src/share/vm/opto/macro.cpp

Tue, 10 Jan 2012 18:05:38 -0800

author
kvn
date
Tue, 10 Jan 2012 18:05:38 -0800
changeset 3407
35acf8f0a2e4
parent 3406
e9a5e0a812c8
child 3419
b0ff910edfc9
permissions
-rw-r--r--

7128352: assert(obj_node == obj) failed
Summary: Compare uncasted object nodes.
Reviewed-by: never

     1 /*
     2  * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "libadt/vectset.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/compile.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/locknode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/macro.hpp"
    36 #include "opto/memnode.hpp"
    37 #include "opto/node.hpp"
    38 #include "opto/phaseX.hpp"
    39 #include "opto/rootnode.hpp"
    40 #include "opto/runtime.hpp"
    41 #include "opto/subnode.hpp"
    42 #include "opto/type.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    46 //
    47 // Replace any references to "oldref" in inputs to "use" with "newref".
    48 // Returns the number of replacements made.
    49 //
    50 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
    51   int nreplacements = 0;
    52   uint req = use->req();
    53   for (uint j = 0; j < use->len(); j++) {
    54     Node *uin = use->in(j);
    55     if (uin == oldref) {
    56       if (j < req)
    57         use->set_req(j, newref);
    58       else
    59         use->set_prec(j, newref);
    60       nreplacements++;
    61     } else if (j >= req && uin == NULL) {
    62       break;
    63     }
    64   }
    65   return nreplacements;
    66 }
    68 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
    69   // Copy debug information and adjust JVMState information
    70   uint old_dbg_start = oldcall->tf()->domain()->cnt();
    71   uint new_dbg_start = newcall->tf()->domain()->cnt();
    72   int jvms_adj  = new_dbg_start - old_dbg_start;
    73   assert (new_dbg_start == newcall->req(), "argument count mismatch");
    75   Dict* sosn_map = new Dict(cmpkey,hashkey);
    76   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
    77     Node* old_in = oldcall->in(i);
    78     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
    79     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
    80       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
    81       uint old_unique = C->unique();
    82       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
    83       if (old_unique != C->unique()) {
    84         new_in->set_req(0, C->root()); // reset control edge
    85         new_in = transform_later(new_in); // Register new node.
    86       }
    87       old_in = new_in;
    88     }
    89     newcall->add_req(old_in);
    90   }
    92   newcall->set_jvms(oldcall->jvms());
    93   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
    94     jvms->set_map(newcall);
    95     jvms->set_locoff(jvms->locoff()+jvms_adj);
    96     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
    97     jvms->set_monoff(jvms->monoff()+jvms_adj);
    98     jvms->set_scloff(jvms->scloff()+jvms_adj);
    99     jvms->set_endoff(jvms->endoff()+jvms_adj);
   100   }
   101 }
   103 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
   104   Node* cmp;
   105   if (mask != 0) {
   106     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
   107     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
   108   } else {
   109     cmp = word;
   110   }
   111   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
   112   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
   113   transform_later(iff);
   115   // Fast path taken.
   116   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
   118   // Fast path not-taken, i.e. slow path
   119   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
   121   if (return_fast_path) {
   122     region->init_req(edge, slow_taken); // Capture slow-control
   123     return fast_taken;
   124   } else {
   125     region->init_req(edge, fast_taken); // Capture fast-control
   126     return slow_taken;
   127   }
   128 }
   130 //--------------------copy_predefined_input_for_runtime_call--------------------
   131 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
   132   // Set fixed predefined input arguments
   133   call->init_req( TypeFunc::Control, ctrl );
   134   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
   135   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
   136   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
   137   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
   138 }
   140 //------------------------------make_slow_call---------------------------------
   141 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
   143   // Slow-path call
   144   int size = slow_call_type->domain()->cnt();
   145  CallNode *call = leaf_name
   146    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
   147    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
   149   // Slow path call has no side-effects, uses few values
   150   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
   151   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
   152   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
   153   copy_call_debug_info(oldcall, call);
   154   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
   155   _igvn.replace_node(oldcall, call);
   156   transform_later(call);
   158   return call;
   159 }
   161 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
   162   _fallthroughproj = NULL;
   163   _fallthroughcatchproj = NULL;
   164   _ioproj_fallthrough = NULL;
   165   _ioproj_catchall = NULL;
   166   _catchallcatchproj = NULL;
   167   _memproj_fallthrough = NULL;
   168   _memproj_catchall = NULL;
   169   _resproj = NULL;
   170   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
   171     ProjNode *pn = call->fast_out(i)->as_Proj();
   172     switch (pn->_con) {
   173       case TypeFunc::Control:
   174       {
   175         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
   176         _fallthroughproj = pn;
   177         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
   178         const Node *cn = pn->fast_out(j);
   179         if (cn->is_Catch()) {
   180           ProjNode *cpn = NULL;
   181           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
   182             cpn = cn->fast_out(k)->as_Proj();
   183             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
   184             if (cpn->_con == CatchProjNode::fall_through_index)
   185               _fallthroughcatchproj = cpn;
   186             else {
   187               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
   188               _catchallcatchproj = cpn;
   189             }
   190           }
   191         }
   192         break;
   193       }
   194       case TypeFunc::I_O:
   195         if (pn->_is_io_use)
   196           _ioproj_catchall = pn;
   197         else
   198           _ioproj_fallthrough = pn;
   199         break;
   200       case TypeFunc::Memory:
   201         if (pn->_is_io_use)
   202           _memproj_catchall = pn;
   203         else
   204           _memproj_fallthrough = pn;
   205         break;
   206       case TypeFunc::Parms:
   207         _resproj = pn;
   208         break;
   209       default:
   210         assert(false, "unexpected projection from allocation node.");
   211     }
   212   }
   214 }
   216 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
   217 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
   218   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
   219   if (!UseG1GC) {
   220     // vanilla/CMS post barrier
   221     Node *shift = p2x->unique_out();
   222     Node *addp = shift->unique_out();
   223     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
   224       Node *mem = addp->last_out(j);
   225       if (UseCondCardMark && mem->is_Load()) {
   226         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
   227         // The load is checking if the card has been written so
   228         // replace it with zero to fold the test.
   229         _igvn.replace_node(mem, intcon(0));
   230         continue;
   231       }
   232       assert(mem->is_Store(), "store required");
   233       _igvn.replace_node(mem, mem->in(MemNode::Memory));
   234     }
   235   } else {
   236     // G1 pre/post barriers
   237     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
   238     // It could be only one user, URShift node, in Object.clone() instrinsic
   239     // but the new allocation is passed to arraycopy stub and it could not
   240     // be scalar replaced. So we don't check the case.
   242     // Remove G1 post barrier.
   244     // Search for CastP2X->Xor->URShift->Cmp path which
   245     // checks if the store done to a different from the value's region.
   246     // And replace Cmp with #0 (false) to collapse G1 post barrier.
   247     Node* xorx = NULL;
   248     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
   249       Node* u = p2x->fast_out(i);
   250       if (u->Opcode() == Op_XorX) {
   251         xorx = u;
   252         break;
   253       }
   254     }
   255     assert(xorx != NULL, "missing G1 post barrier");
   256     Node* shift = xorx->unique_out();
   257     Node* cmpx = shift->unique_out();
   258     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
   259     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
   260     "missing region check in G1 post barrier");
   261     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   263     // Remove G1 pre barrier.
   265     // Search "if (marking != 0)" check and set it to "false".
   266     Node* this_region = p2x->in(0);
   267     assert(this_region != NULL, "");
   268     // There is no G1 pre barrier if previous stored value is NULL
   269     // (for example, after initialization).
   270     if (this_region->is_Region() && this_region->req() == 3) {
   271       int ind = 1;
   272       if (!this_region->in(ind)->is_IfFalse()) {
   273         ind = 2;
   274       }
   275       if (this_region->in(ind)->is_IfFalse()) {
   276         Node* bol = this_region->in(ind)->in(0)->in(1);
   277         assert(bol->is_Bool(), "");
   278         cmpx = bol->in(1);
   279         if (bol->as_Bool()->_test._test == BoolTest::ne &&
   280             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
   281             cmpx->in(1)->is_Load()) {
   282           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
   283           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
   284                                               PtrQueue::byte_offset_of_active());
   285           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
   286               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   287               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
   288             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
   289           }
   290         }
   291       }
   292     }
   293     // Now CastP2X can be removed since it is used only on dead path
   294     // which currently still alive until igvn optimize it.
   295     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
   296     _igvn.replace_node(p2x, top());
   297   }
   298 }
   300 // Search for a memory operation for the specified memory slice.
   301 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
   302   Node *orig_mem = mem;
   303   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   304   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
   305   while (true) {
   306     if (mem == alloc_mem || mem == start_mem ) {
   307       return mem;  // hit one of our sentinels
   308     } else if (mem->is_MergeMem()) {
   309       mem = mem->as_MergeMem()->memory_at(alias_idx);
   310     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
   311       Node *in = mem->in(0);
   312       // we can safely skip over safepoints, calls, locks and membars because we
   313       // already know that the object is safe to eliminate.
   314       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
   315         return in;
   316       } else if (in->is_Call()) {
   317         CallNode *call = in->as_Call();
   318         if (!call->may_modify(tinst, phase)) {
   319           mem = call->in(TypeFunc::Memory);
   320         }
   321         mem = in->in(TypeFunc::Memory);
   322       } else if (in->is_MemBar()) {
   323         mem = in->in(TypeFunc::Memory);
   324       } else {
   325         assert(false, "unexpected projection");
   326       }
   327     } else if (mem->is_Store()) {
   328       const TypePtr* atype = mem->as_Store()->adr_type();
   329       int adr_idx = Compile::current()->get_alias_index(atype);
   330       if (adr_idx == alias_idx) {
   331         assert(atype->isa_oopptr(), "address type must be oopptr");
   332         int adr_offset = atype->offset();
   333         uint adr_iid = atype->is_oopptr()->instance_id();
   334         // Array elements references have the same alias_idx
   335         // but different offset and different instance_id.
   336         if (adr_offset == offset && adr_iid == alloc->_idx)
   337           return mem;
   338       } else {
   339         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
   340       }
   341       mem = mem->in(MemNode::Memory);
   342     } else if (mem->is_ClearArray()) {
   343       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
   344         // Can not bypass initialization of the instance
   345         // we are looking.
   346         debug_only(intptr_t offset;)
   347         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
   348         InitializeNode* init = alloc->as_Allocate()->initialization();
   349         // We are looking for stored value, return Initialize node
   350         // or memory edge from Allocate node.
   351         if (init != NULL)
   352           return init;
   353         else
   354           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
   355       }
   356       // Otherwise skip it (the call updated 'mem' value).
   357     } else if (mem->Opcode() == Op_SCMemProj) {
   358       assert(mem->in(0)->is_LoadStore(), "sanity");
   359       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
   360       int adr_idx = Compile::current()->get_alias_index(atype);
   361       if (adr_idx == alias_idx) {
   362         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   363         return NULL;
   364       }
   365       mem = mem->in(0)->in(MemNode::Memory);
   366     } else {
   367       return mem;
   368     }
   369     assert(mem != orig_mem, "dead memory loop");
   370   }
   371 }
   373 //
   374 // Given a Memory Phi, compute a value Phi containing the values from stores
   375 // on the input paths.
   376 // Note: this function is recursive, its depth is limied by the "level" argument
   377 // Returns the computed Phi, or NULL if it cannot compute it.
   378 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
   379   assert(mem->is_Phi(), "sanity");
   380   int alias_idx = C->get_alias_index(adr_t);
   381   int offset = adr_t->offset();
   382   int instance_id = adr_t->instance_id();
   384   // Check if an appropriate value phi already exists.
   385   Node* region = mem->in(0);
   386   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
   387     Node* phi = region->fast_out(k);
   388     if (phi->is_Phi() && phi != mem &&
   389         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
   390       return phi;
   391     }
   392   }
   393   // Check if an appropriate new value phi already exists.
   394   Node* new_phi = value_phis->find(mem->_idx);
   395   if (new_phi != NULL)
   396     return new_phi;
   398   if (level <= 0) {
   399     return NULL; // Give up: phi tree too deep
   400   }
   401   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   402   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   404   uint length = mem->req();
   405   GrowableArray <Node *> values(length, length, NULL);
   407   // create a new Phi for the value
   408   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
   409   transform_later(phi);
   410   value_phis->push(phi, mem->_idx);
   412   for (uint j = 1; j < length; j++) {
   413     Node *in = mem->in(j);
   414     if (in == NULL || in->is_top()) {
   415       values.at_put(j, in);
   416     } else  {
   417       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
   418       if (val == start_mem || val == alloc_mem) {
   419         // hit a sentinel, return appropriate 0 value
   420         values.at_put(j, _igvn.zerocon(ft));
   421         continue;
   422       }
   423       if (val->is_Initialize()) {
   424         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   425       }
   426       if (val == NULL) {
   427         return NULL;  // can't find a value on this path
   428       }
   429       if (val == mem) {
   430         values.at_put(j, mem);
   431       } else if (val->is_Store()) {
   432         values.at_put(j, val->in(MemNode::ValueIn));
   433       } else if(val->is_Proj() && val->in(0) == alloc) {
   434         values.at_put(j, _igvn.zerocon(ft));
   435       } else if (val->is_Phi()) {
   436         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
   437         if (val == NULL) {
   438           return NULL;
   439         }
   440         values.at_put(j, val);
   441       } else if (val->Opcode() == Op_SCMemProj) {
   442         assert(val->in(0)->is_LoadStore(), "sanity");
   443         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
   444         return NULL;
   445       } else {
   446 #ifdef ASSERT
   447         val->dump();
   448         assert(false, "unknown node on this path");
   449 #endif
   450         return NULL;  // unknown node on this path
   451       }
   452     }
   453   }
   454   // Set Phi's inputs
   455   for (uint j = 1; j < length; j++) {
   456     if (values.at(j) == mem) {
   457       phi->init_req(j, phi);
   458     } else {
   459       phi->init_req(j, values.at(j));
   460     }
   461   }
   462   return phi;
   463 }
   465 // Search the last value stored into the object's field.
   466 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
   467   assert(adr_t->is_known_instance_field(), "instance required");
   468   int instance_id = adr_t->instance_id();
   469   assert((uint)instance_id == alloc->_idx, "wrong allocation");
   471   int alias_idx = C->get_alias_index(adr_t);
   472   int offset = adr_t->offset();
   473   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   474   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
   475   Node *alloc_mem = alloc->in(TypeFunc::Memory);
   476   Arena *a = Thread::current()->resource_area();
   477   VectorSet visited(a);
   480   bool done = sfpt_mem == alloc_mem;
   481   Node *mem = sfpt_mem;
   482   while (!done) {
   483     if (visited.test_set(mem->_idx)) {
   484       return NULL;  // found a loop, give up
   485     }
   486     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
   487     if (mem == start_mem || mem == alloc_mem) {
   488       done = true;  // hit a sentinel, return appropriate 0 value
   489     } else if (mem->is_Initialize()) {
   490       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
   491       if (mem == NULL) {
   492         done = true; // Something go wrong.
   493       } else if (mem->is_Store()) {
   494         const TypePtr* atype = mem->as_Store()->adr_type();
   495         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
   496         done = true;
   497       }
   498     } else if (mem->is_Store()) {
   499       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
   500       assert(atype != NULL, "address type must be oopptr");
   501       assert(C->get_alias_index(atype) == alias_idx &&
   502              atype->is_known_instance_field() && atype->offset() == offset &&
   503              atype->instance_id() == instance_id, "store is correct memory slice");
   504       done = true;
   505     } else if (mem->is_Phi()) {
   506       // try to find a phi's unique input
   507       Node *unique_input = NULL;
   508       Node *top = C->top();
   509       for (uint i = 1; i < mem->req(); i++) {
   510         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
   511         if (n == NULL || n == top || n == mem) {
   512           continue;
   513         } else if (unique_input == NULL) {
   514           unique_input = n;
   515         } else if (unique_input != n) {
   516           unique_input = top;
   517           break;
   518         }
   519       }
   520       if (unique_input != NULL && unique_input != top) {
   521         mem = unique_input;
   522       } else {
   523         done = true;
   524       }
   525     } else {
   526       assert(false, "unexpected node");
   527     }
   528   }
   529   if (mem != NULL) {
   530     if (mem == start_mem || mem == alloc_mem) {
   531       // hit a sentinel, return appropriate 0 value
   532       return _igvn.zerocon(ft);
   533     } else if (mem->is_Store()) {
   534       return mem->in(MemNode::ValueIn);
   535     } else if (mem->is_Phi()) {
   536       // attempt to produce a Phi reflecting the values on the input paths of the Phi
   537       Node_Stack value_phis(a, 8);
   538       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
   539       if (phi != NULL) {
   540         return phi;
   541       } else {
   542         // Kill all new Phis
   543         while(value_phis.is_nonempty()) {
   544           Node* n = value_phis.node();
   545           _igvn.replace_node(n, C->top());
   546           value_phis.pop();
   547         }
   548       }
   549     }
   550   }
   551   // Something go wrong.
   552   return NULL;
   553 }
   555 // Check the possibility of scalar replacement.
   556 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   557   //  Scan the uses of the allocation to check for anything that would
   558   //  prevent us from eliminating it.
   559   NOT_PRODUCT( const char* fail_eliminate = NULL; )
   560   DEBUG_ONLY( Node* disq_node = NULL; )
   561   bool  can_eliminate = true;
   563   Node* res = alloc->result_cast();
   564   const TypeOopPtr* res_type = NULL;
   565   if (res == NULL) {
   566     // All users were eliminated.
   567   } else if (!res->is_CheckCastPP()) {
   568     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
   569     can_eliminate = false;
   570   } else {
   571     res_type = _igvn.type(res)->isa_oopptr();
   572     if (res_type == NULL) {
   573       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
   574       can_eliminate = false;
   575     } else if (res_type->isa_aryptr()) {
   576       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   577       if (length < 0) {
   578         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
   579         can_eliminate = false;
   580       }
   581     }
   582   }
   584   if (can_eliminate && res != NULL) {
   585     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
   586                                j < jmax && can_eliminate; j++) {
   587       Node* use = res->fast_out(j);
   589       if (use->is_AddP()) {
   590         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
   591         int offset = addp_type->offset();
   593         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
   594           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
   595           can_eliminate = false;
   596           break;
   597         }
   598         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
   599                                    k < kmax && can_eliminate; k++) {
   600           Node* n = use->fast_out(k);
   601           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
   602             DEBUG_ONLY(disq_node = n;)
   603             if (n->is_Load() || n->is_LoadStore()) {
   604               NOT_PRODUCT(fail_eliminate = "Field load";)
   605             } else {
   606               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
   607             }
   608             can_eliminate = false;
   609           }
   610         }
   611       } else if (use->is_SafePoint()) {
   612         SafePointNode* sfpt = use->as_SafePoint();
   613         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
   614           // Object is passed as argument.
   615           DEBUG_ONLY(disq_node = use;)
   616           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
   617           can_eliminate = false;
   618         }
   619         Node* sfptMem = sfpt->memory();
   620         if (sfptMem == NULL || sfptMem->is_top()) {
   621           DEBUG_ONLY(disq_node = use;)
   622           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
   623           can_eliminate = false;
   624         } else {
   625           safepoints.append_if_missing(sfpt);
   626         }
   627       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
   628         if (use->is_Phi()) {
   629           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
   630             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   631           } else {
   632             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
   633           }
   634           DEBUG_ONLY(disq_node = use;)
   635         } else {
   636           if (use->Opcode() == Op_Return) {
   637             NOT_PRODUCT(fail_eliminate = "Object is return value";)
   638           }else {
   639             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
   640           }
   641           DEBUG_ONLY(disq_node = use;)
   642         }
   643         can_eliminate = false;
   644       }
   645     }
   646   }
   648 #ifndef PRODUCT
   649   if (PrintEliminateAllocations) {
   650     if (can_eliminate) {
   651       tty->print("Scalar ");
   652       if (res == NULL)
   653         alloc->dump();
   654       else
   655         res->dump();
   656     } else {
   657       tty->print("NotScalar (%s)", fail_eliminate);
   658       if (res == NULL)
   659         alloc->dump();
   660       else
   661         res->dump();
   662 #ifdef ASSERT
   663       if (disq_node != NULL) {
   664           tty->print("  >>>> ");
   665           disq_node->dump();
   666       }
   667 #endif /*ASSERT*/
   668     }
   669   }
   670 #endif
   671   return can_eliminate;
   672 }
   674 // Do scalar replacement.
   675 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
   676   GrowableArray <SafePointNode *> safepoints_done;
   678   ciKlass* klass = NULL;
   679   ciInstanceKlass* iklass = NULL;
   680   int nfields = 0;
   681   int array_base;
   682   int element_size;
   683   BasicType basic_elem_type;
   684   ciType* elem_type;
   686   Node* res = alloc->result_cast();
   687   const TypeOopPtr* res_type = NULL;
   688   if (res != NULL) { // Could be NULL when there are no users
   689     res_type = _igvn.type(res)->isa_oopptr();
   690   }
   692   if (res != NULL) {
   693     klass = res_type->klass();
   694     if (res_type->isa_instptr()) {
   695       // find the fields of the class which will be needed for safepoint debug information
   696       assert(klass->is_instance_klass(), "must be an instance klass.");
   697       iklass = klass->as_instance_klass();
   698       nfields = iklass->nof_nonstatic_fields();
   699     } else {
   700       // find the array's elements which will be needed for safepoint debug information
   701       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
   702       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
   703       elem_type = klass->as_array_klass()->element_type();
   704       basic_elem_type = elem_type->basic_type();
   705       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
   706       element_size = type2aelembytes(basic_elem_type);
   707     }
   708   }
   709   //
   710   // Process the safepoint uses
   711   //
   712   while (safepoints.length() > 0) {
   713     SafePointNode* sfpt = safepoints.pop();
   714     Node* mem = sfpt->memory();
   715     uint first_ind = sfpt->req();
   716     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
   717 #ifdef ASSERT
   718                                                  alloc,
   719 #endif
   720                                                  first_ind, nfields);
   721     sobj->init_req(0, C->root());
   722     transform_later(sobj);
   724     // Scan object's fields adding an input to the safepoint for each field.
   725     for (int j = 0; j < nfields; j++) {
   726       intptr_t offset;
   727       ciField* field = NULL;
   728       if (iklass != NULL) {
   729         field = iklass->nonstatic_field_at(j);
   730         offset = field->offset();
   731         elem_type = field->type();
   732         basic_elem_type = field->layout_type();
   733       } else {
   734         offset = array_base + j * (intptr_t)element_size;
   735       }
   737       const Type *field_type;
   738       // The next code is taken from Parse::do_get_xxx().
   739       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
   740         if (!elem_type->is_loaded()) {
   741           field_type = TypeInstPtr::BOTTOM;
   742         } else if (field != NULL && field->is_constant() && field->is_static()) {
   743           // This can happen if the constant oop is non-perm.
   744           ciObject* con = field->constant_value().as_object();
   745           // Do not "join" in the previous type; it doesn't add value,
   746           // and may yield a vacuous result if the field is of interface type.
   747           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
   748           assert(field_type != NULL, "field singleton type must be consistent");
   749         } else {
   750           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
   751         }
   752         if (UseCompressedOops) {
   753           field_type = field_type->make_narrowoop();
   754           basic_elem_type = T_NARROWOOP;
   755         }
   756       } else {
   757         field_type = Type::get_const_basic_type(basic_elem_type);
   758       }
   760       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
   762       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
   763       if (field_val == NULL) {
   764         // We weren't able to find a value for this field,
   765         // give up on eliminating this allocation.
   767         // Remove any extra entries we added to the safepoint.
   768         uint last = sfpt->req() - 1;
   769         for (int k = 0;  k < j; k++) {
   770           sfpt->del_req(last--);
   771         }
   772         // rollback processed safepoints
   773         while (safepoints_done.length() > 0) {
   774           SafePointNode* sfpt_done = safepoints_done.pop();
   775           // remove any extra entries we added to the safepoint
   776           last = sfpt_done->req() - 1;
   777           for (int k = 0;  k < nfields; k++) {
   778             sfpt_done->del_req(last--);
   779           }
   780           JVMState *jvms = sfpt_done->jvms();
   781           jvms->set_endoff(sfpt_done->req());
   782           // Now make a pass over the debug information replacing any references
   783           // to SafePointScalarObjectNode with the allocated object.
   784           int start = jvms->debug_start();
   785           int end   = jvms->debug_end();
   786           for (int i = start; i < end; i++) {
   787             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
   788               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
   789               if (scobj->first_index() == sfpt_done->req() &&
   790                   scobj->n_fields() == (uint)nfields) {
   791                 assert(scobj->alloc() == alloc, "sanity");
   792                 sfpt_done->set_req(i, res);
   793               }
   794             }
   795           }
   796         }
   797 #ifndef PRODUCT
   798         if (PrintEliminateAllocations) {
   799           if (field != NULL) {
   800             tty->print("=== At SafePoint node %d can't find value of Field: ",
   801                        sfpt->_idx);
   802             field->print();
   803             int field_idx = C->get_alias_index(field_addr_type);
   804             tty->print(" (alias_idx=%d)", field_idx);
   805           } else { // Array's element
   806             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
   807                        sfpt->_idx, j);
   808           }
   809           tty->print(", which prevents elimination of: ");
   810           if (res == NULL)
   811             alloc->dump();
   812           else
   813             res->dump();
   814         }
   815 #endif
   816         return false;
   817       }
   818       if (UseCompressedOops && field_type->isa_narrowoop()) {
   819         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
   820         // to be able scalar replace the allocation.
   821         if (field_val->is_EncodeP()) {
   822           field_val = field_val->in(1);
   823         } else {
   824           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
   825         }
   826       }
   827       sfpt->add_req(field_val);
   828     }
   829     JVMState *jvms = sfpt->jvms();
   830     jvms->set_endoff(sfpt->req());
   831     // Now make a pass over the debug information replacing any references
   832     // to the allocated object with "sobj"
   833     int start = jvms->debug_start();
   834     int end   = jvms->debug_end();
   835     for (int i = start; i < end; i++) {
   836       if (sfpt->in(i) == res) {
   837         sfpt->set_req(i, sobj);
   838       }
   839     }
   840     safepoints_done.append_if_missing(sfpt); // keep it for rollback
   841   }
   842   return true;
   843 }
   845 // Process users of eliminated allocation.
   846 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
   847   Node* res = alloc->result_cast();
   848   if (res != NULL) {
   849     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
   850       Node *use = res->last_out(j);
   851       uint oc1 = res->outcnt();
   853       if (use->is_AddP()) {
   854         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
   855           Node *n = use->last_out(k);
   856           uint oc2 = use->outcnt();
   857           if (n->is_Store()) {
   858 #ifdef ASSERT
   859             // Verify that there is no dependent MemBarVolatile nodes,
   860             // they should be removed during IGVN, see MemBarNode::Ideal().
   861             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
   862                                        p < pmax; p++) {
   863               Node* mb = n->fast_out(p);
   864               assert(mb->is_Initialize() || !mb->is_MemBar() ||
   865                      mb->req() <= MemBarNode::Precedent ||
   866                      mb->in(MemBarNode::Precedent) != n,
   867                      "MemBarVolatile should be eliminated for non-escaping object");
   868             }
   869 #endif
   870             _igvn.replace_node(n, n->in(MemNode::Memory));
   871           } else {
   872             eliminate_card_mark(n);
   873           }
   874           k -= (oc2 - use->outcnt());
   875         }
   876       } else {
   877         eliminate_card_mark(use);
   878       }
   879       j -= (oc1 - res->outcnt());
   880     }
   881     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
   882     _igvn.remove_dead_node(res);
   883   }
   885   //
   886   // Process other users of allocation's projections
   887   //
   888   if (_resproj != NULL && _resproj->outcnt() != 0) {
   889     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
   890       Node *use = _resproj->last_out(j);
   891       uint oc1 = _resproj->outcnt();
   892       if (use->is_Initialize()) {
   893         // Eliminate Initialize node.
   894         InitializeNode *init = use->as_Initialize();
   895         assert(init->outcnt() <= 2, "only a control and memory projection expected");
   896         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
   897         if (ctrl_proj != NULL) {
   898            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
   899           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
   900         }
   901         Node *mem_proj = init->proj_out(TypeFunc::Memory);
   902         if (mem_proj != NULL) {
   903           Node *mem = init->in(TypeFunc::Memory);
   904 #ifdef ASSERT
   905           if (mem->is_MergeMem()) {
   906             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
   907           } else {
   908             assert(mem == _memproj_fallthrough, "allocation memory projection");
   909           }
   910 #endif
   911           _igvn.replace_node(mem_proj, mem);
   912         }
   913       } else if (use->is_AddP()) {
   914         // raw memory addresses used only by the initialization
   915         _igvn.replace_node(use, C->top());
   916       } else  {
   917         assert(false, "only Initialize or AddP expected");
   918       }
   919       j -= (oc1 - _resproj->outcnt());
   920     }
   921   }
   922   if (_fallthroughcatchproj != NULL) {
   923     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
   924   }
   925   if (_memproj_fallthrough != NULL) {
   926     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
   927   }
   928   if (_memproj_catchall != NULL) {
   929     _igvn.replace_node(_memproj_catchall, C->top());
   930   }
   931   if (_ioproj_fallthrough != NULL) {
   932     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
   933   }
   934   if (_ioproj_catchall != NULL) {
   935     _igvn.replace_node(_ioproj_catchall, C->top());
   936   }
   937   if (_catchallcatchproj != NULL) {
   938     _igvn.replace_node(_catchallcatchproj, C->top());
   939   }
   940 }
   942 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
   944   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
   945     return false;
   946   }
   948   extract_call_projections(alloc);
   950   GrowableArray <SafePointNode *> safepoints;
   951   if (!can_eliminate_allocation(alloc, safepoints)) {
   952     return false;
   953   }
   955   if (!scalar_replacement(alloc, safepoints)) {
   956     return false;
   957   }
   959   CompileLog* log = C->log();
   960   if (log != NULL) {
   961     Node* klass = alloc->in(AllocateNode::KlassNode);
   962     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
   963     log->head("eliminate_allocation type='%d'",
   964               log->identify(tklass->klass()));
   965     JVMState* p = alloc->jvms();
   966     while (p != NULL) {
   967       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
   968       p = p->caller();
   969     }
   970     log->tail("eliminate_allocation");
   971   }
   973   process_users_of_allocation(alloc);
   975 #ifndef PRODUCT
   976   if (PrintEliminateAllocations) {
   977     if (alloc->is_AllocateArray())
   978       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
   979     else
   980       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
   981   }
   982 #endif
   984   return true;
   985 }
   988 //---------------------------set_eden_pointers-------------------------
   989 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
   990   if (UseTLAB) {                // Private allocation: load from TLS
   991     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
   992     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
   993     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
   994     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
   995     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
   996   } else {                      // Shared allocation: load from globals
   997     CollectedHeap* ch = Universe::heap();
   998     address top_adr = (address)ch->top_addr();
   999     address end_adr = (address)ch->end_addr();
  1000     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
  1001     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
  1006 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
  1007   Node* adr = basic_plus_adr(base, offset);
  1008   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
  1009   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
  1010   transform_later(value);
  1011   return value;
  1015 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
  1016   Node* adr = basic_plus_adr(base, offset);
  1017   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
  1018   transform_later(mem);
  1019   return mem;
  1022 //=============================================================================
  1023 //
  1024 //                              A L L O C A T I O N
  1025 //
  1026 // Allocation attempts to be fast in the case of frequent small objects.
  1027 // It breaks down like this:
  1028 //
  1029 // 1) Size in doublewords is computed.  This is a constant for objects and
  1030 // variable for most arrays.  Doubleword units are used to avoid size
  1031 // overflow of huge doubleword arrays.  We need doublewords in the end for
  1032 // rounding.
  1033 //
  1034 // 2) Size is checked for being 'too large'.  Too-large allocations will go
  1035 // the slow path into the VM.  The slow path can throw any required
  1036 // exceptions, and does all the special checks for very large arrays.  The
  1037 // size test can constant-fold away for objects.  For objects with
  1038 // finalizers it constant-folds the otherway: you always go slow with
  1039 // finalizers.
  1040 //
  1041 // 3) If NOT using TLABs, this is the contended loop-back point.
  1042 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
  1043 //
  1044 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
  1045 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
  1046 // "size*8" we always enter the VM, where "largish" is a constant picked small
  1047 // enough that there's always space between the eden max and 4Gig (old space is
  1048 // there so it's quite large) and large enough that the cost of entering the VM
  1049 // is dwarfed by the cost to initialize the space.
  1050 //
  1051 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
  1052 // down.  If contended, repeat at step 3.  If using TLABs normal-store
  1053 // adjusted heap top back down; there is no contention.
  1054 //
  1055 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
  1056 // fields.
  1057 //
  1058 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
  1059 // oop flavor.
  1060 //
  1061 //=============================================================================
  1062 // FastAllocateSizeLimit value is in DOUBLEWORDS.
  1063 // Allocations bigger than this always go the slow route.
  1064 // This value must be small enough that allocation attempts that need to
  1065 // trigger exceptions go the slow route.  Also, it must be small enough so
  1066 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
  1067 //=============================================================================j//
  1068 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
  1069 // The allocator will coalesce int->oop copies away.  See comment in
  1070 // coalesce.cpp about how this works.  It depends critically on the exact
  1071 // code shape produced here, so if you are changing this code shape
  1072 // make sure the GC info for the heap-top is correct in and around the
  1073 // slow-path call.
  1074 //
  1076 void PhaseMacroExpand::expand_allocate_common(
  1077             AllocateNode* alloc, // allocation node to be expanded
  1078             Node* length,  // array length for an array allocation
  1079             const TypeFunc* slow_call_type, // Type of slow call
  1080             address slow_call_address  // Address of slow call
  1084   Node* ctrl = alloc->in(TypeFunc::Control);
  1085   Node* mem  = alloc->in(TypeFunc::Memory);
  1086   Node* i_o  = alloc->in(TypeFunc::I_O);
  1087   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
  1088   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
  1089   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
  1091   Node* storestore = alloc->storestore();
  1092   if (storestore != NULL) {
  1093     // Break this link that is no longer useful and confuses register allocation
  1094     storestore->set_req(MemBarNode::Precedent, top());
  1097   assert(ctrl != NULL, "must have control");
  1098   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
  1099   // they will not be used if "always_slow" is set
  1100   enum { slow_result_path = 1, fast_result_path = 2 };
  1101   Node *result_region;
  1102   Node *result_phi_rawmem;
  1103   Node *result_phi_rawoop;
  1104   Node *result_phi_i_o;
  1106   // The initial slow comparison is a size check, the comparison
  1107   // we want to do is a BoolTest::gt
  1108   bool always_slow = false;
  1109   int tv = _igvn.find_int_con(initial_slow_test, -1);
  1110   if (tv >= 0) {
  1111     always_slow = (tv == 1);
  1112     initial_slow_test = NULL;
  1113   } else {
  1114     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
  1117   if (C->env()->dtrace_alloc_probes() ||
  1118       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
  1119                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
  1120     // Force slow-path allocation
  1121     always_slow = true;
  1122     initial_slow_test = NULL;
  1126   enum { too_big_or_final_path = 1, need_gc_path = 2 };
  1127   Node *slow_region = NULL;
  1128   Node *toobig_false = ctrl;
  1130   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
  1131   // generate the initial test if necessary
  1132   if (initial_slow_test != NULL ) {
  1133     slow_region = new (C, 3) RegionNode(3);
  1135     // Now make the initial failure test.  Usually a too-big test but
  1136     // might be a TRUE for finalizers or a fancy class check for
  1137     // newInstance0.
  1138     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  1139     transform_later(toobig_iff);
  1140     // Plug the failing-too-big test into the slow-path region
  1141     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
  1142     transform_later(toobig_true);
  1143     slow_region    ->init_req( too_big_or_final_path, toobig_true );
  1144     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
  1145     transform_later(toobig_false);
  1146   } else {         // No initial test, just fall into next case
  1147     toobig_false = ctrl;
  1148     debug_only(slow_region = NodeSentinel);
  1151   Node *slow_mem = mem;  // save the current memory state for slow path
  1152   // generate the fast allocation code unless we know that the initial test will always go slow
  1153   if (!always_slow) {
  1154     // Fast path modifies only raw memory.
  1155     if (mem->is_MergeMem()) {
  1156       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
  1159     Node* eden_top_adr;
  1160     Node* eden_end_adr;
  1162     set_eden_pointers(eden_top_adr, eden_end_adr);
  1164     // Load Eden::end.  Loop invariant and hoisted.
  1165     //
  1166     // Note: We set the control input on "eden_end" and "old_eden_top" when using
  1167     //       a TLAB to work around a bug where these values were being moved across
  1168     //       a safepoint.  These are not oops, so they cannot be include in the oop
  1169     //       map, but they can be changed by a GC.   The proper way to fix this would
  1170     //       be to set the raw memory state when generating a  SafepointNode.  However
  1171     //       this will require extensive changes to the loop optimization in order to
  1172     //       prevent a degradation of the optimization.
  1173     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
  1174     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
  1176     // allocate the Region and Phi nodes for the result
  1177     result_region = new (C, 3) RegionNode(3);
  1178     result_phi_rawmem = new (C, 3) PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1179     result_phi_rawoop = new (C, 3) PhiNode(result_region, TypeRawPtr::BOTTOM);
  1180     result_phi_i_o    = new (C, 3) PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
  1182     // We need a Region for the loop-back contended case.
  1183     enum { fall_in_path = 1, contended_loopback_path = 2 };
  1184     Node *contended_region;
  1185     Node *contended_phi_rawmem;
  1186     if (UseTLAB) {
  1187       contended_region = toobig_false;
  1188       contended_phi_rawmem = mem;
  1189     } else {
  1190       contended_region = new (C, 3) RegionNode(3);
  1191       contended_phi_rawmem = new (C, 3) PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  1192       // Now handle the passing-too-big test.  We fall into the contended
  1193       // loop-back merge point.
  1194       contended_region    ->init_req(fall_in_path, toobig_false);
  1195       contended_phi_rawmem->init_req(fall_in_path, mem);
  1196       transform_later(contended_region);
  1197       transform_later(contended_phi_rawmem);
  1200     // Load(-locked) the heap top.
  1201     // See note above concerning the control input when using a TLAB
  1202     Node *old_eden_top = UseTLAB
  1203       ? new (C, 3) LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM)
  1204       : new (C, 3) LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr);
  1206     transform_later(old_eden_top);
  1207     // Add to heap top to get a new heap top
  1208     Node *new_eden_top = new (C, 4) AddPNode(top(), old_eden_top, size_in_bytes);
  1209     transform_later(new_eden_top);
  1210     // Check for needing a GC; compare against heap end
  1211     Node *needgc_cmp = new (C, 3) CmpPNode(new_eden_top, eden_end);
  1212     transform_later(needgc_cmp);
  1213     Node *needgc_bol = new (C, 2) BoolNode(needgc_cmp, BoolTest::ge);
  1214     transform_later(needgc_bol);
  1215     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
  1216     transform_later(needgc_iff);
  1218     // Plug the failing-heap-space-need-gc test into the slow-path region
  1219     Node *needgc_true = new (C, 1) IfTrueNode(needgc_iff);
  1220     transform_later(needgc_true);
  1221     if (initial_slow_test) {
  1222       slow_region->init_req(need_gc_path, needgc_true);
  1223       // This completes all paths into the slow merge point
  1224       transform_later(slow_region);
  1225     } else {                      // No initial slow path needed!
  1226       // Just fall from the need-GC path straight into the VM call.
  1227       slow_region = needgc_true;
  1229     // No need for a GC.  Setup for the Store-Conditional
  1230     Node *needgc_false = new (C, 1) IfFalseNode(needgc_iff);
  1231     transform_later(needgc_false);
  1233     // Grab regular I/O before optional prefetch may change it.
  1234     // Slow-path does no I/O so just set it to the original I/O.
  1235     result_phi_i_o->init_req(slow_result_path, i_o);
  1237     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
  1238                               old_eden_top, new_eden_top, length);
  1240     // Name successful fast-path variables
  1241     Node* fast_oop = old_eden_top;
  1242     Node* fast_oop_ctrl;
  1243     Node* fast_oop_rawmem;
  1245     // Store (-conditional) the modified eden top back down.
  1246     // StorePConditional produces flags for a test PLUS a modified raw
  1247     // memory state.
  1248     if (UseTLAB) {
  1249       Node* store_eden_top =
  1250         new (C, 4) StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1251                               TypeRawPtr::BOTTOM, new_eden_top);
  1252       transform_later(store_eden_top);
  1253       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
  1254       fast_oop_rawmem = store_eden_top;
  1255     } else {
  1256       Node* store_eden_top =
  1257         new (C, 5) StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
  1258                                          new_eden_top, fast_oop/*old_eden_top*/);
  1259       transform_later(store_eden_top);
  1260       Node *contention_check = new (C, 2) BoolNode(store_eden_top, BoolTest::ne);
  1261       transform_later(contention_check);
  1262       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
  1263       transform_later(store_eden_top);
  1265       // If not using TLABs, check to see if there was contention.
  1266       IfNode *contention_iff = new (C, 2) IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
  1267       transform_later(contention_iff);
  1268       Node *contention_true = new (C, 1) IfTrueNode(contention_iff);
  1269       transform_later(contention_true);
  1270       // If contention, loopback and try again.
  1271       contended_region->init_req(contended_loopback_path, contention_true);
  1272       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
  1274       // Fast-path succeeded with no contention!
  1275       Node *contention_false = new (C, 1) IfFalseNode(contention_iff);
  1276       transform_later(contention_false);
  1277       fast_oop_ctrl = contention_false;
  1279       // Bump total allocated bytes for this thread
  1280       Node* thread = new (C, 1) ThreadLocalNode();
  1281       transform_later(thread);
  1282       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
  1283                                              in_bytes(JavaThread::allocated_bytes_offset()));
  1284       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1285                                     0, TypeLong::LONG, T_LONG);
  1286 #ifdef _LP64
  1287       Node* alloc_size = size_in_bytes;
  1288 #else
  1289       Node* alloc_size = new (C, 2) ConvI2LNode(size_in_bytes);
  1290       transform_later(alloc_size);
  1291 #endif
  1292       Node* new_alloc_bytes = new (C, 3) AddLNode(alloc_bytes, alloc_size);
  1293       transform_later(new_alloc_bytes);
  1294       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
  1295                                    0, new_alloc_bytes, T_LONG);
  1298     InitializeNode* init = alloc->initialization();
  1299     fast_oop_rawmem = initialize_object(alloc,
  1300                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
  1301                                         klass_node, length, size_in_bytes);
  1303     // If initialization is performed by an array copy, any required
  1304     // MemBarStoreStore was already added. If the object does not
  1305     // escape no need for a MemBarStoreStore. Otherwise we need a
  1306     // MemBarStoreStore so that stores that initialize this object
  1307     // can't be reordered with a subsequent store that makes this
  1308     // object accessible by other threads.
  1309     if (init == NULL || (!init->is_complete_with_arraycopy() && !init->does_not_escape())) {
  1310       if (init == NULL || init->req() < InitializeNode::RawStores) {
  1311         // No InitializeNode or no stores captured by zeroing
  1312         // elimination. Simply add the MemBarStoreStore after object
  1313         // initialization.
  1314         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot, fast_oop_rawmem);
  1315         transform_later(mb);
  1317         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
  1318         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
  1319         fast_oop_ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
  1320         transform_later(fast_oop_ctrl);
  1321         fast_oop_rawmem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
  1322         transform_later(fast_oop_rawmem);
  1323       } else {
  1324         // Add the MemBarStoreStore after the InitializeNode so that
  1325         // all stores performing the initialization that were moved
  1326         // before the InitializeNode happen before the storestore
  1327         // barrier.
  1329         Node* init_ctrl = init->proj_out(TypeFunc::Control);
  1330         Node* init_mem = init->proj_out(TypeFunc::Memory);
  1332         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
  1333         transform_later(mb);
  1335         Node* ctrl = new (C, 1) ProjNode(init,TypeFunc::Control);
  1336         transform_later(ctrl);
  1337         Node* mem = new (C, 1) ProjNode(init,TypeFunc::Memory);
  1338         transform_later(mem);
  1340         // The MemBarStoreStore depends on control and memory coming
  1341         // from the InitializeNode
  1342         mb->init_req(TypeFunc::Memory, mem);
  1343         mb->init_req(TypeFunc::Control, ctrl);
  1345         ctrl = new (C, 1) ProjNode(mb,TypeFunc::Control);
  1346         transform_later(ctrl);
  1347         mem = new (C, 1) ProjNode(mb,TypeFunc::Memory);
  1348         transform_later(mem);
  1350         // All nodes that depended on the InitializeNode for control
  1351         // and memory must now depend on the MemBarNode that itself
  1352         // depends on the InitializeNode
  1353         _igvn.replace_node(init_ctrl, ctrl);
  1354         _igvn.replace_node(init_mem, mem);
  1358     if (C->env()->dtrace_extended_probes()) {
  1359       // Slow-path call
  1360       int size = TypeFunc::Parms + 2;
  1361       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
  1362                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
  1363                                                       "dtrace_object_alloc",
  1364                                                       TypeRawPtr::BOTTOM);
  1366       // Get base of thread-local storage area
  1367       Node* thread = new (C, 1) ThreadLocalNode();
  1368       transform_later(thread);
  1370       call->init_req(TypeFunc::Parms+0, thread);
  1371       call->init_req(TypeFunc::Parms+1, fast_oop);
  1372       call->init_req(TypeFunc::Control, fast_oop_ctrl);
  1373       call->init_req(TypeFunc::I_O    , top()); // does no i/o
  1374       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
  1375       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
  1376       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
  1377       transform_later(call);
  1378       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  1379       transform_later(fast_oop_ctrl);
  1380       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  1381       transform_later(fast_oop_rawmem);
  1384     // Plug in the successful fast-path into the result merge point
  1385     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
  1386     result_phi_rawoop->init_req(fast_result_path, fast_oop);
  1387     result_phi_i_o   ->init_req(fast_result_path, i_o);
  1388     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
  1389   } else {
  1390     slow_region = ctrl;
  1391     result_phi_i_o = i_o; // Rename it to use in the following code.
  1394   // Generate slow-path call
  1395   CallNode *call = new (C, slow_call_type->domain()->cnt())
  1396     CallStaticJavaNode(slow_call_type, slow_call_address,
  1397                        OptoRuntime::stub_name(slow_call_address),
  1398                        alloc->jvms()->bci(),
  1399                        TypePtr::BOTTOM);
  1400   call->init_req( TypeFunc::Control, slow_region );
  1401   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  1402   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
  1403   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
  1404   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
  1406   call->init_req(TypeFunc::Parms+0, klass_node);
  1407   if (length != NULL) {
  1408     call->init_req(TypeFunc::Parms+1, length);
  1411   // Copy debug information and adjust JVMState information, then replace
  1412   // allocate node with the call
  1413   copy_call_debug_info((CallNode *) alloc,  call);
  1414   if (!always_slow) {
  1415     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
  1416   } else {
  1417     // Hook i_o projection to avoid its elimination during allocation
  1418     // replacement (when only a slow call is generated).
  1419     call->set_req(TypeFunc::I_O, result_phi_i_o);
  1421   _igvn.replace_node(alloc, call);
  1422   transform_later(call);
  1424   // Identify the output projections from the allocate node and
  1425   // adjust any references to them.
  1426   // The control and io projections look like:
  1427   //
  1428   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
  1429   //  Allocate                   Catch
  1430   //        ^---Proj(io) <-------+   ^---CatchProj(io)
  1431   //
  1432   //  We are interested in the CatchProj nodes.
  1433   //
  1434   extract_call_projections(call);
  1436   // An allocate node has separate memory projections for the uses on
  1437   // the control and i_o paths. Replace the control memory projection with
  1438   // result_phi_rawmem (unless we are only generating a slow call when
  1439   // both memory projections are combined)
  1440   if (!always_slow && _memproj_fallthrough != NULL) {
  1441     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1442       Node *use = _memproj_fallthrough->fast_out(i);
  1443       _igvn.hash_delete(use);
  1444       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
  1445       _igvn._worklist.push(use);
  1446       // back up iterator
  1447       --i;
  1450   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
  1451   // _memproj_catchall so we end up with a call that has only 1 memory projection.
  1452   if (_memproj_catchall != NULL ) {
  1453     if (_memproj_fallthrough == NULL) {
  1454       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
  1455       transform_later(_memproj_fallthrough);
  1457     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
  1458       Node *use = _memproj_catchall->fast_out(i);
  1459       _igvn.hash_delete(use);
  1460       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
  1461       _igvn._worklist.push(use);
  1462       // back up iterator
  1463       --i;
  1465     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
  1466     _igvn.remove_dead_node(_memproj_catchall);
  1469   // An allocate node has separate i_o projections for the uses on the control
  1470   // and i_o paths. Always replace the control i_o projection with result i_o
  1471   // otherwise incoming i_o become dead when only a slow call is generated
  1472   // (it is different from memory projections where both projections are
  1473   // combined in such case).
  1474   if (_ioproj_fallthrough != NULL) {
  1475     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
  1476       Node *use = _ioproj_fallthrough->fast_out(i);
  1477       _igvn.hash_delete(use);
  1478       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
  1479       _igvn._worklist.push(use);
  1480       // back up iterator
  1481       --i;
  1484   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
  1485   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
  1486   if (_ioproj_catchall != NULL ) {
  1487     if (_ioproj_fallthrough == NULL) {
  1488       _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
  1489       transform_later(_ioproj_fallthrough);
  1491     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
  1492       Node *use = _ioproj_catchall->fast_out(i);
  1493       _igvn.hash_delete(use);
  1494       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
  1495       _igvn._worklist.push(use);
  1496       // back up iterator
  1497       --i;
  1499     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
  1500     _igvn.remove_dead_node(_ioproj_catchall);
  1503   // if we generated only a slow call, we are done
  1504   if (always_slow) {
  1505     // Now we can unhook i_o.
  1506     if (result_phi_i_o->outcnt() > 1) {
  1507       call->set_req(TypeFunc::I_O, top());
  1508     } else {
  1509       assert(result_phi_i_o->unique_ctrl_out() == call, "");
  1510       // Case of new array with negative size known during compilation.
  1511       // AllocateArrayNode::Ideal() optimization disconnect unreachable
  1512       // following code since call to runtime will throw exception.
  1513       // As result there will be no users of i_o after the call.
  1514       // Leave i_o attached to this call to avoid problems in preceding graph.
  1516     return;
  1520   if (_fallthroughcatchproj != NULL) {
  1521     ctrl = _fallthroughcatchproj->clone();
  1522     transform_later(ctrl);
  1523     _igvn.replace_node(_fallthroughcatchproj, result_region);
  1524   } else {
  1525     ctrl = top();
  1527   Node *slow_result;
  1528   if (_resproj == NULL) {
  1529     // no uses of the allocation result
  1530     slow_result = top();
  1531   } else {
  1532     slow_result = _resproj->clone();
  1533     transform_later(slow_result);
  1534     _igvn.replace_node(_resproj, result_phi_rawoop);
  1537   // Plug slow-path into result merge point
  1538   result_region    ->init_req( slow_result_path, ctrl );
  1539   result_phi_rawoop->init_req( slow_result_path, slow_result);
  1540   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
  1541   transform_later(result_region);
  1542   transform_later(result_phi_rawoop);
  1543   transform_later(result_phi_rawmem);
  1544   transform_later(result_phi_i_o);
  1545   // This completes all paths into the result merge point
  1549 // Helper for PhaseMacroExpand::expand_allocate_common.
  1550 // Initializes the newly-allocated storage.
  1551 Node*
  1552 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
  1553                                     Node* control, Node* rawmem, Node* object,
  1554                                     Node* klass_node, Node* length,
  1555                                     Node* size_in_bytes) {
  1556   InitializeNode* init = alloc->initialization();
  1557   // Store the klass & mark bits
  1558   Node* mark_node = NULL;
  1559   // For now only enable fast locking for non-array types
  1560   if (UseBiasedLocking && (length == NULL)) {
  1561     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
  1562   } else {
  1563     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
  1565   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
  1567   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
  1568   int header_size = alloc->minimum_header_size();  // conservatively small
  1570   // Array length
  1571   if (length != NULL) {         // Arrays need length field
  1572     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
  1573     // conservatively small header size:
  1574     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1575     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1576     if (k->is_array_klass())    // we know the exact header size in most cases:
  1577       header_size = Klass::layout_helper_header_size(k->layout_helper());
  1580   // Clear the object body, if necessary.
  1581   if (init == NULL) {
  1582     // The init has somehow disappeared; be cautious and clear everything.
  1583     //
  1584     // This can happen if a node is allocated but an uncommon trap occurs
  1585     // immediately.  In this case, the Initialize gets associated with the
  1586     // trap, and may be placed in a different (outer) loop, if the Allocate
  1587     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
  1588     // there can be two Allocates to one Initialize.  The answer in all these
  1589     // edge cases is safety first.  It is always safe to clear immediately
  1590     // within an Allocate, and then (maybe or maybe not) clear some more later.
  1591     if (!ZeroTLAB)
  1592       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
  1593                                             header_size, size_in_bytes,
  1594                                             &_igvn);
  1595   } else {
  1596     if (!init->is_complete()) {
  1597       // Try to win by zeroing only what the init does not store.
  1598       // We can also try to do some peephole optimizations,
  1599       // such as combining some adjacent subword stores.
  1600       rawmem = init->complete_stores(control, rawmem, object,
  1601                                      header_size, size_in_bytes, &_igvn);
  1603     // We have no more use for this link, since the AllocateNode goes away:
  1604     init->set_req(InitializeNode::RawAddress, top());
  1605     // (If we keep the link, it just confuses the register allocator,
  1606     // who thinks he sees a real use of the address by the membar.)
  1609   return rawmem;
  1612 // Generate prefetch instructions for next allocations.
  1613 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
  1614                                         Node*& contended_phi_rawmem,
  1615                                         Node* old_eden_top, Node* new_eden_top,
  1616                                         Node* length) {
  1617    enum { fall_in_path = 1, pf_path = 2 };
  1618    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
  1619       // Generate prefetch allocation with watermark check.
  1620       // As an allocation hits the watermark, we will prefetch starting
  1621       // at a "distance" away from watermark.
  1623       Node *pf_region = new (C, 3) RegionNode(3);
  1624       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1625                                                 TypeRawPtr::BOTTOM );
  1626       // I/O is used for Prefetch
  1627       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
  1629       Node *thread = new (C, 1) ThreadLocalNode();
  1630       transform_later(thread);
  1632       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
  1633                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
  1634       transform_later(eden_pf_adr);
  1636       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
  1637                                    contended_phi_rawmem, eden_pf_adr,
  1638                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
  1639       transform_later(old_pf_wm);
  1641       // check against new_eden_top
  1642       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
  1643       transform_later(need_pf_cmp);
  1644       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
  1645       transform_later(need_pf_bol);
  1646       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
  1647                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
  1648       transform_later(need_pf_iff);
  1650       // true node, add prefetchdistance
  1651       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
  1652       transform_later(need_pf_true);
  1654       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
  1655       transform_later(need_pf_false);
  1657       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
  1658                                     _igvn.MakeConX(AllocatePrefetchDistance) );
  1659       transform_later(new_pf_wmt );
  1660       new_pf_wmt->set_req(0, need_pf_true);
  1662       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
  1663                                        contended_phi_rawmem, eden_pf_adr,
  1664                                        TypeRawPtr::BOTTOM, new_pf_wmt );
  1665       transform_later(store_new_wmt);
  1667       // adding prefetches
  1668       pf_phi_abio->init_req( fall_in_path, i_o );
  1670       Node *prefetch_adr;
  1671       Node *prefetch;
  1672       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
  1673       uint step_size = AllocatePrefetchStepSize;
  1674       uint distance = 0;
  1676       for ( uint i = 0; i < lines; i++ ) {
  1677         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
  1678                                             _igvn.MakeConX(distance) );
  1679         transform_later(prefetch_adr);
  1680         prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
  1681         transform_later(prefetch);
  1682         distance += step_size;
  1683         i_o = prefetch;
  1685       pf_phi_abio->set_req( pf_path, i_o );
  1687       pf_region->init_req( fall_in_path, need_pf_false );
  1688       pf_region->init_req( pf_path, need_pf_true );
  1690       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
  1691       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
  1693       transform_later(pf_region);
  1694       transform_later(pf_phi_rawmem);
  1695       transform_later(pf_phi_abio);
  1697       needgc_false = pf_region;
  1698       contended_phi_rawmem = pf_phi_rawmem;
  1699       i_o = pf_phi_abio;
  1700    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
  1701       // Insert a prefetch for each allocation.
  1702       // This code is used for Sparc with BIS.
  1703       Node *pf_region = new (C, 3) RegionNode(3);
  1704       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
  1705                                                 TypeRawPtr::BOTTOM );
  1707       // Generate several prefetch instructions.
  1708       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1709       uint step_size = AllocatePrefetchStepSize;
  1710       uint distance = AllocatePrefetchDistance;
  1712       // Next cache address.
  1713       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
  1714                                             _igvn.MakeConX(distance));
  1715       transform_later(cache_adr);
  1716       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
  1717       transform_later(cache_adr);
  1718       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
  1719       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
  1720       transform_later(cache_adr);
  1721       cache_adr = new (C, 2) CastX2PNode(cache_adr);
  1722       transform_later(cache_adr);
  1724       // Prefetch
  1725       Node *prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
  1726       prefetch->set_req(0, needgc_false);
  1727       transform_later(prefetch);
  1728       contended_phi_rawmem = prefetch;
  1729       Node *prefetch_adr;
  1730       distance = step_size;
  1731       for ( uint i = 1; i < lines; i++ ) {
  1732         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
  1733                                             _igvn.MakeConX(distance) );
  1734         transform_later(prefetch_adr);
  1735         prefetch = new (C, 3) PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
  1736         transform_later(prefetch);
  1737         distance += step_size;
  1738         contended_phi_rawmem = prefetch;
  1740    } else if( AllocatePrefetchStyle > 0 ) {
  1741       // Insert a prefetch for each allocation only on the fast-path
  1742       Node *prefetch_adr;
  1743       Node *prefetch;
  1744       // Generate several prefetch instructions.
  1745       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
  1746       uint step_size = AllocatePrefetchStepSize;
  1747       uint distance = AllocatePrefetchDistance;
  1748       for ( uint i = 0; i < lines; i++ ) {
  1749         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
  1750                                             _igvn.MakeConX(distance) );
  1751         transform_later(prefetch_adr);
  1752         prefetch = new (C, 3) PrefetchAllocationNode( i_o, prefetch_adr );
  1753         // Do not let it float too high, since if eden_top == eden_end,
  1754         // both might be null.
  1755         if( i == 0 ) { // Set control for first prefetch, next follows it
  1756           prefetch->init_req(0, needgc_false);
  1758         transform_later(prefetch);
  1759         distance += step_size;
  1760         i_o = prefetch;
  1763    return i_o;
  1767 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
  1768   expand_allocate_common(alloc, NULL,
  1769                          OptoRuntime::new_instance_Type(),
  1770                          OptoRuntime::new_instance_Java());
  1773 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
  1774   Node* length = alloc->in(AllocateNode::ALength);
  1775   InitializeNode* init = alloc->initialization();
  1776   Node* klass_node = alloc->in(AllocateNode::KlassNode);
  1777   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
  1778   address slow_call_address;  // Address of slow call
  1779   if (init != NULL && init->is_complete_with_arraycopy() &&
  1780       k->is_type_array_klass()) {
  1781     // Don't zero type array during slow allocation in VM since
  1782     // it will be initialized later by arraycopy in compiled code.
  1783     slow_call_address = OptoRuntime::new_array_nozero_Java();
  1784   } else {
  1785     slow_call_address = OptoRuntime::new_array_Java();
  1787   expand_allocate_common(alloc, length,
  1788                          OptoRuntime::new_array_Type(),
  1789                          slow_call_address);
  1792 //-------------------mark_eliminated_box----------------------------------
  1793 //
  1794 // During EA obj may point to several objects but after few ideal graph
  1795 // transformations (CCP) it may point to only one non escaping object
  1796 // (but still using phi), corresponding locks and unlocks will be marked
  1797 // for elimination. Later obj could be replaced with a new node (new phi)
  1798 // and which does not have escape information. And later after some graph
  1799 // reshape other locks and unlocks (which were not marked for elimination
  1800 // before) are connected to this new obj (phi) but they still will not be
  1801 // marked for elimination since new obj has no escape information.
  1802 // Mark all associated (same box and obj) lock and unlock nodes for
  1803 // elimination if some of them marked already.
  1804 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
  1805   if (oldbox->is_BoxLock() && oldbox->as_BoxLock()->is_eliminated())
  1806     return;
  1808   if (oldbox->is_BoxLock() &&
  1809       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
  1810     // Box is used only in one lock region. Mark this box as eliminated.
  1811     _igvn.hash_delete(oldbox);
  1812     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
  1813     _igvn.hash_insert(oldbox);
  1815     for (uint i = 0; i < oldbox->outcnt(); i++) {
  1816       Node* u = oldbox->raw_out(i);
  1817       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
  1818         AbstractLockNode* alock = u->as_AbstractLock();
  1819         // Check lock's box since box could be referenced by Lock's debug info.
  1820         if (alock->box_node() == oldbox) {
  1821           assert(alock->obj_node()->eqv_uncast(obj), "");
  1822           // Mark eliminated all related locks and unlocks.
  1823           alock->set_non_esc_obj();
  1827     return;
  1830   // Create new "eliminated" BoxLock node and use it in monitor debug info
  1831   // instead of oldbox for the same object.
  1832   BoxLockNode* box = BoxLockNode::box_node(oldbox);
  1833   BoxLockNode* newbox = box->clone()->as_BoxLock();
  1835   // Note: BoxLock node is marked eliminated only here and it is used
  1836   // to indicate that all associated lock and unlock nodes are marked
  1837   // for elimination.
  1838   newbox->set_eliminated();
  1839   transform_later(newbox);
  1841   // Replace old box node with new box for all users of the same object.
  1842   for (uint i = 0; i < oldbox->outcnt();) {
  1843     bool next_edge = true;
  1845     Node* u = oldbox->raw_out(i);
  1846     if (u->is_AbstractLock()) {
  1847       AbstractLockNode* alock = u->as_AbstractLock();
  1848       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
  1849         // Replace Box and mark eliminated all related locks and unlocks.
  1850         alock->set_non_esc_obj();
  1851         _igvn.hash_delete(alock);
  1852         alock->set_box_node(newbox);
  1853         _igvn._worklist.push(alock);
  1854         next_edge = false;
  1857     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
  1858       FastLockNode* flock = u->as_FastLock();
  1859       assert(flock->box_node() == oldbox, "sanity");
  1860       _igvn.hash_delete(flock);
  1861       flock->set_box_node(newbox);
  1862       _igvn._worklist.push(flock);
  1863       next_edge = false;
  1866     // Replace old box in monitor debug info.
  1867     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
  1868       SafePointNode* sfn = u->as_SafePoint();
  1869       JVMState* youngest_jvms = sfn->jvms();
  1870       int max_depth = youngest_jvms->depth();
  1871       for (int depth = 1; depth <= max_depth; depth++) {
  1872         JVMState* jvms = youngest_jvms->of_depth(depth);
  1873         int num_mon  = jvms->nof_monitors();
  1874         // Loop over monitors
  1875         for (int idx = 0; idx < num_mon; idx++) {
  1876           Node* obj_node = sfn->monitor_obj(jvms, idx);
  1877           Node* box_node = sfn->monitor_box(jvms, idx);
  1878           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
  1879             int j = jvms->monitor_box_offset(idx);
  1880             _igvn.hash_delete(u);
  1881             u->set_req(j, newbox);
  1882             _igvn._worklist.push(u);
  1883             next_edge = false;
  1888     if (next_edge) i++;
  1892 //-----------------------mark_eliminated_locking_nodes-----------------------
  1893 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
  1894   if (EliminateNestedLocks) {
  1895     if (alock->is_nested()) {
  1896        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
  1897        return;
  1898     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
  1899       // Only Lock node has JVMState needed here.
  1900       if (alock->jvms() != NULL && alock->as_Lock()->is_nested_lock_region()) {
  1901         // Mark eliminated related nested locks and unlocks.
  1902         Node* obj = alock->obj_node();
  1903         BoxLockNode* box_node = alock->box_node()->as_BoxLock();
  1904         assert(!box_node->is_eliminated(), "should not be marked yet");
  1905         // Note: BoxLock node is marked eliminated only here
  1906         // and it is used to indicate that all associated lock
  1907         // and unlock nodes are marked for elimination.
  1908         box_node->set_eliminated(); // Box's hash is always NO_HASH here
  1909         for (uint i = 0; i < box_node->outcnt(); i++) {
  1910           Node* u = box_node->raw_out(i);
  1911           if (u->is_AbstractLock()) {
  1912             alock = u->as_AbstractLock();
  1913             if (alock->box_node() == box_node) {
  1914               // Verify that this Box is referenced only by related locks.
  1915               assert(alock->obj_node()->eqv_uncast(obj), "");
  1916               // Mark all related locks and unlocks.
  1917               alock->set_nested();
  1922       return;
  1924     // Process locks for non escaping object
  1925     assert(alock->is_non_esc_obj(), "");
  1926   } // EliminateNestedLocks
  1928   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
  1929     // Look for all locks of this object and mark them and
  1930     // corresponding BoxLock nodes as eliminated.
  1931     Node* obj = alock->obj_node();
  1932     for (uint j = 0; j < obj->outcnt(); j++) {
  1933       Node* o = obj->raw_out(j);
  1934       if (o->is_AbstractLock() &&
  1935           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
  1936         alock = o->as_AbstractLock();
  1937         Node* box = alock->box_node();
  1938         // Replace old box node with new eliminated box for all users
  1939         // of the same object and mark related locks as eliminated.
  1940         mark_eliminated_box(box, obj);
  1946 // we have determined that this lock/unlock can be eliminated, we simply
  1947 // eliminate the node without expanding it.
  1948 //
  1949 // Note:  The membar's associated with the lock/unlock are currently not
  1950 //        eliminated.  This should be investigated as a future enhancement.
  1951 //
  1952 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
  1954   if (!alock->is_eliminated()) {
  1955     return false;
  1957 #ifdef ASSERT
  1958   if (!alock->is_coarsened()) {
  1959     // Check that new "eliminated" BoxLock node is created.
  1960     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
  1961     assert(oldbox->is_eliminated(), "should be done already");
  1963 #endif
  1964   CompileLog* log = C->log();
  1965   if (log != NULL) {
  1966     log->head("eliminate_lock lock='%d'",
  1967               alock->is_Lock());
  1968     JVMState* p = alock->jvms();
  1969     while (p != NULL) {
  1970       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
  1971       p = p->caller();
  1973     log->tail("eliminate_lock");
  1976   #ifndef PRODUCT
  1977   if (PrintEliminateLocks) {
  1978     if (alock->is_Lock()) {
  1979       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
  1980     } else {
  1981       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
  1984   #endif
  1986   Node* mem  = alock->in(TypeFunc::Memory);
  1987   Node* ctrl = alock->in(TypeFunc::Control);
  1989   extract_call_projections(alock);
  1990   // There are 2 projections from the lock.  The lock node will
  1991   // be deleted when its last use is subsumed below.
  1992   assert(alock->outcnt() == 2 &&
  1993          _fallthroughproj != NULL &&
  1994          _memproj_fallthrough != NULL,
  1995          "Unexpected projections from Lock/Unlock");
  1997   Node* fallthroughproj = _fallthroughproj;
  1998   Node* memproj_fallthrough = _memproj_fallthrough;
  2000   // The memory projection from a lock/unlock is RawMem
  2001   // The input to a Lock is merged memory, so extract its RawMem input
  2002   // (unless the MergeMem has been optimized away.)
  2003   if (alock->is_Lock()) {
  2004     // Seach for MemBarAcquireLock node and delete it also.
  2005     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
  2006     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
  2007     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
  2008     Node* memproj = membar->proj_out(TypeFunc::Memory);
  2009     _igvn.replace_node(ctrlproj, fallthroughproj);
  2010     _igvn.replace_node(memproj, memproj_fallthrough);
  2012     // Delete FastLock node also if this Lock node is unique user
  2013     // (a loop peeling may clone a Lock node).
  2014     Node* flock = alock->as_Lock()->fastlock_node();
  2015     if (flock->outcnt() == 1) {
  2016       assert(flock->unique_out() == alock, "sanity");
  2017       _igvn.replace_node(flock, top());
  2021   // Seach for MemBarReleaseLock node and delete it also.
  2022   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
  2023       ctrl->in(0)->is_MemBar()) {
  2024     MemBarNode* membar = ctrl->in(0)->as_MemBar();
  2025     assert(membar->Opcode() == Op_MemBarReleaseLock &&
  2026            mem->is_Proj() && membar == mem->in(0), "");
  2027     _igvn.replace_node(fallthroughproj, ctrl);
  2028     _igvn.replace_node(memproj_fallthrough, mem);
  2029     fallthroughproj = ctrl;
  2030     memproj_fallthrough = mem;
  2031     ctrl = membar->in(TypeFunc::Control);
  2032     mem  = membar->in(TypeFunc::Memory);
  2035   _igvn.replace_node(fallthroughproj, ctrl);
  2036   _igvn.replace_node(memproj_fallthrough, mem);
  2037   return true;
  2041 //------------------------------expand_lock_node----------------------
  2042 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
  2044   Node* ctrl = lock->in(TypeFunc::Control);
  2045   Node* mem = lock->in(TypeFunc::Memory);
  2046   Node* obj = lock->obj_node();
  2047   Node* box = lock->box_node();
  2048   Node* flock = lock->fastlock_node();
  2050   assert(!BoxLockNode::box_node(box)->is_eliminated(), "sanity");
  2052   // Make the merge point
  2053   Node *region;
  2054   Node *mem_phi;
  2055   Node *slow_path;
  2057   if (UseOptoBiasInlining) {
  2058     /*
  2059      *  See the full description in MacroAssembler::biased_locking_enter().
  2061      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
  2062      *    // The object is biased.
  2063      *    proto_node = klass->prototype_header;
  2064      *    o_node = thread | proto_node;
  2065      *    x_node = o_node ^ mark_word;
  2066      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
  2067      *      // Done.
  2068      *    } else {
  2069      *      if( (x_node & biased_lock_mask) != 0 ) {
  2070      *        // The klass's prototype header is no longer biased.
  2071      *        cas(&mark_word, mark_word, proto_node)
  2072      *        goto cas_lock;
  2073      *      } else {
  2074      *        // The klass's prototype header is still biased.
  2075      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
  2076      *          old = mark_word;
  2077      *          new = o_node;
  2078      *        } else {
  2079      *          // Different thread or anonymous biased.
  2080      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
  2081      *          new = thread | old;
  2082      *        }
  2083      *        // Try to rebias.
  2084      *        if( cas(&mark_word, old, new) == 0 ) {
  2085      *          // Done.
  2086      *        } else {
  2087      *          goto slow_path; // Failed.
  2088      *        }
  2089      *      }
  2090      *    }
  2091      *  } else {
  2092      *    // The object is not biased.
  2093      *    cas_lock:
  2094      *    if( FastLock(obj) == 0 ) {
  2095      *      // Done.
  2096      *    } else {
  2097      *      slow_path:
  2098      *      OptoRuntime::complete_monitor_locking_Java(obj);
  2099      *    }
  2100      *  }
  2101      */
  2103     region  = new (C, 5) RegionNode(5);
  2104     // create a Phi for the memory state
  2105     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2107     Node* fast_lock_region  = new (C, 3) RegionNode(3);
  2108     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2110     // First, check mark word for the biased lock pattern.
  2111     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2113     // Get fast path - mark word has the biased lock pattern.
  2114     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
  2115                          markOopDesc::biased_lock_mask_in_place,
  2116                          markOopDesc::biased_lock_pattern, true);
  2117     // fast_lock_region->in(1) is set to slow path.
  2118     fast_lock_mem_phi->init_req(1, mem);
  2120     // Now check that the lock is biased to the current thread and has
  2121     // the same epoch and bias as Klass::_prototype_header.
  2123     // Special-case a fresh allocation to avoid building nodes:
  2124     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
  2125     if (klass_node == NULL) {
  2126       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  2127       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
  2128 #ifdef _LP64
  2129       if (UseCompressedOops && klass_node->is_DecodeN()) {
  2130         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
  2131         klass_node->in(1)->init_req(0, ctrl);
  2132       } else
  2133 #endif
  2134       klass_node->init_req(0, ctrl);
  2136     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
  2138     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
  2139     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  2140     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
  2141     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
  2143     // Get slow path - mark word does NOT match the value.
  2144     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
  2145                                       (~markOopDesc::age_mask_in_place), 0);
  2146     // region->in(3) is set to fast path - the object is biased to the current thread.
  2147     mem_phi->init_req(3, mem);
  2150     // Mark word does NOT match the value (thread | Klass::_prototype_header).
  2153     // First, check biased pattern.
  2154     // Get fast path - _prototype_header has the same biased lock pattern.
  2155     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
  2156                           markOopDesc::biased_lock_mask_in_place, 0, true);
  2158     not_biased_ctrl = fast_lock_region->in(2); // Slow path
  2159     // fast_lock_region->in(2) - the prototype header is no longer biased
  2160     // and we have to revoke the bias on this object.
  2161     // We are going to try to reset the mark of this object to the prototype
  2162     // value and fall through to the CAS-based locking scheme.
  2163     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  2164     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
  2165                                                  proto_node, mark_node);
  2166     transform_later(cas);
  2167     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
  2168     fast_lock_mem_phi->init_req(2, proj);
  2171     // Second, check epoch bits.
  2172     Node* rebiased_region  = new (C, 3) RegionNode(3);
  2173     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  2174     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
  2176     // Get slow path - mark word does NOT match epoch bits.
  2177     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
  2178                                       markOopDesc::epoch_mask_in_place, 0);
  2179     // The epoch of the current bias is not valid, attempt to rebias the object
  2180     // toward the current thread.
  2181     rebiased_region->init_req(2, epoch_ctrl);
  2182     old_phi->init_req(2, mark_node);
  2183     new_phi->init_req(2, o_node);
  2185     // rebiased_region->in(1) is set to fast path.
  2186     // The epoch of the current bias is still valid but we know
  2187     // nothing about the owner; it might be set or it might be clear.
  2188     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
  2189                              markOopDesc::age_mask_in_place |
  2190                              markOopDesc::epoch_mask_in_place);
  2191     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
  2192     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
  2193     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
  2194     old_phi->init_req(1, old);
  2195     new_phi->init_req(1, new_mark);
  2197     transform_later(rebiased_region);
  2198     transform_later(old_phi);
  2199     transform_later(new_phi);
  2201     // Try to acquire the bias of the object using an atomic operation.
  2202     // If this fails we will go in to the runtime to revoke the object's bias.
  2203     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
  2204                                            new_phi, old_phi);
  2205     transform_later(cas);
  2206     proj = transform_later( new (C, 1) SCMemProjNode(cas));
  2208     // Get slow path - Failed to CAS.
  2209     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
  2210     mem_phi->init_req(4, proj);
  2211     // region->in(4) is set to fast path - the object is rebiased to the current thread.
  2213     // Failed to CAS.
  2214     slow_path  = new (C, 3) RegionNode(3);
  2215     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
  2217     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
  2218     slow_mem->init_req(1, proj);
  2220     // Call CAS-based locking scheme (FastLock node).
  2222     transform_later(fast_lock_region);
  2223     transform_later(fast_lock_mem_phi);
  2225     // Get slow path - FastLock failed to lock the object.
  2226     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
  2227     mem_phi->init_req(2, fast_lock_mem_phi);
  2228     // region->in(2) is set to fast path - the object is locked to the current thread.
  2230     slow_path->init_req(2, ctrl); // Capture slow-control
  2231     slow_mem->init_req(2, fast_lock_mem_phi);
  2233     transform_later(slow_path);
  2234     transform_later(slow_mem);
  2235     // Reset lock's memory edge.
  2236     lock->set_req(TypeFunc::Memory, slow_mem);
  2238   } else {
  2239     region  = new (C, 3) RegionNode(3);
  2240     // create a Phi for the memory state
  2241     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2243     // Optimize test; set region slot 2
  2244     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
  2245     mem_phi->init_req(2, mem);
  2248   // Make slow path call
  2249   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
  2251   extract_call_projections(call);
  2253   // Slow path can only throw asynchronous exceptions, which are always
  2254   // de-opted.  So the compiler thinks the slow-call can never throw an
  2255   // exception.  If it DOES throw an exception we would need the debug
  2256   // info removed first (since if it throws there is no monitor).
  2257   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2258            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2260   // Capture slow path
  2261   // disconnect fall-through projection from call and create a new one
  2262   // hook up users of fall-through projection to region
  2263   Node *slow_ctrl = _fallthroughproj->clone();
  2264   transform_later(slow_ctrl);
  2265   _igvn.hash_delete(_fallthroughproj);
  2266   _fallthroughproj->disconnect_inputs(NULL);
  2267   region->init_req(1, slow_ctrl);
  2268   // region inputs are now complete
  2269   transform_later(region);
  2270   _igvn.replace_node(_fallthroughproj, region);
  2272   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2273   mem_phi->init_req(1, memproj );
  2274   transform_later(mem_phi);
  2275   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2278 //------------------------------expand_unlock_node----------------------
  2279 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
  2281   Node* ctrl = unlock->in(TypeFunc::Control);
  2282   Node* mem = unlock->in(TypeFunc::Memory);
  2283   Node* obj = unlock->obj_node();
  2284   Node* box = unlock->box_node();
  2286   assert(!BoxLockNode::box_node(box)->is_eliminated(), "sanity");
  2288   // No need for a null check on unlock
  2290   // Make the merge point
  2291   Node *region;
  2292   Node *mem_phi;
  2294   if (UseOptoBiasInlining) {
  2295     // Check for biased locking unlock case, which is a no-op.
  2296     // See the full description in MacroAssembler::biased_locking_exit().
  2297     region  = new (C, 4) RegionNode(4);
  2298     // create a Phi for the memory state
  2299     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2300     mem_phi->init_req(3, mem);
  2302     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
  2303     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
  2304                          markOopDesc::biased_lock_mask_in_place,
  2305                          markOopDesc::biased_lock_pattern);
  2306   } else {
  2307     region  = new (C, 3) RegionNode(3);
  2308     // create a Phi for the memory state
  2309     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
  2312   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
  2313   funlock = transform_later( funlock )->as_FastUnlock();
  2314   // Optimize test; set region slot 2
  2315   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
  2317   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
  2319   extract_call_projections(call);
  2321   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
  2322            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
  2324   // No exceptions for unlocking
  2325   // Capture slow path
  2326   // disconnect fall-through projection from call and create a new one
  2327   // hook up users of fall-through projection to region
  2328   Node *slow_ctrl = _fallthroughproj->clone();
  2329   transform_later(slow_ctrl);
  2330   _igvn.hash_delete(_fallthroughproj);
  2331   _fallthroughproj->disconnect_inputs(NULL);
  2332   region->init_req(1, slow_ctrl);
  2333   // region inputs are now complete
  2334   transform_later(region);
  2335   _igvn.replace_node(_fallthroughproj, region);
  2337   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
  2338   mem_phi->init_req(1, memproj );
  2339   mem_phi->init_req(2, mem);
  2340   transform_later(mem_phi);
  2341   _igvn.replace_node(_memproj_fallthrough, mem_phi);
  2344 //---------------------------eliminate_macro_nodes----------------------
  2345 // Eliminate scalar replaced allocations and associated locks.
  2346 void PhaseMacroExpand::eliminate_macro_nodes() {
  2347   if (C->macro_count() == 0)
  2348     return;
  2350   // First, attempt to eliminate locks
  2351   int cnt = C->macro_count();
  2352   for (int i=0; i < cnt; i++) {
  2353     Node *n = C->macro_node(i);
  2354     if (n->is_AbstractLock()) { // Lock and Unlock nodes
  2355       // Before elimination mark all associated (same box and obj)
  2356       // lock and unlock nodes.
  2357       mark_eliminated_locking_nodes(n->as_AbstractLock());
  2360   bool progress = true;
  2361   while (progress) {
  2362     progress = false;
  2363     for (int i = C->macro_count(); i > 0; i--) {
  2364       Node * n = C->macro_node(i-1);
  2365       bool success = false;
  2366       debug_only(int old_macro_count = C->macro_count(););
  2367       if (n->is_AbstractLock()) {
  2368         success = eliminate_locking_node(n->as_AbstractLock());
  2370       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2371       progress = progress || success;
  2374   // Next, attempt to eliminate allocations
  2375   progress = true;
  2376   while (progress) {
  2377     progress = false;
  2378     for (int i = C->macro_count(); i > 0; i--) {
  2379       Node * n = C->macro_node(i-1);
  2380       bool success = false;
  2381       debug_only(int old_macro_count = C->macro_count(););
  2382       switch (n->class_id()) {
  2383       case Node::Class_Allocate:
  2384       case Node::Class_AllocateArray:
  2385         success = eliminate_allocate_node(n->as_Allocate());
  2386         break;
  2387       case Node::Class_Lock:
  2388       case Node::Class_Unlock:
  2389         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
  2390         break;
  2391       default:
  2392         assert(n->Opcode() == Op_LoopLimit ||
  2393                n->Opcode() == Op_Opaque1   ||
  2394                n->Opcode() == Op_Opaque2, "unknown node type in macro list");
  2396       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2397       progress = progress || success;
  2402 //------------------------------expand_macro_nodes----------------------
  2403 //  Returns true if a failure occurred.
  2404 bool PhaseMacroExpand::expand_macro_nodes() {
  2405   // Last attempt to eliminate macro nodes.
  2406   eliminate_macro_nodes();
  2408   // Make sure expansion will not cause node limit to be exceeded.
  2409   // Worst case is a macro node gets expanded into about 50 nodes.
  2410   // Allow 50% more for optimization.
  2411   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
  2412     return true;
  2414   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
  2415   bool progress = true;
  2416   while (progress) {
  2417     progress = false;
  2418     for (int i = C->macro_count(); i > 0; i--) {
  2419       Node * n = C->macro_node(i-1);
  2420       bool success = false;
  2421       debug_only(int old_macro_count = C->macro_count(););
  2422       if (n->Opcode() == Op_LoopLimit) {
  2423         // Remove it from macro list and put on IGVN worklist to optimize.
  2424         C->remove_macro_node(n);
  2425         _igvn._worklist.push(n);
  2426         success = true;
  2427       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
  2428         _igvn.replace_node(n, n->in(1));
  2429         success = true;
  2431       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
  2432       progress = progress || success;
  2436   // expand "macro" nodes
  2437   // nodes are removed from the macro list as they are processed
  2438   while (C->macro_count() > 0) {
  2439     int macro_count = C->macro_count();
  2440     Node * n = C->macro_node(macro_count-1);
  2441     assert(n->is_macro(), "only macro nodes expected here");
  2442     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
  2443       // node is unreachable, so don't try to expand it
  2444       C->remove_macro_node(n);
  2445       continue;
  2447     switch (n->class_id()) {
  2448     case Node::Class_Allocate:
  2449       expand_allocate(n->as_Allocate());
  2450       break;
  2451     case Node::Class_AllocateArray:
  2452       expand_allocate_array(n->as_AllocateArray());
  2453       break;
  2454     case Node::Class_Lock:
  2455       expand_lock_node(n->as_Lock());
  2456       break;
  2457     case Node::Class_Unlock:
  2458       expand_unlock_node(n->as_Unlock());
  2459       break;
  2460     default:
  2461       assert(false, "unknown node type in macro list");
  2463     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
  2464     if (C->failing())  return true;
  2467   _igvn.set_delay_transform(false);
  2468   _igvn.optimize();
  2469   if (C->failing())  return true;
  2470   return false;

mercurial