needed / sizeof(HMODULE);
  1276   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
  1277     // Get Full pathname:
  1278     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
  1279                              filename, sizeof(filename))) {
  1280         filename[0] = '\0';
  1283     MODULEINFO modinfo;
  1284     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
  1285                                &modinfo, sizeof(modinfo))) {
  1286         modinfo.lpBaseOfDll = NULL;
  1287         modinfo.SizeOfImage = 0;
  1290     // Invoke callback function
  1291     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
  1292                   modinfo.SizeOfImage, param);
  1293     if (result) break;
  1296   CloseHandle( hProcess ) ;
  1297   return result;
  1301 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
  1302 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
  1304   HANDLE                hSnapShot ;
  1305   static MODULEENTRY32  modentry ;
  1306   int                   result = 0;
  1308   if (!os::Kernel32Dll::HelpToolsAvailable()) {
  1309     return 0;
  1312   // Get a handle to a Toolhelp snapshot of the system
  1313   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
  1314   if( hSnapShot == INVALID_HANDLE_VALUE ) {
  1315       return FALSE ;
  1318   // iterate through all modules
  1319   modentry.dwSize = sizeof(MODULEENTRY32) ;
  1320   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
  1322   while( not_done ) {
  1323     // invoke the callback
  1324     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
  1325                 modentry.modBaseSize, param);
  1326     if (result) break;
  1328     modentry.dwSize = sizeof(MODULEENTRY32) ;
  1329     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
  1332   CloseHandle(hSnapShot);
  1333   return result;
  1336 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
  1338   // Get current process ID if caller doesn't provide it.
  1339   if (!pid) pid = os::current_process_id();
  1341   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
  1342   else                    return _enumerate_modules_windows(pid, func, param);
  1345 struct _modinfo {
  1346    address addr;
  1347    char*   full_path;   // point to a char buffer
  1348    int     buflen;      // size of the buffer
  1349    address base_addr;
  1350 };
  1352 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
  1353                                   unsigned size, void * param) {
  1354    struct _modinfo *pmod = (struct _modinfo *)param;
  1355    if (!pmod) return -1;
  1357    if (base_addr     <= pmod->addr &&
  1358        base_addr+size > pmod->addr) {
  1359      // if a buffer is provided, copy path name to the buffer
  1360      if (pmod->full_path) {
  1361        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
  1363      pmod->base_addr = base_addr;
  1364      return 1;
  1366    return 0;
  1369 bool os::dll_address_to_library_name(address addr, char* buf,
  1370                                      int buflen, int* offset) {
  1371 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
  1372 //       return the full path to the DLL file, sometimes it returns path
  1373 //       to the corresponding PDB file (debug info); sometimes it only
  1374 //       returns partial path, which makes life painful.
  1376    struct _modinfo mi;
  1377    mi.addr      = addr;
  1378    mi.full_path = buf;
  1379    mi.buflen    = buflen;
  1380    int pid = os::current_process_id();
  1381    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
  1382       // buf already contains path name
  1383       if (offset) *offset = addr - mi.base_addr;
  1384       return true;
  1385    } else {
  1386       if (buf) buf[0] = '\0';
  1387       if (offset) *offset = -1;
  1388       return false;
  1392 bool os::dll_address_to_function_name(address addr, char *buf,
  1393                                       int buflen, int *offset) {
  1394   if (Decoder::decode(addr, buf, buflen, offset)) {
  1395     return true;
  1397   if (offset != NULL)  *offset  = -1;
  1398   if (buf != NULL) buf[0] = '\0';
  1399   return false;
  1402 // save the start and end address of jvm.dll into param[0] and param[1]
  1403 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
  1404                     unsigned size, void * param) {
  1405    if (!param) return -1;
  1407    if (base_addr     <= (address)_locate_jvm_dll &&
  1408        base_addr+size > (address)_locate_jvm_dll) {
  1409          ((address*)param)[0] = base_addr;
  1410          ((address*)param)[1] = base_addr + size;
  1411          return 1;
  1413    return 0;
  1416 address vm_lib_location[2];    // start and end address of jvm.dll
  1418 // check if addr is inside jvm.dll
  1419 bool os::address_is_in_vm(address addr) {
  1420   if (!vm_lib_location[0] || !vm_lib_location[1]) {
  1421     int pid = os::current_process_id();
  1422     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
  1423       assert(false, "Can't find jvm module.");
  1424       return false;
  1428   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
  1431 // print module info; param is outputStream*
  1432 static int _print_module(int pid, char* fname, address base,
  1433                          unsigned size, void* param) {
  1434    if (!param) return -1;
  1436    outputStream* st = (outputStream*)param;
  1438    address end_addr = base + size;
  1439    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
  1440    return 0;
  1443 // Loads .dll/.so and
  1444 // in case of error it checks if .dll/.so was built for the
  1445 // same architecture as Hotspot is running on
  1446 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
  1448   void * result = LoadLibrary(name);
  1449   if (result != NULL)
  1451     return result;
  1454   DWORD errcode = GetLastError();
  1455   if (errcode == ERROR_MOD_NOT_FOUND) {
  1456     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
  1457     ebuf[ebuflen-1]='\0';
  1458     return NULL;
  1461   // Parsing dll below
  1462   // If we can read dll-info and find that dll was built
  1463   // for an architecture other than Hotspot is running in
  1464   // - then print to buffer "DLL was built for a different architecture"
  1465   // else call os::lasterror to obtain system error message
  1467   // Read system error message into ebuf
  1468   // It may or may not be overwritten below (in the for loop and just above)
  1469   lasterror(ebuf, (size_t) ebuflen);
  1470   ebuf[ebuflen-1]='\0';
  1471   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
  1472   if (file_descriptor<0)
  1474     return NULL;
  1477   uint32_t signature_offset;
  1478   uint16_t lib_arch=0;
  1479   bool failed_to_get_lib_arch=
  1481     //Go to position 3c in the dll
  1482     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
  1483     ||
  1484     // Read loacation of signature
  1485     (sizeof(signature_offset)!=
  1486       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
  1487     ||
  1488     //Go to COFF File Header in dll
  1489     //that is located after"signature" (4 bytes long)
  1490     (os::seek_to_file_offset(file_descriptor,
  1491       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
  1492     ||
  1493     //Read field that contains code of architecture
  1494     // that dll was build for
  1495     (sizeof(lib_arch)!=
  1496       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
  1497   );
  1499   ::close(file_descriptor);
  1500   if (failed_to_get_lib_arch)
  1502     // file i/o error - report os::lasterror(...) msg
  1503     return NULL;
  1506   typedef struct
  1508     uint16_t arch_code;
  1509     char* arch_name;
  1510   } arch_t;
  1512   static const arch_t arch_array[]={
  1513     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
  1514     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
  1515     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
  1516   };
  1517   #if   (defined _M_IA64)
  1518     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
  1519   #elif (defined _M_AMD64)
  1520     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
  1521   #elif (defined _M_IX86)
  1522     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
  1523   #else
  1524     #error Method os::dll_load requires that one of following \
  1525            is defined :_M_IA64,_M_AMD64 or _M_IX86
  1526   #endif
  1529   // Obtain a string for printf operation
  1530   // lib_arch_str shall contain string what platform this .dll was built for
  1531   // running_arch_str shall string contain what platform Hotspot was built for
  1532   char *running_arch_str=NULL,*lib_arch_str=NULL;
  1533   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
  1535     if (lib_arch==arch_array[i].arch_code)
  1536       lib_arch_str=arch_array[i].arch_name;
  1537     if (running_arch==arch_array[i].arch_code)
  1538       running_arch_str=arch_array[i].arch_name;
  1541   assert(running_arch_str,
  1542     "Didn't find runing architecture code in arch_array");
  1544   // If the architure is right
  1545   // but some other error took place - report os::lasterror(...) msg
  1546   if (lib_arch == running_arch)
  1548     return NULL;
  1551   if (lib_arch_str!=NULL)
  1553     ::_snprintf(ebuf, ebuflen-1,
  1554       "Can't load %s-bit .dll on a %s-bit platform",
  1555       lib_arch_str,running_arch_str);
  1557   else
  1559     // don't know what architecture this dll was build for
  1560     ::_snprintf(ebuf, ebuflen-1,
  1561       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
  1562       lib_arch,running_arch_str);
  1565   return NULL;
  1569 void os::print_dll_info(outputStream *st) {
  1570    int pid = os::current_process_id();
  1571    st->print_cr("Dynamic libraries:");
  1572    enumerate_modules(pid, _print_module, (void *)st);
  1575 void os::print_os_info(outputStream* st) {
  1576   st->print("OS:");
  1578   OSVERSIONINFOEX osvi;
  1579   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
  1580   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  1582   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
  1583     st->print_cr("N/A");
  1584     return;
  1587   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
  1588   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
  1589     switch (os_vers) {
  1590     case 3051: st->print(" Windows NT 3.51"); break;
  1591     case 4000: st->print(" Windows NT 4.0"); break;
  1592     case 5000: st->print(" Windows 2000"); break;
  1593     case 5001: st->print(" Windows XP"); break;
  1594     case 5002:
  1595     case 6000:
  1596     case 6001: {
  1597       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
  1598       // find out whether we are running on 64 bit processor or not.
  1599       SYSTEM_INFO si;
  1600       ZeroMemory(&si, sizeof(SYSTEM_INFO));
  1601         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
  1602           GetSystemInfo(&si);
  1603       } else {
  1604         os::Kernel32Dll::GetNativeSystemInfo(&si);
  1606       if (os_vers == 5002) {
  1607         if (osvi.wProductType == VER_NT_WORKSTATION &&
  1608             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1609           st->print(" Windows XP x64 Edition");
  1610         else
  1611             st->print(" Windows Server 2003 family");
  1612       } else if (os_vers == 6000) {
  1613         if (osvi.wProductType == VER_NT_WORKSTATION)
  1614             st->print(" Windows Vista");
  1615         else
  1616             st->print(" Windows Server 2008");
  1617         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1618             st->print(" , 64 bit");
  1619       } else if (os_vers == 6001) {
  1620         if (osvi.wProductType == VER_NT_WORKSTATION) {
  1621             st->print(" Windows 7");
  1622         } else {
  1623             // Unrecognized windows, print out its major and minor versions
  1624             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1626         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1627             st->print(" , 64 bit");
  1628       } else { // future os
  1629         // Unrecognized windows, print out its major and minor versions
  1630         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1631         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
  1632             st->print(" , 64 bit");
  1634       break;
  1636     default: // future windows, print out its major and minor versions
  1637       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1639   } else {
  1640     switch (os_vers) {
  1641     case 4000: st->print(" Windows 95"); break;
  1642     case 4010: st->print(" Windows 98"); break;
  1643     case 4090: st->print(" Windows Me"); break;
  1644     default: // future windows, print out its major and minor versions
  1645       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
  1648   st->print(" Build %d", osvi.dwBuildNumber);
  1649   st->print(" %s", osvi.szCSDVersion);           // service pack
  1650   st->cr();
  1653 void os::pd_print_cpu_info(outputStream* st) {
  1654   // Nothing to do for now.
  1657 void os::print_memory_info(outputStream* st) {
  1658   st->print("Memory:");
  1659   st->print(" %dk page", os::vm_page_size()>>10);
  1661   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
  1662   // value if total memory is larger than 4GB
  1663   MEMORYSTATUSEX ms;
  1664   ms.dwLength = sizeof(ms);
  1665   GlobalMemoryStatusEx(&ms);
  1667   st->print(", physical %uk", os::physical_memory() >> 10);
  1668   st->print("(%uk free)", os::available_memory() >> 10);
  1670   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
  1671   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
  1672   st->cr();
  1675 void os::print_siginfo(outputStream *st, void *siginfo) {
  1676   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
  1677   st->print("siginfo:");
  1678   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
  1680   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  1681       er->NumberParameters >= 2) {
  1682       switch (er->ExceptionInformation[0]) {
  1683       case 0: st->print(", reading address"); break;
  1684       case 1: st->print(", writing address"); break;
  1685       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
  1686                             er->ExceptionInformation[0]);
  1688       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
  1689   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
  1690              er->NumberParameters >= 2 && UseSharedSpaces) {
  1691     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1692     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
  1693       st->print("\n\nError accessing class data sharing archive."       \
  1694                 " Mapped file inaccessible during execution, "          \
  1695                 " possible disk/network problem.");
  1697   } else {
  1698     int num = er->NumberParameters;
  1699     if (num > 0) {
  1700       st->print(", ExceptionInformation=");
  1701       for (int i = 0; i < num; i++) {
  1702         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
  1706   st->cr();
  1709 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1710   // do nothing
  1713 static char saved_jvm_path[MAX_PATH] = {0};
  1715 // Find the full path to the current module, jvm.dll or jvm_g.dll
  1716 void os::jvm_path(char *buf, jint buflen) {
  1717   // Error checking.
  1718   if (buflen < MAX_PATH) {
  1719     assert(false, "must use a large-enough buffer");
  1720     buf[0] = '\0';
  1721     return;
  1723   // Lazy resolve the path to current module.
  1724   if (saved_jvm_path[0] != 0) {
  1725     strcpy(buf, saved_jvm_path);
  1726     return;
  1729   buf[0] = '\0';
  1730   if (Arguments::created_by_gamma_launcher()) {
  1731      // Support for the gamma launcher. Check for an
  1732      // JAVA_HOME environment variable
  1733      // and fix up the path so it looks like
  1734      // libjvm.so is installed there (append a fake suffix
  1735      // hotspot/libjvm.so).
  1736      char* java_home_var = ::getenv("JAVA_HOME");
  1737      if (java_home_var != NULL && java_home_var[0] != 0) {
  1739         strncpy(buf, java_home_var, buflen);
  1741         // determine if this is a legacy image or modules image
  1742         // modules image doesn't have "jre" subdirectory
  1743         size_t len = strlen(buf);
  1744         char* jrebin_p = buf + len;
  1745         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
  1746         if (0 != _access(buf, 0)) {
  1747           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
  1749         len = strlen(buf);
  1750         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
  1754   if(buf[0] == '\0') {
  1755   GetModuleFileName(vm_lib_handle, buf, buflen);
  1757   strcpy(saved_jvm_path, buf);
  1761 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1762 #ifndef _WIN64
  1763   st->print("_");
  1764 #endif
  1768 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1769 #ifndef _WIN64
  1770   st->print("@%d", args_size  * sizeof(int));
  1771 #endif
  1774 // This method is a copy of JDK's sysGetLastErrorString
  1775 // from src/windows/hpi/src/system_md.c
  1777 size_t os::lasterror(char* buf, size_t len) {
  1778   DWORD errval;
  1780   if ((errval = GetLastError()) != 0) {
  1781     // DOS error
  1782     size_t n = (size_t)FormatMessage(
  1783           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
  1784           NULL,
  1785           errval,
  1786           0,
  1787           buf,
  1788           (DWORD)len,
  1789           NULL);
  1790     if (n > 3) {
  1791       // Drop final '.', CR, LF
  1792       if (buf[n - 1] == '\n') n--;
  1793       if (buf[n - 1] == '\r') n--;
  1794       if (buf[n - 1] == '.') n--;
  1795       buf[n] = '\0';
  1797     return n;
  1800   if (errno != 0) {
  1801     // C runtime error that has no corresponding DOS error code
  1802     const char* s = strerror(errno);
  1803     size_t n = strlen(s);
  1804     if (n >= len) n = len - 1;
  1805     strncpy(buf, s, n);
  1806     buf[n] = '\0';
  1807     return n;
  1810   return 0;
  1813 int os::get_last_error() {
  1814   DWORD error = GetLastError();
  1815   if (error == 0)
  1816     error = errno;
  1817   return (int)error;
  1820 // sun.misc.Signal
  1821 // NOTE that this is a workaround for an apparent kernel bug where if
  1822 // a signal handler for SIGBREAK is installed then that signal handler
  1823 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
  1824 // See bug 4416763.
  1825 static void (*sigbreakHandler)(int) = NULL;
  1827 static void UserHandler(int sig, void *siginfo, void *context) {
  1828   os::signal_notify(sig);
  1829   // We need to reinstate the signal handler each time...
  1830   os::signal(sig, (void*)UserHandler);
  1833 void* os::user_handler() {
  1834   return (void*) UserHandler;
  1837 void* os::signal(int signal_number, void* handler) {
  1838   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
  1839     void (*oldHandler)(int) = sigbreakHandler;
  1840     sigbreakHandler = (void (*)(int)) handler;
  1841     return (void*) oldHandler;
  1842   } else {
  1843     return (void*)::signal(signal_number, (void (*)(int))handler);
  1847 void os::signal_raise(int signal_number) {
  1848   raise(signal_number);
  1851 // The Win32 C runtime library maps all console control events other than ^C
  1852 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
  1853 // logoff, and shutdown events.  We therefore install our own console handler
  1854 // that raises SIGTERM for the latter cases.
  1855 //
  1856 static BOOL WINAPI consoleHandler(DWORD event) {
  1857   switch(event) {
  1858     case CTRL_C_EVENT:
  1859       if (is_error_reported()) {
  1860         // Ctrl-C is pressed during error reporting, likely because the error
  1861         // handler fails to abort. Let VM die immediately.
  1862         os::die();
  1865       os::signal_raise(SIGINT);
  1866       return TRUE;
  1867       break;
  1868     case CTRL_BREAK_EVENT:
  1869       if (sigbreakHandler != NULL) {
  1870         (*sigbreakHandler)(SIGBREAK);
  1872       return TRUE;
  1873       break;
  1874     case CTRL_CLOSE_EVENT:
  1875     case CTRL_LOGOFF_EVENT:
  1876     case CTRL_SHUTDOWN_EVENT:
  1877       os::signal_raise(SIGTERM);
  1878       return TRUE;
  1879       break;
  1880     default:
  1881       break;
  1883   return FALSE;
  1886 /*
  1887  * The following code is moved from os.cpp for making this
  1888  * code platform specific, which it is by its very nature.
  1889  */
  1891 // Return maximum OS signal used + 1 for internal use only
  1892 // Used as exit signal for signal_thread
  1893 int os::sigexitnum_pd(){
  1894   return NSIG;
  1897 // a counter for each possible signal value, including signal_thread exit signal
  1898 static volatile jint pending_signals[NSIG+1] = { 0 };
  1899 static HANDLE sig_sem;
  1901 void os::signal_init_pd() {
  1902   // Initialize signal structures
  1903   memset((void*)pending_signals, 0, sizeof(pending_signals));
  1905   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
  1907   // Programs embedding the VM do not want it to attempt to receive
  1908   // events like CTRL_LOGOFF_EVENT, which are used to implement the
  1909   // shutdown hooks mechanism introduced in 1.3.  For example, when
  1910   // the VM is run as part of a Windows NT service (i.e., a servlet
  1911   // engine in a web server), the correct behavior is for any console
  1912   // control handler to return FALSE, not TRUE, because the OS's
  1913   // "final" handler for such events allows the process to continue if
  1914   // it is a service (while terminating it if it is not a service).
  1915   // To make this behavior uniform and the mechanism simpler, we
  1916   // completely disable the VM's usage of these console events if -Xrs
  1917   // (=ReduceSignalUsage) is specified.  This means, for example, that
  1918   // the CTRL-BREAK thread dump mechanism is also disabled in this
  1919   // case.  See bugs 4323062, 4345157, and related bugs.
  1921   if (!ReduceSignalUsage) {
  1922     // Add a CTRL-C handler
  1923     SetConsoleCtrlHandler(consoleHandler, TRUE);
  1927 void os::signal_notify(int signal_number) {
  1928   BOOL ret;
  1930   Atomic::inc(&pending_signals[signal_number]);
  1931   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1932   assert(ret != 0, "ReleaseSemaphore() failed");
  1935 static int check_pending_signals(bool wait_for_signal) {
  1936   DWORD ret;
  1937   while (true) {
  1938     for (int i = 0; i < NSIG + 1; i++) {
  1939       jint n = pending_signals[i];
  1940       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1941         return i;
  1944     if (!wait_for_signal) {
  1945       return -1;
  1948     JavaThread *thread = JavaThread::current();
  1950     ThreadBlockInVM tbivm(thread);
  1952     bool threadIsSuspended;
  1953     do {
  1954       thread->set_suspend_equivalent();
  1955       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1956       ret = ::WaitForSingleObject(sig_sem, INFINITE);
  1957       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
  1959       // were we externally suspended while we were waiting?
  1960       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1961       if (threadIsSuspended) {
  1962         //
  1963         // The semaphore has been incremented, but while we were waiting
  1964         // another thread suspended us. We don't want to continue running
  1965         // while suspended because that would surprise the thread that
  1966         // suspended us.
  1967         //
  1968         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
  1969         assert(ret != 0, "ReleaseSemaphore() failed");
  1971         thread->java_suspend_self();
  1973     } while (threadIsSuspended);
  1977 int os::signal_lookup() {
  1978   return check_pending_signals(false);
  1981 int os::signal_wait() {
  1982   return check_pending_signals(true);
  1985 // Implicit OS exception handling
  1987 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
  1988   JavaThread* thread = JavaThread::current();
  1989   // Save pc in thread
  1990 #ifdef _M_IA64
  1991   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
  1992   // Set pc to handler
  1993   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
  1994 #elif _M_AMD64
  1995   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
  1996   // Set pc to handler
  1997   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
  1998 #else
  1999   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
  2000   // Set pc to handler
  2001   exceptionInfo->ContextRecord->Eip = (LONG)handler;
  2002 #endif
  2004   // Continue the execution
  2005   return EXCEPTION_CONTINUE_EXECUTION;
  2009 // Used for PostMortemDump
  2010 extern "C" void safepoints();
  2011 extern "C" void find(int x);
  2012 extern "C" void events();
  2014 // According to Windows API documentation, an illegal instruction sequence should generate
  2015 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
  2016 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
  2017 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
  2019 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
  2021 // From "Execution Protection in the Windows Operating System" draft 0.35
  2022 // Once a system header becomes available, the "real" define should be
  2023 // included or copied here.
  2024 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
  2026 #define def_excpt(val) #val, val
  2028 struct siglabel {
  2029   char *name;
  2030   int   number;
  2031 };
  2033 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
  2034 // C++ compiler contain this error code. Because this is a compiler-generated
  2035 // error, the code is not listed in the Win32 API header files.
  2036 // The code is actually a cryptic mnemonic device, with the initial "E"
  2037 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
  2038 // ASCII values of "msc".
  2040 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
  2043 struct siglabel exceptlabels[] = {
  2044     def_excpt(EXCEPTION_ACCESS_VIOLATION),
  2045     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
  2046     def_excpt(EXCEPTION_BREAKPOINT),
  2047     def_excpt(EXCEPTION_SINGLE_STEP),
  2048     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
  2049     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
  2050     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
  2051     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
  2052     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
  2053     def_excpt(EXCEPTION_FLT_OVERFLOW),
  2054     def_excpt(EXCEPTION_FLT_STACK_CHECK),
  2055     def_excpt(EXCEPTION_FLT_UNDERFLOW),
  2056     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
  2057     def_excpt(EXCEPTION_INT_OVERFLOW),
  2058     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
  2059     def_excpt(EXCEPTION_IN_PAGE_ERROR),
  2060     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
  2061     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
  2062     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
  2063     def_excpt(EXCEPTION_STACK_OVERFLOW),
  2064     def_excpt(EXCEPTION_INVALID_DISPOSITION),
  2065     def_excpt(EXCEPTION_GUARD_PAGE),
  2066     def_excpt(EXCEPTION_INVALID_HANDLE),
  2067     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
  2068     NULL, 0
  2069 };
  2071 const char* os::exception_name(int exception_code, char *buf, size_t size) {
  2072   for (int i = 0; exceptlabels[i].name != NULL; i++) {
  2073     if (exceptlabels[i].number == exception_code) {
  2074        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
  2075        return buf;
  2079   return NULL;
  2082 //-----------------------------------------------------------------------------
  2083 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2084   // handle exception caused by idiv; should only happen for -MinInt/-1
  2085   // (division by zero is handled explicitly)
  2086 #ifdef _M_IA64
  2087   assert(0, "Fix Handle_IDiv_Exception");
  2088 #elif _M_AMD64
  2089   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2090   address pc = (address)ctx->Rip;
  2091   assert(pc[0] == 0xF7, "not an idiv opcode");
  2092   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2093   assert(ctx->Rax == min_jint, "unexpected idiv exception");
  2094   // set correct result values and continue after idiv instruction
  2095   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2096   ctx->Rax = (DWORD)min_jint;      // result
  2097   ctx->Rdx = (DWORD)0;             // remainder
  2098   // Continue the execution
  2099 #else
  2100   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2101   address pc = (address)ctx->Eip;
  2102   assert(pc[0] == 0xF7, "not an idiv opcode");
  2103   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
  2104   assert(ctx->Eax == min_jint, "unexpected idiv exception");
  2105   // set correct result values and continue after idiv instruction
  2106   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
  2107   ctx->Eax = (DWORD)min_jint;      // result
  2108   ctx->Edx = (DWORD)0;             // remainder
  2109   // Continue the execution
  2110 #endif
  2111   return EXCEPTION_CONTINUE_EXECUTION;
  2114 #ifndef  _WIN64
  2115 //-----------------------------------------------------------------------------
  2116 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2117   // handle exception caused by native method modifying control word
  2118   PCONTEXT ctx = exceptionInfo->ContextRecord;
  2119   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2121   switch (exception_code) {
  2122     case EXCEPTION_FLT_DENORMAL_OPERAND:
  2123     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
  2124     case EXCEPTION_FLT_INEXACT_RESULT:
  2125     case EXCEPTION_FLT_INVALID_OPERATION:
  2126     case EXCEPTION_FLT_OVERFLOW:
  2127     case EXCEPTION_FLT_STACK_CHECK:
  2128     case EXCEPTION_FLT_UNDERFLOW:
  2129       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
  2130       if (fp_control_word != ctx->FloatSave.ControlWord) {
  2131         // Restore FPCW and mask out FLT exceptions
  2132         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
  2133         // Mask out pending FLT exceptions
  2134         ctx->FloatSave.StatusWord &=  0xffffff00;
  2135         return EXCEPTION_CONTINUE_EXECUTION;
  2139   if (prev_uef_handler != NULL) {
  2140     // We didn't handle this exception so pass it to the previous
  2141     // UnhandledExceptionFilter.
  2142     return (prev_uef_handler)(exceptionInfo);
  2145   return EXCEPTION_CONTINUE_SEARCH;
  2147 #else //_WIN64
  2148 /*
  2149   On Windows, the mxcsr control bits are non-volatile across calls
  2150   See also CR 6192333
  2151   If EXCEPTION_FLT_* happened after some native method modified
  2152   mxcsr - it is not a jvm fault.
  2153   However should we decide to restore of mxcsr after a faulty
  2154   native method we can uncomment following code
  2155       jint MxCsr = INITIAL_MXCSR;
  2156         // we can't use StubRoutines::addr_mxcsr_std()
  2157         // because in Win64 mxcsr is not saved there
  2158       if (MxCsr != ctx->MxCsr) {
  2159         ctx->MxCsr = MxCsr;
  2160         return EXCEPTION_CONTINUE_EXECUTION;
  2163 */
  2164 #endif //_WIN64
  2167 // Fatal error reporting is single threaded so we can make this a
  2168 // static and preallocated.  If it's more than MAX_PATH silently ignore
  2169 // it.
  2170 static char saved_error_file[MAX_PATH] = {0};
  2172 void os::set_error_file(const char *logfile) {
  2173   if (strlen(logfile) <= MAX_PATH) {
  2174     strncpy(saved_error_file, logfile, MAX_PATH);
  2178 static inline void report_error(Thread* t, DWORD exception_code,
  2179                                 address addr, void* siginfo, void* context) {
  2180   VMError err(t, exception_code, addr, siginfo, context);
  2181   err.report_and_die();
  2183   // If UseOsErrorReporting, this will return here and save the error file
  2184   // somewhere where we can find it in the minidump.
  2187 //-----------------------------------------------------------------------------
  2188 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2189   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
  2190   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2191 #ifdef _M_IA64
  2192   address pc = (address) exceptionInfo->ContextRecord->StIIP;
  2193 #elif _M_AMD64
  2194   address pc = (address) exceptionInfo->ContextRecord->Rip;
  2195 #else
  2196   address pc = (address) exceptionInfo->ContextRecord->Eip;
  2197 #endif
  2198   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
  2200 #ifndef _WIN64
  2201   // Execution protection violation - win32 running on AMD64 only
  2202   // Handled first to avoid misdiagnosis as a "normal" access violation;
  2203   // This is safe to do because we have a new/unique ExceptionInformation
  2204   // code for this condition.
  2205   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2206     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2207     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
  2208     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2210     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
  2211       int page_size = os::vm_page_size();
  2213       // Make sure the pc and the faulting address are sane.
  2214       //
  2215       // If an instruction spans a page boundary, and the page containing
  2216       // the beginning of the instruction is executable but the following
  2217       // page is not, the pc and the faulting address might be slightly
  2218       // different - we still want to unguard the 2nd page in this case.
  2219       //
  2220       // 15 bytes seems to be a (very) safe value for max instruction size.
  2221       bool pc_is_near_addr =
  2222         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
  2223       bool instr_spans_page_boundary =
  2224         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
  2225                          (intptr_t) page_size) > 0);
  2227       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
  2228         static volatile address last_addr =
  2229           (address) os::non_memory_address_word();
  2231         // In conservative mode, don't unguard unless the address is in the VM
  2232         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
  2233             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
  2235           // Set memory to RWX and retry
  2236           address page_start =
  2237             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
  2238           bool res = os::protect_memory((char*) page_start, page_size,
  2239                                         os::MEM_PROT_RWX);
  2241           if (PrintMiscellaneous && Verbose) {
  2242             char buf[256];
  2243             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
  2244                          "at " INTPTR_FORMAT
  2245                          ", unguarding " INTPTR_FORMAT ": %s", addr,
  2246                          page_start, (res ? "success" : strerror(errno)));
  2247             tty->print_raw_cr(buf);
  2250           // Set last_addr so if we fault again at the same address, we don't
  2251           // end up in an endless loop.
  2252           //
  2253           // There are two potential complications here.  Two threads trapping
  2254           // at the same address at the same time could cause one of the
  2255           // threads to think it already unguarded, and abort the VM.  Likely
  2256           // very rare.
  2257           //
  2258           // The other race involves two threads alternately trapping at
  2259           // different addresses and failing to unguard the page, resulting in
  2260           // an endless loop.  This condition is probably even more unlikely
  2261           // than the first.
  2262           //
  2263           // Although both cases could be avoided by using locks or thread
  2264           // local last_addr, these solutions are unnecessary complication:
  2265           // this handler is a best-effort safety net, not a complete solution.
  2266           // It is disabled by default and should only be used as a workaround
  2267           // in case we missed any no-execute-unsafe VM code.
  2269           last_addr = addr;
  2271           return EXCEPTION_CONTINUE_EXECUTION;
  2275       // Last unguard failed or not unguarding
  2276       tty->print_raw_cr("Execution protection violation");
  2277       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
  2278                    exceptionInfo->ContextRecord);
  2279       return EXCEPTION_CONTINUE_SEARCH;
  2282 #endif // _WIN64
  2284   // Check to see if we caught the safepoint code in the
  2285   // process of write protecting the memory serialization page.
  2286   // It write enables the page immediately after protecting it
  2287   // so just return.
  2288   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  2289     JavaThread* thread = (JavaThread*) t;
  2290     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2291     address addr = (address) exceptionRecord->ExceptionInformation[1];
  2292     if ( os::is_memory_serialize_page(thread, addr) ) {
  2293       // Block current thread until the memory serialize page permission restored.
  2294       os::block_on_serialize_page_trap();
  2295       return EXCEPTION_CONTINUE_EXECUTION;
  2299   if (t != NULL && t->is_Java_thread()) {
  2300     JavaThread* thread = (JavaThread*) t;
  2301     bool in_java = thread->thread_state() == _thread_in_Java;
  2303     // Handle potential stack overflows up front.
  2304     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
  2305       if (os::uses_stack_guard_pages()) {
  2306 #ifdef _M_IA64
  2307         //
  2308         // If it's a legal stack address continue, Windows will map it in.
  2309         //
  2310         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2311         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2312         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
  2313           return EXCEPTION_CONTINUE_EXECUTION;
  2315         // The register save area is the same size as the memory stack
  2316         // and starts at the page just above the start of the memory stack.
  2317         // If we get a fault in this area, we've run out of register
  2318         // stack.  If we are in java, try throwing a stack overflow exception.
  2319         if (addr > thread->stack_base() &&
  2320                       addr <= (thread->stack_base()+thread->stack_size()) ) {
  2321           char buf[256];
  2322           jio_snprintf(buf, sizeof(buf),
  2323                        "Register stack overflow, addr:%p, stack_base:%p\n",
  2324                        addr, thread->stack_base() );
  2325           tty->print_raw_cr(buf);
  2326           // If not in java code, return and hope for the best.
  2327           return in_java ? Handle_Exception(exceptionInfo,
  2328             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2329             :  EXCEPTION_CONTINUE_EXECUTION;
  2331 #endif
  2332         if (thread->stack_yellow_zone_enabled()) {
  2333           // Yellow zone violation.  The o/s has unprotected the first yellow
  2334           // zone page for us.  Note:  must call disable_stack_yellow_zone to
  2335           // update the enabled status, even if the zone contains only one page.
  2336           thread->disable_stack_yellow_zone();
  2337           // If not in java code, return and hope for the best.
  2338           return in_java ? Handle_Exception(exceptionInfo,
  2339             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
  2340             :  EXCEPTION_CONTINUE_EXECUTION;
  2341         } else {
  2342           // Fatal red zone violation.
  2343           thread->disable_stack_red_zone();
  2344           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
  2345           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2346                        exceptionInfo->ContextRecord);
  2347           return EXCEPTION_CONTINUE_SEARCH;
  2349       } else if (in_java) {
  2350         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
  2351         // a one-time-only guard page, which it has released to us.  The next
  2352         // stack overflow on this thread will result in an ACCESS_VIOLATION.
  2353         return Handle_Exception(exceptionInfo,
  2354           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2355       } else {
  2356         // Can only return and hope for the best.  Further stack growth will
  2357         // result in an ACCESS_VIOLATION.
  2358         return EXCEPTION_CONTINUE_EXECUTION;
  2360     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2361       // Either stack overflow or null pointer exception.
  2362       if (in_java) {
  2363         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2364         address addr = (address) exceptionRecord->ExceptionInformation[1];
  2365         address stack_end = thread->stack_base() - thread->stack_size();
  2366         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
  2367           // Stack overflow.
  2368           assert(!os::uses_stack_guard_pages(),
  2369             "should be caught by red zone code above.");
  2370           return Handle_Exception(exceptionInfo,
  2371             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2373         //
  2374         // Check for safepoint polling and implicit null
  2375         // We only expect null pointers in the stubs (vtable)
  2376         // the rest are checked explicitly now.
  2377         //
  2378         CodeBlob* cb = CodeCache::find_blob(pc);
  2379         if (cb != NULL) {
  2380           if (os::is_poll_address(addr)) {
  2381             address stub = SharedRuntime::get_poll_stub(pc);
  2382             return Handle_Exception(exceptionInfo, stub);
  2386 #ifdef _WIN64
  2387           //
  2388           // If it's a legal stack address map the entire region in
  2389           //
  2390           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
  2391           address addr = (address) exceptionRecord->ExceptionInformation[1];
  2392           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
  2393                   addr = (address)((uintptr_t)addr &
  2394                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
  2395                   os::commit_memory((char *)addr, thread->stack_base() - addr,
  2396                                     false );
  2397                   return EXCEPTION_CONTINUE_EXECUTION;
  2399           else
  2400 #endif
  2402             // Null pointer exception.
  2403 #ifdef _M_IA64
  2404             // We catch register stack overflows in compiled code by doing
  2405             // an explicit compare and executing a st8(G0, G0) if the
  2406             // BSP enters into our guard area.  We test for the overflow
  2407             // condition and fall into the normal null pointer exception
  2408             // code if BSP hasn't overflowed.
  2409             if ( in_java ) {
  2410               if(thread->register_stack_overflow()) {
  2411                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
  2412                                 thread->register_stack_limit(),
  2413                                "GR7 doesn't contain register_stack_limit");
  2414                 // Disable the yellow zone which sets the state that
  2415                 // we've got a stack overflow problem.
  2416                 if (thread->stack_yellow_zone_enabled()) {
  2417                   thread->disable_stack_yellow_zone();
  2419                 // Give us some room to process the exception
  2420                 thread->disable_register_stack_guard();
  2421                 // Update GR7 with the new limit so we can continue running
  2422                 // compiled code.
  2423                 exceptionInfo->ContextRecord->IntS3 =
  2424                                (ULONGLONG)thread->register_stack_limit();
  2425                 return Handle_Exception(exceptionInfo,
  2426                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
  2427               } else {
  2428                 //
  2429                 // Check for implicit null
  2430                 // We only expect null pointers in the stubs (vtable)
  2431                 // the rest are checked explicitly now.
  2432                 //
  2433                 if (((uintptr_t)addr) < os::vm_page_size() ) {
  2434                   // an access to the first page of VM--assume it is a null pointer
  2435                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2436                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2439             } // in_java
  2441             // IA64 doesn't use implicit null checking yet. So we shouldn't
  2442             // get here.
  2443             tty->print_raw_cr("Access violation, possible null pointer exception");
  2444             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2445                          exceptionInfo->ContextRecord);
  2446             return EXCEPTION_CONTINUE_SEARCH;
  2447 #else /* !IA64 */
  2449             // Windows 98 reports faulting addresses incorrectly
  2450             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
  2451                 !os::win32::is_nt()) {
  2452               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
  2453               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
  2455             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2456                          exceptionInfo->ContextRecord);
  2457             return EXCEPTION_CONTINUE_SEARCH;
  2458 #endif
  2463 #ifdef _WIN64
  2464       // Special care for fast JNI field accessors.
  2465       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
  2466       // in and the heap gets shrunk before the field access.
  2467       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2468         address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2469         if (addr != (address)-1) {
  2470           return Handle_Exception(exceptionInfo, addr);
  2473 #endif
  2475 #ifdef _WIN64
  2476       // Windows will sometimes generate an access violation
  2477       // when we call malloc.  Since we use VectoredExceptions
  2478       // on 64 bit platforms, we see this exception.  We must
  2479       // pass this exception on so Windows can recover.
  2480       // We check to see if the pc of the fault is in NTDLL.DLL
  2481       // if so, we pass control on to Windows for handling.
  2482       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
  2483 #endif
  2485       // Stack overflow or null pointer exception in native code.
  2486       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2487                    exceptionInfo->ContextRecord);
  2488       return EXCEPTION_CONTINUE_SEARCH;
  2491     if (in_java) {
  2492       switch (exception_code) {
  2493       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2494         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
  2496       case EXCEPTION_INT_OVERFLOW:
  2497         return Handle_IDiv_Exception(exceptionInfo);
  2499       } // switch
  2501 #ifndef _WIN64
  2502     if (((thread->thread_state() == _thread_in_Java) ||
  2503         (thread->thread_state() == _thread_in_native)) &&
  2504         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
  2506       LONG result=Handle_FLT_Exception(exceptionInfo);
  2507       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
  2509 #endif //_WIN64
  2512   if (exception_code != EXCEPTION_BREAKPOINT) {
  2513 #ifndef _WIN64
  2514     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2515                  exceptionInfo->ContextRecord);
  2516 #else
  2517     // Itanium Windows uses a VectoredExceptionHandler
  2518     // Which means that C++ programatic exception handlers (try/except)
  2519     // will get here.  Continue the search for the right except block if
  2520     // the exception code is not a fatal code.
  2521     switch ( exception_code ) {
  2522       case EXCEPTION_ACCESS_VIOLATION:
  2523       case EXCEPTION_STACK_OVERFLOW:
  2524       case EXCEPTION_ILLEGAL_INSTRUCTION:
  2525       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
  2526       case EXCEPTION_INT_OVERFLOW:
  2527       case EXCEPTION_INT_DIVIDE_BY_ZERO:
  2528       case EXCEPTION_UNCAUGHT_CXX_EXCEPTION:
  2529       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
  2530                        exceptionInfo->ContextRecord);
  2532         break;
  2533       default:
  2534         break;
  2536 #endif
  2538   return EXCEPTION_CONTINUE_SEARCH;
  2541 #ifndef _WIN64
  2542 // Special care for fast JNI accessors.
  2543 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
  2544 // the heap gets shrunk before the field access.
  2545 // Need to install our own structured exception handler since native code may
  2546 // install its own.
  2547 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
  2548   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
  2549   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
  2550     address pc = (address) exceptionInfo->ContextRecord->Eip;
  2551     address addr = JNI_FastGetField::find_slowcase_pc(pc);
  2552     if (addr != (address)-1) {
  2553       return Handle_Exception(exceptionInfo, addr);
  2556   return EXCEPTION_CONTINUE_SEARCH;
  2559 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
  2560 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
  2561   __try { \
  2562     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
  2563   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
  2564   } \
  2565   return 0; \
  2568 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
  2569 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
  2570 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
  2571 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
  2572 DEFINE_FAST_GETFIELD(jint,     int,    Int)
  2573 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
  2574 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
  2575 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
  2577 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
  2578   switch (type) {
  2579     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
  2580     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
  2581     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
  2582     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
  2583     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
  2584     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
  2585     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
  2586     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
  2587     default:        ShouldNotReachHere();
  2589   return (address)-1;
  2591 #endif
  2593 // Virtual Memory
  2595 int os::vm_page_size() { return os::win32::vm_page_size(); }
  2596 int os::vm_allocation_granularity() {
  2597   return os::win32::vm_allocation_granularity();
  2600 // Windows large page support is available on Windows 2003. In order to use
  2601 // large page memory, the administrator must first assign additional privilege
  2602 // to the user:
  2603 //   + select Control Panel -> Administrative Tools -> Local Security Policy
  2604 //   + select Local Policies -> User Rights Assignment
  2605 //   + double click "Lock pages in memory", add users and/or groups
  2606 //   + reboot
  2607 // Note the above steps are needed for administrator as well, as administrators
  2608 // by default do not have the privilege to lock pages in memory.
  2609 //
  2610 // Note about Windows 2003: although the API supports committing large page
  2611 // memory on a page-by-page basis and VirtualAlloc() returns success under this
  2612 // scenario, I found through experiment it only uses large page if the entire
  2613 // memory region is reserved and committed in a single VirtualAlloc() call.
  2614 // This makes Windows large page support more or less like Solaris ISM, in
  2615 // that the entire heap must be committed upfront. This probably will change
  2616 // in the future, if so the code below needs to be revisited.
  2618 #ifndef MEM_LARGE_PAGES
  2619 #define MEM_LARGE_PAGES 0x20000000
  2620 #endif
  2622 static HANDLE    _hProcess;
  2623 static HANDLE    _hToken;
  2625 // Container for NUMA node list info
  2626 class NUMANodeListHolder {
  2627 private:
  2628   int *_numa_used_node_list;  // allocated below
  2629   int _numa_used_node_count;
  2631   void free_node_list() {
  2632     if (_numa_used_node_list != NULL) {
  2633       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
  2637 public:
  2638   NUMANodeListHolder() {
  2639     _numa_used_node_count = 0;
  2640     _numa_used_node_list = NULL;
  2641     // do rest of initialization in build routine (after function pointers are set up)
  2644   ~NUMANodeListHolder() {
  2645     free_node_list();
  2648   bool build() {
  2649     DWORD_PTR proc_aff_mask;
  2650     DWORD_PTR sys_aff_mask;
  2651     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
  2652     ULONG highest_node_number;
  2653     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
  2654     free_node_list();
  2655     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1);
  2656     for (unsigned int i = 0; i <= highest_node_number; i++) {
  2657       ULONGLONG proc_mask_numa_node;
  2658       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
  2659       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
  2660         _numa_used_node_list[_numa_used_node_count++] = i;
  2663     return (_numa_used_node_count > 1);
  2666   int get_count() {return _numa_used_node_count;}
  2667   int get_node_list_entry(int n) {
  2668     // for indexes out of range, returns -1
  2669     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
  2672 } numa_node_list_holder;
  2676 static size_t _large_page_size = 0;
  2678 static bool resolve_functions_for_large_page_init() {
  2679   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
  2680     os::Advapi32Dll::AdvapiAvailable();
  2683 static bool request_lock_memory_privilege() {
  2684   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
  2685                                 os::current_process_id());
  2687   LUID luid;
  2688   if (_hProcess != NULL &&
  2689       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
  2690       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
  2692     TOKEN_PRIVILEGES tp;
  2693     tp.PrivilegeCount = 1;
  2694     tp.Privileges[0].Luid = luid;
  2695     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
  2697     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
  2698     // privilege. Check GetLastError() too. See MSDN document.
  2699     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
  2700         (GetLastError() == ERROR_SUCCESS)) {
  2701       return true;
  2705   return false;
  2708 static void cleanup_after_large_page_init() {
  2709   if (_hProcess) CloseHandle(_hProcess);
  2710   _hProcess = NULL;
  2711   if (_hToken) CloseHandle(_hToken);
  2712   _hToken = NULL;
  2715 static bool numa_interleaving_init() {
  2716   bool success = false;
  2717   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
  2719   // print a warning if UseNUMAInterleaving flag is specified on command line
  2720   bool warn_on_failure = use_numa_interleaving_specified;
  2721 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2723   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
  2724   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2725   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
  2727   if (os::Kernel32Dll::NumaCallsAvailable()) {
  2728     if (numa_node_list_holder.build()) {
  2729       if (PrintMiscellaneous && Verbose) {
  2730         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
  2731         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
  2732           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
  2734         tty->print("\n");
  2736       success = true;
  2737     } else {
  2738       WARN("Process does not cover multiple NUMA nodes.");
  2740   } else {
  2741     WARN("NUMA Interleaving is not supported by the operating system.");
  2743   if (!success) {
  2744     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
  2746   return success;
  2747 #undef WARN
  2750 // this routine is used whenever we need to reserve a contiguous VA range
  2751 // but we need to make separate VirtualAlloc calls for each piece of the range
  2752 // Reasons for doing this:
  2753 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
  2754 //  * UseNUMAInterleaving requires a separate node for each piece
  2755 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
  2756                                          bool should_inject_error=false) {
  2757   char * p_buf;
  2758   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
  2759   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
  2760   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
  2762   // first reserve enough address space in advance since we want to be
  2763   // able to break a single contiguous virtual address range into multiple
  2764   // large page commits but WS2003 does not allow reserving large page space
  2765   // so we just use 4K pages for reserve, this gives us a legal contiguous
  2766   // address space. then we will deallocate that reservation, and re alloc
  2767   // using large pages
  2768   const size_t size_of_reserve = bytes + chunk_size;
  2769   if (bytes > size_of_reserve) {
  2770     // Overflowed.
  2771     return NULL;
  2773   p_buf = (char *) VirtualAlloc(addr,
  2774                                 size_of_reserve,  // size of Reserve
  2775                                 MEM_RESERVE,
  2776                                 PAGE_READWRITE);
  2777   // If reservation failed, return NULL
  2778   if (p_buf == NULL) return NULL;
  2780   os::release_memory(p_buf, bytes + chunk_size);
  2782   // we still need to round up to a page boundary (in case we are using large pages)
  2783   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
  2784   // instead we handle this in the bytes_to_rq computation below
  2785   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
  2787   // now go through and allocate one chunk at a time until all bytes are
  2788   // allocated
  2789   size_t  bytes_remaining = bytes;
  2790   // An overflow of align_size_up() would have been caught above
  2791   // in the calculation of size_of_reserve.
  2792   char * next_alloc_addr = p_buf;
  2793   HANDLE hProc = GetCurrentProcess();
  2795 #ifdef ASSERT
  2796   // Variable for the failure injection
  2797   long ran_num = os::random();
  2798   size_t fail_after = ran_num % bytes;
  2799 #endif
  2801   int count=0;
  2802   while (bytes_remaining) {
  2803     // select bytes_to_rq to get to the next chunk_size boundary
  2805     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
  2806     // Note allocate and commit
  2807     char * p_new;
  2809 #ifdef ASSERT
  2810     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
  2811 #else
  2812     const bool inject_error_now = false;
  2813 #endif
  2815     if (inject_error_now) {
  2816       p_new = NULL;
  2817     } else {
  2818       if (!UseNUMAInterleaving) {
  2819         p_new = (char *) VirtualAlloc(next_alloc_addr,
  2820                                       bytes_to_rq,
  2821                                       flags,
  2822                                       prot);
  2823       } else {
  2824         // get the next node to use from the used_node_list
  2825         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
  2826         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
  2827         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
  2828                                                             next_alloc_addr,
  2829                                                             bytes_to_rq,
  2830                                                             flags,
  2831                                                             prot,
  2832                                                             node);
  2836     if (p_new == NULL) {
  2837       // Free any allocated pages
  2838       if (next_alloc_addr > p_buf) {
  2839         // Some memory was committed so release it.
  2840         size_t bytes_to_release = bytes - bytes_remaining;
  2841         os::release_memory(p_buf, bytes_to_release);
  2843 #ifdef ASSERT
  2844       if (should_inject_error) {
  2845         if (TracePageSizes && Verbose) {
  2846           tty->print_cr("Reserving pages individually failed.");
  2849 #endif
  2850       return NULL;
  2852     bytes_remaining -= bytes_to_rq;
  2853     next_alloc_addr += bytes_to_rq;
  2854     count++;
  2856   // made it this far, success
  2857   return p_buf;
  2862 void os::large_page_init() {
  2863   if (!UseLargePages) return;
  2865   // print a warning if any large page related flag is specified on command line
  2866   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
  2867                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  2868   bool success = false;
  2870 # define WARN(msg) if (warn_on_failure) { warning(msg); }
  2871   if (resolve_functions_for_large_page_init()) {
  2872     if (request_lock_memory_privilege()) {
  2873       size_t s = os::Kernel32Dll::GetLargePageMinimum();
  2874       if (s) {
  2875 #if defined(IA32) || defined(AMD64)
  2876         if (s > 4*M || LargePageSizeInBytes > 4*M) {
  2877           WARN("JVM cannot use large pages bigger than 4mb.");
  2878         } else {
  2879 #endif
  2880           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
  2881             _large_page_size = LargePageSizeInBytes;
  2882           } else {
  2883             _large_page_size = s;
  2885           success = true;
  2886 #if defined(IA32) || defined(AMD64)
  2888 #endif
  2889       } else {
  2890         WARN("Large page is not supported by the processor.");
  2892     } else {
  2893       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
  2895   } else {
  2896     WARN("Large page is not supported by the operating system.");
  2898 #undef WARN
  2900   const size_t default_page_size = (size_t) vm_page_size();
  2901   if (success && _large_page_size > default_page_size) {
  2902     _page_sizes[0] = _large_page_size;
  2903     _page_sizes[1] = default_page_size;
  2904     _page_sizes[2] = 0;
  2907   cleanup_after_large_page_init();
  2908   UseLargePages = success;
  2911 // On win32, one cannot release just a part of reserved memory, it's an
  2912 // all or nothing deal.  When we split a reservation, we must break the
  2913 // reservation into two reservations.
  2914 void os::split_reserved_memory(char *base, size_t size, size_t split,
  2915                               bool realloc) {
  2916   if (size > 0) {
  2917     release_memory(base, size);
  2918     if (realloc) {
  2919       reserve_memory(split, base);
  2921     if (size != split) {
  2922       reserve_memory(size - split, base + split);
  2927 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  2928   assert((size_t)addr % os::vm_allocation_granularity() == 0,
  2929          "reserve alignment");
  2930   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
  2931   char* res;
  2932   // note that if UseLargePages is on, all the areas that require interleaving
  2933   // will go thru reserve_memory_special rather than thru here.
  2934   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
  2935   if (!use_individual) {
  2936     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
  2937   } else {
  2938     elapsedTimer reserveTimer;
  2939     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
  2940     // in numa interleaving, we have to allocate pages individually
  2941     // (well really chunks of NUMAInterleaveGranularity size)
  2942     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
  2943     if (res == NULL) {
  2944       warning("NUMA page allocation failed");
  2946     if( Verbose && PrintMiscellaneous ) {
  2947       reserveTimer.stop();
  2948       tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
  2949                     reserveTimer.milliseconds(), reserveTimer.ticks());
  2952   assert(res == NULL || addr == NULL || addr == res,
  2953          "Unexpected address from reserve.");
  2955   return res;
  2958 // Reserve memory at an arbitrary address, only if that area is
  2959 // available (and not reserved for something else).
  2960 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2961   // Windows os::reserve_memory() fails of the requested address range is
  2962   // not avilable.
  2963   return reserve_memory(bytes, requested_addr);
  2966 size_t os::large_page_size() {
  2967   return _large_page_size;
  2970 bool os::can_commit_large_page_memory() {
  2971   // Windows only uses large page memory when the entire region is reserved
  2972   // and committed in a single VirtualAlloc() call. This may change in the
  2973   // future, but with Windows 2003 it's not possible to commit on demand.
  2974   return false;
  2977 bool os::can_execute_large_page_memory() {
  2978   return true;
  2981 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  2983   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
  2984   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  2986   // with large pages, there are two cases where we need to use Individual Allocation
  2987   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
  2988   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
  2989   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
  2990     if (TracePageSizes && Verbose) {
  2991        tty->print_cr("Reserving large pages individually.");
  2993     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
  2994     if (p_buf == NULL) {
  2995       // give an appropriate warning message
  2996       if (UseNUMAInterleaving) {
  2997         warning("NUMA large page allocation failed, UseLargePages flag ignored");
  2999       if (UseLargePagesIndividualAllocation) {
  3000         warning("Individually allocated large pages failed, "
  3001                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
  3003       return NULL;
  3006     return p_buf;
  3008   } else {
  3009     // normal policy just allocate it all at once
  3010     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
  3011     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
  3012     return res;
  3016 bool os::release_memory_special(char* base, size_t bytes) {
  3017   return release_memory(base, bytes);
  3020 void os::print_statistics() {
  3023 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  3024   if (bytes == 0) {
  3025     // Don't bother the OS with noops.
  3026     return true;
  3028   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
  3029   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
  3030   // Don't attempt to print anything if the OS call fails. We're
  3031   // probably low on resources, so the print itself may cause crashes.
  3033   // unless we have NUMAInterleaving enabled, the range of a commit
  3034   // is always within a reserve covered by a single VirtualAlloc
  3035   // in that case we can just do a single commit for the requested size
  3036   if (!UseNUMAInterleaving) {
  3037     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
  3038     if (exec) {
  3039       DWORD oldprot;
  3040       // Windows doc says to use VirtualProtect to get execute permissions
  3041       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
  3043     return true;
  3044   } else {
  3046     // when NUMAInterleaving is enabled, the commit might cover a range that
  3047     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
  3048     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
  3049     // returns represents the number of bytes that can be committed in one step.
  3050     size_t bytes_remaining = bytes;
  3051     char * next_alloc_addr = addr;
  3052     while (bytes_remaining > 0) {
  3053       MEMORY_BASIC_INFORMATION alloc_info;
  3054       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
  3055       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
  3056       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
  3057         return false;
  3058       if (exec) {
  3059         DWORD oldprot;
  3060         if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
  3061           return false;
  3063       bytes_remaining -= bytes_to_rq;
  3064       next_alloc_addr += bytes_to_rq;
  3067   // if we made it this far, return true
  3068   return true;
  3071 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  3072                        bool exec) {
  3073   return commit_memory(addr, size, exec);
  3076 bool os::uncommit_memory(char* addr, size_t bytes) {
  3077   if (bytes == 0) {
  3078     // Don't bother the OS with noops.
  3079     return true;
  3081   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
  3082   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
  3083   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
  3086 bool os::release_memory(char* addr, size_t bytes) {
  3087   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
  3090 bool os::create_stack_guard_pages(char* addr, size_t size) {
  3091   return os::commit_memory(addr, size);
  3094 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  3095   return os::uncommit_memory(addr, size);
  3098 // Set protections specified
  3099 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3100                         bool is_committed) {
  3101   unsigned int p = 0;
  3102   switch (prot) {
  3103   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
  3104   case MEM_PROT_READ: p = PAGE_READONLY; break;
  3105   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
  3106   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
  3107   default:
  3108     ShouldNotReachHere();
  3111   DWORD old_status;
  3113   // Strange enough, but on Win32 one can change protection only for committed
  3114   // memory, not a big deal anyway, as bytes less or equal than 64K
  3115   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
  3116     fatal("cannot commit protection page");
  3118   // One cannot use os::guard_memory() here, as on Win32 guard page
  3119   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
  3120   //
  3121   // Pages in the region become guard pages. Any attempt to access a guard page
  3122   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
  3123   // the guard page status. Guard pages thus act as a one-time access alarm.
  3124   return VirtualProtect(addr, bytes, p, &old_status) != 0;
  3127 bool os::guard_memory(char* addr, size_t bytes) {
  3128   DWORD old_status;
  3129   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
  3132 bool os::unguard_memory(char* addr, size_t bytes) {
  3133   DWORD old_status;
  3134   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
  3137 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
  3138 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint)    { }
  3139 void os::numa_make_global(char *addr, size_t bytes)    { }
  3140 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
  3141 bool os::numa_topology_changed()                       { return false; }
  3142 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
  3143 int os::numa_get_group_id()                            { return 0; }
  3144 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  3145   if (numa_node_list_holder.get_count() == 0 && size > 0) {
  3146     // Provide an answer for UMA systems
  3147     ids[0] = 0;
  3148     return 1;
  3149   } else {
  3150     // check for size bigger than actual groups_num
  3151     size = MIN2(size, numa_get_groups_num());
  3152     for (int i = 0; i < (int)size; i++) {
  3153       ids[i] = numa_node_list_holder.get_node_list_entry(i);
  3155     return size;
  3159 bool os::get_page_info(char *start, page_info* info) {
  3160   return false;
  3163 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  3164   return end;
  3167 char* os::non_memory_address_word() {
  3168   // Must never look like an address returned by reserve_memory,
  3169   // even in its subfields (as defined by the CPU immediate fields,
  3170   // if the CPU splits constants across multiple instructions).
  3171   return (char*)-1;
  3174 #define MAX_ERROR_COUNT 100
  3175 #define SYS_THREAD_ERROR 0xffffffffUL
  3177 void os::pd_start_thread(Thread* thread) {
  3178   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
  3179   // Returns previous suspend state:
  3180   // 0:  Thread was not suspended
  3181   // 1:  Thread is running now
  3182   // >1: Thread is still suspended.
  3183   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
  3186 class HighResolutionInterval {
  3187   // The default timer resolution seems to be 10 milliseconds.
  3188   // (Where is this written down?)
  3189   // If someone wants to sleep for only a fraction of the default,
  3190   // then we set the timer resolution down to 1 millisecond for
  3191   // the duration of their interval.
  3192   // We carefully set the resolution back, since otherwise we
  3193   // seem to incur an overhead (3%?) that we don't need.
  3194   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
  3195   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
  3196   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
  3197   // timeBeginPeriod() if the relative error exceeded some threshold.
  3198   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
  3199   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
  3200   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
  3201   // resolution timers running.
  3202 private:
  3203     jlong resolution;
  3204 public:
  3205   HighResolutionInterval(jlong ms) {
  3206     resolution = ms % 10L;
  3207     if (resolution != 0) {
  3208       MMRESULT result = timeBeginPeriod(1L);
  3211   ~HighResolutionInterval() {
  3212     if (resolution != 0) {
  3213       MMRESULT result = timeEndPeriod(1L);
  3215     resolution = 0L;
  3217 };
  3219 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
  3220   jlong limit = (jlong) MAXDWORD;
  3222   while(ms > limit) {
  3223     int res;
  3224     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
  3225       return res;
  3226     ms -= limit;
  3229   assert(thread == Thread::current(),  "thread consistency check");
  3230   OSThread* osthread = thread->osthread();
  3231   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
  3232   int result;
  3233   if (interruptable) {
  3234     assert(thread->is_Java_thread(), "must be java thread");
  3235     JavaThread *jt = (JavaThread *) thread;
  3236     ThreadBlockInVM tbivm(jt);
  3238     jt->set_suspend_equivalent();
  3239     // cleared by handle_special_suspend_equivalent_condition() or
  3240     // java_suspend_self() via check_and_wait_while_suspended()
  3242     HANDLE events[1];
  3243     events[0] = osthread->interrupt_event();
  3244     HighResolutionInterval *phri=NULL;
  3245     if(!ForceTimeHighResolution)
  3246       phri = new HighResolutionInterval( ms );
  3247     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
  3248       result = OS_TIMEOUT;
  3249     } else {
  3250       ResetEvent(osthread->interrupt_event());
  3251       osthread->set_interrupted(false);
  3252       result = OS_INTRPT;
  3254     delete phri; //if it is NULL, harmless
  3256     // were we externally suspended while we were waiting?
  3257     jt->check_and_wait_while_suspended();
  3258   } else {
  3259     assert(!thread->is_Java_thread(), "must not be java thread");
  3260     Sleep((long) ms);
  3261     result = OS_TIMEOUT;
  3263   return result;
  3266 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3267 void os::infinite_sleep() {
  3268   while (true) {    // sleep forever ...
  3269     Sleep(100000);  // ... 100 seconds at a time
  3273 typedef BOOL (WINAPI * STTSignature)(void) ;
  3275 os::YieldResult os::NakedYield() {
  3276   // Use either SwitchToThread() or Sleep(0)
  3277   // Consider passing back the return value from SwitchToThread().
  3278   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
  3279     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
  3280   } else {
  3281     Sleep(0);
  3283   return os::YIELD_UNKNOWN ;
  3286 void os::yield() {  os::NakedYield(); }
  3288 void os::yield_all(int attempts) {
  3289   // Yields to all threads, including threads with lower priorities
  3290   Sleep(1);
  3293 // Win32 only gives you access to seven real priorities at a time,
  3294 // so we compress Java's ten down to seven.  It would be better
  3295 // if we dynamically adjusted relative priorities.
  3297 int os::java_to_os_priority[CriticalPriority + 1] = {
  3298   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3299   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3300   THREAD_PRIORITY_LOWEST,                       // 2
  3301   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3302   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3303   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3304   THREAD_PRIORITY_NORMAL,                       // 6
  3305   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3306   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
  3307   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3308   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
  3309   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
  3310 };
  3312 int prio_policy1[CriticalPriority + 1] = {
  3313   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
  3314   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
  3315   THREAD_PRIORITY_LOWEST,                       // 2
  3316   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
  3317   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
  3318   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
  3319   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
  3320   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
  3321   THREAD_PRIORITY_HIGHEST,                      // 8
  3322   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
  3323   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
  3324   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
  3325 };
  3327 static int prio_init() {
  3328   // If ThreadPriorityPolicy is 1, switch tables
  3329   if (ThreadPriorityPolicy == 1) {
  3330     int i;
  3331     for (i = 0; i < CriticalPriority + 1; i++) {
  3332       os::java_to_os_priority[i] = prio_policy1[i];
  3335   if (UseCriticalJavaThreadPriority) {
  3336     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
  3338   return 0;
  3341 OSReturn os::set_native_priority(Thread* thread, int priority) {
  3342   if (!UseThreadPriorities) return OS_OK;
  3343   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
  3344   return ret ? OS_OK : OS_ERR;
  3347 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
  3348   if ( !UseThreadPriorities ) {
  3349     *priority_ptr = java_to_os_priority[NormPriority];
  3350     return OS_OK;
  3352   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
  3353   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
  3354     assert(false, "GetThreadPriority failed");
  3355     return OS_ERR;
  3357   *priority_ptr = os_prio;
  3358   return OS_OK;
  3362 // Hint to the underlying OS that a task switch would not be good.
  3363 // Void return because it's a hint and can fail.
  3364 void os::hint_no_preempt() {}
  3366 void os::interrupt(Thread* thread) {
  3367   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3368          "possibility of dangling Thread pointer");
  3370   OSThread* osthread = thread->osthread();
  3371   osthread->set_interrupted(true);
  3372   // More than one thread can get here with the same value of osthread,
  3373   // resulting in multiple notifications.  We do, however, want the store
  3374   // to interrupted() to be visible to other threads before we post
  3375   // the interrupt event.
  3376   OrderAccess::release();
  3377   SetEvent(osthread->interrupt_event());
  3378   // For JSR166:  unpark after setting status
  3379   if (thread->is_Java_thread())
  3380     ((JavaThread*)thread)->parker()->unpark();
  3382   ParkEvent * ev = thread->_ParkEvent ;
  3383   if (ev != NULL) ev->unpark() ;
  3388 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3389   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
  3390          "possibility of dangling Thread pointer");
  3392   OSThread* osthread = thread->osthread();
  3393   bool interrupted = osthread->interrupted();
  3394   // There is no synchronization between the setting of the interrupt
  3395   // and it being cleared here. It is critical - see 6535709 - that
  3396   // we only clear the interrupt state, and reset the interrupt event,
  3397   // if we are going to report that we were indeed interrupted - else
  3398   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
  3399   // depending on the timing
  3400   if (interrupted && clear_interrupted) {
  3401     osthread->set_interrupted(false);
  3402     ResetEvent(osthread->interrupt_event());
  3403   } // Otherwise leave the interrupted state alone
  3405   return interrupted;
  3408 // Get's a pc (hint) for a running thread. Currently used only for profiling.
  3409 ExtendedPC os::get_thread_pc(Thread* thread) {
  3410   CONTEXT context;
  3411   context.ContextFlags = CONTEXT_CONTROL;
  3412   HANDLE handle = thread->osthread()->thread_handle();
  3413 #ifdef _M_IA64
  3414   assert(0, "Fix get_thread_pc");
  3415   return ExtendedPC(NULL);
  3416 #else
  3417   if (GetThreadContext(handle, &context)) {
  3418 #ifdef _M_AMD64
  3419     return ExtendedPC((address) context.Rip);
  3420 #else
  3421     return ExtendedPC((address) context.Eip);
  3422 #endif
  3423   } else {
  3424     return ExtendedPC(NULL);
  3426 #endif
  3429 // GetCurrentThreadId() returns DWORD
  3430 intx os::current_thread_id()          { return GetCurrentThreadId(); }
  3432 static int _initial_pid = 0;
  3434 int os::current_process_id()
  3436   return (_initial_pid ? _initial_pid : _getpid());
  3439 int    os::win32::_vm_page_size       = 0;
  3440 int    os::win32::_vm_allocation_granularity = 0;
  3441 int    os::win32::_processor_type     = 0;
  3442 // Processor level is not available on non-NT systems, use vm_version instead
  3443 int    os::win32::_processor_level    = 0;
  3444 julong os::win32::_physical_memory    = 0;
  3445 size_t os::win32::_default_stack_size = 0;
  3447          intx os::win32::_os_thread_limit    = 0;
  3448 volatile intx os::win32::_os_thread_count    = 0;
  3450 bool   os::win32::_is_nt              = false;
  3451 bool   os::win32::_is_windows_2003    = false;
  3452 bool   os::win32::_is_windows_server  = false;
  3454 void os::win32::initialize_system_info() {
  3455   SYSTEM_INFO si;
  3456   GetSystemInfo(&si);
  3457   _vm_page_size    = si.dwPageSize;
  3458   _vm_allocation_granularity = si.dwAllocationGranularity;
  3459   _processor_type  = si.dwProcessorType;
  3460   _processor_level = si.wProcessorLevel;
  3461   set_processor_count(si.dwNumberOfProcessors);
  3463   MEMORYSTATUSEX ms;
  3464   ms.dwLength = sizeof(ms);
  3466   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
  3467   // dwMemoryLoad (% of memory in use)
  3468   GlobalMemoryStatusEx(&ms);
  3469   _physical_memory = ms.ullTotalPhys;
  3471   OSVERSIONINFOEX oi;
  3472   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
  3473   GetVersionEx((OSVERSIONINFO*)&oi);
  3474   switch(oi.dwPlatformId) {
  3475     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
  3476     case VER_PLATFORM_WIN32_NT:
  3477       _is_nt = true;
  3479         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
  3480         if (os_vers == 5002) {
  3481           _is_windows_2003 = true;
  3483         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
  3484           oi.wProductType == VER_NT_SERVER) {
  3485             _is_windows_server = true;
  3488       break;
  3489     default: fatal("Unknown platform");
  3492   _default_stack_size = os::current_stack_size();
  3493   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
  3494   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
  3495     "stack size not a multiple of page size");
  3497   initialize_performance_counter();
  3499   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
  3500   // known to deadlock the system, if the VM issues to thread operations with
  3501   // a too high frequency, e.g., such as changing the priorities.
  3502   // The 6000 seems to work well - no deadlocks has been notices on the test
  3503   // programs that we have seen experience this problem.
  3504   if (!os::win32::is_nt()) {
  3505     StarvationMonitorInterval = 6000;
  3510 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
  3511   char path[MAX_PATH];
  3512   DWORD size;
  3513   DWORD pathLen = (DWORD)sizeof(path);
  3514   HINSTANCE result = NULL;
  3516   // only allow library name without path component
  3517   assert(strchr(name, '\\') == NULL, "path not allowed");
  3518   assert(strchr(name, ':') == NULL, "path not allowed");
  3519   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
  3520     jio_snprintf(ebuf, ebuflen,
  3521       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
  3522     return NULL;
  3525   // search system directory
  3526   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
  3527     strcat(path, "\\");
  3528     strcat(path, name);
  3529     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3530       return result;
  3534   // try Windows directory
  3535   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
  3536     strcat(path, "\\");
  3537     strcat(path, name);
  3538     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
  3539       return result;
  3543   jio_snprintf(ebuf, ebuflen,
  3544     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
  3545   return NULL;
  3548 void os::win32::setmode_streams() {
  3549   _setmode(_fileno(stdin), _O_BINARY);
  3550   _setmode(_fileno(stdout), _O_BINARY);
  3551   _setmode(_fileno(stderr), _O_BINARY);
  3555 bool os::is_debugger_attached() {
  3556   return IsDebuggerPresent() ? true : false;
  3560 void os::wait_for_keypress_at_exit(void) {
  3561   if (PauseAtExit) {
  3562     fprintf(stderr, "Press any key to continue...\n");
  3563     fgetc(stdin);
  3568 int os::message_box(const char* title, const char* message) {
  3569   int result = MessageBox(NULL, message, title,
  3570                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
  3571   return result == IDYES;
  3574 int os::allocate_thread_local_storage() {
  3575   return TlsAlloc();
  3579 void os::free_thread_local_storage(int index) {
  3580   TlsFree(index);
  3584 void os::thread_local_storage_at_put(int index, void* value) {
  3585   TlsSetValue(index, value);
  3586   assert(thread_local_storage_at(index) == value, "Just checking");
  3590 void* os::thread_local_storage_at(int index) {
  3591   return TlsGetValue(index);
  3595 #ifndef PRODUCT
  3596 #ifndef _WIN64
  3597 // Helpers to check whether NX protection is enabled
  3598 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
  3599   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
  3600       pex->ExceptionRecord->NumberParameters > 0 &&
  3601       pex->ExceptionRecord->ExceptionInformation[0] ==
  3602       EXCEPTION_INFO_EXEC_VIOLATION) {
  3603     return EXCEPTION_EXECUTE_HANDLER;
  3605   return EXCEPTION_CONTINUE_SEARCH;
  3608 void nx_check_protection() {
  3609   // If NX is enabled we'll get an exception calling into code on the stack
  3610   char code[] = { (char)0xC3 }; // ret
  3611   void *code_ptr = (void *)code;
  3612   __try {
  3613     __asm call code_ptr
  3614   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
  3615     tty->print_raw_cr("NX protection detected.");
  3618 #endif // _WIN64
  3619 #endif // PRODUCT
  3621 // this is called _before_ the global arguments have been parsed
  3622 void os::init(void) {
  3623   _initial_pid = _getpid();
  3625   init_random(1234567);
  3627   win32::initialize_system_info();
  3628   win32::setmode_streams();
  3629   init_page_sizes((size_t) win32::vm_page_size());
  3631   // For better scalability on MP systems (must be called after initialize_system_info)
  3632 #ifndef PRODUCT
  3633   if (is_MP()) {
  3634     NoYieldsInMicrolock = true;
  3636 #endif
  3637   // This may be overridden later when argument processing is done.
  3638   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
  3639     os::win32::is_windows_2003());
  3641   // Initialize main_process and main_thread
  3642   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
  3643  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
  3644                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
  3645     fatal("DuplicateHandle failed\n");
  3647   main_thread_id = (int) GetCurrentThreadId();
  3650 // To install functions for atexit processing
  3651 extern "C" {
  3652   static void perfMemory_exit_helper() {
  3653     perfMemory_exit();
  3657 // this is called _after_ the global arguments have been parsed
  3658 jint os::init_2(void) {
  3659   // Allocate a single page and mark it as readable for safepoint polling
  3660   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
  3661   guarantee( polling_page != NULL, "Reserve Failed for polling page");
  3663   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
  3664   guarantee( return_page != NULL, "Commit Failed for polling page");
  3666   os::set_polling_page( polling_page );
  3668 #ifndef PRODUCT
  3669   if( Verbose && PrintMiscellaneous )
  3670     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3671 #endif
  3673   if (!UseMembar) {
  3674     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
  3675     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
  3677     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
  3678     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
  3680     os::set_memory_serialize_page( mem_serialize_page );
  3682 #ifndef PRODUCT
  3683     if(Verbose && PrintMiscellaneous)
  3684       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3685 #endif
  3688   os::large_page_init();
  3690   // Setup Windows Exceptions
  3692   // On Itanium systems, Structured Exception Handling does not
  3693   // work since stack frames must be walkable by the OS.  Since
  3694   // much of our code is dynamically generated, and we do not have
  3695   // proper unwind .xdata sections, the system simply exits
  3696   // rather than delivering the exception.  To work around
  3697   // this we use VectorExceptions instead.
  3698 #ifdef _WIN64
  3699   if (UseVectoredExceptions) {
  3700     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
  3702 #endif
  3704   // for debugging float code generation bugs
  3705   if (ForceFloatExceptions) {
  3706 #ifndef  _WIN64
  3707     static long fp_control_word = 0;
  3708     __asm { fstcw fp_control_word }
  3709     // see Intel PPro Manual, Vol. 2, p 7-16
  3710     const long precision = 0x20;
  3711     const long underflow = 0x10;
  3712     const long overflow  = 0x08;
  3713     const long zero_div  = 0x04;
  3714     const long denorm    = 0x02;
  3715     const long invalid   = 0x01;
  3716     fp_control_word |= invalid;
  3717     __asm { fldcw fp_control_word }
  3718 #endif
  3721   // If stack_commit_size is 0, windows will reserve the default size,
  3722   // but only commit a small portion of it.
  3723   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
  3724   size_t default_reserve_size = os::win32::default_stack_size();
  3725   size_t actual_reserve_size = stack_commit_size;
  3726   if (stack_commit_size < default_reserve_size) {
  3727     // If stack_commit_size == 0, we want this too
  3728     actual_reserve_size = default_reserve_size;
  3731   // Check minimum allowable stack size for thread creation and to initialize
  3732   // the java system classes, including StackOverflowError - depends on page
  3733   // size.  Add a page for compiler2 recursion in main thread.
  3734   // Add in 2*BytesPerWord times page size to account for VM stack during
  3735   // class initialization depending on 32 or 64 bit VM.
  3736   size_t min_stack_allowed =
  3737             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3738             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
  3739   if (actual_reserve_size < min_stack_allowed) {
  3740     tty->print_cr("\nThe stack size specified is too small, "
  3741                   "Specify at least %dk",
  3742                   min_stack_allowed / K);
  3743     return JNI_ERR;
  3746   JavaThread::set_stack_size_at_create(stack_commit_size);
  3748   // Calculate theoretical max. size of Threads to guard gainst artifical
  3749   // out-of-memory situations, where all available address-space has been
  3750   // reserved by thread stacks.
  3751   assert(actual_reserve_size != 0, "Must have a stack");
  3753   // Calculate the thread limit when we should start doing Virtual Memory
  3754   // banging. Currently when the threads will have used all but 200Mb of space.
  3755   //
  3756   // TODO: consider performing a similar calculation for commit size instead
  3757   // as reserve size, since on a 64-bit platform we'll run into that more
  3758   // often than running out of virtual memory space.  We can use the
  3759   // lower value of the two calculations as the os_thread_limit.
  3760   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
  3761   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
  3763   // at exit methods are called in the reverse order of their registration.
  3764   // there is no limit to the number of functions registered. atexit does
  3765   // not set errno.
  3767   if (PerfAllowAtExitRegistration) {
  3768     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3769     // atexit functions can be delayed until process exit time, which
  3770     // can be problematic for embedded VM situations. Embedded VMs should
  3771     // call DestroyJavaVM() to assure that VM resources are released.
  3773     // note: perfMemory_exit_helper atexit function may be removed in
  3774     // the future if the appropriate cleanup code can be added to the
  3775     // VM_Exit VMOperation's doit method.
  3776     if (atexit(perfMemory_exit_helper) != 0) {
  3777       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
  3781 #ifndef _WIN64
  3782   // Print something if NX is enabled (win32 on AMD64)
  3783   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
  3784 #endif
  3786   // initialize thread priority policy
  3787   prio_init();
  3789   if (UseNUMA && !ForceNUMA) {
  3790     UseNUMA = false; // We don't fully support this yet
  3793   if (UseNUMAInterleaving) {
  3794     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
  3795     bool success = numa_interleaving_init();
  3796     if (!success) UseNUMAInterleaving = false;
  3799   return JNI_OK;
  3802 void os::init_3(void) {
  3803   return;
  3806 // Mark the polling page as unreadable
  3807 void os::make_polling_page_unreadable(void) {
  3808   DWORD old_status;
  3809   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
  3810     fatal("Could not disable polling page");
  3811 };
  3813 // Mark the polling page as readable
  3814 void os::make_polling_page_readable(void) {
  3815   DWORD old_status;
  3816   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
  3817     fatal("Could not enable polling page");
  3818 };
  3821 int os::stat(const char *path, struct stat *sbuf) {
  3822   char pathbuf[MAX_PATH];
  3823   if (strlen(path) > MAX_PATH - 1) {
  3824     errno = ENAMETOOLONG;
  3825     return -1;
  3827   os::native_path(strcpy(pathbuf, path));
  3828   int ret = ::stat(pathbuf, sbuf);
  3829   if (sbuf != NULL && UseUTCFileTimestamp) {
  3830     // Fix for 6539723.  st_mtime returned from stat() is dependent on
  3831     // the system timezone and so can return different values for the
  3832     // same file if/when daylight savings time changes.  This adjustment
  3833     // makes sure the same timestamp is returned regardless of the TZ.
  3834     //
  3835     // See:
  3836     // http://msdn.microsoft.com/library/
  3837     //   default.asp?url=/library/en-us/sysinfo/base/
  3838     //   time_zone_information_str.asp
  3839     // and
  3840     // http://msdn.microsoft.com/library/default.asp?url=
  3841     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
  3842     //
  3843     // NOTE: there is a insidious bug here:  If the timezone is changed
  3844     // after the call to stat() but before 'GetTimeZoneInformation()', then
  3845     // the adjustment we do here will be wrong and we'll return the wrong
  3846     // value (which will likely end up creating an invalid class data
  3847     // archive).  Absent a better API for this, or some time zone locking
  3848     // mechanism, we'll have to live with this risk.
  3849     TIME_ZONE_INFORMATION tz;
  3850     DWORD tzid = GetTimeZoneInformation(&tz);
  3851     int daylightBias =
  3852       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
  3853     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
  3855   return ret;
  3859 #define FT2INT64(ft) \
  3860   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
  3863 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3864 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3865 // of a thread.
  3866 //
  3867 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3868 // the fast estimate available on the platform.
  3870 // current_thread_cpu_time() is not optimized for Windows yet
  3871 jlong os::current_thread_cpu_time() {
  3872   // return user + sys since the cost is the same
  3873   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
  3876 jlong os::thread_cpu_time(Thread* thread) {
  3877   // consistent with what current_thread_cpu_time() returns.
  3878   return os::thread_cpu_time(thread, true /* user+sys */);
  3881 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3882   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3885 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
  3886   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
  3887   // If this function changes, os::is_thread_cpu_time_supported() should too
  3888   if (os::win32::is_nt()) {
  3889     FILETIME CreationTime;
  3890     FILETIME ExitTime;
  3891     FILETIME KernelTime;
  3892     FILETIME UserTime;
  3894     if ( GetThreadTimes(thread->osthread()->thread_handle(),
  3895                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3896       return -1;
  3897     else
  3898       if (user_sys_cpu_time) {
  3899         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
  3900       } else {
  3901         return FT2INT64(UserTime) * 100;
  3903   } else {
  3904     return (jlong) timeGetTime() * 1000000;
  3908 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3909   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3910   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3911   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3912   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3915 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3916   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
  3917   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
  3918   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
  3919   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
  3922 bool os::is_thread_cpu_time_supported() {
  3923   // see os::thread_cpu_time
  3924   if (os::win32::is_nt()) {
  3925     FILETIME CreationTime;
  3926     FILETIME ExitTime;
  3927     FILETIME KernelTime;
  3928     FILETIME UserTime;
  3930     if ( GetThreadTimes(GetCurrentThread(),
  3931                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
  3932       return false;
  3933     else
  3934       return true;
  3935   } else {
  3936     return false;
  3940 // Windows does't provide a loadavg primitive so this is stubbed out for now.
  3941 // It does have primitives (PDH API) to get CPU usage and run queue length.
  3942 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
  3943 // If we wanted to implement loadavg on Windows, we have a few options:
  3944 //
  3945 // a) Query CPU usage and run queue length and "fake" an answer by
  3946 //    returning the CPU usage if it's under 100%, and the run queue
  3947 //    length otherwise.  It turns out that querying is pretty slow
  3948 //    on Windows, on the order of 200 microseconds on a fast machine.
  3949 //    Note that on the Windows the CPU usage value is the % usage
  3950 //    since the last time the API was called (and the first call
  3951 //    returns 100%), so we'd have to deal with that as well.
  3952 //
  3953 // b) Sample the "fake" answer using a sampling thread and store
  3954 //    the answer in a global variable.  The call to loadavg would
  3955 //    just return the value of the global, avoiding the slow query.
  3956 //
  3957 // c) Sample a better answer using exponential decay to smooth the
  3958 //    value.  This is basically the algorithm used by UNIX kernels.
  3959 //
  3960 // Note that sampling thread starvation could affect both (b) and (c).
  3961 int os::loadavg(double loadavg[], int nelem) {
  3962   return -1;
  3966 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
  3967 bool os::dont_yield() {
  3968   return DontYieldALot;
  3971 // This method is a slightly reworked copy of JDK's sysOpen
  3972 // from src/windows/hpi/src/sys_api_md.c
  3974 int os::open(const char *path, int oflag, int mode) {
  3975   char pathbuf[MAX_PATH];
  3977   if (strlen(path) > MAX_PATH - 1) {
  3978     errno = ENAMETOOLONG;
  3979           return -1;
  3981   os::native_path(strcpy(pathbuf, path));
  3982   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
  3985 // Is a (classpath) directory empty?
  3986 bool os::dir_is_empty(const char* path) {
  3987   WIN32_FIND_DATA fd;
  3988   HANDLE f = FindFirstFile(path, &fd);
  3989   if (f == INVALID_HANDLE_VALUE) {
  3990     return true;
  3992   FindClose(f);
  3993   return false;
  3996 // create binary file, rewriting existing file if required
  3997 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3998   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
  3999   if (!rewrite_existing) {
  4000     oflags |= _O_EXCL;
  4002   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
  4005 // return current position of file pointer
  4006 jlong os::current_file_offset(int fd) {
  4007   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
  4010 // move file pointer to the specified offset
  4011 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4012   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
  4016 jlong os::lseek(int fd, jlong offset, int whence) {
  4017   return (jlong) ::_lseeki64(fd, offset, whence);
  4020 // This method is a slightly reworked copy of JDK's sysNativePath
  4021 // from src/windows/hpi/src/path_md.c
  4023 /* Convert a pathname to native format.  On win32, this involves forcing all
  4024    separators to be '\\' rather than '/' (both are legal inputs, but Win95
  4025    sometimes rejects '/') and removing redundant separators.  The input path is
  4026    assumed to have been converted into the character encoding used by the local
  4027    system.  Because this might be a double-byte encoding, care is taken to
  4028    treat double-byte lead characters correctly.
  4030    This procedure modifies the given path in place, as the result is never
  4031    longer than the original.  There is no error return; this operation always
  4032    succeeds. */
  4033 char * os::native_path(char *path) {
  4034   char *src = path, *dst = path, *end = path;
  4035   char *colon = NULL;           /* If a drive specifier is found, this will
  4036                                         point to the colon following the drive
  4037                                         letter */
  4039   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
  4040   assert(((!::IsDBCSLeadByte('/'))
  4041     && (!::IsDBCSLeadByte('\\'))
  4042     && (!::IsDBCSLeadByte(':'))),
  4043     "Illegal lead byte");
  4045   /* Check for leading separators */
  4046 #define isfilesep(c) ((c) == '/' || (c) == '\\')
  4047   while (isfilesep(*src)) {
  4048     src++;
  4051   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
  4052     /* Remove leading separators if followed by drive specifier.  This
  4053       hack is necessary to support file URLs containing drive
  4054       specifiers (e.g., "file://c:/path").  As a side effect,
  4055       "/c:/path" can be used as an alternative to "c:/path". */
  4056     *dst++ = *src++;
  4057     colon = dst;
  4058     *dst++ = ':';
  4059     src++;
  4060   } else {
  4061     src = path;
  4062     if (isfilesep(src[0]) && isfilesep(src[1])) {
  4063       /* UNC pathname: Retain first separator; leave src pointed at
  4064          second separator so that further separators will be collapsed
  4065          into the second separator.  The result will be a pathname
  4066          beginning with "\\\\" followed (most likely) by a host name. */
  4067       src = dst = path + 1;
  4068       path[0] = '\\';     /* Force first separator to '\\' */
  4072   end = dst;
  4074   /* Remove redundant separators from remainder of path, forcing all
  4075       separators to be '\\' rather than '/'. Also, single byte space
  4076       characters are removed from the end of the path because those
  4077       are not legal ending characters on this operating system.
  4078   */
  4079   while (*src != '\0') {
  4080     if (isfilesep(*src)) {
  4081       *dst++ = '\\'; src++;
  4082       while (isfilesep(*src)) src++;
  4083       if (*src == '\0') {
  4084         /* Check for trailing separator */
  4085         end = dst;
  4086         if (colon == dst - 2) break;                      /* "z:\\" */
  4087         if (dst == path + 1) break;                       /* "\\" */
  4088         if (dst == path + 2 && isfilesep(path[0])) {
  4089           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
  4090             beginning of a UNC pathname.  Even though it is not, by
  4091             itself, a valid UNC pathname, we leave it as is in order
  4092             to be consistent with the path canonicalizer as well
  4093             as the win32 APIs, which treat this case as an invalid
  4094             UNC pathname rather than as an alias for the root
  4095             directory of the current drive. */
  4096           break;
  4098         end = --dst;  /* Path does not denote a root directory, so
  4099                                     remove trailing separator */
  4100         break;
  4102       end = dst;
  4103     } else {
  4104       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
  4105         *dst++ = *src++;
  4106         if (*src) *dst++ = *src++;
  4107         end = dst;
  4108       } else {         /* Copy a single-byte character */
  4109         char c = *src++;
  4110         *dst++ = c;
  4111         /* Space is not a legal ending character */
  4112         if (c != ' ') end = dst;
  4117   *end = '\0';
  4119   /* For "z:", add "." to work around a bug in the C runtime library */
  4120   if (colon == dst - 1) {
  4121           path[2] = '.';
  4122           path[3] = '\0';
  4125   #ifdef DEBUG
  4126     jio_fprintf(stderr, "sysNativePath: %s\n", path);
  4127   #endif DEBUG
  4128   return path;
  4131 // This code is a copy of JDK's sysSetLength
  4132 // from src/windows/hpi/src/sys_api_md.c
  4134 int os::ftruncate(int fd, jlong length) {
  4135   HANDLE h = (HANDLE)::_get_osfhandle(fd);
  4136   long high = (long)(length >> 32);
  4137   DWORD ret;
  4139   if (h == (HANDLE)(-1)) {
  4140     return -1;
  4143   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
  4144   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
  4145       return -1;
  4148   if (::SetEndOfFile(h) == FALSE) {
  4149     return -1;
  4152   return 0;
  4156 // This code is a copy of JDK's sysSync
  4157 // from src/windows/hpi/src/sys_api_md.c
  4158 // except for the legacy workaround for a bug in Win 98
  4160 int os::fsync(int fd) {
  4161   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
  4163   if ( (!::FlushFileBuffers(handle)) &&
  4164          (GetLastError() != ERROR_ACCESS_DENIED) ) {
  4165     /* from winerror.h */
  4166     return -1;
  4168   return 0;
  4171 static int nonSeekAvailable(int, long *);
  4172 static int stdinAvailable(int, long *);
  4174 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
  4175 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
  4177 // This code is a copy of JDK's sysAvailable
  4178 // from src/windows/hpi/src/sys_api_md.c
  4180 int os::available(int fd, jlong *bytes) {
  4181   jlong cur, end;
  4182   struct _stati64 stbuf64;
  4184   if (::_fstati64(fd, &stbuf64) >= 0) {
  4185     int mode = stbuf64.st_mode;
  4186     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
  4187       int ret;
  4188       long lpbytes;
  4189       if (fd == 0) {
  4190         ret = stdinAvailable(fd, &lpbytes);
  4191       } else {
  4192         ret = nonSeekAvailable(fd, &lpbytes);
  4194       (*bytes) = (jlong)(lpbytes);
  4195       return ret;
  4197     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
  4198       return FALSE;
  4199     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
  4200       return FALSE;
  4201     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
  4202       return FALSE;
  4204     *bytes = end - cur;
  4205     return TRUE;
  4206   } else {
  4207     return FALSE;
  4211 // This code is a copy of JDK's nonSeekAvailable
  4212 // from src/windows/hpi/src/sys_api_md.c
  4214 static int nonSeekAvailable(int fd, long *pbytes) {
  4215   /* This is used for available on non-seekable devices
  4216     * (like both named and anonymous pipes, such as pipes
  4217     *  connected to an exec'd process).
  4218     * Standard Input is a special case.
  4220     */
  4221   HANDLE han;
  4223   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
  4224     return FALSE;
  4227   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
  4228         /* PeekNamedPipe fails when at EOF.  In that case we
  4229          * simply make *pbytes = 0 which is consistent with the
  4230          * behavior we get on Solaris when an fd is at EOF.
  4231          * The only alternative is to raise an Exception,
  4232          * which isn't really warranted.
  4233          */
  4234     if (::GetLastError() != ERROR_BROKEN_PIPE) {
  4235       return FALSE;
  4237     *pbytes = 0;
  4239   return TRUE;
  4242 #define MAX_INPUT_EVENTS 2000
  4244 // This code is a copy of JDK's stdinAvailable
  4245 // from src/windows/hpi/src/sys_api_md.c
  4247 static int stdinAvailable(int fd, long *pbytes) {
  4248   HANDLE han;
  4249   DWORD numEventsRead = 0;      /* Number of events read from buffer */
  4250   DWORD numEvents = 0;  /* Number of events in buffer */
  4251   DWORD i = 0;          /* Loop index */
  4252   DWORD curLength = 0;  /* Position marker */
  4253   DWORD actualLength = 0;       /* Number of bytes readable */
  4254   BOOL error = FALSE;         /* Error holder */
  4255   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
  4257   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
  4258         return FALSE;
  4261   /* Construct an array of input records in the console buffer */
  4262   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
  4263   if (error == 0) {
  4264     return nonSeekAvailable(fd, pbytes);
  4267   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
  4268   if (numEvents > MAX_INPUT_EVENTS) {
  4269     numEvents = MAX_INPUT_EVENTS;
  4272   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD));
  4273   if (lpBuffer == NULL) {
  4274     return FALSE;
  4277   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
  4278   if (error == 0) {
  4279     os::free(lpBuffer);
  4280     return FALSE;
  4283   /* Examine input records for the number of bytes available */
  4284   for(i=0; i<numEvents; i++) {
  4285     if (lpBuffer[i].EventType == KEY_EVENT) {
  4287       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
  4288                                       &(lpBuffer[i].Event);
  4289       if (keyRecord->bKeyDown == TRUE) {
  4290         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
  4291         curLength++;
  4292         if (*keyPressed == '\r') {
  4293           actualLength = curLength;
  4299   if(lpBuffer != NULL) {
  4300     os::free(lpBuffer);
  4303   *pbytes = (long) actualLength;
  4304   return TRUE;
  4307 // Map a block of memory.
  4308 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4309                      char *addr, size_t bytes, bool read_only,
  4310                      bool allow_exec) {
  4311   HANDLE hFile;
  4312   char* base;
  4314   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
  4315                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
  4316   if (hFile == NULL) {
  4317     if (PrintMiscellaneous && Verbose) {
  4318       DWORD err = GetLastError();
  4319       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
  4321     return NULL;
  4324   if (allow_exec) {
  4325     // CreateFileMapping/MapViewOfFileEx can't map executable memory
  4326     // unless it comes from a PE image (which the shared archive is not.)
  4327     // Even VirtualProtect refuses to give execute access to mapped memory
  4328     // that was not previously executable.
  4329     //
  4330     // Instead, stick the executable region in anonymous memory.  Yuck.
  4331     // Penalty is that ~4 pages will not be shareable - in the future
  4332     // we might consider DLLizing the shared archive with a proper PE
  4333     // header so that mapping executable + sharing is possible.
  4335     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
  4336                                 PAGE_READWRITE);
  4337     if (base == NULL) {
  4338       if (PrintMiscellaneous && Verbose) {
  4339         DWORD err = GetLastError();
  4340         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
  4342       CloseHandle(hFile);
  4343       return NULL;
  4346     DWORD bytes_read;
  4347     OVERLAPPED overlapped;
  4348     overlapped.Offset = (DWORD)file_offset;
  4349     overlapped.OffsetHigh = 0;
  4350     overlapped.hEvent = NULL;
  4351     // ReadFile guarantees that if the return value is true, the requested
  4352     // number of bytes were read before returning.
  4353     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
  4354     if (!res) {
  4355       if (PrintMiscellaneous && Verbose) {
  4356         DWORD err = GetLastError();
  4357         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
  4359       release_memory(base, bytes);
  4360       CloseHandle(hFile);
  4361       return NULL;
  4363   } else {
  4364     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
  4365                                     NULL /*file_name*/);
  4366     if (hMap == NULL) {
  4367       if (PrintMiscellaneous && Verbose) {
  4368         DWORD err = GetLastError();
  4369         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
  4371       CloseHandle(hFile);
  4372       return NULL;
  4375     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
  4376     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
  4377                                   (DWORD)bytes, addr);
  4378     if (base == NULL) {
  4379       if (PrintMiscellaneous && Verbose) {
  4380         DWORD err = GetLastError();
  4381         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
  4383       CloseHandle(hMap);
  4384       CloseHandle(hFile);
  4385       return NULL;
  4388     if (CloseHandle(hMap) == 0) {
  4389       if (PrintMiscellaneous && Verbose) {
  4390         DWORD err = GetLastError();
  4391         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
  4393       CloseHandle(hFile);
  4394       return base;
  4398   if (allow_exec) {
  4399     DWORD old_protect;
  4400     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
  4401     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
  4403     if (!res) {
  4404       if (PrintMiscellaneous && Verbose) {
  4405         DWORD err = GetLastError();
  4406         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
  4408       // Don't consider this a hard error, on IA32 even if the
  4409       // VirtualProtect fails, we should still be able to execute
  4410       CloseHandle(hFile);
  4411       return base;
  4415   if (CloseHandle(hFile) == 0) {
  4416     if (PrintMiscellaneous && Verbose) {
  4417       DWORD err = GetLastError();
  4418       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
  4420     return base;
  4423   return base;
  4427 // Remap a block of memory.
  4428 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4429                        char *addr, size_t bytes, bool read_only,
  4430                        bool allow_exec) {
  4431   // This OS does not allow existing memory maps to be remapped so we
  4432   // have to unmap the memory before we remap it.
  4433   if (!os::unmap_memory(addr, bytes)) {
  4434     return NULL;
  4437   // There is a very small theoretical window between the unmap_memory()
  4438   // call above and the map_memory() call below where a thread in native
  4439   // code may be able to access an address that is no longer mapped.
  4441   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4442                         allow_exec);
  4446 // Unmap a block of memory.
  4447 // Returns true=success, otherwise false.
  4449 bool os::unmap_memory(char* addr, size_t bytes) {
  4450   BOOL result = UnmapViewOfFile(addr);
  4451   if (result == 0) {
  4452     if (PrintMiscellaneous && Verbose) {
  4453       DWORD err = GetLastError();
  4454       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
  4456     return false;
  4458   return true;
  4461 void os::pause() {
  4462   char filename[MAX_PATH];
  4463   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4464     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4465   } else {
  4466     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4469   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4470   if (fd != -1) {
  4471     struct stat buf;
  4472     ::close(fd);
  4473     while (::stat(filename, &buf) == 0) {
  4474       Sleep(100);
  4476   } else {
  4477     jio_fprintf(stderr,
  4478       "Could not open pause file '%s', continuing immediately.\n", filename);
  4482 // An Event wraps a win32 "CreateEvent" kernel handle.
  4483 //
  4484 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
  4485 //
  4486 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
  4487 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
  4488 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
  4489 //     In addition, an unpark() operation might fetch the handle field, but the
  4490 //     event could recycle between the fetch and the SetEvent() operation.
  4491 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
  4492 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
  4493 //     on an stale but recycled handle would be harmless, but in practice this might
  4494 //     confuse other non-Sun code, so it's not a viable approach.
  4495 //
  4496 // 2:  Once a win32 event handle is associated with an Event, it remains associated
  4497 //     with the Event.  The event handle is never closed.  This could be construed
  4498 //     as handle leakage, but only up to the maximum # of threads that have been extant
  4499 //     at any one time.  This shouldn't be an issue, as windows platforms typically
  4500 //     permit a process to have hundreds of thousands of open handles.
  4501 //
  4502 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
  4503 //     and release unused handles.
  4504 //
  4505 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
  4506 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
  4507 //
  4508 // 5.  Use an RCU-like mechanism (Read-Copy Update).
  4509 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
  4510 //
  4511 // We use (2).
  4512 //
  4513 // TODO-FIXME:
  4514 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
  4515 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
  4516 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
  4517 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
  4518 //     into a single win32 CreateEvent() handle.
  4519 //
  4520 // _Event transitions in park()
  4521 //   -1 => -1 : illegal
  4522 //    1 =>  0 : pass - return immediately
  4523 //    0 => -1 : block
  4524 //
  4525 // _Event serves as a restricted-range semaphore :
  4526 //    -1 : thread is blocked
  4527 //     0 : neutral  - thread is running or ready
  4528 //     1 : signaled - thread is running or ready
  4529 //
  4530 // Another possible encoding of _Event would be
  4531 // with explicit "PARKED" and "SIGNALED" bits.
  4533 int os::PlatformEvent::park (jlong Millis) {
  4534     guarantee (_ParkHandle != NULL , "Invariant") ;
  4535     guarantee (Millis > 0          , "Invariant") ;
  4536     int v ;
  4538     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
  4539     // the initial park() operation.
  4541     for (;;) {
  4542         v = _Event ;
  4543         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4545     guarantee ((v == 0) || (v == 1), "invariant") ;
  4546     if (v != 0) return OS_OK ;
  4548     // Do this the hard way by blocking ...
  4549     // TODO: consider a brief spin here, gated on the success of recent
  4550     // spin attempts by this thread.
  4551     //
  4552     // We decompose long timeouts into series of shorter timed waits.
  4553     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
  4554     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
  4555     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
  4556     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
  4557     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
  4558     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
  4559     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
  4560     // for the already waited time.  This policy does not admit any new outcomes.
  4561     // In the future, however, we might want to track the accumulated wait time and
  4562     // adjust Millis accordingly if we encounter a spurious wakeup.
  4564     const int MAXTIMEOUT = 0x10000000 ;
  4565     DWORD rv = WAIT_TIMEOUT ;
  4566     while (_Event < 0 && Millis > 0) {
  4567        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
  4568        if (Millis > MAXTIMEOUT) {
  4569           prd = MAXTIMEOUT ;
  4571        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
  4572        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
  4573        if (rv == WAIT_TIMEOUT) {
  4574            Millis -= prd ;
  4577     v = _Event ;
  4578     _Event = 0 ;
  4579     OrderAccess::fence() ;
  4580     // If we encounter a nearly simultanous timeout expiry and unpark()
  4581     // we return OS_OK indicating we awoke via unpark().
  4582     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
  4583     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
  4586 void os::PlatformEvent::park () {
  4587     guarantee (_ParkHandle != NULL, "Invariant") ;
  4588     // Invariant: Only the thread associated with the Event/PlatformEvent
  4589     // may call park().
  4590     int v ;
  4591     for (;;) {
  4592         v = _Event ;
  4593         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4595     guarantee ((v == 0) || (v == 1), "invariant") ;
  4596     if (v != 0) return ;
  4598     // Do this the hard way by blocking ...
  4599     // TODO: consider a brief spin here, gated on the success of recent
  4600     // spin attempts by this thread.
  4601     while (_Event < 0) {
  4602        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
  4603        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
  4606     // Usually we'll find _Event == 0 at this point, but as
  4607     // an optional optimization we clear it, just in case can
  4608     // multiple unpark() operations drove _Event up to 1.
  4609     _Event = 0 ;
  4610     OrderAccess::fence() ;
  4611     guarantee (_Event >= 0, "invariant") ;
  4614 void os::PlatformEvent::unpark() {
  4615   guarantee (_ParkHandle != NULL, "Invariant") ;
  4616   int v ;
  4617   for (;;) {
  4618       v = _Event ;      // Increment _Event if it's < 1.
  4619       if (v > 0) {
  4620          // If it's already signaled just return.
  4621          // The LD of _Event could have reordered or be satisfied
  4622          // by a read-aside from this processor's write buffer.
  4623          // To avoid problems execute a barrier and then
  4624          // ratify the value.  A degenerate CAS() would also work.
  4625          // Viz., CAS (v+0, &_Event, v) == v).
  4626          OrderAccess::fence() ;
  4627          if (_Event == v) return ;
  4628          continue ;
  4630       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4632   if (v < 0) {
  4633      ::SetEvent (_ParkHandle) ;
  4638 // JSR166
  4639 // -------------------------------------------------------
  4641 /*
  4642  * The Windows implementation of Park is very straightforward: Basic
  4643  * operations on Win32 Events turn out to have the right semantics to
  4644  * use them directly. We opportunistically resuse the event inherited
  4645  * from Monitor.
  4646  */
  4649 void Parker::park(bool isAbsolute, jlong time) {
  4650   guarantee (_ParkEvent != NULL, "invariant") ;
  4651   // First, demultiplex/decode time arguments
  4652   if (time < 0) { // don't wait
  4653     return;
  4655   else if (time == 0 && !isAbsolute) {
  4656     time = INFINITE;
  4658   else if  (isAbsolute) {
  4659     time -= os::javaTimeMillis(); // convert to relative time
  4660     if (time <= 0) // already elapsed
  4661       return;
  4663   else { // relative
  4664     time /= 1000000; // Must coarsen from nanos to millis
  4665     if (time == 0)   // Wait for the minimal time unit if zero
  4666       time = 1;
  4669   JavaThread* thread = (JavaThread*)(Thread::current());
  4670   assert(thread->is_Java_thread(), "Must be JavaThread");
  4671   JavaThread *jt = (JavaThread *)thread;
  4673   // Don't wait if interrupted or already triggered
  4674   if (Thread::is_interrupted(thread, false) ||
  4675     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
  4676     ResetEvent(_ParkEvent);
  4677     return;
  4679   else {
  4680     ThreadBlockInVM tbivm(jt);
  4681     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4682     jt->set_suspend_equivalent();
  4684     WaitForSingleObject(_ParkEvent,  time);
  4685     ResetEvent(_ParkEvent);
  4687     // If externally suspended while waiting, re-suspend
  4688     if (jt->handle_special_suspend_equivalent_condition()) {
  4689       jt->java_suspend_self();
  4694 void Parker::unpark() {
  4695   guarantee (_ParkEvent != NULL, "invariant") ;
  4696   SetEvent(_ParkEvent);
  4699 // Run the specified command in a separate process. Return its exit value,
  4700 // or -1 on failure (e.g. can't create a new process).
  4701 int os::fork_and_exec(char* cmd) {
  4702   STARTUPINFO si;
  4703   PROCESS_INFORMATION pi;
  4705   memset(&si, 0, sizeof(si));
  4706   si.cb = sizeof(si);
  4707   memset(&pi, 0, sizeof(pi));
  4708   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
  4709                             cmd,    // command line
  4710                             NULL,   // process security attribute
  4711                             NULL,   // thread security attribute
  4712                             TRUE,   // inherits system handles
  4713                             0,      // no creation flags
  4714                             NULL,   // use parent's environment block
  4715                             NULL,   // use parent's starting directory
  4716                             &si,    // (in) startup information
  4717                             &pi);   // (out) process information
  4719   if (rslt) {
  4720     // Wait until child process exits.
  4721     WaitForSingleObject(pi.hProcess, INFINITE);
  4723     DWORD exit_code;
  4724     GetExitCodeProcess(pi.hProcess, &exit_code);
  4726     // Close process and thread handles.
  4727     CloseHandle(pi.hProcess);
  4728     CloseHandle(pi.hThread);
  4730     return (int)exit_code;
  4731   } else {
  4732     return -1;
  4736 //--------------------------------------------------------------------------------------------------
  4737 // Non-product code
  4739 static int mallocDebugIntervalCounter = 0;
  4740 static int mallocDebugCounter = 0;
  4741 bool os::check_heap(bool force) {
  4742   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
  4743   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
  4744     // Note: HeapValidate executes two hardware breakpoints when it finds something
  4745     // wrong; at these points, eax contains the address of the offending block (I think).
  4746     // To get to the exlicit error message(s) below, just continue twice.
  4747     HANDLE heap = GetProcessHeap();
  4748     { HeapLock(heap);
  4749       PROCESS_HEAP_ENTRY phe;
  4750       phe.lpData = NULL;
  4751       while (HeapWalk(heap, &phe) != 0) {
  4752         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
  4753             !HeapValidate(heap, 0, phe.lpData)) {
  4754           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
  4755           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
  4756           fatal("corrupted C heap");
  4759       DWORD err = GetLastError();
  4760       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
  4761         fatal(err_msg("heap walk aborted with error %d", err));
  4763       HeapUnlock(heap);
  4765     mallocDebugIntervalCounter = 0;
  4767   return true;
  4771 bool os::find(address addr, outputStream* st) {
  4772   // Nothing yet
  4773   return false;
  4776 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
  4777   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
  4779   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
  4780     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
  4781     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
  4782     address addr = (address) exceptionRecord->ExceptionInformation[1];
  4784     if (os::is_memory_serialize_page(thread, addr))
  4785       return EXCEPTION_CONTINUE_EXECUTION;
  4788   return EXCEPTION_CONTINUE_SEARCH;
  4791 // We don't build a headless jre for Windows
  4792 bool os::is_headless_jre() { return false; }
  4795 typedef CRITICAL_SECTION mutex_t;
  4796 #define mutexInit(m)    InitializeCriticalSection(m)
  4797 #define mutexDestroy(m) DeleteCriticalSection(m)
  4798 #define mutexLock(m)    EnterCriticalSection(m)
  4799 #define mutexUnlock(m)  LeaveCriticalSection(m)
  4801 static bool sock_initialized = FALSE;
  4802 static mutex_t sockFnTableMutex;
  4804 static void initSock() {
  4805   WSADATA wsadata;
  4807   if (!os::WinSock2Dll::WinSock2Available()) {
  4808     jio_fprintf(stderr, "Could not load Winsock 2 (error: %d)\n",
  4809       ::GetLastError());
  4810     return;
  4812   if (sock_initialized == TRUE) return;
  4814   ::mutexInit(&sockFnTableMutex);
  4815   ::mutexLock(&sockFnTableMutex);
  4816   if (os::WinSock2Dll::WSAStartup(MAKEWORD(1,1), &wsadata) != 0) {
  4817       jio_fprintf(stderr, "Could not initialize Winsock\n");
  4819   sock_initialized = TRUE;
  4820   ::mutexUnlock(&sockFnTableMutex);
  4823 struct hostent* os::get_host_by_name(char* name) {
  4824   if (!sock_initialized) {
  4825     initSock();
  4827   if (!os::WinSock2Dll::WinSock2Available()) {
  4828     return NULL;
  4830   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
  4834 int os::socket_close(int fd) {
  4835   ShouldNotReachHere();
  4836   return 0;
  4839 int os::socket_available(int fd, jint *pbytes) {
  4840   ShouldNotReachHere();
  4841   return 0;
  4844 int os::socket(int domain, int type, int protocol) {
  4845   ShouldNotReachHere();
  4846   return 0;
  4849 int os::listen(int fd, int count) {
  4850   ShouldNotReachHere();
  4851   return 0;
  4854 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
  4855   ShouldNotReachHere();
  4856   return 0;
  4859 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
  4860   ShouldNotReachHere();
  4861   return 0;
  4864 int os::sendto(int fd, char* buf, size_t len, uint flags,
  4865                struct sockaddr* to, socklen_t tolen) {
  4866   ShouldNotReachHere();
  4867   return 0;
  4870 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
  4871                  sockaddr* from, socklen_t* fromlen) {
  4872   ShouldNotReachHere();
  4873   return 0;
  4876 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
  4877   ShouldNotReachHere();
  4878   return 0;
  4881 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
  4882   ShouldNotReachHere();
  4883   return 0;
  4886 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
  4887   ShouldNotReachHere();
  4888   return 0;
  4891 int os::timeout(int fd, long timeout) {
  4892   ShouldNotReachHere();
  4893   return 0;
  4896 int os::get_host_name(char* name, int namelen) {
  4897   ShouldNotReachHere();
  4898   return 0;
  4901 int os::socket_shutdown(int fd, int howto) {
  4902   ShouldNotReachHere();
  4903   return 0;
  4906 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
  4907   ShouldNotReachHere();
  4908   return 0;
  4911 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
  4912   ShouldNotReachHere();
  4913   return 0;
  4916 int os::get_sock_opt(int fd, int level, int optname,
  4917                      char* optval, socklen_t* optlen) {
  4918   ShouldNotReachHere();
  4919   return 0;
  4922 int os::set_sock_opt(int fd, int level, int optname,
  4923                      const char* optval, socklen_t optlen) {
  4924   ShouldNotReachHere();
  4925   return 0;
  4929 // Kernel32 API
  4930 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
  4931 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
  4932 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
  4933 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
  4935 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
  4936 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
  4937 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
  4938 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
  4939 BOOL                        os::Kernel32Dll::initialized = FALSE;
  4940 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
  4941   assert(initialized && _GetLargePageMinimum != NULL,
  4942     "GetLargePageMinimumAvailable() not yet called");
  4943   return _GetLargePageMinimum();
  4946 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
  4947   if (!initialized) {
  4948     initialize();
  4950   return _GetLargePageMinimum != NULL;
  4953 BOOL os::Kernel32Dll::NumaCallsAvailable() {
  4954   if (!initialized) {
  4955     initialize();
  4957   return _VirtualAllocExNuma != NULL;
  4960 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
  4961   assert(initialized && _VirtualAllocExNuma != NULL,
  4962     "NUMACallsAvailable() not yet called");
  4964   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
  4967 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
  4968   assert(initialized && _GetNumaHighestNodeNumber != NULL,
  4969     "NUMACallsAvailable() not yet called");
  4971   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
  4974 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
  4975   assert(initialized && _GetNumaNodeProcessorMask != NULL,
  4976     "NUMACallsAvailable() not yet called");
  4978   return _GetNumaNodeProcessorMask(node, proc_mask);
  4982 void os::Kernel32Dll::initializeCommon() {
  4983   if (!initialized) {
  4984     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  4985     assert(handle != NULL, "Just check");
  4986     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
  4987     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
  4988     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
  4989     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
  4990     initialized = TRUE;
  4996 #ifndef JDK6_OR_EARLIER
  4998 void os::Kernel32Dll::initialize() {
  4999   initializeCommon();
  5003 // Kernel32 API
  5004 inline BOOL os::Kernel32Dll::SwitchToThread() {
  5005   return ::SwitchToThread();
  5008 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5009   return true;
  5012   // Help tools
  5013 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5014   return true;
  5017 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5018   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5021 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5022   return ::Module32First(hSnapshot, lpme);
  5025 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5026   return ::Module32Next(hSnapshot, lpme);
  5030 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5031   return true;
  5034 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5035   ::GetNativeSystemInfo(lpSystemInfo);
  5038 // PSAPI API
  5039 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5040   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5043 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5044   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5047 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5048   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5051 inline BOOL os::PSApiDll::PSApiAvailable() {
  5052   return true;
  5056 // WinSock2 API
  5057 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5058   return ::WSAStartup(wVersionRequested, lpWSAData);
  5061 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5062   return ::gethostbyname(name);
  5065 inline BOOL os::WinSock2Dll::WinSock2Available() {
  5066   return true;
  5069 // Advapi API
  5070 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5071    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5072    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5073      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5074        BufferLength, PreviousState, ReturnLength);
  5077 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5078   PHANDLE TokenHandle) {
  5079     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5082 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5083   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5086 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
  5087   return true;
  5090 #else
  5091 // Kernel32 API
  5092 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
  5093 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
  5094 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
  5095 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
  5096 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
  5098 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
  5099 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
  5100 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
  5101 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
  5102 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
  5105 void os::Kernel32Dll::initialize() {
  5106   if (!initialized) {
  5107     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
  5108     assert(handle != NULL, "Just check");
  5110     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
  5111     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
  5112       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
  5113     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
  5114     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
  5115     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
  5116     initializeCommon();  // resolve the functions that always need resolving
  5118     initialized = TRUE;
  5122 BOOL os::Kernel32Dll::SwitchToThread() {
  5123   assert(initialized && _SwitchToThread != NULL,
  5124     "SwitchToThreadAvailable() not yet called");
  5125   return _SwitchToThread();
  5129 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
  5130   if (!initialized) {
  5131     initialize();
  5133   return _SwitchToThread != NULL;
  5136 // Help tools
  5137 BOOL os::Kernel32Dll::HelpToolsAvailable() {
  5138   if (!initialized) {
  5139     initialize();
  5141   return _CreateToolhelp32Snapshot != NULL &&
  5142          _Module32First != NULL &&
  5143          _Module32Next != NULL;
  5146 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
  5147   assert(initialized && _CreateToolhelp32Snapshot != NULL,
  5148     "HelpToolsAvailable() not yet called");
  5150   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
  5153 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5154   assert(initialized && _Module32First != NULL,
  5155     "HelpToolsAvailable() not yet called");
  5157   return _Module32First(hSnapshot, lpme);
  5160 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
  5161   assert(initialized && _Module32Next != NULL,
  5162     "HelpToolsAvailable() not yet called");
  5164   return _Module32Next(hSnapshot, lpme);
  5168 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
  5169   if (!initialized) {
  5170     initialize();
  5172   return _GetNativeSystemInfo != NULL;
  5175 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
  5176   assert(initialized && _GetNativeSystemInfo != NULL,
  5177     "GetNativeSystemInfoAvailable() not yet called");
  5179   _GetNativeSystemInfo(lpSystemInfo);
  5184 // PSAPI API
  5187 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
  5188 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
  5189 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
  5191 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
  5192 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
  5193 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
  5194 BOOL                    os::PSApiDll::initialized = FALSE;
  5196 void os::PSApiDll::initialize() {
  5197   if (!initialized) {
  5198     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
  5199     if (handle != NULL) {
  5200       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
  5201         "EnumProcessModules");
  5202       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
  5203         "GetModuleFileNameExA");
  5204       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
  5205         "GetModuleInformation");
  5207     initialized = TRUE;
  5213 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
  5214   assert(initialized && _EnumProcessModules != NULL,
  5215     "PSApiAvailable() not yet called");
  5216   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
  5219 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
  5220   assert(initialized && _GetModuleFileNameEx != NULL,
  5221     "PSApiAvailable() not yet called");
  5222   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
  5225 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
  5226   assert(initialized && _GetModuleInformation != NULL,
  5227     "PSApiAvailable() not yet called");
  5228   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
  5231 BOOL os::PSApiDll::PSApiAvailable() {
  5232   if (!initialized) {
  5233     initialize();
  5235   return _EnumProcessModules != NULL &&
  5236     _GetModuleFileNameEx != NULL &&
  5237     _GetModuleInformation != NULL;
  5241 // WinSock2 API
  5242 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
  5243 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
  5245 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
  5246 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
  5247 BOOL             os::WinSock2Dll::initialized = FALSE;
  5249 void os::WinSock2Dll::initialize() {
  5250   if (!initialized) {
  5251     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
  5252     if (handle != NULL) {
  5253       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
  5254       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
  5256     initialized = TRUE;
  5261 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
  5262   assert(initialized && _WSAStartup != NULL,
  5263     "WinSock2Available() not yet called");
  5264   return _WSAStartup(wVersionRequested, lpWSAData);
  5267 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
  5268   assert(initialized && _gethostbyname != NULL,
  5269     "WinSock2Available() not yet called");
  5270   return _gethostbyname(name);
  5273 BOOL os::WinSock2Dll::WinSock2Available() {
  5274   if (!initialized) {
  5275     initialize();
  5277   return _WSAStartup != NULL &&
  5278     _gethostbyname != NULL;
  5281 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
  5282 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
  5283 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
  5285 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
  5286 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
  5287 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
  5288 BOOL                     os::Advapi32Dll::initialized = FALSE;
  5290 void os::Advapi32Dll::initialize() {
  5291   if (!initialized) {
  5292     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
  5293     if (handle != NULL) {
  5294       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
  5295         "AdjustTokenPrivileges");
  5296       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
  5297         "OpenProcessToken");
  5298       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
  5299         "LookupPrivilegeValueA");
  5301     initialized = TRUE;
  5305 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
  5306    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
  5307    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
  5308    assert(initialized && _AdjustTokenPrivileges != NULL,
  5309      "AdvapiAvailable() not yet called");
  5310    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
  5311        BufferLength, PreviousState, ReturnLength);
  5314 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
  5315   PHANDLE TokenHandle) {
  5316    assert(initialized && _OpenProcessToken != NULL,
  5317      "AdvapiAvailable() not yet called");
  5318     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
  5321 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
  5322    assert(initialized && _LookupPrivilegeValue != NULL,
  5323      "AdvapiAvailable() not yet called");
  5324   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
  5327 BOOL os::Advapi32Dll::AdvapiAvailable() {
  5328   if (!initialized) {
  5329     initialize();
  5331   return _AdjustTokenPrivileges != NULL &&
  5332     _OpenProcessToken != NULL &&
  5333     _LookupPrivilegeValue != NULL;
  5336 #endif

mercurial