src/share/vm/services/memoryPool.cpp

Thu, 27 Jan 2011 16:11:27 -0800

author
coleenp
date
Thu, 27 Jan 2011 16:11:27 -0800
changeset 2497
3582bf76420e
parent 2314
f95d63e2154a
child 2708
1d1603768966
permissions
-rw-r--r--

6990754: Use native memory and reference counting to implement SymbolTable
Summary: move symbols from permgen into C heap and reference count them
Reviewed-by: never, acorn, jmasa, stefank

     1 /*
     2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "oops/oop.inline.hpp"
    29 #include "runtime/handles.inline.hpp"
    30 #include "runtime/javaCalls.hpp"
    31 #include "services/lowMemoryDetector.hpp"
    32 #include "services/management.hpp"
    33 #include "services/memoryManager.hpp"
    34 #include "services/memoryPool.hpp"
    36 MemoryPool::MemoryPool(const char* name,
    37                        PoolType type,
    38                        size_t init_size,
    39                        size_t max_size,
    40                        bool support_usage_threshold,
    41                        bool support_gc_threshold) {
    42   _name = name;
    43   _initial_size = init_size;
    44   _max_size = max_size;
    45   _memory_pool_obj = NULL;
    46   _available_for_allocation = true;
    47   _num_managers = 0;
    48   _type = type;
    50   // initialize the max and init size of collection usage
    51   _after_gc_usage = MemoryUsage(_initial_size, 0, 0, _max_size);
    53   _usage_sensor = NULL;
    54   _gc_usage_sensor = NULL;
    55   // usage threshold supports both high and low threshold
    56   _usage_threshold = new ThresholdSupport(support_usage_threshold, support_usage_threshold);
    57   // gc usage threshold supports only high threshold
    58   _gc_usage_threshold = new ThresholdSupport(support_gc_threshold, support_gc_threshold);
    59 }
    61 void MemoryPool::add_manager(MemoryManager* mgr) {
    62   assert(_num_managers < MemoryPool::max_num_managers, "_num_managers exceeds the max");
    63   if (_num_managers < MemoryPool::max_num_managers) {
    64     _managers[_num_managers] = mgr;
    65     _num_managers++;
    66   }
    67 }
    70 // Returns an instanceHandle of a MemoryPool object.
    71 // It creates a MemoryPool instance when the first time
    72 // this function is called.
    73 instanceOop MemoryPool::get_memory_pool_instance(TRAPS) {
    74   // Must do an acquire so as to force ordering of subsequent
    75   // loads from anything _memory_pool_obj points to or implies.
    76   instanceOop pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
    77   if (pool_obj == NULL) {
    78     // It's ok for more than one thread to execute the code up to the locked region.
    79     // Extra pool instances will just be gc'ed.
    80     klassOop k = Management::sun_management_ManagementFactory_klass(CHECK_NULL);
    81     instanceKlassHandle ik(THREAD, k);
    83     Handle pool_name = java_lang_String::create_from_str(_name, CHECK_NULL);
    84     jlong usage_threshold_value = (_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
    85     jlong gc_usage_threshold_value = (_gc_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
    87     JavaValue result(T_OBJECT);
    88     JavaCallArguments args;
    89     args.push_oop(pool_name);           // Argument 1
    90     args.push_int((int) is_heap());     // Argument 2
    92     Symbol* method_name = vmSymbols::createMemoryPool_name();
    93     Symbol* signature = vmSymbols::createMemoryPool_signature();
    95     args.push_long(usage_threshold_value);    // Argument 3
    96     args.push_long(gc_usage_threshold_value); // Argument 4
    98     JavaCalls::call_static(&result,
    99                            ik,
   100                            method_name,
   101                            signature,
   102                            &args,
   103                            CHECK_NULL);
   105     instanceOop p = (instanceOop) result.get_jobject();
   106     instanceHandle pool(THREAD, p);
   108     {
   109       // Get lock since another thread may have create the instance
   110       MutexLocker ml(Management_lock);
   112       // Check if another thread has created the pool.  We reload
   113       // _memory_pool_obj here because some other thread may have
   114       // initialized it while we were executing the code before the lock.
   115       //
   116       // The lock has done an acquire, so the load can't float above it,
   117       // but we need to do a load_acquire as above.
   118       pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
   119       if (pool_obj != NULL) {
   120          return pool_obj;
   121       }
   123       // Get the address of the object we created via call_special.
   124       pool_obj = pool();
   126       // Use store barrier to make sure the memory accesses associated
   127       // with creating the pool are visible before publishing its address.
   128       // The unlock will publish the store to _memory_pool_obj because
   129       // it does a release first.
   130       OrderAccess::release_store_ptr(&_memory_pool_obj, pool_obj);
   131     }
   132   }
   134   return pool_obj;
   135 }
   137 inline static size_t get_max_value(size_t val1, size_t val2) {
   138     return (val1 > val2 ? val1 : val2);
   139 }
   141 void MemoryPool::record_peak_memory_usage() {
   142   // Caller in JDK is responsible for synchronization -
   143   // acquire the lock for this memory pool before calling VM
   144   MemoryUsage usage = get_memory_usage();
   145   size_t peak_used = get_max_value(usage.used(), _peak_usage.used());
   146   size_t peak_committed = get_max_value(usage.committed(), _peak_usage.committed());
   147   size_t peak_max_size = get_max_value(usage.max_size(), _peak_usage.max_size());
   149   _peak_usage = MemoryUsage(initial_size(), peak_used, peak_committed, peak_max_size);
   150 }
   152 static void set_sensor_obj_at(SensorInfo** sensor_ptr, instanceHandle sh) {
   153   assert(*sensor_ptr == NULL, "Should be called only once");
   154   SensorInfo* sensor = new SensorInfo();
   155   sensor->set_sensor(sh());
   156   *sensor_ptr = sensor;
   157 }
   159 void MemoryPool::set_usage_sensor_obj(instanceHandle sh) {
   160   set_sensor_obj_at(&_usage_sensor, sh);
   161 }
   163 void MemoryPool::set_gc_usage_sensor_obj(instanceHandle sh) {
   164   set_sensor_obj_at(&_gc_usage_sensor, sh);
   165 }
   167 void MemoryPool::oops_do(OopClosure* f) {
   168   f->do_oop((oop*) &_memory_pool_obj);
   169   if (_usage_sensor != NULL) {
   170     _usage_sensor->oops_do(f);
   171   }
   172   if (_gc_usage_sensor != NULL) {
   173     _gc_usage_sensor->oops_do(f);
   174   }
   175 }
   177 ContiguousSpacePool::ContiguousSpacePool(ContiguousSpace* space,
   178                                          const char* name,
   179                                          PoolType type,
   180                                          size_t max_size,
   181                                          bool support_usage_threshold) :
   182   CollectedMemoryPool(name, type, space->capacity(), max_size,
   183                       support_usage_threshold), _space(space) {
   184 }
   186 MemoryUsage ContiguousSpacePool::get_memory_usage() {
   187   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
   188   size_t used      = used_in_bytes();
   189   size_t committed = _space->capacity();
   191   return MemoryUsage(initial_size(), used, committed, maxSize);
   192 }
   194 SurvivorContiguousSpacePool::SurvivorContiguousSpacePool(DefNewGeneration* gen,
   195                                                          const char* name,
   196                                                          PoolType type,
   197                                                          size_t max_size,
   198                                                          bool support_usage_threshold) :
   199   CollectedMemoryPool(name, type, gen->from()->capacity(), max_size,
   200                       support_usage_threshold), _gen(gen) {
   201 }
   203 MemoryUsage SurvivorContiguousSpacePool::get_memory_usage() {
   204   size_t maxSize = (available_for_allocation() ? max_size() : 0);
   205   size_t used    = used_in_bytes();
   206   size_t committed = committed_in_bytes();
   208   return MemoryUsage(initial_size(), used, committed, maxSize);
   209 }
   211 #ifndef SERIALGC
   212 CompactibleFreeListSpacePool::CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
   213                                                            const char* name,
   214                                                            PoolType type,
   215                                                            size_t max_size,
   216                                                            bool support_usage_threshold) :
   217   CollectedMemoryPool(name, type, space->capacity(), max_size,
   218                       support_usage_threshold), _space(space) {
   219 }
   221 MemoryUsage CompactibleFreeListSpacePool::get_memory_usage() {
   222   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
   223   size_t used      = used_in_bytes();
   224   size_t committed = _space->capacity();
   226   return MemoryUsage(initial_size(), used, committed, maxSize);
   227 }
   228 #endif // SERIALGC
   230 GenerationPool::GenerationPool(Generation* gen,
   231                                const char* name,
   232                                PoolType type,
   233                                bool support_usage_threshold) :
   234   CollectedMemoryPool(name, type, gen->capacity(), gen->max_capacity(),
   235                       support_usage_threshold), _gen(gen) {
   236 }
   238 MemoryUsage GenerationPool::get_memory_usage() {
   239   size_t used      = used_in_bytes();
   240   size_t committed = _gen->capacity();
   241   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
   243   return MemoryUsage(initial_size(), used, committed, maxSize);
   244 }
   246 CodeHeapPool::CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold) :
   247   MemoryPool(name, NonHeap, codeHeap->capacity(), codeHeap->max_capacity(),
   248              support_usage_threshold, false), _codeHeap(codeHeap) {
   249 }
   251 MemoryUsage CodeHeapPool::get_memory_usage() {
   252   size_t used      = used_in_bytes();
   253   size_t committed = _codeHeap->capacity();
   254   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
   256   return MemoryUsage(initial_size(), used, committed, maxSize);
   257 }

mercurial