src/os/linux/vm/os_linux.cpp

Wed, 16 Nov 2011 20:38:24 -0500

author
dholmes
date
Wed, 16 Nov 2011 20:38:24 -0500
changeset 3281
36b057451829
parent 3202
436b4a3231bf
child 3339
e7dead7e90af
permissions
-rw-r--r--

7110017: is_headless_jre should be updated to reflect the new location of awt toolkit libraries
Reviewed-by: dholmes, dsamersoff
Contributed-by: Chris Hegarty <chris.hegarty@oracle.com>

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_linux.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_linux.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_linux.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_linux.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_zero
    74 # include "assembler_zero.inline.hpp"
    75 # include "nativeInst_zero.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_arm
    78 # include "assembler_arm.inline.hpp"
    79 # include "nativeInst_arm.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_ppc
    82 # include "assembler_ppc.inline.hpp"
    83 # include "nativeInst_ppc.hpp"
    84 #endif
    85 #ifdef COMPILER1
    86 #include "c1/c1_Runtime1.hpp"
    87 #endif
    88 #ifdef COMPILER2
    89 #include "opto/runtime.hpp"
    90 #endif
    92 // put OS-includes here
    93 # include <sys/types.h>
    94 # include <sys/mman.h>
    95 # include <sys/stat.h>
    96 # include <sys/select.h>
    97 # include <pthread.h>
    98 # include <signal.h>
    99 # include <errno.h>
   100 # include <dlfcn.h>
   101 # include <stdio.h>
   102 # include <unistd.h>
   103 # include <sys/resource.h>
   104 # include <pthread.h>
   105 # include <sys/stat.h>
   106 # include <sys/time.h>
   107 # include <sys/times.h>
   108 # include <sys/utsname.h>
   109 # include <sys/socket.h>
   110 # include <sys/wait.h>
   111 # include <pwd.h>
   112 # include <poll.h>
   113 # include <semaphore.h>
   114 # include <fcntl.h>
   115 # include <string.h>
   116 # include <syscall.h>
   117 # include <sys/sysinfo.h>
   118 # include <gnu/libc-version.h>
   119 # include <sys/ipc.h>
   120 # include <sys/shm.h>
   121 # include <link.h>
   122 # include <stdint.h>
   123 # include <inttypes.h>
   124 # include <sys/ioctl.h>
   126 #define MAX_PATH    (2 * K)
   128 // for timer info max values which include all bits
   129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   130 #define SEC_IN_NANOSECS  1000000000LL
   132 #define LARGEPAGES_BIT (1 << 6)
   133 ////////////////////////////////////////////////////////////////////////////////
   134 // global variables
   135 julong os::Linux::_physical_memory = 0;
   137 address   os::Linux::_initial_thread_stack_bottom = NULL;
   138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
   140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
   142 Mutex* os::Linux::_createThread_lock = NULL;
   143 pthread_t os::Linux::_main_thread;
   144 int os::Linux::_page_size = -1;
   145 bool os::Linux::_is_floating_stack = false;
   146 bool os::Linux::_is_NPTL = false;
   147 bool os::Linux::_supports_fast_thread_cpu_time = false;
   148 const char * os::Linux::_glibc_version = NULL;
   149 const char * os::Linux::_libpthread_version = NULL;
   151 static jlong initial_time_count=0;
   153 static int clock_tics_per_sec = 100;
   155 // For diagnostics to print a message once. see run_periodic_checks
   156 static sigset_t check_signal_done;
   157 static bool check_signals = true;;
   159 static pid_t _initial_pid = 0;
   161 /* Signal number used to suspend/resume a thread */
   163 /* do not use any signal number less than SIGSEGV, see 4355769 */
   164 static int SR_signum = SIGUSR2;
   165 sigset_t SR_sigset;
   167 /* Used to protect dlsym() calls */
   168 static pthread_mutex_t dl_mutex;
   170 #ifdef JAVASE_EMBEDDED
   171 class MemNotifyThread: public Thread {
   172   friend class VMStructs;
   173  public:
   174   virtual void run();
   176  private:
   177   static MemNotifyThread* _memnotify_thread;
   178   int _fd;
   180  public:
   182   // Constructor
   183   MemNotifyThread(int fd);
   185   // Tester
   186   bool is_memnotify_thread() const { return true; }
   188   // Printing
   189   char* name() const { return (char*)"Linux MemNotify Thread"; }
   191   // Returns the single instance of the MemNotifyThread
   192   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
   194   // Create and start the single instance of MemNotifyThread
   195   static void start();
   196 };
   197 #endif // JAVASE_EMBEDDED
   199 // utility functions
   201 static int SR_initialize();
   202 static int SR_finalize();
   204 julong os::available_memory() {
   205   return Linux::available_memory();
   206 }
   208 julong os::Linux::available_memory() {
   209   // values in struct sysinfo are "unsigned long"
   210   struct sysinfo si;
   211   sysinfo(&si);
   213   return (julong)si.freeram * si.mem_unit;
   214 }
   216 julong os::physical_memory() {
   217   return Linux::physical_memory();
   218 }
   220 julong os::allocatable_physical_memory(julong size) {
   221 #ifdef _LP64
   222   return size;
   223 #else
   224   julong result = MIN2(size, (julong)3800*M);
   225    if (!is_allocatable(result)) {
   226      // See comments under solaris for alignment considerations
   227      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   228      result =  MIN2(size, reasonable_size);
   229    }
   230    return result;
   231 #endif // _LP64
   232 }
   234 ////////////////////////////////////////////////////////////////////////////////
   235 // environment support
   237 bool os::getenv(const char* name, char* buf, int len) {
   238   const char* val = ::getenv(name);
   239   if (val != NULL && strlen(val) < (size_t)len) {
   240     strcpy(buf, val);
   241     return true;
   242   }
   243   if (len > 0) buf[0] = 0;  // return a null string
   244   return false;
   245 }
   248 // Return true if user is running as root.
   250 bool os::have_special_privileges() {
   251   static bool init = false;
   252   static bool privileges = false;
   253   if (!init) {
   254     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   255     init = true;
   256   }
   257   return privileges;
   258 }
   261 #ifndef SYS_gettid
   262 // i386: 224, ia64: 1105, amd64: 186, sparc 143
   263 #ifdef __ia64__
   264 #define SYS_gettid 1105
   265 #elif __i386__
   266 #define SYS_gettid 224
   267 #elif __amd64__
   268 #define SYS_gettid 186
   269 #elif __sparc__
   270 #define SYS_gettid 143
   271 #else
   272 #error define gettid for the arch
   273 #endif
   274 #endif
   276 // Cpu architecture string
   277 #if   defined(ZERO)
   278 static char cpu_arch[] = ZERO_LIBARCH;
   279 #elif defined(IA64)
   280 static char cpu_arch[] = "ia64";
   281 #elif defined(IA32)
   282 static char cpu_arch[] = "i386";
   283 #elif defined(AMD64)
   284 static char cpu_arch[] = "amd64";
   285 #elif defined(ARM)
   286 static char cpu_arch[] = "arm";
   287 #elif defined(PPC)
   288 static char cpu_arch[] = "ppc";
   289 #elif defined(SPARC)
   290 #  ifdef _LP64
   291 static char cpu_arch[] = "sparcv9";
   292 #  else
   293 static char cpu_arch[] = "sparc";
   294 #  endif
   295 #else
   296 #error Add appropriate cpu_arch setting
   297 #endif
   300 // pid_t gettid()
   301 //
   302 // Returns the kernel thread id of the currently running thread. Kernel
   303 // thread id is used to access /proc.
   304 //
   305 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
   306 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
   307 //
   308 pid_t os::Linux::gettid() {
   309   int rslt = syscall(SYS_gettid);
   310   if (rslt == -1) {
   311      // old kernel, no NPTL support
   312      return getpid();
   313   } else {
   314      return (pid_t)rslt;
   315   }
   316 }
   318 // Most versions of linux have a bug where the number of processors are
   319 // determined by looking at the /proc file system.  In a chroot environment,
   320 // the system call returns 1.  This causes the VM to act as if it is
   321 // a single processor and elide locking (see is_MP() call).
   322 static bool unsafe_chroot_detected = false;
   323 static const char *unstable_chroot_error = "/proc file system not found.\n"
   324                      "Java may be unstable running multithreaded in a chroot "
   325                      "environment on Linux when /proc filesystem is not mounted.";
   327 void os::Linux::initialize_system_info() {
   328   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   329   if (processor_count() == 1) {
   330     pid_t pid = os::Linux::gettid();
   331     char fname[32];
   332     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
   333     FILE *fp = fopen(fname, "r");
   334     if (fp == NULL) {
   335       unsafe_chroot_detected = true;
   336     } else {
   337       fclose(fp);
   338     }
   339   }
   340   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   341   assert(processor_count() > 0, "linux error");
   342 }
   344 void os::init_system_properties_values() {
   345 //  char arch[12];
   346 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   348   // The next steps are taken in the product version:
   349   //
   350   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   351   // This library should be located at:
   352   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   353   //
   354   // If "/jre/lib/" appears at the right place in the path, then we
   355   // assume libjvm[_g].so is installed in a JDK and we use this path.
   356   //
   357   // Otherwise exit with message: "Could not create the Java virtual machine."
   358   //
   359   // The following extra steps are taken in the debugging version:
   360   //
   361   // If "/jre/lib/" does NOT appear at the right place in the path
   362   // instead of exit check for $JAVA_HOME environment variable.
   363   //
   364   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   365   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   366   // it looks like libjvm[_g].so is installed there
   367   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   368   //
   369   // Otherwise exit.
   370   //
   371   // Important note: if the location of libjvm.so changes this
   372   // code needs to be changed accordingly.
   374   // The next few definitions allow the code to be verbatim:
   375 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   376 #define getenv(n) ::getenv(n)
   378 /*
   379  * See ld(1):
   380  *      The linker uses the following search paths to locate required
   381  *      shared libraries:
   382  *        1: ...
   383  *        ...
   384  *        7: The default directories, normally /lib and /usr/lib.
   385  */
   386 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
   387 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
   388 #else
   389 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   390 #endif
   392 #define EXTENSIONS_DIR  "/lib/ext"
   393 #define ENDORSED_DIR    "/lib/endorsed"
   394 #define REG_DIR         "/usr/java/packages"
   396   {
   397     /* sysclasspath, java_home, dll_dir */
   398     {
   399         char *home_path;
   400         char *dll_path;
   401         char *pslash;
   402         char buf[MAXPATHLEN];
   403         os::jvm_path(buf, sizeof(buf));
   405         // Found the full path to libjvm.so.
   406         // Now cut the path to <java_home>/jre if we can.
   407         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   408         pslash = strrchr(buf, '/');
   409         if (pslash != NULL)
   410             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   411         dll_path = malloc(strlen(buf) + 1);
   412         if (dll_path == NULL)
   413             return;
   414         strcpy(dll_path, buf);
   415         Arguments::set_dll_dir(dll_path);
   417         if (pslash != NULL) {
   418             pslash = strrchr(buf, '/');
   419             if (pslash != NULL) {
   420                 *pslash = '\0';       /* get rid of /<arch> */
   421                 pslash = strrchr(buf, '/');
   422                 if (pslash != NULL)
   423                     *pslash = '\0';   /* get rid of /lib */
   424             }
   425         }
   427         home_path = malloc(strlen(buf) + 1);
   428         if (home_path == NULL)
   429             return;
   430         strcpy(home_path, buf);
   431         Arguments::set_java_home(home_path);
   433         if (!set_boot_path('/', ':'))
   434             return;
   435     }
   437     /*
   438      * Where to look for native libraries
   439      *
   440      * Note: Due to a legacy implementation, most of the library path
   441      * is set in the launcher.  This was to accomodate linking restrictions
   442      * on legacy Linux implementations (which are no longer supported).
   443      * Eventually, all the library path setting will be done here.
   444      *
   445      * However, to prevent the proliferation of improperly built native
   446      * libraries, the new path component /usr/java/packages is added here.
   447      * Eventually, all the library path setting will be done here.
   448      */
   449     {
   450         char *ld_library_path;
   452         /*
   453          * Construct the invariant part of ld_library_path. Note that the
   454          * space for the colon and the trailing null are provided by the
   455          * nulls included by the sizeof operator (so actually we allocate
   456          * a byte more than necessary).
   457          */
   458         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   459             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   460         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   462         /*
   463          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   464          * should always exist (until the legacy problem cited above is
   465          * addressed).
   466          */
   467         char *v = getenv("LD_LIBRARY_PATH");
   468         if (v != NULL) {
   469             char *t = ld_library_path;
   470             /* That's +1 for the colon and +1 for the trailing '\0' */
   471             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   472             sprintf(ld_library_path, "%s:%s", v, t);
   473         }
   474         Arguments::set_library_path(ld_library_path);
   475     }
   477     /*
   478      * Extensions directories.
   479      *
   480      * Note that the space for the colon and the trailing null are provided
   481      * by the nulls included by the sizeof operator (so actually one byte more
   482      * than necessary is allocated).
   483      */
   484     {
   485         char *buf = malloc(strlen(Arguments::get_java_home()) +
   486             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   487         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   488             Arguments::get_java_home());
   489         Arguments::set_ext_dirs(buf);
   490     }
   492     /* Endorsed standards default directory. */
   493     {
   494         char * buf;
   495         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   496         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   497         Arguments::set_endorsed_dirs(buf);
   498     }
   499   }
   501 #undef malloc
   502 #undef getenv
   503 #undef EXTENSIONS_DIR
   504 #undef ENDORSED_DIR
   506   // Done
   507   return;
   508 }
   510 ////////////////////////////////////////////////////////////////////////////////
   511 // breakpoint support
   513 void os::breakpoint() {
   514   BREAKPOINT;
   515 }
   517 extern "C" void breakpoint() {
   518   // use debugger to set breakpoint here
   519 }
   521 ////////////////////////////////////////////////////////////////////////////////
   522 // signal support
   524 debug_only(static bool signal_sets_initialized = false);
   525 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   527 bool os::Linux::is_sig_ignored(int sig) {
   528       struct sigaction oact;
   529       sigaction(sig, (struct sigaction*)NULL, &oact);
   530       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   531                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   532       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   533            return true;
   534       else
   535            return false;
   536 }
   538 void os::Linux::signal_sets_init() {
   539   // Should also have an assertion stating we are still single-threaded.
   540   assert(!signal_sets_initialized, "Already initialized");
   541   // Fill in signals that are necessarily unblocked for all threads in
   542   // the VM. Currently, we unblock the following signals:
   543   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   544   //                         by -Xrs (=ReduceSignalUsage));
   545   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   546   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   547   // the dispositions or masks wrt these signals.
   548   // Programs embedding the VM that want to use the above signals for their
   549   // own purposes must, at this time, use the "-Xrs" option to prevent
   550   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   551   // (See bug 4345157, and other related bugs).
   552   // In reality, though, unblocking these signals is really a nop, since
   553   // these signals are not blocked by default.
   554   sigemptyset(&unblocked_sigs);
   555   sigemptyset(&allowdebug_blocked_sigs);
   556   sigaddset(&unblocked_sigs, SIGILL);
   557   sigaddset(&unblocked_sigs, SIGSEGV);
   558   sigaddset(&unblocked_sigs, SIGBUS);
   559   sigaddset(&unblocked_sigs, SIGFPE);
   560   sigaddset(&unblocked_sigs, SR_signum);
   562   if (!ReduceSignalUsage) {
   563    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   564       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   565       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   566    }
   567    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   568       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   569       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   570    }
   571    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   572       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   573       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   574    }
   575   }
   576   // Fill in signals that are blocked by all but the VM thread.
   577   sigemptyset(&vm_sigs);
   578   if (!ReduceSignalUsage)
   579     sigaddset(&vm_sigs, BREAK_SIGNAL);
   580   debug_only(signal_sets_initialized = true);
   582 }
   584 // These are signals that are unblocked while a thread is running Java.
   585 // (For some reason, they get blocked by default.)
   586 sigset_t* os::Linux::unblocked_signals() {
   587   assert(signal_sets_initialized, "Not initialized");
   588   return &unblocked_sigs;
   589 }
   591 // These are the signals that are blocked while a (non-VM) thread is
   592 // running Java. Only the VM thread handles these signals.
   593 sigset_t* os::Linux::vm_signals() {
   594   assert(signal_sets_initialized, "Not initialized");
   595   return &vm_sigs;
   596 }
   598 // These are signals that are blocked during cond_wait to allow debugger in
   599 sigset_t* os::Linux::allowdebug_blocked_signals() {
   600   assert(signal_sets_initialized, "Not initialized");
   601   return &allowdebug_blocked_sigs;
   602 }
   604 void os::Linux::hotspot_sigmask(Thread* thread) {
   606   //Save caller's signal mask before setting VM signal mask
   607   sigset_t caller_sigmask;
   608   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   610   OSThread* osthread = thread->osthread();
   611   osthread->set_caller_sigmask(caller_sigmask);
   613   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
   615   if (!ReduceSignalUsage) {
   616     if (thread->is_VM_thread()) {
   617       // Only the VM thread handles BREAK_SIGNAL ...
   618       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   619     } else {
   620       // ... all other threads block BREAK_SIGNAL
   621       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   622     }
   623   }
   624 }
   626 //////////////////////////////////////////////////////////////////////////////
   627 // detecting pthread library
   629 void os::Linux::libpthread_init() {
   630   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
   631   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
   632   // generic name for earlier versions.
   633   // Define macros here so we can build HotSpot on old systems.
   634 # ifndef _CS_GNU_LIBC_VERSION
   635 # define _CS_GNU_LIBC_VERSION 2
   636 # endif
   637 # ifndef _CS_GNU_LIBPTHREAD_VERSION
   638 # define _CS_GNU_LIBPTHREAD_VERSION 3
   639 # endif
   641   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
   642   if (n > 0) {
   643      char *str = (char *)malloc(n);
   644      confstr(_CS_GNU_LIBC_VERSION, str, n);
   645      os::Linux::set_glibc_version(str);
   646   } else {
   647      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
   648      static char _gnu_libc_version[32];
   649      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
   650               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
   651      os::Linux::set_glibc_version(_gnu_libc_version);
   652   }
   654   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
   655   if (n > 0) {
   656      char *str = (char *)malloc(n);
   657      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
   658      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
   659      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
   660      // is the case. LinuxThreads has a hard limit on max number of threads.
   661      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
   662      // On the other hand, NPTL does not have such a limit, sysconf()
   663      // will return -1 and errno is not changed. Check if it is really NPTL.
   664      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
   665          strstr(str, "NPTL") &&
   666          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
   667        free(str);
   668        os::Linux::set_libpthread_version("linuxthreads");
   669      } else {
   670        os::Linux::set_libpthread_version(str);
   671      }
   672   } else {
   673     // glibc before 2.3.2 only has LinuxThreads.
   674     os::Linux::set_libpthread_version("linuxthreads");
   675   }
   677   if (strstr(libpthread_version(), "NPTL")) {
   678      os::Linux::set_is_NPTL();
   679   } else {
   680      os::Linux::set_is_LinuxThreads();
   681   }
   683   // LinuxThreads have two flavors: floating-stack mode, which allows variable
   684   // stack size; and fixed-stack mode. NPTL is always floating-stack.
   685   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
   686      os::Linux::set_is_floating_stack();
   687   }
   688 }
   690 /////////////////////////////////////////////////////////////////////////////
   691 // thread stack
   693 // Force Linux kernel to expand current thread stack. If "bottom" is close
   694 // to the stack guard, caller should block all signals.
   695 //
   696 // MAP_GROWSDOWN:
   697 //   A special mmap() flag that is used to implement thread stacks. It tells
   698 //   kernel that the memory region should extend downwards when needed. This
   699 //   allows early versions of LinuxThreads to only mmap the first few pages
   700 //   when creating a new thread. Linux kernel will automatically expand thread
   701 //   stack as needed (on page faults).
   702 //
   703 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
   704 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
   705 //   region, it's hard to tell if the fault is due to a legitimate stack
   706 //   access or because of reading/writing non-exist memory (e.g. buffer
   707 //   overrun). As a rule, if the fault happens below current stack pointer,
   708 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
   709 //   application (see Linux kernel fault.c).
   710 //
   711 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
   712 //   stack overflow detection.
   713 //
   714 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
   715 //   not use this flag. However, the stack of initial thread is not created
   716 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
   717 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
   718 //   and then attach the thread to JVM.
   719 //
   720 // To get around the problem and allow stack banging on Linux, we need to
   721 // manually expand thread stack after receiving the SIGSEGV.
   722 //
   723 // There are two ways to expand thread stack to address "bottom", we used
   724 // both of them in JVM before 1.5:
   725 //   1. adjust stack pointer first so that it is below "bottom", and then
   726 //      touch "bottom"
   727 //   2. mmap() the page in question
   728 //
   729 // Now alternate signal stack is gone, it's harder to use 2. For instance,
   730 // if current sp is already near the lower end of page 101, and we need to
   731 // call mmap() to map page 100, it is possible that part of the mmap() frame
   732 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
   733 // That will destroy the mmap() frame and cause VM to crash.
   734 //
   735 // The following code works by adjusting sp first, then accessing the "bottom"
   736 // page to force a page fault. Linux kernel will then automatically expand the
   737 // stack mapping.
   738 //
   739 // _expand_stack_to() assumes its frame size is less than page size, which
   740 // should always be true if the function is not inlined.
   742 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
   743 #define NOINLINE
   744 #else
   745 #define NOINLINE __attribute__ ((noinline))
   746 #endif
   748 static void _expand_stack_to(address bottom) NOINLINE;
   750 static void _expand_stack_to(address bottom) {
   751   address sp;
   752   size_t size;
   753   volatile char *p;
   755   // Adjust bottom to point to the largest address within the same page, it
   756   // gives us a one-page buffer if alloca() allocates slightly more memory.
   757   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
   758   bottom += os::Linux::page_size() - 1;
   760   // sp might be slightly above current stack pointer; if that's the case, we
   761   // will alloca() a little more space than necessary, which is OK. Don't use
   762   // os::current_stack_pointer(), as its result can be slightly below current
   763   // stack pointer, causing us to not alloca enough to reach "bottom".
   764   sp = (address)&sp;
   766   if (sp > bottom) {
   767     size = sp - bottom;
   768     p = (volatile char *)alloca(size);
   769     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
   770     p[0] = '\0';
   771   }
   772 }
   774 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
   775   assert(t!=NULL, "just checking");
   776   assert(t->osthread()->expanding_stack(), "expand should be set");
   777   assert(t->stack_base() != NULL, "stack_base was not initialized");
   779   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
   780     sigset_t mask_all, old_sigset;
   781     sigfillset(&mask_all);
   782     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
   783     _expand_stack_to(addr);
   784     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
   785     return true;
   786   }
   787   return false;
   788 }
   790 //////////////////////////////////////////////////////////////////////////////
   791 // create new thread
   793 static address highest_vm_reserved_address();
   795 // check if it's safe to start a new thread
   796 static bool _thread_safety_check(Thread* thread) {
   797   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
   798     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
   799     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
   800     //   allocated (MAP_FIXED) from high address space. Every thread stack
   801     //   occupies a fixed size slot (usually 2Mbytes, but user can change
   802     //   it to other values if they rebuild LinuxThreads).
   803     //
   804     // Problem with MAP_FIXED is that mmap() can still succeed even part of
   805     // the memory region has already been mmap'ed. That means if we have too
   806     // many threads and/or very large heap, eventually thread stack will
   807     // collide with heap.
   808     //
   809     // Here we try to prevent heap/stack collision by comparing current
   810     // stack bottom with the highest address that has been mmap'ed by JVM
   811     // plus a safety margin for memory maps created by native code.
   812     //
   813     // This feature can be disabled by setting ThreadSafetyMargin to 0
   814     //
   815     if (ThreadSafetyMargin > 0) {
   816       address stack_bottom = os::current_stack_base() - os::current_stack_size();
   818       // not safe if our stack extends below the safety margin
   819       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
   820     } else {
   821       return true;
   822     }
   823   } else {
   824     // Floating stack LinuxThreads or NPTL:
   825     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
   826     //   there's not enough space left, pthread_create() will fail. If we come
   827     //   here, that means enough space has been reserved for stack.
   828     return true;
   829   }
   830 }
   832 // Thread start routine for all newly created threads
   833 static void *java_start(Thread *thread) {
   834   // Try to randomize the cache line index of hot stack frames.
   835   // This helps when threads of the same stack traces evict each other's
   836   // cache lines. The threads can be either from the same JVM instance, or
   837   // from different JVM instances. The benefit is especially true for
   838   // processors with hyperthreading technology.
   839   static int counter = 0;
   840   int pid = os::current_process_id();
   841   alloca(((pid ^ counter++) & 7) * 128);
   843   ThreadLocalStorage::set_thread(thread);
   845   OSThread* osthread = thread->osthread();
   846   Monitor* sync = osthread->startThread_lock();
   848   // non floating stack LinuxThreads needs extra check, see above
   849   if (!_thread_safety_check(thread)) {
   850     // notify parent thread
   851     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   852     osthread->set_state(ZOMBIE);
   853     sync->notify_all();
   854     return NULL;
   855   }
   857   // thread_id is kernel thread id (similar to Solaris LWP id)
   858   osthread->set_thread_id(os::Linux::gettid());
   860   if (UseNUMA) {
   861     int lgrp_id = os::numa_get_group_id();
   862     if (lgrp_id != -1) {
   863       thread->set_lgrp_id(lgrp_id);
   864     }
   865   }
   866   // initialize signal mask for this thread
   867   os::Linux::hotspot_sigmask(thread);
   869   // initialize floating point control register
   870   os::Linux::init_thread_fpu_state();
   872   // handshaking with parent thread
   873   {
   874     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   876     // notify parent thread
   877     osthread->set_state(INITIALIZED);
   878     sync->notify_all();
   880     // wait until os::start_thread()
   881     while (osthread->get_state() == INITIALIZED) {
   882       sync->wait(Mutex::_no_safepoint_check_flag);
   883     }
   884   }
   886   // call one more level start routine
   887   thread->run();
   889   return 0;
   890 }
   892 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   893   assert(thread->osthread() == NULL, "caller responsible");
   895   // Allocate the OSThread object
   896   OSThread* osthread = new OSThread(NULL, NULL);
   897   if (osthread == NULL) {
   898     return false;
   899   }
   901   // set the correct thread state
   902   osthread->set_thread_type(thr_type);
   904   // Initial state is ALLOCATED but not INITIALIZED
   905   osthread->set_state(ALLOCATED);
   907   thread->set_osthread(osthread);
   909   // init thread attributes
   910   pthread_attr_t attr;
   911   pthread_attr_init(&attr);
   912   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   914   // stack size
   915   if (os::Linux::supports_variable_stack_size()) {
   916     // calculate stack size if it's not specified by caller
   917     if (stack_size == 0) {
   918       stack_size = os::Linux::default_stack_size(thr_type);
   920       switch (thr_type) {
   921       case os::java_thread:
   922         // Java threads use ThreadStackSize which default value can be
   923         // changed with the flag -Xss
   924         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   925         stack_size = JavaThread::stack_size_at_create();
   926         break;
   927       case os::compiler_thread:
   928         if (CompilerThreadStackSize > 0) {
   929           stack_size = (size_t)(CompilerThreadStackSize * K);
   930           break;
   931         } // else fall through:
   932           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   933       case os::vm_thread:
   934       case os::pgc_thread:
   935       case os::cgc_thread:
   936       case os::watcher_thread:
   937         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   938         break;
   939       }
   940     }
   942     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
   943     pthread_attr_setstacksize(&attr, stack_size);
   944   } else {
   945     // let pthread_create() pick the default value.
   946   }
   948   // glibc guard page
   949   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
   951   ThreadState state;
   953   {
   954     // Serialize thread creation if we are running with fixed stack LinuxThreads
   955     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
   956     if (lock) {
   957       os::Linux::createThread_lock()->lock_without_safepoint_check();
   958     }
   960     pthread_t tid;
   961     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   963     pthread_attr_destroy(&attr);
   965     if (ret != 0) {
   966       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   967         perror("pthread_create()");
   968       }
   969       // Need to clean up stuff we've allocated so far
   970       thread->set_osthread(NULL);
   971       delete osthread;
   972       if (lock) os::Linux::createThread_lock()->unlock();
   973       return false;
   974     }
   976     // Store pthread info into the OSThread
   977     osthread->set_pthread_id(tid);
   979     // Wait until child thread is either initialized or aborted
   980     {
   981       Monitor* sync_with_child = osthread->startThread_lock();
   982       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   983       while ((state = osthread->get_state()) == ALLOCATED) {
   984         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   985       }
   986     }
   988     if (lock) {
   989       os::Linux::createThread_lock()->unlock();
   990     }
   991   }
   993   // Aborted due to thread limit being reached
   994   if (state == ZOMBIE) {
   995       thread->set_osthread(NULL);
   996       delete osthread;
   997       return false;
   998   }
  1000   // The thread is returned suspended (in state INITIALIZED),
  1001   // and is started higher up in the call chain
  1002   assert(state == INITIALIZED, "race condition");
  1003   return true;
  1006 /////////////////////////////////////////////////////////////////////////////
  1007 // attach existing thread
  1009 // bootstrap the main thread
  1010 bool os::create_main_thread(JavaThread* thread) {
  1011   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
  1012   return create_attached_thread(thread);
  1015 bool os::create_attached_thread(JavaThread* thread) {
  1016 #ifdef ASSERT
  1017     thread->verify_not_published();
  1018 #endif
  1020   // Allocate the OSThread object
  1021   OSThread* osthread = new OSThread(NULL, NULL);
  1023   if (osthread == NULL) {
  1024     return false;
  1027   // Store pthread info into the OSThread
  1028   osthread->set_thread_id(os::Linux::gettid());
  1029   osthread->set_pthread_id(::pthread_self());
  1031   // initialize floating point control register
  1032   os::Linux::init_thread_fpu_state();
  1034   // Initial thread state is RUNNABLE
  1035   osthread->set_state(RUNNABLE);
  1037   thread->set_osthread(osthread);
  1039   if (UseNUMA) {
  1040     int lgrp_id = os::numa_get_group_id();
  1041     if (lgrp_id != -1) {
  1042       thread->set_lgrp_id(lgrp_id);
  1046   if (os::Linux::is_initial_thread()) {
  1047     // If current thread is initial thread, its stack is mapped on demand,
  1048     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
  1049     // the entire stack region to avoid SEGV in stack banging.
  1050     // It is also useful to get around the heap-stack-gap problem on SuSE
  1051     // kernel (see 4821821 for details). We first expand stack to the top
  1052     // of yellow zone, then enable stack yellow zone (order is significant,
  1053     // enabling yellow zone first will crash JVM on SuSE Linux), so there
  1054     // is no gap between the last two virtual memory regions.
  1056     JavaThread *jt = (JavaThread *)thread;
  1057     address addr = jt->stack_yellow_zone_base();
  1058     assert(addr != NULL, "initialization problem?");
  1059     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
  1061     osthread->set_expanding_stack();
  1062     os::Linux::manually_expand_stack(jt, addr);
  1063     osthread->clear_expanding_stack();
  1066   // initialize signal mask for this thread
  1067   // and save the caller's signal mask
  1068   os::Linux::hotspot_sigmask(thread);
  1070   return true;
  1073 void os::pd_start_thread(Thread* thread) {
  1074   OSThread * osthread = thread->osthread();
  1075   assert(osthread->get_state() != INITIALIZED, "just checking");
  1076   Monitor* sync_with_child = osthread->startThread_lock();
  1077   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  1078   sync_with_child->notify();
  1081 // Free Linux resources related to the OSThread
  1082 void os::free_thread(OSThread* osthread) {
  1083   assert(osthread != NULL, "osthread not set");
  1085   if (Thread::current()->osthread() == osthread) {
  1086     // Restore caller's signal mask
  1087     sigset_t sigmask = osthread->caller_sigmask();
  1088     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
  1091   delete osthread;
  1094 //////////////////////////////////////////////////////////////////////////////
  1095 // thread local storage
  1097 int os::allocate_thread_local_storage() {
  1098   pthread_key_t key;
  1099   int rslt = pthread_key_create(&key, NULL);
  1100   assert(rslt == 0, "cannot allocate thread local storage");
  1101   return (int)key;
  1104 // Note: This is currently not used by VM, as we don't destroy TLS key
  1105 // on VM exit.
  1106 void os::free_thread_local_storage(int index) {
  1107   int rslt = pthread_key_delete((pthread_key_t)index);
  1108   assert(rslt == 0, "invalid index");
  1111 void os::thread_local_storage_at_put(int index, void* value) {
  1112   int rslt = pthread_setspecific((pthread_key_t)index, value);
  1113   assert(rslt == 0, "pthread_setspecific failed");
  1116 extern "C" Thread* get_thread() {
  1117   return ThreadLocalStorage::thread();
  1120 //////////////////////////////////////////////////////////////////////////////
  1121 // initial thread
  1123 // Check if current thread is the initial thread, similar to Solaris thr_main.
  1124 bool os::Linux::is_initial_thread(void) {
  1125   char dummy;
  1126   // If called before init complete, thread stack bottom will be null.
  1127   // Can be called if fatal error occurs before initialization.
  1128   if (initial_thread_stack_bottom() == NULL) return false;
  1129   assert(initial_thread_stack_bottom() != NULL &&
  1130          initial_thread_stack_size()   != 0,
  1131          "os::init did not locate initial thread's stack region");
  1132   if ((address)&dummy >= initial_thread_stack_bottom() &&
  1133       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
  1134        return true;
  1135   else return false;
  1138 // Find the virtual memory area that contains addr
  1139 static bool find_vma(address addr, address* vma_low, address* vma_high) {
  1140   FILE *fp = fopen("/proc/self/maps", "r");
  1141   if (fp) {
  1142     address low, high;
  1143     while (!feof(fp)) {
  1144       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
  1145         if (low <= addr && addr < high) {
  1146            if (vma_low)  *vma_low  = low;
  1147            if (vma_high) *vma_high = high;
  1148            fclose (fp);
  1149            return true;
  1152       for (;;) {
  1153         int ch = fgetc(fp);
  1154         if (ch == EOF || ch == (int)'\n') break;
  1157     fclose(fp);
  1159   return false;
  1162 // Locate initial thread stack. This special handling of initial thread stack
  1163 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
  1164 // bogus value for initial thread.
  1165 void os::Linux::capture_initial_stack(size_t max_size) {
  1166   // stack size is the easy part, get it from RLIMIT_STACK
  1167   size_t stack_size;
  1168   struct rlimit rlim;
  1169   getrlimit(RLIMIT_STACK, &rlim);
  1170   stack_size = rlim.rlim_cur;
  1172   // 6308388: a bug in ld.so will relocate its own .data section to the
  1173   //   lower end of primordial stack; reduce ulimit -s value a little bit
  1174   //   so we won't install guard page on ld.so's data section.
  1175   stack_size -= 2 * page_size();
  1177   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  1178   //   7.1, in both cases we will get 2G in return value.
  1179   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  1180   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  1181   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  1182   //   in case other parts in glibc still assumes 2M max stack size.
  1183   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
  1184 #ifndef IA64
  1185   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
  1186 #else
  1187   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  1188   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
  1189 #endif
  1191   // Try to figure out where the stack base (top) is. This is harder.
  1192   //
  1193   // When an application is started, glibc saves the initial stack pointer in
  1194   // a global variable "__libc_stack_end", which is then used by system
  1195   // libraries. __libc_stack_end should be pretty close to stack top. The
  1196   // variable is available since the very early days. However, because it is
  1197   // a private interface, it could disappear in the future.
  1198   //
  1199   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  1200   // to __libc_stack_end, it is very close to stack top, but isn't the real
  1201   // stack top. Note that /proc may not exist if VM is running as a chroot
  1202   // program, so reading /proc/<pid>/stat could fail. Also the contents of
  1203   // /proc/<pid>/stat could change in the future (though unlikely).
  1204   //
  1205   // We try __libc_stack_end first. If that doesn't work, look for
  1206   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  1207   // as a hint, which should work well in most cases.
  1209   uintptr_t stack_start;
  1211   // try __libc_stack_end first
  1212   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  1213   if (p && *p) {
  1214     stack_start = *p;
  1215   } else {
  1216     // see if we can get the start_stack field from /proc/self/stat
  1217     FILE *fp;
  1218     int pid;
  1219     char state;
  1220     int ppid;
  1221     int pgrp;
  1222     int session;
  1223     int nr;
  1224     int tpgrp;
  1225     unsigned long flags;
  1226     unsigned long minflt;
  1227     unsigned long cminflt;
  1228     unsigned long majflt;
  1229     unsigned long cmajflt;
  1230     unsigned long utime;
  1231     unsigned long stime;
  1232     long cutime;
  1233     long cstime;
  1234     long prio;
  1235     long nice;
  1236     long junk;
  1237     long it_real;
  1238     uintptr_t start;
  1239     uintptr_t vsize;
  1240     intptr_t rss;
  1241     uintptr_t rsslim;
  1242     uintptr_t scodes;
  1243     uintptr_t ecode;
  1244     int i;
  1246     // Figure what the primordial thread stack base is. Code is inspired
  1247     // by email from Hans Boehm. /proc/self/stat begins with current pid,
  1248     // followed by command name surrounded by parentheses, state, etc.
  1249     char stat[2048];
  1250     int statlen;
  1252     fp = fopen("/proc/self/stat", "r");
  1253     if (fp) {
  1254       statlen = fread(stat, 1, 2047, fp);
  1255       stat[statlen] = '\0';
  1256       fclose(fp);
  1258       // Skip pid and the command string. Note that we could be dealing with
  1259       // weird command names, e.g. user could decide to rename java launcher
  1260       // to "java 1.4.2 :)", then the stat file would look like
  1261       //                1234 (java 1.4.2 :)) R ... ...
  1262       // We don't really need to know the command string, just find the last
  1263       // occurrence of ")" and then start parsing from there. See bug 4726580.
  1264       char * s = strrchr(stat, ')');
  1266       i = 0;
  1267       if (s) {
  1268         // Skip blank chars
  1269         do s++; while (isspace(*s));
  1271 #define _UFM UINTX_FORMAT
  1272 #define _DFM INTX_FORMAT
  1274         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
  1275         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
  1276         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
  1277              &state,          /* 3  %c  */
  1278              &ppid,           /* 4  %d  */
  1279              &pgrp,           /* 5  %d  */
  1280              &session,        /* 6  %d  */
  1281              &nr,             /* 7  %d  */
  1282              &tpgrp,          /* 8  %d  */
  1283              &flags,          /* 9  %lu  */
  1284              &minflt,         /* 10 %lu  */
  1285              &cminflt,        /* 11 %lu  */
  1286              &majflt,         /* 12 %lu  */
  1287              &cmajflt,        /* 13 %lu  */
  1288              &utime,          /* 14 %lu  */
  1289              &stime,          /* 15 %lu  */
  1290              &cutime,         /* 16 %ld  */
  1291              &cstime,         /* 17 %ld  */
  1292              &prio,           /* 18 %ld  */
  1293              &nice,           /* 19 %ld  */
  1294              &junk,           /* 20 %ld  */
  1295              &it_real,        /* 21 %ld  */
  1296              &start,          /* 22 UINTX_FORMAT */
  1297              &vsize,          /* 23 UINTX_FORMAT */
  1298              &rss,            /* 24 INTX_FORMAT  */
  1299              &rsslim,         /* 25 UINTX_FORMAT */
  1300              &scodes,         /* 26 UINTX_FORMAT */
  1301              &ecode,          /* 27 UINTX_FORMAT */
  1302              &stack_start);   /* 28 UINTX_FORMAT */
  1305 #undef _UFM
  1306 #undef _DFM
  1308       if (i != 28 - 2) {
  1309          assert(false, "Bad conversion from /proc/self/stat");
  1310          // product mode - assume we are the initial thread, good luck in the
  1311          // embedded case.
  1312          warning("Can't detect initial thread stack location - bad conversion");
  1313          stack_start = (uintptr_t) &rlim;
  1315     } else {
  1316       // For some reason we can't open /proc/self/stat (for example, running on
  1317       // FreeBSD with a Linux emulator, or inside chroot), this should work for
  1318       // most cases, so don't abort:
  1319       warning("Can't detect initial thread stack location - no /proc/self/stat");
  1320       stack_start = (uintptr_t) &rlim;
  1324   // Now we have a pointer (stack_start) very close to the stack top, the
  1325   // next thing to do is to figure out the exact location of stack top. We
  1326   // can find out the virtual memory area that contains stack_start by
  1327   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  1328   // and its upper limit is the real stack top. (again, this would fail if
  1329   // running inside chroot, because /proc may not exist.)
  1331   uintptr_t stack_top;
  1332   address low, high;
  1333   if (find_vma((address)stack_start, &low, &high)) {
  1334     // success, "high" is the true stack top. (ignore "low", because initial
  1335     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
  1336     stack_top = (uintptr_t)high;
  1337   } else {
  1338     // failed, likely because /proc/self/maps does not exist
  1339     warning("Can't detect initial thread stack location - find_vma failed");
  1340     // best effort: stack_start is normally within a few pages below the real
  1341     // stack top, use it as stack top, and reduce stack size so we won't put
  1342     // guard page outside stack.
  1343     stack_top = stack_start;
  1344     stack_size -= 16 * page_size();
  1347   // stack_top could be partially down the page so align it
  1348   stack_top = align_size_up(stack_top, page_size());
  1350   if (max_size && stack_size > max_size) {
  1351      _initial_thread_stack_size = max_size;
  1352   } else {
  1353      _initial_thread_stack_size = stack_size;
  1356   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  1357   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
  1360 ////////////////////////////////////////////////////////////////////////////////
  1361 // time support
  1363 // Time since start-up in seconds to a fine granularity.
  1364 // Used by VMSelfDestructTimer and the MemProfiler.
  1365 double os::elapsedTime() {
  1367   return (double)(os::elapsed_counter()) * 0.000001;
  1370 jlong os::elapsed_counter() {
  1371   timeval time;
  1372   int status = gettimeofday(&time, NULL);
  1373   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
  1376 jlong os::elapsed_frequency() {
  1377   return (1000 * 1000);
  1380 // For now, we say that linux does not support vtime.  I have no idea
  1381 // whether it can actually be made to (DLD, 9/13/05).
  1383 bool os::supports_vtime() { return false; }
  1384 bool os::enable_vtime()   { return false; }
  1385 bool os::vtime_enabled()  { return false; }
  1386 double os::elapsedVTime() {
  1387   // better than nothing, but not much
  1388   return elapsedTime();
  1391 jlong os::javaTimeMillis() {
  1392   timeval time;
  1393   int status = gettimeofday(&time, NULL);
  1394   assert(status != -1, "linux error");
  1395   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
  1398 #ifndef CLOCK_MONOTONIC
  1399 #define CLOCK_MONOTONIC (1)
  1400 #endif
  1402 void os::Linux::clock_init() {
  1403   // we do dlopen's in this particular order due to bug in linux
  1404   // dynamical loader (see 6348968) leading to crash on exit
  1405   void* handle = dlopen("librt.so.1", RTLD_LAZY);
  1406   if (handle == NULL) {
  1407     handle = dlopen("librt.so", RTLD_LAZY);
  1410   if (handle) {
  1411     int (*clock_getres_func)(clockid_t, struct timespec*) =
  1412            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
  1413     int (*clock_gettime_func)(clockid_t, struct timespec*) =
  1414            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
  1415     if (clock_getres_func && clock_gettime_func) {
  1416       // See if monotonic clock is supported by the kernel. Note that some
  1417       // early implementations simply return kernel jiffies (updated every
  1418       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
  1419       // for nano time (though the monotonic property is still nice to have).
  1420       // It's fixed in newer kernels, however clock_getres() still returns
  1421       // 1/HZ. We check if clock_getres() works, but will ignore its reported
  1422       // resolution for now. Hopefully as people move to new kernels, this
  1423       // won't be a problem.
  1424       struct timespec res;
  1425       struct timespec tp;
  1426       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
  1427           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
  1428         // yes, monotonic clock is supported
  1429         _clock_gettime = clock_gettime_func;
  1430       } else {
  1431         // close librt if there is no monotonic clock
  1432         dlclose(handle);
  1438 #ifndef SYS_clock_getres
  1440 #if defined(IA32) || defined(AMD64)
  1441 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
  1442 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1443 #else
  1444 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
  1445 #define sys_clock_getres(x,y)  -1
  1446 #endif
  1448 #else
  1449 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
  1450 #endif
  1452 void os::Linux::fast_thread_clock_init() {
  1453   if (!UseLinuxPosixThreadCPUClocks) {
  1454     return;
  1456   clockid_t clockid;
  1457   struct timespec tp;
  1458   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
  1459       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
  1461   // Switch to using fast clocks for thread cpu time if
  1462   // the sys_clock_getres() returns 0 error code.
  1463   // Note, that some kernels may support the current thread
  1464   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  1465   // returned by the pthread_getcpuclockid().
  1466   // If the fast Posix clocks are supported then the sys_clock_getres()
  1467   // must return at least tp.tv_sec == 0 which means a resolution
  1468   // better than 1 sec. This is extra check for reliability.
  1470   if(pthread_getcpuclockid_func &&
  1471      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
  1472      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
  1474     _supports_fast_thread_cpu_time = true;
  1475     _pthread_getcpuclockid = pthread_getcpuclockid_func;
  1479 jlong os::javaTimeNanos() {
  1480   if (Linux::supports_monotonic_clock()) {
  1481     struct timespec tp;
  1482     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
  1483     assert(status == 0, "gettime error");
  1484     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
  1485     return result;
  1486   } else {
  1487     timeval time;
  1488     int status = gettimeofday(&time, NULL);
  1489     assert(status != -1, "linux error");
  1490     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1491     return 1000 * usecs;
  1495 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1496   if (Linux::supports_monotonic_clock()) {
  1497     info_ptr->max_value = ALL_64_BITS;
  1499     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1500     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1501     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1502   } else {
  1503     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1504     info_ptr->max_value = ALL_64_BITS;
  1506     // gettimeofday is a real time clock so it skips
  1507     info_ptr->may_skip_backward = true;
  1508     info_ptr->may_skip_forward = true;
  1511   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1514 // Return the real, user, and system times in seconds from an
  1515 // arbitrary fixed point in the past.
  1516 bool os::getTimesSecs(double* process_real_time,
  1517                       double* process_user_time,
  1518                       double* process_system_time) {
  1519   struct tms ticks;
  1520   clock_t real_ticks = times(&ticks);
  1522   if (real_ticks == (clock_t) (-1)) {
  1523     return false;
  1524   } else {
  1525     double ticks_per_second = (double) clock_tics_per_sec;
  1526     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1527     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1528     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1530     return true;
  1535 char * os::local_time_string(char *buf, size_t buflen) {
  1536   struct tm t;
  1537   time_t long_time;
  1538   time(&long_time);
  1539   localtime_r(&long_time, &t);
  1540   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1541                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1542                t.tm_hour, t.tm_min, t.tm_sec);
  1543   return buf;
  1546 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1547   return localtime_r(clock, res);
  1550 ////////////////////////////////////////////////////////////////////////////////
  1551 // runtime exit support
  1553 // Note: os::shutdown() might be called very early during initialization, or
  1554 // called from signal handler. Before adding something to os::shutdown(), make
  1555 // sure it is async-safe and can handle partially initialized VM.
  1556 void os::shutdown() {
  1558   // allow PerfMemory to attempt cleanup of any persistent resources
  1559   perfMemory_exit();
  1561   // needs to remove object in file system
  1562   AttachListener::abort();
  1564   // flush buffered output, finish log files
  1565   ostream_abort();
  1567   // Check for abort hook
  1568   abort_hook_t abort_hook = Arguments::abort_hook();
  1569   if (abort_hook != NULL) {
  1570     abort_hook();
  1575 // Note: os::abort() might be called very early during initialization, or
  1576 // called from signal handler. Before adding something to os::abort(), make
  1577 // sure it is async-safe and can handle partially initialized VM.
  1578 void os::abort(bool dump_core) {
  1579   os::shutdown();
  1580   if (dump_core) {
  1581 #ifndef PRODUCT
  1582     fdStream out(defaultStream::output_fd());
  1583     out.print_raw("Current thread is ");
  1584     char buf[16];
  1585     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1586     out.print_raw_cr(buf);
  1587     out.print_raw_cr("Dumping core ...");
  1588 #endif
  1589     ::abort(); // dump core
  1592   ::exit(1);
  1595 // Die immediately, no exit hook, no abort hook, no cleanup.
  1596 void os::die() {
  1597   // _exit() on LinuxThreads only kills current thread
  1598   ::abort();
  1601 // unused on linux for now.
  1602 void os::set_error_file(const char *logfile) {}
  1605 // This method is a copy of JDK's sysGetLastErrorString
  1606 // from src/solaris/hpi/src/system_md.c
  1608 size_t os::lasterror(char *buf, size_t len) {
  1610   if (errno == 0)  return 0;
  1612   const char *s = ::strerror(errno);
  1613   size_t n = ::strlen(s);
  1614   if (n >= len) {
  1615     n = len - 1;
  1617   ::strncpy(buf, s, n);
  1618   buf[n] = '\0';
  1619   return n;
  1622 intx os::current_thread_id() { return (intx)pthread_self(); }
  1623 int os::current_process_id() {
  1625   // Under the old linux thread library, linux gives each thread
  1626   // its own process id. Because of this each thread will return
  1627   // a different pid if this method were to return the result
  1628   // of getpid(2). Linux provides no api that returns the pid
  1629   // of the launcher thread for the vm. This implementation
  1630   // returns a unique pid, the pid of the launcher thread
  1631   // that starts the vm 'process'.
  1633   // Under the NPTL, getpid() returns the same pid as the
  1634   // launcher thread rather than a unique pid per thread.
  1635   // Use gettid() if you want the old pre NPTL behaviour.
  1637   // if you are looking for the result of a call to getpid() that
  1638   // returns a unique pid for the calling thread, then look at the
  1639   // OSThread::thread_id() method in osThread_linux.hpp file
  1641   return (int)(_initial_pid ? _initial_pid : getpid());
  1644 // DLL functions
  1646 const char* os::dll_file_extension() { return ".so"; }
  1648 // This must be hard coded because it's the system's temporary
  1649 // directory not the java application's temp directory, ala java.io.tmpdir.
  1650 const char* os::get_temp_directory() { return "/tmp"; }
  1652 static bool file_exists(const char* filename) {
  1653   struct stat statbuf;
  1654   if (filename == NULL || strlen(filename) == 0) {
  1655     return false;
  1657   return os::stat(filename, &statbuf) == 0;
  1660 void os::dll_build_name(char* buffer, size_t buflen,
  1661                         const char* pname, const char* fname) {
  1662   // Copied from libhpi
  1663   const size_t pnamelen = pname ? strlen(pname) : 0;
  1665   // Quietly truncate on buffer overflow.  Should be an error.
  1666   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1667       *buffer = '\0';
  1668       return;
  1671   if (pnamelen == 0) {
  1672     snprintf(buffer, buflen, "lib%s.so", fname);
  1673   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1674     int n;
  1675     char** pelements = split_path(pname, &n);
  1676     for (int i = 0 ; i < n ; i++) {
  1677       // Really shouldn't be NULL, but check can't hurt
  1678       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1679         continue; // skip the empty path values
  1681       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1682       if (file_exists(buffer)) {
  1683         break;
  1686     // release the storage
  1687     for (int i = 0 ; i < n ; i++) {
  1688       if (pelements[i] != NULL) {
  1689         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1692     if (pelements != NULL) {
  1693       FREE_C_HEAP_ARRAY(char*, pelements);
  1695   } else {
  1696     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1700 const char* os::get_current_directory(char *buf, int buflen) {
  1701   return getcwd(buf, buflen);
  1704 // check if addr is inside libjvm[_g].so
  1705 bool os::address_is_in_vm(address addr) {
  1706   static address libjvm_base_addr;
  1707   Dl_info dlinfo;
  1709   if (libjvm_base_addr == NULL) {
  1710     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1711     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1712     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1715   if (dladdr((void *)addr, &dlinfo)) {
  1716     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1719   return false;
  1722 bool os::dll_address_to_function_name(address addr, char *buf,
  1723                                       int buflen, int *offset) {
  1724   Dl_info dlinfo;
  1726   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1727     if (buf != NULL) {
  1728       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1729         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1732     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1733     return true;
  1734   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1735     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1736        dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1737        return true;
  1741   if (buf != NULL) buf[0] = '\0';
  1742   if (offset != NULL) *offset = -1;
  1743   return false;
  1746 struct _address_to_library_name {
  1747   address addr;          // input : memory address
  1748   size_t  buflen;        //         size of fname
  1749   char*   fname;         // output: library name
  1750   address base;          //         library base addr
  1751 };
  1753 static int address_to_library_name_callback(struct dl_phdr_info *info,
  1754                                             size_t size, void *data) {
  1755   int i;
  1756   bool found = false;
  1757   address libbase = NULL;
  1758   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
  1760   // iterate through all loadable segments
  1761   for (i = 0; i < info->dlpi_phnum; i++) {
  1762     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
  1763     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
  1764       // base address of a library is the lowest address of its loaded
  1765       // segments.
  1766       if (libbase == NULL || libbase > segbase) {
  1767         libbase = segbase;
  1769       // see if 'addr' is within current segment
  1770       if (segbase <= d->addr &&
  1771           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
  1772         found = true;
  1777   // dlpi_name is NULL or empty if the ELF file is executable, return 0
  1778   // so dll_address_to_library_name() can fall through to use dladdr() which
  1779   // can figure out executable name from argv[0].
  1780   if (found && info->dlpi_name && info->dlpi_name[0]) {
  1781     d->base = libbase;
  1782     if (d->fname) {
  1783       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
  1785     return 1;
  1787   return 0;
  1790 bool os::dll_address_to_library_name(address addr, char* buf,
  1791                                      int buflen, int* offset) {
  1792   Dl_info dlinfo;
  1793   struct _address_to_library_name data;
  1795   // There is a bug in old glibc dladdr() implementation that it could resolve
  1796   // to wrong library name if the .so file has a base address != NULL. Here
  1797   // we iterate through the program headers of all loaded libraries to find
  1798   // out which library 'addr' really belongs to. This workaround can be
  1799   // removed once the minimum requirement for glibc is moved to 2.3.x.
  1800   data.addr = addr;
  1801   data.fname = buf;
  1802   data.buflen = buflen;
  1803   data.base = NULL;
  1804   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
  1806   if (rslt) {
  1807      // buf already contains library name
  1808      if (offset) *offset = addr - data.base;
  1809      return true;
  1810   } else if (dladdr((void*)addr, &dlinfo)){
  1811      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1812      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1813      return true;
  1814   } else {
  1815      if (buf) buf[0] = '\0';
  1816      if (offset) *offset = -1;
  1817      return false;
  1821   // Loads .dll/.so and
  1822   // in case of error it checks if .dll/.so was built for the
  1823   // same architecture as Hotspot is running on
  1825 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1827   void * result= ::dlopen(filename, RTLD_LAZY);
  1828   if (result != NULL) {
  1829     // Successful loading
  1830     return result;
  1833   Elf32_Ehdr elf_head;
  1835   // Read system error message into ebuf
  1836   // It may or may not be overwritten below
  1837   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1838   ebuf[ebuflen-1]='\0';
  1839   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1840   char* diag_msg_buf=ebuf+strlen(ebuf);
  1842   if (diag_msg_max_length==0) {
  1843     // No more space in ebuf for additional diagnostics message
  1844     return NULL;
  1848   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1850   if (file_descriptor < 0) {
  1851     // Can't open library, report dlerror() message
  1852     return NULL;
  1855   bool failed_to_read_elf_head=
  1856     (sizeof(elf_head)!=
  1857         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1859   ::close(file_descriptor);
  1860   if (failed_to_read_elf_head) {
  1861     // file i/o error - report dlerror() msg
  1862     return NULL;
  1865   typedef struct {
  1866     Elf32_Half  code;         // Actual value as defined in elf.h
  1867     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1868     char        elf_class;    // 32 or 64 bit
  1869     char        endianess;    // MSB or LSB
  1870     char*       name;         // String representation
  1871   } arch_t;
  1873   #ifndef EM_486
  1874   #define EM_486          6               /* Intel 80486 */
  1875   #endif
  1877   static const arch_t arch_array[]={
  1878     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1879     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1880     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1881     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1882     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1883     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1884     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1885     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1886     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1887     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1888     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1889     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1890     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1891     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1892     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1893     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1894   };
  1896   #if  (defined IA32)
  1897     static  Elf32_Half running_arch_code=EM_386;
  1898   #elif   (defined AMD64)
  1899     static  Elf32_Half running_arch_code=EM_X86_64;
  1900   #elif  (defined IA64)
  1901     static  Elf32_Half running_arch_code=EM_IA_64;
  1902   #elif  (defined __sparc) && (defined _LP64)
  1903     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1904   #elif  (defined __sparc) && (!defined _LP64)
  1905     static  Elf32_Half running_arch_code=EM_SPARC;
  1906   #elif  (defined __powerpc64__)
  1907     static  Elf32_Half running_arch_code=EM_PPC64;
  1908   #elif  (defined __powerpc__)
  1909     static  Elf32_Half running_arch_code=EM_PPC;
  1910   #elif  (defined ARM)
  1911     static  Elf32_Half running_arch_code=EM_ARM;
  1912   #elif  (defined S390)
  1913     static  Elf32_Half running_arch_code=EM_S390;
  1914   #elif  (defined ALPHA)
  1915     static  Elf32_Half running_arch_code=EM_ALPHA;
  1916   #elif  (defined MIPSEL)
  1917     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1918   #elif  (defined PARISC)
  1919     static  Elf32_Half running_arch_code=EM_PARISC;
  1920   #elif  (defined MIPS)
  1921     static  Elf32_Half running_arch_code=EM_MIPS;
  1922   #elif  (defined M68K)
  1923     static  Elf32_Half running_arch_code=EM_68K;
  1924   #else
  1925     #error Method os::dll_load requires that one of following is defined:\
  1926          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1927   #endif
  1929   // Identify compatability class for VM's architecture and library's architecture
  1930   // Obtain string descriptions for architectures
  1932   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1933   int running_arch_index=-1;
  1935   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1936     if (running_arch_code == arch_array[i].code) {
  1937       running_arch_index    = i;
  1939     if (lib_arch.code == arch_array[i].code) {
  1940       lib_arch.compat_class = arch_array[i].compat_class;
  1941       lib_arch.name         = arch_array[i].name;
  1945   assert(running_arch_index != -1,
  1946     "Didn't find running architecture code (running_arch_code) in arch_array");
  1947   if (running_arch_index == -1) {
  1948     // Even though running architecture detection failed
  1949     // we may still continue with reporting dlerror() message
  1950     return NULL;
  1953   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1954     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1955     return NULL;
  1958 #ifndef S390
  1959   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1960     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1961     return NULL;
  1963 #endif // !S390
  1965   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1966     if ( lib_arch.name!=NULL ) {
  1967       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1968         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1969         lib_arch.name, arch_array[running_arch_index].name);
  1970     } else {
  1971       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1972       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1973         lib_arch.code,
  1974         arch_array[running_arch_index].name);
  1978   return NULL;
  1981 /*
  1982  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
  1983  * chances are you might want to run the generated bits against glibc-2.0
  1984  * libdl.so, so always use locking for any version of glibc.
  1985  */
  1986 void* os::dll_lookup(void* handle, const char* name) {
  1987   pthread_mutex_lock(&dl_mutex);
  1988   void* res = dlsym(handle, name);
  1989   pthread_mutex_unlock(&dl_mutex);
  1990   return res;
  1994 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1995   int fd = ::open(filename, O_RDONLY);
  1996   if (fd == -1) {
  1997      return false;
  2000   char buf[32];
  2001   int bytes;
  2002   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2003     st->print_raw(buf, bytes);
  2006   ::close(fd);
  2008   return true;
  2011 void os::print_dll_info(outputStream *st) {
  2012    st->print_cr("Dynamic libraries:");
  2014    char fname[32];
  2015    pid_t pid = os::Linux::gettid();
  2017    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
  2019    if (!_print_ascii_file(fname, st)) {
  2020      st->print("Can not get library information for pid = %d\n", pid);
  2025 void os::print_os_info(outputStream* st) {
  2026   st->print("OS:");
  2028   // Try to identify popular distros.
  2029   // Most Linux distributions have /etc/XXX-release file, which contains
  2030   // the OS version string. Some have more than one /etc/XXX-release file
  2031   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
  2032   // so the order is important.
  2033   if (!_print_ascii_file("/etc/mandrake-release", st) &&
  2034       !_print_ascii_file("/etc/sun-release", st) &&
  2035       !_print_ascii_file("/etc/redhat-release", st) &&
  2036       !_print_ascii_file("/etc/SuSE-release", st) &&
  2037       !_print_ascii_file("/etc/turbolinux-release", st) &&
  2038       !_print_ascii_file("/etc/gentoo-release", st) &&
  2039       !_print_ascii_file("/etc/debian_version", st) &&
  2040       !_print_ascii_file("/etc/ltib-release", st) &&
  2041       !_print_ascii_file("/etc/angstrom-version", st)) {
  2042       st->print("Linux");
  2044   st->cr();
  2046   // kernel
  2047   st->print("uname:");
  2048   struct utsname name;
  2049   uname(&name);
  2050   st->print(name.sysname); st->print(" ");
  2051   st->print(name.release); st->print(" ");
  2052   st->print(name.version); st->print(" ");
  2053   st->print(name.machine);
  2054   st->cr();
  2056   // Print warning if unsafe chroot environment detected
  2057   if (unsafe_chroot_detected) {
  2058     st->print("WARNING!! ");
  2059     st->print_cr(unstable_chroot_error);
  2062   // libc, pthread
  2063   st->print("libc:");
  2064   st->print(os::Linux::glibc_version()); st->print(" ");
  2065   st->print(os::Linux::libpthread_version()); st->print(" ");
  2066   if (os::Linux::is_LinuxThreads()) {
  2067      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  2069   st->cr();
  2071   // rlimit
  2072   st->print("rlimit:");
  2073   struct rlimit rlim;
  2075   st->print(" STACK ");
  2076   getrlimit(RLIMIT_STACK, &rlim);
  2077   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2078   else st->print("%uk", rlim.rlim_cur >> 10);
  2080   st->print(", CORE ");
  2081   getrlimit(RLIMIT_CORE, &rlim);
  2082   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2083   else st->print("%uk", rlim.rlim_cur >> 10);
  2085   st->print(", NPROC ");
  2086   getrlimit(RLIMIT_NPROC, &rlim);
  2087   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2088   else st->print("%d", rlim.rlim_cur);
  2090   st->print(", NOFILE ");
  2091   getrlimit(RLIMIT_NOFILE, &rlim);
  2092   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2093   else st->print("%d", rlim.rlim_cur);
  2095   st->print(", AS ");
  2096   getrlimit(RLIMIT_AS, &rlim);
  2097   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2098   else st->print("%uk", rlim.rlim_cur >> 10);
  2099   st->cr();
  2101   // load average
  2102   st->print("load average:");
  2103   double loadavg[3];
  2104   os::loadavg(loadavg, 3);
  2105   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2106   st->cr();
  2108   // meminfo
  2109   st->print("\n/proc/meminfo:\n");
  2110   _print_ascii_file("/proc/meminfo", st);
  2111   st->cr();
  2114 void os::pd_print_cpu_info(outputStream* st) {
  2115   st->print("\n/proc/cpuinfo:\n");
  2116   if (!_print_ascii_file("/proc/cpuinfo", st)) {
  2117     st->print("  <Not Available>");
  2119   st->cr();
  2122 void os::print_memory_info(outputStream* st) {
  2124   st->print("Memory:");
  2125   st->print(" %dk page", os::vm_page_size()>>10);
  2127   // values in struct sysinfo are "unsigned long"
  2128   struct sysinfo si;
  2129   sysinfo(&si);
  2131   st->print(", physical " UINT64_FORMAT "k",
  2132             os::physical_memory() >> 10);
  2133   st->print("(" UINT64_FORMAT "k free)",
  2134             os::available_memory() >> 10);
  2135   st->print(", swap " UINT64_FORMAT "k",
  2136             ((jlong)si.totalswap * si.mem_unit) >> 10);
  2137   st->print("(" UINT64_FORMAT "k free)",
  2138             ((jlong)si.freeswap * si.mem_unit) >> 10);
  2139   st->cr();
  2142 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  2143 // but they're the same for all the linux arch that we support
  2144 // and they're the same for solaris but there's no common place to put this.
  2145 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2146                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2147                           "ILL_COPROC", "ILL_BADSTK" };
  2149 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2150                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2151                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  2153 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2155 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2157 void os::print_siginfo(outputStream* st, void* siginfo) {
  2158   st->print("siginfo:");
  2160   const int buflen = 100;
  2161   char buf[buflen];
  2162   siginfo_t *si = (siginfo_t*)siginfo;
  2163   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2164   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  2165     st->print("si_errno=%s", buf);
  2166   } else {
  2167     st->print("si_errno=%d", si->si_errno);
  2169   const int c = si->si_code;
  2170   assert(c > 0, "unexpected si_code");
  2171   switch (si->si_signo) {
  2172   case SIGILL:
  2173     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2174     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2175     break;
  2176   case SIGFPE:
  2177     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2178     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2179     break;
  2180   case SIGSEGV:
  2181     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2182     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2183     break;
  2184   case SIGBUS:
  2185     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2186     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2187     break;
  2188   default:
  2189     st->print(", si_code=%d", si->si_code);
  2190     // no si_addr
  2193   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2194       UseSharedSpaces) {
  2195     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2196     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2197       st->print("\n\nError accessing class data sharing archive."   \
  2198                 " Mapped file inaccessible during execution, "      \
  2199                 " possible disk/network problem.");
  2202   st->cr();
  2206 static void print_signal_handler(outputStream* st, int sig,
  2207                                  char* buf, size_t buflen);
  2209 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2210   st->print_cr("Signal Handlers:");
  2211   print_signal_handler(st, SIGSEGV, buf, buflen);
  2212   print_signal_handler(st, SIGBUS , buf, buflen);
  2213   print_signal_handler(st, SIGFPE , buf, buflen);
  2214   print_signal_handler(st, SIGPIPE, buf, buflen);
  2215   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2216   print_signal_handler(st, SIGILL , buf, buflen);
  2217   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2218   print_signal_handler(st, SR_signum, buf, buflen);
  2219   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  2220   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2221   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  2222   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2225 static char saved_jvm_path[MAXPATHLEN] = {0};
  2227 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2228 void os::jvm_path(char *buf, jint buflen) {
  2229   // Error checking.
  2230   if (buflen < MAXPATHLEN) {
  2231     assert(false, "must use a large-enough buffer");
  2232     buf[0] = '\0';
  2233     return;
  2235   // Lazy resolve the path to current module.
  2236   if (saved_jvm_path[0] != 0) {
  2237     strcpy(buf, saved_jvm_path);
  2238     return;
  2241   char dli_fname[MAXPATHLEN];
  2242   bool ret = dll_address_to_library_name(
  2243                 CAST_FROM_FN_PTR(address, os::jvm_path),
  2244                 dli_fname, sizeof(dli_fname), NULL);
  2245   assert(ret != 0, "cannot locate libjvm");
  2246   char *rp = realpath(dli_fname, buf);
  2247   if (rp == NULL)
  2248     return;
  2250   if (Arguments::created_by_gamma_launcher()) {
  2251     // Support for the gamma launcher.  Typical value for buf is
  2252     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2253     // the right place in the string, then assume we are installed in a JDK and
  2254     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2255     // up the path so it looks like libjvm.so is installed there (append a
  2256     // fake suffix hotspot/libjvm.so).
  2257     const char *p = buf + strlen(buf) - 1;
  2258     for (int count = 0; p > buf && count < 5; ++count) {
  2259       for (--p; p > buf && *p != '/'; --p)
  2260         /* empty */ ;
  2263     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2264       // Look for JAVA_HOME in the environment.
  2265       char* java_home_var = ::getenv("JAVA_HOME");
  2266       if (java_home_var != NULL && java_home_var[0] != 0) {
  2267         char* jrelib_p;
  2268         int len;
  2270         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2271         p = strrchr(buf, '/');
  2272         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2273         p = strstr(p, "_g") ? "_g" : "";
  2275         rp = realpath(java_home_var, buf);
  2276         if (rp == NULL)
  2277           return;
  2279         // determine if this is a legacy image or modules image
  2280         // modules image doesn't have "jre" subdirectory
  2281         len = strlen(buf);
  2282         jrelib_p = buf + len;
  2283         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2284         if (0 != access(buf, F_OK)) {
  2285           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2288         if (0 == access(buf, F_OK)) {
  2289           // Use current module name "libjvm[_g].so" instead of
  2290           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2291           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2292           len = strlen(buf);
  2293           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2294         } else {
  2295           // Go back to path of .so
  2296           rp = realpath(dli_fname, buf);
  2297           if (rp == NULL)
  2298             return;
  2304   strcpy(saved_jvm_path, buf);
  2307 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2308   // no prefix required, not even "_"
  2311 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2312   // no suffix required
  2315 ////////////////////////////////////////////////////////////////////////////////
  2316 // sun.misc.Signal support
  2318 static volatile jint sigint_count = 0;
  2320 static void
  2321 UserHandler(int sig, void *siginfo, void *context) {
  2322   // 4511530 - sem_post is serialized and handled by the manager thread. When
  2323   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  2324   // don't want to flood the manager thread with sem_post requests.
  2325   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  2326       return;
  2328   // Ctrl-C is pressed during error reporting, likely because the error
  2329   // handler fails to abort. Let VM die immediately.
  2330   if (sig == SIGINT && is_error_reported()) {
  2331      os::die();
  2334   os::signal_notify(sig);
  2337 void* os::user_handler() {
  2338   return CAST_FROM_FN_PTR(void*, UserHandler);
  2341 extern "C" {
  2342   typedef void (*sa_handler_t)(int);
  2343   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2346 void* os::signal(int signal_number, void* handler) {
  2347   struct sigaction sigAct, oldSigAct;
  2349   sigfillset(&(sigAct.sa_mask));
  2350   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  2351   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2353   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  2354     // -1 means registration failed
  2355     return (void *)-1;
  2358   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2361 void os::signal_raise(int signal_number) {
  2362   ::raise(signal_number);
  2365 /*
  2366  * The following code is moved from os.cpp for making this
  2367  * code platform specific, which it is by its very nature.
  2368  */
  2370 // Will be modified when max signal is changed to be dynamic
  2371 int os::sigexitnum_pd() {
  2372   return NSIG;
  2375 // a counter for each possible signal value
  2376 static volatile jint pending_signals[NSIG+1] = { 0 };
  2378 // Linux(POSIX) specific hand shaking semaphore.
  2379 static sem_t sig_sem;
  2381 void os::signal_init_pd() {
  2382   // Initialize signal structures
  2383   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  2385   // Initialize signal semaphore
  2386   ::sem_init(&sig_sem, 0, 0);
  2389 void os::signal_notify(int sig) {
  2390   Atomic::inc(&pending_signals[sig]);
  2391   ::sem_post(&sig_sem);
  2394 static int check_pending_signals(bool wait) {
  2395   Atomic::store(0, &sigint_count);
  2396   for (;;) {
  2397     for (int i = 0; i < NSIG + 1; i++) {
  2398       jint n = pending_signals[i];
  2399       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2400         return i;
  2403     if (!wait) {
  2404       return -1;
  2406     JavaThread *thread = JavaThread::current();
  2407     ThreadBlockInVM tbivm(thread);
  2409     bool threadIsSuspended;
  2410     do {
  2411       thread->set_suspend_equivalent();
  2412       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2413       ::sem_wait(&sig_sem);
  2415       // were we externally suspended while we were waiting?
  2416       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2417       if (threadIsSuspended) {
  2418         //
  2419         // The semaphore has been incremented, but while we were waiting
  2420         // another thread suspended us. We don't want to continue running
  2421         // while suspended because that would surprise the thread that
  2422         // suspended us.
  2423         //
  2424         ::sem_post(&sig_sem);
  2426         thread->java_suspend_self();
  2428     } while (threadIsSuspended);
  2432 int os::signal_lookup() {
  2433   return check_pending_signals(false);
  2436 int os::signal_wait() {
  2437   return check_pending_signals(true);
  2440 ////////////////////////////////////////////////////////////////////////////////
  2441 // Virtual Memory
  2443 int os::vm_page_size() {
  2444   // Seems redundant as all get out
  2445   assert(os::Linux::page_size() != -1, "must call os::init");
  2446   return os::Linux::page_size();
  2449 // Solaris allocates memory by pages.
  2450 int os::vm_allocation_granularity() {
  2451   assert(os::Linux::page_size() != -1, "must call os::init");
  2452   return os::Linux::page_size();
  2455 // Rationale behind this function:
  2456 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  2457 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  2458 //  samples for JITted code. Here we create private executable mapping over the code cache
  2459 //  and then we can use standard (well, almost, as mapping can change) way to provide
  2460 //  info for the reporting script by storing timestamp and location of symbol
  2461 void linux_wrap_code(char* base, size_t size) {
  2462   static volatile jint cnt = 0;
  2464   if (!UseOprofile) {
  2465     return;
  2468   char buf[PATH_MAX+1];
  2469   int num = Atomic::add(1, &cnt);
  2471   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
  2472            os::get_temp_directory(), os::current_process_id(), num);
  2473   unlink(buf);
  2475   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  2477   if (fd != -1) {
  2478     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  2479     if (rv != (off_t)-1) {
  2480       if (::write(fd, "", 1) == 1) {
  2481         mmap(base, size,
  2482              PROT_READ|PROT_WRITE|PROT_EXEC,
  2483              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  2486     ::close(fd);
  2487     unlink(buf);
  2491 // NOTE: Linux kernel does not really reserve the pages for us.
  2492 //       All it does is to check if there are enough free pages
  2493 //       left at the time of mmap(). This could be a potential
  2494 //       problem.
  2495 bool os::commit_memory(char* addr, size_t size, bool exec) {
  2496   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2497   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2498                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2499   if (res != (uintptr_t) MAP_FAILED) {
  2500     if (UseNUMAInterleaving) {
  2501       numa_make_global(addr, size);
  2503     return true;
  2505   return false;
  2508 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
  2509 #ifndef MAP_HUGETLB
  2510 #define MAP_HUGETLB 0x40000
  2511 #endif
  2513 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
  2514 #ifndef MADV_HUGEPAGE
  2515 #define MADV_HUGEPAGE 14
  2516 #endif
  2518 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  2519                        bool exec) {
  2520   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2521     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2522     uintptr_t res =
  2523       (uintptr_t) ::mmap(addr, size, prot,
  2524                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
  2525                          -1, 0);
  2526     if (res != (uintptr_t) MAP_FAILED) {
  2527       if (UseNUMAInterleaving) {
  2528         numa_make_global(addr, size);
  2530       return true;
  2532     // Fall through and try to use small pages
  2535   if (commit_memory(addr, size, exec)) {
  2536     realign_memory(addr, size, alignment_hint);
  2537     return true;
  2539   return false;
  2542 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2543   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
  2544     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
  2545     // be supported or the memory may already be backed by huge pages.
  2546     ::madvise(addr, bytes, MADV_HUGEPAGE);
  2550 void os::free_memory(char *addr, size_t bytes) {
  2551   commit_memory(addr, bytes, false);
  2554 void os::numa_make_global(char *addr, size_t bytes) {
  2555   Linux::numa_interleave_memory(addr, bytes);
  2558 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2559   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
  2562 bool os::numa_topology_changed()   { return false; }
  2564 size_t os::numa_get_groups_num() {
  2565   int max_node = Linux::numa_max_node();
  2566   return max_node > 0 ? max_node + 1 : 1;
  2569 int os::numa_get_group_id() {
  2570   int cpu_id = Linux::sched_getcpu();
  2571   if (cpu_id != -1) {
  2572     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
  2573     if (lgrp_id != -1) {
  2574       return lgrp_id;
  2577   return 0;
  2580 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2581   for (size_t i = 0; i < size; i++) {
  2582     ids[i] = i;
  2584   return size;
  2587 bool os::get_page_info(char *start, page_info* info) {
  2588   return false;
  2591 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2592   return end;
  2596 int os::Linux::sched_getcpu_syscall(void) {
  2597   unsigned int cpu;
  2598   int retval = -1;
  2600 #if defined(IA32)
  2601 # ifndef SYS_getcpu
  2602 # define SYS_getcpu 318
  2603 # endif
  2604   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
  2605 #elif defined(AMD64)
  2606 // Unfortunately we have to bring all these macros here from vsyscall.h
  2607 // to be able to compile on old linuxes.
  2608 # define __NR_vgetcpu 2
  2609 # define VSYSCALL_START (-10UL << 20)
  2610 # define VSYSCALL_SIZE 1024
  2611 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  2612   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  2613   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  2614   retval = vgetcpu(&cpu, NULL, NULL);
  2615 #endif
  2617   return (retval == -1) ? retval : cpu;
  2620 // Something to do with the numa-aware allocator needs these symbols
  2621 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
  2622 extern "C" JNIEXPORT void numa_error(char *where) { }
  2623 extern "C" JNIEXPORT int fork1() { return fork(); }
  2626 // If we are running with libnuma version > 2, then we should
  2627 // be trying to use symbols with versions 1.1
  2628 // If we are running with earlier version, which did not have symbol versions,
  2629 // we should use the base version.
  2630 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  2631   void *f = dlvsym(handle, name, "libnuma_1.1");
  2632   if (f == NULL) {
  2633     f = dlsym(handle, name);
  2635   return f;
  2638 bool os::Linux::libnuma_init() {
  2639   // sched_getcpu() should be in libc.
  2640   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
  2641                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
  2643   // If it's not, try a direct syscall.
  2644   if (sched_getcpu() == -1)
  2645     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
  2647   if (sched_getcpu() != -1) { // Does it work?
  2648     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
  2649     if (handle != NULL) {
  2650       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
  2651                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
  2652       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
  2653                                        libnuma_dlsym(handle, "numa_max_node")));
  2654       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
  2655                                         libnuma_dlsym(handle, "numa_available")));
  2656       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
  2657                                             libnuma_dlsym(handle, "numa_tonode_memory")));
  2658       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
  2659                                             libnuma_dlsym(handle, "numa_interleave_memory")));
  2662       if (numa_available() != -1) {
  2663         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
  2664         // Create a cpu -> node mapping
  2665         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
  2666         rebuild_cpu_to_node_map();
  2667         return true;
  2671   return false;
  2674 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
  2675 // The table is later used in get_node_by_cpu().
  2676 void os::Linux::rebuild_cpu_to_node_map() {
  2677   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
  2678                               // in libnuma (possible values are starting from 16,
  2679                               // and continuing up with every other power of 2, but less
  2680                               // than the maximum number of CPUs supported by kernel), and
  2681                               // is a subject to change (in libnuma version 2 the requirements
  2682                               // are more reasonable) we'll just hardcode the number they use
  2683                               // in the library.
  2684   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
  2686   size_t cpu_num = os::active_processor_count();
  2687   size_t cpu_map_size = NCPUS / BitsPerCLong;
  2688   size_t cpu_map_valid_size =
  2689     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
  2691   cpu_to_node()->clear();
  2692   cpu_to_node()->at_grow(cpu_num - 1);
  2693   size_t node_num = numa_get_groups_num();
  2695   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
  2696   for (size_t i = 0; i < node_num; i++) {
  2697     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
  2698       for (size_t j = 0; j < cpu_map_valid_size; j++) {
  2699         if (cpu_map[j] != 0) {
  2700           for (size_t k = 0; k < BitsPerCLong; k++) {
  2701             if (cpu_map[j] & (1UL << k)) {
  2702               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
  2709   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
  2712 int os::Linux::get_node_by_cpu(int cpu_id) {
  2713   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
  2714     return cpu_to_node()->at(cpu_id);
  2716   return -1;
  2719 GrowableArray<int>* os::Linux::_cpu_to_node;
  2720 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
  2721 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
  2722 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
  2723 os::Linux::numa_available_func_t os::Linux::_numa_available;
  2724 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
  2725 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
  2726 unsigned long* os::Linux::_numa_all_nodes;
  2728 bool os::uncommit_memory(char* addr, size_t size) {
  2729   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2730                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2731   return res  != (uintptr_t) MAP_FAILED;
  2734 // Linux uses a growable mapping for the stack, and if the mapping for
  2735 // the stack guard pages is not removed when we detach a thread the
  2736 // stack cannot grow beyond the pages where the stack guard was
  2737 // mapped.  If at some point later in the process the stack expands to
  2738 // that point, the Linux kernel cannot expand the stack any further
  2739 // because the guard pages are in the way, and a segfault occurs.
  2740 //
  2741 // However, it's essential not to split the stack region by unmapping
  2742 // a region (leaving a hole) that's already part of the stack mapping,
  2743 // so if the stack mapping has already grown beyond the guard pages at
  2744 // the time we create them, we have to truncate the stack mapping.
  2745 // So, we need to know the extent of the stack mapping when
  2746 // create_stack_guard_pages() is called.
  2748 // Find the bounds of the stack mapping.  Return true for success.
  2749 //
  2750 // We only need this for stacks that are growable: at the time of
  2751 // writing thread stacks don't use growable mappings (i.e. those
  2752 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
  2753 // only applies to the main thread.
  2755 static
  2756 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
  2758   char buf[128];
  2759   int fd, sz;
  2761   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
  2762     return false;
  2765   const char kw[] = "[stack]";
  2766   const int kwlen = sizeof(kw)-1;
  2768   // Address part of /proc/self/maps couldn't be more than 128 bytes
  2769   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
  2770      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
  2771         // Extract addresses
  2772         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
  2773            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
  2774            if (sp >= *bottom && sp <= *top) {
  2775               ::close(fd);
  2776               return true;
  2782  ::close(fd);
  2783   return false;
  2787 // If the (growable) stack mapping already extends beyond the point
  2788 // where we're going to put our guard pages, truncate the mapping at
  2789 // that point by munmap()ping it.  This ensures that when we later
  2790 // munmap() the guard pages we don't leave a hole in the stack
  2791 // mapping. This only affects the main/initial thread, but guard
  2792 // against future OS changes
  2793 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2794   uintptr_t stack_extent, stack_base;
  2795   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2796   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2797       assert(os::Linux::is_initial_thread(),
  2798            "growable stack in non-initial thread");
  2799     if (stack_extent < (uintptr_t)addr)
  2800       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  2803   return os::commit_memory(addr, size);
  2806 // If this is a growable mapping, remove the guard pages entirely by
  2807 // munmap()ping them.  If not, just call uncommit_memory(). This only
  2808 // affects the main/initial thread, but guard against future OS changes
  2809 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2810   uintptr_t stack_extent, stack_base;
  2811   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  2812   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
  2813       assert(os::Linux::is_initial_thread(),
  2814            "growable stack in non-initial thread");
  2816     return ::munmap(addr, size) == 0;
  2819   return os::uncommit_memory(addr, size);
  2822 static address _highest_vm_reserved_address = NULL;
  2824 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2825 // at 'requested_addr'. If there are existing memory mappings at the same
  2826 // location, however, they will be overwritten. If 'fixed' is false,
  2827 // 'requested_addr' is only treated as a hint, the return value may or
  2828 // may not start from the requested address. Unlike Linux mmap(), this
  2829 // function returns NULL to indicate failure.
  2830 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2831   char * addr;
  2832   int flags;
  2834   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2835   if (fixed) {
  2836     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
  2837     flags |= MAP_FIXED;
  2840   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2841   // to PROT_EXEC if executable when we commit the page.
  2842   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2843                        flags, -1, 0);
  2845   if (addr != MAP_FAILED) {
  2846     // anon_mmap() should only get called during VM initialization,
  2847     // don't need lock (actually we can skip locking even it can be called
  2848     // from multiple threads, because _highest_vm_reserved_address is just a
  2849     // hint about the upper limit of non-stack memory regions.)
  2850     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2851       _highest_vm_reserved_address = (address)addr + bytes;
  2855   return addr == MAP_FAILED ? NULL : addr;
  2858 // Don't update _highest_vm_reserved_address, because there might be memory
  2859 // regions above addr + size. If so, releasing a memory region only creates
  2860 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2861 //
  2862 static int anon_munmap(char * addr, size_t size) {
  2863   return ::munmap(addr, size) == 0;
  2866 char* os::reserve_memory(size_t bytes, char* requested_addr,
  2867                          size_t alignment_hint) {
  2868   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2871 bool os::release_memory(char* addr, size_t size) {
  2872   return anon_munmap(addr, size);
  2875 static address highest_vm_reserved_address() {
  2876   return _highest_vm_reserved_address;
  2879 static bool linux_mprotect(char* addr, size_t size, int prot) {
  2880   // Linux wants the mprotect address argument to be page aligned.
  2881   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
  2883   // According to SUSv3, mprotect() should only be used with mappings
  2884   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2885   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2886   // protection of malloc'ed or statically allocated memory). Check the
  2887   // caller if you hit this assert.
  2888   assert(addr == bottom, "sanity check");
  2890   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  2891   return ::mprotect(bottom, size, prot) == 0;
  2894 // Set protections specified
  2895 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2896                         bool is_committed) {
  2897   unsigned int p = 0;
  2898   switch (prot) {
  2899   case MEM_PROT_NONE: p = PROT_NONE; break;
  2900   case MEM_PROT_READ: p = PROT_READ; break;
  2901   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2902   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2903   default:
  2904     ShouldNotReachHere();
  2906   // is_committed is unused.
  2907   return linux_mprotect(addr, bytes, p);
  2910 bool os::guard_memory(char* addr, size_t size) {
  2911   return linux_mprotect(addr, size, PROT_NONE);
  2914 bool os::unguard_memory(char* addr, size_t size) {
  2915   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2918 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2919   bool result = false;
  2920   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
  2921                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
  2922                   -1, 0);
  2924   if (p != (void *) -1) {
  2925     // We don't know if this really is a huge page or not.
  2926     FILE *fp = fopen("/proc/self/maps", "r");
  2927     if (fp) {
  2928       while (!feof(fp)) {
  2929         char chars[257];
  2930         long x = 0;
  2931         if (fgets(chars, sizeof(chars), fp)) {
  2932           if (sscanf(chars, "%lx-%*x", &x) == 1
  2933               && x == (long)p) {
  2934             if (strstr (chars, "hugepage")) {
  2935               result = true;
  2936               break;
  2941       fclose(fp);
  2943     munmap (p, page_size);
  2944     if (result)
  2945       return true;
  2948   if (warn) {
  2949     warning("HugeTLBFS is not supported by the operating system.");
  2952   return result;
  2955 /*
  2956 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  2958 * From the coredump_filter documentation:
  2960 * - (bit 0) anonymous private memory
  2961 * - (bit 1) anonymous shared memory
  2962 * - (bit 2) file-backed private memory
  2963 * - (bit 3) file-backed shared memory
  2964 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  2965 *           effective only if the bit 2 is cleared)
  2966 * - (bit 5) hugetlb private memory
  2967 * - (bit 6) hugetlb shared memory
  2968 */
  2969 static void set_coredump_filter(void) {
  2970   FILE *f;
  2971   long cdm;
  2973   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  2974     return;
  2977   if (fscanf(f, "%lx", &cdm) != 1) {
  2978     fclose(f);
  2979     return;
  2982   rewind(f);
  2984   if ((cdm & LARGEPAGES_BIT) == 0) {
  2985     cdm |= LARGEPAGES_BIT;
  2986     fprintf(f, "%#lx", cdm);
  2989   fclose(f);
  2992 // Large page support
  2994 static size_t _large_page_size = 0;
  2996 void os::large_page_init() {
  2997   if (!UseLargePages) {
  2998     UseHugeTLBFS = false;
  2999     UseSHM = false;
  3000     return;
  3003   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
  3004     // If UseLargePages is specified on the command line try both methods,
  3005     // if it's default, then try only HugeTLBFS.
  3006     if (FLAG_IS_DEFAULT(UseLargePages)) {
  3007       UseHugeTLBFS = true;
  3008     } else {
  3009       UseHugeTLBFS = UseSHM = true;
  3013   if (LargePageSizeInBytes) {
  3014     _large_page_size = LargePageSizeInBytes;
  3015   } else {
  3016     // large_page_size on Linux is used to round up heap size. x86 uses either
  3017     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
  3018     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
  3019     // page as large as 256M.
  3020     //
  3021     // Here we try to figure out page size by parsing /proc/meminfo and looking
  3022     // for a line with the following format:
  3023     //    Hugepagesize:     2048 kB
  3024     //
  3025     // If we can't determine the value (e.g. /proc is not mounted, or the text
  3026     // format has been changed), we'll use the largest page size supported by
  3027     // the processor.
  3029 #ifndef ZERO
  3030     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
  3031                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
  3032 #endif // ZERO
  3034     FILE *fp = fopen("/proc/meminfo", "r");
  3035     if (fp) {
  3036       while (!feof(fp)) {
  3037         int x = 0;
  3038         char buf[16];
  3039         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
  3040           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
  3041             _large_page_size = x * K;
  3042             break;
  3044         } else {
  3045           // skip to next line
  3046           for (;;) {
  3047             int ch = fgetc(fp);
  3048             if (ch == EOF || ch == (int)'\n') break;
  3052       fclose(fp);
  3056   // print a warning if any large page related flag is specified on command line
  3057   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
  3059   const size_t default_page_size = (size_t)Linux::page_size();
  3060   if (_large_page_size > default_page_size) {
  3061     _page_sizes[0] = _large_page_size;
  3062     _page_sizes[1] = default_page_size;
  3063     _page_sizes[2] = 0;
  3065   UseHugeTLBFS = UseHugeTLBFS &&
  3066                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
  3068   if (UseHugeTLBFS)
  3069     UseSHM = false;
  3071   UseLargePages = UseHugeTLBFS || UseSHM;
  3073   set_coredump_filter();
  3076 #ifndef SHM_HUGETLB
  3077 #define SHM_HUGETLB 04000
  3078 #endif
  3080 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  3081   // "exec" is passed in but not used.  Creating the shared image for
  3082   // the code cache doesn't have an SHM_X executable permission to check.
  3083   assert(UseLargePages && UseSHM, "only for SHM large pages");
  3085   key_t key = IPC_PRIVATE;
  3086   char *addr;
  3088   bool warn_on_failure = UseLargePages &&
  3089                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  3090                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3091                         );
  3092   char msg[128];
  3094   // Create a large shared memory region to attach to based on size.
  3095   // Currently, size is the total size of the heap
  3096   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  3097   if (shmid == -1) {
  3098      // Possible reasons for shmget failure:
  3099      // 1. shmmax is too small for Java heap.
  3100      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  3101      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  3102      // 2. not enough large page memory.
  3103      //    > check available large pages: cat /proc/meminfo
  3104      //    > increase amount of large pages:
  3105      //          echo new_value > /proc/sys/vm/nr_hugepages
  3106      //      Note 1: different Linux may use different name for this property,
  3107      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  3108      //      Note 2: it's possible there's enough physical memory available but
  3109      //            they are so fragmented after a long run that they can't
  3110      //            coalesce into large pages. Try to reserve large pages when
  3111      //            the system is still "fresh".
  3112      if (warn_on_failure) {
  3113        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3114        warning(msg);
  3116      return NULL;
  3119   // attach to the region
  3120   addr = (char*)shmat(shmid, req_addr, 0);
  3121   int err = errno;
  3123   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3124   // will be deleted when it's detached by shmdt() or when the process
  3125   // terminates. If shmat() is not successful this will remove the shared
  3126   // segment immediately.
  3127   shmctl(shmid, IPC_RMID, NULL);
  3129   if ((intptr_t)addr == -1) {
  3130      if (warn_on_failure) {
  3131        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3132        warning(msg);
  3134      return NULL;
  3137   if ((addr != NULL) && UseNUMAInterleaving) {
  3138     numa_make_global(addr, bytes);
  3141   return addr;
  3144 bool os::release_memory_special(char* base, size_t bytes) {
  3145   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3146   int rslt = shmdt(base);
  3147   return rslt == 0;
  3150 size_t os::large_page_size() {
  3151   return _large_page_size;
  3154 // HugeTLBFS allows application to commit large page memory on demand;
  3155 // with SysV SHM the entire memory region must be allocated as shared
  3156 // memory.
  3157 bool os::can_commit_large_page_memory() {
  3158   return UseHugeTLBFS;
  3161 bool os::can_execute_large_page_memory() {
  3162   return UseHugeTLBFS;
  3165 // Reserve memory at an arbitrary address, only if that area is
  3166 // available (and not reserved for something else).
  3168 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3169   const int max_tries = 10;
  3170   char* base[max_tries];
  3171   size_t size[max_tries];
  3172   const size_t gap = 0x000000;
  3174   // Assert only that the size is a multiple of the page size, since
  3175   // that's all that mmap requires, and since that's all we really know
  3176   // about at this low abstraction level.  If we need higher alignment,
  3177   // we can either pass an alignment to this method or verify alignment
  3178   // in one of the methods further up the call chain.  See bug 5044738.
  3179   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3181   // Repeatedly allocate blocks until the block is allocated at the
  3182   // right spot. Give up after max_tries. Note that reserve_memory() will
  3183   // automatically update _highest_vm_reserved_address if the call is
  3184   // successful. The variable tracks the highest memory address every reserved
  3185   // by JVM. It is used to detect heap-stack collision if running with
  3186   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  3187   // space than needed, it could confuse the collision detecting code. To
  3188   // solve the problem, save current _highest_vm_reserved_address and
  3189   // calculate the correct value before return.
  3190   address old_highest = _highest_vm_reserved_address;
  3192   // Linux mmap allows caller to pass an address as hint; give it a try first,
  3193   // if kernel honors the hint then we can return immediately.
  3194   char * addr = anon_mmap(requested_addr, bytes, false);
  3195   if (addr == requested_addr) {
  3196      return requested_addr;
  3199   if (addr != NULL) {
  3200      // mmap() is successful but it fails to reserve at the requested address
  3201      anon_munmap(addr, bytes);
  3204   int i;
  3205   for (i = 0; i < max_tries; ++i) {
  3206     base[i] = reserve_memory(bytes);
  3208     if (base[i] != NULL) {
  3209       // Is this the block we wanted?
  3210       if (base[i] == requested_addr) {
  3211         size[i] = bytes;
  3212         break;
  3215       // Does this overlap the block we wanted? Give back the overlapped
  3216       // parts and try again.
  3218       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3219       if (top_overlap >= 0 && top_overlap < bytes) {
  3220         unmap_memory(base[i], top_overlap);
  3221         base[i] += top_overlap;
  3222         size[i] = bytes - top_overlap;
  3223       } else {
  3224         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3225         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3226           unmap_memory(requested_addr, bottom_overlap);
  3227           size[i] = bytes - bottom_overlap;
  3228         } else {
  3229           size[i] = bytes;
  3235   // Give back the unused reserved pieces.
  3237   for (int j = 0; j < i; ++j) {
  3238     if (base[j] != NULL) {
  3239       unmap_memory(base[j], size[j]);
  3243   if (i < max_tries) {
  3244     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  3245     return requested_addr;
  3246   } else {
  3247     _highest_vm_reserved_address = old_highest;
  3248     return NULL;
  3252 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3253   return ::read(fd, buf, nBytes);
  3256 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
  3257 // Solaris uses poll(), linux uses park().
  3258 // Poll() is likely a better choice, assuming that Thread.interrupt()
  3259 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  3260 // SIGSEGV, see 4355769.
  3262 const int NANOSECS_PER_MILLISECS = 1000000;
  3264 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3265   assert(thread == Thread::current(),  "thread consistency check");
  3267   ParkEvent * const slp = thread->_SleepEvent ;
  3268   slp->reset() ;
  3269   OrderAccess::fence() ;
  3271   if (interruptible) {
  3272     jlong prevtime = javaTimeNanos();
  3274     for (;;) {
  3275       if (os::is_interrupted(thread, true)) {
  3276         return OS_INTRPT;
  3279       jlong newtime = javaTimeNanos();
  3281       if (newtime - prevtime < 0) {
  3282         // time moving backwards, should only happen if no monotonic clock
  3283         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3284         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3285       } else {
  3286         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3289       if(millis <= 0) {
  3290         return OS_OK;
  3293       prevtime = newtime;
  3296         assert(thread->is_Java_thread(), "sanity check");
  3297         JavaThread *jt = (JavaThread *) thread;
  3298         ThreadBlockInVM tbivm(jt);
  3299         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3301         jt->set_suspend_equivalent();
  3302         // cleared by handle_special_suspend_equivalent_condition() or
  3303         // java_suspend_self() via check_and_wait_while_suspended()
  3305         slp->park(millis);
  3307         // were we externally suspended while we were waiting?
  3308         jt->check_and_wait_while_suspended();
  3311   } else {
  3312     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3313     jlong prevtime = javaTimeNanos();
  3315     for (;;) {
  3316       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  3317       // the 1st iteration ...
  3318       jlong newtime = javaTimeNanos();
  3320       if (newtime - prevtime < 0) {
  3321         // time moving backwards, should only happen if no monotonic clock
  3322         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  3323         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
  3324       } else {
  3325         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
  3328       if(millis <= 0) break ;
  3330       prevtime = newtime;
  3331       slp->park(millis);
  3333     return OS_OK ;
  3337 int os::naked_sleep() {
  3338   // %% make the sleep time an integer flag. for now use 1 millisec.
  3339   return os::sleep(Thread::current(), 1, false);
  3342 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3343 void os::infinite_sleep() {
  3344   while (true) {    // sleep forever ...
  3345     ::sleep(100);   // ... 100 seconds at a time
  3349 // Used to convert frequent JVM_Yield() to nops
  3350 bool os::dont_yield() {
  3351   return DontYieldALot;
  3354 void os::yield() {
  3355   sched_yield();
  3358 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  3360 void os::yield_all(int attempts) {
  3361   // Yields to all threads, including threads with lower priorities
  3362   // Threads on Linux are all with same priority. The Solaris style
  3363   // os::yield_all() with nanosleep(1ms) is not necessary.
  3364   sched_yield();
  3367 // Called from the tight loops to possibly influence time-sharing heuristics
  3368 void os::loop_breaker(int attempts) {
  3369   os::yield_all(attempts);
  3372 ////////////////////////////////////////////////////////////////////////////////
  3373 // thread priority support
  3375 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
  3376 // only supports dynamic priority, static priority must be zero. For real-time
  3377 // applications, Linux supports SCHED_RR which allows static priority (1-99).
  3378 // However, for large multi-threaded applications, SCHED_RR is not only slower
  3379 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  3380 // of 5 runs - Sep 2005).
  3381 //
  3382 // The following code actually changes the niceness of kernel-thread/LWP. It
  3383 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  3384 // not the entire user process, and user level threads are 1:1 mapped to kernel
  3385 // threads. It has always been the case, but could change in the future. For
  3386 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  3387 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  3389 int os::java_to_os_priority[MaxPriority + 1] = {
  3390   19,              // 0 Entry should never be used
  3392    4,              // 1 MinPriority
  3393    3,              // 2
  3394    2,              // 3
  3396    1,              // 4
  3397    0,              // 5 NormPriority
  3398   -1,              // 6
  3400   -2,              // 7
  3401   -3,              // 8
  3402   -4,              // 9 NearMaxPriority
  3404   -5               // 10 MaxPriority
  3405 };
  3407 static int prio_init() {
  3408   if (ThreadPriorityPolicy == 1) {
  3409     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  3410     // if effective uid is not root. Perhaps, a more elegant way of doing
  3411     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  3412     if (geteuid() != 0) {
  3413       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  3414         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
  3416       ThreadPriorityPolicy = 0;
  3419   return 0;
  3422 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  3423   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  3425   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  3426   return (ret == 0) ? OS_OK : OS_ERR;
  3429 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  3430   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  3431     *priority_ptr = java_to_os_priority[NormPriority];
  3432     return OS_OK;
  3435   errno = 0;
  3436   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  3437   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  3440 // Hint to the underlying OS that a task switch would not be good.
  3441 // Void return because it's a hint and can fail.
  3442 void os::hint_no_preempt() {}
  3444 ////////////////////////////////////////////////////////////////////////////////
  3445 // suspend/resume support
  3447 //  the low-level signal-based suspend/resume support is a remnant from the
  3448 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  3449 //  within hotspot. Now there is a single use-case for this:
  3450 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  3451 //      that runs in the watcher thread.
  3452 //  The remaining code is greatly simplified from the more general suspension
  3453 //  code that used to be used.
  3454 //
  3455 //  The protocol is quite simple:
  3456 //  - suspend:
  3457 //      - sends a signal to the target thread
  3458 //      - polls the suspend state of the osthread using a yield loop
  3459 //      - target thread signal handler (SR_handler) sets suspend state
  3460 //        and blocks in sigsuspend until continued
  3461 //  - resume:
  3462 //      - sets target osthread state to continue
  3463 //      - sends signal to end the sigsuspend loop in the SR_handler
  3464 //
  3465 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  3466 //
  3468 static void resume_clear_context(OSThread *osthread) {
  3469   osthread->set_ucontext(NULL);
  3470   osthread->set_siginfo(NULL);
  3472   // notify the suspend action is completed, we have now resumed
  3473   osthread->sr.clear_suspended();
  3476 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  3477   osthread->set_ucontext(context);
  3478   osthread->set_siginfo(siginfo);
  3481 //
  3482 // Handler function invoked when a thread's execution is suspended or
  3483 // resumed. We have to be careful that only async-safe functions are
  3484 // called here (Note: most pthread functions are not async safe and
  3485 // should be avoided.)
  3486 //
  3487 // Note: sigwait() is a more natural fit than sigsuspend() from an
  3488 // interface point of view, but sigwait() prevents the signal hander
  3489 // from being run. libpthread would get very confused by not having
  3490 // its signal handlers run and prevents sigwait()'s use with the
  3491 // mutex granting granting signal.
  3492 //
  3493 // Currently only ever called on the VMThread
  3494 //
  3495 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  3496   // Save and restore errno to avoid confusing native code with EINTR
  3497   // after sigsuspend.
  3498   int old_errno = errno;
  3500   Thread* thread = Thread::current();
  3501   OSThread* osthread = thread->osthread();
  3502   assert(thread->is_VM_thread(), "Must be VMThread");
  3503   // read current suspend action
  3504   int action = osthread->sr.suspend_action();
  3505   if (action == SR_SUSPEND) {
  3506     suspend_save_context(osthread, siginfo, context);
  3508     // Notify the suspend action is about to be completed. do_suspend()
  3509     // waits until SR_SUSPENDED is set and then returns. We will wait
  3510     // here for a resume signal and that completes the suspend-other
  3511     // action. do_suspend/do_resume is always called as a pair from
  3512     // the same thread - so there are no races
  3514     // notify the caller
  3515     osthread->sr.set_suspended();
  3517     sigset_t suspend_set;  // signals for sigsuspend()
  3519     // get current set of blocked signals and unblock resume signal
  3520     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  3521     sigdelset(&suspend_set, SR_signum);
  3523     // wait here until we are resumed
  3524     do {
  3525       sigsuspend(&suspend_set);
  3526       // ignore all returns until we get a resume signal
  3527     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  3529     resume_clear_context(osthread);
  3531   } else {
  3532     assert(action == SR_CONTINUE, "unexpected sr action");
  3533     // nothing special to do - just leave the handler
  3536   errno = old_errno;
  3540 static int SR_initialize() {
  3541   struct sigaction act;
  3542   char *s;
  3543   /* Get signal number to use for suspend/resume */
  3544   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  3545     int sig = ::strtol(s, 0, 10);
  3546     if (sig > 0 || sig < _NSIG) {
  3547         SR_signum = sig;
  3551   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  3552         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  3554   sigemptyset(&SR_sigset);
  3555   sigaddset(&SR_sigset, SR_signum);
  3557   /* Set up signal handler for suspend/resume */
  3558   act.sa_flags = SA_RESTART|SA_SIGINFO;
  3559   act.sa_handler = (void (*)(int)) SR_handler;
  3561   // SR_signum is blocked by default.
  3562   // 4528190 - We also need to block pthread restart signal (32 on all
  3563   // supported Linux platforms). Note that LinuxThreads need to block
  3564   // this signal for all threads to work properly. So we don't have
  3565   // to use hard-coded signal number when setting up the mask.
  3566   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  3568   if (sigaction(SR_signum, &act, 0) == -1) {
  3569     return -1;
  3572   // Save signal flag
  3573   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  3574   return 0;
  3577 static int SR_finalize() {
  3578   return 0;
  3582 // returns true on success and false on error - really an error is fatal
  3583 // but this seems the normal response to library errors
  3584 static bool do_suspend(OSThread* osthread) {
  3585   // mark as suspended and send signal
  3586   osthread->sr.set_suspend_action(SR_SUSPEND);
  3587   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3588   assert_status(status == 0, status, "pthread_kill");
  3590   // check status and wait until notified of suspension
  3591   if (status == 0) {
  3592     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  3593       os::yield_all(i);
  3595     osthread->sr.set_suspend_action(SR_NONE);
  3596     return true;
  3598   else {
  3599     osthread->sr.set_suspend_action(SR_NONE);
  3600     return false;
  3604 static void do_resume(OSThread* osthread) {
  3605   assert(osthread->sr.is_suspended(), "thread should be suspended");
  3606   osthread->sr.set_suspend_action(SR_CONTINUE);
  3608   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  3609   assert_status(status == 0, status, "pthread_kill");
  3610   // check status and wait unit notified of resumption
  3611   if (status == 0) {
  3612     for (int i = 0; osthread->sr.is_suspended(); i++) {
  3613       os::yield_all(i);
  3616   osthread->sr.set_suspend_action(SR_NONE);
  3619 ////////////////////////////////////////////////////////////////////////////////
  3620 // interrupt support
  3622 void os::interrupt(Thread* thread) {
  3623   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3624     "possibility of dangling Thread pointer");
  3626   OSThread* osthread = thread->osthread();
  3628   if (!osthread->interrupted()) {
  3629     osthread->set_interrupted(true);
  3630     // More than one thread can get here with the same value of osthread,
  3631     // resulting in multiple notifications.  We do, however, want the store
  3632     // to interrupted() to be visible to other threads before we execute unpark().
  3633     OrderAccess::fence();
  3634     ParkEvent * const slp = thread->_SleepEvent ;
  3635     if (slp != NULL) slp->unpark() ;
  3638   // For JSR166. Unpark even if interrupt status already was set
  3639   if (thread->is_Java_thread())
  3640     ((JavaThread*)thread)->parker()->unpark();
  3642   ParkEvent * ev = thread->_ParkEvent ;
  3643   if (ev != NULL) ev->unpark() ;
  3647 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  3648   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  3649     "possibility of dangling Thread pointer");
  3651   OSThread* osthread = thread->osthread();
  3653   bool interrupted = osthread->interrupted();
  3655   if (interrupted && clear_interrupted) {
  3656     osthread->set_interrupted(false);
  3657     // consider thread->_SleepEvent->reset() ... optional optimization
  3660   return interrupted;
  3663 ///////////////////////////////////////////////////////////////////////////////////
  3664 // signal handling (except suspend/resume)
  3666 // This routine may be used by user applications as a "hook" to catch signals.
  3667 // The user-defined signal handler must pass unrecognized signals to this
  3668 // routine, and if it returns true (non-zero), then the signal handler must
  3669 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  3670 // routine will never retun false (zero), but instead will execute a VM panic
  3671 // routine kill the process.
  3672 //
  3673 // If this routine returns false, it is OK to call it again.  This allows
  3674 // the user-defined signal handler to perform checks either before or after
  3675 // the VM performs its own checks.  Naturally, the user code would be making
  3676 // a serious error if it tried to handle an exception (such as a null check
  3677 // or breakpoint) that the VM was generating for its own correct operation.
  3678 //
  3679 // This routine may recognize any of the following kinds of signals:
  3680 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  3681 // It should be consulted by handlers for any of those signals.
  3682 //
  3683 // The caller of this routine must pass in the three arguments supplied
  3684 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  3685 // field of the structure passed to sigaction().  This routine assumes that
  3686 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  3687 //
  3688 // Note that the VM will print warnings if it detects conflicting signal
  3689 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  3690 //
  3691 extern "C" JNIEXPORT int
  3692 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
  3693                         void* ucontext, int abort_if_unrecognized);
  3695 void signalHandler(int sig, siginfo_t* info, void* uc) {
  3696   assert(info != NULL && uc != NULL, "it must be old kernel");
  3697   JVM_handle_linux_signal(sig, info, uc, true);
  3701 // This boolean allows users to forward their own non-matching signals
  3702 // to JVM_handle_linux_signal, harmlessly.
  3703 bool os::Linux::signal_handlers_are_installed = false;
  3705 // For signal-chaining
  3706 struct sigaction os::Linux::sigact[MAXSIGNUM];
  3707 unsigned int os::Linux::sigs = 0;
  3708 bool os::Linux::libjsig_is_loaded = false;
  3709 typedef struct sigaction *(*get_signal_t)(int);
  3710 get_signal_t os::Linux::get_signal_action = NULL;
  3712 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  3713   struct sigaction *actp = NULL;
  3715   if (libjsig_is_loaded) {
  3716     // Retrieve the old signal handler from libjsig
  3717     actp = (*get_signal_action)(sig);
  3719   if (actp == NULL) {
  3720     // Retrieve the preinstalled signal handler from jvm
  3721     actp = get_preinstalled_handler(sig);
  3724   return actp;
  3727 static bool call_chained_handler(struct sigaction *actp, int sig,
  3728                                  siginfo_t *siginfo, void *context) {
  3729   // Call the old signal handler
  3730   if (actp->sa_handler == SIG_DFL) {
  3731     // It's more reasonable to let jvm treat it as an unexpected exception
  3732     // instead of taking the default action.
  3733     return false;
  3734   } else if (actp->sa_handler != SIG_IGN) {
  3735     if ((actp->sa_flags & SA_NODEFER) == 0) {
  3736       // automaticlly block the signal
  3737       sigaddset(&(actp->sa_mask), sig);
  3740     sa_handler_t hand;
  3741     sa_sigaction_t sa;
  3742     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  3743     // retrieve the chained handler
  3744     if (siginfo_flag_set) {
  3745       sa = actp->sa_sigaction;
  3746     } else {
  3747       hand = actp->sa_handler;
  3750     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  3751       actp->sa_handler = SIG_DFL;
  3754     // try to honor the signal mask
  3755     sigset_t oset;
  3756     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  3758     // call into the chained handler
  3759     if (siginfo_flag_set) {
  3760       (*sa)(sig, siginfo, context);
  3761     } else {
  3762       (*hand)(sig);
  3765     // restore the signal mask
  3766     pthread_sigmask(SIG_SETMASK, &oset, 0);
  3768   // Tell jvm's signal handler the signal is taken care of.
  3769   return true;
  3772 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  3773   bool chained = false;
  3774   // signal-chaining
  3775   if (UseSignalChaining) {
  3776     struct sigaction *actp = get_chained_signal_action(sig);
  3777     if (actp != NULL) {
  3778       chained = call_chained_handler(actp, sig, siginfo, context);
  3781   return chained;
  3784 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  3785   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  3786     return &sigact[sig];
  3788   return NULL;
  3791 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  3792   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3793   sigact[sig] = oldAct;
  3794   sigs |= (unsigned int)1 << sig;
  3797 // for diagnostic
  3798 int os::Linux::sigflags[MAXSIGNUM];
  3800 int os::Linux::get_our_sigflags(int sig) {
  3801   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3802   return sigflags[sig];
  3805 void os::Linux::set_our_sigflags(int sig, int flags) {
  3806   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3807   sigflags[sig] = flags;
  3810 void os::Linux::set_signal_handler(int sig, bool set_installed) {
  3811   // Check for overwrite.
  3812   struct sigaction oldAct;
  3813   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3815   void* oldhand = oldAct.sa_sigaction
  3816                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3817                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3818   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3819       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3820       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3821     if (AllowUserSignalHandlers || !set_installed) {
  3822       // Do not overwrite; user takes responsibility to forward to us.
  3823       return;
  3824     } else if (UseSignalChaining) {
  3825       // save the old handler in jvm
  3826       save_preinstalled_handler(sig, oldAct);
  3827       // libjsig also interposes the sigaction() call below and saves the
  3828       // old sigaction on it own.
  3829     } else {
  3830       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3831                     "%#lx for signal %d.", (long)oldhand, sig));
  3835   struct sigaction sigAct;
  3836   sigfillset(&(sigAct.sa_mask));
  3837   sigAct.sa_handler = SIG_DFL;
  3838   if (!set_installed) {
  3839     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3840   } else {
  3841     sigAct.sa_sigaction = signalHandler;
  3842     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3844   // Save flags, which are set by ours
  3845   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3846   sigflags[sig] = sigAct.sa_flags;
  3848   int ret = sigaction(sig, &sigAct, &oldAct);
  3849   assert(ret == 0, "check");
  3851   void* oldhand2  = oldAct.sa_sigaction
  3852                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3853                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3854   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3857 // install signal handlers for signals that HotSpot needs to
  3858 // handle in order to support Java-level exception handling.
  3860 void os::Linux::install_signal_handlers() {
  3861   if (!signal_handlers_are_installed) {
  3862     signal_handlers_are_installed = true;
  3864     // signal-chaining
  3865     typedef void (*signal_setting_t)();
  3866     signal_setting_t begin_signal_setting = NULL;
  3867     signal_setting_t end_signal_setting = NULL;
  3868     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3869                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3870     if (begin_signal_setting != NULL) {
  3871       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3872                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3873       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3874                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3875       libjsig_is_loaded = true;
  3876       assert(UseSignalChaining, "should enable signal-chaining");
  3878     if (libjsig_is_loaded) {
  3879       // Tell libjsig jvm is setting signal handlers
  3880       (*begin_signal_setting)();
  3883     set_signal_handler(SIGSEGV, true);
  3884     set_signal_handler(SIGPIPE, true);
  3885     set_signal_handler(SIGBUS, true);
  3886     set_signal_handler(SIGILL, true);
  3887     set_signal_handler(SIGFPE, true);
  3888     set_signal_handler(SIGXFSZ, true);
  3890     if (libjsig_is_loaded) {
  3891       // Tell libjsig jvm finishes setting signal handlers
  3892       (*end_signal_setting)();
  3895     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3896     // and if UserSignalHandler is installed all bets are off.
  3897     // Log that signal checking is off only if -verbose:jni is specified.
  3898     if (CheckJNICalls) {
  3899       if (libjsig_is_loaded) {
  3900         if (PrintJNIResolving) {
  3901           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3903         check_signals = false;
  3905       if (AllowUserSignalHandlers) {
  3906         if (PrintJNIResolving) {
  3907           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3909         check_signals = false;
  3915 // This is the fastest way to get thread cpu time on Linux.
  3916 // Returns cpu time (user+sys) for any thread, not only for current.
  3917 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
  3918 // It might work on 2.6.10+ with a special kernel/glibc patch.
  3919 // For reference, please, see IEEE Std 1003.1-2004:
  3920 //   http://www.unix.org/single_unix_specification
  3922 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  3923   struct timespec tp;
  3924   int rc = os::Linux::clock_gettime(clockid, &tp);
  3925   assert(rc == 0, "clock_gettime is expected to return 0 code");
  3927   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
  3930 /////
  3931 // glibc on Linux platform uses non-documented flag
  3932 // to indicate, that some special sort of signal
  3933 // trampoline is used.
  3934 // We will never set this flag, and we should
  3935 // ignore this flag in our diagnostic
  3936 #ifdef SIGNIFICANT_SIGNAL_MASK
  3937 #undef SIGNIFICANT_SIGNAL_MASK
  3938 #endif
  3939 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3941 static const char* get_signal_handler_name(address handler,
  3942                                            char* buf, int buflen) {
  3943   int offset;
  3944   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3945   if (found) {
  3946     // skip directory names
  3947     const char *p1, *p2;
  3948     p1 = buf;
  3949     size_t len = strlen(os::file_separator());
  3950     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3951     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3952   } else {
  3953     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3955   return buf;
  3958 static void print_signal_handler(outputStream* st, int sig,
  3959                                  char* buf, size_t buflen) {
  3960   struct sigaction sa;
  3962   sigaction(sig, NULL, &sa);
  3964   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3965   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3967   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3969   address handler = (sa.sa_flags & SA_SIGINFO)
  3970     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3971     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3973   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3974     st->print("SIG_DFL");
  3975   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3976     st->print("SIG_IGN");
  3977   } else {
  3978     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3981   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3983   address rh = VMError::get_resetted_sighandler(sig);
  3984   // May be, handler was resetted by VMError?
  3985   if(rh != NULL) {
  3986     handler = rh;
  3987     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3990   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3992   // Check: is it our handler?
  3993   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3994      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3995     // It is our signal handler
  3996     // check for flags, reset system-used one!
  3997     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
  3998       st->print(
  3999                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  4000                 os::Linux::get_our_sigflags(sig));
  4003   st->cr();
  4007 #define DO_SIGNAL_CHECK(sig) \
  4008   if (!sigismember(&check_signal_done, sig)) \
  4009     os::Linux::check_signal_handler(sig)
  4011 // This method is a periodic task to check for misbehaving JNI applications
  4012 // under CheckJNI, we can add any periodic checks here
  4014 void os::run_periodic_checks() {
  4016   if (check_signals == false) return;
  4018   // SEGV and BUS if overridden could potentially prevent
  4019   // generation of hs*.log in the event of a crash, debugging
  4020   // such a case can be very challenging, so we absolutely
  4021   // check the following for a good measure:
  4022   DO_SIGNAL_CHECK(SIGSEGV);
  4023   DO_SIGNAL_CHECK(SIGILL);
  4024   DO_SIGNAL_CHECK(SIGFPE);
  4025   DO_SIGNAL_CHECK(SIGBUS);
  4026   DO_SIGNAL_CHECK(SIGPIPE);
  4027   DO_SIGNAL_CHECK(SIGXFSZ);
  4030   // ReduceSignalUsage allows the user to override these handlers
  4031   // see comments at the very top and jvm_solaris.h
  4032   if (!ReduceSignalUsage) {
  4033     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4034     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4035     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4036     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4039   DO_SIGNAL_CHECK(SR_signum);
  4040   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  4043 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4045 static os_sigaction_t os_sigaction = NULL;
  4047 void os::Linux::check_signal_handler(int sig) {
  4048   char buf[O_BUFLEN];
  4049   address jvmHandler = NULL;
  4052   struct sigaction act;
  4053   if (os_sigaction == NULL) {
  4054     // only trust the default sigaction, in case it has been interposed
  4055     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4056     if (os_sigaction == NULL) return;
  4059   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4062   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  4064   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4065     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4066     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4069   switch(sig) {
  4070   case SIGSEGV:
  4071   case SIGBUS:
  4072   case SIGFPE:
  4073   case SIGPIPE:
  4074   case SIGILL:
  4075   case SIGXFSZ:
  4076     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  4077     break;
  4079   case SHUTDOWN1_SIGNAL:
  4080   case SHUTDOWN2_SIGNAL:
  4081   case SHUTDOWN3_SIGNAL:
  4082   case BREAK_SIGNAL:
  4083     jvmHandler = (address)user_handler();
  4084     break;
  4086   case INTERRUPT_SIGNAL:
  4087     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  4088     break;
  4090   default:
  4091     if (sig == SR_signum) {
  4092       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  4093     } else {
  4094       return;
  4096     break;
  4099   if (thisHandler != jvmHandler) {
  4100     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4101     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4102     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4103     // No need to check this sig any longer
  4104     sigaddset(&check_signal_done, sig);
  4105   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
  4106     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4107     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
  4108     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4109     // No need to check this sig any longer
  4110     sigaddset(&check_signal_done, sig);
  4113   // Dump all the signal
  4114   if (sigismember(&check_signal_done, sig)) {
  4115     print_signal_handlers(tty, buf, O_BUFLEN);
  4119 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  4121 extern bool signal_name(int signo, char* buf, size_t len);
  4123 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4124   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4125     // signal
  4126     if (!signal_name(exception_code, buf, size)) {
  4127       jio_snprintf(buf, size, "SIG%d", exception_code);
  4129     return buf;
  4130   } else {
  4131     return NULL;
  4135 // this is called _before_ the most of global arguments have been parsed
  4136 void os::init(void) {
  4137   char dummy;   /* used to get a guess on initial stack address */
  4138 //  first_hrtime = gethrtime();
  4140   // With LinuxThreads the JavaMain thread pid (primordial thread)
  4141   // is different than the pid of the java launcher thread.
  4142   // So, on Linux, the launcher thread pid is passed to the VM
  4143   // via the sun.java.launcher.pid property.
  4144   // Use this property instead of getpid() if it was correctly passed.
  4145   // See bug 6351349.
  4146   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  4148   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  4150   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
  4152   init_random(1234567);
  4154   ThreadCritical::initialize();
  4156   Linux::set_page_size(sysconf(_SC_PAGESIZE));
  4157   if (Linux::page_size() == -1) {
  4158     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
  4159                   strerror(errno)));
  4161   init_page_sizes((size_t) Linux::page_size());
  4163   Linux::initialize_system_info();
  4165   // main_thread points to the aboriginal thread
  4166   Linux::_main_thread = pthread_self();
  4168   Linux::clock_init();
  4169   initial_time_count = os::elapsed_counter();
  4170   pthread_mutex_init(&dl_mutex, NULL);
  4173 // To install functions for atexit system call
  4174 extern "C" {
  4175   static void perfMemory_exit_helper() {
  4176     perfMemory_exit();
  4180 // this is called _after_ the global arguments have been parsed
  4181 jint os::init_2(void)
  4183   Linux::fast_thread_clock_init();
  4185   // Allocate a single page and mark it as readable for safepoint polling
  4186   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4187   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  4189   os::set_polling_page( polling_page );
  4191 #ifndef PRODUCT
  4192   if(Verbose && PrintMiscellaneous)
  4193     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4194 #endif
  4196   if (!UseMembar) {
  4197     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  4198     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4199     os::set_memory_serialize_page( mem_serialize_page );
  4201 #ifndef PRODUCT
  4202     if(Verbose && PrintMiscellaneous)
  4203       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4204 #endif
  4207   os::large_page_init();
  4209   // initialize suspend/resume support - must do this before signal_sets_init()
  4210   if (SR_initialize() != 0) {
  4211     perror("SR_initialize failed");
  4212     return JNI_ERR;
  4215   Linux::signal_sets_init();
  4216   Linux::install_signal_handlers();
  4218   // Check minimum allowable stack size for thread creation and to initialize
  4219   // the java system classes, including StackOverflowError - depends on page
  4220   // size.  Add a page for compiler2 recursion in main thread.
  4221   // Add in 2*BytesPerWord times page size to account for VM stack during
  4222   // class initialization depending on 32 or 64 bit VM.
  4223   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
  4224             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4225                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
  4227   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4228   if (threadStackSizeInBytes != 0 &&
  4229       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
  4230         tty->print_cr("\nThe stack size specified is too small, "
  4231                       "Specify at least %dk",
  4232                       os::Linux::min_stack_allowed/ K);
  4233         return JNI_ERR;
  4236   // Make the stack size a multiple of the page size so that
  4237   // the yellow/red zones can be guarded.
  4238   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  4239         vm_page_size()));
  4241   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
  4243   Linux::libpthread_init();
  4244   if (PrintMiscellaneous && (Verbose || WizardMode)) {
  4245      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
  4246           Linux::glibc_version(), Linux::libpthread_version(),
  4247           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  4250   if (UseNUMA) {
  4251     if (!Linux::libnuma_init()) {
  4252       UseNUMA = false;
  4253     } else {
  4254       if ((Linux::numa_max_node() < 1)) {
  4255         // There's only one node(they start from 0), disable NUMA.
  4256         UseNUMA = false;
  4259     // With SHM large pages we cannot uncommit a page, so there's not way
  4260     // we can make the adaptive lgrp chunk resizing work. If the user specified
  4261     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
  4262     // disable adaptive resizing.
  4263     if (UseNUMA && UseLargePages && UseSHM) {
  4264       if (!FLAG_IS_DEFAULT(UseNUMA)) {
  4265         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
  4266           UseLargePages = false;
  4267         } else {
  4268           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
  4269           UseAdaptiveSizePolicy = false;
  4270           UseAdaptiveNUMAChunkSizing = false;
  4272       } else {
  4273         UseNUMA = false;
  4276     if (!UseNUMA && ForceNUMA) {
  4277       UseNUMA = true;
  4281   if (MaxFDLimit) {
  4282     // set the number of file descriptors to max. print out error
  4283     // if getrlimit/setrlimit fails but continue regardless.
  4284     struct rlimit nbr_files;
  4285     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  4286     if (status != 0) {
  4287       if (PrintMiscellaneous && (Verbose || WizardMode))
  4288         perror("os::init_2 getrlimit failed");
  4289     } else {
  4290       nbr_files.rlim_cur = nbr_files.rlim_max;
  4291       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  4292       if (status != 0) {
  4293         if (PrintMiscellaneous && (Verbose || WizardMode))
  4294           perror("os::init_2 setrlimit failed");
  4299   // Initialize lock used to serialize thread creation (see os::create_thread)
  4300   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
  4302   // at-exit methods are called in the reverse order of their registration.
  4303   // atexit functions are called on return from main or as a result of a
  4304   // call to exit(3C). There can be only 32 of these functions registered
  4305   // and atexit() does not set errno.
  4307   if (PerfAllowAtExitRegistration) {
  4308     // only register atexit functions if PerfAllowAtExitRegistration is set.
  4309     // atexit functions can be delayed until process exit time, which
  4310     // can be problematic for embedded VM situations. Embedded VMs should
  4311     // call DestroyJavaVM() to assure that VM resources are released.
  4313     // note: perfMemory_exit_helper atexit function may be removed in
  4314     // the future if the appropriate cleanup code can be added to the
  4315     // VM_Exit VMOperation's doit method.
  4316     if (atexit(perfMemory_exit_helper) != 0) {
  4317       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  4321   // initialize thread priority policy
  4322   prio_init();
  4324   return JNI_OK;
  4327 // this is called at the end of vm_initialization
  4328 void os::init_3(void)
  4330 #ifdef JAVASE_EMBEDDED
  4331   // Start the MemNotifyThread
  4332   if (LowMemoryProtection) {
  4333     MemNotifyThread::start();
  4335   return;
  4336 #endif
  4339 // Mark the polling page as unreadable
  4340 void os::make_polling_page_unreadable(void) {
  4341   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
  4342     fatal("Could not disable polling page");
  4343 };
  4345 // Mark the polling page as readable
  4346 void os::make_polling_page_readable(void) {
  4347   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
  4348     fatal("Could not enable polling page");
  4350 };
  4352 int os::active_processor_count() {
  4353   // Linux doesn't yet have a (official) notion of processor sets,
  4354   // so just return the number of online processors.
  4355   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  4356   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  4357   return online_cpus;
  4360 void os::set_native_thread_name(const char *name) {
  4361   // Not yet implemented.
  4362   return;
  4365 bool os::distribute_processes(uint length, uint* distribution) {
  4366   // Not yet implemented.
  4367   return false;
  4370 bool os::bind_to_processor(uint processor_id) {
  4371   // Not yet implemented.
  4372   return false;
  4375 ///
  4377 // Suspends the target using the signal mechanism and then grabs the PC before
  4378 // resuming the target. Used by the flat-profiler only
  4379 ExtendedPC os::get_thread_pc(Thread* thread) {
  4380   // Make sure that it is called by the watcher for the VMThread
  4381   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  4382   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4384   ExtendedPC epc;
  4386   OSThread* osthread = thread->osthread();
  4387   if (do_suspend(osthread)) {
  4388     if (osthread->ucontext() != NULL) {
  4389       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
  4390     } else {
  4391       // NULL context is unexpected, double-check this is the VMThread
  4392       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  4394     do_resume(osthread);
  4396   // failure means pthread_kill failed for some reason - arguably this is
  4397   // a fatal problem, but such problems are ignored elsewhere
  4399   return epc;
  4402 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  4404    if (is_NPTL()) {
  4405       return pthread_cond_timedwait(_cond, _mutex, _abstime);
  4406    } else {
  4407 #ifndef IA64
  4408       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
  4409       // word back to default 64bit precision if condvar is signaled. Java
  4410       // wants 53bit precision.  Save and restore current value.
  4411       int fpu = get_fpu_control_word();
  4412 #endif // IA64
  4413       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
  4414 #ifndef IA64
  4415       set_fpu_control_word(fpu);
  4416 #endif // IA64
  4417       return status;
  4421 ////////////////////////////////////////////////////////////////////////////////
  4422 // debug support
  4424 static address same_page(address x, address y) {
  4425   int page_bits = -os::vm_page_size();
  4426   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  4427     return x;
  4428   else if (x > y)
  4429     return (address)(intptr_t(y) | ~page_bits) + 1;
  4430   else
  4431     return (address)(intptr_t(y) & page_bits);
  4434 bool os::find(address addr, outputStream* st) {
  4435   Dl_info dlinfo;
  4436   memset(&dlinfo, 0, sizeof(dlinfo));
  4437   if (dladdr(addr, &dlinfo)) {
  4438     st->print(PTR_FORMAT ": ", addr);
  4439     if (dlinfo.dli_sname != NULL) {
  4440       st->print("%s+%#x", dlinfo.dli_sname,
  4441                  addr - (intptr_t)dlinfo.dli_saddr);
  4442     } else if (dlinfo.dli_fname) {
  4443       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  4444     } else {
  4445       st->print("<absolute address>");
  4447     if (dlinfo.dli_fname) {
  4448       st->print(" in %s", dlinfo.dli_fname);
  4450     if (dlinfo.dli_fbase) {
  4451       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  4453     st->cr();
  4455     if (Verbose) {
  4456       // decode some bytes around the PC
  4457       address begin = same_page(addr-40, addr);
  4458       address end   = same_page(addr+40, addr);
  4459       address       lowest = (address) dlinfo.dli_sname;
  4460       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  4461       if (begin < lowest)  begin = lowest;
  4462       Dl_info dlinfo2;
  4463       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  4464           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  4465         end = (address) dlinfo2.dli_saddr;
  4466       Disassembler::decode(begin, end, st);
  4468     return true;
  4470   return false;
  4473 ////////////////////////////////////////////////////////////////////////////////
  4474 // misc
  4476 // This does not do anything on Linux. This is basically a hook for being
  4477 // able to use structured exception handling (thread-local exception filters)
  4478 // on, e.g., Win32.
  4479 void
  4480 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  4481                          JavaCallArguments* args, Thread* thread) {
  4482   f(value, method, args, thread);
  4485 void os::print_statistics() {
  4488 int os::message_box(const char* title, const char* message) {
  4489   int i;
  4490   fdStream err(defaultStream::error_fd());
  4491   for (i = 0; i < 78; i++) err.print_raw("=");
  4492   err.cr();
  4493   err.print_raw_cr(title);
  4494   for (i = 0; i < 78; i++) err.print_raw("-");
  4495   err.cr();
  4496   err.print_raw_cr(message);
  4497   for (i = 0; i < 78; i++) err.print_raw("=");
  4498   err.cr();
  4500   char buf[16];
  4501   // Prevent process from exiting upon "read error" without consuming all CPU
  4502   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4504   return buf[0] == 'y' || buf[0] == 'Y';
  4507 int os::stat(const char *path, struct stat *sbuf) {
  4508   char pathbuf[MAX_PATH];
  4509   if (strlen(path) > MAX_PATH - 1) {
  4510     errno = ENAMETOOLONG;
  4511     return -1;
  4513   os::native_path(strcpy(pathbuf, path));
  4514   return ::stat(pathbuf, sbuf);
  4517 bool os::check_heap(bool force) {
  4518   return true;
  4521 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  4522   return ::vsnprintf(buf, count, format, args);
  4525 // Is a (classpath) directory empty?
  4526 bool os::dir_is_empty(const char* path) {
  4527   DIR *dir = NULL;
  4528   struct dirent *ptr;
  4530   dir = opendir(path);
  4531   if (dir == NULL) return true;
  4533   /* Scan the directory */
  4534   bool result = true;
  4535   char buf[sizeof(struct dirent) + MAX_PATH];
  4536   while (result && (ptr = ::readdir(dir)) != NULL) {
  4537     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  4538       result = false;
  4541   closedir(dir);
  4542   return result;
  4545 // This code originates from JDK's sysOpen and open64_w
  4546 // from src/solaris/hpi/src/system_md.c
  4548 #ifndef O_DELETE
  4549 #define O_DELETE 0x10000
  4550 #endif
  4552 // Open a file. Unlink the file immediately after open returns
  4553 // if the specified oflag has the O_DELETE flag set.
  4554 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  4556 int os::open(const char *path, int oflag, int mode) {
  4558   if (strlen(path) > MAX_PATH - 1) {
  4559     errno = ENAMETOOLONG;
  4560     return -1;
  4562   int fd;
  4563   int o_delete = (oflag & O_DELETE);
  4564   oflag = oflag & ~O_DELETE;
  4566   fd = ::open64(path, oflag, mode);
  4567   if (fd == -1) return -1;
  4569   //If the open succeeded, the file might still be a directory
  4571     struct stat64 buf64;
  4572     int ret = ::fstat64(fd, &buf64);
  4573     int st_mode = buf64.st_mode;
  4575     if (ret != -1) {
  4576       if ((st_mode & S_IFMT) == S_IFDIR) {
  4577         errno = EISDIR;
  4578         ::close(fd);
  4579         return -1;
  4581     } else {
  4582       ::close(fd);
  4583       return -1;
  4587     /*
  4588      * All file descriptors that are opened in the JVM and not
  4589      * specifically destined for a subprocess should have the
  4590      * close-on-exec flag set.  If we don't set it, then careless 3rd
  4591      * party native code might fork and exec without closing all
  4592      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  4593      * UNIXProcess.c), and this in turn might:
  4595      * - cause end-of-file to fail to be detected on some file
  4596      *   descriptors, resulting in mysterious hangs, or
  4598      * - might cause an fopen in the subprocess to fail on a system
  4599      *   suffering from bug 1085341.
  4601      * (Yes, the default setting of the close-on-exec flag is a Unix
  4602      * design flaw)
  4604      * See:
  4605      * 1085341: 32-bit stdio routines should support file descriptors >255
  4606      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  4607      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  4608      */
  4609 #ifdef FD_CLOEXEC
  4611         int flags = ::fcntl(fd, F_GETFD);
  4612         if (flags != -1)
  4613             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  4615 #endif
  4617   if (o_delete != 0) {
  4618     ::unlink(path);
  4620   return fd;
  4624 // create binary file, rewriting existing file if required
  4625 int os::create_binary_file(const char* path, bool rewrite_existing) {
  4626   int oflags = O_WRONLY | O_CREAT;
  4627   if (!rewrite_existing) {
  4628     oflags |= O_EXCL;
  4630   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  4633 // return current position of file pointer
  4634 jlong os::current_file_offset(int fd) {
  4635   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  4638 // move file pointer to the specified offset
  4639 jlong os::seek_to_file_offset(int fd, jlong offset) {
  4640   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  4643 // This code originates from JDK's sysAvailable
  4644 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  4646 int os::available(int fd, jlong *bytes) {
  4647   jlong cur, end;
  4648   int mode;
  4649   struct stat64 buf64;
  4651   if (::fstat64(fd, &buf64) >= 0) {
  4652     mode = buf64.st_mode;
  4653     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  4654       /*
  4655       * XXX: is the following call interruptible? If so, this might
  4656       * need to go through the INTERRUPT_IO() wrapper as for other
  4657       * blocking, interruptible calls in this file.
  4658       */
  4659       int n;
  4660       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  4661         *bytes = n;
  4662         return 1;
  4666   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  4667     return 0;
  4668   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  4669     return 0;
  4670   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  4671     return 0;
  4673   *bytes = end - cur;
  4674   return 1;
  4677 int os::socket_available(int fd, jint *pbytes) {
  4678   // Linux doc says EINTR not returned, unlike Solaris
  4679   int ret = ::ioctl(fd, FIONREAD, pbytes);
  4681   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  4682   // is expected to return 0 on failure and 1 on success to the jdk.
  4683   return (ret < 0) ? 0 : 1;
  4686 // Map a block of memory.
  4687 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  4688                      char *addr, size_t bytes, bool read_only,
  4689                      bool allow_exec) {
  4690   int prot;
  4691   int flags;
  4693   if (read_only) {
  4694     prot = PROT_READ;
  4695     flags = MAP_SHARED;
  4696   } else {
  4697     prot = PROT_READ | PROT_WRITE;
  4698     flags = MAP_PRIVATE;
  4701   if (allow_exec) {
  4702     prot |= PROT_EXEC;
  4705   if (addr != NULL) {
  4706     flags |= MAP_FIXED;
  4709   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  4710                                      fd, file_offset);
  4711   if (mapped_address == MAP_FAILED) {
  4712     return NULL;
  4714   return mapped_address;
  4718 // Remap a block of memory.
  4719 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  4720                        char *addr, size_t bytes, bool read_only,
  4721                        bool allow_exec) {
  4722   // same as map_memory() on this OS
  4723   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  4724                         allow_exec);
  4728 // Unmap a block of memory.
  4729 bool os::unmap_memory(char* addr, size_t bytes) {
  4730   return munmap(addr, bytes) == 0;
  4733 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
  4735 static clockid_t thread_cpu_clockid(Thread* thread) {
  4736   pthread_t tid = thread->osthread()->pthread_id();
  4737   clockid_t clockid;
  4739   // Get thread clockid
  4740   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  4741   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  4742   return clockid;
  4745 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  4746 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  4747 // of a thread.
  4748 //
  4749 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  4750 // the fast estimate available on the platform.
  4752 jlong os::current_thread_cpu_time() {
  4753   if (os::Linux::supports_fast_thread_cpu_time()) {
  4754     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4755   } else {
  4756     // return user + sys since the cost is the same
  4757     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  4761 jlong os::thread_cpu_time(Thread* thread) {
  4762   // consistent with what current_thread_cpu_time() returns
  4763   if (os::Linux::supports_fast_thread_cpu_time()) {
  4764     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4765   } else {
  4766     return slow_thread_cpu_time(thread, true /* user + sys */);
  4770 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  4771   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4772     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  4773   } else {
  4774     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  4778 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4779   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
  4780     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  4781   } else {
  4782     return slow_thread_cpu_time(thread, user_sys_cpu_time);
  4786 //
  4787 //  -1 on error.
  4788 //
  4790 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  4791   static bool proc_pid_cpu_avail = true;
  4792   static bool proc_task_unchecked = true;
  4793   static const char *proc_stat_path = "/proc/%d/stat";
  4794   pid_t  tid = thread->osthread()->thread_id();
  4795   int i;
  4796   char *s;
  4797   char stat[2048];
  4798   int statlen;
  4799   char proc_name[64];
  4800   int count;
  4801   long sys_time, user_time;
  4802   char string[64];
  4803   char cdummy;
  4804   int idummy;
  4805   long ldummy;
  4806   FILE *fp;
  4808   // We first try accessing /proc/<pid>/cpu since this is faster to
  4809   // process.  If this file is not present (linux kernels 2.5 and above)
  4810   // then we open /proc/<pid>/stat.
  4811   if ( proc_pid_cpu_avail ) {
  4812     sprintf(proc_name, "/proc/%d/cpu", tid);
  4813     fp =  fopen(proc_name, "r");
  4814     if ( fp != NULL ) {
  4815       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
  4816       fclose(fp);
  4817       if ( count != 3 ) return -1;
  4819       if (user_sys_cpu_time) {
  4820         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4821       } else {
  4822         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4825     else proc_pid_cpu_avail = false;
  4828   // The /proc/<tid>/stat aggregates per-process usage on
  4829   // new Linux kernels 2.6+ where NPTL is supported.
  4830   // The /proc/self/task/<tid>/stat still has the per-thread usage.
  4831   // See bug 6328462.
  4832   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  4833   // and possibly in some other cases, so we check its availability.
  4834   if (proc_task_unchecked && os::Linux::is_NPTL()) {
  4835     // This is executed only once
  4836     proc_task_unchecked = false;
  4837     fp = fopen("/proc/self/task", "r");
  4838     if (fp != NULL) {
  4839       proc_stat_path = "/proc/self/task/%d/stat";
  4840       fclose(fp);
  4844   sprintf(proc_name, proc_stat_path, tid);
  4845   fp = fopen(proc_name, "r");
  4846   if ( fp == NULL ) return -1;
  4847   statlen = fread(stat, 1, 2047, fp);
  4848   stat[statlen] = '\0';
  4849   fclose(fp);
  4851   // Skip pid and the command string. Note that we could be dealing with
  4852   // weird command names, e.g. user could decide to rename java launcher
  4853   // to "java 1.4.2 :)", then the stat file would look like
  4854   //                1234 (java 1.4.2 :)) R ... ...
  4855   // We don't really need to know the command string, just find the last
  4856   // occurrence of ")" and then start parsing from there. See bug 4726580.
  4857   s = strrchr(stat, ')');
  4858   i = 0;
  4859   if (s == NULL ) return -1;
  4861   // Skip blank chars
  4862   do s++; while (isspace(*s));
  4864   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
  4865                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
  4866                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
  4867                  &user_time, &sys_time);
  4868   if ( count != 13 ) return -1;
  4869   if (user_sys_cpu_time) {
  4870     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  4871   } else {
  4872     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  4876 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4877   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4878   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4879   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4880   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4883 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  4884   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  4885   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  4886   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  4887   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  4890 bool os::is_thread_cpu_time_supported() {
  4891   return true;
  4894 // System loadavg support.  Returns -1 if load average cannot be obtained.
  4895 // Linux doesn't yet have a (official) notion of processor sets,
  4896 // so just return the system wide load average.
  4897 int os::loadavg(double loadavg[], int nelem) {
  4898   return ::getloadavg(loadavg, nelem);
  4901 void os::pause() {
  4902   char filename[MAX_PATH];
  4903   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  4904     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  4905   } else {
  4906     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  4909   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  4910   if (fd != -1) {
  4911     struct stat buf;
  4912     ::close(fd);
  4913     while (::stat(filename, &buf) == 0) {
  4914       (void)::poll(NULL, 0, 100);
  4916   } else {
  4917     jio_fprintf(stderr,
  4918       "Could not open pause file '%s', continuing immediately.\n", filename);
  4923 // Refer to the comments in os_solaris.cpp park-unpark.
  4924 //
  4925 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  4926 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4927 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4928 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4929 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4930 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4931 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4932 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4933 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4934 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4935 // of libpthread avoids the problem, but isn't practical.
  4936 //
  4937 // Possible remedies:
  4938 //
  4939 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4940 //      This is palliative and probabilistic, however.  If the thread is preempted
  4941 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4942 //      than the minimum period may have passed, and the abstime may be stale (in the
  4943 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4944 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4945 //
  4946 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4947 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4948 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4949 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4950 //      thread.
  4951 //
  4952 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4953 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4954 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4955 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4956 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4957 //      timers in a graceful fashion.
  4958 //
  4959 // 4.   When the abstime value is in the past it appears that control returns
  4960 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4961 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4962 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4963 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4964 //      It may be possible to avoid reinitialization by checking the return
  4965 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4966 //      condvar we must establish the invariant that cond_signal() is only called
  4967 //      within critical sections protected by the adjunct mutex.  This prevents
  4968 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4969 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4970 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4971 //
  4972 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4973 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4974 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4975 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4976 //
  4977 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4978 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4979 // and only enabling the work-around for vulnerable environments.
  4981 // utility to compute the abstime argument to timedwait:
  4982 // millis is the relative timeout time
  4983 // abstime will be the absolute timeout time
  4984 // TODO: replace compute_abstime() with unpackTime()
  4986 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  4987   if (millis < 0)  millis = 0;
  4988   struct timeval now;
  4989   int status = gettimeofday(&now, NULL);
  4990   assert(status == 0, "gettimeofday");
  4991   jlong seconds = millis / 1000;
  4992   millis %= 1000;
  4993   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4994     seconds = 50000000;
  4996   abstime->tv_sec = now.tv_sec  + seconds;
  4997   long       usec = now.tv_usec + millis * 1000;
  4998   if (usec >= 1000000) {
  4999     abstime->tv_sec += 1;
  5000     usec -= 1000000;
  5002   abstime->tv_nsec = usec * 1000;
  5003   return abstime;
  5007 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5008 // Conceptually TryPark() should be equivalent to park(0).
  5010 int os::PlatformEvent::TryPark() {
  5011   for (;;) {
  5012     const int v = _Event ;
  5013     guarantee ((v == 0) || (v == 1), "invariant") ;
  5014     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5018 void os::PlatformEvent::park() {       // AKA "down()"
  5019   // Invariant: Only the thread associated with the Event/PlatformEvent
  5020   // may call park().
  5021   // TODO: assert that _Assoc != NULL or _Assoc == Self
  5022   int v ;
  5023   for (;;) {
  5024       v = _Event ;
  5025       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5027   guarantee (v >= 0, "invariant") ;
  5028   if (v == 0) {
  5029      // Do this the hard way by blocking ...
  5030      int status = pthread_mutex_lock(_mutex);
  5031      assert_status(status == 0, status, "mutex_lock");
  5032      guarantee (_nParked == 0, "invariant") ;
  5033      ++ _nParked ;
  5034      while (_Event < 0) {
  5035         status = pthread_cond_wait(_cond, _mutex);
  5036         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5037         // Treat this the same as if the wait was interrupted
  5038         if (status == ETIME) { status = EINTR; }
  5039         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5041      -- _nParked ;
  5043     // In theory we could move the ST of 0 into _Event past the unlock(),
  5044     // but then we'd need a MEMBAR after the ST.
  5045     _Event = 0 ;
  5046      status = pthread_mutex_unlock(_mutex);
  5047      assert_status(status == 0, status, "mutex_unlock");
  5049   guarantee (_Event >= 0, "invariant") ;
  5052 int os::PlatformEvent::park(jlong millis) {
  5053   guarantee (_nParked == 0, "invariant") ;
  5055   int v ;
  5056   for (;;) {
  5057       v = _Event ;
  5058       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5060   guarantee (v >= 0, "invariant") ;
  5061   if (v != 0) return OS_OK ;
  5063   // We do this the hard way, by blocking the thread.
  5064   // Consider enforcing a minimum timeout value.
  5065   struct timespec abst;
  5066   compute_abstime(&abst, millis);
  5068   int ret = OS_TIMEOUT;
  5069   int status = pthread_mutex_lock(_mutex);
  5070   assert_status(status == 0, status, "mutex_lock");
  5071   guarantee (_nParked == 0, "invariant") ;
  5072   ++_nParked ;
  5074   // Object.wait(timo) will return because of
  5075   // (a) notification
  5076   // (b) timeout
  5077   // (c) thread.interrupt
  5078   //
  5079   // Thread.interrupt and object.notify{All} both call Event::set.
  5080   // That is, we treat thread.interrupt as a special case of notification.
  5081   // The underlying Solaris implementation, cond_timedwait, admits
  5082   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  5083   // JVM from making those visible to Java code.  As such, we must
  5084   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  5085   //
  5086   // TODO: properly differentiate simultaneous notify+interrupt.
  5087   // In that case, we should propagate the notify to another waiter.
  5089   while (_Event < 0) {
  5090     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
  5091     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5092       pthread_cond_destroy (_cond);
  5093       pthread_cond_init (_cond, NULL) ;
  5095     assert_status(status == 0 || status == EINTR ||
  5096                   status == ETIME || status == ETIMEDOUT,
  5097                   status, "cond_timedwait");
  5098     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  5099     if (status == ETIME || status == ETIMEDOUT) break ;
  5100     // We consume and ignore EINTR and spurious wakeups.
  5102   --_nParked ;
  5103   if (_Event >= 0) {
  5104      ret = OS_OK;
  5106   _Event = 0 ;
  5107   status = pthread_mutex_unlock(_mutex);
  5108   assert_status(status == 0, status, "mutex_unlock");
  5109   assert (_nParked == 0, "invariant") ;
  5110   return ret;
  5113 void os::PlatformEvent::unpark() {
  5114   int v, AnyWaiters ;
  5115   for (;;) {
  5116       v = _Event ;
  5117       if (v > 0) {
  5118          // The LD of _Event could have reordered or be satisfied
  5119          // by a read-aside from this processor's write buffer.
  5120          // To avoid problems execute a barrier and then
  5121          // ratify the value.
  5122          OrderAccess::fence() ;
  5123          if (_Event == v) return ;
  5124          continue ;
  5126       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5128   if (v < 0) {
  5129      // Wait for the thread associated with the event to vacate
  5130      int status = pthread_mutex_lock(_mutex);
  5131      assert_status(status == 0, status, "mutex_lock");
  5132      AnyWaiters = _nParked ;
  5133      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5134      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  5135         AnyWaiters = 0 ;
  5136         pthread_cond_signal (_cond);
  5138      status = pthread_mutex_unlock(_mutex);
  5139      assert_status(status == 0, status, "mutex_unlock");
  5140      if (AnyWaiters != 0) {
  5141         status = pthread_cond_signal(_cond);
  5142         assert_status(status == 0, status, "cond_signal");
  5146   // Note that we signal() _after dropping the lock for "immortal" Events.
  5147   // This is safe and avoids a common class of  futile wakeups.  In rare
  5148   // circumstances this can cause a thread to return prematurely from
  5149   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  5150   // simply re-test the condition and re-park itself.
  5154 // JSR166
  5155 // -------------------------------------------------------
  5157 /*
  5158  * The solaris and linux implementations of park/unpark are fairly
  5159  * conservative for now, but can be improved. They currently use a
  5160  * mutex/condvar pair, plus a a count.
  5161  * Park decrements count if > 0, else does a condvar wait.  Unpark
  5162  * sets count to 1 and signals condvar.  Only one thread ever waits
  5163  * on the condvar. Contention seen when trying to park implies that someone
  5164  * is unparking you, so don't wait. And spurious returns are fine, so there
  5165  * is no need to track notifications.
  5166  */
  5169 #define NANOSECS_PER_SEC 1000000000
  5170 #define NANOSECS_PER_MILLISEC 1000000
  5171 #define MAX_SECS 100000000
  5172 /*
  5173  * This code is common to linux and solaris and will be moved to a
  5174  * common place in dolphin.
  5176  * The passed in time value is either a relative time in nanoseconds
  5177  * or an absolute time in milliseconds. Either way it has to be unpacked
  5178  * into suitable seconds and nanoseconds components and stored in the
  5179  * given timespec structure.
  5180  * Given time is a 64-bit value and the time_t used in the timespec is only
  5181  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  5182  * overflow if times way in the future are given. Further on Solaris versions
  5183  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  5184  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  5185  * As it will be 28 years before "now + 100000000" will overflow we can
  5186  * ignore overflow and just impose a hard-limit on seconds using the value
  5187  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  5188  * years from "now".
  5189  */
  5191 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  5192   assert (time > 0, "convertTime");
  5194   struct timeval now;
  5195   int status = gettimeofday(&now, NULL);
  5196   assert(status == 0, "gettimeofday");
  5198   time_t max_secs = now.tv_sec + MAX_SECS;
  5200   if (isAbsolute) {
  5201     jlong secs = time / 1000;
  5202     if (secs > max_secs) {
  5203       absTime->tv_sec = max_secs;
  5205     else {
  5206       absTime->tv_sec = secs;
  5208     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  5210   else {
  5211     jlong secs = time / NANOSECS_PER_SEC;
  5212     if (secs >= MAX_SECS) {
  5213       absTime->tv_sec = max_secs;
  5214       absTime->tv_nsec = 0;
  5216     else {
  5217       absTime->tv_sec = now.tv_sec + secs;
  5218       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  5219       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  5220         absTime->tv_nsec -= NANOSECS_PER_SEC;
  5221         ++absTime->tv_sec; // note: this must be <= max_secs
  5225   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  5226   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  5227   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  5228   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  5231 void Parker::park(bool isAbsolute, jlong time) {
  5232   // Optional fast-path check:
  5233   // Return immediately if a permit is available.
  5234   if (_counter > 0) {
  5235       _counter = 0 ;
  5236       OrderAccess::fence();
  5237       return ;
  5240   Thread* thread = Thread::current();
  5241   assert(thread->is_Java_thread(), "Must be JavaThread");
  5242   JavaThread *jt = (JavaThread *)thread;
  5244   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  5245   // Check interrupt before trying to wait
  5246   if (Thread::is_interrupted(thread, false)) {
  5247     return;
  5250   // Next, demultiplex/decode time arguments
  5251   timespec absTime;
  5252   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  5253     return;
  5255   if (time > 0) {
  5256     unpackTime(&absTime, isAbsolute, time);
  5260   // Enter safepoint region
  5261   // Beware of deadlocks such as 6317397.
  5262   // The per-thread Parker:: mutex is a classic leaf-lock.
  5263   // In particular a thread must never block on the Threads_lock while
  5264   // holding the Parker:: mutex.  If safepoints are pending both the
  5265   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  5266   ThreadBlockInVM tbivm(jt);
  5268   // Don't wait if cannot get lock since interference arises from
  5269   // unblocking.  Also. check interrupt before trying wait
  5270   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  5271     return;
  5274   int status ;
  5275   if (_counter > 0)  { // no wait needed
  5276     _counter = 0;
  5277     status = pthread_mutex_unlock(_mutex);
  5278     assert (status == 0, "invariant") ;
  5279     OrderAccess::fence();
  5280     return;
  5283 #ifdef ASSERT
  5284   // Don't catch signals while blocked; let the running threads have the signals.
  5285   // (This allows a debugger to break into the running thread.)
  5286   sigset_t oldsigs;
  5287   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  5288   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  5289 #endif
  5291   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  5292   jt->set_suspend_equivalent();
  5293   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  5295   if (time == 0) {
  5296     status = pthread_cond_wait (_cond, _mutex) ;
  5297   } else {
  5298     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  5299     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  5300       pthread_cond_destroy (_cond) ;
  5301       pthread_cond_init    (_cond, NULL);
  5304   assert_status(status == 0 || status == EINTR ||
  5305                 status == ETIME || status == ETIMEDOUT,
  5306                 status, "cond_timedwait");
  5308 #ifdef ASSERT
  5309   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  5310 #endif
  5312   _counter = 0 ;
  5313   status = pthread_mutex_unlock(_mutex) ;
  5314   assert_status(status == 0, status, "invariant") ;
  5315   // If externally suspended while waiting, re-suspend
  5316   if (jt->handle_special_suspend_equivalent_condition()) {
  5317     jt->java_suspend_self();
  5320   OrderAccess::fence();
  5323 void Parker::unpark() {
  5324   int s, status ;
  5325   status = pthread_mutex_lock(_mutex);
  5326   assert (status == 0, "invariant") ;
  5327   s = _counter;
  5328   _counter = 1;
  5329   if (s < 1) {
  5330      if (WorkAroundNPTLTimedWaitHang) {
  5331         status = pthread_cond_signal (_cond) ;
  5332         assert (status == 0, "invariant") ;
  5333         status = pthread_mutex_unlock(_mutex);
  5334         assert (status == 0, "invariant") ;
  5335      } else {
  5336         status = pthread_mutex_unlock(_mutex);
  5337         assert (status == 0, "invariant") ;
  5338         status = pthread_cond_signal (_cond) ;
  5339         assert (status == 0, "invariant") ;
  5341   } else {
  5342     pthread_mutex_unlock(_mutex);
  5343     assert (status == 0, "invariant") ;
  5348 extern char** environ;
  5350 #ifndef __NR_fork
  5351 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
  5352 #endif
  5354 #ifndef __NR_execve
  5355 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
  5356 #endif
  5358 // Run the specified command in a separate process. Return its exit value,
  5359 // or -1 on failure (e.g. can't fork a new process).
  5360 // Unlike system(), this function can be called from signal handler. It
  5361 // doesn't block SIGINT et al.
  5362 int os::fork_and_exec(char* cmd) {
  5363   const char * argv[4] = {"sh", "-c", cmd, NULL};
  5365   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  5366   // pthread_atfork handlers and reset pthread library. All we need is a
  5367   // separate process to execve. Make a direct syscall to fork process.
  5368   // On IA64 there's no fork syscall, we have to use fork() and hope for
  5369   // the best...
  5370   pid_t pid = NOT_IA64(syscall(__NR_fork);)
  5371               IA64_ONLY(fork();)
  5373   if (pid < 0) {
  5374     // fork failed
  5375     return -1;
  5377   } else if (pid == 0) {
  5378     // child process
  5380     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
  5381     // first to kill every thread on the thread list. Because this list is
  5382     // not reset by fork() (see notes above), execve() will instead kill
  5383     // every thread in the parent process. We know this is the only thread
  5384     // in the new process, so make a system call directly.
  5385     // IA64 should use normal execve() from glibc to match the glibc fork()
  5386     // above.
  5387     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
  5388     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
  5390     // execve failed
  5391     _exit(-1);
  5393   } else  {
  5394     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  5395     // care about the actual exit code, for now.
  5397     int status;
  5399     // Wait for the child process to exit.  This returns immediately if
  5400     // the child has already exited. */
  5401     while (waitpid(pid, &status, 0) < 0) {
  5402         switch (errno) {
  5403         case ECHILD: return 0;
  5404         case EINTR: break;
  5405         default: return -1;
  5409     if (WIFEXITED(status)) {
  5410        // The child exited normally; get its exit code.
  5411        return WEXITSTATUS(status);
  5412     } else if (WIFSIGNALED(status)) {
  5413        // The child exited because of a signal
  5414        // The best value to return is 0x80 + signal number,
  5415        // because that is what all Unix shells do, and because
  5416        // it allows callers to distinguish between process exit and
  5417        // process death by signal.
  5418        return 0x80 + WTERMSIG(status);
  5419     } else {
  5420        // Unknown exit code; pass it through
  5421        return status;
  5426 // is_headless_jre()
  5427 //
  5428 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  5429 // in order to report if we are running in a headless jre
  5430 //
  5431 // Since JDK8 xawt/libmawt.so was moved into the same directory
  5432 // as libawt.so, and renamed libawt_xawt.so
  5433 //
  5434 bool os::is_headless_jre() {
  5435     struct stat statbuf;
  5436     char buf[MAXPATHLEN];
  5437     char libmawtpath[MAXPATHLEN];
  5438     const char *xawtstr  = "/xawt/libmawt.so";
  5439     const char *new_xawtstr = "/libawt_xawt.so";
  5440     char *p;
  5442     // Get path to libjvm.so
  5443     os::jvm_path(buf, sizeof(buf));
  5445     // Get rid of libjvm.so
  5446     p = strrchr(buf, '/');
  5447     if (p == NULL) return false;
  5448     else *p = '\0';
  5450     // Get rid of client or server
  5451     p = strrchr(buf, '/');
  5452     if (p == NULL) return false;
  5453     else *p = '\0';
  5455     // check xawt/libmawt.so
  5456     strcpy(libmawtpath, buf);
  5457     strcat(libmawtpath, xawtstr);
  5458     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5460     // check libawt_xawt.so
  5461     strcpy(libmawtpath, buf);
  5462     strcat(libmawtpath, new_xawtstr);
  5463     if (::stat(libmawtpath, &statbuf) == 0) return false;
  5465     return true;
  5469 #ifdef JAVASE_EMBEDDED
  5470 //
  5471 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
  5472 //
  5473 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
  5475 // ctor
  5476 //
  5477 MemNotifyThread::MemNotifyThread(int fd): Thread() {
  5478   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  5479   _fd = fd;
  5481   if (os::create_thread(this, os::os_thread)) {
  5482     _memnotify_thread = this;
  5483     os::set_priority(this, NearMaxPriority);
  5484     os::start_thread(this);
  5488 // Where all the work gets done
  5489 //
  5490 void MemNotifyThread::run() {
  5491   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
  5493   // Set up the select arguments
  5494   fd_set rfds;
  5495   if (_fd != -1) {
  5496     FD_ZERO(&rfds);
  5497     FD_SET(_fd, &rfds);
  5500   // Now wait for the mem_notify device to wake up
  5501   while (1) {
  5502     // Wait for the mem_notify device to signal us..
  5503     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
  5504     if (rc == -1) {
  5505       perror("select!\n");
  5506       break;
  5507     } else if (rc) {
  5508       //ssize_t free_before = os::available_memory();
  5509       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
  5511       // The kernel is telling us there is not much memory left...
  5512       // try to do something about that
  5514       // If we are not already in a GC, try one.
  5515       if (!Universe::heap()->is_gc_active()) {
  5516         Universe::heap()->collect(GCCause::_allocation_failure);
  5518         //ssize_t free_after = os::available_memory();
  5519         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
  5520         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
  5522       // We might want to do something like the following if we find the GC's are not helping...
  5523       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
  5528 //
  5529 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
  5530 //
  5531 void MemNotifyThread::start() {
  5532   int    fd;
  5533   fd = open ("/dev/mem_notify", O_RDONLY, 0);
  5534   if (fd < 0) {
  5535       return;
  5538   if (memnotify_thread() == NULL) {
  5539     new MemNotifyThread(fd);
  5542 #endif // JAVASE_EMBEDDED

mercurial