src/share/vm/gc_implementation/g1/heapRegion.cpp

Tue, 05 Jun 2012 22:30:24 +0200

author
brutisso
date
Tue, 05 Jun 2012 22:30:24 +0200
changeset 3823
37552638d24a
parent 3731
8a2e5a6a19a4
child 3957
a2f7274eb6ef
permissions
-rw-r--r--

7172388: G1: _total_full_collections should not be incremented for concurrent cycles
Reviewed-by: azeemj, jmasa

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    29 #include "gc_implementation/g1/heapRegion.inline.hpp"
    30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    32 #include "memory/genOopClosures.inline.hpp"
    33 #include "memory/iterator.hpp"
    34 #include "oops/oop.inline.hpp"
    36 int    HeapRegion::LogOfHRGrainBytes = 0;
    37 int    HeapRegion::LogOfHRGrainWords = 0;
    38 size_t HeapRegion::GrainBytes        = 0;
    39 size_t HeapRegion::GrainWords        = 0;
    40 size_t HeapRegion::CardsPerRegion    = 0;
    42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    43                                  HeapRegion* hr, OopClosure* cl,
    44                                  CardTableModRefBS::PrecisionStyle precision,
    45                                  FilterKind fk) :
    46   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    47   _hr(hr), _fk(fk), _g1(g1)
    48 { }
    50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    51                                                    OopClosure* oc) :
    52   _r_bottom(r->bottom()), _r_end(r->end()),
    53   _oc(oc), _out_of_region(0)
    54 {}
    56 class VerifyLiveClosure: public OopClosure {
    57 private:
    58   G1CollectedHeap* _g1h;
    59   CardTableModRefBS* _bs;
    60   oop _containing_obj;
    61   bool _failures;
    62   int _n_failures;
    63   VerifyOption _vo;
    64 public:
    65   // _vo == UsePrevMarking -> use "prev" marking information,
    66   // _vo == UseNextMarking -> use "next" marking information,
    67   // _vo == UseMarkWord    -> use mark word from object header.
    68   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
    69     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
    70     _failures(false), _n_failures(0), _vo(vo)
    71   {
    72     BarrierSet* bs = _g1h->barrier_set();
    73     if (bs->is_a(BarrierSet::CardTableModRef))
    74       _bs = (CardTableModRefBS*)bs;
    75   }
    77   void set_containing_obj(oop obj) {
    78     _containing_obj = obj;
    79   }
    81   bool failures() { return _failures; }
    82   int n_failures() { return _n_failures; }
    84   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
    85   virtual void do_oop(      oop* p) { do_oop_work(p); }
    87   void print_object(outputStream* out, oop obj) {
    88 #ifdef PRODUCT
    89     klassOop k = obj->klass();
    90     const char* class_name = instanceKlass::cast(k)->external_name();
    91     out->print_cr("class name %s", class_name);
    92 #else // PRODUCT
    93     obj->print_on(out);
    94 #endif // PRODUCT
    95   }
    97   template <class T>
    98   void do_oop_work(T* p) {
    99     assert(_containing_obj != NULL, "Precondition");
   100     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   101            "Precondition");
   102     T heap_oop = oopDesc::load_heap_oop(p);
   103     if (!oopDesc::is_null(heap_oop)) {
   104       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   105       bool failed = false;
   106       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   107         MutexLockerEx x(ParGCRareEvent_lock,
   108                         Mutex::_no_safepoint_check_flag);
   110         if (!_failures) {
   111           gclog_or_tty->print_cr("");
   112           gclog_or_tty->print_cr("----------");
   113         }
   114         if (!_g1h->is_in_closed_subset(obj)) {
   115           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   116           gclog_or_tty->print_cr("Field "PTR_FORMAT
   117                                  " of live obj "PTR_FORMAT" in region "
   118                                  "["PTR_FORMAT", "PTR_FORMAT")",
   119                                  p, (void*) _containing_obj,
   120                                  from->bottom(), from->end());
   121           print_object(gclog_or_tty, _containing_obj);
   122           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   123                                  (void*) obj);
   124         } else {
   125           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   126           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   127           gclog_or_tty->print_cr("Field "PTR_FORMAT
   128                                  " of live obj "PTR_FORMAT" in region "
   129                                  "["PTR_FORMAT", "PTR_FORMAT")",
   130                                  p, (void*) _containing_obj,
   131                                  from->bottom(), from->end());
   132           print_object(gclog_or_tty, _containing_obj);
   133           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   134                                  "["PTR_FORMAT", "PTR_FORMAT")",
   135                                  (void*) obj, to->bottom(), to->end());
   136           print_object(gclog_or_tty, obj);
   137         }
   138         gclog_or_tty->print_cr("----------");
   139         gclog_or_tty->flush();
   140         _failures = true;
   141         failed = true;
   142         _n_failures++;
   143       }
   145       if (!_g1h->full_collection()) {
   146         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   147         HeapRegion* to   = _g1h->heap_region_containing(obj);
   148         if (from != NULL && to != NULL &&
   149             from != to &&
   150             !to->isHumongous()) {
   151           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   152           jbyte cv_field = *_bs->byte_for_const(p);
   153           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   155           bool is_bad = !(from->is_young()
   156                           || to->rem_set()->contains_reference(p)
   157                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   158                               (_containing_obj->is_objArray() ?
   159                                   cv_field == dirty
   160                                : cv_obj == dirty || cv_field == dirty));
   161           if (is_bad) {
   162             MutexLockerEx x(ParGCRareEvent_lock,
   163                             Mutex::_no_safepoint_check_flag);
   165             if (!_failures) {
   166               gclog_or_tty->print_cr("");
   167               gclog_or_tty->print_cr("----------");
   168             }
   169             gclog_or_tty->print_cr("Missing rem set entry:");
   170             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   171                                    "of obj "PTR_FORMAT", "
   172                                    "in region "HR_FORMAT,
   173                                    p, (void*) _containing_obj,
   174                                    HR_FORMAT_PARAMS(from));
   175             _containing_obj->print_on(gclog_or_tty);
   176             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   177                                    "in region "HR_FORMAT,
   178                                    (void*) obj,
   179                                    HR_FORMAT_PARAMS(to));
   180             obj->print_on(gclog_or_tty);
   181             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   182                           cv_obj, cv_field);
   183             gclog_or_tty->print_cr("----------");
   184             gclog_or_tty->flush();
   185             _failures = true;
   186             if (!failed) _n_failures++;
   187           }
   188         }
   189       }
   190     }
   191   }
   192 };
   194 template<class ClosureType>
   195 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
   196                                HeapRegion* hr,
   197                                HeapWord* cur, HeapWord* top) {
   198   oop cur_oop = oop(cur);
   199   int oop_size = cur_oop->size();
   200   HeapWord* next_obj = cur + oop_size;
   201   while (next_obj < top) {
   202     // Keep filtering the remembered set.
   203     if (!g1h->is_obj_dead(cur_oop, hr)) {
   204       // Bottom lies entirely below top, so we can call the
   205       // non-memRegion version of oop_iterate below.
   206       cur_oop->oop_iterate(cl);
   207     }
   208     cur = next_obj;
   209     cur_oop = oop(cur);
   210     oop_size = cur_oop->size();
   211     next_obj = cur + oop_size;
   212   }
   213   return cur;
   214 }
   216 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
   217                                               HeapWord* bottom,
   218                                               HeapWord* top,
   219                                               OopClosure* cl) {
   220   G1CollectedHeap* g1h = _g1;
   221   int oop_size;
   222   OopClosure* cl2 = NULL;
   224   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
   225   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
   227   switch (_fk) {
   228   case NoFilterKind:          cl2 = cl; break;
   229   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
   230   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
   231   default:                    ShouldNotReachHere();
   232   }
   234   // Start filtering what we add to the remembered set. If the object is
   235   // not considered dead, either because it is marked (in the mark bitmap)
   236   // or it was allocated after marking finished, then we add it. Otherwise
   237   // we can safely ignore the object.
   238   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   239     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   240   } else {
   241     oop_size = oop(bottom)->size();
   242   }
   244   bottom += oop_size;
   246   if (bottom < top) {
   247     // We replicate the loop below for several kinds of possible filters.
   248     switch (_fk) {
   249     case NoFilterKind:
   250       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   251       break;
   253     case IntoCSFilterKind: {
   254       FilterIntoCSClosure filt(this, g1h, cl);
   255       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   256       break;
   257     }
   259     case OutOfRegionFilterKind: {
   260       FilterOutOfRegionClosure filt(_hr, cl);
   261       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   262       break;
   263     }
   265     default:
   266       ShouldNotReachHere();
   267     }
   269     // Last object. Need to do dead-obj filtering here too.
   270     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   271       oop(bottom)->oop_iterate(cl2, mr);
   272     }
   273   }
   274 }
   276 // Minimum region size; we won't go lower than that.
   277 // We might want to decrease this in the future, to deal with small
   278 // heaps a bit more efficiently.
   279 #define MIN_REGION_SIZE  (      1024 * 1024 )
   281 // Maximum region size; we don't go higher than that. There's a good
   282 // reason for having an upper bound. We don't want regions to get too
   283 // large, otherwise cleanup's effectiveness would decrease as there
   284 // will be fewer opportunities to find totally empty regions after
   285 // marking.
   286 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   288 // The automatic region size calculation will try to have around this
   289 // many regions in the heap (based on the min heap size).
   290 #define TARGET_REGION_NUMBER          2048
   292 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
   293   // region_size in bytes
   294   uintx region_size = G1HeapRegionSize;
   295   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   296     // We base the automatic calculation on the min heap size. This
   297     // can be problematic if the spread between min and max is quite
   298     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
   299     // the max size, the region size might be way too large for the
   300     // min size. Either way, some users might have to set the region
   301     // size manually for some -Xms / -Xmx combos.
   303     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
   304                        (uintx) MIN_REGION_SIZE);
   305   }
   307   int region_size_log = log2_long((jlong) region_size);
   308   // Recalculate the region size to make sure it's a power of
   309   // 2. This means that region_size is the largest power of 2 that's
   310   // <= what we've calculated so far.
   311   region_size = ((uintx)1 << region_size_log);
   313   // Now make sure that we don't go over or under our limits.
   314   if (region_size < MIN_REGION_SIZE) {
   315     region_size = MIN_REGION_SIZE;
   316   } else if (region_size > MAX_REGION_SIZE) {
   317     region_size = MAX_REGION_SIZE;
   318   }
   320   // And recalculate the log.
   321   region_size_log = log2_long((jlong) region_size);
   323   // Now, set up the globals.
   324   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   325   LogOfHRGrainBytes = region_size_log;
   327   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   328   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   330   guarantee(GrainBytes == 0, "we should only set it once");
   331   // The cast to int is safe, given that we've bounded region_size by
   332   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   333   GrainBytes = (size_t)region_size;
   335   guarantee(GrainWords == 0, "we should only set it once");
   336   GrainWords = GrainBytes >> LogHeapWordSize;
   337   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   339   guarantee(CardsPerRegion == 0, "we should only set it once");
   340   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   341 }
   343 void HeapRegion::reset_after_compaction() {
   344   G1OffsetTableContigSpace::reset_after_compaction();
   345   // After a compaction the mark bitmap is invalid, so we must
   346   // treat all objects as being inside the unmarked area.
   347   zero_marked_bytes();
   348   init_top_at_mark_start();
   349 }
   351 void HeapRegion::hr_clear(bool par, bool clear_space) {
   352   assert(_humongous_type == NotHumongous,
   353          "we should have already filtered out humongous regions");
   354   assert(_humongous_start_region == NULL,
   355          "we should have already filtered out humongous regions");
   356   assert(_end == _orig_end,
   357          "we should have already filtered out humongous regions");
   359   _in_collection_set = false;
   361   set_young_index_in_cset(-1);
   362   uninstall_surv_rate_group();
   363   set_young_type(NotYoung);
   364   reset_pre_dummy_top();
   366   if (!par) {
   367     // If this is parallel, this will be done later.
   368     HeapRegionRemSet* hrrs = rem_set();
   369     if (hrrs != NULL) hrrs->clear();
   370     _claimed = InitialClaimValue;
   371   }
   372   zero_marked_bytes();
   374   _offsets.resize(HeapRegion::GrainWords);
   375   init_top_at_mark_start();
   376   if (clear_space) clear(SpaceDecorator::Mangle);
   377 }
   379 void HeapRegion::par_clear() {
   380   assert(used() == 0, "the region should have been already cleared");
   381   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   382   HeapRegionRemSet* hrrs = rem_set();
   383   hrrs->clear();
   384   CardTableModRefBS* ct_bs =
   385                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   386   ct_bs->clear(MemRegion(bottom(), end()));
   387 }
   389 void HeapRegion::calc_gc_efficiency() {
   390   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   391   G1CollectorPolicy* g1p = g1h->g1_policy();
   392   _gc_efficiency = (double) reclaimable_bytes() /
   393                             g1p->predict_region_elapsed_time_ms(this, false);
   394 }
   396 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   397   assert(!isHumongous(), "sanity / pre-condition");
   398   assert(end() == _orig_end,
   399          "Should be normal before the humongous object allocation");
   400   assert(top() == bottom(), "should be empty");
   401   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   403   _humongous_type = StartsHumongous;
   404   _humongous_start_region = this;
   406   set_end(new_end);
   407   _offsets.set_for_starts_humongous(new_top);
   408 }
   410 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   411   assert(!isHumongous(), "sanity / pre-condition");
   412   assert(end() == _orig_end,
   413          "Should be normal before the humongous object allocation");
   414   assert(top() == bottom(), "should be empty");
   415   assert(first_hr->startsHumongous(), "pre-condition");
   417   _humongous_type = ContinuesHumongous;
   418   _humongous_start_region = first_hr;
   419 }
   421 void HeapRegion::set_notHumongous() {
   422   assert(isHumongous(), "pre-condition");
   424   if (startsHumongous()) {
   425     assert(top() <= end(), "pre-condition");
   426     set_end(_orig_end);
   427     if (top() > end()) {
   428       // at least one "continues humongous" region after it
   429       set_top(end());
   430     }
   431   } else {
   432     // continues humongous
   433     assert(end() == _orig_end, "sanity");
   434   }
   436   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   437   _humongous_type = NotHumongous;
   438   _humongous_start_region = NULL;
   439 }
   441 bool HeapRegion::claimHeapRegion(jint claimValue) {
   442   jint current = _claimed;
   443   if (current != claimValue) {
   444     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   445     if (res == current) {
   446       return true;
   447     }
   448   }
   449   return false;
   450 }
   452 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   453   HeapWord* low = addr;
   454   HeapWord* high = end();
   455   while (low < high) {
   456     size_t diff = pointer_delta(high, low);
   457     // Must add one below to bias toward the high amount.  Otherwise, if
   458   // "high" were at the desired value, and "low" were one less, we
   459     // would not converge on "high".  This is not symmetric, because
   460     // we set "high" to a block start, which might be the right one,
   461     // which we don't do for "low".
   462     HeapWord* middle = low + (diff+1)/2;
   463     if (middle == high) return high;
   464     HeapWord* mid_bs = block_start_careful(middle);
   465     if (mid_bs < addr) {
   466       low = middle;
   467     } else {
   468       high = mid_bs;
   469     }
   470   }
   471   assert(low == high && low >= addr, "Didn't work.");
   472   return low;
   473 }
   475 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   476   G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
   477   hr_clear(false/*par*/, clear_space);
   478 }
   479 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   480 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   481 #endif // _MSC_VER
   484 HeapRegion::HeapRegion(uint hrs_index,
   485                        G1BlockOffsetSharedArray* sharedOffsetArray,
   486                        MemRegion mr, bool is_zeroed) :
   487     G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
   488     _hrs_index(hrs_index),
   489     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   490     _in_collection_set(false),
   491     _next_in_special_set(NULL), _orig_end(NULL),
   492     _claimed(InitialClaimValue), _evacuation_failed(false),
   493     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   494     _young_type(NotYoung), _next_young_region(NULL),
   495     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
   496 #ifdef ASSERT
   497     _containing_set(NULL),
   498 #endif // ASSERT
   499      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   500     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   501     _predicted_bytes_to_copy(0)
   502 {
   503   _orig_end = mr.end();
   504   // Note that initialize() will set the start of the unmarked area of the
   505   // region.
   506   this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
   507   set_top(bottom());
   508   set_saved_mark();
   510   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
   512   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   513 }
   515 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
   516   const HeapRegion* _target;
   517   bool _target_seen;
   518   HeapRegion* _last;
   519   CompactibleSpace* _res;
   520 public:
   521   NextCompactionHeapRegionClosure(const HeapRegion* target) :
   522     _target(target), _target_seen(false), _res(NULL) {}
   523   bool doHeapRegion(HeapRegion* cur) {
   524     if (_target_seen) {
   525       if (!cur->isHumongous()) {
   526         _res = cur;
   527         return true;
   528       }
   529     } else if (cur == _target) {
   530       _target_seen = true;
   531     }
   532     return false;
   533   }
   534   CompactibleSpace* result() { return _res; }
   535 };
   537 CompactibleSpace* HeapRegion::next_compaction_space() const {
   538   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   539   // cast away const-ness
   540   HeapRegion* r = (HeapRegion*) this;
   541   NextCompactionHeapRegionClosure blk(r);
   542   g1h->heap_region_iterate_from(r, &blk);
   543   return blk.result();
   544 }
   546 void HeapRegion::save_marks() {
   547   set_saved_mark();
   548 }
   550 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
   551   HeapWord* p = mr.start();
   552   HeapWord* e = mr.end();
   553   oop obj;
   554   while (p < e) {
   555     obj = oop(p);
   556     p += obj->oop_iterate(cl);
   557   }
   558   assert(p == e, "bad memregion: doesn't end on obj boundary");
   559 }
   561 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   562 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   563   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   564 }
   565 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   568 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
   569   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   570 }
   572 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   573                                                     bool during_conc_mark) {
   574   // We always recreate the prev marking info and we'll explicitly
   575   // mark all objects we find to be self-forwarded on the prev
   576   // bitmap. So all objects need to be below PTAMS.
   577   _prev_top_at_mark_start = top();
   578   _prev_marked_bytes = 0;
   580   if (during_initial_mark) {
   581     // During initial-mark, we'll also explicitly mark all objects
   582     // we find to be self-forwarded on the next bitmap. So all
   583     // objects need to be below NTAMS.
   584     _next_top_at_mark_start = top();
   585     _next_marked_bytes = 0;
   586   } else if (during_conc_mark) {
   587     // During concurrent mark, all objects in the CSet (including
   588     // the ones we find to be self-forwarded) are implicitly live.
   589     // So all objects need to be above NTAMS.
   590     _next_top_at_mark_start = bottom();
   591     _next_marked_bytes = 0;
   592   }
   593 }
   595 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   596                                                   bool during_conc_mark,
   597                                                   size_t marked_bytes) {
   598   assert(0 <= marked_bytes && marked_bytes <= used(),
   599          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   600                  marked_bytes, used()));
   601   _prev_marked_bytes = marked_bytes;
   602 }
   604 HeapWord*
   605 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   606                                                  ObjectClosure* cl) {
   607   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   608   // We used to use "block_start_careful" here.  But we're actually happy
   609   // to update the BOT while we do this...
   610   HeapWord* cur = block_start(mr.start());
   611   mr = mr.intersection(used_region());
   612   if (mr.is_empty()) return NULL;
   613   // Otherwise, find the obj that extends onto mr.start().
   615   assert(cur <= mr.start()
   616          && (oop(cur)->klass_or_null() == NULL ||
   617              cur + oop(cur)->size() > mr.start()),
   618          "postcondition of block_start");
   619   oop obj;
   620   while (cur < mr.end()) {
   621     obj = oop(cur);
   622     if (obj->klass_or_null() == NULL) {
   623       // Ran into an unparseable point.
   624       return cur;
   625     } else if (!g1h->is_obj_dead(obj)) {
   626       cl->do_object(obj);
   627     }
   628     if (cl->abort()) return cur;
   629     // The check above must occur before the operation below, since an
   630     // abort might invalidate the "size" operation.
   631     cur += obj->size();
   632   }
   633   return NULL;
   634 }
   636 HeapWord*
   637 HeapRegion::
   638 oops_on_card_seq_iterate_careful(MemRegion mr,
   639                                  FilterOutOfRegionClosure* cl,
   640                                  bool filter_young,
   641                                  jbyte* card_ptr) {
   642   // Currently, we should only have to clean the card if filter_young
   643   // is true and vice versa.
   644   if (filter_young) {
   645     assert(card_ptr != NULL, "pre-condition");
   646   } else {
   647     assert(card_ptr == NULL, "pre-condition");
   648   }
   649   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   651   // If we're within a stop-world GC, then we might look at a card in a
   652   // GC alloc region that extends onto a GC LAB, which may not be
   653   // parseable.  Stop such at the "saved_mark" of the region.
   654   if (g1h->is_gc_active()) {
   655     mr = mr.intersection(used_region_at_save_marks());
   656   } else {
   657     mr = mr.intersection(used_region());
   658   }
   659   if (mr.is_empty()) return NULL;
   660   // Otherwise, find the obj that extends onto mr.start().
   662   // The intersection of the incoming mr (for the card) and the
   663   // allocated part of the region is non-empty. This implies that
   664   // we have actually allocated into this region. The code in
   665   // G1CollectedHeap.cpp that allocates a new region sets the
   666   // is_young tag on the region before allocating. Thus we
   667   // safely know if this region is young.
   668   if (is_young() && filter_young) {
   669     return NULL;
   670   }
   672   assert(!is_young(), "check value of filter_young");
   674   // We can only clean the card here, after we make the decision that
   675   // the card is not young. And we only clean the card if we have been
   676   // asked to (i.e., card_ptr != NULL).
   677   if (card_ptr != NULL) {
   678     *card_ptr = CardTableModRefBS::clean_card_val();
   679     // We must complete this write before we do any of the reads below.
   680     OrderAccess::storeload();
   681   }
   683   // Cache the boundaries of the memory region in some const locals
   684   HeapWord* const start = mr.start();
   685   HeapWord* const end = mr.end();
   687   // We used to use "block_start_careful" here.  But we're actually happy
   688   // to update the BOT while we do this...
   689   HeapWord* cur = block_start(start);
   690   assert(cur <= start, "Postcondition");
   692   oop obj;
   694   HeapWord* next = cur;
   695   while (next <= start) {
   696     cur = next;
   697     obj = oop(cur);
   698     if (obj->klass_or_null() == NULL) {
   699       // Ran into an unparseable point.
   700       return cur;
   701     }
   702     // Otherwise...
   703     next = (cur + obj->size());
   704   }
   706   // If we finish the above loop...We have a parseable object that
   707   // begins on or before the start of the memory region, and ends
   708   // inside or spans the entire region.
   710   assert(obj == oop(cur), "sanity");
   711   assert(cur <= start &&
   712          obj->klass_or_null() != NULL &&
   713          (cur + obj->size()) > start,
   714          "Loop postcondition");
   716   if (!g1h->is_obj_dead(obj)) {
   717     obj->oop_iterate(cl, mr);
   718   }
   720   while (cur < end) {
   721     obj = oop(cur);
   722     if (obj->klass_or_null() == NULL) {
   723       // Ran into an unparseable point.
   724       return cur;
   725     };
   727     // Otherwise:
   728     next = (cur + obj->size());
   730     if (!g1h->is_obj_dead(obj)) {
   731       if (next < end || !obj->is_objArray()) {
   732         // This object either does not span the MemRegion
   733         // boundary, or if it does it's not an array.
   734         // Apply closure to whole object.
   735         obj->oop_iterate(cl);
   736       } else {
   737         // This obj is an array that spans the boundary.
   738         // Stop at the boundary.
   739         obj->oop_iterate(cl, mr);
   740       }
   741     }
   742     cur = next;
   743   }
   744   return NULL;
   745 }
   747 void HeapRegion::print() const { print_on(gclog_or_tty); }
   748 void HeapRegion::print_on(outputStream* st) const {
   749   if (isHumongous()) {
   750     if (startsHumongous())
   751       st->print(" HS");
   752     else
   753       st->print(" HC");
   754   } else {
   755     st->print("   ");
   756   }
   757   if (in_collection_set())
   758     st->print(" CS");
   759   else
   760     st->print("   ");
   761   if (is_young())
   762     st->print(is_survivor() ? " SU" : " Y ");
   763   else
   764     st->print("   ");
   765   if (is_empty())
   766     st->print(" F");
   767   else
   768     st->print("  ");
   769   st->print(" TS %5d", _gc_time_stamp);
   770   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   771             prev_top_at_mark_start(), next_top_at_mark_start());
   772   G1OffsetTableContigSpace::print_on(st);
   773 }
   775 void HeapRegion::verify() const {
   776   bool dummy = false;
   777   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
   778 }
   780 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   781 // We would need a mechanism to make that code skip dead objects.
   783 void HeapRegion::verify(VerifyOption vo,
   784                         bool* failures) const {
   785   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   786   *failures = false;
   787   HeapWord* p = bottom();
   788   HeapWord* prev_p = NULL;
   789   VerifyLiveClosure vl_cl(g1, vo);
   790   bool is_humongous = isHumongous();
   791   bool do_bot_verify = !is_young();
   792   size_t object_num = 0;
   793   while (p < top()) {
   794     oop obj = oop(p);
   795     size_t obj_size = obj->size();
   796     object_num += 1;
   798     if (is_humongous != g1->isHumongous(obj_size)) {
   799       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   800                              SIZE_FORMAT" words) in a %shumongous region",
   801                              p, g1->isHumongous(obj_size) ? "" : "non-",
   802                              obj_size, is_humongous ? "" : "non-");
   803        *failures = true;
   804        return;
   805     }
   807     // If it returns false, verify_for_object() will output the
   808     // appropriate messasge.
   809     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   810       *failures = true;
   811       return;
   812     }
   814     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   815       if (obj->is_oop()) {
   816         klassOop klass = obj->klass();
   817         if (!klass->is_perm()) {
   818           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   819                                  "not in perm", klass, obj);
   820           *failures = true;
   821           return;
   822         } else if (!klass->is_klass()) {
   823           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   824                                  "not a klass", klass, obj);
   825           *failures = true;
   826           return;
   827         } else {
   828           vl_cl.set_containing_obj(obj);
   829           obj->oop_iterate(&vl_cl);
   830           if (vl_cl.failures()) {
   831             *failures = true;
   832           }
   833           if (G1MaxVerifyFailures >= 0 &&
   834               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   835             return;
   836           }
   837         }
   838       } else {
   839         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
   840         *failures = true;
   841         return;
   842       }
   843     }
   844     prev_p = p;
   845     p += obj_size;
   846   }
   848   if (p != top()) {
   849     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   850                            "does not match top "PTR_FORMAT, p, top());
   851     *failures = true;
   852     return;
   853   }
   855   HeapWord* the_end = end();
   856   assert(p == top(), "it should still hold");
   857   // Do some extra BOT consistency checking for addresses in the
   858   // range [top, end). BOT look-ups in this range should yield
   859   // top. No point in doing that if top == end (there's nothing there).
   860   if (p < the_end) {
   861     // Look up top
   862     HeapWord* addr_1 = p;
   863     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   864     if (b_start_1 != p) {
   865       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   866                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   867                              addr_1, b_start_1, p);
   868       *failures = true;
   869       return;
   870     }
   872     // Look up top + 1
   873     HeapWord* addr_2 = p + 1;
   874     if (addr_2 < the_end) {
   875       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   876       if (b_start_2 != p) {
   877         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   878                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   879                                addr_2, b_start_2, p);
   880         *failures = true;
   881         return;
   882       }
   883     }
   885     // Look up an address between top and end
   886     size_t diff = pointer_delta(the_end, p) / 2;
   887     HeapWord* addr_3 = p + diff;
   888     if (addr_3 < the_end) {
   889       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   890       if (b_start_3 != p) {
   891         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
   892                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   893                                addr_3, b_start_3, p);
   894         *failures = true;
   895         return;
   896       }
   897     }
   899     // Loook up end - 1
   900     HeapWord* addr_4 = the_end - 1;
   901     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   902     if (b_start_4 != p) {
   903       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
   904                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   905                              addr_4, b_start_4, p);
   906       *failures = true;
   907       return;
   908     }
   909   }
   911   if (is_humongous && object_num > 1) {
   912     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
   913                            "but has "SIZE_FORMAT", objects",
   914                            bottom(), end(), object_num);
   915     *failures = true;
   916     return;
   917   }
   918 }
   920 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
   921 // away eventually.
   923 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   924   // false ==> we'll do the clearing if there's clearing to be done.
   925   ContiguousSpace::initialize(mr, false, mangle_space);
   926   _offsets.zero_bottom_entry();
   927   _offsets.initialize_threshold();
   928   if (clear_space) clear(mangle_space);
   929 }
   931 void G1OffsetTableContigSpace::clear(bool mangle_space) {
   932   ContiguousSpace::clear(mangle_space);
   933   _offsets.zero_bottom_entry();
   934   _offsets.initialize_threshold();
   935 }
   937 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   938   Space::set_bottom(new_bottom);
   939   _offsets.set_bottom(new_bottom);
   940 }
   942 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
   943   Space::set_end(new_end);
   944   _offsets.resize(new_end - bottom());
   945 }
   947 void G1OffsetTableContigSpace::print() const {
   948   print_short();
   949   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   950                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   951                 bottom(), top(), _offsets.threshold(), end());
   952 }
   954 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
   955   return _offsets.initialize_threshold();
   956 }
   958 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
   959                                                     HeapWord* end) {
   960   _offsets.alloc_block(start, end);
   961   return _offsets.threshold();
   962 }
   964 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
   965   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   966   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
   967   if (_gc_time_stamp < g1h->get_gc_time_stamp())
   968     return top();
   969   else
   970     return ContiguousSpace::saved_mark_word();
   971 }
   973 void G1OffsetTableContigSpace::set_saved_mark() {
   974   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   975   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
   977   if (_gc_time_stamp < curr_gc_time_stamp) {
   978     // The order of these is important, as another thread might be
   979     // about to start scanning this region. If it does so after
   980     // set_saved_mark and before _gc_time_stamp = ..., then the latter
   981     // will be false, and it will pick up top() as the high water mark
   982     // of region. If it does so after _gc_time_stamp = ..., then it
   983     // will pick up the right saved_mark_word() as the high water mark
   984     // of the region. Either way, the behaviour will be correct.
   985     ContiguousSpace::set_saved_mark();
   986     OrderAccess::storestore();
   987     _gc_time_stamp = curr_gc_time_stamp;
   988     // No need to do another barrier to flush the writes above. If
   989     // this is called in parallel with other threads trying to
   990     // allocate into the region, the caller should call this while
   991     // holding a lock and when the lock is released the writes will be
   992     // flushed.
   993   }
   994 }
   996 G1OffsetTableContigSpace::
   997 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   998                          MemRegion mr, bool is_zeroed) :
   999   _offsets(sharedOffsetArray, mr),
  1000   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1001   _gc_time_stamp(0)
  1003   _offsets.set_space(this);
  1004   initialize(mr, !is_zeroed, SpaceDecorator::Mangle);

mercurial