src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Tue, 26 Jan 2010 16:52:29 -0800

author
ysr
date
Tue, 26 Jan 2010 16:52:29 -0800
changeset 1629
34fb2662f6c2
parent 1546
44f61c24ddab
child 1791
56507bcd639e
permissions
-rw-r--r--

6920090: G1: Disable ReduceInitialCardMarks at least until 6920109 is fixed
Summary: G1 now answers "no" to the query can_elide_initializing_store_barrier() in the product build. A debug flag allows alternate behaviour in debug builds.
Reviewed-by: iveresov, tonyp

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A G1CollectorPolicy makes policy decisions that determine the
    26 // characteristics of the collector.  Examples include:
    27 //   * choice of collection set.
    28 //   * when to collect.
    30 class HeapRegion;
    31 class CollectionSetChooser;
    33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    34 // over and over again and introducing subtle problems through small typos and
    35 // cutting and pasting mistakes. The macros below introduces a number
    36 // sequnce into the following two classes and the methods that access it.
    38 #define define_num_seq(name)                                                  \
    39 private:                                                                      \
    40   NumberSeq _all_##name##_times_ms;                                           \
    41 public:                                                                       \
    42   void record_##name##_time_ms(double ms) {                                   \
    43     _all_##name##_times_ms.add(ms);                                           \
    44   }                                                                           \
    45   NumberSeq* get_##name##_seq() {                                             \
    46     return &_all_##name##_times_ms;                                           \
    47   }
    49 class MainBodySummary;
    51 class PauseSummary: public CHeapObj {
    52   define_num_seq(total)
    53     define_num_seq(other)
    55 public:
    56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    57 };
    59 class MainBodySummary: public CHeapObj {
    60   define_num_seq(satb_drain) // optional
    61   define_num_seq(parallel) // parallel only
    62     define_num_seq(ext_root_scan)
    63     define_num_seq(mark_stack_scan)
    64     define_num_seq(scan_only)
    65     define_num_seq(update_rs)
    66     define_num_seq(scan_rs)
    67     define_num_seq(scan_new_refs) // Only for temp use; added to
    68                                   // in parallel case.
    69     define_num_seq(obj_copy)
    70     define_num_seq(termination) // parallel only
    71     define_num_seq(parallel_other) // parallel only
    72   define_num_seq(mark_closure)
    73   define_num_seq(clear_ct)  // parallel only
    74 };
    76 class Summary: public PauseSummary,
    77                public MainBodySummary {
    78 public:
    79   virtual MainBodySummary*    main_body_summary()    { return this; }
    80 };
    82 class AbandonedSummary: public PauseSummary {
    83 };
    85 class G1CollectorPolicy: public CollectorPolicy {
    86 protected:
    87   // The number of pauses during the execution.
    88   long _n_pauses;
    90   // either equal to the number of parallel threads, if ParallelGCThreads
    91   // has been set, or 1 otherwise
    92   int _parallel_gc_threads;
    94   enum SomePrivateConstants {
    95     NumPrevPausesForHeuristics = 10
    96   };
    98   G1MMUTracker* _mmu_tracker;
   100   void initialize_flags();
   102   void initialize_all() {
   103     initialize_flags();
   104     initialize_size_info();
   105     initialize_perm_generation(PermGen::MarkSweepCompact);
   106   }
   108   virtual size_t default_init_heap_size() {
   109     // Pick some reasonable default.
   110     return 8*M;
   111   }
   113   double _cur_collection_start_sec;
   114   size_t _cur_collection_pause_used_at_start_bytes;
   115   size_t _cur_collection_pause_used_regions_at_start;
   116   size_t _prev_collection_pause_used_at_end_bytes;
   117   double _cur_collection_par_time_ms;
   118   double _cur_satb_drain_time_ms;
   119   double _cur_clear_ct_time_ms;
   120   bool   _satb_drain_time_set;
   122 #ifndef PRODUCT
   123   // Card Table Count Cache stats
   124   double _min_clear_cc_time_ms;         // min
   125   double _max_clear_cc_time_ms;         // max
   126   double _cur_clear_cc_time_ms;         // clearing time during current pause
   127   double _cum_clear_cc_time_ms;         // cummulative clearing time
   128   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   129 #endif
   131   double _cur_CH_strong_roots_end_sec;
   132   double _cur_CH_strong_roots_dur_ms;
   133   double _cur_G1_strong_roots_end_sec;
   134   double _cur_G1_strong_roots_dur_ms;
   136   // Statistics for recent GC pauses.  See below for how indexed.
   137   TruncatedSeq* _recent_CH_strong_roots_times_ms;
   138   TruncatedSeq* _recent_G1_strong_roots_times_ms;
   139   TruncatedSeq* _recent_evac_times_ms;
   140   // These exclude marking times.
   141   TruncatedSeq* _recent_pause_times_ms;
   142   TruncatedSeq* _recent_gc_times_ms;
   144   TruncatedSeq* _recent_CS_bytes_used_before;
   145   TruncatedSeq* _recent_CS_bytes_surviving;
   147   TruncatedSeq* _recent_rs_sizes;
   149   TruncatedSeq* _concurrent_mark_init_times_ms;
   150   TruncatedSeq* _concurrent_mark_remark_times_ms;
   151   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   153   Summary*           _summary;
   154   AbandonedSummary*  _abandoned_summary;
   156   NumberSeq* _all_pause_times_ms;
   157   NumberSeq* _all_full_gc_times_ms;
   158   double _stop_world_start;
   159   NumberSeq* _all_stop_world_times_ms;
   160   NumberSeq* _all_yield_times_ms;
   162   size_t     _region_num_young;
   163   size_t     _region_num_tenured;
   164   size_t     _prev_region_num_young;
   165   size_t     _prev_region_num_tenured;
   167   NumberSeq* _all_mod_union_times_ms;
   169   int        _aux_num;
   170   NumberSeq* _all_aux_times_ms;
   171   double*    _cur_aux_start_times_ms;
   172   double*    _cur_aux_times_ms;
   173   bool*      _cur_aux_times_set;
   175   double* _par_last_ext_root_scan_times_ms;
   176   double* _par_last_mark_stack_scan_times_ms;
   177   double* _par_last_scan_only_times_ms;
   178   double* _par_last_scan_only_regions_scanned;
   179   double* _par_last_update_rs_start_times_ms;
   180   double* _par_last_update_rs_times_ms;
   181   double* _par_last_update_rs_processed_buffers;
   182   double* _par_last_scan_rs_start_times_ms;
   183   double* _par_last_scan_rs_times_ms;
   184   double* _par_last_scan_new_refs_times_ms;
   185   double* _par_last_obj_copy_times_ms;
   186   double* _par_last_termination_times_ms;
   188   // indicates that we are in young GC mode
   189   bool _in_young_gc_mode;
   191   // indicates whether we are in full young or partially young GC mode
   192   bool _full_young_gcs;
   194   // if true, then it tries to dynamically adjust the length of the
   195   // young list
   196   bool _adaptive_young_list_length;
   197   size_t _young_list_min_length;
   198   size_t _young_list_target_length;
   199   size_t _young_list_so_prefix_length;
   200   size_t _young_list_fixed_length;
   202   size_t _young_cset_length;
   203   bool   _last_young_gc_full;
   205   double _target_pause_time_ms;
   207   unsigned              _full_young_pause_num;
   208   unsigned              _partial_young_pause_num;
   210   bool                  _during_marking;
   211   bool                  _in_marking_window;
   212   bool                  _in_marking_window_im;
   214   SurvRateGroup*        _short_lived_surv_rate_group;
   215   SurvRateGroup*        _survivor_surv_rate_group;
   216   // add here any more surv rate groups
   218   bool during_marking() {
   219     return _during_marking;
   220   }
   222   // <NEW PREDICTION>
   224 private:
   225   enum PredictionConstants {
   226     TruncatedSeqLength = 10
   227   };
   229   TruncatedSeq* _alloc_rate_ms_seq;
   230   double        _prev_collection_pause_end_ms;
   232   TruncatedSeq* _pending_card_diff_seq;
   233   TruncatedSeq* _rs_length_diff_seq;
   234   TruncatedSeq* _cost_per_card_ms_seq;
   235   TruncatedSeq* _cost_per_scan_only_region_ms_seq;
   236   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
   237   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
   238   TruncatedSeq* _cost_per_entry_ms_seq;
   239   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
   240   TruncatedSeq* _cost_per_byte_ms_seq;
   241   TruncatedSeq* _constant_other_time_ms_seq;
   242   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   243   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   245   TruncatedSeq* _pending_cards_seq;
   246   TruncatedSeq* _scanned_cards_seq;
   247   TruncatedSeq* _rs_lengths_seq;
   249   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   250   TruncatedSeq* _cost_per_scan_only_region_ms_during_cm_seq;
   252   TruncatedSeq* _young_gc_eff_seq;
   254   TruncatedSeq* _max_conc_overhead_seq;
   256   size_t _recorded_young_regions;
   257   size_t _recorded_scan_only_regions;
   258   size_t _recorded_non_young_regions;
   259   size_t _recorded_region_num;
   261   size_t _free_regions_at_end_of_collection;
   262   size_t _scan_only_regions_at_end_of_collection;
   264   size_t _recorded_rs_lengths;
   265   size_t _max_rs_lengths;
   267   size_t _recorded_marked_bytes;
   268   size_t _recorded_young_bytes;
   270   size_t _predicted_pending_cards;
   271   size_t _predicted_cards_scanned;
   272   size_t _predicted_rs_lengths;
   273   size_t _predicted_bytes_to_copy;
   275   double _predicted_survival_ratio;
   276   double _predicted_rs_update_time_ms;
   277   double _predicted_rs_scan_time_ms;
   278   double _predicted_scan_only_scan_time_ms;
   279   double _predicted_object_copy_time_ms;
   280   double _predicted_constant_other_time_ms;
   281   double _predicted_young_other_time_ms;
   282   double _predicted_non_young_other_time_ms;
   283   double _predicted_pause_time_ms;
   285   double _vtime_diff_ms;
   287   double _recorded_young_free_cset_time_ms;
   288   double _recorded_non_young_free_cset_time_ms;
   290   double _sigma;
   291   double _expensive_region_limit_ms;
   293   size_t _rs_lengths_prediction;
   295   size_t _known_garbage_bytes;
   296   double _known_garbage_ratio;
   298   double sigma() {
   299     return _sigma;
   300   }
   302   // A function that prevents us putting too much stock in small sample
   303   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   304   // of samples.  5 or more samples yields one; fewer scales linearly from
   305   // 2.0 at 1 sample to 1.0 at 5.
   306   double confidence_factor(int samples) {
   307     if (samples > 4) return 1.0;
   308     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   309   }
   311   double get_new_neg_prediction(TruncatedSeq* seq) {
   312     return seq->davg() - sigma() * seq->dsd();
   313   }
   315 #ifndef PRODUCT
   316   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   317 #endif // PRODUCT
   319   void adjust_concurrent_refinement(double update_rs_time,
   320                                     double update_rs_processed_buffers,
   321                                     double goal_ms);
   323 protected:
   324   double _pause_time_target_ms;
   325   double _recorded_young_cset_choice_time_ms;
   326   double _recorded_non_young_cset_choice_time_ms;
   327   bool   _within_target;
   328   size_t _pending_cards;
   329   size_t _max_pending_cards;
   331 public:
   333   void set_region_short_lived(HeapRegion* hr) {
   334     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   335   }
   337   void set_region_survivors(HeapRegion* hr) {
   338     hr->install_surv_rate_group(_survivor_surv_rate_group);
   339   }
   341 #ifndef PRODUCT
   342   bool verify_young_ages();
   343 #endif // PRODUCT
   345   void tag_scan_only(size_t short_lived_scan_only_length);
   347   double get_new_prediction(TruncatedSeq* seq) {
   348     return MAX2(seq->davg() + sigma() * seq->dsd(),
   349                 seq->davg() * confidence_factor(seq->num()));
   350   }
   352   size_t young_cset_length() {
   353     return _young_cset_length;
   354   }
   356   void record_max_rs_lengths(size_t rs_lengths) {
   357     _max_rs_lengths = rs_lengths;
   358   }
   360   size_t predict_pending_card_diff() {
   361     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   362     if (prediction < 0.00001)
   363       return 0;
   364     else
   365       return (size_t) prediction;
   366   }
   368   size_t predict_pending_cards() {
   369     size_t max_pending_card_num = _g1->max_pending_card_num();
   370     size_t diff = predict_pending_card_diff();
   371     size_t prediction;
   372     if (diff > max_pending_card_num)
   373       prediction = max_pending_card_num;
   374     else
   375       prediction = max_pending_card_num - diff;
   377     return prediction;
   378   }
   380   size_t predict_rs_length_diff() {
   381     return (size_t) get_new_prediction(_rs_length_diff_seq);
   382   }
   384   double predict_alloc_rate_ms() {
   385     return get_new_prediction(_alloc_rate_ms_seq);
   386   }
   388   double predict_cost_per_card_ms() {
   389     return get_new_prediction(_cost_per_card_ms_seq);
   390   }
   392   double predict_rs_update_time_ms(size_t pending_cards) {
   393     return (double) pending_cards * predict_cost_per_card_ms();
   394   }
   396   double predict_fully_young_cards_per_entry_ratio() {
   397     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
   398   }
   400   double predict_partially_young_cards_per_entry_ratio() {
   401     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
   402       return predict_fully_young_cards_per_entry_ratio();
   403     else
   404       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
   405   }
   407   size_t predict_young_card_num(size_t rs_length) {
   408     return (size_t) ((double) rs_length *
   409                      predict_fully_young_cards_per_entry_ratio());
   410   }
   412   size_t predict_non_young_card_num(size_t rs_length) {
   413     return (size_t) ((double) rs_length *
   414                      predict_partially_young_cards_per_entry_ratio());
   415   }
   417   double predict_rs_scan_time_ms(size_t card_num) {
   418     if (full_young_gcs())
   419       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   420     else
   421       return predict_partially_young_rs_scan_time_ms(card_num);
   422   }
   424   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
   425     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
   426       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   427     else
   428       return (double) card_num *
   429         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
   430   }
   432   double predict_scan_only_time_ms_during_cm(size_t scan_only_region_num) {
   433     if (_cost_per_scan_only_region_ms_during_cm_seq->num() < 3)
   434       return 1.5 * (double) scan_only_region_num *
   435         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   436     else
   437       return (double) scan_only_region_num *
   438         get_new_prediction(_cost_per_scan_only_region_ms_during_cm_seq);
   439   }
   441   double predict_scan_only_time_ms(size_t scan_only_region_num) {
   442     if (_in_marking_window_im)
   443       return predict_scan_only_time_ms_during_cm(scan_only_region_num);
   444     else
   445       return (double) scan_only_region_num *
   446         get_new_prediction(_cost_per_scan_only_region_ms_seq);
   447   }
   449   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   450     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
   451       return 1.1 * (double) bytes_to_copy *
   452         get_new_prediction(_cost_per_byte_ms_seq);
   453     else
   454       return (double) bytes_to_copy *
   455         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   456   }
   458   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   459     if (_in_marking_window && !_in_marking_window_im)
   460       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   461     else
   462       return (double) bytes_to_copy *
   463         get_new_prediction(_cost_per_byte_ms_seq);
   464   }
   466   double predict_constant_other_time_ms() {
   467     return get_new_prediction(_constant_other_time_ms_seq);
   468   }
   470   double predict_young_other_time_ms(size_t young_num) {
   471     return
   472       (double) young_num *
   473       get_new_prediction(_young_other_cost_per_region_ms_seq);
   474   }
   476   double predict_non_young_other_time_ms(size_t non_young_num) {
   477     return
   478       (double) non_young_num *
   479       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   480   }
   482   void check_if_region_is_too_expensive(double predicted_time_ms);
   484   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   485   double predict_base_elapsed_time_ms(size_t pending_cards);
   486   double predict_base_elapsed_time_ms(size_t pending_cards,
   487                                       size_t scanned_cards);
   488   size_t predict_bytes_to_copy(HeapRegion* hr);
   489   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   491   // for use by: calculate_optimal_so_length(length)
   492   void predict_gc_eff(size_t young_region_num,
   493                       size_t so_length,
   494                       double base_time_ms,
   495                       double *gc_eff,
   496                       double *pause_time_ms);
   498   // for use by: calculate_young_list_target_config(rs_length)
   499   bool predict_gc_eff(size_t young_region_num,
   500                       size_t so_length,
   501                       double base_time_with_so_ms,
   502                       size_t init_free_regions,
   503                       double target_pause_time_ms,
   504                       double* gc_eff);
   506   void start_recording_regions();
   507   void record_cset_region(HeapRegion* hr, bool young);
   508   void record_scan_only_regions(size_t scan_only_length);
   509   void end_recording_regions();
   511   void record_vtime_diff_ms(double vtime_diff_ms) {
   512     _vtime_diff_ms = vtime_diff_ms;
   513   }
   515   void record_young_free_cset_time_ms(double time_ms) {
   516     _recorded_young_free_cset_time_ms = time_ms;
   517   }
   519   void record_non_young_free_cset_time_ms(double time_ms) {
   520     _recorded_non_young_free_cset_time_ms = time_ms;
   521   }
   523   double predict_young_gc_eff() {
   524     return get_new_neg_prediction(_young_gc_eff_seq);
   525   }
   527   double predict_survivor_regions_evac_time();
   529   // </NEW PREDICTION>
   531 public:
   532   void cset_regions_freed() {
   533     bool propagate = _last_young_gc_full && !_in_marking_window;
   534     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   535     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   536     // also call it on any more surv rate groups
   537   }
   539   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   540     _known_garbage_bytes = known_garbage_bytes;
   541     size_t heap_bytes = _g1->capacity();
   542     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   543   }
   545   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   546     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   548     _known_garbage_bytes -= known_garbage_bytes;
   549     size_t heap_bytes = _g1->capacity();
   550     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   551   }
   553   G1MMUTracker* mmu_tracker() {
   554     return _mmu_tracker;
   555   }
   557   double predict_init_time_ms() {
   558     return get_new_prediction(_concurrent_mark_init_times_ms);
   559   }
   561   double predict_remark_time_ms() {
   562     return get_new_prediction(_concurrent_mark_remark_times_ms);
   563   }
   565   double predict_cleanup_time_ms() {
   566     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   567   }
   569   // Returns an estimate of the survival rate of the region at yg-age
   570   // "yg_age".
   571   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   572     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   573     if (seq->num() == 0)
   574       gclog_or_tty->print("BARF! age is %d", age);
   575     guarantee( seq->num() > 0, "invariant" );
   576     double pred = get_new_prediction(seq);
   577     if (pred > 1.0)
   578       pred = 1.0;
   579     return pred;
   580   }
   582   double predict_yg_surv_rate(int age) {
   583     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   584   }
   586   double accum_yg_surv_rate_pred(int age) {
   587     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   588   }
   590 protected:
   591   void print_stats (int level, const char* str, double value);
   592   void print_stats (int level, const char* str, int value);
   593   void print_par_stats (int level, const char* str, double* data) {
   594     print_par_stats(level, str, data, true);
   595   }
   596   void print_par_stats (int level, const char* str, double* data, bool summary);
   597   void print_par_buffers (int level, const char* str, double* data, bool summary);
   599   void check_other_times(int level,
   600                          NumberSeq* other_times_ms,
   601                          NumberSeq* calc_other_times_ms) const;
   603   void print_summary (PauseSummary* stats) const;
   604   void print_abandoned_summary(PauseSummary* summary) const;
   606   void print_summary (int level, const char* str, NumberSeq* seq) const;
   607   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   609   double avg_value (double* data);
   610   double max_value (double* data);
   611   double sum_of_values (double* data);
   612   double max_sum (double* data1, double* data2);
   614   int _last_satb_drain_processed_buffers;
   615   int _last_update_rs_processed_buffers;
   616   double _last_pause_time_ms;
   618   size_t _bytes_in_to_space_before_gc;
   619   size_t _bytes_in_to_space_after_gc;
   620   size_t bytes_in_to_space_during_gc() {
   621     return
   622       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
   623   }
   624   size_t _bytes_in_collection_set_before_gc;
   625   // Used to count used bytes in CS.
   626   friend class CountCSClosure;
   628   // Statistics kept per GC stoppage, pause or full.
   629   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   631   // We track markings.
   632   int _num_markings;
   633   double _mark_thread_startup_sec;       // Time at startup of marking thread
   635   // Add a new GC of the given duration and end time to the record.
   636   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   638   // The head of the list (via "next_in_collection_set()") representing the
   639   // current collection set.
   640   HeapRegion* _collection_set;
   641   size_t _collection_set_size;
   642   size_t _collection_set_bytes_used_before;
   644   // Info about marking.
   645   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
   647   // The number of collection pauses at the end of the last mark.
   648   size_t _n_pauses_at_mark_end;
   650   // Stash a pointer to the g1 heap.
   651   G1CollectedHeap* _g1;
   653   // The average time in ms per collection pause, averaged over recent pauses.
   654   double recent_avg_time_for_pauses_ms();
   656   // The average time in ms for processing CollectedHeap strong roots, per
   657   // collection pause, averaged over recent pauses.
   658   double recent_avg_time_for_CH_strong_ms();
   660   // The average time in ms for processing the G1 remembered set, per
   661   // pause, averaged over recent pauses.
   662   double recent_avg_time_for_G1_strong_ms();
   664   // The average time in ms for "evacuating followers", per pause, averaged
   665   // over recent pauses.
   666   double recent_avg_time_for_evac_ms();
   668   // The number of "recent" GCs recorded in the number sequences
   669   int number_of_recent_gcs();
   671   // The average survival ratio, computed by the total number of bytes
   672   // suriviving / total number of bytes before collection over the last
   673   // several recent pauses.
   674   double recent_avg_survival_fraction();
   675   // The survival fraction of the most recent pause; if there have been no
   676   // pauses, returns 1.0.
   677   double last_survival_fraction();
   679   // Returns a "conservative" estimate of the recent survival rate, i.e.,
   680   // one that may be higher than "recent_avg_survival_fraction".
   681   // This is conservative in several ways:
   682   //   If there have been few pauses, it will assume a potential high
   683   //     variance, and err on the side of caution.
   684   //   It puts a lower bound (currently 0.1) on the value it will return.
   685   //   To try to detect phase changes, if the most recent pause ("latest") has a
   686   //     higher-than average ("avg") survival rate, it returns that rate.
   687   // "work" version is a utility function; young is restricted to young regions.
   688   double conservative_avg_survival_fraction_work(double avg,
   689                                                  double latest);
   691   // The arguments are the two sequences that keep track of the number of bytes
   692   //   surviving and the total number of bytes before collection, resp.,
   693   //   over the last evereal recent pauses
   694   // Returns the survival rate for the category in the most recent pause.
   695   // If there have been no pauses, returns 1.0.
   696   double last_survival_fraction_work(TruncatedSeq* surviving,
   697                                      TruncatedSeq* before);
   699   // The arguments are the two sequences that keep track of the number of bytes
   700   //   surviving and the total number of bytes before collection, resp.,
   701   //   over the last several recent pauses
   702   // Returns the average survival ration over the last several recent pauses
   703   // If there have been no pauses, return 1.0
   704   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
   705                                            TruncatedSeq* before);
   707   double conservative_avg_survival_fraction() {
   708     double avg = recent_avg_survival_fraction();
   709     double latest = last_survival_fraction();
   710     return conservative_avg_survival_fraction_work(avg, latest);
   711   }
   713   // The ratio of gc time to elapsed time, computed over recent pauses.
   714   double _recent_avg_pause_time_ratio;
   716   double recent_avg_pause_time_ratio() {
   717     return _recent_avg_pause_time_ratio;
   718   }
   720   // Number of pauses between concurrent marking.
   721   size_t _pauses_btwn_concurrent_mark;
   723   size_t _n_marks_since_last_pause;
   725   // True iff CM has been initiated.
   726   bool _conc_mark_initiated;
   728   // True iff CM should be initiated
   729   bool _should_initiate_conc_mark;
   730   bool _should_revert_to_full_young_gcs;
   731   bool _last_full_young_gc;
   733   // This set of variables tracks the collector efficiency, in order to
   734   // determine whether we should initiate a new marking.
   735   double _cur_mark_stop_world_time_ms;
   736   double _mark_init_start_sec;
   737   double _mark_remark_start_sec;
   738   double _mark_cleanup_start_sec;
   739   double _mark_closure_time_ms;
   741   void   calculate_young_list_min_length();
   742   void   calculate_young_list_target_config();
   743   void   calculate_young_list_target_config(size_t rs_lengths);
   744   size_t calculate_optimal_so_length(size_t young_list_length);
   746 public:
   748   G1CollectorPolicy();
   750   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   752   virtual CollectorPolicy::Name kind() {
   753     return CollectorPolicy::G1CollectorPolicyKind;
   754   }
   756   void check_prediction_validity();
   758   size_t bytes_in_collection_set() {
   759     return _bytes_in_collection_set_before_gc;
   760   }
   762   size_t bytes_in_to_space() {
   763     return bytes_in_to_space_during_gc();
   764   }
   766   unsigned calc_gc_alloc_time_stamp() {
   767     return _all_pause_times_ms->num() + 1;
   768   }
   770 protected:
   772   // Count the number of bytes used in the CS.
   773   void count_CS_bytes_used();
   775   // Together these do the base cleanup-recording work.  Subclasses might
   776   // want to put something between them.
   777   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   778                                                 size_t max_live_bytes);
   779   void record_concurrent_mark_cleanup_end_work2();
   781 public:
   783   virtual void init();
   785   // Create jstat counters for the policy.
   786   virtual void initialize_gc_policy_counters();
   788   virtual HeapWord* mem_allocate_work(size_t size,
   789                                       bool is_tlab,
   790                                       bool* gc_overhead_limit_was_exceeded);
   792   // This method controls how a collector handles one or more
   793   // of its generations being fully allocated.
   794   virtual HeapWord* satisfy_failed_allocation(size_t size,
   795                                               bool is_tlab);
   797   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   799   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   801   // The number of collection pauses so far.
   802   long n_pauses() const { return _n_pauses; }
   804   // Update the heuristic info to record a collection pause of the given
   805   // start time, where the given number of bytes were used at the start.
   806   // This may involve changing the desired size of a collection set.
   808   virtual void record_stop_world_start();
   810   virtual void record_collection_pause_start(double start_time_sec,
   811                                              size_t start_used);
   813   // Must currently be called while the world is stopped.
   814   virtual void record_concurrent_mark_init_start();
   815   virtual void record_concurrent_mark_init_end();
   816   void record_concurrent_mark_init_end_pre(double
   817                                            mark_init_elapsed_time_ms);
   819   void record_mark_closure_time(double mark_closure_time_ms);
   821   virtual void record_concurrent_mark_remark_start();
   822   virtual void record_concurrent_mark_remark_end();
   824   virtual void record_concurrent_mark_cleanup_start();
   825   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
   826                                                   size_t max_live_bytes);
   827   virtual void record_concurrent_mark_cleanup_completed();
   829   virtual void record_concurrent_pause();
   830   virtual void record_concurrent_pause_end();
   832   virtual void record_collection_pause_end_CH_strong_roots();
   833   virtual void record_collection_pause_end_G1_strong_roots();
   835   virtual void record_collection_pause_end(bool abandoned);
   837   // Record the fact that a full collection occurred.
   838   virtual void record_full_collection_start();
   839   virtual void record_full_collection_end();
   841   void record_ext_root_scan_time(int worker_i, double ms) {
   842     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   843   }
   845   void record_mark_stack_scan_time(int worker_i, double ms) {
   846     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   847   }
   849   void record_scan_only_time(int worker_i, double ms, int n) {
   850     _par_last_scan_only_times_ms[worker_i] = ms;
   851     _par_last_scan_only_regions_scanned[worker_i] = (double) n;
   852   }
   854   void record_satb_drain_time(double ms) {
   855     _cur_satb_drain_time_ms = ms;
   856     _satb_drain_time_set    = true;
   857   }
   859   void record_satb_drain_processed_buffers (int processed_buffers) {
   860     _last_satb_drain_processed_buffers = processed_buffers;
   861   }
   863   void record_mod_union_time(double ms) {
   864     _all_mod_union_times_ms->add(ms);
   865   }
   867   void record_update_rs_start_time(int thread, double ms) {
   868     _par_last_update_rs_start_times_ms[thread] = ms;
   869   }
   871   void record_update_rs_time(int thread, double ms) {
   872     _par_last_update_rs_times_ms[thread] = ms;
   873   }
   875   void record_update_rs_processed_buffers (int thread,
   876                                            double processed_buffers) {
   877     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   878   }
   880   void record_scan_rs_start_time(int thread, double ms) {
   881     _par_last_scan_rs_start_times_ms[thread] = ms;
   882   }
   884   void record_scan_rs_time(int thread, double ms) {
   885     _par_last_scan_rs_times_ms[thread] = ms;
   886   }
   888   void record_scan_new_refs_time(int thread, double ms) {
   889     _par_last_scan_new_refs_times_ms[thread] = ms;
   890   }
   892   double get_scan_new_refs_time(int thread) {
   893     return _par_last_scan_new_refs_times_ms[thread];
   894   }
   896   void reset_obj_copy_time(int thread) {
   897     _par_last_obj_copy_times_ms[thread] = 0.0;
   898   }
   900   void reset_obj_copy_time() {
   901     reset_obj_copy_time(0);
   902   }
   904   void record_obj_copy_time(int thread, double ms) {
   905     _par_last_obj_copy_times_ms[thread] += ms;
   906   }
   908   void record_obj_copy_time(double ms) {
   909     record_obj_copy_time(0, ms);
   910   }
   912   void record_termination_time(int thread, double ms) {
   913     _par_last_termination_times_ms[thread] = ms;
   914   }
   916   void record_termination_time(double ms) {
   917     record_termination_time(0, ms);
   918   }
   920   void record_pause_time_ms(double ms) {
   921     _last_pause_time_ms = ms;
   922   }
   924   void record_clear_ct_time(double ms) {
   925     _cur_clear_ct_time_ms = ms;
   926   }
   928   void record_par_time(double ms) {
   929     _cur_collection_par_time_ms = ms;
   930   }
   932   void record_aux_start_time(int i) {
   933     guarantee(i < _aux_num, "should be within range");
   934     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   935   }
   937   void record_aux_end_time(int i) {
   938     guarantee(i < _aux_num, "should be within range");
   939     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   940     _cur_aux_times_set[i] = true;
   941     _cur_aux_times_ms[i] += ms;
   942   }
   944 #ifndef PRODUCT
   945   void record_cc_clear_time(double ms) {
   946     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   947       _min_clear_cc_time_ms = ms;
   948     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   949       _max_clear_cc_time_ms = ms;
   950     _cur_clear_cc_time_ms = ms;
   951     _cum_clear_cc_time_ms += ms;
   952     _num_cc_clears++;
   953   }
   954 #endif
   956   // Record the fact that "bytes" bytes allocated in a region.
   957   void record_before_bytes(size_t bytes);
   958   void record_after_bytes(size_t bytes);
   960   // Returns "true" if this is a good time to do a collection pause.
   961   // The "word_size" argument, if non-zero, indicates the size of an
   962   // allocation request that is prompting this query.
   963   virtual bool should_do_collection_pause(size_t word_size) = 0;
   965   // Choose a new collection set.  Marks the chosen regions as being
   966   // "in_collection_set", and links them together.  The head and number of
   967   // the collection set are available via access methods.
   968   virtual void choose_collection_set() = 0;
   970   void clear_collection_set() { _collection_set = NULL; }
   972   // The head of the list (via "next_in_collection_set()") representing the
   973   // current collection set.
   974   HeapRegion* collection_set() { return _collection_set; }
   976   // The number of elements in the current collection set.
   977   size_t collection_set_size() { return _collection_set_size; }
   979   // Add "hr" to the CS.
   980   void add_to_collection_set(HeapRegion* hr);
   982   bool should_initiate_conc_mark()      { return _should_initiate_conc_mark; }
   983   void set_should_initiate_conc_mark()  { _should_initiate_conc_mark = true; }
   984   void unset_should_initiate_conc_mark(){ _should_initiate_conc_mark = false; }
   986   // If an expansion would be appropriate, because recent GC overhead had
   987   // exceeded the desired limit, return an amount to expand by.
   988   virtual size_t expansion_amount();
   990   // note start of mark thread
   991   void note_start_of_mark_thread();
   993   // The marked bytes of the "r" has changed; reclassify it's desirability
   994   // for marking.  Also asserts that "r" is eligible for a CS.
   995   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
   997 #ifndef PRODUCT
   998   // Check any appropriate marked bytes info, asserting false if
   999   // something's wrong, else returning "true".
  1000   virtual bool assertMarkedBytesDataOK() = 0;
  1001 #endif
  1003   // Print tracing information.
  1004   void print_tracing_info() const;
  1006   // Print stats on young survival ratio
  1007   void print_yg_surv_rate_info() const;
  1009   void finished_recalculating_age_indexes(bool is_survivors) {
  1010     if (is_survivors) {
  1011       _survivor_surv_rate_group->finished_recalculating_age_indexes();
  1012     } else {
  1013       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
  1015     // do that for any other surv rate groups
  1018   bool should_add_next_region_to_young_list();
  1020   bool in_young_gc_mode() {
  1021     return _in_young_gc_mode;
  1023   void set_in_young_gc_mode(bool in_young_gc_mode) {
  1024     _in_young_gc_mode = in_young_gc_mode;
  1027   bool full_young_gcs() {
  1028     return _full_young_gcs;
  1030   void set_full_young_gcs(bool full_young_gcs) {
  1031     _full_young_gcs = full_young_gcs;
  1034   bool adaptive_young_list_length() {
  1035     return _adaptive_young_list_length;
  1037   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1038     _adaptive_young_list_length = adaptive_young_list_length;
  1041   inline double get_gc_eff_factor() {
  1042     double ratio = _known_garbage_ratio;
  1044     double square = ratio * ratio;
  1045     // square = square * square;
  1046     double ret = square * 9.0 + 1.0;
  1047 #if 0
  1048     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1049 #endif // 0
  1050     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1051     return ret;
  1054   //
  1055   // Survivor regions policy.
  1056   //
  1057 protected:
  1059   // Current tenuring threshold, set to 0 if the collector reaches the
  1060   // maximum amount of suvivors regions.
  1061   int _tenuring_threshold;
  1063   // The limit on the number of regions allocated for survivors.
  1064   size_t _max_survivor_regions;
  1066   // The amount of survor regions after a collection.
  1067   size_t _recorded_survivor_regions;
  1068   // List of survivor regions.
  1069   HeapRegion* _recorded_survivor_head;
  1070   HeapRegion* _recorded_survivor_tail;
  1072   ageTable _survivors_age_table;
  1074 public:
  1076   inline GCAllocPurpose
  1077     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1078       if (age < _tenuring_threshold && src_region->is_young()) {
  1079         return GCAllocForSurvived;
  1080       } else {
  1081         return GCAllocForTenured;
  1085   inline bool track_object_age(GCAllocPurpose purpose) {
  1086     return purpose == GCAllocForSurvived;
  1089   inline GCAllocPurpose alternative_purpose(int purpose) {
  1090     return GCAllocForTenured;
  1093   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1095   size_t max_regions(int purpose);
  1097   // The limit on regions for a particular purpose is reached.
  1098   void note_alloc_region_limit_reached(int purpose) {
  1099     if (purpose == GCAllocForSurvived) {
  1100       _tenuring_threshold = 0;
  1104   void note_start_adding_survivor_regions() {
  1105     _survivor_surv_rate_group->start_adding_regions();
  1108   void note_stop_adding_survivor_regions() {
  1109     _survivor_surv_rate_group->stop_adding_regions();
  1112   void record_survivor_regions(size_t      regions,
  1113                                HeapRegion* head,
  1114                                HeapRegion* tail) {
  1115     _recorded_survivor_regions = regions;
  1116     _recorded_survivor_head    = head;
  1117     _recorded_survivor_tail    = tail;
  1120   size_t recorded_survivor_regions() {
  1121     return _recorded_survivor_regions;
  1124   void record_thread_age_table(ageTable* age_table)
  1126     _survivors_age_table.merge_par(age_table);
  1129   // Calculates survivor space parameters.
  1130   void calculate_survivors_policy();
  1132 };
  1134 // This encapsulates a particular strategy for a g1 Collector.
  1135 //
  1136 //      Start a concurrent mark when our heap size is n bytes
  1137 //            greater then our heap size was at the last concurrent
  1138 //            mark.  Where n is a function of the CMSTriggerRatio
  1139 //            and the MinHeapFreeRatio.
  1140 //
  1141 //      Start a g1 collection pause when we have allocated the
  1142 //            average number of bytes currently being freed in
  1143 //            a collection, but only if it is at least one region
  1144 //            full
  1145 //
  1146 //      Resize Heap based on desired
  1147 //      allocation space, where desired allocation space is
  1148 //      a function of survival rate and desired future to size.
  1149 //
  1150 //      Choose collection set by first picking all older regions
  1151 //      which have a survival rate which beats our projected young
  1152 //      survival rate.  Then fill out the number of needed regions
  1153 //      with young regions.
  1155 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
  1156   CollectionSetChooser* _collectionSetChooser;
  1157   // If the estimated is less then desirable, resize if possible.
  1158   void expand_if_possible(size_t numRegions);
  1160   virtual void choose_collection_set();
  1161   virtual void record_collection_pause_start(double start_time_sec,
  1162                                              size_t start_used);
  1163   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
  1164                                                   size_t max_live_bytes);
  1165   virtual void record_full_collection_end();
  1167 public:
  1168   G1CollectorPolicy_BestRegionsFirst() {
  1169     _collectionSetChooser = new CollectionSetChooser();
  1171   void record_collection_pause_end(bool abandoned);
  1172   bool should_do_collection_pause(size_t word_size);
  1173   // This is not needed any more, after the CSet choosing code was
  1174   // changed to use the pause prediction work. But let's leave the
  1175   // hook in just in case.
  1176   void note_change_in_marked_bytes(HeapRegion* r) { }
  1177 #ifndef PRODUCT
  1178   bool assertMarkedBytesDataOK();
  1179 #endif
  1180 };
  1182 // This should move to some place more general...
  1184 // If we have "n" measurements, and we've kept track of their "sum" and the
  1185 // "sum_of_squares" of the measurements, this returns the variance of the
  1186 // sequence.
  1187 inline double variance(int n, double sum_of_squares, double sum) {
  1188   double n_d = (double)n;
  1189   double avg = sum/n_d;
  1190   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1193 // Local Variables: ***
  1194 // c-indentation-style: gnu ***
  1195 // End: ***

mercurial