src/share/vm/oops/generateOopMap.cpp

Thu, 27 Jan 2011 16:11:27 -0800

author
coleenp
date
Thu, 27 Jan 2011 16:11:27 -0800
changeset 2497
3582bf76420e
parent 2462
8012aa3ccede
child 3036
6a991dcb52bb
child 3060
52e4ba46751f
permissions
-rw-r--r--

6990754: Use native memory and reference counting to implement SymbolTable
Summary: move symbols from permgen into C heap and reference count them
Reviewed-by: never, acorn, jmasa, stefank

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/bytecodeStream.hpp"
    27 #include "oops/generateOopMap.hpp"
    28 #include "oops/oop.inline.hpp"
    29 #include "oops/symbol.hpp"
    30 #include "runtime/handles.inline.hpp"
    31 #include "runtime/java.hpp"
    32 #include "runtime/relocator.hpp"
    33 #include "utilities/bitMap.inline.hpp"
    35 //
    36 //
    37 // Compute stack layouts for each instruction in method.
    38 //
    39 //  Problems:
    40 //  - What to do about jsr with different types of local vars?
    41 //  Need maps that are conditional on jsr path?
    42 //  - Jsr and exceptions should be done more efficiently (the retAddr stuff)
    43 //
    44 //  Alternative:
    45 //  - Could extend verifier to provide this information.
    46 //    For: one fewer abstract interpreter to maintain. Against: the verifier
    47 //    solves a bigger problem so slower (undesirable to force verification of
    48 //    everything?).
    49 //
    50 //  Algorithm:
    51 //    Partition bytecodes into basic blocks
    52 //    For each basic block: store entry state (vars, stack). For instructions
    53 //    inside basic blocks we do not store any state (instead we recompute it
    54 //    from state produced by previous instruction).
    55 //
    56 //    Perform abstract interpretation of bytecodes over this lattice:
    57 //
    58 //                _--'#'--_
    59 //               /  /  \   \
    60 //             /   /     \   \
    61 //            /    |     |     \
    62 //          'r'   'v'   'p'   ' '
    63 //           \     |     |     /
    64 //            \    \     /    /
    65 //              \   \   /    /
    66 //                -- '@' --
    67 //
    68 //    '#'  top, result of conflict merge
    69 //    'r'  reference type
    70 //    'v'  value type
    71 //    'p'  pc type for jsr/ret
    72 //    ' '  uninitialized; never occurs on operand stack in Java
    73 //    '@'  bottom/unexecuted; initial state each bytecode.
    74 //
    75 //    Basic block headers are the only merge points. We use this iteration to
    76 //    compute the information:
    77 //
    78 //    find basic blocks;
    79 //    initialize them with uninitialized state;
    80 //    initialize first BB according to method signature;
    81 //    mark first BB changed
    82 //    while (some BB is changed) do {
    83 //      perform abstract interpration of all bytecodes in BB;
    84 //      merge exit state of BB into entry state of all successor BBs,
    85 //      noting if any of these change;
    86 //    }
    87 //
    88 //  One additional complication is necessary. The jsr instruction pushes
    89 //  a return PC on the stack (a 'p' type in the abstract interpretation).
    90 //  To be able to process "ret" bytecodes, we keep track of these return
    91 //  PC's in a 'retAddrs' structure in abstract interpreter context (when
    92 //  processing a "ret" bytecodes, it is not sufficient to know that it gets
    93 //  an argument of the right type 'p'; we need to know which address it
    94 //  returns to).
    95 //
    96 // (Note this comment is borrowed form the original author of the algorithm)
    98 // ComputeCallStack
    99 //
   100 // Specialization of SignatureIterator - compute the effects of a call
   101 //
   102 class ComputeCallStack : public SignatureIterator {
   103   CellTypeState *_effect;
   104   int _idx;
   106   void setup();
   107   void set(CellTypeState state)         { _effect[_idx++] = state; }
   108   int  length()                         { return _idx; };
   110   virtual void do_bool  ()              { set(CellTypeState::value); };
   111   virtual void do_char  ()              { set(CellTypeState::value); };
   112   virtual void do_float ()              { set(CellTypeState::value); };
   113   virtual void do_byte  ()              { set(CellTypeState::value); };
   114   virtual void do_short ()              { set(CellTypeState::value); };
   115   virtual void do_int   ()              { set(CellTypeState::value); };
   116   virtual void do_void  ()              { set(CellTypeState::bottom);};
   117   virtual void do_object(int begin, int end)  { set(CellTypeState::ref); };
   118   virtual void do_array (int begin, int end)  { set(CellTypeState::ref); };
   120   void do_double()                      { set(CellTypeState::value);
   121                                           set(CellTypeState::value); }
   122   void do_long  ()                      { set(CellTypeState::value);
   123                                            set(CellTypeState::value); }
   125 public:
   126   ComputeCallStack(Symbol* signature) : SignatureIterator(signature) {};
   128   // Compute methods
   129   int compute_for_parameters(bool is_static, CellTypeState *effect) {
   130     _idx    = 0;
   131     _effect = effect;
   133     if (!is_static)
   134       effect[_idx++] = CellTypeState::ref;
   136     iterate_parameters();
   138     return length();
   139   };
   141   int compute_for_returntype(CellTypeState *effect) {
   142     _idx    = 0;
   143     _effect = effect;
   144     iterate_returntype();
   145     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
   147     return length();
   148   }
   149 };
   151 //=========================================================================================
   152 // ComputeEntryStack
   153 //
   154 // Specialization of SignatureIterator - in order to set up first stack frame
   155 //
   156 class ComputeEntryStack : public SignatureIterator {
   157   CellTypeState *_effect;
   158   int _idx;
   160   void setup();
   161   void set(CellTypeState state)         { _effect[_idx++] = state; }
   162   int  length()                         { return _idx; };
   164   virtual void do_bool  ()              { set(CellTypeState::value); };
   165   virtual void do_char  ()              { set(CellTypeState::value); };
   166   virtual void do_float ()              { set(CellTypeState::value); };
   167   virtual void do_byte  ()              { set(CellTypeState::value); };
   168   virtual void do_short ()              { set(CellTypeState::value); };
   169   virtual void do_int   ()              { set(CellTypeState::value); };
   170   virtual void do_void  ()              { set(CellTypeState::bottom);};
   171   virtual void do_object(int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
   172   virtual void do_array (int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
   174   void do_double()                      { set(CellTypeState::value);
   175                                           set(CellTypeState::value); }
   176   void do_long  ()                      { set(CellTypeState::value);
   177                                           set(CellTypeState::value); }
   179 public:
   180   ComputeEntryStack(Symbol* signature) : SignatureIterator(signature) {};
   182   // Compute methods
   183   int compute_for_parameters(bool is_static, CellTypeState *effect) {
   184     _idx    = 0;
   185     _effect = effect;
   187     if (!is_static)
   188       effect[_idx++] = CellTypeState::make_slot_ref(0);
   190     iterate_parameters();
   192     return length();
   193   };
   195   int compute_for_returntype(CellTypeState *effect) {
   196     _idx    = 0;
   197     _effect = effect;
   198     iterate_returntype();
   199     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
   201     return length();
   202   }
   203 };
   205 //=====================================================================================
   206 //
   207 // Implementation of RetTable/RetTableEntry
   208 //
   209 // Contains function to itereate through all bytecodes
   210 // and find all return entry points
   211 //
   212 int RetTable::_init_nof_entries = 10;
   213 int RetTableEntry::_init_nof_jsrs = 5;
   215 void RetTableEntry::add_delta(int bci, int delta) {
   216   if (_target_bci > bci) _target_bci += delta;
   218   for (int k = 0; k < _jsrs->length(); k++) {
   219     int jsr = _jsrs->at(k);
   220     if (jsr > bci) _jsrs->at_put(k, jsr+delta);
   221   }
   222 }
   224 void RetTable::compute_ret_table(methodHandle method) {
   225   BytecodeStream i(method);
   226   Bytecodes::Code bytecode;
   228   while( (bytecode = i.next()) >= 0) {
   229     switch (bytecode) {
   230       case Bytecodes::_jsr:
   231         add_jsr(i.next_bci(), i.dest());
   232         break;
   233       case Bytecodes::_jsr_w:
   234         add_jsr(i.next_bci(), i.dest_w());
   235         break;
   236     }
   237   }
   238 }
   240 void RetTable::add_jsr(int return_bci, int target_bci) {
   241   RetTableEntry* entry = _first;
   243   // Scan table for entry
   244   for (;entry && entry->target_bci() != target_bci; entry = entry->next());
   246   if (!entry) {
   247     // Allocate new entry and put in list
   248     entry = new RetTableEntry(target_bci, _first);
   249     _first = entry;
   250   }
   252   // Now "entry" is set.  Make sure that the entry is initialized
   253   // and has room for the new jsr.
   254   entry->add_jsr(return_bci);
   255 }
   257 RetTableEntry* RetTable::find_jsrs_for_target(int targBci) {
   258   RetTableEntry *cur = _first;
   260   while(cur) {
   261     assert(cur->target_bci() != -1, "sanity check");
   262     if (cur->target_bci() == targBci)  return cur;
   263     cur = cur->next();
   264   }
   265   ShouldNotReachHere();
   266   return NULL;
   267 }
   269 // The instruction at bci is changing size by "delta".  Update the return map.
   270 void RetTable::update_ret_table(int bci, int delta) {
   271   RetTableEntry *cur = _first;
   272   while(cur) {
   273     cur->add_delta(bci, delta);
   274     cur = cur->next();
   275   }
   276 }
   278 //
   279 // Celltype state
   280 //
   282 CellTypeState CellTypeState::bottom      = CellTypeState::make_bottom();
   283 CellTypeState CellTypeState::uninit      = CellTypeState::make_any(uninit_value);
   284 CellTypeState CellTypeState::ref         = CellTypeState::make_any(ref_conflict);
   285 CellTypeState CellTypeState::value       = CellTypeState::make_any(val_value);
   286 CellTypeState CellTypeState::refUninit   = CellTypeState::make_any(ref_conflict | uninit_value);
   287 CellTypeState CellTypeState::top         = CellTypeState::make_top();
   288 CellTypeState CellTypeState::addr        = CellTypeState::make_any(addr_conflict);
   290 // Commonly used constants
   291 static CellTypeState epsilonCTS[1] = { CellTypeState::bottom };
   292 static CellTypeState   refCTS   = CellTypeState::ref;
   293 static CellTypeState   valCTS   = CellTypeState::value;
   294 static CellTypeState    vCTS[2] = { CellTypeState::value, CellTypeState::bottom };
   295 static CellTypeState    rCTS[2] = { CellTypeState::ref,   CellTypeState::bottom };
   296 static CellTypeState   rrCTS[3] = { CellTypeState::ref,   CellTypeState::ref,   CellTypeState::bottom };
   297 static CellTypeState   vrCTS[3] = { CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   298 static CellTypeState   vvCTS[3] = { CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
   299 static CellTypeState  rvrCTS[4] = { CellTypeState::ref,   CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   300 static CellTypeState  vvrCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   301 static CellTypeState  vvvCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
   302 static CellTypeState vvvrCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   303 static CellTypeState vvvvCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
   305 char CellTypeState::to_char() const {
   306   if (can_be_reference()) {
   307     if (can_be_value() || can_be_address())
   308       return '#';    // Conflict that needs to be rewritten
   309     else
   310       return 'r';
   311   } else if (can_be_value())
   312     return 'v';
   313   else if (can_be_address())
   314     return 'p';
   315   else if (can_be_uninit())
   316     return ' ';
   317   else
   318     return '@';
   319 }
   322 // Print a detailed CellTypeState.  Indicate all bits that are set.  If
   323 // the CellTypeState represents an address or a reference, print the
   324 // value of the additional information.
   325 void CellTypeState::print(outputStream *os) {
   326   if (can_be_address()) {
   327     os->print("(p");
   328   } else {
   329     os->print("( ");
   330   }
   331   if (can_be_reference()) {
   332     os->print("r");
   333   } else {
   334     os->print(" ");
   335   }
   336   if (can_be_value()) {
   337     os->print("v");
   338   } else {
   339     os->print(" ");
   340   }
   341   if (can_be_uninit()) {
   342     os->print("u|");
   343   } else {
   344     os->print(" |");
   345   }
   346   if (is_info_top()) {
   347     os->print("Top)");
   348   } else if (is_info_bottom()) {
   349     os->print("Bot)");
   350   } else {
   351     if (is_reference()) {
   352       int info = get_info();
   353       int data = info & ~(ref_not_lock_bit | ref_slot_bit);
   354       if (info & ref_not_lock_bit) {
   355         // Not a monitor lock reference.
   356         if (info & ref_slot_bit) {
   357           // slot
   358           os->print("slot%d)", data);
   359         } else {
   360           // line
   361           os->print("line%d)", data);
   362         }
   363       } else {
   364         // lock
   365         os->print("lock%d)", data);
   366       }
   367     } else {
   368       os->print("%d)", get_info());
   369     }
   370   }
   371 }
   373 //
   374 // Basicblock handling methods
   375 //
   377 void GenerateOopMap ::initialize_bb() {
   378   _gc_points = 0;
   379   _bb_count  = 0;
   380   _bb_hdr_bits.clear();
   381   _bb_hdr_bits.resize(method()->code_size());
   382 }
   384 void GenerateOopMap::bb_mark_fct(GenerateOopMap *c, int bci, int *data) {
   385   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
   386   if (c->is_bb_header(bci))
   387      return;
   389   if (TraceNewOopMapGeneration) {
   390      tty->print_cr("Basicblock#%d begins at: %d", c->_bb_count, bci);
   391   }
   392   c->set_bbmark_bit(bci);
   393   c->_bb_count++;
   394 }
   397 void GenerateOopMap::mark_bbheaders_and_count_gc_points() {
   398   initialize_bb();
   400   bool fellThrough = false;  // False to get first BB marked.
   402   // First mark all exception handlers as start of a basic-block
   403   typeArrayOop excps = method()->exception_table();
   404   for(int i = 0; i < excps->length(); i += 4) {
   405     int handler_pc_idx = i+2;
   406     bb_mark_fct(this, excps->int_at(handler_pc_idx), NULL);
   407   }
   409   // Then iterate through the code
   410   BytecodeStream bcs(_method);
   411   Bytecodes::Code bytecode;
   413   while( (bytecode = bcs.next()) >= 0) {
   414     int bci = bcs.bci();
   416     if (!fellThrough)
   417         bb_mark_fct(this, bci, NULL);
   419     fellThrough = jump_targets_do(&bcs, &GenerateOopMap::bb_mark_fct, NULL);
   421      /* We will also mark successors of jsr's as basic block headers. */
   422     switch (bytecode) {
   423       case Bytecodes::_jsr:
   424         assert(!fellThrough, "should not happen");
   425         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
   426         break;
   427       case Bytecodes::_jsr_w:
   428         assert(!fellThrough, "should not happen");
   429         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
   430         break;
   431     }
   433     if (possible_gc_point(&bcs))
   434       _gc_points++;
   435   }
   436 }
   438 void GenerateOopMap::reachable_basicblock(GenerateOopMap *c, int bci, int *data) {
   439   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
   440   BasicBlock* bb = c->get_basic_block_at(bci);
   441   if (bb->is_dead()) {
   442     bb->mark_as_alive();
   443     *data = 1; // Mark basicblock as changed
   444   }
   445 }
   448 void GenerateOopMap::mark_reachable_code() {
   449   int change = 1; // int to get function pointers to work
   451   // Mark entry basic block as alive and all exception handlers
   452   _basic_blocks[0].mark_as_alive();
   453   typeArrayOop excps = method()->exception_table();
   454   for(int i = 0; i < excps->length(); i += 4) {
   455     int handler_pc_idx = i+2;
   456     BasicBlock *bb = get_basic_block_at(excps->int_at(handler_pc_idx));
   457     // If block is not already alive (due to multiple exception handlers to same bb), then
   458     // make it alive
   459     if (bb->is_dead()) bb->mark_as_alive();
   460   }
   462   BytecodeStream bcs(_method);
   464   // Iterate through all basic blocks until we reach a fixpoint
   465   while (change) {
   466     change = 0;
   468     for (int i = 0; i < _bb_count; i++) {
   469       BasicBlock *bb = &_basic_blocks[i];
   470       if (bb->is_alive()) {
   471         // Position bytecodestream at last bytecode in basicblock
   472         bcs.set_start(bb->_end_bci);
   473         bcs.next();
   474         Bytecodes::Code bytecode = bcs.code();
   475         int bci = bcs.bci();
   476         assert(bci == bb->_end_bci, "wrong bci");
   478         bool fell_through = jump_targets_do(&bcs, &GenerateOopMap::reachable_basicblock, &change);
   480         // We will also mark successors of jsr's as alive.
   481         switch (bytecode) {
   482           case Bytecodes::_jsr:
   483           case Bytecodes::_jsr_w:
   484             assert(!fell_through, "should not happen");
   485             reachable_basicblock(this, bci + Bytecodes::length_for(bytecode), &change);
   486             break;
   487         }
   488         if (fell_through) {
   489           // Mark successor as alive
   490           if (bb[1].is_dead()) {
   491             bb[1].mark_as_alive();
   492             change = 1;
   493           }
   494         }
   495       }
   496     }
   497   }
   498 }
   500 /* If the current instruction in "c" has no effect on control flow,
   501    returns "true".  Otherwise, calls "jmpFct" one or more times, with
   502    "c", an appropriate "pcDelta", and "data" as arguments, then
   503    returns "false".  There is one exception: if the current
   504    instruction is a "ret", returns "false" without calling "jmpFct".
   505    Arrangements for tracking the control flow of a "ret" must be made
   506    externally. */
   507 bool GenerateOopMap::jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int *data) {
   508   int bci = bcs->bci();
   510   switch (bcs->code()) {
   511     case Bytecodes::_ifeq:
   512     case Bytecodes::_ifne:
   513     case Bytecodes::_iflt:
   514     case Bytecodes::_ifge:
   515     case Bytecodes::_ifgt:
   516     case Bytecodes::_ifle:
   517     case Bytecodes::_if_icmpeq:
   518     case Bytecodes::_if_icmpne:
   519     case Bytecodes::_if_icmplt:
   520     case Bytecodes::_if_icmpge:
   521     case Bytecodes::_if_icmpgt:
   522     case Bytecodes::_if_icmple:
   523     case Bytecodes::_if_acmpeq:
   524     case Bytecodes::_if_acmpne:
   525     case Bytecodes::_ifnull:
   526     case Bytecodes::_ifnonnull:
   527       (*jmpFct)(this, bcs->dest(), data);
   528       (*jmpFct)(this, bci + 3, data);
   529       break;
   531     case Bytecodes::_goto:
   532       (*jmpFct)(this, bcs->dest(), data);
   533       break;
   534     case Bytecodes::_goto_w:
   535       (*jmpFct)(this, bcs->dest_w(), data);
   536       break;
   537     case Bytecodes::_tableswitch:
   538       { Bytecode_tableswitch tableswitch(method(), bcs->bcp());
   539         int len = tableswitch.length();
   541         (*jmpFct)(this, bci + tableswitch.default_offset(), data); /* Default. jump address */
   542         while (--len >= 0) {
   543           (*jmpFct)(this, bci + tableswitch.dest_offset_at(len), data);
   544         }
   545         break;
   546       }
   548     case Bytecodes::_lookupswitch:
   549       { Bytecode_lookupswitch lookupswitch(method(), bcs->bcp());
   550         int npairs = lookupswitch.number_of_pairs();
   551         (*jmpFct)(this, bci + lookupswitch.default_offset(), data); /* Default. */
   552         while(--npairs >= 0) {
   553           LookupswitchPair pair = lookupswitch.pair_at(npairs);
   554           (*jmpFct)(this, bci + pair.offset(), data);
   555         }
   556         break;
   557       }
   558     case Bytecodes::_jsr:
   559       assert(bcs->is_wide()==false, "sanity check");
   560       (*jmpFct)(this, bcs->dest(), data);
   564       break;
   565     case Bytecodes::_jsr_w:
   566       (*jmpFct)(this, bcs->dest_w(), data);
   567       break;
   568     case Bytecodes::_wide:
   569       ShouldNotReachHere();
   570       return true;
   571       break;
   572     case Bytecodes::_athrow:
   573     case Bytecodes::_ireturn:
   574     case Bytecodes::_lreturn:
   575     case Bytecodes::_freturn:
   576     case Bytecodes::_dreturn:
   577     case Bytecodes::_areturn:
   578     case Bytecodes::_return:
   579     case Bytecodes::_ret:
   580       break;
   581     default:
   582       return true;
   583   }
   584   return false;
   585 }
   587 /* Requires "pc" to be the head of a basic block; returns that basic
   588    block. */
   589 BasicBlock *GenerateOopMap::get_basic_block_at(int bci) const {
   590   BasicBlock* bb = get_basic_block_containing(bci);
   591   assert(bb->_bci == bci, "should have found BB");
   592   return bb;
   593 }
   595 // Requires "pc" to be the start of an instruction; returns the basic
   596 //   block containing that instruction. */
   597 BasicBlock  *GenerateOopMap::get_basic_block_containing(int bci) const {
   598   BasicBlock *bbs = _basic_blocks;
   599   int lo = 0, hi = _bb_count - 1;
   601   while (lo <= hi) {
   602     int m = (lo + hi) / 2;
   603     int mbci = bbs[m]._bci;
   604     int nbci;
   606     if ( m == _bb_count-1) {
   607       assert( bci >= mbci && bci < method()->code_size(), "sanity check failed");
   608       return bbs+m;
   609     } else {
   610       nbci = bbs[m+1]._bci;
   611     }
   613     if ( mbci <= bci && bci < nbci) {
   614       return bbs+m;
   615     } else if (mbci < bci) {
   616       lo = m + 1;
   617     } else {
   618       assert(mbci > bci, "sanity check");
   619       hi = m - 1;
   620     }
   621   }
   623   fatal("should have found BB");
   624   return NULL;
   625 }
   627 void GenerateOopMap::restore_state(BasicBlock *bb)
   628 {
   629   memcpy(_state, bb->_state, _state_len*sizeof(CellTypeState));
   630   _stack_top = bb->_stack_top;
   631   _monitor_top = bb->_monitor_top;
   632 }
   634 int GenerateOopMap::next_bb_start_pc(BasicBlock *bb) {
   635  int bbNum = bb - _basic_blocks + 1;
   636  if (bbNum == _bb_count)
   637     return method()->code_size();
   639  return _basic_blocks[bbNum]._bci;
   640 }
   642 //
   643 // CellType handling methods
   644 //
   646 void GenerateOopMap::init_state() {
   647   _state_len     = _max_locals + _max_stack + _max_monitors;
   648   _state         = NEW_RESOURCE_ARRAY(CellTypeState, _state_len);
   649   memset(_state, 0, _state_len * sizeof(CellTypeState));
   650   _state_vec_buf = NEW_RESOURCE_ARRAY(char, MAX3(_max_locals, _max_stack, _max_monitors) + 1/*for null terminator char */);
   651 }
   653 void GenerateOopMap::make_context_uninitialized() {
   654   CellTypeState* vs = vars();
   656   for (int i = 0; i < _max_locals; i++)
   657       vs[i] = CellTypeState::uninit;
   659   _stack_top = 0;
   660   _monitor_top = 0;
   661 }
   663 int GenerateOopMap::methodsig_to_effect(Symbol* signature, bool is_static, CellTypeState* effect) {
   664   ComputeEntryStack ces(signature);
   665   return ces.compute_for_parameters(is_static, effect);
   666 }
   668 // Return result of merging cts1 and cts2.
   669 CellTypeState CellTypeState::merge(CellTypeState cts, int slot) const {
   670   CellTypeState result;
   672   assert(!is_bottom() && !cts.is_bottom(),
   673          "merge of bottom values is handled elsewhere");
   675   result._state = _state | cts._state;
   677   // If the top bit is set, we don't need to do any more work.
   678   if (!result.is_info_top()) {
   679     assert((result.can_be_address() || result.can_be_reference()),
   680            "only addresses and references have non-top info");
   682     if (!equal(cts)) {
   683       // The two values being merged are different.  Raise to top.
   684       if (result.is_reference()) {
   685         result = CellTypeState::make_slot_ref(slot);
   686       } else {
   687         result._state |= info_conflict;
   688       }
   689     }
   690   }
   691   assert(result.is_valid_state(), "checking that CTS merge maintains legal state");
   693   return result;
   694 }
   696 // Merge the variable state for locals and stack from cts into bbts.
   697 bool GenerateOopMap::merge_local_state_vectors(CellTypeState* cts,
   698                                                CellTypeState* bbts) {
   699   int i;
   700   int len = _max_locals + _stack_top;
   701   bool change = false;
   703   for (i = len - 1; i >= 0; i--) {
   704     CellTypeState v = cts[i].merge(bbts[i], i);
   705     change = change || !v.equal(bbts[i]);
   706     bbts[i] = v;
   707   }
   709   return change;
   710 }
   712 // Merge the monitor stack state from cts into bbts.
   713 bool GenerateOopMap::merge_monitor_state_vectors(CellTypeState* cts,
   714                                                  CellTypeState* bbts) {
   715   bool change = false;
   716   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
   717     // If there are no monitors in the program, or there has been
   718     // a monitor matching error before this point in the program,
   719     // then we do not merge in the monitor state.
   721     int base = _max_locals + _max_stack;
   722     int len = base + _monitor_top;
   723     for (int i = len - 1; i >= base; i--) {
   724       CellTypeState v = cts[i].merge(bbts[i], i);
   726       // Can we prove that, when there has been a change, it will already
   727       // have been detected at this point?  That would make this equal
   728       // check here unnecessary.
   729       change = change || !v.equal(bbts[i]);
   730       bbts[i] = v;
   731     }
   732   }
   734   return change;
   735 }
   737 void GenerateOopMap::copy_state(CellTypeState *dst, CellTypeState *src) {
   738   int len = _max_locals + _stack_top;
   739   for (int i = 0; i < len; i++) {
   740     if (src[i].is_nonlock_reference()) {
   741       dst[i] = CellTypeState::make_slot_ref(i);
   742     } else {
   743       dst[i] = src[i];
   744     }
   745   }
   746   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
   747     int base = _max_locals + _max_stack;
   748     len = base + _monitor_top;
   749     for (int i = base; i < len; i++) {
   750       dst[i] = src[i];
   751     }
   752   }
   753 }
   756 // Merge the states for the current block and the next.  As long as a
   757 // block is reachable the locals and stack must be merged.  If the
   758 // stack heights don't match then this is a verification error and
   759 // it's impossible to interpret the code.  Simultaneously monitor
   760 // states are being check to see if they nest statically.  If monitor
   761 // depths match up then their states are merged.  Otherwise the
   762 // mismatch is simply recorded and interpretation continues since
   763 // monitor matching is purely informational and doesn't say anything
   764 // about the correctness of the code.
   765 void GenerateOopMap::merge_state_into_bb(BasicBlock *bb) {
   766   assert(bb->is_alive(), "merging state into a dead basicblock");
   768   if (_stack_top == bb->_stack_top) {
   769     // always merge local state even if monitors don't match.
   770     if (merge_local_state_vectors(_state, bb->_state)) {
   771       bb->set_changed(true);
   772     }
   773     if (_monitor_top == bb->_monitor_top) {
   774       // monitors still match so continue merging monitor states.
   775       if (merge_monitor_state_vectors(_state, bb->_state)) {
   776         bb->set_changed(true);
   777       }
   778     } else {
   779       if (TraceMonitorMismatch) {
   780         report_monitor_mismatch("monitor stack height merge conflict");
   781       }
   782       // When the monitor stacks are not matched, we set _monitor_top to
   783       // bad_monitors.  This signals that, from here on, the monitor stack cannot
   784       // be trusted.  In particular, monitorexit bytecodes may throw
   785       // exceptions.  We mark this block as changed so that the change
   786       // propagates properly.
   787       bb->_monitor_top = bad_monitors;
   788       bb->set_changed(true);
   789       _monitor_safe = false;
   790     }
   791   } else if (!bb->is_reachable()) {
   792     // First time we look at this  BB
   793     copy_state(bb->_state, _state);
   794     bb->_stack_top = _stack_top;
   795     bb->_monitor_top = _monitor_top;
   796     bb->set_changed(true);
   797   } else {
   798     verify_error("stack height conflict: %d vs. %d",  _stack_top, bb->_stack_top);
   799   }
   800 }
   802 void GenerateOopMap::merge_state(GenerateOopMap *gom, int bci, int* data) {
   803    gom->merge_state_into_bb(gom->get_basic_block_at(bci));
   804 }
   806 void GenerateOopMap::set_var(int localNo, CellTypeState cts) {
   807   assert(cts.is_reference() || cts.is_value() || cts.is_address(),
   808          "wrong celltypestate");
   809   if (localNo < 0 || localNo > _max_locals) {
   810     verify_error("variable write error: r%d", localNo);
   811     return;
   812   }
   813   vars()[localNo] = cts;
   814 }
   816 CellTypeState GenerateOopMap::get_var(int localNo) {
   817   assert(localNo < _max_locals + _nof_refval_conflicts, "variable read error");
   818   if (localNo < 0 || localNo > _max_locals) {
   819     verify_error("variable read error: r%d", localNo);
   820     return valCTS; // just to pick something;
   821   }
   822   return vars()[localNo];
   823 }
   825 CellTypeState GenerateOopMap::pop() {
   826   if ( _stack_top <= 0) {
   827     verify_error("stack underflow");
   828     return valCTS; // just to pick something
   829   }
   830   return  stack()[--_stack_top];
   831 }
   833 void GenerateOopMap::push(CellTypeState cts) {
   834   if ( _stack_top >= _max_stack) {
   835     verify_error("stack overflow");
   836     return;
   837   }
   838   stack()[_stack_top++] = cts;
   839 }
   841 CellTypeState GenerateOopMap::monitor_pop() {
   842   assert(_monitor_top != bad_monitors, "monitor_pop called on error monitor stack");
   843   if (_monitor_top == 0) {
   844     // We have detected a pop of an empty monitor stack.
   845     _monitor_safe = false;
   846      _monitor_top = bad_monitors;
   848     if (TraceMonitorMismatch) {
   849       report_monitor_mismatch("monitor stack underflow");
   850     }
   851     return CellTypeState::ref; // just to keep the analysis going.
   852   }
   853   return  monitors()[--_monitor_top];
   854 }
   856 void GenerateOopMap::monitor_push(CellTypeState cts) {
   857   assert(_monitor_top != bad_monitors, "monitor_push called on error monitor stack");
   858   if (_monitor_top >= _max_monitors) {
   859     // Some monitorenter is being executed more than once.
   860     // This means that the monitor stack cannot be simulated.
   861     _monitor_safe = false;
   862     _monitor_top = bad_monitors;
   864     if (TraceMonitorMismatch) {
   865       report_monitor_mismatch("monitor stack overflow");
   866     }
   867     return;
   868   }
   869   monitors()[_monitor_top++] = cts;
   870 }
   872 //
   873 // Interpretation handling methods
   874 //
   876 void GenerateOopMap::do_interpretation()
   877 {
   878   // "i" is just for debugging, so we can detect cases where this loop is
   879   // iterated more than once.
   880   int i = 0;
   881   do {
   882 #ifndef PRODUCT
   883     if (TraceNewOopMapGeneration) {
   884       tty->print("\n\nIteration #%d of do_interpretation loop, method:\n", i);
   885       method()->print_name(tty);
   886       tty->print("\n\n");
   887     }
   888 #endif
   889     _conflict = false;
   890     _monitor_safe = true;
   891     // init_state is now called from init_basic_blocks.  The length of a
   892     // state vector cannot be determined until we have made a pass through
   893     // the bytecodes counting the possible monitor entries.
   894     if (!_got_error) init_basic_blocks();
   895     if (!_got_error) setup_method_entry_state();
   896     if (!_got_error) interp_all();
   897     if (!_got_error) rewrite_refval_conflicts();
   898     i++;
   899   } while (_conflict && !_got_error);
   900 }
   902 void GenerateOopMap::init_basic_blocks() {
   903   // Note: Could consider reserving only the needed space for each BB's state
   904   // (entry stack may not be of maximal height for every basic block).
   905   // But cumbersome since we don't know the stack heights yet.  (Nor the
   906   // monitor stack heights...)
   908   _basic_blocks = NEW_RESOURCE_ARRAY(BasicBlock, _bb_count);
   910   // Make a pass through the bytecodes.  Count the number of monitorenters.
   911   // This can be used an upper bound on the monitor stack depth in programs
   912   // which obey stack discipline with their monitor usage.  Initialize the
   913   // known information about basic blocks.
   914   BytecodeStream j(_method);
   915   Bytecodes::Code bytecode;
   917   int bbNo = 0;
   918   int monitor_count = 0;
   919   int prev_bci = -1;
   920   while( (bytecode = j.next()) >= 0) {
   921     if (j.code() == Bytecodes::_monitorenter) {
   922       monitor_count++;
   923     }
   925     int bci = j.bci();
   926     if (is_bb_header(bci)) {
   927       // Initialize the basicblock structure
   928       BasicBlock *bb   = _basic_blocks + bbNo;
   929       bb->_bci         = bci;
   930       bb->_max_locals  = _max_locals;
   931       bb->_max_stack   = _max_stack;
   932       bb->set_changed(false);
   933       bb->_stack_top   = BasicBlock::_dead_basic_block; // Initialize all basicblocks are dead.
   934       bb->_monitor_top = bad_monitors;
   936       if (bbNo > 0) {
   937         _basic_blocks[bbNo - 1]._end_bci = prev_bci;
   938       }
   940       bbNo++;
   941     }
   942     // Remember prevous bci.
   943     prev_bci = bci;
   944   }
   945   // Set
   946   _basic_blocks[bbNo-1]._end_bci = prev_bci;
   949   // Check that the correct number of basicblocks was found
   950   if (bbNo !=_bb_count) {
   951     if (bbNo < _bb_count) {
   952       verify_error("jump into the middle of instruction?");
   953       return;
   954     } else {
   955       verify_error("extra basic blocks - should not happen?");
   956       return;
   957     }
   958   }
   960   _max_monitors = monitor_count;
   962   // Now that we have a bound on the depth of the monitor stack, we can
   963   // initialize the CellTypeState-related information.
   964   init_state();
   966   // We allocate space for all state-vectors for all basicblocks in one huge chuck.
   967   // Then in the next part of the code, we set a pointer in each _basic_block that
   968   // points to each piece.
   969   CellTypeState *basicBlockState = NEW_RESOURCE_ARRAY(CellTypeState, bbNo * _state_len);
   970   memset(basicBlockState, 0, bbNo * _state_len * sizeof(CellTypeState));
   972   // Make a pass over the basicblocks and assign their state vectors.
   973   for (int blockNum=0; blockNum < bbNo; blockNum++) {
   974     BasicBlock *bb = _basic_blocks + blockNum;
   975     bb->_state = basicBlockState + blockNum * _state_len;
   977 #ifdef ASSERT
   978     if (blockNum + 1 < bbNo) {
   979       address bcp = _method->bcp_from(bb->_end_bci);
   980       int bc_len = Bytecodes::java_length_at(_method(), bcp);
   981       assert(bb->_end_bci + bc_len == bb[1]._bci, "unmatched bci info in basicblock");
   982     }
   983 #endif
   984   }
   985 #ifdef ASSERT
   986   { BasicBlock *bb = &_basic_blocks[bbNo-1];
   987     address bcp = _method->bcp_from(bb->_end_bci);
   988     int bc_len = Bytecodes::java_length_at(_method(), bcp);
   989     assert(bb->_end_bci + bc_len == _method->code_size(), "wrong end bci");
   990   }
   991 #endif
   993   // Mark all alive blocks
   994   mark_reachable_code();
   995 }
   997 void GenerateOopMap::setup_method_entry_state() {
   999     // Initialize all locals to 'uninit' and set stack-height to 0
  1000     make_context_uninitialized();
  1002     // Initialize CellState type of arguments
  1003     methodsig_to_effect(method()->signature(), method()->is_static(), vars());
  1005     // If some references must be pre-assigned to null, then set that up
  1006     initialize_vars();
  1008     // This is the start state
  1009     merge_state_into_bb(&_basic_blocks[0]);
  1011     assert(_basic_blocks[0].changed(), "we are not getting off the ground");
  1014 // The instruction at bci is changing size by "delta".  Update the basic blocks.
  1015 void GenerateOopMap::update_basic_blocks(int bci, int delta,
  1016                                          int new_method_size) {
  1017   assert(new_method_size >= method()->code_size() + delta,
  1018          "new method size is too small");
  1020   BitMap::bm_word_t* new_bb_hdr_bits =
  1021     NEW_RESOURCE_ARRAY(BitMap::bm_word_t,
  1022                        BitMap::word_align_up(new_method_size));
  1023   _bb_hdr_bits.set_map(new_bb_hdr_bits);
  1024   _bb_hdr_bits.set_size(new_method_size);
  1025   _bb_hdr_bits.clear();
  1028   for(int k = 0; k < _bb_count; k++) {
  1029     if (_basic_blocks[k]._bci > bci) {
  1030       _basic_blocks[k]._bci     += delta;
  1031       _basic_blocks[k]._end_bci += delta;
  1033     _bb_hdr_bits.at_put(_basic_blocks[k]._bci, true);
  1037 //
  1038 // Initvars handling
  1039 //
  1041 void GenerateOopMap::initialize_vars() {
  1042   for (int k = 0; k < _init_vars->length(); k++)
  1043     _state[_init_vars->at(k)] = CellTypeState::make_slot_ref(k);
  1046 void GenerateOopMap::add_to_ref_init_set(int localNo) {
  1048   if (TraceNewOopMapGeneration)
  1049     tty->print_cr("Added init vars: %d", localNo);
  1051   // Is it already in the set?
  1052   if (_init_vars->contains(localNo) )
  1053     return;
  1055    _init_vars->append(localNo);
  1058 //
  1059 // Interpreration code
  1060 //
  1062 void GenerateOopMap::interp_all() {
  1063   bool change = true;
  1065   while (change && !_got_error) {
  1066     change = false;
  1067     for (int i = 0; i < _bb_count && !_got_error; i++) {
  1068       BasicBlock *bb = &_basic_blocks[i];
  1069       if (bb->changed()) {
  1070          if (_got_error) return;
  1071          change = true;
  1072          bb->set_changed(false);
  1073          interp_bb(bb);
  1079 void GenerateOopMap::interp_bb(BasicBlock *bb) {
  1081   // We do not want to do anything in case the basic-block has not been initialized. This
  1082   // will happen in the case where there is dead-code hang around in a method.
  1083   assert(bb->is_reachable(), "should be reachable or deadcode exist");
  1084   restore_state(bb);
  1086   BytecodeStream itr(_method);
  1088   // Set iterator interval to be the current basicblock
  1089   int lim_bci = next_bb_start_pc(bb);
  1090   itr.set_interval(bb->_bci, lim_bci);
  1091   assert(lim_bci != bb->_bci, "must be at least one instruction in a basicblock");
  1092   itr.next(); // read first instruction
  1094   // Iterates through all bytecodes except the last in a basic block.
  1095   // We handle the last one special, since there is controlflow change.
  1096   while(itr.next_bci() < lim_bci && !_got_error) {
  1097     if (_has_exceptions || _monitor_top != 0) {
  1098       // We do not need to interpret the results of exceptional
  1099       // continuation from this instruction when the method has no
  1100       // exception handlers and the monitor stack is currently
  1101       // empty.
  1102       do_exception_edge(&itr);
  1104     interp1(&itr);
  1105     itr.next();
  1108   // Handle last instruction.
  1109   if (!_got_error) {
  1110     assert(itr.next_bci() == lim_bci, "must point to end");
  1111     if (_has_exceptions || _monitor_top != 0) {
  1112       do_exception_edge(&itr);
  1114     interp1(&itr);
  1116     bool fall_through = jump_targets_do(&itr, GenerateOopMap::merge_state, NULL);
  1117     if (_got_error)  return;
  1119     if (itr.code() == Bytecodes::_ret) {
  1120       assert(!fall_through, "cannot be set if ret instruction");
  1121       // Automatically handles 'wide' ret indicies
  1122       ret_jump_targets_do(&itr, GenerateOopMap::merge_state, itr.get_index(), NULL);
  1123     } else if (fall_through) {
  1124      // Hit end of BB, but the instr. was a fall-through instruction,
  1125      // so perform transition as if the BB ended in a "jump".
  1126      if (lim_bci != bb[1]._bci) {
  1127        verify_error("bytecodes fell through last instruction");
  1128        return;
  1130      merge_state_into_bb(bb + 1);
  1135 void GenerateOopMap::do_exception_edge(BytecodeStream* itr) {
  1136   // Only check exception edge, if bytecode can trap
  1137   if (!Bytecodes::can_trap(itr->code())) return;
  1138   switch (itr->code()) {
  1139     case Bytecodes::_aload_0:
  1140       // These bytecodes can trap for rewriting.  We need to assume that
  1141       // they do not throw exceptions to make the monitor analysis work.
  1142       return;
  1144     case Bytecodes::_ireturn:
  1145     case Bytecodes::_lreturn:
  1146     case Bytecodes::_freturn:
  1147     case Bytecodes::_dreturn:
  1148     case Bytecodes::_areturn:
  1149     case Bytecodes::_return:
  1150       // If the monitor stack height is not zero when we leave the method,
  1151       // then we are either exiting with a non-empty stack or we have
  1152       // found monitor trouble earlier in our analysis.  In either case,
  1153       // assume an exception could be taken here.
  1154       if (_monitor_top == 0) {
  1155         return;
  1157       break;
  1159     case Bytecodes::_monitorexit:
  1160       // If the monitor stack height is bad_monitors, then we have detected a
  1161       // monitor matching problem earlier in the analysis.  If the
  1162       // monitor stack height is 0, we are about to pop a monitor
  1163       // off of an empty stack.  In either case, the bytecode
  1164       // could throw an exception.
  1165       if (_monitor_top != bad_monitors && _monitor_top != 0) {
  1166         return;
  1168       break;
  1171   if (_has_exceptions) {
  1172     int bci = itr->bci();
  1173     typeArrayOop exct  = method()->exception_table();
  1174     for(int i = 0; i< exct->length(); i+=4) {
  1175       int start_pc   = exct->int_at(i);
  1176       int end_pc     = exct->int_at(i+1);
  1177       int handler_pc = exct->int_at(i+2);
  1178       int catch_type = exct->int_at(i+3);
  1180       if (start_pc <= bci && bci < end_pc) {
  1181         BasicBlock *excBB = get_basic_block_at(handler_pc);
  1182         CellTypeState *excStk = excBB->stack();
  1183         CellTypeState *cOpStck = stack();
  1184         CellTypeState cOpStck_0 = cOpStck[0];
  1185         int cOpStackTop = _stack_top;
  1187         // Exception stacks are always the same.
  1188         assert(method()->max_stack() > 0, "sanity check");
  1190         // We remembered the size and first element of "cOpStck"
  1191         // above; now we temporarily set them to the appropriate
  1192         // values for an exception handler. */
  1193         cOpStck[0] = CellTypeState::make_slot_ref(_max_locals);
  1194         _stack_top = 1;
  1196         merge_state_into_bb(excBB);
  1198         // Now undo the temporary change.
  1199         cOpStck[0] = cOpStck_0;
  1200         _stack_top = cOpStackTop;
  1202         // If this is a "catch all" handler, then we do not need to
  1203         // consider any additional handlers.
  1204         if (catch_type == 0) {
  1205           return;
  1211   // It is possible that none of the exception handlers would have caught
  1212   // the exception.  In this case, we will exit the method.  We must
  1213   // ensure that the monitor stack is empty in this case.
  1214   if (_monitor_top == 0) {
  1215     return;
  1218   // We pessimistically assume that this exception can escape the
  1219   // method. (It is possible that it will always be caught, but
  1220   // we don't care to analyse the types of the catch clauses.)
  1222   // We don't set _monitor_top to bad_monitors because there are no successors
  1223   // to this exceptional exit.
  1225   if (TraceMonitorMismatch && _monitor_safe) {
  1226     // We check _monitor_safe so that we only report the first mismatched
  1227     // exceptional exit.
  1228     report_monitor_mismatch("non-empty monitor stack at exceptional exit");
  1230   _monitor_safe = false;
  1234 void GenerateOopMap::report_monitor_mismatch(const char *msg) {
  1235 #ifndef PRODUCT
  1236   tty->print("    Monitor mismatch in method ");
  1237   method()->print_short_name(tty);
  1238   tty->print_cr(": %s", msg);
  1239 #endif
  1242 void GenerateOopMap::print_states(outputStream *os,
  1243                                   CellTypeState* vec, int num) {
  1244   for (int i = 0; i < num; i++) {
  1245     vec[i].print(tty);
  1249 // Print the state values at the current bytecode.
  1250 void GenerateOopMap::print_current_state(outputStream   *os,
  1251                                          BytecodeStream *currentBC,
  1252                                          bool            detailed) {
  1254   if (detailed) {
  1255     os->print("     %4d vars     = ", currentBC->bci());
  1256     print_states(os, vars(), _max_locals);
  1257     os->print("    %s", Bytecodes::name(currentBC->code()));
  1258     switch(currentBC->code()) {
  1259       case Bytecodes::_invokevirtual:
  1260       case Bytecodes::_invokespecial:
  1261       case Bytecodes::_invokestatic:
  1262       case Bytecodes::_invokedynamic:
  1263       case Bytecodes::_invokeinterface:
  1264         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2_cpcache();
  1265         constantPoolOop cp    = method()->constants();
  1266         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
  1267         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
  1268         Symbol* signature     = cp->symbol_at(signatureIdx);
  1269         os->print("%s", signature->as_C_string());
  1271     os->cr();
  1272     os->print("          stack    = ");
  1273     print_states(os, stack(), _stack_top);
  1274     os->cr();
  1275     if (_monitor_top != bad_monitors) {
  1276       os->print("          monitors = ");
  1277       print_states(os, monitors(), _monitor_top);
  1278     } else {
  1279       os->print("          [bad monitor stack]");
  1281     os->cr();
  1282   } else {
  1283     os->print("    %4d  vars = '%s' ", currentBC->bci(),  state_vec_to_string(vars(), _max_locals));
  1284     os->print("     stack = '%s' ", state_vec_to_string(stack(), _stack_top));
  1285     if (_monitor_top != bad_monitors) {
  1286       os->print("  monitors = '%s'  \t%s", state_vec_to_string(monitors(), _monitor_top), Bytecodes::name(currentBC->code()));
  1287     } else {
  1288       os->print("  [bad monitor stack]");
  1290     switch(currentBC->code()) {
  1291       case Bytecodes::_invokevirtual:
  1292       case Bytecodes::_invokespecial:
  1293       case Bytecodes::_invokestatic:
  1294       case Bytecodes::_invokedynamic:
  1295       case Bytecodes::_invokeinterface:
  1296         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2_cpcache();
  1297         constantPoolOop cp    = method()->constants();
  1298         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
  1299         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
  1300         Symbol* signature     = cp->symbol_at(signatureIdx);
  1301         os->print("%s", signature->as_C_string());
  1303     os->cr();
  1307 // Sets the current state to be the state after executing the
  1308 // current instruction, starting in the current state.
  1309 void GenerateOopMap::interp1(BytecodeStream *itr) {
  1310   if (TraceNewOopMapGeneration) {
  1311     print_current_state(tty, itr, TraceNewOopMapGenerationDetailed);
  1314   // Should we report the results? Result is reported *before* the instruction at the current bci is executed.
  1315   // However, not for calls. For calls we do not want to include the arguments, so we postpone the reporting until
  1316   // they have been popped (in method ppl).
  1317   if (_report_result == true) {
  1318     switch(itr->code()) {
  1319       case Bytecodes::_invokevirtual:
  1320       case Bytecodes::_invokespecial:
  1321       case Bytecodes::_invokestatic:
  1322       case Bytecodes::_invokedynamic:
  1323       case Bytecodes::_invokeinterface:
  1324         _itr_send = itr;
  1325         _report_result_for_send = true;
  1326         break;
  1327       default:
  1328        fill_stackmap_for_opcodes(itr, vars(), stack(), _stack_top);
  1329        break;
  1333   // abstract interpretation of current opcode
  1334   switch(itr->code()) {
  1335     case Bytecodes::_nop:                                           break;
  1336     case Bytecodes::_goto:                                          break;
  1337     case Bytecodes::_goto_w:                                        break;
  1338     case Bytecodes::_iinc:                                          break;
  1339     case Bytecodes::_return:            do_return_monitor_check();
  1340                                         break;
  1342     case Bytecodes::_aconst_null:
  1343     case Bytecodes::_new:               ppush1(CellTypeState::make_line_ref(itr->bci()));
  1344                                         break;
  1346     case Bytecodes::_iconst_m1:
  1347     case Bytecodes::_iconst_0:
  1348     case Bytecodes::_iconst_1:
  1349     case Bytecodes::_iconst_2:
  1350     case Bytecodes::_iconst_3:
  1351     case Bytecodes::_iconst_4:
  1352     case Bytecodes::_iconst_5:
  1353     case Bytecodes::_fconst_0:
  1354     case Bytecodes::_fconst_1:
  1355     case Bytecodes::_fconst_2:
  1356     case Bytecodes::_bipush:
  1357     case Bytecodes::_sipush:            ppush1(valCTS);             break;
  1359     case Bytecodes::_lconst_0:
  1360     case Bytecodes::_lconst_1:
  1361     case Bytecodes::_dconst_0:
  1362     case Bytecodes::_dconst_1:          ppush(vvCTS);               break;
  1364     case Bytecodes::_ldc2_w:            ppush(vvCTS);               break;
  1366     case Bytecodes::_ldc:               // fall through:
  1367     case Bytecodes::_ldc_w:             do_ldc(itr->bci());         break;
  1369     case Bytecodes::_iload:
  1370     case Bytecodes::_fload:             ppload(vCTS, itr->get_index()); break;
  1372     case Bytecodes::_lload:
  1373     case Bytecodes::_dload:             ppload(vvCTS,itr->get_index()); break;
  1375     case Bytecodes::_aload:             ppload(rCTS, itr->get_index()); break;
  1377     case Bytecodes::_iload_0:
  1378     case Bytecodes::_fload_0:           ppload(vCTS, 0);            break;
  1379     case Bytecodes::_iload_1:
  1380     case Bytecodes::_fload_1:           ppload(vCTS, 1);            break;
  1381     case Bytecodes::_iload_2:
  1382     case Bytecodes::_fload_2:           ppload(vCTS, 2);            break;
  1383     case Bytecodes::_iload_3:
  1384     case Bytecodes::_fload_3:           ppload(vCTS, 3);            break;
  1386     case Bytecodes::_lload_0:
  1387     case Bytecodes::_dload_0:           ppload(vvCTS, 0);           break;
  1388     case Bytecodes::_lload_1:
  1389     case Bytecodes::_dload_1:           ppload(vvCTS, 1);           break;
  1390     case Bytecodes::_lload_2:
  1391     case Bytecodes::_dload_2:           ppload(vvCTS, 2);           break;
  1392     case Bytecodes::_lload_3:
  1393     case Bytecodes::_dload_3:           ppload(vvCTS, 3);           break;
  1395     case Bytecodes::_aload_0:           ppload(rCTS, 0);            break;
  1396     case Bytecodes::_aload_1:           ppload(rCTS, 1);            break;
  1397     case Bytecodes::_aload_2:           ppload(rCTS, 2);            break;
  1398     case Bytecodes::_aload_3:           ppload(rCTS, 3);            break;
  1400     case Bytecodes::_iaload:
  1401     case Bytecodes::_faload:
  1402     case Bytecodes::_baload:
  1403     case Bytecodes::_caload:
  1404     case Bytecodes::_saload:            pp(vrCTS, vCTS); break;
  1406     case Bytecodes::_laload:            pp(vrCTS, vvCTS);  break;
  1407     case Bytecodes::_daload:            pp(vrCTS, vvCTS); break;
  1409     case Bytecodes::_aaload:            pp_new_ref(vrCTS, itr->bci()); break;
  1411     case Bytecodes::_istore:
  1412     case Bytecodes::_fstore:            ppstore(vCTS, itr->get_index()); break;
  1414     case Bytecodes::_lstore:
  1415     case Bytecodes::_dstore:            ppstore(vvCTS, itr->get_index()); break;
  1417     case Bytecodes::_astore:            do_astore(itr->get_index());     break;
  1419     case Bytecodes::_istore_0:
  1420     case Bytecodes::_fstore_0:          ppstore(vCTS, 0);           break;
  1421     case Bytecodes::_istore_1:
  1422     case Bytecodes::_fstore_1:          ppstore(vCTS, 1);           break;
  1423     case Bytecodes::_istore_2:
  1424     case Bytecodes::_fstore_2:          ppstore(vCTS, 2);           break;
  1425     case Bytecodes::_istore_3:
  1426     case Bytecodes::_fstore_3:          ppstore(vCTS, 3);           break;
  1428     case Bytecodes::_lstore_0:
  1429     case Bytecodes::_dstore_0:          ppstore(vvCTS, 0);          break;
  1430     case Bytecodes::_lstore_1:
  1431     case Bytecodes::_dstore_1:          ppstore(vvCTS, 1);          break;
  1432     case Bytecodes::_lstore_2:
  1433     case Bytecodes::_dstore_2:          ppstore(vvCTS, 2);          break;
  1434     case Bytecodes::_lstore_3:
  1435     case Bytecodes::_dstore_3:          ppstore(vvCTS, 3);          break;
  1437     case Bytecodes::_astore_0:          do_astore(0);               break;
  1438     case Bytecodes::_astore_1:          do_astore(1);               break;
  1439     case Bytecodes::_astore_2:          do_astore(2);               break;
  1440     case Bytecodes::_astore_3:          do_astore(3);               break;
  1442     case Bytecodes::_iastore:
  1443     case Bytecodes::_fastore:
  1444     case Bytecodes::_bastore:
  1445     case Bytecodes::_castore:
  1446     case Bytecodes::_sastore:           ppop(vvrCTS);               break;
  1447     case Bytecodes::_lastore:
  1448     case Bytecodes::_dastore:           ppop(vvvrCTS);              break;
  1449     case Bytecodes::_aastore:           ppop(rvrCTS);               break;
  1451     case Bytecodes::_pop:               ppop_any(1);                break;
  1452     case Bytecodes::_pop2:              ppop_any(2);                break;
  1454     case Bytecodes::_dup:               ppdupswap(1, "11");         break;
  1455     case Bytecodes::_dup_x1:            ppdupswap(2, "121");        break;
  1456     case Bytecodes::_dup_x2:            ppdupswap(3, "1321");       break;
  1457     case Bytecodes::_dup2:              ppdupswap(2, "2121");       break;
  1458     case Bytecodes::_dup2_x1:           ppdupswap(3, "21321");      break;
  1459     case Bytecodes::_dup2_x2:           ppdupswap(4, "214321");     break;
  1460     case Bytecodes::_swap:              ppdupswap(2, "12");         break;
  1462     case Bytecodes::_iadd:
  1463     case Bytecodes::_fadd:
  1464     case Bytecodes::_isub:
  1465     case Bytecodes::_fsub:
  1466     case Bytecodes::_imul:
  1467     case Bytecodes::_fmul:
  1468     case Bytecodes::_idiv:
  1469     case Bytecodes::_fdiv:
  1470     case Bytecodes::_irem:
  1471     case Bytecodes::_frem:
  1472     case Bytecodes::_ishl:
  1473     case Bytecodes::_ishr:
  1474     case Bytecodes::_iushr:
  1475     case Bytecodes::_iand:
  1476     case Bytecodes::_ior:
  1477     case Bytecodes::_ixor:
  1478     case Bytecodes::_l2f:
  1479     case Bytecodes::_l2i:
  1480     case Bytecodes::_d2f:
  1481     case Bytecodes::_d2i:
  1482     case Bytecodes::_fcmpl:
  1483     case Bytecodes::_fcmpg:             pp(vvCTS, vCTS); break;
  1485     case Bytecodes::_ladd:
  1486     case Bytecodes::_dadd:
  1487     case Bytecodes::_lsub:
  1488     case Bytecodes::_dsub:
  1489     case Bytecodes::_lmul:
  1490     case Bytecodes::_dmul:
  1491     case Bytecodes::_ldiv:
  1492     case Bytecodes::_ddiv:
  1493     case Bytecodes::_lrem:
  1494     case Bytecodes::_drem:
  1495     case Bytecodes::_land:
  1496     case Bytecodes::_lor:
  1497     case Bytecodes::_lxor:              pp(vvvvCTS, vvCTS); break;
  1499     case Bytecodes::_ineg:
  1500     case Bytecodes::_fneg:
  1501     case Bytecodes::_i2f:
  1502     case Bytecodes::_f2i:
  1503     case Bytecodes::_i2c:
  1504     case Bytecodes::_i2s:
  1505     case Bytecodes::_i2b:               pp(vCTS, vCTS); break;
  1507     case Bytecodes::_lneg:
  1508     case Bytecodes::_dneg:
  1509     case Bytecodes::_l2d:
  1510     case Bytecodes::_d2l:               pp(vvCTS, vvCTS); break;
  1512     case Bytecodes::_lshl:
  1513     case Bytecodes::_lshr:
  1514     case Bytecodes::_lushr:             pp(vvvCTS, vvCTS); break;
  1516     case Bytecodes::_i2l:
  1517     case Bytecodes::_i2d:
  1518     case Bytecodes::_f2l:
  1519     case Bytecodes::_f2d:               pp(vCTS, vvCTS); break;
  1521     case Bytecodes::_lcmp:              pp(vvvvCTS, vCTS); break;
  1522     case Bytecodes::_dcmpl:
  1523     case Bytecodes::_dcmpg:             pp(vvvvCTS, vCTS); break;
  1525     case Bytecodes::_ifeq:
  1526     case Bytecodes::_ifne:
  1527     case Bytecodes::_iflt:
  1528     case Bytecodes::_ifge:
  1529     case Bytecodes::_ifgt:
  1530     case Bytecodes::_ifle:
  1531     case Bytecodes::_tableswitch:       ppop1(valCTS);
  1532                                         break;
  1533     case Bytecodes::_ireturn:
  1534     case Bytecodes::_freturn:           do_return_monitor_check();
  1535                                         ppop1(valCTS);
  1536                                         break;
  1537     case Bytecodes::_if_icmpeq:
  1538     case Bytecodes::_if_icmpne:
  1539     case Bytecodes::_if_icmplt:
  1540     case Bytecodes::_if_icmpge:
  1541     case Bytecodes::_if_icmpgt:
  1542     case Bytecodes::_if_icmple:         ppop(vvCTS);
  1543                                         break;
  1545     case Bytecodes::_lreturn:           do_return_monitor_check();
  1546                                         ppop(vvCTS);
  1547                                         break;
  1549     case Bytecodes::_dreturn:           do_return_monitor_check();
  1550                                         ppop(vvCTS);
  1551                                         break;
  1553     case Bytecodes::_if_acmpeq:
  1554     case Bytecodes::_if_acmpne:         ppop(rrCTS);                 break;
  1556     case Bytecodes::_jsr:               do_jsr(itr->dest());         break;
  1557     case Bytecodes::_jsr_w:             do_jsr(itr->dest_w());       break;
  1559     case Bytecodes::_getstatic:         do_field(true,  true,
  1560                                                  itr->get_index_u2_cpcache(),
  1561                                                  itr->bci()); break;
  1562     case Bytecodes::_putstatic:         do_field(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
  1563     case Bytecodes::_getfield:          do_field(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1564     case Bytecodes::_putfield:          do_field(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1566     case Bytecodes::_invokevirtual:
  1567     case Bytecodes::_invokespecial:     do_method(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1568     case Bytecodes::_invokestatic:      do_method(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1569     case Bytecodes::_invokedynamic:     do_method(true,  false, itr->get_index_u4(),         itr->bci()); break;
  1570     case Bytecodes::_invokeinterface:   do_method(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
  1571     case Bytecodes::_newarray:
  1572     case Bytecodes::_anewarray:         pp_new_ref(vCTS, itr->bci()); break;
  1573     case Bytecodes::_checkcast:         do_checkcast(); break;
  1574     case Bytecodes::_arraylength:
  1575     case Bytecodes::_instanceof:        pp(rCTS, vCTS); break;
  1576     case Bytecodes::_monitorenter:      do_monitorenter(itr->bci()); break;
  1577     case Bytecodes::_monitorexit:       do_monitorexit(itr->bci()); break;
  1579     case Bytecodes::_athrow:            // handled by do_exception_edge() BUT ...
  1580                                         // vlh(apple): do_exception_edge() does not get
  1581                                         // called if method has no exception handlers
  1582                                         if ((!_has_exceptions) && (_monitor_top > 0)) {
  1583                                           _monitor_safe = false;
  1585                                         break;
  1587     case Bytecodes::_areturn:           do_return_monitor_check();
  1588                                         ppop1(refCTS);
  1589                                         break;
  1590     case Bytecodes::_ifnull:
  1591     case Bytecodes::_ifnonnull:         ppop1(refCTS); break;
  1592     case Bytecodes::_multianewarray:    do_multianewarray(*(itr->bcp()+3), itr->bci()); break;
  1594     case Bytecodes::_wide:              fatal("Iterator should skip this bytecode"); break;
  1595     case Bytecodes::_ret:                                           break;
  1597     // Java opcodes
  1598     case Bytecodes::_lookupswitch:      ppop1(valCTS);             break;
  1600     default:
  1601          tty->print("unexpected opcode: %d\n", itr->code());
  1602          ShouldNotReachHere();
  1603     break;
  1607 void GenerateOopMap::check_type(CellTypeState expected, CellTypeState actual) {
  1608   if (!expected.equal_kind(actual)) {
  1609     verify_error("wrong type on stack (found: %c expected: %c)", actual.to_char(), expected.to_char());
  1613 void GenerateOopMap::ppstore(CellTypeState *in, int loc_no) {
  1614   while(!(*in).is_bottom()) {
  1615     CellTypeState expected =*in++;
  1616     CellTypeState actual   = pop();
  1617     check_type(expected, actual);
  1618     assert(loc_no >= 0, "sanity check");
  1619     set_var(loc_no++, actual);
  1623 void GenerateOopMap::ppload(CellTypeState *out, int loc_no) {
  1624   while(!(*out).is_bottom()) {
  1625     CellTypeState out1 = *out++;
  1626     CellTypeState vcts = get_var(loc_no);
  1627     assert(out1.can_be_reference() || out1.can_be_value(),
  1628            "can only load refs. and values.");
  1629     if (out1.is_reference()) {
  1630       assert(loc_no>=0, "sanity check");
  1631       if (!vcts.is_reference()) {
  1632         // We were asked to push a reference, but the type of the
  1633         // variable can be something else
  1634         _conflict = true;
  1635         if (vcts.can_be_uninit()) {
  1636           // It is a ref-uninit conflict (at least). If there are other
  1637           // problems, we'll get them in the next round
  1638           add_to_ref_init_set(loc_no);
  1639           vcts = out1;
  1640         } else {
  1641           // It wasn't a ref-uninit conflict. So must be a
  1642           // ref-val or ref-pc conflict. Split the variable.
  1643           record_refval_conflict(loc_no);
  1644           vcts = out1;
  1646         push(out1); // recover...
  1647       } else {
  1648         push(vcts); // preserve reference.
  1650       // Otherwise it is a conflict, but one that verification would
  1651       // have caught if illegal. In particular, it can't be a topCTS
  1652       // resulting from mergeing two difference pcCTS's since the verifier
  1653       // would have rejected any use of such a merge.
  1654     } else {
  1655       push(out1); // handle val/init conflict
  1657     loc_no++;
  1661 void GenerateOopMap::ppdupswap(int poplen, const char *out) {
  1662   CellTypeState actual[5];
  1663   assert(poplen < 5, "this must be less than length of actual vector");
  1665   // pop all arguments
  1666   for(int i = 0; i < poplen; i++) actual[i] = pop();
  1668   // put them back
  1669   char push_ch = *out++;
  1670   while (push_ch != '\0') {
  1671     int idx = push_ch - '1';
  1672     assert(idx >= 0 && idx < poplen, "wrong arguments");
  1673     push(actual[idx]);
  1674     push_ch = *out++;
  1678 void GenerateOopMap::ppop1(CellTypeState out) {
  1679   CellTypeState actual = pop();
  1680   check_type(out, actual);
  1683 void GenerateOopMap::ppop(CellTypeState *out) {
  1684   while (!(*out).is_bottom()) {
  1685     ppop1(*out++);
  1689 void GenerateOopMap::ppush1(CellTypeState in) {
  1690   assert(in.is_reference() | in.is_value(), "sanity check");
  1691   push(in);
  1694 void GenerateOopMap::ppush(CellTypeState *in) {
  1695   while (!(*in).is_bottom()) {
  1696     ppush1(*in++);
  1700 void GenerateOopMap::pp(CellTypeState *in, CellTypeState *out) {
  1701   ppop(in);
  1702   ppush(out);
  1705 void GenerateOopMap::pp_new_ref(CellTypeState *in, int bci) {
  1706   ppop(in);
  1707   ppush1(CellTypeState::make_line_ref(bci));
  1710 void GenerateOopMap::ppop_any(int poplen) {
  1711   if (_stack_top >= poplen) {
  1712     _stack_top -= poplen;
  1713   } else {
  1714     verify_error("stack underflow");
  1718 // Replace all occurences of the state 'match' with the state 'replace'
  1719 // in our current state vector.
  1720 void GenerateOopMap::replace_all_CTS_matches(CellTypeState match,
  1721                                              CellTypeState replace) {
  1722   int i;
  1723   int len = _max_locals + _stack_top;
  1724   bool change = false;
  1726   for (i = len - 1; i >= 0; i--) {
  1727     if (match.equal(_state[i])) {
  1728       _state[i] = replace;
  1732   if (_monitor_top > 0) {
  1733     int base = _max_locals + _max_stack;
  1734     len = base + _monitor_top;
  1735     for (i = len - 1; i >= base; i--) {
  1736       if (match.equal(_state[i])) {
  1737         _state[i] = replace;
  1743 void GenerateOopMap::do_checkcast() {
  1744   CellTypeState actual = pop();
  1745   check_type(refCTS, actual);
  1746   push(actual);
  1749 void GenerateOopMap::do_monitorenter(int bci) {
  1750   CellTypeState actual = pop();
  1751   if (_monitor_top == bad_monitors) {
  1752     return;
  1755   // Bail out when we get repeated locks on an identical monitor.  This case
  1756   // isn't too hard to handle and can be made to work if supporting nested
  1757   // redundant synchronized statements becomes a priority.
  1758   //
  1759   // See also "Note" in do_monitorexit(), below.
  1760   if (actual.is_lock_reference()) {
  1761     _monitor_top = bad_monitors;
  1762     _monitor_safe = false;
  1764     if (TraceMonitorMismatch) {
  1765       report_monitor_mismatch("nested redundant lock -- bailout...");
  1767     return;
  1770   CellTypeState lock = CellTypeState::make_lock_ref(bci);
  1771   check_type(refCTS, actual);
  1772   if (!actual.is_info_top()) {
  1773     replace_all_CTS_matches(actual, lock);
  1774     monitor_push(lock);
  1778 void GenerateOopMap::do_monitorexit(int bci) {
  1779   CellTypeState actual = pop();
  1780   if (_monitor_top == bad_monitors) {
  1781     return;
  1783   check_type(refCTS, actual);
  1784   CellTypeState expected = monitor_pop();
  1785   if (!actual.is_lock_reference() || !expected.equal(actual)) {
  1786     // The monitor we are exiting is not verifiably the one
  1787     // on the top of our monitor stack.  This causes a monitor
  1788     // mismatch.
  1789     _monitor_top = bad_monitors;
  1790     _monitor_safe = false;
  1792     // We need to mark this basic block as changed so that
  1793     // this monitorexit will be visited again.  We need to
  1794     // do this to ensure that we have accounted for the
  1795     // possibility that this bytecode will throw an
  1796     // exception.
  1797     BasicBlock* bb = get_basic_block_containing(bci);
  1798     bb->set_changed(true);
  1799     bb->_monitor_top = bad_monitors;
  1801     if (TraceMonitorMismatch) {
  1802       report_monitor_mismatch("improper monitor pair");
  1804   } else {
  1805     // This code is a fix for the case where we have repeated
  1806     // locking of the same object in straightline code.  We clear
  1807     // out the lock when it is popped from the monitor stack
  1808     // and replace it with an unobtrusive reference value that can
  1809     // be locked again.
  1810     //
  1811     // Note: when generateOopMap is fixed to properly handle repeated,
  1812     //       nested, redundant locks on the same object, then this
  1813     //       fix will need to be removed at that time.
  1814     replace_all_CTS_matches(actual, CellTypeState::make_line_ref(bci));
  1818 void GenerateOopMap::do_return_monitor_check() {
  1819   if (_monitor_top > 0) {
  1820     // The monitor stack must be empty when we leave the method
  1821     // for the monitors to be properly matched.
  1822     _monitor_safe = false;
  1824     // Since there are no successors to the *return bytecode, it
  1825     // isn't necessary to set _monitor_top to bad_monitors.
  1827     if (TraceMonitorMismatch) {
  1828       report_monitor_mismatch("non-empty monitor stack at return");
  1833 void GenerateOopMap::do_jsr(int targ_bci) {
  1834   push(CellTypeState::make_addr(targ_bci));
  1839 void GenerateOopMap::do_ldc(int bci) {
  1840   Bytecode_loadconstant ldc(method(), bci);
  1841   constantPoolOop cp  = method()->constants();
  1842   BasicType       bt  = ldc.result_type();
  1843   CellTypeState   cts = (bt == T_OBJECT) ? CellTypeState::make_line_ref(bci) : valCTS;
  1844   // Make sure bt==T_OBJECT is the same as old code (is_pointer_entry).
  1845   // Note that CONSTANT_MethodHandle entries are u2 index pairs, not pointer-entries,
  1846   // and they are processed by _fast_aldc and the CP cache.
  1847   assert((ldc.has_cache_index() || cp->is_object_entry(ldc.pool_index()))
  1848          ? (bt == T_OBJECT) : true, "expected object type");
  1849   ppush1(cts);
  1852 void GenerateOopMap::do_multianewarray(int dims, int bci) {
  1853   assert(dims >= 1, "sanity check");
  1854   for(int i = dims -1; i >=0; i--) {
  1855     ppop1(valCTS);
  1857   ppush1(CellTypeState::make_line_ref(bci));
  1860 void GenerateOopMap::do_astore(int idx) {
  1861   CellTypeState r_or_p = pop();
  1862   if (!r_or_p.is_address() && !r_or_p.is_reference()) {
  1863     // We actually expected ref or pc, but we only report that we expected a ref. It does not
  1864     // really matter (at least for now)
  1865     verify_error("wrong type on stack (found: %c, expected: {pr})", r_or_p.to_char());
  1866     return;
  1868   set_var(idx, r_or_p);
  1871 // Copies bottom/zero terminated CTS string from "src" into "dst".
  1872 //   Does NOT terminate with a bottom. Returns the number of cells copied.
  1873 int GenerateOopMap::copy_cts(CellTypeState *dst, CellTypeState *src) {
  1874   int idx = 0;
  1875   while (!src[idx].is_bottom()) {
  1876     dst[idx] = src[idx];
  1877     idx++;
  1879   return idx;
  1882 void GenerateOopMap::do_field(int is_get, int is_static, int idx, int bci) {
  1883   // Dig up signature for field in constant pool
  1884   constantPoolOop cp     = method()->constants();
  1885   int nameAndTypeIdx     = cp->name_and_type_ref_index_at(idx);
  1886   int signatureIdx       = cp->signature_ref_index_at(nameAndTypeIdx);
  1887   Symbol* signature      = cp->symbol_at(signatureIdx);
  1889   // Parse signature (espcially simple for fields)
  1890   assert(signature->utf8_length() > 0, "field signatures cannot have zero length");
  1891   // The signature is UFT8 encoded, but the first char is always ASCII for signatures.
  1892   char sigch = (char)*(signature->base());
  1893   CellTypeState temp[4];
  1894   CellTypeState *eff  = sigchar_to_effect(sigch, bci, temp);
  1896   CellTypeState in[4];
  1897   CellTypeState *out;
  1898   int i =  0;
  1900   if (is_get) {
  1901     out = eff;
  1902   } else {
  1903     out = epsilonCTS;
  1904     i   = copy_cts(in, eff);
  1906   if (!is_static) in[i++] = CellTypeState::ref;
  1907   in[i] = CellTypeState::bottom;
  1908   assert(i<=3, "sanity check");
  1909   pp(in, out);
  1912 void GenerateOopMap::do_method(int is_static, int is_interface, int idx, int bci) {
  1913  // Dig up signature for field in constant pool
  1914   constantPoolOop cp  = _method->constants();
  1915   Symbol* signature   = cp->signature_ref_at(idx);
  1917   // Parse method signature
  1918   CellTypeState out[4];
  1919   CellTypeState in[MAXARGSIZE+1];   // Includes result
  1920   ComputeCallStack cse(signature);
  1922   // Compute return type
  1923   int res_length=  cse.compute_for_returntype(out);
  1925   // Temporary hack.
  1926   if (out[0].equal(CellTypeState::ref) && out[1].equal(CellTypeState::bottom)) {
  1927     out[0] = CellTypeState::make_line_ref(bci);
  1930   assert(res_length<=4, "max value should be vv");
  1932   // Compute arguments
  1933   int arg_length = cse.compute_for_parameters(is_static != 0, in);
  1934   assert(arg_length<=MAXARGSIZE, "too many locals");
  1936   // Pop arguments
  1937   for (int i = arg_length - 1; i >= 0; i--) ppop1(in[i]);// Do args in reverse order.
  1939   // Report results
  1940   if (_report_result_for_send == true) {
  1941      fill_stackmap_for_opcodes(_itr_send, vars(), stack(), _stack_top);
  1942      _report_result_for_send = false;
  1945   // Push return address
  1946   ppush(out);
  1949 // This is used to parse the signature for fields, since they are very simple...
  1950 CellTypeState *GenerateOopMap::sigchar_to_effect(char sigch, int bci, CellTypeState *out) {
  1951   // Object and array
  1952   if (sigch=='L' || sigch=='[') {
  1953     out[0] = CellTypeState::make_line_ref(bci);
  1954     out[1] = CellTypeState::bottom;
  1955     return out;
  1957   if (sigch == 'J' || sigch == 'D' ) return vvCTS;  // Long and Double
  1958   if (sigch == 'V' ) return epsilonCTS;             // Void
  1959   return vCTS;                                      // Otherwise
  1962 long GenerateOopMap::_total_byte_count = 0;
  1963 elapsedTimer GenerateOopMap::_total_oopmap_time;
  1965 // This function assumes "bcs" is at a "ret" instruction and that the vars
  1966 // state is valid for that instruction. Furthermore, the ret instruction
  1967 // must be the last instruction in "bb" (we store information about the
  1968 // "ret" in "bb").
  1969 void GenerateOopMap::ret_jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int varNo, int *data) {
  1970   CellTypeState ra = vars()[varNo];
  1971   if (!ra.is_good_address()) {
  1972     verify_error("ret returns from two jsr subroutines?");
  1973     return;
  1975   int target = ra.get_info();
  1977   RetTableEntry* rtEnt = _rt.find_jsrs_for_target(target);
  1978   int bci = bcs->bci();
  1979   for (int i = 0; i < rtEnt->nof_jsrs(); i++) {
  1980     int target_bci = rtEnt->jsrs(i);
  1981     // Make sure a jrtRet does not set the changed bit for dead basicblock.
  1982     BasicBlock* jsr_bb    = get_basic_block_containing(target_bci - 1);
  1983     debug_only(BasicBlock* target_bb = &jsr_bb[1];)
  1984     assert(target_bb  == get_basic_block_at(target_bci), "wrong calc. of successor basicblock");
  1985     bool alive = jsr_bb->is_alive();
  1986     if (TraceNewOopMapGeneration) {
  1987       tty->print("pc = %d, ret -> %d alive: %s\n", bci, target_bci, alive ? "true" : "false");
  1989     if (alive) jmpFct(this, target_bci, data);
  1993 //
  1994 // Debug method
  1995 //
  1996 char* GenerateOopMap::state_vec_to_string(CellTypeState* vec, int len) {
  1997 #ifdef ASSERT
  1998   int checklen = MAX3(_max_locals, _max_stack, _max_monitors) + 1;
  1999   assert(len < checklen, "state_vec_buf overflow");
  2000 #endif
  2001   for (int i = 0; i < len; i++) _state_vec_buf[i] = vec[i].to_char();
  2002   _state_vec_buf[len] = 0;
  2003   return _state_vec_buf;
  2006 void GenerateOopMap::print_time() {
  2007   tty->print_cr ("Accumulated oopmap times:");
  2008   tty->print_cr ("---------------------------");
  2009   tty->print_cr ("  Total : %3.3f sec.", GenerateOopMap::_total_oopmap_time.seconds());
  2010   tty->print_cr ("  (%3.0f bytecodes per sec) ",
  2011   GenerateOopMap::_total_byte_count / GenerateOopMap::_total_oopmap_time.seconds());
  2014 //
  2015 //  ============ Main Entry Point ===========
  2016 //
  2017 GenerateOopMap::GenerateOopMap(methodHandle method) {
  2018   // We have to initialize all variables here, that can be queried directly
  2019   _method = method;
  2020   _max_locals=0;
  2021   _init_vars = NULL;
  2023 #ifndef PRODUCT
  2024   // If we are doing a detailed trace, include the regular trace information.
  2025   if (TraceNewOopMapGenerationDetailed) {
  2026     TraceNewOopMapGeneration = true;
  2028 #endif
  2031 void GenerateOopMap::compute_map(TRAPS) {
  2032 #ifndef PRODUCT
  2033   if (TimeOopMap2) {
  2034     method()->print_short_name(tty);
  2035     tty->print("  ");
  2037   if (TimeOopMap) {
  2038     _total_byte_count += method()->code_size();
  2040 #endif
  2041   TraceTime t_single("oopmap time", TimeOopMap2);
  2042   TraceTime t_all(NULL, &_total_oopmap_time, TimeOopMap);
  2044   // Initialize values
  2045   _got_error      = false;
  2046   _conflict       = false;
  2047   _max_locals     = method()->max_locals();
  2048   _max_stack      = method()->max_stack();
  2049   _has_exceptions = (method()->exception_table()->length() > 0);
  2050   _nof_refval_conflicts = 0;
  2051   _init_vars      = new GrowableArray<intptr_t>(5);  // There are seldom more than 5 init_vars
  2052   _report_result  = false;
  2053   _report_result_for_send = false;
  2054   _new_var_map    = NULL;
  2055   _ret_adr_tos    = new GrowableArray<intptr_t>(5);  // 5 seems like a good number;
  2056   _did_rewriting  = false;
  2057   _did_relocation = false;
  2059   if (TraceNewOopMapGeneration) {
  2060     tty->print("Method name: %s\n", method()->name()->as_C_string());
  2061     if (Verbose) {
  2062       _method->print_codes();
  2063       tty->print_cr("Exception table:");
  2064       typeArrayOop excps = method()->exception_table();
  2065       for(int i = 0; i < excps->length(); i += 4) {
  2066         tty->print_cr("[%d - %d] -> %d", excps->int_at(i + 0), excps->int_at(i + 1), excps->int_at(i + 2));
  2071   // if no code - do nothing
  2072   // compiler needs info
  2073   if (method()->code_size() == 0 || _max_locals + method()->max_stack() == 0) {
  2074     fill_stackmap_prolog(0);
  2075     fill_stackmap_epilog();
  2076     return;
  2078   // Step 1: Compute all jump targets and their return value
  2079   if (!_got_error)
  2080     _rt.compute_ret_table(_method);
  2082   // Step 2: Find all basic blocks and count GC points
  2083   if (!_got_error)
  2084     mark_bbheaders_and_count_gc_points();
  2086   // Step 3: Calculate stack maps
  2087   if (!_got_error)
  2088     do_interpretation();
  2090   // Step 4:Return results
  2091   if (!_got_error && report_results())
  2092      report_result();
  2094   if (_got_error) {
  2095     THROW_HANDLE(_exception);
  2099 // Error handling methods
  2100 // These methods create an exception for the current thread which is thrown
  2101 // at the bottom of the call stack, when it returns to compute_map().  The
  2102 // _got_error flag controls execution.  NOT TODO: The VM exception propagation
  2103 // mechanism using TRAPS/CHECKs could be used here instead but it would need
  2104 // to be added as a parameter to every function and checked for every call.
  2105 // The tons of extra code it would generate didn't seem worth the change.
  2106 //
  2107 void GenerateOopMap::error_work(const char *format, va_list ap) {
  2108   _got_error = true;
  2109   char msg_buffer[512];
  2110   vsnprintf(msg_buffer, sizeof(msg_buffer), format, ap);
  2111   // Append method name
  2112   char msg_buffer2[512];
  2113   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg_buffer, method()->name()->as_C_string());
  2114   _exception = Exceptions::new_exception(Thread::current(),
  2115                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
  2118 void GenerateOopMap::report_error(const char *format, ...) {
  2119   va_list ap;
  2120   va_start(ap, format);
  2121   error_work(format, ap);
  2124 void GenerateOopMap::verify_error(const char *format, ...) {
  2125   // We do not distinguish between different types of errors for verification
  2126   // errors.  Let the verifier give a better message.
  2127   const char *msg = "Illegal class file encountered. Try running with -Xverify:all";
  2128   _got_error = true;
  2129   // Append method name
  2130   char msg_buffer2[512];
  2131   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg,
  2132                method()->name()->as_C_string());
  2133   _exception = Exceptions::new_exception(Thread::current(),
  2134                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
  2137 //
  2138 // Report result opcodes
  2139 //
  2140 void GenerateOopMap::report_result() {
  2142   if (TraceNewOopMapGeneration) tty->print_cr("Report result pass");
  2144   // We now want to report the result of the parse
  2145   _report_result = true;
  2147   // Prolog code
  2148   fill_stackmap_prolog(_gc_points);
  2150    // Mark everything changed, then do one interpretation pass.
  2151   for (int i = 0; i<_bb_count; i++) {
  2152     if (_basic_blocks[i].is_reachable()) {
  2153       _basic_blocks[i].set_changed(true);
  2154       interp_bb(&_basic_blocks[i]);
  2158   // Note: Since we are skipping dead-code when we are reporting results, then
  2159   // the no. of encountered gc-points might be fewer than the previously number
  2160   // we have counted. (dead-code is a pain - it should be removed before we get here)
  2161   fill_stackmap_epilog();
  2163   // Report initvars
  2164   fill_init_vars(_init_vars);
  2166   _report_result = false;
  2169 void GenerateOopMap::result_for_basicblock(int bci) {
  2170  if (TraceNewOopMapGeneration) tty->print_cr("Report result pass for basicblock");
  2172   // We now want to report the result of the parse
  2173   _report_result = true;
  2175   // Find basicblock and report results
  2176   BasicBlock* bb = get_basic_block_containing(bci);
  2177   assert(bb->is_reachable(), "getting result from unreachable basicblock");
  2178   bb->set_changed(true);
  2179   interp_bb(bb);
  2182 //
  2183 // Conflict handling code
  2184 //
  2186 void GenerateOopMap::record_refval_conflict(int varNo) {
  2187   assert(varNo>=0 && varNo< _max_locals, "index out of range");
  2189   if (TraceOopMapRewrites) {
  2190      tty->print("### Conflict detected (local no: %d)\n", varNo);
  2193   if (!_new_var_map) {
  2194     _new_var_map = NEW_RESOURCE_ARRAY(int, _max_locals);
  2195     for (int k = 0; k < _max_locals; k++)  _new_var_map[k] = k;
  2198   if ( _new_var_map[varNo] == varNo) {
  2199     // Check if max. number of locals has been reached
  2200     if (_max_locals + _nof_refval_conflicts >= MAX_LOCAL_VARS) {
  2201       report_error("Rewriting exceeded local variable limit");
  2202       return;
  2204     _new_var_map[varNo] = _max_locals + _nof_refval_conflicts;
  2205     _nof_refval_conflicts++;
  2209 void GenerateOopMap::rewrite_refval_conflicts()
  2211   // We can get here two ways: Either a rewrite conflict was detected, or
  2212   // an uninitialize reference was detected. In the second case, we do not
  2213   // do any rewriting, we just want to recompute the reference set with the
  2214   // new information
  2216   int nof_conflicts = 0;              // Used for debugging only
  2218   if ( _nof_refval_conflicts == 0 )
  2219      return;
  2221   // Check if rewrites are allowed in this parse.
  2222   if (!allow_rewrites() && !IgnoreRewrites) {
  2223     fatal("Rewriting method not allowed at this stage");
  2227   // This following flag is to tempoary supress rewrites. The locals that might conflict will
  2228   // all be set to contain values. This is UNSAFE - however, until the rewriting has been completely
  2229   // tested it is nice to have.
  2230   if (IgnoreRewrites) {
  2231     if (Verbose) {
  2232        tty->print("rewrites suppressed for local no. ");
  2233        for (int l = 0; l < _max_locals; l++) {
  2234          if (_new_var_map[l] != l) {
  2235            tty->print("%d ", l);
  2236            vars()[l] = CellTypeState::value;
  2239        tty->cr();
  2242     // That was that...
  2243     _new_var_map = NULL;
  2244     _nof_refval_conflicts = 0;
  2245     _conflict = false;
  2247     return;
  2250   // Tracing flag
  2251   _did_rewriting = true;
  2253   if (TraceOopMapRewrites) {
  2254     tty->print_cr("ref/value conflict for method %s - bytecodes are getting rewritten", method()->name()->as_C_string());
  2255     method()->print();
  2256     method()->print_codes();
  2259   assert(_new_var_map!=NULL, "nothing to rewrite");
  2260   assert(_conflict==true, "We should not be here");
  2262   compute_ret_adr_at_TOS();
  2263   if (!_got_error) {
  2264     for (int k = 0; k < _max_locals && !_got_error; k++) {
  2265       if (_new_var_map[k] != k) {
  2266         if (TraceOopMapRewrites) {
  2267           tty->print_cr("Rewriting: %d -> %d", k, _new_var_map[k]);
  2269         rewrite_refval_conflict(k, _new_var_map[k]);
  2270         if (_got_error) return;
  2271         nof_conflicts++;
  2276   assert(nof_conflicts == _nof_refval_conflicts, "sanity check");
  2278   // Adjust the number of locals
  2279   method()->set_max_locals(_max_locals+_nof_refval_conflicts);
  2280   _max_locals += _nof_refval_conflicts;
  2282   // That was that...
  2283   _new_var_map = NULL;
  2284   _nof_refval_conflicts = 0;
  2287 void GenerateOopMap::rewrite_refval_conflict(int from, int to) {
  2288   bool startOver;
  2289   do {
  2290     // Make sure that the BytecodeStream is constructed in the loop, since
  2291     // during rewriting a new method oop is going to be used, and the next time
  2292     // around we want to use that.
  2293     BytecodeStream bcs(_method);
  2294     startOver = false;
  2296     while( bcs.next() >=0 && !startOver && !_got_error) {
  2297       startOver = rewrite_refval_conflict_inst(&bcs, from, to);
  2299   } while (startOver && !_got_error);
  2302 /* If the current instruction is one that uses local variable "from"
  2303    in a ref way, change it to use "to". There's a subtle reason why we
  2304    renumber the ref uses and not the non-ref uses: non-ref uses may be
  2305    2 slots wide (double, long) which would necessitate keeping track of
  2306    whether we should add one or two variables to the method. If the change
  2307    affected the width of some instruction, returns "TRUE"; otherwise, returns "FALSE".
  2308    Another reason for moving ref's value is for solving (addr, ref) conflicts, which
  2309    both uses aload/astore methods.
  2310 */
  2311 bool GenerateOopMap::rewrite_refval_conflict_inst(BytecodeStream *itr, int from, int to) {
  2312   Bytecodes::Code bc = itr->code();
  2313   int index;
  2314   int bci = itr->bci();
  2316   if (is_aload(itr, &index) && index == from) {
  2317     if (TraceOopMapRewrites) {
  2318       tty->print_cr("Rewriting aload at bci: %d", bci);
  2320     return rewrite_load_or_store(itr, Bytecodes::_aload, Bytecodes::_aload_0, to);
  2323   if (is_astore(itr, &index) && index == from) {
  2324     if (!stack_top_holds_ret_addr(bci)) {
  2325       if (TraceOopMapRewrites) {
  2326         tty->print_cr("Rewriting astore at bci: %d", bci);
  2328       return rewrite_load_or_store(itr, Bytecodes::_astore, Bytecodes::_astore_0, to);
  2329     } else {
  2330       if (TraceOopMapRewrites) {
  2331         tty->print_cr("Supress rewriting of astore at bci: %d", bci);
  2336   return false;
  2339 // The argument to this method is:
  2340 // bc : Current bytecode
  2341 // bcN : either _aload or _astore
  2342 // bc0 : either _aload_0 or _astore_0
  2343 bool GenerateOopMap::rewrite_load_or_store(BytecodeStream *bcs, Bytecodes::Code bcN, Bytecodes::Code bc0, unsigned int varNo) {
  2344   assert(bcN == Bytecodes::_astore   || bcN == Bytecodes::_aload,   "wrong argument (bcN)");
  2345   assert(bc0 == Bytecodes::_astore_0 || bc0 == Bytecodes::_aload_0, "wrong argument (bc0)");
  2346   int ilen = Bytecodes::length_at(_method(), bcs->bcp());
  2347   int newIlen;
  2349   if (ilen == 4) {
  2350     // Original instruction was wide; keep it wide for simplicity
  2351     newIlen = 4;
  2352   } else if (varNo < 4)
  2353      newIlen = 1;
  2354   else if (varNo >= 256)
  2355      newIlen = 4;
  2356   else
  2357      newIlen = 2;
  2359   // If we need to relocate in order to patch the byte, we
  2360   // do the patching in a temp. buffer, that is passed to the reloc.
  2361   // The patching of the bytecode stream is then done by the Relocator.
  2362   // This is neccesary, since relocating the instruction at a certain bci, might
  2363   // also relocate that instruction, e.g., if a _goto before it gets widen to a _goto_w.
  2364   // Hence, we do not know which bci to patch after relocation.
  2366   assert(newIlen <= 4, "sanity check");
  2367   u_char inst_buffer[4]; // Max. instruction size is 4.
  2368   address bcp;
  2370   if (newIlen != ilen) {
  2371     // Relocation needed do patching in temp. buffer
  2372     bcp = (address)inst_buffer;
  2373   } else {
  2374     bcp = _method->bcp_from(bcs->bci());
  2377   // Patch either directly in methodOop or in temp. buffer
  2378   if (newIlen == 1) {
  2379     assert(varNo < 4, "varNo too large");
  2380     *bcp = bc0 + varNo;
  2381   } else if (newIlen == 2) {
  2382     assert(varNo < 256, "2-byte index needed!");
  2383     *(bcp + 0) = bcN;
  2384     *(bcp + 1) = varNo;
  2385   } else {
  2386     assert(newIlen == 4, "Wrong instruction length");
  2387     *(bcp + 0) = Bytecodes::_wide;
  2388     *(bcp + 1) = bcN;
  2389     Bytes::put_Java_u2(bcp+2, varNo);
  2392   if (newIlen != ilen) {
  2393     expand_current_instr(bcs->bci(), ilen, newIlen, inst_buffer);
  2397   return (newIlen != ilen);
  2400 class RelocCallback : public RelocatorListener {
  2401  private:
  2402   GenerateOopMap* _gom;
  2403  public:
  2404    RelocCallback(GenerateOopMap* gom) { _gom = gom; };
  2406   // Callback method
  2407   virtual void relocated(int bci, int delta, int new_code_length) {
  2408     _gom->update_basic_blocks  (bci, delta, new_code_length);
  2409     _gom->update_ret_adr_at_TOS(bci, delta);
  2410     _gom->_rt.update_ret_table (bci, delta);
  2412 };
  2414 // Returns true if expanding was succesful. Otherwise, reports an error and
  2415 // returns false.
  2416 void GenerateOopMap::expand_current_instr(int bci, int ilen, int newIlen, u_char inst_buffer[]) {
  2417   Thread *THREAD = Thread::current();  // Could really have TRAPS argument.
  2418   RelocCallback rcb(this);
  2419   Relocator rc(_method, &rcb);
  2420   methodHandle m= rc.insert_space_at(bci, newIlen, inst_buffer, THREAD);
  2421   if (m.is_null() || HAS_PENDING_EXCEPTION) {
  2422     report_error("could not rewrite method - exception occurred or bytecode buffer overflow");
  2423     return;
  2426   // Relocator returns a new method oop.
  2427   _did_relocation = true;
  2428   _method = m;
  2432 bool GenerateOopMap::is_astore(BytecodeStream *itr, int *index) {
  2433   Bytecodes::Code bc = itr->code();
  2434   switch(bc) {
  2435     case Bytecodes::_astore_0:
  2436     case Bytecodes::_astore_1:
  2437     case Bytecodes::_astore_2:
  2438     case Bytecodes::_astore_3:
  2439       *index = bc - Bytecodes::_astore_0;
  2440       return true;
  2441     case Bytecodes::_astore:
  2442       *index = itr->get_index();
  2443       return true;
  2445   return false;
  2448 bool GenerateOopMap::is_aload(BytecodeStream *itr, int *index) {
  2449   Bytecodes::Code bc = itr->code();
  2450   switch(bc) {
  2451     case Bytecodes::_aload_0:
  2452     case Bytecodes::_aload_1:
  2453     case Bytecodes::_aload_2:
  2454     case Bytecodes::_aload_3:
  2455       *index = bc - Bytecodes::_aload_0;
  2456       return true;
  2458     case Bytecodes::_aload:
  2459       *index = itr->get_index();
  2460       return true;
  2462   return false;
  2466 // Return true iff the top of the operand stack holds a return address at
  2467 // the current instruction
  2468 bool GenerateOopMap::stack_top_holds_ret_addr(int bci) {
  2469   for(int i = 0; i < _ret_adr_tos->length(); i++) {
  2470     if (_ret_adr_tos->at(i) == bci)
  2471       return true;
  2474   return false;
  2477 void GenerateOopMap::compute_ret_adr_at_TOS() {
  2478   assert(_ret_adr_tos != NULL, "must be initialized");
  2479   _ret_adr_tos->clear();
  2481   for (int i = 0; i < bb_count(); i++) {
  2482     BasicBlock* bb = &_basic_blocks[i];
  2484     // Make sure to only check basicblocks that are reachable
  2485     if (bb->is_reachable()) {
  2487       // For each Basic block we check all instructions
  2488       BytecodeStream bcs(_method);
  2489       bcs.set_interval(bb->_bci, next_bb_start_pc(bb));
  2491       restore_state(bb);
  2493       while (bcs.next()>=0 && !_got_error) {
  2494         // TDT: should this be is_good_address() ?
  2495         if (_stack_top > 0 && stack()[_stack_top-1].is_address()) {
  2496           _ret_adr_tos->append(bcs.bci());
  2497           if (TraceNewOopMapGeneration) {
  2498             tty->print_cr("Ret_adr TOS at bci: %d", bcs.bci());
  2501         interp1(&bcs);
  2507 void GenerateOopMap::update_ret_adr_at_TOS(int bci, int delta) {
  2508   for(int i = 0; i < _ret_adr_tos->length(); i++) {
  2509     int v = _ret_adr_tos->at(i);
  2510     if (v > bci)  _ret_adr_tos->at_put(i, v + delta);
  2514 // ===================================================================
  2516 #ifndef PRODUCT
  2517 int ResolveOopMapConflicts::_nof_invocations  = 0;
  2518 int ResolveOopMapConflicts::_nof_rewrites     = 0;
  2519 int ResolveOopMapConflicts::_nof_relocations  = 0;
  2520 #endif
  2522 methodHandle ResolveOopMapConflicts::do_potential_rewrite(TRAPS) {
  2523   compute_map(CHECK_(methodHandle()));
  2525 #ifndef PRODUCT
  2526   // Tracking and statistics
  2527   if (PrintRewrites) {
  2528     _nof_invocations++;
  2529     if (did_rewriting()) {
  2530       _nof_rewrites++;
  2531       if (did_relocation()) _nof_relocations++;
  2532       tty->print("Method was rewritten %s: ", (did_relocation()) ? "and relocated" : "");
  2533       method()->print_value(); tty->cr();
  2534       tty->print_cr("Cand.: %d rewrts: %d (%d%%) reloc.: %d (%d%%)",
  2535           _nof_invocations,
  2536           _nof_rewrites,    (_nof_rewrites    * 100) / _nof_invocations,
  2537           _nof_relocations, (_nof_relocations * 100) / _nof_invocations);
  2540 #endif
  2541   return methodHandle(THREAD, method());

mercurial