src/share/vm/runtime/synchronizer.cpp

Thu, 27 Jan 2011 16:11:27 -0800

author
coleenp
date
Thu, 27 Jan 2011 16:11:27 -0800
changeset 2497
3582bf76420e
parent 2314
f95d63e2154a
child 2708
1d1603768966
permissions
-rw-r--r--

6990754: Use native memory and reference counting to implement SymbolTable
Summary: move symbols from permgen into C heap and reference count them
Reviewed-by: never, acorn, jmasa, stefank

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/vmSymbols.hpp"
    27 #include "memory/resourceArea.hpp"
    28 #include "oops/markOop.hpp"
    29 #include "oops/oop.inline.hpp"
    30 #include "runtime/biasedLocking.hpp"
    31 #include "runtime/handles.inline.hpp"
    32 #include "runtime/interfaceSupport.hpp"
    33 #include "runtime/mutexLocker.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/objectMonitor.inline.hpp"
    36 #include "runtime/osThread.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #include "runtime/synchronizer.hpp"
    39 #include "utilities/dtrace.hpp"
    40 #include "utilities/events.hpp"
    41 #include "utilities/preserveException.hpp"
    42 #ifdef TARGET_OS_FAMILY_linux
    43 # include "os_linux.inline.hpp"
    44 # include "thread_linux.inline.hpp"
    45 #endif
    46 #ifdef TARGET_OS_FAMILY_solaris
    47 # include "os_solaris.inline.hpp"
    48 # include "thread_solaris.inline.hpp"
    49 #endif
    50 #ifdef TARGET_OS_FAMILY_windows
    51 # include "os_windows.inline.hpp"
    52 # include "thread_windows.inline.hpp"
    53 #endif
    55 #if defined(__GNUC__) && !defined(IA64)
    56   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    57   #define ATTR __attribute__((noinline))
    58 #else
    59   #define ATTR
    60 #endif
    62 // The "core" versions of monitor enter and exit reside in this file.
    63 // The interpreter and compilers contain specialized transliterated
    64 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    65 // for instance.  If you make changes here, make sure to modify the
    66 // interpreter, and both C1 and C2 fast-path inline locking code emission.
    67 //
    68 //
    69 // -----------------------------------------------------------------------------
    71 #ifdef DTRACE_ENABLED
    73 // Only bother with this argument setup if dtrace is available
    74 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    76 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
    77   jlong, uintptr_t, char*, int, long);
    78 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    79   jlong, uintptr_t, char*, int);
    81 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    82   char* bytes = NULL;                                                      \
    83   int len = 0;                                                             \
    84   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    85   Symbol* klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
    86   if (klassname != NULL) {                                                 \
    87     bytes = (char*)klassname->bytes();                                     \
    88     len = klassname->utf8_length();                                        \
    89   }
    91 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
    92   {                                                                        \
    93     if (DTraceMonitorProbes) {                                            \
    94       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    95       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    96                        (monitor), bytes, len, (millis));                   \
    97     }                                                                      \
    98   }
   100 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
   101   {                                                                        \
   102     if (DTraceMonitorProbes) {                                            \
   103       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
   104       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
   105                        (uintptr_t)(monitor), bytes, len);                  \
   106     }                                                                      \
   107   }
   109 #else //  ndef DTRACE_ENABLED
   111 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
   112 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
   114 #endif // ndef DTRACE_ENABLED
   116 // This exists only as a workaround of dtrace bug 6254741
   117 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
   118   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
   119   return 0;
   120 }
   122 #define NINFLATIONLOCKS 256
   123 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
   125 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
   126 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
   127 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
   128 int ObjectSynchronizer::gOmInUseCount = 0;
   129 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
   130 static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
   131 static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
   132 #define CHAINMARKER ((oop)-1)
   134 // -----------------------------------------------------------------------------
   135 //  Fast Monitor Enter/Exit
   136 // This the fast monitor enter. The interpreter and compiler use
   137 // some assembly copies of this code. Make sure update those code
   138 // if the following function is changed. The implementation is
   139 // extremely sensitive to race condition. Be careful.
   141 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
   142  if (UseBiasedLocking) {
   143     if (!SafepointSynchronize::is_at_safepoint()) {
   144       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
   145       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
   146         return;
   147       }
   148     } else {
   149       assert(!attempt_rebias, "can not rebias toward VM thread");
   150       BiasedLocking::revoke_at_safepoint(obj);
   151     }
   152     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   153  }
   155  slow_enter (obj, lock, THREAD) ;
   156 }
   158 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
   159   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
   160   // if displaced header is null, the previous enter is recursive enter, no-op
   161   markOop dhw = lock->displaced_header();
   162   markOop mark ;
   163   if (dhw == NULL) {
   164      // Recursive stack-lock.
   165      // Diagnostics -- Could be: stack-locked, inflating, inflated.
   166      mark = object->mark() ;
   167      assert (!mark->is_neutral(), "invariant") ;
   168      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
   169         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
   170      }
   171      if (mark->has_monitor()) {
   172         ObjectMonitor * m = mark->monitor() ;
   173         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
   174         assert(m->is_entered(THREAD), "invariant") ;
   175      }
   176      return ;
   177   }
   179   mark = object->mark() ;
   181   // If the object is stack-locked by the current thread, try to
   182   // swing the displaced header from the box back to the mark.
   183   if (mark == (markOop) lock) {
   184      assert (dhw->is_neutral(), "invariant") ;
   185      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
   186         TEVENT (fast_exit: release stacklock) ;
   187         return;
   188      }
   189   }
   191   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
   192 }
   194 // -----------------------------------------------------------------------------
   195 // Interpreter/Compiler Slow Case
   196 // This routine is used to handle interpreter/compiler slow case
   197 // We don't need to use fast path here, because it must have been
   198 // failed in the interpreter/compiler code.
   199 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
   200   markOop mark = obj->mark();
   201   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
   203   if (mark->is_neutral()) {
   204     // Anticipate successful CAS -- the ST of the displaced mark must
   205     // be visible <= the ST performed by the CAS.
   206     lock->set_displaced_header(mark);
   207     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
   208       TEVENT (slow_enter: release stacklock) ;
   209       return ;
   210     }
   211     // Fall through to inflate() ...
   212   } else
   213   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   214     assert(lock != mark->locker(), "must not re-lock the same lock");
   215     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
   216     lock->set_displaced_header(NULL);
   217     return;
   218   }
   220 #if 0
   221   // The following optimization isn't particularly useful.
   222   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
   223     lock->set_displaced_header (NULL) ;
   224     return ;
   225   }
   226 #endif
   228   // The object header will never be displaced to this lock,
   229   // so it does not matter what the value is, except that it
   230   // must be non-zero to avoid looking like a re-entrant lock,
   231   // and must not look locked either.
   232   lock->set_displaced_header(markOopDesc::unused_mark());
   233   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   234 }
   236 // This routine is used to handle interpreter/compiler slow case
   237 // We don't need to use fast path here, because it must have
   238 // failed in the interpreter/compiler code. Simply use the heavy
   239 // weight monitor should be ok, unless someone find otherwise.
   240 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
   241   fast_exit (object, lock, THREAD) ;
   242 }
   244 // -----------------------------------------------------------------------------
   245 // Class Loader  support to workaround deadlocks on the class loader lock objects
   246 // Also used by GC
   247 // complete_exit()/reenter() are used to wait on a nested lock
   248 // i.e. to give up an outer lock completely and then re-enter
   249 // Used when holding nested locks - lock acquisition order: lock1 then lock2
   250 //  1) complete_exit lock1 - saving recursion count
   251 //  2) wait on lock2
   252 //  3) when notified on lock2, unlock lock2
   253 //  4) reenter lock1 with original recursion count
   254 //  5) lock lock2
   255 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   256 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
   257   TEVENT (complete_exit) ;
   258   if (UseBiasedLocking) {
   259     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   260     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   261   }
   263   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   265   return monitor->complete_exit(THREAD);
   266 }
   268 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
   269 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
   270   TEVENT (reenter) ;
   271   if (UseBiasedLocking) {
   272     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   273     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   274   }
   276   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   278   monitor->reenter(recursion, THREAD);
   279 }
   280 // -----------------------------------------------------------------------------
   281 // JNI locks on java objects
   282 // NOTE: must use heavy weight monitor to handle jni monitor enter
   283 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
   284   // the current locking is from JNI instead of Java code
   285   TEVENT (jni_enter) ;
   286   if (UseBiasedLocking) {
   287     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   288     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   289   }
   290   THREAD->set_current_pending_monitor_is_from_java(false);
   291   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
   292   THREAD->set_current_pending_monitor_is_from_java(true);
   293 }
   295 // NOTE: must use heavy weight monitor to handle jni monitor enter
   296 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
   297   if (UseBiasedLocking) {
   298     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   299     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   300   }
   302   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
   303   return monitor->try_enter(THREAD);
   304 }
   307 // NOTE: must use heavy weight monitor to handle jni monitor exit
   308 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
   309   TEVENT (jni_exit) ;
   310   if (UseBiasedLocking) {
   311     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   312   }
   313   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   315   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
   316   // If this thread has locked the object, exit the monitor.  Note:  can't use
   317   // monitor->check(CHECK); must exit even if an exception is pending.
   318   if (monitor->check(THREAD)) {
   319      monitor->exit(THREAD);
   320   }
   321 }
   323 // -----------------------------------------------------------------------------
   324 // Internal VM locks on java objects
   325 // standard constructor, allows locking failures
   326 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   327   _dolock = doLock;
   328   _thread = thread;
   329   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   330   _obj = obj;
   332   if (_dolock) {
   333     TEVENT (ObjectLocker) ;
   335     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   336   }
   337 }
   339 ObjectLocker::~ObjectLocker() {
   340   if (_dolock) {
   341     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   342   }
   343 }
   346 // -----------------------------------------------------------------------------
   347 //  Wait/Notify/NotifyAll
   348 // NOTE: must use heavy weight monitor to handle wait()
   349 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
   350   if (UseBiasedLocking) {
   351     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   352     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   353   }
   354   if (millis < 0) {
   355     TEVENT (wait - throw IAX) ;
   356     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   357   }
   358   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
   359   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
   360   monitor->wait(millis, true, THREAD);
   362   /* This dummy call is in place to get around dtrace bug 6254741.  Once
   363      that's fixed we can uncomment the following line and remove the call */
   364   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
   365   dtrace_waited_probe(monitor, obj, THREAD);
   366 }
   368 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
   369   if (UseBiasedLocking) {
   370     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   371     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   372   }
   373   if (millis < 0) {
   374     TEVENT (wait - throw IAX) ;
   375     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
   376   }
   377   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
   378 }
   380 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
   381  if (UseBiasedLocking) {
   382     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   383     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   384   }
   386   markOop mark = obj->mark();
   387   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   388     return;
   389   }
   390   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
   391 }
   393 // NOTE: see comment of notify()
   394 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
   395   if (UseBiasedLocking) {
   396     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
   397     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   398   }
   400   markOop mark = obj->mark();
   401   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
   402     return;
   403   }
   404   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
   405 }
   407 // -----------------------------------------------------------------------------
   408 // Hash Code handling
   409 //
   410 // Performance concern:
   411 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   412 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   413 // Many threads STing into a common location causes considerable cache migration
   414 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
   415 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
   416 // latency on the executing processor -- is a better choice as it scales on SMP
   417 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
   418 // discussion of coherency costs.  Note that all our current reference platforms
   419 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
   420 //
   421 // As a general policy we use "volatile" to control compiler-based reordering
   422 // and explicit fences (barriers) to control for architectural reordering performed
   423 // by the CPU(s) or platform.
   425 static int  MBFence (int x) { OrderAccess::fence(); return x; }
   427 struct SharedGlobals {
   428     // These are highly shared mostly-read variables.
   429     // To avoid false-sharing they need to be the sole occupants of a $ line.
   430     double padPrefix [8];
   431     volatile int stwRandom ;
   432     volatile int stwCycle ;
   434     // Hot RW variables -- Sequester to avoid false-sharing
   435     double padSuffix [16];
   436     volatile int hcSequence ;
   437     double padFinal [8] ;
   438 } ;
   440 static SharedGlobals GVars ;
   441 static int MonitorScavengeThreshold = 1000000 ;
   442 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
   444 static markOop ReadStableMark (oop obj) {
   445   markOop mark = obj->mark() ;
   446   if (!mark->is_being_inflated()) {
   447     return mark ;       // normal fast-path return
   448   }
   450   int its = 0 ;
   451   for (;;) {
   452     markOop mark = obj->mark() ;
   453     if (!mark->is_being_inflated()) {
   454       return mark ;    // normal fast-path return
   455     }
   457     // The object is being inflated by some other thread.
   458     // The caller of ReadStableMark() must wait for inflation to complete.
   459     // Avoid live-lock
   460     // TODO: consider calling SafepointSynchronize::do_call_back() while
   461     // spinning to see if there's a safepoint pending.  If so, immediately
   462     // yielding or blocking would be appropriate.  Avoid spinning while
   463     // there is a safepoint pending.
   464     // TODO: add inflation contention performance counters.
   465     // TODO: restrict the aggregate number of spinners.
   467     ++its ;
   468     if (its > 10000 || !os::is_MP()) {
   469        if (its & 1) {
   470          os::NakedYield() ;
   471          TEVENT (Inflate: INFLATING - yield) ;
   472        } else {
   473          // Note that the following code attenuates the livelock problem but is not
   474          // a complete remedy.  A more complete solution would require that the inflating
   475          // thread hold the associated inflation lock.  The following code simply restricts
   476          // the number of spinners to at most one.  We'll have N-2 threads blocked
   477          // on the inflationlock, 1 thread holding the inflation lock and using
   478          // a yield/park strategy, and 1 thread in the midst of inflation.
   479          // A more refined approach would be to change the encoding of INFLATING
   480          // to allow encapsulation of a native thread pointer.  Threads waiting for
   481          // inflation to complete would use CAS to push themselves onto a singly linked
   482          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
   483          // and calling park().  When inflation was complete the thread that accomplished inflation
   484          // would detach the list and set the markword to inflated with a single CAS and
   485          // then for each thread on the list, set the flag and unpark() the thread.
   486          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
   487          // wakes at most one thread whereas we need to wake the entire list.
   488          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
   489          int YieldThenBlock = 0 ;
   490          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
   491          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
   492          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
   493          while (obj->mark() == markOopDesc::INFLATING()) {
   494            // Beware: NakedYield() is advisory and has almost no effect on some platforms
   495            // so we periodically call Self->_ParkEvent->park(1).
   496            // We use a mixed spin/yield/block mechanism.
   497            if ((YieldThenBlock++) >= 16) {
   498               Thread::current()->_ParkEvent->park(1) ;
   499            } else {
   500               os::NakedYield() ;
   501            }
   502          }
   503          Thread::muxRelease (InflationLocks + ix ) ;
   504          TEVENT (Inflate: INFLATING - yield/park) ;
   505        }
   506     } else {
   507        SpinPause() ;       // SMP-polite spinning
   508     }
   509   }
   510 }
   512 // hashCode() generation :
   513 //
   514 // Possibilities:
   515 // * MD5Digest of {obj,stwRandom}
   516 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
   517 // * A DES- or AES-style SBox[] mechanism
   518 // * One of the Phi-based schemes, such as:
   519 //   2654435761 = 2^32 * Phi (golden ratio)
   520 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
   521 // * A variation of Marsaglia's shift-xor RNG scheme.
   522 // * (obj ^ stwRandom) is appealing, but can result
   523 //   in undesirable regularity in the hashCode values of adjacent objects
   524 //   (objects allocated back-to-back, in particular).  This could potentially
   525 //   result in hashtable collisions and reduced hashtable efficiency.
   526 //   There are simple ways to "diffuse" the middle address bits over the
   527 //   generated hashCode values:
   528 //
   530 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
   531   intptr_t value = 0 ;
   532   if (hashCode == 0) {
   533      // This form uses an unguarded global Park-Miller RNG,
   534      // so it's possible for two threads to race and generate the same RNG.
   535      // On MP system we'll have lots of RW access to a global, so the
   536      // mechanism induces lots of coherency traffic.
   537      value = os::random() ;
   538   } else
   539   if (hashCode == 1) {
   540      // This variation has the property of being stable (idempotent)
   541      // between STW operations.  This can be useful in some of the 1-0
   542      // synchronization schemes.
   543      intptr_t addrBits = intptr_t(obj) >> 3 ;
   544      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   545   } else
   546   if (hashCode == 2) {
   547      value = 1 ;            // for sensitivity testing
   548   } else
   549   if (hashCode == 3) {
   550      value = ++GVars.hcSequence ;
   551   } else
   552   if (hashCode == 4) {
   553      value = intptr_t(obj) ;
   554   } else {
   555      // Marsaglia's xor-shift scheme with thread-specific state
   556      // This is probably the best overall implementation -- we'll
   557      // likely make this the default in future releases.
   558      unsigned t = Self->_hashStateX ;
   559      t ^= (t << 11) ;
   560      Self->_hashStateX = Self->_hashStateY ;
   561      Self->_hashStateY = Self->_hashStateZ ;
   562      Self->_hashStateZ = Self->_hashStateW ;
   563      unsigned v = Self->_hashStateW ;
   564      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
   565      Self->_hashStateW = v ;
   566      value = v ;
   567   }
   569   value &= markOopDesc::hash_mask;
   570   if (value == 0) value = 0xBAD ;
   571   assert (value != markOopDesc::no_hash, "invariant") ;
   572   TEVENT (hashCode: GENERATE) ;
   573   return value;
   574 }
   575 //
   576 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
   577   if (UseBiasedLocking) {
   578     // NOTE: many places throughout the JVM do not expect a safepoint
   579     // to be taken here, in particular most operations on perm gen
   580     // objects. However, we only ever bias Java instances and all of
   581     // the call sites of identity_hash that might revoke biases have
   582     // been checked to make sure they can handle a safepoint. The
   583     // added check of the bias pattern is to avoid useless calls to
   584     // thread-local storage.
   585     if (obj->mark()->has_bias_pattern()) {
   586       // Box and unbox the raw reference just in case we cause a STW safepoint.
   587       Handle hobj (Self, obj) ;
   588       // Relaxing assertion for bug 6320749.
   589       assert (Universe::verify_in_progress() ||
   590               !SafepointSynchronize::is_at_safepoint(),
   591              "biases should not be seen by VM thread here");
   592       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
   593       obj = hobj() ;
   594       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   595     }
   596   }
   598   // hashCode() is a heap mutator ...
   599   // Relaxing assertion for bug 6320749.
   600   assert (Universe::verify_in_progress() ||
   601           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
   602   assert (Universe::verify_in_progress() ||
   603           Self->is_Java_thread() , "invariant") ;
   604   assert (Universe::verify_in_progress() ||
   605          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
   607   ObjectMonitor* monitor = NULL;
   608   markOop temp, test;
   609   intptr_t hash;
   610   markOop mark = ReadStableMark (obj);
   612   // object should remain ineligible for biased locking
   613   assert (!mark->has_bias_pattern(), "invariant") ;
   615   if (mark->is_neutral()) {
   616     hash = mark->hash();              // this is a normal header
   617     if (hash) {                       // if it has hash, just return it
   618       return hash;
   619     }
   620     hash = get_next_hash(Self, obj);  // allocate a new hash code
   621     temp = mark->copy_set_hash(hash); // merge the hash code into header
   622     // use (machine word version) atomic operation to install the hash
   623     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
   624     if (test == mark) {
   625       return hash;
   626     }
   627     // If atomic operation failed, we must inflate the header
   628     // into heavy weight monitor. We could add more code here
   629     // for fast path, but it does not worth the complexity.
   630   } else if (mark->has_monitor()) {
   631     monitor = mark->monitor();
   632     temp = monitor->header();
   633     assert (temp->is_neutral(), "invariant") ;
   634     hash = temp->hash();
   635     if (hash) {
   636       return hash;
   637     }
   638     // Skip to the following code to reduce code size
   639   } else if (Self->is_lock_owned((address)mark->locker())) {
   640     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
   641     assert (temp->is_neutral(), "invariant") ;
   642     hash = temp->hash();              // by current thread, check if the displaced
   643     if (hash) {                       // header contains hash code
   644       return hash;
   645     }
   646     // WARNING:
   647     //   The displaced header is strictly immutable.
   648     // It can NOT be changed in ANY cases. So we have
   649     // to inflate the header into heavyweight monitor
   650     // even the current thread owns the lock. The reason
   651     // is the BasicLock (stack slot) will be asynchronously
   652     // read by other threads during the inflate() function.
   653     // Any change to stack may not propagate to other threads
   654     // correctly.
   655   }
   657   // Inflate the monitor to set hash code
   658   monitor = ObjectSynchronizer::inflate(Self, obj);
   659   // Load displaced header and check it has hash code
   660   mark = monitor->header();
   661   assert (mark->is_neutral(), "invariant") ;
   662   hash = mark->hash();
   663   if (hash == 0) {
   664     hash = get_next_hash(Self, obj);
   665     temp = mark->copy_set_hash(hash); // merge hash code into header
   666     assert (temp->is_neutral(), "invariant") ;
   667     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
   668     if (test != mark) {
   669       // The only update to the header in the monitor (outside GC)
   670       // is install the hash code. If someone add new usage of
   671       // displaced header, please update this code
   672       hash = test->hash();
   673       assert (test->is_neutral(), "invariant") ;
   674       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
   675     }
   676   }
   677   // We finally get the hash
   678   return hash;
   679 }
   681 // Deprecated -- use FastHashCode() instead.
   683 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
   684   return FastHashCode (Thread::current(), obj()) ;
   685 }
   688 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
   689                                                    Handle h_obj) {
   690   if (UseBiasedLocking) {
   691     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
   692     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   693   }
   695   assert(thread == JavaThread::current(), "Can only be called on current thread");
   696   oop obj = h_obj();
   698   markOop mark = ReadStableMark (obj) ;
   700   // Uncontended case, header points to stack
   701   if (mark->has_locker()) {
   702     return thread->is_lock_owned((address)mark->locker());
   703   }
   704   // Contended case, header points to ObjectMonitor (tagged pointer)
   705   if (mark->has_monitor()) {
   706     ObjectMonitor* monitor = mark->monitor();
   707     return monitor->is_entered(thread) != 0 ;
   708   }
   709   // Unlocked case, header in place
   710   assert(mark->is_neutral(), "sanity check");
   711   return false;
   712 }
   714 // Be aware of this method could revoke bias of the lock object.
   715 // This method querys the ownership of the lock handle specified by 'h_obj'.
   716 // If the current thread owns the lock, it returns owner_self. If no
   717 // thread owns the lock, it returns owner_none. Otherwise, it will return
   718 // ower_other.
   719 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
   720 (JavaThread *self, Handle h_obj) {
   721   // The caller must beware this method can revoke bias, and
   722   // revocation can result in a safepoint.
   723   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
   724   assert (self->thread_state() != _thread_blocked , "invariant") ;
   726   // Possible mark states: neutral, biased, stack-locked, inflated
   728   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
   729     // CASE: biased
   730     BiasedLocking::revoke_and_rebias(h_obj, false, self);
   731     assert(!h_obj->mark()->has_bias_pattern(),
   732            "biases should be revoked by now");
   733   }
   735   assert(self == JavaThread::current(), "Can only be called on current thread");
   736   oop obj = h_obj();
   737   markOop mark = ReadStableMark (obj) ;
   739   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
   740   if (mark->has_locker()) {
   741     return self->is_lock_owned((address)mark->locker()) ?
   742       owner_self : owner_other;
   743   }
   745   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
   746   // The Object:ObjectMonitor relationship is stable as long as we're
   747   // not at a safepoint.
   748   if (mark->has_monitor()) {
   749     void * owner = mark->monitor()->_owner ;
   750     if (owner == NULL) return owner_none ;
   751     return (owner == self ||
   752             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
   753   }
   755   // CASE: neutral
   756   assert(mark->is_neutral(), "sanity check");
   757   return owner_none ;           // it's unlocked
   758 }
   760 // FIXME: jvmti should call this
   761 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
   762   if (UseBiasedLocking) {
   763     if (SafepointSynchronize::is_at_safepoint()) {
   764       BiasedLocking::revoke_at_safepoint(h_obj);
   765     } else {
   766       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
   767     }
   768     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   769   }
   771   oop obj = h_obj();
   772   address owner = NULL;
   774   markOop mark = ReadStableMark (obj) ;
   776   // Uncontended case, header points to stack
   777   if (mark->has_locker()) {
   778     owner = (address) mark->locker();
   779   }
   781   // Contended case, header points to ObjectMonitor (tagged pointer)
   782   if (mark->has_monitor()) {
   783     ObjectMonitor* monitor = mark->monitor();
   784     assert(monitor != NULL, "monitor should be non-null");
   785     owner = (address) monitor->owner();
   786   }
   788   if (owner != NULL) {
   789     return Threads::owning_thread_from_monitor_owner(owner, doLock);
   790   }
   792   // Unlocked case, header in place
   793   // Cannot have assertion since this object may have been
   794   // locked by another thread when reaching here.
   795   // assert(mark->is_neutral(), "sanity check");
   797   return NULL;
   798 }
   799 // Visitors ...
   801 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
   802   ObjectMonitor* block = gBlockList;
   803   ObjectMonitor* mid;
   804   while (block) {
   805     assert(block->object() == CHAINMARKER, "must be a block header");
   806     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
   807       mid = block + i;
   808       oop object = (oop) mid->object();
   809       if (object != NULL) {
   810         closure->do_monitor(mid);
   811       }
   812     }
   813     block = (ObjectMonitor*) block->FreeNext;
   814   }
   815 }
   817 // Get the next block in the block list.
   818 static inline ObjectMonitor* next(ObjectMonitor* block) {
   819   assert(block->object() == CHAINMARKER, "must be a block header");
   820   block = block->FreeNext ;
   821   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
   822   return block;
   823 }
   826 void ObjectSynchronizer::oops_do(OopClosure* f) {
   827   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
   828   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
   829     assert(block->object() == CHAINMARKER, "must be a block header");
   830     for (int i = 1; i < _BLOCKSIZE; i++) {
   831       ObjectMonitor* mid = &block[i];
   832       if (mid->object() != NULL) {
   833         f->do_oop((oop*)mid->object_addr());
   834       }
   835     }
   836   }
   837 }
   840 // -----------------------------------------------------------------------------
   841 // ObjectMonitor Lifecycle
   842 // -----------------------
   843 // Inflation unlinks monitors from the global gFreeList and
   844 // associates them with objects.  Deflation -- which occurs at
   845 // STW-time -- disassociates idle monitors from objects.  Such
   846 // scavenged monitors are returned to the gFreeList.
   847 //
   848 // The global list is protected by ListLock.  All the critical sections
   849 // are short and operate in constant-time.
   850 //
   851 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
   852 //
   853 // Lifecycle:
   854 // --   unassigned and on the global free list
   855 // --   unassigned and on a thread's private omFreeList
   856 // --   assigned to an object.  The object is inflated and the mark refers
   857 //      to the objectmonitor.
   858 //
   861 // Constraining monitor pool growth via MonitorBound ...
   862 //
   863 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
   864 // the rate of scavenging is driven primarily by GC.  As such,  we can find
   865 // an inordinate number of monitors in circulation.
   866 // To avoid that scenario we can artificially induce a STW safepoint
   867 // if the pool appears to be growing past some reasonable bound.
   868 // Generally we favor time in space-time tradeoffs, but as there's no
   869 // natural back-pressure on the # of extant monitors we need to impose some
   870 // type of limit.  Beware that if MonitorBound is set to too low a value
   871 // we could just loop. In addition, if MonitorBound is set to a low value
   872 // we'll incur more safepoints, which are harmful to performance.
   873 // See also: GuaranteedSafepointInterval
   874 //
   875 // The current implementation uses asynchronous VM operations.
   876 //
   878 static void InduceScavenge (Thread * Self, const char * Whence) {
   879   // Induce STW safepoint to trim monitors
   880   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
   881   // More precisely, trigger an asynchronous STW safepoint as the number
   882   // of active monitors passes the specified threshold.
   883   // TODO: assert thread state is reasonable
   885   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
   886     if (ObjectMonitor::Knob_Verbose) {
   887       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   888       ::fflush(stdout) ;
   889     }
   890     // Induce a 'null' safepoint to scavenge monitors
   891     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
   892     // to the VMthread and have a lifespan longer than that of this activation record.
   893     // The VMThread will delete the op when completed.
   894     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
   896     if (ObjectMonitor::Knob_Verbose) {
   897       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
   898       ::fflush(stdout) ;
   899     }
   900   }
   901 }
   902 /* Too slow for general assert or debug
   903 void ObjectSynchronizer::verifyInUse (Thread *Self) {
   904    ObjectMonitor* mid;
   905    int inusetally = 0;
   906    for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
   907      inusetally ++;
   908    }
   909    assert(inusetally == Self->omInUseCount, "inuse count off");
   911    int freetally = 0;
   912    for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
   913      freetally ++;
   914    }
   915    assert(freetally == Self->omFreeCount, "free count off");
   916 }
   917 */
   918 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
   919     // A large MAXPRIVATE value reduces both list lock contention
   920     // and list coherency traffic, but also tends to increase the
   921     // number of objectMonitors in circulation as well as the STW
   922     // scavenge costs.  As usual, we lean toward time in space-time
   923     // tradeoffs.
   924     const int MAXPRIVATE = 1024 ;
   925     for (;;) {
   926         ObjectMonitor * m ;
   928         // 1: try to allocate from the thread's local omFreeList.
   929         // Threads will attempt to allocate first from their local list, then
   930         // from the global list, and only after those attempts fail will the thread
   931         // attempt to instantiate new monitors.   Thread-local free lists take
   932         // heat off the ListLock and improve allocation latency, as well as reducing
   933         // coherency traffic on the shared global list.
   934         m = Self->omFreeList ;
   935         if (m != NULL) {
   936            Self->omFreeList = m->FreeNext ;
   937            Self->omFreeCount -- ;
   938            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
   939            guarantee (m->object() == NULL, "invariant") ;
   940            if (MonitorInUseLists) {
   941              m->FreeNext = Self->omInUseList;
   942              Self->omInUseList = m;
   943              Self->omInUseCount ++;
   944              // verifyInUse(Self);
   945            } else {
   946              m->FreeNext = NULL;
   947            }
   948            return m ;
   949         }
   951         // 2: try to allocate from the global gFreeList
   952         // CONSIDER: use muxTry() instead of muxAcquire().
   953         // If the muxTry() fails then drop immediately into case 3.
   954         // If we're using thread-local free lists then try
   955         // to reprovision the caller's free list.
   956         if (gFreeList != NULL) {
   957             // Reprovision the thread's omFreeList.
   958             // Use bulk transfers to reduce the allocation rate and heat
   959             // on various locks.
   960             Thread::muxAcquire (&ListLock, "omAlloc") ;
   961             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
   962                 MonitorFreeCount --;
   963                 ObjectMonitor * take = gFreeList ;
   964                 gFreeList = take->FreeNext ;
   965                 guarantee (take->object() == NULL, "invariant") ;
   966                 guarantee (!take->is_busy(), "invariant") ;
   967                 take->Recycle() ;
   968                 omRelease (Self, take, false) ;
   969             }
   970             Thread::muxRelease (&ListLock) ;
   971             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
   972             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
   973             TEVENT (omFirst - reprovision) ;
   975             const int mx = MonitorBound ;
   976             if (mx > 0 && (MonitorPopulation-MonitorFreeCount) > mx) {
   977               // We can't safely induce a STW safepoint from omAlloc() as our thread
   978               // state may not be appropriate for such activities and callers may hold
   979               // naked oops, so instead we defer the action.
   980               InduceScavenge (Self, "omAlloc") ;
   981             }
   982             continue;
   983         }
   985         // 3: allocate a block of new ObjectMonitors
   986         // Both the local and global free lists are empty -- resort to malloc().
   987         // In the current implementation objectMonitors are TSM - immortal.
   988         assert (_BLOCKSIZE > 1, "invariant") ;
   989         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
   991         // NOTE: (almost) no way to recover if allocation failed.
   992         // We might be able to induce a STW safepoint and scavenge enough
   993         // objectMonitors to permit progress.
   994         if (temp == NULL) {
   995             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
   996         }
   998         // Format the block.
   999         // initialize the linked list, each monitor points to its next
  1000         // forming the single linked free list, the very first monitor
  1001         // will points to next block, which forms the block list.
  1002         // The trick of using the 1st element in the block as gBlockList
  1003         // linkage should be reconsidered.  A better implementation would
  1004         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
  1006         for (int i = 1; i < _BLOCKSIZE ; i++) {
  1007            temp[i].FreeNext = &temp[i+1];
  1010         // terminate the last monitor as the end of list
  1011         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
  1013         // Element [0] is reserved for global list linkage
  1014         temp[0].set_object(CHAINMARKER);
  1016         // Consider carving out this thread's current request from the
  1017         // block in hand.  This avoids some lock traffic and redundant
  1018         // list activity.
  1020         // Acquire the ListLock to manipulate BlockList and FreeList.
  1021         // An Oyama-Taura-Yonezawa scheme might be more efficient.
  1022         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
  1023         MonitorPopulation += _BLOCKSIZE-1;
  1024         MonitorFreeCount += _BLOCKSIZE-1;
  1026         // Add the new block to the list of extant blocks (gBlockList).
  1027         // The very first objectMonitor in a block is reserved and dedicated.
  1028         // It serves as blocklist "next" linkage.
  1029         temp[0].FreeNext = gBlockList;
  1030         gBlockList = temp;
  1032         // Add the new string of objectMonitors to the global free list
  1033         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
  1034         gFreeList = temp + 1;
  1035         Thread::muxRelease (&ListLock) ;
  1036         TEVENT (Allocate block of monitors) ;
  1040 // Place "m" on the caller's private per-thread omFreeList.
  1041 // In practice there's no need to clamp or limit the number of
  1042 // monitors on a thread's omFreeList as the only time we'll call
  1043 // omRelease is to return a monitor to the free list after a CAS
  1044 // attempt failed.  This doesn't allow unbounded #s of monitors to
  1045 // accumulate on a thread's free list.
  1046 //
  1048 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
  1049     guarantee (m->object() == NULL, "invariant") ;
  1051     // Remove from omInUseList
  1052     if (MonitorInUseLists && fromPerThreadAlloc) {
  1053       ObjectMonitor* curmidinuse = NULL;
  1054       for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; ) {
  1055        if (m == mid) {
  1056          // extract from per-thread in-use-list
  1057          if (mid == Self->omInUseList) {
  1058            Self->omInUseList = mid->FreeNext;
  1059          } else if (curmidinuse != NULL) {
  1060            curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1062          Self->omInUseCount --;
  1063          // verifyInUse(Self);
  1064          break;
  1065        } else {
  1066          curmidinuse = mid;
  1067          mid = mid->FreeNext;
  1072   // FreeNext is used for both onInUseList and omFreeList, so clear old before setting new
  1073   m->FreeNext = Self->omFreeList ;
  1074   Self->omFreeList = m ;
  1075   Self->omFreeCount ++ ;
  1078 // Return the monitors of a moribund thread's local free list to
  1079 // the global free list.  Typically a thread calls omFlush() when
  1080 // it's dying.  We could also consider having the VM thread steal
  1081 // monitors from threads that have not run java code over a few
  1082 // consecutive STW safepoints.  Relatedly, we might decay
  1083 // omFreeProvision at STW safepoints.
  1084 //
  1085 // Also return the monitors of a moribund thread"s omInUseList to
  1086 // a global gOmInUseList under the global list lock so these
  1087 // will continue to be scanned.
  1088 //
  1089 // We currently call omFlush() from the Thread:: dtor _after the thread
  1090 // has been excised from the thread list and is no longer a mutator.
  1091 // That means that omFlush() can run concurrently with a safepoint and
  1092 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
  1093 // be a better choice as we could safely reason that that the JVM is
  1094 // not at a safepoint at the time of the call, and thus there could
  1095 // be not inopportune interleavings between omFlush() and the scavenge
  1096 // operator.
  1098 void ObjectSynchronizer::omFlush (Thread * Self) {
  1099     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
  1100     Self->omFreeList = NULL ;
  1101     ObjectMonitor * Tail = NULL ;
  1102     int Tally = 0;
  1103     if (List != NULL) {
  1104       ObjectMonitor * s ;
  1105       for (s = List ; s != NULL ; s = s->FreeNext) {
  1106           Tally ++ ;
  1107           Tail = s ;
  1108           guarantee (s->object() == NULL, "invariant") ;
  1109           guarantee (!s->is_busy(), "invariant") ;
  1110           s->set_owner (NULL) ;   // redundant but good hygiene
  1111           TEVENT (omFlush - Move one) ;
  1113       guarantee (Tail != NULL && List != NULL, "invariant") ;
  1116     ObjectMonitor * InUseList = Self->omInUseList;
  1117     ObjectMonitor * InUseTail = NULL ;
  1118     int InUseTally = 0;
  1119     if (InUseList != NULL) {
  1120       Self->omInUseList = NULL;
  1121       ObjectMonitor *curom;
  1122       for (curom = InUseList; curom != NULL; curom = curom->FreeNext) {
  1123         InUseTail = curom;
  1124         InUseTally++;
  1126 // TODO debug
  1127       assert(Self->omInUseCount == InUseTally, "inuse count off");
  1128       Self->omInUseCount = 0;
  1129       guarantee (InUseTail != NULL && InUseList != NULL, "invariant");
  1132     Thread::muxAcquire (&ListLock, "omFlush") ;
  1133     if (Tail != NULL) {
  1134       Tail->FreeNext = gFreeList ;
  1135       gFreeList = List ;
  1136       MonitorFreeCount += Tally;
  1139     if (InUseTail != NULL) {
  1140       InUseTail->FreeNext = gOmInUseList;
  1141       gOmInUseList = InUseList;
  1142       gOmInUseCount += InUseTally;
  1145     Thread::muxRelease (&ListLock) ;
  1146     TEVENT (omFlush) ;
  1149 // Fast path code shared by multiple functions
  1150 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
  1151   markOop mark = obj->mark();
  1152   if (mark->has_monitor()) {
  1153     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
  1154     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
  1155     return mark->monitor();
  1157   return ObjectSynchronizer::inflate(Thread::current(), obj);
  1161 // Note that we could encounter some performance loss through false-sharing as
  1162 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1165 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1166   // Inflate mutates the heap ...
  1167   // Relaxing assertion for bug 6320749.
  1168   assert (Universe::verify_in_progress() ||
  1169           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1171   for (;;) {
  1172       const markOop mark = object->mark() ;
  1173       assert (!mark->has_bias_pattern(), "invariant") ;
  1175       // The mark can be in one of the following states:
  1176       // *  Inflated     - just return
  1177       // *  Stack-locked - coerce it to inflated
  1178       // *  INFLATING    - busy wait for conversion to complete
  1179       // *  Neutral      - aggressively inflate the object.
  1180       // *  BIASED       - Illegal.  We should never see this
  1182       // CASE: inflated
  1183       if (mark->has_monitor()) {
  1184           ObjectMonitor * inf = mark->monitor() ;
  1185           assert (inf->header()->is_neutral(), "invariant");
  1186           assert (inf->object() == object, "invariant") ;
  1187           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
  1188           return inf ;
  1191       // CASE: inflation in progress - inflating over a stack-lock.
  1192       // Some other thread is converting from stack-locked to inflated.
  1193       // Only that thread can complete inflation -- other threads must wait.
  1194       // The INFLATING value is transient.
  1195       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
  1196       // We could always eliminate polling by parking the thread on some auxiliary list.
  1197       if (mark == markOopDesc::INFLATING()) {
  1198          TEVENT (Inflate: spin while INFLATING) ;
  1199          ReadStableMark(object) ;
  1200          continue ;
  1203       // CASE: stack-locked
  1204       // Could be stack-locked either by this thread or by some other thread.
  1205       //
  1206       // Note that we allocate the objectmonitor speculatively, _before_ attempting
  1207       // to install INFLATING into the mark word.  We originally installed INFLATING,
  1208       // allocated the objectmonitor, and then finally STed the address of the
  1209       // objectmonitor into the mark.  This was correct, but artificially lengthened
  1210       // the interval in which INFLATED appeared in the mark, thus increasing
  1211       // the odds of inflation contention.
  1212       //
  1213       // We now use per-thread private objectmonitor free lists.
  1214       // These list are reprovisioned from the global free list outside the
  1215       // critical INFLATING...ST interval.  A thread can transfer
  1216       // multiple objectmonitors en-mass from the global free list to its local free list.
  1217       // This reduces coherency traffic and lock contention on the global free list.
  1218       // Using such local free lists, it doesn't matter if the omAlloc() call appears
  1219       // before or after the CAS(INFLATING) operation.
  1220       // See the comments in omAlloc().
  1222       if (mark->has_locker()) {
  1223           ObjectMonitor * m = omAlloc (Self) ;
  1224           // Optimistically prepare the objectmonitor - anticipate successful CAS
  1225           // We do this before the CAS in order to minimize the length of time
  1226           // in which INFLATING appears in the mark.
  1227           m->Recycle();
  1228           m->_Responsible  = NULL ;
  1229           m->OwnerIsThread = 0 ;
  1230           m->_recursions   = 0 ;
  1231           m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
  1233           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1234           if (cmp != mark) {
  1235              omRelease (Self, m, true) ;
  1236              continue ;       // Interference -- just retry
  1239           // We've successfully installed INFLATING (0) into the mark-word.
  1240           // This is the only case where 0 will appear in a mark-work.
  1241           // Only the singular thread that successfully swings the mark-word
  1242           // to 0 can perform (or more precisely, complete) inflation.
  1243           //
  1244           // Why do we CAS a 0 into the mark-word instead of just CASing the
  1245           // mark-word from the stack-locked value directly to the new inflated state?
  1246           // Consider what happens when a thread unlocks a stack-locked object.
  1247           // It attempts to use CAS to swing the displaced header value from the
  1248           // on-stack basiclock back into the object header.  Recall also that the
  1249           // header value (hashcode, etc) can reside in (a) the object header, or
  1250           // (b) a displaced header associated with the stack-lock, or (c) a displaced
  1251           // header in an objectMonitor.  The inflate() routine must copy the header
  1252           // value from the basiclock on the owner's stack to the objectMonitor, all
  1253           // the while preserving the hashCode stability invariants.  If the owner
  1254           // decides to release the lock while the value is 0, the unlock will fail
  1255           // and control will eventually pass from slow_exit() to inflate.  The owner
  1256           // will then spin, waiting for the 0 value to disappear.   Put another way,
  1257           // the 0 causes the owner to stall if the owner happens to try to
  1258           // drop the lock (restoring the header from the basiclock to the object)
  1259           // while inflation is in-progress.  This protocol avoids races that might
  1260           // would otherwise permit hashCode values to change or "flicker" for an object.
  1261           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
  1262           // 0 serves as a "BUSY" inflate-in-progress indicator.
  1265           // fetch the displaced mark from the owner's stack.
  1266           // The owner can't die or unwind past the lock while our INFLATING
  1267           // object is in the mark.  Furthermore the owner can't complete
  1268           // an unlock on the object, either.
  1269           markOop dmw = mark->displaced_mark_helper() ;
  1270           assert (dmw->is_neutral(), "invariant") ;
  1272           // Setup monitor fields to proper values -- prepare the monitor
  1273           m->set_header(dmw) ;
  1275           // Optimization: if the mark->locker stack address is associated
  1276           // with this thread we could simply set m->_owner = Self and
  1277           // m->OwnerIsThread = 1. Note that a thread can inflate an object
  1278           // that it has stack-locked -- as might happen in wait() -- directly
  1279           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
  1280           m->set_owner(mark->locker());
  1281           m->set_object(object);
  1282           // TODO-FIXME: assert BasicLock->dhw != 0.
  1284           // Must preserve store ordering. The monitor state must
  1285           // be stable at the time of publishing the monitor address.
  1286           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
  1287           object->release_set_mark(markOopDesc::encode(m));
  1289           // Hopefully the performance counters are allocated on distinct cache lines
  1290           // to avoid false sharing on MP systems ...
  1291           if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1292           TEVENT(Inflate: overwrite stacklock) ;
  1293           if (TraceMonitorInflation) {
  1294             if (object->is_instance()) {
  1295               ResourceMark rm;
  1296               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1297                 (intptr_t) object, (intptr_t) object->mark(),
  1298                 Klass::cast(object->klass())->external_name());
  1301           return m ;
  1304       // CASE: neutral
  1305       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
  1306       // If we know we're inflating for entry it's better to inflate by swinging a
  1307       // pre-locked objectMonitor pointer into the object header.   A successful
  1308       // CAS inflates the object *and* confers ownership to the inflating thread.
  1309       // In the current implementation we use a 2-step mechanism where we CAS()
  1310       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
  1311       // An inflateTry() method that we could call from fast_enter() and slow_enter()
  1312       // would be useful.
  1314       assert (mark->is_neutral(), "invariant");
  1315       ObjectMonitor * m = omAlloc (Self) ;
  1316       // prepare m for installation - set monitor to initial state
  1317       m->Recycle();
  1318       m->set_header(mark);
  1319       m->set_owner(NULL);
  1320       m->set_object(object);
  1321       m->OwnerIsThread = 1 ;
  1322       m->_recursions   = 0 ;
  1323       m->_Responsible  = NULL ;
  1324       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
  1326       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1327           m->set_object (NULL) ;
  1328           m->set_owner  (NULL) ;
  1329           m->OwnerIsThread = 0 ;
  1330           m->Recycle() ;
  1331           omRelease (Self, m, true) ;
  1332           m = NULL ;
  1333           continue ;
  1334           // interference - the markword changed - just retry.
  1335           // The state-transitions are one-way, so there's no chance of
  1336           // live-lock -- "Inflated" is an absorbing state.
  1339       // Hopefully the performance counters are allocated on distinct
  1340       // cache lines to avoid false sharing on MP systems ...
  1341       if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
  1342       TEVENT(Inflate: overwrite neutral) ;
  1343       if (TraceMonitorInflation) {
  1344         if (object->is_instance()) {
  1345           ResourceMark rm;
  1346           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1347             (intptr_t) object, (intptr_t) object->mark(),
  1348             Klass::cast(object->klass())->external_name());
  1351       return m ;
  1355 // Note that we could encounter some performance loss through false-sharing as
  1356 // multiple locks occupy the same $ line.  Padding might be appropriate.
  1359 // Deflate_idle_monitors() is called at all safepoints, immediately
  1360 // after all mutators are stopped, but before any objects have moved.
  1361 // It traverses the list of known monitors, deflating where possible.
  1362 // The scavenged monitor are returned to the monitor free list.
  1363 //
  1364 // Beware that we scavenge at *every* stop-the-world point.
  1365 // Having a large number of monitors in-circulation negatively
  1366 // impacts the performance of some applications (e.g., PointBase).
  1367 // Broadly, we want to minimize the # of monitors in circulation.
  1368 //
  1369 // We have added a flag, MonitorInUseLists, which creates a list
  1370 // of active monitors for each thread. deflate_idle_monitors()
  1371 // only scans the per-thread inuse lists. omAlloc() puts all
  1372 // assigned monitors on the per-thread list. deflate_idle_monitors()
  1373 // returns the non-busy monitors to the global free list.
  1374 // When a thread dies, omFlush() adds the list of active monitors for
  1375 // that thread to a global gOmInUseList acquiring the
  1376 // global list lock. deflate_idle_monitors() acquires the global
  1377 // list lock to scan for non-busy monitors to the global free list.
  1378 // An alternative could have used a single global inuse list. The
  1379 // downside would have been the additional cost of acquiring the global list lock
  1380 // for every omAlloc().
  1381 //
  1382 // Perversely, the heap size -- and thus the STW safepoint rate --
  1383 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
  1384 // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1385 // This is an unfortunate aspect of this design.
  1386 //
  1388 enum ManifestConstants {
  1389     ClearResponsibleAtSTW   = 0,
  1390     MaximumRecheckInterval  = 1000
  1391 } ;
  1393 // Deflate a single monitor if not in use
  1394 // Return true if deflated, false if in use
  1395 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
  1396                                          ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1397   bool deflated;
  1398   // Normal case ... The monitor is associated with obj.
  1399   guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  1400   guarantee (mid == obj->mark()->monitor(), "invariant");
  1401   guarantee (mid->header()->is_neutral(), "invariant");
  1403   if (mid->is_busy()) {
  1404      if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
  1405      deflated = false;
  1406   } else {
  1407      // Deflate the monitor if it is no longer being used
  1408      // It's idle - scavenge and return to the global free list
  1409      // plain old deflation ...
  1410      TEVENT (deflate_idle_monitors - scavenge1) ;
  1411      if (TraceMonitorInflation) {
  1412        if (obj->is_instance()) {
  1413          ResourceMark rm;
  1414            tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1415                 (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
  1419      // Restore the header back to obj
  1420      obj->release_set_mark(mid->header());
  1421      mid->clear();
  1423      assert (mid->object() == NULL, "invariant") ;
  1425      // Move the object to the working free list defined by FreeHead,FreeTail.
  1426      if (*FreeHeadp == NULL) *FreeHeadp = mid;
  1427      if (*FreeTailp != NULL) {
  1428        ObjectMonitor * prevtail = *FreeTailp;
  1429        assert(prevtail->FreeNext == NULL, "cleaned up deflated?"); // TODO KK
  1430        prevtail->FreeNext = mid;
  1432      *FreeTailp = mid;
  1433      deflated = true;
  1435   return deflated;
  1438 // Caller acquires ListLock
  1439 int ObjectSynchronizer::walk_monitor_list(ObjectMonitor** listheadp,
  1440                                           ObjectMonitor** FreeHeadp, ObjectMonitor** FreeTailp) {
  1441   ObjectMonitor* mid;
  1442   ObjectMonitor* next;
  1443   ObjectMonitor* curmidinuse = NULL;
  1444   int deflatedcount = 0;
  1446   for (mid = *listheadp; mid != NULL; ) {
  1447      oop obj = (oop) mid->object();
  1448      bool deflated = false;
  1449      if (obj != NULL) {
  1450        deflated = deflate_monitor(mid, obj, FreeHeadp, FreeTailp);
  1452      if (deflated) {
  1453        // extract from per-thread in-use-list
  1454        if (mid == *listheadp) {
  1455          *listheadp = mid->FreeNext;
  1456        } else if (curmidinuse != NULL) {
  1457          curmidinuse->FreeNext = mid->FreeNext; // maintain the current thread inuselist
  1459        next = mid->FreeNext;
  1460        mid->FreeNext = NULL;  // This mid is current tail in the FreeHead list
  1461        mid = next;
  1462        deflatedcount++;
  1463      } else {
  1464        curmidinuse = mid;
  1465        mid = mid->FreeNext;
  1468   return deflatedcount;
  1471 void ObjectSynchronizer::deflate_idle_monitors() {
  1472   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1473   int nInuse = 0 ;              // currently associated with objects
  1474   int nInCirculation = 0 ;      // extant
  1475   int nScavenged = 0 ;          // reclaimed
  1476   bool deflated = false;
  1478   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  1479   ObjectMonitor * FreeTail = NULL ;
  1481   TEVENT (deflate_idle_monitors) ;
  1482   // Prevent omFlush from changing mids in Thread dtor's during deflation
  1483   // And in case the vm thread is acquiring a lock during a safepoint
  1484   // See e.g. 6320749
  1485   Thread::muxAcquire (&ListLock, "scavenge - return") ;
  1487   if (MonitorInUseLists) {
  1488     int inUse = 0;
  1489     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
  1490       nInCirculation+= cur->omInUseCount;
  1491       int deflatedcount = walk_monitor_list(cur->omInUseList_addr(), &FreeHead, &FreeTail);
  1492       cur->omInUseCount-= deflatedcount;
  1493       // verifyInUse(cur);
  1494       nScavenged += deflatedcount;
  1495       nInuse += cur->omInUseCount;
  1498    // For moribund threads, scan gOmInUseList
  1499    if (gOmInUseList) {
  1500      nInCirculation += gOmInUseCount;
  1501      int deflatedcount = walk_monitor_list((ObjectMonitor **)&gOmInUseList, &FreeHead, &FreeTail);
  1502      gOmInUseCount-= deflatedcount;
  1503      nScavenged += deflatedcount;
  1504      nInuse += gOmInUseCount;
  1507   } else for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1508   // Iterate over all extant monitors - Scavenge all idle monitors.
  1509     assert(block->object() == CHAINMARKER, "must be a block header");
  1510     nInCirculation += _BLOCKSIZE ;
  1511     for (int i = 1 ; i < _BLOCKSIZE; i++) {
  1512       ObjectMonitor* mid = &block[i];
  1513       oop obj = (oop) mid->object();
  1515       if (obj == NULL) {
  1516         // The monitor is not associated with an object.
  1517         // The monitor should either be a thread-specific private
  1518         // free list or the global free list.
  1519         // obj == NULL IMPLIES mid->is_busy() == 0
  1520         guarantee (!mid->is_busy(), "invariant") ;
  1521         continue ;
  1523       deflated = deflate_monitor(mid, obj, &FreeHead, &FreeTail);
  1525       if (deflated) {
  1526         mid->FreeNext = NULL ;
  1527         nScavenged ++ ;
  1528       } else {
  1529         nInuse ++;
  1534   MonitorFreeCount += nScavenged;
  1536   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
  1538   if (ObjectMonitor::Knob_Verbose) {
  1539     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
  1540         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
  1541         MonitorPopulation, MonitorFreeCount) ;
  1542     ::fflush(stdout) ;
  1545   ForceMonitorScavenge = 0;    // Reset
  1547   // Move the scavenged monitors back to the global free list.
  1548   if (FreeHead != NULL) {
  1549      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
  1550      assert (FreeTail->FreeNext == NULL, "invariant") ;
  1551      // constant-time list splice - prepend scavenged segment to gFreeList
  1552      FreeTail->FreeNext = gFreeList ;
  1553      gFreeList = FreeHead ;
  1555   Thread::muxRelease (&ListLock) ;
  1557   if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
  1558   if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
  1560   // TODO: Add objectMonitor leak detection.
  1561   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  1562   GVars.stwRandom = os::random() ;
  1563   GVars.stwCycle ++ ;
  1566 // Monitor cleanup on JavaThread::exit
  1568 // Iterate through monitor cache and attempt to release thread's monitors
  1569 // Gives up on a particular monitor if an exception occurs, but continues
  1570 // the overall iteration, swallowing the exception.
  1571 class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1572 private:
  1573   TRAPS;
  1575 public:
  1576   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1577   void do_monitor(ObjectMonitor* mid) {
  1578     if (mid->owner() == THREAD) {
  1579       (void)mid->complete_exit(CHECK);
  1582 };
  1584 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1585 // ignored.  This is meant to be called during JNI thread detach which assumes
  1586 // all remaining monitors are heavyweight.  All exceptions are swallowed.
  1587 // Scanning the extant monitor list can be time consuming.
  1588 // A simple optimization is to add a per-thread flag that indicates a thread
  1589 // called jni_monitorenter() during its lifetime.
  1590 //
  1591 // Instead of No_Savepoint_Verifier it might be cheaper to
  1592 // use an idiom of the form:
  1593 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1594 //   <code that must not run at safepoint>
  1595 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1596 // Since the tests are extremely cheap we could leave them enabled
  1597 // for normal product builds.
  1599 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1600   assert(THREAD == JavaThread::current(), "must be current Java thread");
  1601   No_Safepoint_Verifier nsv ;
  1602   ReleaseJavaMonitorsClosure rjmc(THREAD);
  1603   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1604   ObjectSynchronizer::monitors_iterate(&rjmc);
  1605   Thread::muxRelease(&ListLock);
  1606   THREAD->clear_pending_exception();
  1609 //------------------------------------------------------------------------------
  1610 // Non-product code
  1612 #ifndef PRODUCT
  1614 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
  1615                                        bool is_method, bool is_locking) {
  1616   // Don't know what to do here
  1619 // Verify all monitors in the monitor cache, the verification is weak.
  1620 void ObjectSynchronizer::verify() {
  1621   ObjectMonitor* block = gBlockList;
  1622   ObjectMonitor* mid;
  1623   while (block) {
  1624     assert(block->object() == CHAINMARKER, "must be a block header");
  1625     for (int i = 1; i < _BLOCKSIZE; i++) {
  1626       mid = block + i;
  1627       oop object = (oop) mid->object();
  1628       if (object != NULL) {
  1629         mid->verify();
  1632     block = (ObjectMonitor*) block->FreeNext;
  1636 // Check if monitor belongs to the monitor cache
  1637 // The list is grow-only so it's *relatively* safe to traverse
  1638 // the list of extant blocks without taking a lock.
  1640 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  1641   ObjectMonitor* block = gBlockList;
  1643   while (block) {
  1644     assert(block->object() == CHAINMARKER, "must be a block header");
  1645     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
  1646       address mon = (address) monitor;
  1647       address blk = (address) block;
  1648       size_t diff = mon - blk;
  1649       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
  1650       return 1;
  1652     block = (ObjectMonitor*) block->FreeNext;
  1654   return 0;
  1657 #endif

mercurial