src/os/solaris/vm/os_solaris.cpp

Wed, 12 Jan 2011 13:59:18 -0800

author
coleenp
date
Wed, 12 Jan 2011 13:59:18 -0800
changeset 2450
34d64ad817f4
parent 2425
84f36150fcc3
child 2507
d70fe6ab4436
child 2566
2a57c59eb548
permissions
-rw-r--r--

7009828: Fix for 6938627 breaks visualvm monitoring when -Djava.io.tmpdir is defined
Summary: Change get_temp_directory() back to /tmp and %TEMP% like it always was and where the tools expect it to be.
Reviewed-by: phh, dcubed, kamg, alanb

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_solaris.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_solaris.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_solaris.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_solaris.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef COMPILER1
    74 #include "c1/c1_Runtime1.hpp"
    75 #endif
    76 #ifdef COMPILER2
    77 #include "opto/runtime.hpp"
    78 #endif
    80 // put OS-includes here
    81 # include <dlfcn.h>
    82 # include <errno.h>
    83 # include <exception>
    84 # include <link.h>
    85 # include <poll.h>
    86 # include <pthread.h>
    87 # include <pwd.h>
    88 # include <schedctl.h>
    89 # include <setjmp.h>
    90 # include <signal.h>
    91 # include <stdio.h>
    92 # include <alloca.h>
    93 # include <sys/filio.h>
    94 # include <sys/ipc.h>
    95 # include <sys/lwp.h>
    96 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
    97 # include <sys/mman.h>
    98 # include <sys/processor.h>
    99 # include <sys/procset.h>
   100 # include <sys/pset.h>
   101 # include <sys/resource.h>
   102 # include <sys/shm.h>
   103 # include <sys/socket.h>
   104 # include <sys/stat.h>
   105 # include <sys/systeminfo.h>
   106 # include <sys/time.h>
   107 # include <sys/times.h>
   108 # include <sys/types.h>
   109 # include <sys/wait.h>
   110 # include <sys/utsname.h>
   111 # include <thread.h>
   112 # include <unistd.h>
   113 # include <sys/priocntl.h>
   114 # include <sys/rtpriocntl.h>
   115 # include <sys/tspriocntl.h>
   116 # include <sys/iapriocntl.h>
   117 # include <sys/loadavg.h>
   118 # include <string.h>
   119 # include <stdio.h>
   121 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
   122 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
   124 #define MAX_PATH (2 * K)
   126 // for timer info max values which include all bits
   127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   129 #ifdef _GNU_SOURCE
   130 // See bug #6514594
   131 extern "C" int madvise(caddr_t, size_t, int);
   132 extern "C"  int memcntl(caddr_t addr, size_t len, int cmd, caddr_t  arg,
   133      int attr, int mask);
   134 #endif //_GNU_SOURCE
   136 /*
   137   MPSS Changes Start.
   138   The JVM binary needs to be built and run on pre-Solaris 9
   139   systems, but the constants needed by MPSS are only in Solaris 9
   140   header files.  They are textually replicated here to allow
   141   building on earlier systems.  Once building on Solaris 8 is
   142   no longer a requirement, these #defines can be replaced by ordinary
   143   system .h inclusion.
   145   In earlier versions of the  JDK and Solaris, we used ISM for large pages.
   146   But ISM requires shared memory to achieve this and thus has many caveats.
   147   MPSS is a fully transparent and is a cleaner way to get large pages.
   148   Although we still require keeping ISM for backward compatiblitiy as well as
   149   giving the opportunity to use large pages on older systems it is
   150   recommended that MPSS be used for Solaris 9 and above.
   152 */
   154 #ifndef MC_HAT_ADVISE
   156 struct memcntl_mha {
   157   uint_t          mha_cmd;        /* command(s) */
   158   uint_t          mha_flags;
   159   size_t          mha_pagesize;
   160 };
   161 #define MC_HAT_ADVISE   7       /* advise hat map size */
   162 #define MHA_MAPSIZE_VA  0x1     /* set preferred page size */
   163 #define MAP_ALIGN       0x200   /* addr specifies alignment */
   165 #endif
   166 // MPSS Changes End.
   169 // Here are some liblgrp types from sys/lgrp_user.h to be able to
   170 // compile on older systems without this header file.
   172 #ifndef MADV_ACCESS_LWP
   173 # define  MADV_ACCESS_LWP         7       /* next LWP to access heavily */
   174 #endif
   175 #ifndef MADV_ACCESS_MANY
   176 # define  MADV_ACCESS_MANY        8       /* many processes to access heavily */
   177 #endif
   179 #ifndef LGRP_RSRC_CPU
   180 # define LGRP_RSRC_CPU           0       /* CPU resources */
   181 #endif
   182 #ifndef LGRP_RSRC_MEM
   183 # define LGRP_RSRC_MEM           1       /* memory resources */
   184 #endif
   186 // Some more macros from sys/mman.h that are not present in Solaris 8.
   188 #ifndef MAX_MEMINFO_CNT
   189 /*
   190  * info_req request type definitions for meminfo
   191  * request types starting with MEMINFO_V are used for Virtual addresses
   192  * and should not be mixed with MEMINFO_PLGRP which is targeted for Physical
   193  * addresses
   194  */
   195 # define MEMINFO_SHIFT           16
   196 # define MEMINFO_MASK            (0xFF << MEMINFO_SHIFT)
   197 # define MEMINFO_VPHYSICAL       (0x01 << MEMINFO_SHIFT) /* get physical addr */
   198 # define MEMINFO_VLGRP           (0x02 << MEMINFO_SHIFT) /* get lgroup */
   199 # define MEMINFO_VPAGESIZE       (0x03 << MEMINFO_SHIFT) /* size of phys page */
   200 # define MEMINFO_VREPLCNT        (0x04 << MEMINFO_SHIFT) /* no. of replica */
   201 # define MEMINFO_VREPL           (0x05 << MEMINFO_SHIFT) /* physical replica */
   202 # define MEMINFO_VREPL_LGRP      (0x06 << MEMINFO_SHIFT) /* lgrp of replica */
   203 # define MEMINFO_PLGRP           (0x07 << MEMINFO_SHIFT) /* lgroup for paddr */
   205 /* maximum number of addresses meminfo() can process at a time */
   206 # define MAX_MEMINFO_CNT 256
   208 /* maximum number of request types */
   209 # define MAX_MEMINFO_REQ 31
   210 #endif
   212 // see thr_setprio(3T) for the basis of these numbers
   213 #define MinimumPriority 0
   214 #define NormalPriority  64
   215 #define MaximumPriority 127
   217 // Values for ThreadPriorityPolicy == 1
   218 int prio_policy1[MaxPriority+1] = { -99999, 0, 16, 32, 48, 64,
   219                                         80, 96, 112, 124, 127 };
   221 // System parameters used internally
   222 static clock_t clock_tics_per_sec = 100;
   224 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
   225 static bool enabled_extended_FILE_stdio = false;
   227 // For diagnostics to print a message once. see run_periodic_checks
   228 static bool check_addr0_done = false;
   229 static sigset_t check_signal_done;
   230 static bool check_signals = true;
   232 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
   233 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
   235 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
   238 // "default" initializers for missing libc APIs
   239 extern "C" {
   240   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   241   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
   243   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   244   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
   245 }
   247 // "default" initializers for pthread-based synchronization
   248 extern "C" {
   249   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
   250   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
   251 }
   253 // Thread Local Storage
   254 // This is common to all Solaris platforms so it is defined here,
   255 // in this common file.
   256 // The declarations are in the os_cpu threadLS*.hpp files.
   257 //
   258 // Static member initialization for TLS
   259 Thread* ThreadLocalStorage::_get_thread_cache[ThreadLocalStorage::_pd_cache_size] = {NULL};
   261 #ifndef PRODUCT
   262 #define _PCT(n,d)       ((100.0*(double)(n))/(double)(d))
   264 int ThreadLocalStorage::_tcacheHit = 0;
   265 int ThreadLocalStorage::_tcacheMiss = 0;
   267 void ThreadLocalStorage::print_statistics() {
   268   int total = _tcacheMiss+_tcacheHit;
   269   tty->print_cr("Thread cache hits %d misses %d total %d percent %f\n",
   270                 _tcacheHit, _tcacheMiss, total, _PCT(_tcacheHit, total));
   271 }
   272 #undef _PCT
   273 #endif // PRODUCT
   275 Thread* ThreadLocalStorage::get_thread_via_cache_slowly(uintptr_t raw_id,
   276                                                         int index) {
   277   Thread *thread = get_thread_slow();
   278   if (thread != NULL) {
   279     address sp = os::current_stack_pointer();
   280     guarantee(thread->_stack_base == NULL ||
   281               (sp <= thread->_stack_base &&
   282                  sp >= thread->_stack_base - thread->_stack_size) ||
   283                is_error_reported(),
   284               "sp must be inside of selected thread stack");
   286     thread->set_self_raw_id(raw_id);  // mark for quick retrieval
   287     _get_thread_cache[ index ] = thread;
   288   }
   289   return thread;
   290 }
   293 static const double all_zero[ sizeof(Thread) / sizeof(double) + 1 ] = {0};
   294 #define NO_CACHED_THREAD ((Thread*)all_zero)
   296 void ThreadLocalStorage::pd_set_thread(Thread* thread) {
   298   // Store the new value before updating the cache to prevent a race
   299   // between get_thread_via_cache_slowly() and this store operation.
   300   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
   302   // Update thread cache with new thread if setting on thread create,
   303   // or NO_CACHED_THREAD (zeroed) thread if resetting thread on exit.
   304   uintptr_t raw = pd_raw_thread_id();
   305   int ix = pd_cache_index(raw);
   306   _get_thread_cache[ix] = thread == NULL ? NO_CACHED_THREAD : thread;
   307 }
   309 void ThreadLocalStorage::pd_init() {
   310   for (int i = 0; i < _pd_cache_size; i++) {
   311     _get_thread_cache[i] = NO_CACHED_THREAD;
   312   }
   313 }
   315 // Invalidate all the caches (happens to be the same as pd_init).
   316 void ThreadLocalStorage::pd_invalidate_all() { pd_init(); }
   318 #undef NO_CACHED_THREAD
   320 // END Thread Local Storage
   322 static inline size_t adjust_stack_size(address base, size_t size) {
   323   if ((ssize_t)size < 0) {
   324     // 4759953: Compensate for ridiculous stack size.
   325     size = max_intx;
   326   }
   327   if (size > (size_t)base) {
   328     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
   329     size = (size_t)base;
   330   }
   331   return size;
   332 }
   334 static inline stack_t get_stack_info() {
   335   stack_t st;
   336   int retval = thr_stksegment(&st);
   337   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
   338   assert(retval == 0, "incorrect return value from thr_stksegment");
   339   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
   340   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
   341   return st;
   342 }
   344 address os::current_stack_base() {
   345   int r = thr_main() ;
   346   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   347   bool is_primordial_thread = r;
   349   // Workaround 4352906, avoid calls to thr_stksegment by
   350   // thr_main after the first one (it looks like we trash
   351   // some data, causing the value for ss_sp to be incorrect).
   352   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
   353     stack_t st = get_stack_info();
   354     if (is_primordial_thread) {
   355       // cache initial value of stack base
   356       os::Solaris::_main_stack_base = (address)st.ss_sp;
   357     }
   358     return (address)st.ss_sp;
   359   } else {
   360     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
   361     return os::Solaris::_main_stack_base;
   362   }
   363 }
   365 size_t os::current_stack_size() {
   366   size_t size;
   368   int r = thr_main() ;
   369   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
   370   if(!r) {
   371     size = get_stack_info().ss_size;
   372   } else {
   373     struct rlimit limits;
   374     getrlimit(RLIMIT_STACK, &limits);
   375     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
   376   }
   377   // base may not be page aligned
   378   address base = current_stack_base();
   379   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
   380   return (size_t)(base - bottom);
   381 }
   383 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
   384   return localtime_r(clock, res);
   385 }
   387 // interruptible infrastructure
   389 // setup_interruptible saves the thread state before going into an
   390 // interruptible system call.
   391 // The saved state is used to restore the thread to
   392 // its former state whether or not an interrupt is received.
   393 // Used by classloader os::read
   394 // os::restartable_read calls skip this layer and stay in _thread_in_native
   396 void os::Solaris::setup_interruptible(JavaThread* thread) {
   398   JavaThreadState thread_state = thread->thread_state();
   400   assert(thread_state != _thread_blocked, "Coming from the wrong thread");
   401   assert(thread_state != _thread_in_native, "Native threads skip setup_interruptible");
   402   OSThread* osthread = thread->osthread();
   403   osthread->set_saved_interrupt_thread_state(thread_state);
   404   thread->frame_anchor()->make_walkable(thread);
   405   ThreadStateTransition::transition(thread, thread_state, _thread_blocked);
   406 }
   408 // Version of setup_interruptible() for threads that are already in
   409 // _thread_blocked. Used by os_sleep().
   410 void os::Solaris::setup_interruptible_already_blocked(JavaThread* thread) {
   411   thread->frame_anchor()->make_walkable(thread);
   412 }
   414 JavaThread* os::Solaris::setup_interruptible() {
   415   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   416   setup_interruptible(thread);
   417   return thread;
   418 }
   420 void os::Solaris::try_enable_extended_io() {
   421   typedef int (*enable_extended_FILE_stdio_t)(int, int);
   423   if (!UseExtendedFileIO) {
   424     return;
   425   }
   427   enable_extended_FILE_stdio_t enabler =
   428     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
   429                                          "enable_extended_FILE_stdio");
   430   if (enabler) {
   431     enabler(-1, -1);
   432   }
   433 }
   436 #ifdef ASSERT
   438 JavaThread* os::Solaris::setup_interruptible_native() {
   439   JavaThread* thread = (JavaThread*)ThreadLocalStorage::thread();
   440   JavaThreadState thread_state = thread->thread_state();
   441   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   442   return thread;
   443 }
   445 void os::Solaris::cleanup_interruptible_native(JavaThread* thread) {
   446   JavaThreadState thread_state = thread->thread_state();
   447   assert(thread_state == _thread_in_native, "Assumed thread_in_native");
   448 }
   449 #endif
   451 // cleanup_interruptible reverses the effects of setup_interruptible
   452 // setup_interruptible_already_blocked() does not need any cleanup.
   454 void os::Solaris::cleanup_interruptible(JavaThread* thread) {
   455   OSThread* osthread = thread->osthread();
   457   ThreadStateTransition::transition(thread, _thread_blocked, osthread->saved_interrupt_thread_state());
   458 }
   460 // I/O interruption related counters called in _INTERRUPTIBLE
   462 void os::Solaris::bump_interrupted_before_count() {
   463   RuntimeService::record_interrupted_before_count();
   464 }
   466 void os::Solaris::bump_interrupted_during_count() {
   467   RuntimeService::record_interrupted_during_count();
   468 }
   470 static int _processors_online = 0;
   472          jint os::Solaris::_os_thread_limit = 0;
   473 volatile jint os::Solaris::_os_thread_count = 0;
   475 julong os::available_memory() {
   476   return Solaris::available_memory();
   477 }
   479 julong os::Solaris::available_memory() {
   480   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
   481 }
   483 julong os::Solaris::_physical_memory = 0;
   485 julong os::physical_memory() {
   486    return Solaris::physical_memory();
   487 }
   489 julong os::allocatable_physical_memory(julong size) {
   490 #ifdef _LP64
   491    return size;
   492 #else
   493    julong result = MIN2(size, (julong)3835*M);
   494    if (!is_allocatable(result)) {
   495      // Memory allocations will be aligned but the alignment
   496      // is not known at this point.  Alignments will
   497      // be at most to LargePageSizeInBytes.  Protect
   498      // allocations from alignments up to illegal
   499      // values. If at this point 2G is illegal.
   500      julong reasonable_size = (julong)2*G - 2 * LargePageSizeInBytes;
   501      result =  MIN2(size, reasonable_size);
   502    }
   503    return result;
   504 #endif
   505 }
   507 static hrtime_t first_hrtime = 0;
   508 static const hrtime_t hrtime_hz = 1000*1000*1000;
   509 const int LOCK_BUSY = 1;
   510 const int LOCK_FREE = 0;
   511 const int LOCK_INVALID = -1;
   512 static volatile hrtime_t max_hrtime = 0;
   513 static volatile int max_hrtime_lock = LOCK_FREE;     // Update counter with LSB as lock-in-progress
   516 void os::Solaris::initialize_system_info() {
   517   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
   518   _processors_online = sysconf (_SC_NPROCESSORS_ONLN);
   519   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
   520 }
   522 int os::active_processor_count() {
   523   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
   524   pid_t pid = getpid();
   525   psetid_t pset = PS_NONE;
   526   // Are we running in a processor set or is there any processor set around?
   527   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
   528     uint_t pset_cpus;
   529     // Query the number of cpus available to us.
   530     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
   531       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
   532       _processors_online = pset_cpus;
   533       return pset_cpus;
   534     }
   535   }
   536   // Otherwise return number of online cpus
   537   return online_cpus;
   538 }
   540 static bool find_processors_in_pset(psetid_t        pset,
   541                                     processorid_t** id_array,
   542                                     uint_t*         id_length) {
   543   bool result = false;
   544   // Find the number of processors in the processor set.
   545   if (pset_info(pset, NULL, id_length, NULL) == 0) {
   546     // Make up an array to hold their ids.
   547     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   548     // Fill in the array with their processor ids.
   549     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
   550       result = true;
   551     }
   552   }
   553   return result;
   554 }
   556 // Callers of find_processors_online() must tolerate imprecise results --
   557 // the system configuration can change asynchronously because of DR
   558 // or explicit psradm operations.
   559 //
   560 // We also need to take care that the loop (below) terminates as the
   561 // number of processors online can change between the _SC_NPROCESSORS_ONLN
   562 // request and the loop that builds the list of processor ids.   Unfortunately
   563 // there's no reliable way to determine the maximum valid processor id,
   564 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
   565 // man pages, which claim the processor id set is "sparse, but
   566 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
   567 // exit the loop.
   568 //
   569 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
   570 // not available on S8.0.
   572 static bool find_processors_online(processorid_t** id_array,
   573                                    uint*           id_length) {
   574   const processorid_t MAX_PROCESSOR_ID = 100000 ;
   575   // Find the number of processors online.
   576   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
   577   // Make up an array to hold their ids.
   578   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length);
   579   // Processors need not be numbered consecutively.
   580   long found = 0;
   581   processorid_t next = 0;
   582   while (found < *id_length && next < MAX_PROCESSOR_ID) {
   583     processor_info_t info;
   584     if (processor_info(next, &info) == 0) {
   585       // NB, PI_NOINTR processors are effectively online ...
   586       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
   587         (*id_array)[found] = next;
   588         found += 1;
   589       }
   590     }
   591     next += 1;
   592   }
   593   if (found < *id_length) {
   594       // The loop above didn't identify the expected number of processors.
   595       // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
   596       // and re-running the loop, above, but there's no guarantee of progress
   597       // if the system configuration is in flux.  Instead, we just return what
   598       // we've got.  Note that in the worst case find_processors_online() could
   599       // return an empty set.  (As a fall-back in the case of the empty set we
   600       // could just return the ID of the current processor).
   601       *id_length = found ;
   602   }
   604   return true;
   605 }
   607 static bool assign_distribution(processorid_t* id_array,
   608                                 uint           id_length,
   609                                 uint*          distribution,
   610                                 uint           distribution_length) {
   611   // We assume we can assign processorid_t's to uint's.
   612   assert(sizeof(processorid_t) == sizeof(uint),
   613          "can't convert processorid_t to uint");
   614   // Quick check to see if we won't succeed.
   615   if (id_length < distribution_length) {
   616     return false;
   617   }
   618   // Assign processor ids to the distribution.
   619   // Try to shuffle processors to distribute work across boards,
   620   // assuming 4 processors per board.
   621   const uint processors_per_board = ProcessDistributionStride;
   622   // Find the maximum processor id.
   623   processorid_t max_id = 0;
   624   for (uint m = 0; m < id_length; m += 1) {
   625     max_id = MAX2(max_id, id_array[m]);
   626   }
   627   // The next id, to limit loops.
   628   const processorid_t limit_id = max_id + 1;
   629   // Make up markers for available processors.
   630   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id);
   631   for (uint c = 0; c < limit_id; c += 1) {
   632     available_id[c] = false;
   633   }
   634   for (uint a = 0; a < id_length; a += 1) {
   635     available_id[id_array[a]] = true;
   636   }
   637   // Step by "boards", then by "slot", copying to "assigned".
   638   // NEEDS_CLEANUP: The assignment of processors should be stateful,
   639   //                remembering which processors have been assigned by
   640   //                previous calls, etc., so as to distribute several
   641   //                independent calls of this method.  What we'd like is
   642   //                It would be nice to have an API that let us ask
   643   //                how many processes are bound to a processor,
   644   //                but we don't have that, either.
   645   //                In the short term, "board" is static so that
   646   //                subsequent distributions don't all start at board 0.
   647   static uint board = 0;
   648   uint assigned = 0;
   649   // Until we've found enough processors ....
   650   while (assigned < distribution_length) {
   651     // ... find the next available processor in the board.
   652     for (uint slot = 0; slot < processors_per_board; slot += 1) {
   653       uint try_id = board * processors_per_board + slot;
   654       if ((try_id < limit_id) && (available_id[try_id] == true)) {
   655         distribution[assigned] = try_id;
   656         available_id[try_id] = false;
   657         assigned += 1;
   658         break;
   659       }
   660     }
   661     board += 1;
   662     if (board * processors_per_board + 0 >= limit_id) {
   663       board = 0;
   664     }
   665   }
   666   if (available_id != NULL) {
   667     FREE_C_HEAP_ARRAY(bool, available_id);
   668   }
   669   return true;
   670 }
   672 bool os::distribute_processes(uint length, uint* distribution) {
   673   bool result = false;
   674   // Find the processor id's of all the available CPUs.
   675   processorid_t* id_array  = NULL;
   676   uint           id_length = 0;
   677   // There are some races between querying information and using it,
   678   // since processor sets can change dynamically.
   679   psetid_t pset = PS_NONE;
   680   // Are we running in a processor set?
   681   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
   682     result = find_processors_in_pset(pset, &id_array, &id_length);
   683   } else {
   684     result = find_processors_online(&id_array, &id_length);
   685   }
   686   if (result == true) {
   687     if (id_length >= length) {
   688       result = assign_distribution(id_array, id_length, distribution, length);
   689     } else {
   690       result = false;
   691     }
   692   }
   693   if (id_array != NULL) {
   694     FREE_C_HEAP_ARRAY(processorid_t, id_array);
   695   }
   696   return result;
   697 }
   699 bool os::bind_to_processor(uint processor_id) {
   700   // We assume that a processorid_t can be stored in a uint.
   701   assert(sizeof(uint) == sizeof(processorid_t),
   702          "can't convert uint to processorid_t");
   703   int bind_result =
   704     processor_bind(P_LWPID,                       // bind LWP.
   705                    P_MYID,                        // bind current LWP.
   706                    (processorid_t) processor_id,  // id.
   707                    NULL);                         // don't return old binding.
   708   return (bind_result == 0);
   709 }
   711 bool os::getenv(const char* name, char* buffer, int len) {
   712   char* val = ::getenv( name );
   713   if ( val == NULL
   714   ||   strlen(val) + 1  >  len ) {
   715     if (len > 0)  buffer[0] = 0; // return a null string
   716     return false;
   717   }
   718   strcpy( buffer, val );
   719   return true;
   720 }
   723 // Return true if user is running as root.
   725 bool os::have_special_privileges() {
   726   static bool init = false;
   727   static bool privileges = false;
   728   if (!init) {
   729     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   730     init = true;
   731   }
   732   return privileges;
   733 }
   736 void os::init_system_properties_values() {
   737   char arch[12];
   738   sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   740   // The next steps are taken in the product version:
   741   //
   742   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   743   // This library should be located at:
   744   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   745   //
   746   // If "/jre/lib/" appears at the right place in the path, then we
   747   // assume libjvm[_g].so is installed in a JDK and we use this path.
   748   //
   749   // Otherwise exit with message: "Could not create the Java virtual machine."
   750   //
   751   // The following extra steps are taken in the debugging version:
   752   //
   753   // If "/jre/lib/" does NOT appear at the right place in the path
   754   // instead of exit check for $JAVA_HOME environment variable.
   755   //
   756   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   757   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   758   // it looks like libjvm[_g].so is installed there
   759   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   760   //
   761   // Otherwise exit.
   762   //
   763   // Important note: if the location of libjvm.so changes this
   764   // code needs to be changed accordingly.
   766   // The next few definitions allow the code to be verbatim:
   767 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
   768 #define free(p) FREE_C_HEAP_ARRAY(char, p)
   769 #define getenv(n) ::getenv(n)
   771 #define EXTENSIONS_DIR  "/lib/ext"
   772 #define ENDORSED_DIR    "/lib/endorsed"
   773 #define COMMON_DIR      "/usr/jdk/packages"
   775   {
   776     /* sysclasspath, java_home, dll_dir */
   777     {
   778         char *home_path;
   779         char *dll_path;
   780         char *pslash;
   781         char buf[MAXPATHLEN];
   782         os::jvm_path(buf, sizeof(buf));
   784         // Found the full path to libjvm.so.
   785         // Now cut the path to <java_home>/jre if we can.
   786         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   787         pslash = strrchr(buf, '/');
   788         if (pslash != NULL)
   789             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   790         dll_path = malloc(strlen(buf) + 1);
   791         if (dll_path == NULL)
   792             return;
   793         strcpy(dll_path, buf);
   794         Arguments::set_dll_dir(dll_path);
   796         if (pslash != NULL) {
   797             pslash = strrchr(buf, '/');
   798             if (pslash != NULL) {
   799                 *pslash = '\0';       /* get rid of /<arch> */
   800                 pslash = strrchr(buf, '/');
   801                 if (pslash != NULL)
   802                     *pslash = '\0';   /* get rid of /lib */
   803             }
   804         }
   806         home_path = malloc(strlen(buf) + 1);
   807         if (home_path == NULL)
   808             return;
   809         strcpy(home_path, buf);
   810         Arguments::set_java_home(home_path);
   812         if (!set_boot_path('/', ':'))
   813             return;
   814     }
   816     /*
   817      * Where to look for native libraries
   818      */
   819     {
   820       // Use dlinfo() to determine the correct java.library.path.
   821       //
   822       // If we're launched by the Java launcher, and the user
   823       // does not set java.library.path explicitly on the commandline,
   824       // the Java launcher sets LD_LIBRARY_PATH for us and unsets
   825       // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
   826       // dlinfo returns LD_LIBRARY_PATH + crle settings (including
   827       // /usr/lib), which is exactly what we want.
   828       //
   829       // If the user does set java.library.path, it completely
   830       // overwrites this setting, and always has.
   831       //
   832       // If we're not launched by the Java launcher, we may
   833       // get here with any/all of the LD_LIBRARY_PATH[_32|64]
   834       // settings.  Again, dlinfo does exactly what we want.
   836       Dl_serinfo     _info, *info = &_info;
   837       Dl_serpath     *path;
   838       char*          library_path;
   839       char           *common_path;
   840       int            i;
   842       // determine search path count and required buffer size
   843       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
   844         vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
   845       }
   847       // allocate new buffer and initialize
   848       info = (Dl_serinfo*)malloc(_info.dls_size);
   849       if (info == NULL) {
   850         vm_exit_out_of_memory(_info.dls_size,
   851                               "init_system_properties_values info");
   852       }
   853       info->dls_size = _info.dls_size;
   854       info->dls_cnt = _info.dls_cnt;
   856       // obtain search path information
   857       if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
   858         free(info);
   859         vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
   860       }
   862       path = &info->dls_serpath[0];
   864       // Note: Due to a legacy implementation, most of the library path
   865       // is set in the launcher.  This was to accomodate linking restrictions
   866       // on legacy Solaris implementations (which are no longer supported).
   867       // Eventually, all the library path setting will be done here.
   868       //
   869       // However, to prevent the proliferation of improperly built native
   870       // libraries, the new path component /usr/jdk/packages is added here.
   872       // Determine the actual CPU architecture.
   873       char cpu_arch[12];
   874       sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
   875 #ifdef _LP64
   876       // If we are a 64-bit vm, perform the following translations:
   877       //   sparc   -> sparcv9
   878       //   i386    -> amd64
   879       if (strcmp(cpu_arch, "sparc") == 0)
   880         strcat(cpu_arch, "v9");
   881       else if (strcmp(cpu_arch, "i386") == 0)
   882         strcpy(cpu_arch, "amd64");
   883 #endif
   885       // Construct the invariant part of ld_library_path. Note that the
   886       // space for the colon and the trailing null are provided by the
   887       // nulls included by the sizeof operator.
   888       size_t bufsize = sizeof(COMMON_DIR) + sizeof("/lib/") + strlen(cpu_arch);
   889       common_path = malloc(bufsize);
   890       if (common_path == NULL) {
   891         free(info);
   892         vm_exit_out_of_memory(bufsize,
   893                               "init_system_properties_values common_path");
   894       }
   895       sprintf(common_path, COMMON_DIR "/lib/%s", cpu_arch);
   897       // struct size is more than sufficient for the path components obtained
   898       // through the dlinfo() call, so only add additional space for the path
   899       // components explicitly added here.
   900       bufsize = info->dls_size + strlen(common_path);
   901       library_path = malloc(bufsize);
   902       if (library_path == NULL) {
   903         free(info);
   904         free(common_path);
   905         vm_exit_out_of_memory(bufsize,
   906                               "init_system_properties_values library_path");
   907       }
   908       library_path[0] = '\0';
   910       // Construct the desired Java library path from the linker's library
   911       // search path.
   912       //
   913       // For compatibility, it is optimal that we insert the additional path
   914       // components specific to the Java VM after those components specified
   915       // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
   916       // infrastructure.
   917       if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it
   918         strcpy(library_path, common_path);
   919       } else {
   920         int inserted = 0;
   921         for (i = 0; i < info->dls_cnt; i++, path++) {
   922           uint_t flags = path->dls_flags & LA_SER_MASK;
   923           if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
   924             strcat(library_path, common_path);
   925             strcat(library_path, os::path_separator());
   926             inserted = 1;
   927           }
   928           strcat(library_path, path->dls_name);
   929           strcat(library_path, os::path_separator());
   930         }
   931         // eliminate trailing path separator
   932         library_path[strlen(library_path)-1] = '\0';
   933       }
   935       // happens before argument parsing - can't use a trace flag
   936       // tty->print_raw("init_system_properties_values: native lib path: ");
   937       // tty->print_raw_cr(library_path);
   939       // callee copies into its own buffer
   940       Arguments::set_library_path(library_path);
   942       free(common_path);
   943       free(library_path);
   944       free(info);
   945     }
   947     /*
   948      * Extensions directories.
   949      *
   950      * Note that the space for the colon and the trailing null are provided
   951      * by the nulls included by the sizeof operator (so actually one byte more
   952      * than necessary is allocated).
   953      */
   954     {
   955         char *buf = (char *) malloc(strlen(Arguments::get_java_home()) +
   956             sizeof(EXTENSIONS_DIR) + sizeof(COMMON_DIR) +
   957             sizeof(EXTENSIONS_DIR));
   958         sprintf(buf, "%s" EXTENSIONS_DIR ":" COMMON_DIR EXTENSIONS_DIR,
   959             Arguments::get_java_home());
   960         Arguments::set_ext_dirs(buf);
   961     }
   963     /* Endorsed standards default directory. */
   964     {
   965         char * buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   966         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   967         Arguments::set_endorsed_dirs(buf);
   968     }
   969   }
   971 #undef malloc
   972 #undef free
   973 #undef getenv
   974 #undef EXTENSIONS_DIR
   975 #undef ENDORSED_DIR
   976 #undef COMMON_DIR
   978 }
   980 void os::breakpoint() {
   981   BREAKPOINT;
   982 }
   984 bool os::obsolete_option(const JavaVMOption *option)
   985 {
   986   if (!strncmp(option->optionString, "-Xt", 3)) {
   987     return true;
   988   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
   989     return true;
   990   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
   991     return true;
   992   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
   993     return true;
   994   }
   995   return false;
   996 }
   998 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
   999   address  stackStart  = (address)thread->stack_base();
  1000   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
  1001   if (sp < stackStart && sp >= stackEnd ) return true;
  1002   return false;
  1005 extern "C" void breakpoint() {
  1006   // use debugger to set breakpoint here
  1009 // Returns an estimate of the current stack pointer. Result must be guaranteed to
  1010 // point into the calling threads stack, and be no lower than the current stack
  1011 // pointer.
  1012 address os::current_stack_pointer() {
  1013   volatile int dummy;
  1014   address sp = (address)&dummy + 8;     // %%%% need to confirm if this is right
  1015   return sp;
  1018 static thread_t main_thread;
  1020 // Thread start routine for all new Java threads
  1021 extern "C" void* java_start(void* thread_addr) {
  1022   // Try to randomize the cache line index of hot stack frames.
  1023   // This helps when threads of the same stack traces evict each other's
  1024   // cache lines. The threads can be either from the same JVM instance, or
  1025   // from different JVM instances. The benefit is especially true for
  1026   // processors with hyperthreading technology.
  1027   static int counter = 0;
  1028   int pid = os::current_process_id();
  1029   alloca(((pid ^ counter++) & 7) * 128);
  1031   int prio;
  1032   Thread* thread = (Thread*)thread_addr;
  1033   OSThread* osthr = thread->osthread();
  1035   osthr->set_lwp_id( _lwp_self() );  // Store lwp in case we are bound
  1036   thread->_schedctl = (void *) schedctl_init () ;
  1038   if (UseNUMA) {
  1039     int lgrp_id = os::numa_get_group_id();
  1040     if (lgrp_id != -1) {
  1041       thread->set_lgrp_id(lgrp_id);
  1045   // If the creator called set priority before we started,
  1046   // we need to call set priority now that we have an lwp.
  1047   // Get the priority from libthread and set the priority
  1048   // for the new Solaris lwp.
  1049   if ( osthr->thread_id() != -1 ) {
  1050     if ( UseThreadPriorities ) {
  1051       thr_getprio(osthr->thread_id(), &prio);
  1052       if (ThreadPriorityVerbose) {
  1053         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT ", setting priority: %d\n",
  1054                       osthr->thread_id(), osthr->lwp_id(), prio );
  1056       os::set_native_priority(thread, prio);
  1058   } else if (ThreadPriorityVerbose) {
  1059     warning("Can't set priority in _start routine, thread id hasn't been set\n");
  1062   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
  1064   // initialize signal mask for this thread
  1065   os::Solaris::hotspot_sigmask(thread);
  1067   thread->run();
  1069   // One less thread is executing
  1070   // When the VMThread gets here, the main thread may have already exited
  1071   // which frees the CodeHeap containing the Atomic::dec code
  1072   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
  1073     Atomic::dec(&os::Solaris::_os_thread_count);
  1076   if (UseDetachedThreads) {
  1077     thr_exit(NULL);
  1078     ShouldNotReachHere();
  1080   return NULL;
  1083 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
  1084   // Allocate the OSThread object
  1085   OSThread* osthread = new OSThread(NULL, NULL);
  1086   if (osthread == NULL) return NULL;
  1088   // Store info on the Solaris thread into the OSThread
  1089   osthread->set_thread_id(thread_id);
  1090   osthread->set_lwp_id(_lwp_self());
  1091   thread->_schedctl = (void *) schedctl_init () ;
  1093   if (UseNUMA) {
  1094     int lgrp_id = os::numa_get_group_id();
  1095     if (lgrp_id != -1) {
  1096       thread->set_lgrp_id(lgrp_id);
  1100   if ( ThreadPriorityVerbose ) {
  1101     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
  1102                   osthread->thread_id(), osthread->lwp_id() );
  1105   // Initial thread state is INITIALIZED, not SUSPENDED
  1106   osthread->set_state(INITIALIZED);
  1108   return osthread;
  1111 void os::Solaris::hotspot_sigmask(Thread* thread) {
  1113   //Save caller's signal mask
  1114   sigset_t sigmask;
  1115   thr_sigsetmask(SIG_SETMASK, NULL, &sigmask);
  1116   OSThread *osthread = thread->osthread();
  1117   osthread->set_caller_sigmask(sigmask);
  1119   thr_sigsetmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
  1120   if (!ReduceSignalUsage) {
  1121     if (thread->is_VM_thread()) {
  1122       // Only the VM thread handles BREAK_SIGNAL ...
  1123       thr_sigsetmask(SIG_UNBLOCK, vm_signals(), NULL);
  1124     } else {
  1125       // ... all other threads block BREAK_SIGNAL
  1126       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
  1127       thr_sigsetmask(SIG_BLOCK, vm_signals(), NULL);
  1132 bool os::create_attached_thread(JavaThread* thread) {
  1133 #ifdef ASSERT
  1134   thread->verify_not_published();
  1135 #endif
  1136   OSThread* osthread = create_os_thread(thread, thr_self());
  1137   if (osthread == NULL) {
  1138      return false;
  1141   // Initial thread state is RUNNABLE
  1142   osthread->set_state(RUNNABLE);
  1143   thread->set_osthread(osthread);
  1145   // initialize signal mask for this thread
  1146   // and save the caller's signal mask
  1147   os::Solaris::hotspot_sigmask(thread);
  1149   return true;
  1152 bool os::create_main_thread(JavaThread* thread) {
  1153 #ifdef ASSERT
  1154   thread->verify_not_published();
  1155 #endif
  1156   if (_starting_thread == NULL) {
  1157     _starting_thread = create_os_thread(thread, main_thread);
  1158      if (_starting_thread == NULL) {
  1159         return false;
  1163   // The primodial thread is runnable from the start
  1164   _starting_thread->set_state(RUNNABLE);
  1166   thread->set_osthread(_starting_thread);
  1168   // initialize signal mask for this thread
  1169   // and save the caller's signal mask
  1170   os::Solaris::hotspot_sigmask(thread);
  1172   return true;
  1175 // _T2_libthread is true if we believe we are running with the newer
  1176 // SunSoft lwp/libthread.so (2.8 patch, 2.9 default)
  1177 bool os::Solaris::_T2_libthread = false;
  1179 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  1180   // Allocate the OSThread object
  1181   OSThread* osthread = new OSThread(NULL, NULL);
  1182   if (osthread == NULL) {
  1183     return false;
  1186   if ( ThreadPriorityVerbose ) {
  1187     char *thrtyp;
  1188     switch ( thr_type ) {
  1189       case vm_thread:
  1190         thrtyp = (char *)"vm";
  1191         break;
  1192       case cgc_thread:
  1193         thrtyp = (char *)"cgc";
  1194         break;
  1195       case pgc_thread:
  1196         thrtyp = (char *)"pgc";
  1197         break;
  1198       case java_thread:
  1199         thrtyp = (char *)"java";
  1200         break;
  1201       case compiler_thread:
  1202         thrtyp = (char *)"compiler";
  1203         break;
  1204       case watcher_thread:
  1205         thrtyp = (char *)"watcher";
  1206         break;
  1207       default:
  1208         thrtyp = (char *)"unknown";
  1209         break;
  1211     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
  1214   // Calculate stack size if it's not specified by caller.
  1215   if (stack_size == 0) {
  1216     // The default stack size 1M (2M for LP64).
  1217     stack_size = (BytesPerWord >> 2) * K * K;
  1219     switch (thr_type) {
  1220     case os::java_thread:
  1221       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
  1222       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
  1223       break;
  1224     case os::compiler_thread:
  1225       if (CompilerThreadStackSize > 0) {
  1226         stack_size = (size_t)(CompilerThreadStackSize * K);
  1227         break;
  1228       } // else fall through:
  1229         // use VMThreadStackSize if CompilerThreadStackSize is not defined
  1230     case os::vm_thread:
  1231     case os::pgc_thread:
  1232     case os::cgc_thread:
  1233     case os::watcher_thread:
  1234       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
  1235       break;
  1238   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
  1240   // Initial state is ALLOCATED but not INITIALIZED
  1241   osthread->set_state(ALLOCATED);
  1243   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
  1244     // We got lots of threads. Check if we still have some address space left.
  1245     // Need to be at least 5Mb of unreserved address space. We do check by
  1246     // trying to reserve some.
  1247     const size_t VirtualMemoryBangSize = 20*K*K;
  1248     char* mem = os::reserve_memory(VirtualMemoryBangSize);
  1249     if (mem == NULL) {
  1250       delete osthread;
  1251       return false;
  1252     } else {
  1253       // Release the memory again
  1254       os::release_memory(mem, VirtualMemoryBangSize);
  1258   // Setup osthread because the child thread may need it.
  1259   thread->set_osthread(osthread);
  1261   // Create the Solaris thread
  1262   // explicit THR_BOUND for T2_libthread case in case
  1263   // that assumption is not accurate, but our alternate signal stack
  1264   // handling is based on it which must have bound threads
  1265   thread_t tid = 0;
  1266   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED
  1267                    | ((UseBoundThreads || os::Solaris::T2_libthread() ||
  1268                        (thr_type == vm_thread) ||
  1269                        (thr_type == cgc_thread) ||
  1270                        (thr_type == pgc_thread) ||
  1271                        (thr_type == compiler_thread && BackgroundCompilation)) ?
  1272                       THR_BOUND : 0);
  1273   int      status;
  1275   // 4376845 -- libthread/kernel don't provide enough LWPs to utilize all CPUs.
  1276   //
  1277   // On multiprocessors systems, libthread sometimes under-provisions our
  1278   // process with LWPs.  On a 30-way systems, for instance, we could have
  1279   // 50 user-level threads in ready state and only 2 or 3 LWPs assigned
  1280   // to our process.  This can result in under utilization of PEs.
  1281   // I suspect the problem is related to libthread's LWP
  1282   // pool management and to the kernel's SIGBLOCKING "last LWP parked"
  1283   // upcall policy.
  1284   //
  1285   // The following code is palliative -- it attempts to ensure that our
  1286   // process has sufficient LWPs to take advantage of multiple PEs.
  1287   // Proper long-term cures include using user-level threads bound to LWPs
  1288   // (THR_BOUND) or using LWP-based synchronization.  Note that there is a
  1289   // slight timing window with respect to sampling _os_thread_count, but
  1290   // the race is benign.  Also, we should periodically recompute
  1291   // _processors_online as the min of SC_NPROCESSORS_ONLN and the
  1292   // the number of PEs in our partition.  You might be tempted to use
  1293   // THR_NEW_LWP here, but I'd recommend against it as that could
  1294   // result in undesirable growth of the libthread's LWP pool.
  1295   // The fix below isn't sufficient; for instance, it doesn't take into count
  1296   // LWPs parked on IO.  It does, however, help certain CPU-bound benchmarks.
  1297   //
  1298   // Some pathologies this scheme doesn't handle:
  1299   // *  Threads can block, releasing the LWPs.  The LWPs can age out.
  1300   //    When a large number of threads become ready again there aren't
  1301   //    enough LWPs available to service them.  This can occur when the
  1302   //    number of ready threads oscillates.
  1303   // *  LWPs/Threads park on IO, thus taking the LWP out of circulation.
  1304   //
  1305   // Finally, we should call thr_setconcurrency() periodically to refresh
  1306   // the LWP pool and thwart the LWP age-out mechanism.
  1307   // The "+3" term provides a little slop -- we want to slightly overprovision.
  1309   if (AdjustConcurrency && os::Solaris::_os_thread_count < (_processors_online+3)) {
  1310     if (!(flags & THR_BOUND)) {
  1311       thr_setconcurrency (os::Solaris::_os_thread_count);       // avoid starvation
  1314   // Although this doesn't hurt, we should warn of undefined behavior
  1315   // when using unbound T1 threads with schedctl().  This should never
  1316   // happen, as the compiler and VM threads are always created bound
  1317   DEBUG_ONLY(
  1318       if ((VMThreadHintNoPreempt || CompilerThreadHintNoPreempt) &&
  1319           (!os::Solaris::T2_libthread() && (!(flags & THR_BOUND))) &&
  1320           ((thr_type == vm_thread) || (thr_type == cgc_thread) ||
  1321            (thr_type == pgc_thread) || (thr_type == compiler_thread && BackgroundCompilation))) {
  1322          warning("schedctl behavior undefined when Compiler/VM/GC Threads are Unbound");
  1324   );
  1327   // Mark that we don't have an lwp or thread id yet.
  1328   // In case we attempt to set the priority before the thread starts.
  1329   osthread->set_lwp_id(-1);
  1330   osthread->set_thread_id(-1);
  1332   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
  1333   if (status != 0) {
  1334     if (PrintMiscellaneous && (Verbose || WizardMode)) {
  1335       perror("os::create_thread");
  1337     thread->set_osthread(NULL);
  1338     // Need to clean up stuff we've allocated so far
  1339     delete osthread;
  1340     return false;
  1343   Atomic::inc(&os::Solaris::_os_thread_count);
  1345   // Store info on the Solaris thread into the OSThread
  1346   osthread->set_thread_id(tid);
  1348   // Remember that we created this thread so we can set priority on it
  1349   osthread->set_vm_created();
  1351   // Set the default thread priority otherwise use NormalPriority
  1353   if ( UseThreadPriorities ) {
  1354      thr_setprio(tid, (DefaultThreadPriority == -1) ?
  1355                         java_to_os_priority[NormPriority] :
  1356                         DefaultThreadPriority);
  1359   // Initial thread state is INITIALIZED, not SUSPENDED
  1360   osthread->set_state(INITIALIZED);
  1362   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
  1363   return true;
  1366 /* defined for >= Solaris 10. This allows builds on earlier versions
  1367  *  of Solaris to take advantage of the newly reserved Solaris JVM signals
  1368  *  With SIGJVM1, SIGJVM2, INTERRUPT_SIGNAL is SIGJVM1, ASYNC_SIGNAL is SIGJVM2
  1369  *  and -XX:+UseAltSigs does nothing since these should have no conflict
  1370  */
  1371 #if !defined(SIGJVM1)
  1372 #define SIGJVM1 39
  1373 #define SIGJVM2 40
  1374 #endif
  1376 debug_only(static bool signal_sets_initialized = false);
  1377 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
  1378 int os::Solaris::_SIGinterrupt = INTERRUPT_SIGNAL;
  1379 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
  1381 bool os::Solaris::is_sig_ignored(int sig) {
  1382       struct sigaction oact;
  1383       sigaction(sig, (struct sigaction*)NULL, &oact);
  1384       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
  1385                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
  1386       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
  1387            return true;
  1388       else
  1389            return false;
  1392 // Note: SIGRTMIN is a macro that calls sysconf() so it will
  1393 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
  1394 static bool isJVM1available() {
  1395   return SIGJVM1 < SIGRTMIN;
  1398 void os::Solaris::signal_sets_init() {
  1399   // Should also have an assertion stating we are still single-threaded.
  1400   assert(!signal_sets_initialized, "Already initialized");
  1401   // Fill in signals that are necessarily unblocked for all threads in
  1402   // the VM. Currently, we unblock the following signals:
  1403   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  1404   //                         by -Xrs (=ReduceSignalUsage));
  1405   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  1406   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  1407   // the dispositions or masks wrt these signals.
  1408   // Programs embedding the VM that want to use the above signals for their
  1409   // own purposes must, at this time, use the "-Xrs" option to prevent
  1410   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  1411   // (See bug 4345157, and other related bugs).
  1412   // In reality, though, unblocking these signals is really a nop, since
  1413   // these signals are not blocked by default.
  1414   sigemptyset(&unblocked_sigs);
  1415   sigemptyset(&allowdebug_blocked_sigs);
  1416   sigaddset(&unblocked_sigs, SIGILL);
  1417   sigaddset(&unblocked_sigs, SIGSEGV);
  1418   sigaddset(&unblocked_sigs, SIGBUS);
  1419   sigaddset(&unblocked_sigs, SIGFPE);
  1421   if (isJVM1available) {
  1422     os::Solaris::set_SIGinterrupt(SIGJVM1);
  1423     os::Solaris::set_SIGasync(SIGJVM2);
  1424   } else if (UseAltSigs) {
  1425     os::Solaris::set_SIGinterrupt(ALT_INTERRUPT_SIGNAL);
  1426     os::Solaris::set_SIGasync(ALT_ASYNC_SIGNAL);
  1427   } else {
  1428     os::Solaris::set_SIGinterrupt(INTERRUPT_SIGNAL);
  1429     os::Solaris::set_SIGasync(ASYNC_SIGNAL);
  1432   sigaddset(&unblocked_sigs, os::Solaris::SIGinterrupt());
  1433   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
  1435   if (!ReduceSignalUsage) {
  1436    if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
  1437       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
  1438       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
  1440    if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
  1441       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
  1442       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
  1444    if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
  1445       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
  1446       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
  1449   // Fill in signals that are blocked by all but the VM thread.
  1450   sigemptyset(&vm_sigs);
  1451   if (!ReduceSignalUsage)
  1452     sigaddset(&vm_sigs, BREAK_SIGNAL);
  1453   debug_only(signal_sets_initialized = true);
  1455   // For diagnostics only used in run_periodic_checks
  1456   sigemptyset(&check_signal_done);
  1459 // These are signals that are unblocked while a thread is running Java.
  1460 // (For some reason, they get blocked by default.)
  1461 sigset_t* os::Solaris::unblocked_signals() {
  1462   assert(signal_sets_initialized, "Not initialized");
  1463   return &unblocked_sigs;
  1466 // These are the signals that are blocked while a (non-VM) thread is
  1467 // running Java. Only the VM thread handles these signals.
  1468 sigset_t* os::Solaris::vm_signals() {
  1469   assert(signal_sets_initialized, "Not initialized");
  1470   return &vm_sigs;
  1473 // These are signals that are blocked during cond_wait to allow debugger in
  1474 sigset_t* os::Solaris::allowdebug_blocked_signals() {
  1475   assert(signal_sets_initialized, "Not initialized");
  1476   return &allowdebug_blocked_sigs;
  1480 void _handle_uncaught_cxx_exception() {
  1481   VMError err("An uncaught C++ exception");
  1482   err.report_and_die();
  1486 // First crack at OS-specific initialization, from inside the new thread.
  1487 void os::initialize_thread() {
  1488   int r = thr_main() ;
  1489   guarantee (r == 0 || r == 1, "CR6501650 or CR6493689") ;
  1490   if (r) {
  1491     JavaThread* jt = (JavaThread *)Thread::current();
  1492     assert(jt != NULL,"Sanity check");
  1493     size_t stack_size;
  1494     address base = jt->stack_base();
  1495     if (Arguments::created_by_java_launcher()) {
  1496       // Use 2MB to allow for Solaris 7 64 bit mode.
  1497       stack_size = JavaThread::stack_size_at_create() == 0
  1498         ? 2048*K : JavaThread::stack_size_at_create();
  1500       // There are rare cases when we may have already used more than
  1501       // the basic stack size allotment before this method is invoked.
  1502       // Attempt to allow for a normally sized java_stack.
  1503       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
  1504       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
  1505     } else {
  1506       // 6269555: If we were not created by a Java launcher, i.e. if we are
  1507       // running embedded in a native application, treat the primordial thread
  1508       // as much like a native attached thread as possible.  This means using
  1509       // the current stack size from thr_stksegment(), unless it is too large
  1510       // to reliably setup guard pages.  A reasonable max size is 8MB.
  1511       size_t current_size = current_stack_size();
  1512       // This should never happen, but just in case....
  1513       if (current_size == 0) current_size = 2 * K * K;
  1514       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
  1516     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
  1517     stack_size = (size_t)(base - bottom);
  1519     assert(stack_size > 0, "Stack size calculation problem");
  1521     if (stack_size > jt->stack_size()) {
  1522       NOT_PRODUCT(
  1523         struct rlimit limits;
  1524         getrlimit(RLIMIT_STACK, &limits);
  1525         size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
  1526         assert(size >= jt->stack_size(), "Stack size problem in main thread");
  1528       tty->print_cr(
  1529         "Stack size of %d Kb exceeds current limit of %d Kb.\n"
  1530         "(Stack sizes are rounded up to a multiple of the system page size.)\n"
  1531         "See limit(1) to increase the stack size limit.",
  1532         stack_size / K, jt->stack_size() / K);
  1533       vm_exit(1);
  1535     assert(jt->stack_size() >= stack_size,
  1536           "Attempt to map more stack than was allocated");
  1537     jt->set_stack_size(stack_size);
  1540    // 5/22/01: Right now alternate signal stacks do not handle
  1541    // throwing stack overflow exceptions, see bug 4463178
  1542    // Until a fix is found for this, T2 will NOT imply alternate signal
  1543    // stacks.
  1544    // If using T2 libthread threads, install an alternate signal stack.
  1545    // Because alternate stacks associate with LWPs on Solaris,
  1546    // see sigaltstack(2), if using UNBOUND threads, or if UseBoundThreads
  1547    // we prefer to explicitly stack bang.
  1548    // If not using T2 libthread, but using UseBoundThreads any threads
  1549    // (primordial thread, jni_attachCurrentThread) we do not create,
  1550    // probably are not bound, therefore they can not have an alternate
  1551    // signal stack. Since our stack banging code is generated and
  1552    // is shared across threads, all threads must be bound to allow
  1553    // using alternate signal stacks.  The alternative is to interpose
  1554    // on _lwp_create to associate an alt sig stack with each LWP,
  1555    // and this could be a problem when the JVM is embedded.
  1556    // We would prefer to use alternate signal stacks with T2
  1557    // Since there is currently no accurate way to detect T2
  1558    // we do not. Assuming T2 when running T1 causes sig 11s or assertions
  1559    // on installing alternate signal stacks
  1562    // 05/09/03: removed alternate signal stack support for Solaris
  1563    // The alternate signal stack mechanism is no longer needed to
  1564    // handle stack overflow. This is now handled by allocating
  1565    // guard pages (red zone) and stackbanging.
  1566    // Initially the alternate signal stack mechanism was removed because
  1567    // it did not work with T1 llibthread. Alternate
  1568    // signal stacks MUST have all threads bound to lwps. Applications
  1569    // can create their own threads and attach them without their being
  1570    // bound under T1. This is frequently the case for the primordial thread.
  1571    // If we were ever to reenable this mechanism we would need to
  1572    // use the dynamic check for T2 libthread.
  1574   os::Solaris::init_thread_fpu_state();
  1575   std::set_terminate(_handle_uncaught_cxx_exception);
  1580 // Free Solaris resources related to the OSThread
  1581 void os::free_thread(OSThread* osthread) {
  1582   assert(osthread != NULL, "os::free_thread but osthread not set");
  1585   // We are told to free resources of the argument thread,
  1586   // but we can only really operate on the current thread.
  1587   // The main thread must take the VMThread down synchronously
  1588   // before the main thread exits and frees up CodeHeap
  1589   guarantee((Thread::current()->osthread() == osthread
  1590      || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
  1591   if (Thread::current()->osthread() == osthread) {
  1592     // Restore caller's signal mask
  1593     sigset_t sigmask = osthread->caller_sigmask();
  1594     thr_sigsetmask(SIG_SETMASK, &sigmask, NULL);
  1596   delete osthread;
  1599 void os::pd_start_thread(Thread* thread) {
  1600   int status = thr_continue(thread->osthread()->thread_id());
  1601   assert_status(status == 0, status, "thr_continue failed");
  1605 intx os::current_thread_id() {
  1606   return (intx)thr_self();
  1609 static pid_t _initial_pid = 0;
  1611 int os::current_process_id() {
  1612   return (int)(_initial_pid ? _initial_pid : getpid());
  1615 int os::allocate_thread_local_storage() {
  1616   // %%%       in Win32 this allocates a memory segment pointed to by a
  1617   //           register.  Dan Stein can implement a similar feature in
  1618   //           Solaris.  Alternatively, the VM can do the same thing
  1619   //           explicitly: malloc some storage and keep the pointer in a
  1620   //           register (which is part of the thread's context) (or keep it
  1621   //           in TLS).
  1622   // %%%       In current versions of Solaris, thr_self and TSD can
  1623   //           be accessed via short sequences of displaced indirections.
  1624   //           The value of thr_self is available as %g7(36).
  1625   //           The value of thr_getspecific(k) is stored in %g7(12)(4)(k*4-4),
  1626   //           assuming that the current thread already has a value bound to k.
  1627   //           It may be worth experimenting with such access patterns,
  1628   //           and later having the parameters formally exported from a Solaris
  1629   //           interface.  I think, however, that it will be faster to
  1630   //           maintain the invariant that %g2 always contains the
  1631   //           JavaThread in Java code, and have stubs simply
  1632   //           treat %g2 as a caller-save register, preserving it in a %lN.
  1633   thread_key_t tk;
  1634   if (thr_keycreate( &tk, NULL ) )
  1635     fatal(err_msg("os::allocate_thread_local_storage: thr_keycreate failed "
  1636                   "(%s)", strerror(errno)));
  1637   return int(tk);
  1640 void os::free_thread_local_storage(int index) {
  1641   // %%% don't think we need anything here
  1642   // if ( pthread_key_delete((pthread_key_t) tk) )
  1643   //   fatal("os::free_thread_local_storage: pthread_key_delete failed");
  1646 #define SMALLINT 32   // libthread allocate for tsd_common is a version specific
  1647                       // small number - point is NO swap space available
  1648 void os::thread_local_storage_at_put(int index, void* value) {
  1649   // %%% this is used only in threadLocalStorage.cpp
  1650   if (thr_setspecific((thread_key_t)index, value)) {
  1651     if (errno == ENOMEM) {
  1652        vm_exit_out_of_memory(SMALLINT, "thr_setspecific: out of swap space");
  1653     } else {
  1654       fatal(err_msg("os::thread_local_storage_at_put: thr_setspecific failed "
  1655                     "(%s)", strerror(errno)));
  1657   } else {
  1658       ThreadLocalStorage::set_thread_in_slot ((Thread *) value) ;
  1662 // This function could be called before TLS is initialized, for example, when
  1663 // VM receives an async signal or when VM causes a fatal error during
  1664 // initialization. Return NULL if thr_getspecific() fails.
  1665 void* os::thread_local_storage_at(int index) {
  1666   // %%% this is used only in threadLocalStorage.cpp
  1667   void* r = NULL;
  1668   return thr_getspecific((thread_key_t)index, &r) != 0 ? NULL : r;
  1672 const int NANOSECS_PER_MILLISECS = 1000000;
  1673 // gethrtime can move backwards if read from one cpu and then a different cpu
  1674 // getTimeNanos is guaranteed to not move backward on Solaris
  1675 // local spinloop created as faster for a CAS on an int than
  1676 // a CAS on a 64bit jlong. Also Atomic::cmpxchg for jlong is not
  1677 // supported on sparc v8 or pre supports_cx8 intel boxes.
  1678 // oldgetTimeNanos for systems which do not support CAS on 64bit jlong
  1679 // i.e. sparc v8 and pre supports_cx8 (i486) intel boxes
  1680 inline hrtime_t oldgetTimeNanos() {
  1681   int gotlock = LOCK_INVALID;
  1682   hrtime_t newtime = gethrtime();
  1684   for (;;) {
  1685 // grab lock for max_hrtime
  1686     int curlock = max_hrtime_lock;
  1687     if (curlock & LOCK_BUSY)  continue;
  1688     if (gotlock = Atomic::cmpxchg(LOCK_BUSY, &max_hrtime_lock, LOCK_FREE) != LOCK_FREE) continue;
  1689     if (newtime > max_hrtime) {
  1690       max_hrtime = newtime;
  1691     } else {
  1692       newtime = max_hrtime;
  1694     // release lock
  1695     max_hrtime_lock = LOCK_FREE;
  1696     return newtime;
  1699 // gethrtime can move backwards if read from one cpu and then a different cpu
  1700 // getTimeNanos is guaranteed to not move backward on Solaris
  1701 inline hrtime_t getTimeNanos() {
  1702   if (VM_Version::supports_cx8()) {
  1703     const hrtime_t now = gethrtime();
  1704     // Use atomic long load since 32-bit x86 uses 2 registers to keep long.
  1705     const hrtime_t prev = Atomic::load((volatile jlong*)&max_hrtime);
  1706     if (now <= prev)  return prev;   // same or retrograde time;
  1707     const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
  1708     assert(obsv >= prev, "invariant");   // Monotonicity
  1709     // If the CAS succeeded then we're done and return "now".
  1710     // If the CAS failed and the observed value "obs" is >= now then
  1711     // we should return "obs".  If the CAS failed and now > obs > prv then
  1712     // some other thread raced this thread and installed a new value, in which case
  1713     // we could either (a) retry the entire operation, (b) retry trying to install now
  1714     // or (c) just return obs.  We use (c).   No loop is required although in some cases
  1715     // we might discard a higher "now" value in deference to a slightly lower but freshly
  1716     // installed obs value.   That's entirely benign -- it admits no new orderings compared
  1717     // to (a) or (b) -- and greatly reduces coherence traffic.
  1718     // We might also condition (c) on the magnitude of the delta between obs and now.
  1719     // Avoiding excessive CAS operations to hot RW locations is critical.
  1720     // See http://blogs.sun.com/dave/entry/cas_and_cache_trivia_invalidate
  1721     return (prev == obsv) ? now : obsv ;
  1722   } else {
  1723     return oldgetTimeNanos();
  1727 // Time since start-up in seconds to a fine granularity.
  1728 // Used by VMSelfDestructTimer and the MemProfiler.
  1729 double os::elapsedTime() {
  1730   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
  1733 jlong os::elapsed_counter() {
  1734   return (jlong)(getTimeNanos() - first_hrtime);
  1737 jlong os::elapsed_frequency() {
  1738    return hrtime_hz;
  1741 // Return the real, user, and system times in seconds from an
  1742 // arbitrary fixed point in the past.
  1743 bool os::getTimesSecs(double* process_real_time,
  1744                   double* process_user_time,
  1745                   double* process_system_time) {
  1746   struct tms ticks;
  1747   clock_t real_ticks = times(&ticks);
  1749   if (real_ticks == (clock_t) (-1)) {
  1750     return false;
  1751   } else {
  1752     double ticks_per_second = (double) clock_tics_per_sec;
  1753     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1754     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1755     // For consistency return the real time from getTimeNanos()
  1756     // converted to seconds.
  1757     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
  1759     return true;
  1763 bool os::supports_vtime() { return true; }
  1765 bool os::enable_vtime() {
  1766   int fd = ::open("/proc/self/ctl", O_WRONLY);
  1767   if (fd == -1)
  1768     return false;
  1770   long cmd[] = { PCSET, PR_MSACCT };
  1771   int res = ::write(fd, cmd, sizeof(long) * 2);
  1772   ::close(fd);
  1773   if (res != sizeof(long) * 2)
  1774     return false;
  1776   return true;
  1779 bool os::vtime_enabled() {
  1780   int fd = ::open("/proc/self/status", O_RDONLY);
  1781   if (fd == -1)
  1782     return false;
  1784   pstatus_t status;
  1785   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
  1786   ::close(fd);
  1787   if (res != sizeof(pstatus_t))
  1788     return false;
  1790   return status.pr_flags & PR_MSACCT;
  1793 double os::elapsedVTime() {
  1794   return (double)gethrvtime() / (double)hrtime_hz;
  1797 // Used internally for comparisons only
  1798 // getTimeMillis guaranteed to not move backwards on Solaris
  1799 jlong getTimeMillis() {
  1800   jlong nanotime = getTimeNanos();
  1801   return (jlong)(nanotime / NANOSECS_PER_MILLISECS);
  1804 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
  1805 jlong os::javaTimeMillis() {
  1806   timeval t;
  1807   if (gettimeofday( &t, NULL) == -1)
  1808     fatal(err_msg("os::javaTimeMillis: gettimeofday (%s)", strerror(errno)));
  1809   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
  1812 jlong os::javaTimeNanos() {
  1813   return (jlong)getTimeNanos();
  1816 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1817   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
  1818   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
  1819   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
  1820   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
  1823 char * os::local_time_string(char *buf, size_t buflen) {
  1824   struct tm t;
  1825   time_t long_time;
  1826   time(&long_time);
  1827   localtime_r(&long_time, &t);
  1828   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1829                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1830                t.tm_hour, t.tm_min, t.tm_sec);
  1831   return buf;
  1834 // Note: os::shutdown() might be called very early during initialization, or
  1835 // called from signal handler. Before adding something to os::shutdown(), make
  1836 // sure it is async-safe and can handle partially initialized VM.
  1837 void os::shutdown() {
  1839   // allow PerfMemory to attempt cleanup of any persistent resources
  1840   perfMemory_exit();
  1842   // needs to remove object in file system
  1843   AttachListener::abort();
  1845   // flush buffered output, finish log files
  1846   ostream_abort();
  1848   // Check for abort hook
  1849   abort_hook_t abort_hook = Arguments::abort_hook();
  1850   if (abort_hook != NULL) {
  1851     abort_hook();
  1855 // Note: os::abort() might be called very early during initialization, or
  1856 // called from signal handler. Before adding something to os::abort(), make
  1857 // sure it is async-safe and can handle partially initialized VM.
  1858 void os::abort(bool dump_core) {
  1859   os::shutdown();
  1860   if (dump_core) {
  1861 #ifndef PRODUCT
  1862     fdStream out(defaultStream::output_fd());
  1863     out.print_raw("Current thread is ");
  1864     char buf[16];
  1865     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1866     out.print_raw_cr(buf);
  1867     out.print_raw_cr("Dumping core ...");
  1868 #endif
  1869     ::abort(); // dump core (for debugging)
  1872   ::exit(1);
  1875 // Die immediately, no exit hook, no abort hook, no cleanup.
  1876 void os::die() {
  1877   _exit(-1);
  1880 // unused
  1881 void os::set_error_file(const char *logfile) {}
  1883 // DLL functions
  1885 const char* os::dll_file_extension() { return ".so"; }
  1887 // This must be hard coded because it's the system's temporary
  1888 // directory not the java application's temp directory, ala java.io.tmpdir.
  1889 const char* os::get_temp_directory() { return "/tmp"; }
  1891 static bool file_exists(const char* filename) {
  1892   struct stat statbuf;
  1893   if (filename == NULL || strlen(filename) == 0) {
  1894     return false;
  1896   return os::stat(filename, &statbuf) == 0;
  1899 void os::dll_build_name(char* buffer, size_t buflen,
  1900                         const char* pname, const char* fname) {
  1901   const size_t pnamelen = pname ? strlen(pname) : 0;
  1903   // Quietly truncate on buffer overflow.  Should be an error.
  1904   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
  1905     *buffer = '\0';
  1906     return;
  1909   if (pnamelen == 0) {
  1910     snprintf(buffer, buflen, "lib%s.so", fname);
  1911   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1912     int n;
  1913     char** pelements = split_path(pname, &n);
  1914     for (int i = 0 ; i < n ; i++) {
  1915       // really shouldn't be NULL but what the heck, check can't hurt
  1916       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1917         continue; // skip the empty path values
  1919       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
  1920       if (file_exists(buffer)) {
  1921         break;
  1924     // release the storage
  1925     for (int i = 0 ; i < n ; i++) {
  1926       if (pelements[i] != NULL) {
  1927         FREE_C_HEAP_ARRAY(char, pelements[i]);
  1930     if (pelements != NULL) {
  1931       FREE_C_HEAP_ARRAY(char*, pelements);
  1933   } else {
  1934     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
  1938 const char* os::get_current_directory(char *buf, int buflen) {
  1939   return getcwd(buf, buflen);
  1942 // check if addr is inside libjvm[_g].so
  1943 bool os::address_is_in_vm(address addr) {
  1944   static address libjvm_base_addr;
  1945   Dl_info dlinfo;
  1947   if (libjvm_base_addr == NULL) {
  1948     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1949     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1950     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1953   if (dladdr((void *)addr, &dlinfo)) {
  1954     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1957   return false;
  1960 typedef int (*dladdr1_func_type) (void *, Dl_info *, void **, int);
  1961 static dladdr1_func_type dladdr1_func = NULL;
  1963 bool os::dll_address_to_function_name(address addr, char *buf,
  1964                                       int buflen, int * offset) {
  1965   Dl_info dlinfo;
  1967   // dladdr1_func was initialized in os::init()
  1968   if (dladdr1_func){
  1969       // yes, we have dladdr1
  1971       // Support for dladdr1 is checked at runtime; it may be
  1972       // available even if the vm is built on a machine that does
  1973       // not have dladdr1 support.  Make sure there is a value for
  1974       // RTLD_DL_SYMENT.
  1975       #ifndef RTLD_DL_SYMENT
  1976       #define RTLD_DL_SYMENT 1
  1977       #endif
  1978       Sym * info;
  1979       if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
  1980                        RTLD_DL_SYMENT)) {
  1981         if ((char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
  1982           if (buf != NULL) {
  1983             if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  1984               jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1986             if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1987             return true;
  1990       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1991         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1992           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  1993           return true;
  1996       if (buf != NULL) buf[0] = '\0';
  1997       if (offset != NULL) *offset  = -1;
  1998       return false;
  1999   } else {
  2000       // no, only dladdr is available
  2001       if (dladdr((void *)addr, &dlinfo)) {
  2002         if (buf != NULL) {
  2003           if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen))
  2004             jio_snprintf(buf, buflen, dlinfo.dli_sname);
  2006         if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  2007         return true;
  2008       } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  2009         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  2010           dlinfo.dli_fname, buf, buflen, offset) == Decoder::no_error) {
  2011           return true;
  2014       if (buf != NULL) buf[0] = '\0';
  2015       if (offset != NULL) *offset  = -1;
  2016       return false;
  2020 bool os::dll_address_to_library_name(address addr, char* buf,
  2021                                      int buflen, int* offset) {
  2022   Dl_info dlinfo;
  2024   if (dladdr((void*)addr, &dlinfo)){
  2025      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  2026      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  2027      return true;
  2028   } else {
  2029      if (buf) buf[0] = '\0';
  2030      if (offset) *offset = -1;
  2031      return false;
  2035 // Prints the names and full paths of all opened dynamic libraries
  2036 // for current process
  2037 void os::print_dll_info(outputStream * st) {
  2038     Dl_info dli;
  2039     void *handle;
  2040     Link_map *map;
  2041     Link_map *p;
  2043     st->print_cr("Dynamic libraries:"); st->flush();
  2045     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  2046         st->print_cr("Error: Cannot print dynamic libraries.");
  2047         return;
  2049     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  2050     if (handle == NULL) {
  2051         st->print_cr("Error: Cannot print dynamic libraries.");
  2052         return;
  2054     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  2055     if (map == NULL) {
  2056         st->print_cr("Error: Cannot print dynamic libraries.");
  2057         return;
  2060     while (map->l_prev != NULL)
  2061         map = map->l_prev;
  2063     while (map != NULL) {
  2064         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  2065         map = map->l_next;
  2068     dlclose(handle);
  2071   // Loads .dll/.so and
  2072   // in case of error it checks if .dll/.so was built for the
  2073   // same architecture as Hotspot is running on
  2075 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  2077   void * result= ::dlopen(filename, RTLD_LAZY);
  2078   if (result != NULL) {
  2079     // Successful loading
  2080     return result;
  2083   Elf32_Ehdr elf_head;
  2085   // Read system error message into ebuf
  2086   // It may or may not be overwritten below
  2087   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  2088   ebuf[ebuflen-1]='\0';
  2089   int diag_msg_max_length=ebuflen-strlen(ebuf);
  2090   char* diag_msg_buf=ebuf+strlen(ebuf);
  2092   if (diag_msg_max_length==0) {
  2093     // No more space in ebuf for additional diagnostics message
  2094     return NULL;
  2098   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  2100   if (file_descriptor < 0) {
  2101     // Can't open library, report dlerror() message
  2102     return NULL;
  2105   bool failed_to_read_elf_head=
  2106     (sizeof(elf_head)!=
  2107         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  2109   ::close(file_descriptor);
  2110   if (failed_to_read_elf_head) {
  2111     // file i/o error - report dlerror() msg
  2112     return NULL;
  2115   typedef struct {
  2116     Elf32_Half  code;         // Actual value as defined in elf.h
  2117     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  2118     char        elf_class;    // 32 or 64 bit
  2119     char        endianess;    // MSB or LSB
  2120     char*       name;         // String representation
  2121   } arch_t;
  2123   static const arch_t arch_array[]={
  2124     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2125     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  2126     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  2127     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  2128     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2129     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  2130     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  2131     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  2132     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  2133     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
  2134   };
  2136   #if  (defined IA32)
  2137     static  Elf32_Half running_arch_code=EM_386;
  2138   #elif   (defined AMD64)
  2139     static  Elf32_Half running_arch_code=EM_X86_64;
  2140   #elif  (defined IA64)
  2141     static  Elf32_Half running_arch_code=EM_IA_64;
  2142   #elif  (defined __sparc) && (defined _LP64)
  2143     static  Elf32_Half running_arch_code=EM_SPARCV9;
  2144   #elif  (defined __sparc) && (!defined _LP64)
  2145     static  Elf32_Half running_arch_code=EM_SPARC;
  2146   #elif  (defined __powerpc64__)
  2147     static  Elf32_Half running_arch_code=EM_PPC64;
  2148   #elif  (defined __powerpc__)
  2149     static  Elf32_Half running_arch_code=EM_PPC;
  2150   #elif (defined ARM)
  2151     static  Elf32_Half running_arch_code=EM_ARM;
  2152   #else
  2153     #error Method os::dll_load requires that one of following is defined:\
  2154          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
  2155   #endif
  2157   // Identify compatability class for VM's architecture and library's architecture
  2158   // Obtain string descriptions for architectures
  2160   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  2161   int running_arch_index=-1;
  2163   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  2164     if (running_arch_code == arch_array[i].code) {
  2165       running_arch_index    = i;
  2167     if (lib_arch.code == arch_array[i].code) {
  2168       lib_arch.compat_class = arch_array[i].compat_class;
  2169       lib_arch.name         = arch_array[i].name;
  2173   assert(running_arch_index != -1,
  2174     "Didn't find running architecture code (running_arch_code) in arch_array");
  2175   if (running_arch_index == -1) {
  2176     // Even though running architecture detection failed
  2177     // we may still continue with reporting dlerror() message
  2178     return NULL;
  2181   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  2182     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  2183     return NULL;
  2186   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  2187     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  2188     return NULL;
  2191   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  2192     if ( lib_arch.name!=NULL ) {
  2193       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2194         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  2195         lib_arch.name, arch_array[running_arch_index].name);
  2196     } else {
  2197       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  2198       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  2199         lib_arch.code,
  2200         arch_array[running_arch_index].name);
  2204   return NULL;
  2207 void* os::dll_lookup(void* handle, const char* name) {
  2208   return dlsym(handle, name);
  2211 int os::stat(const char *path, struct stat *sbuf) {
  2212   char pathbuf[MAX_PATH];
  2213   if (strlen(path) > MAX_PATH - 1) {
  2214     errno = ENAMETOOLONG;
  2215     return -1;
  2217   os::native_path(strcpy(pathbuf, path));
  2218   return ::stat(pathbuf, sbuf);
  2221 static bool _print_ascii_file(const char* filename, outputStream* st) {
  2222   int fd = ::open(filename, O_RDONLY);
  2223   if (fd == -1) {
  2224      return false;
  2227   char buf[32];
  2228   int bytes;
  2229   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  2230     st->print_raw(buf, bytes);
  2233   ::close(fd);
  2235   return true;
  2238 void os::print_os_info(outputStream* st) {
  2239   st->print("OS:");
  2241   if (!_print_ascii_file("/etc/release", st)) {
  2242     st->print("Solaris");
  2244   st->cr();
  2246   // kernel
  2247   st->print("uname:");
  2248   struct utsname name;
  2249   uname(&name);
  2250   st->print(name.sysname); st->print(" ");
  2251   st->print(name.release); st->print(" ");
  2252   st->print(name.version); st->print(" ");
  2253   st->print(name.machine);
  2255   // libthread
  2256   if (os::Solaris::T2_libthread()) st->print("  (T2 libthread)");
  2257   else st->print("  (T1 libthread)");
  2258   st->cr();
  2260   // rlimit
  2261   st->print("rlimit:");
  2262   struct rlimit rlim;
  2264   st->print(" STACK ");
  2265   getrlimit(RLIMIT_STACK, &rlim);
  2266   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2267   else st->print("%uk", rlim.rlim_cur >> 10);
  2269   st->print(", CORE ");
  2270   getrlimit(RLIMIT_CORE, &rlim);
  2271   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2272   else st->print("%uk", rlim.rlim_cur >> 10);
  2274   st->print(", NOFILE ");
  2275   getrlimit(RLIMIT_NOFILE, &rlim);
  2276   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2277   else st->print("%d", rlim.rlim_cur);
  2279   st->print(", AS ");
  2280   getrlimit(RLIMIT_AS, &rlim);
  2281   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
  2282   else st->print("%uk", rlim.rlim_cur >> 10);
  2283   st->cr();
  2285   // load average
  2286   st->print("load average:");
  2287   double loadavg[3];
  2288   os::loadavg(loadavg, 3);
  2289   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
  2290   st->cr();
  2294 static bool check_addr0(outputStream* st) {
  2295   jboolean status = false;
  2296   int fd = ::open("/proc/self/map",O_RDONLY);
  2297   if (fd >= 0) {
  2298     prmap_t p;
  2299     while(::read(fd, &p, sizeof(p)) > 0) {
  2300       if (p.pr_vaddr == 0x0) {
  2301         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
  2302         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
  2303         st->print("Access:");
  2304         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
  2305         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
  2306         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
  2307         st->cr();
  2308         status = true;
  2310       ::close(fd);
  2313   return status;
  2316 void os::print_memory_info(outputStream* st) {
  2317   st->print("Memory:");
  2318   st->print(" %dk page", os::vm_page_size()>>10);
  2319   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
  2320   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
  2321   st->cr();
  2322   (void) check_addr0(st);
  2325 // Taken from /usr/include/sys/machsig.h  Supposed to be architecture specific
  2326 // but they're the same for all the solaris architectures that we support.
  2327 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  2328                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  2329                           "ILL_COPROC", "ILL_BADSTK" };
  2331 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  2332                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  2333                           "FPE_FLTINV", "FPE_FLTSUB" };
  2335 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  2337 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  2339 void os::print_siginfo(outputStream* st, void* siginfo) {
  2340   st->print("siginfo:");
  2342   const int buflen = 100;
  2343   char buf[buflen];
  2344   siginfo_t *si = (siginfo_t*)siginfo;
  2345   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  2346   char *err = strerror(si->si_errno);
  2347   if (si->si_errno != 0 && err != NULL) {
  2348     st->print("si_errno=%s", err);
  2349   } else {
  2350     st->print("si_errno=%d", si->si_errno);
  2352   const int c = si->si_code;
  2353   assert(c > 0, "unexpected si_code");
  2354   switch (si->si_signo) {
  2355   case SIGILL:
  2356     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  2357     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2358     break;
  2359   case SIGFPE:
  2360     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  2361     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2362     break;
  2363   case SIGSEGV:
  2364     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  2365     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2366     break;
  2367   case SIGBUS:
  2368     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  2369     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  2370     break;
  2371   default:
  2372     st->print(", si_code=%d", si->si_code);
  2373     // no si_addr
  2376   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  2377       UseSharedSpaces) {
  2378     FileMapInfo* mapinfo = FileMapInfo::current_info();
  2379     if (mapinfo->is_in_shared_space(si->si_addr)) {
  2380       st->print("\n\nError accessing class data sharing archive."   \
  2381                 " Mapped file inaccessible during execution, "      \
  2382                 " possible disk/network problem.");
  2385   st->cr();
  2388 // Moved from whole group, because we need them here for diagnostic
  2389 // prints.
  2390 #define OLDMAXSIGNUM 32
  2391 static int Maxsignum = 0;
  2392 static int *ourSigFlags = NULL;
  2394 extern "C" void sigINTRHandler(int, siginfo_t*, void*);
  2396 int os::Solaris::get_our_sigflags(int sig) {
  2397   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2398   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2399   return ourSigFlags[sig];
  2402 void os::Solaris::set_our_sigflags(int sig, int flags) {
  2403   assert(ourSigFlags!=NULL, "signal data structure not initialized");
  2404   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
  2405   ourSigFlags[sig] = flags;
  2409 static const char* get_signal_handler_name(address handler,
  2410                                            char* buf, int buflen) {
  2411   int offset;
  2412   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  2413   if (found) {
  2414     // skip directory names
  2415     const char *p1, *p2;
  2416     p1 = buf;
  2417     size_t len = strlen(os::file_separator());
  2418     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  2419     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  2420   } else {
  2421     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  2423   return buf;
  2426 static void print_signal_handler(outputStream* st, int sig,
  2427                                   char* buf, size_t buflen) {
  2428   struct sigaction sa;
  2430   sigaction(sig, NULL, &sa);
  2432   st->print("%s: ", os::exception_name(sig, buf, buflen));
  2434   address handler = (sa.sa_flags & SA_SIGINFO)
  2435                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  2436                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
  2438   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  2439     st->print("SIG_DFL");
  2440   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  2441     st->print("SIG_IGN");
  2442   } else {
  2443     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  2446   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  2448   address rh = VMError::get_resetted_sighandler(sig);
  2449   // May be, handler was resetted by VMError?
  2450   if(rh != NULL) {
  2451     handler = rh;
  2452     sa.sa_flags = VMError::get_resetted_sigflags(sig);
  2455   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  2457   // Check: is it our handler?
  2458   if(handler == CAST_FROM_FN_PTR(address, signalHandler) ||
  2459      handler == CAST_FROM_FN_PTR(address, sigINTRHandler)) {
  2460     // It is our signal handler
  2461     // check for flags
  2462     if(sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  2463       st->print(
  2464         ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  2465         os::Solaris::get_our_sigflags(sig));
  2468   st->cr();
  2471 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  2472   st->print_cr("Signal Handlers:");
  2473   print_signal_handler(st, SIGSEGV, buf, buflen);
  2474   print_signal_handler(st, SIGBUS , buf, buflen);
  2475   print_signal_handler(st, SIGFPE , buf, buflen);
  2476   print_signal_handler(st, SIGPIPE, buf, buflen);
  2477   print_signal_handler(st, SIGXFSZ, buf, buflen);
  2478   print_signal_handler(st, SIGILL , buf, buflen);
  2479   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  2480   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
  2481   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  2482   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
  2483   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  2484   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
  2485   print_signal_handler(st, os::Solaris::SIGinterrupt(), buf, buflen);
  2486   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
  2489 static char saved_jvm_path[MAXPATHLEN] = { 0 };
  2491 // Find the full path to the current module, libjvm.so or libjvm_g.so
  2492 void os::jvm_path(char *buf, jint buflen) {
  2493   // Error checking.
  2494   if (buflen < MAXPATHLEN) {
  2495     assert(false, "must use a large-enough buffer");
  2496     buf[0] = '\0';
  2497     return;
  2499   // Lazy resolve the path to current module.
  2500   if (saved_jvm_path[0] != 0) {
  2501     strcpy(buf, saved_jvm_path);
  2502     return;
  2505   Dl_info dlinfo;
  2506   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
  2507   assert(ret != 0, "cannot locate libjvm");
  2508   realpath((char *)dlinfo.dli_fname, buf);
  2510   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
  2511     // Support for the gamma launcher.  Typical value for buf is
  2512     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
  2513     // the right place in the string, then assume we are installed in a JDK and
  2514     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
  2515     // up the path so it looks like libjvm.so is installed there (append a
  2516     // fake suffix hotspot/libjvm.so).
  2517     const char *p = buf + strlen(buf) - 1;
  2518     for (int count = 0; p > buf && count < 5; ++count) {
  2519       for (--p; p > buf && *p != '/'; --p)
  2520         /* empty */ ;
  2523     if (strncmp(p, "/jre/lib/", 9) != 0) {
  2524       // Look for JAVA_HOME in the environment.
  2525       char* java_home_var = ::getenv("JAVA_HOME");
  2526       if (java_home_var != NULL && java_home_var[0] != 0) {
  2527         char cpu_arch[12];
  2528         char* jrelib_p;
  2529         int   len;
  2530         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
  2531 #ifdef _LP64
  2532         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
  2533         if (strcmp(cpu_arch, "sparc") == 0) {
  2534           strcat(cpu_arch, "v9");
  2535         } else if (strcmp(cpu_arch, "i386") == 0) {
  2536           strcpy(cpu_arch, "amd64");
  2538 #endif
  2539         // Check the current module name "libjvm.so" or "libjvm_g.so".
  2540         p = strrchr(buf, '/');
  2541         assert(strstr(p, "/libjvm") == p, "invalid library name");
  2542         p = strstr(p, "_g") ? "_g" : "";
  2544         realpath(java_home_var, buf);
  2545         // determine if this is a legacy image or modules image
  2546         // modules image doesn't have "jre" subdirectory
  2547         len = strlen(buf);
  2548         jrelib_p = buf + len;
  2549         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
  2550         if (0 != access(buf, F_OK)) {
  2551           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
  2554         if (0 == access(buf, F_OK)) {
  2555           // Use current module name "libjvm[_g].so" instead of
  2556           // "libjvm"debug_only("_g")".so" since for fastdebug version
  2557           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
  2558           len = strlen(buf);
  2559           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
  2560         } else {
  2561           // Go back to path of .so
  2562           realpath((char *)dlinfo.dli_fname, buf);
  2568   strcpy(saved_jvm_path, buf);
  2572 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  2573   // no prefix required, not even "_"
  2577 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  2578   // no suffix required
  2581 // This method is a copy of JDK's sysGetLastErrorString
  2582 // from src/solaris/hpi/src/system_md.c
  2584 size_t os::lasterror(char *buf, size_t len) {
  2586   if (errno == 0)  return 0;
  2588   const char *s = ::strerror(errno);
  2589   size_t n = ::strlen(s);
  2590   if (n >= len) {
  2591     n = len - 1;
  2593   ::strncpy(buf, s, n);
  2594   buf[n] = '\0';
  2595   return n;
  2599 // sun.misc.Signal
  2601 extern "C" {
  2602   static void UserHandler(int sig, void *siginfo, void *context) {
  2603     // Ctrl-C is pressed during error reporting, likely because the error
  2604     // handler fails to abort. Let VM die immediately.
  2605     if (sig == SIGINT && is_error_reported()) {
  2606        os::die();
  2609     os::signal_notify(sig);
  2610     // We do not need to reinstate the signal handler each time...
  2614 void* os::user_handler() {
  2615   return CAST_FROM_FN_PTR(void*, UserHandler);
  2618 extern "C" {
  2619   typedef void (*sa_handler_t)(int);
  2620   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  2623 void* os::signal(int signal_number, void* handler) {
  2624   struct sigaction sigAct, oldSigAct;
  2625   sigfillset(&(sigAct.sa_mask));
  2626   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
  2627   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  2629   if (sigaction(signal_number, &sigAct, &oldSigAct))
  2630     // -1 means registration failed
  2631     return (void *)-1;
  2633   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  2636 void os::signal_raise(int signal_number) {
  2637   raise(signal_number);
  2640 /*
  2641  * The following code is moved from os.cpp for making this
  2642  * code platform specific, which it is by its very nature.
  2643  */
  2645 // a counter for each possible signal value
  2646 static int Sigexit = 0;
  2647 static int Maxlibjsigsigs;
  2648 static jint *pending_signals = NULL;
  2649 static int *preinstalled_sigs = NULL;
  2650 static struct sigaction *chainedsigactions = NULL;
  2651 static sema_t sig_sem;
  2652 typedef int (*version_getting_t)();
  2653 version_getting_t os::Solaris::get_libjsig_version = NULL;
  2654 static int libjsigversion = NULL;
  2656 int os::sigexitnum_pd() {
  2657   assert(Sigexit > 0, "signal memory not yet initialized");
  2658   return Sigexit;
  2661 void os::Solaris::init_signal_mem() {
  2662   // Initialize signal structures
  2663   Maxsignum = SIGRTMAX;
  2664   Sigexit = Maxsignum+1;
  2665   assert(Maxsignum >0, "Unable to obtain max signal number");
  2667   Maxlibjsigsigs = Maxsignum;
  2669   // pending_signals has one int per signal
  2670   // The additional signal is for SIGEXIT - exit signal to signal_thread
  2671   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1));
  2672   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
  2674   if (UseSignalChaining) {
  2675      chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
  2676        * (Maxsignum + 1));
  2677      memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
  2678      preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1));
  2679      memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
  2681   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1 ));
  2682   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
  2685 void os::signal_init_pd() {
  2686   int ret;
  2688   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
  2689   assert(ret == 0, "sema_init() failed");
  2692 void os::signal_notify(int signal_number) {
  2693   int ret;
  2695   Atomic::inc(&pending_signals[signal_number]);
  2696   ret = ::sema_post(&sig_sem);
  2697   assert(ret == 0, "sema_post() failed");
  2700 static int check_pending_signals(bool wait_for_signal) {
  2701   int ret;
  2702   while (true) {
  2703     for (int i = 0; i < Sigexit + 1; i++) {
  2704       jint n = pending_signals[i];
  2705       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  2706         return i;
  2709     if (!wait_for_signal) {
  2710       return -1;
  2712     JavaThread *thread = JavaThread::current();
  2713     ThreadBlockInVM tbivm(thread);
  2715     bool threadIsSuspended;
  2716     do {
  2717       thread->set_suspend_equivalent();
  2718       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  2719       while((ret = ::sema_wait(&sig_sem)) == EINTR)
  2721       assert(ret == 0, "sema_wait() failed");
  2723       // were we externally suspended while we were waiting?
  2724       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  2725       if (threadIsSuspended) {
  2726         //
  2727         // The semaphore has been incremented, but while we were waiting
  2728         // another thread suspended us. We don't want to continue running
  2729         // while suspended because that would surprise the thread that
  2730         // suspended us.
  2731         //
  2732         ret = ::sema_post(&sig_sem);
  2733         assert(ret == 0, "sema_post() failed");
  2735         thread->java_suspend_self();
  2737     } while (threadIsSuspended);
  2741 int os::signal_lookup() {
  2742   return check_pending_signals(false);
  2745 int os::signal_wait() {
  2746   return check_pending_signals(true);
  2749 ////////////////////////////////////////////////////////////////////////////////
  2750 // Virtual Memory
  2752 static int page_size = -1;
  2754 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
  2755 // clear this var if support is not available.
  2756 static bool has_map_align = true;
  2758 int os::vm_page_size() {
  2759   assert(page_size != -1, "must call os::init");
  2760   return page_size;
  2763 // Solaris allocates memory by pages.
  2764 int os::vm_allocation_granularity() {
  2765   assert(page_size != -1, "must call os::init");
  2766   return page_size;
  2769 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
  2770   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2771   size_t size = bytes;
  2772   return
  2773      NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
  2776 bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint,
  2777                        bool exec) {
  2778   if (commit_memory(addr, bytes, exec)) {
  2779     if (UseMPSS && alignment_hint > (size_t)vm_page_size()) {
  2780       // If the large page size has been set and the VM
  2781       // is using large pages, use the large page size
  2782       // if it is smaller than the alignment hint. This is
  2783       // a case where the VM wants to use a larger alignment size
  2784       // for its own reasons but still want to use large pages
  2785       // (which is what matters to setting the mpss range.
  2786       size_t page_size = 0;
  2787       if (large_page_size() < alignment_hint) {
  2788         assert(UseLargePages, "Expected to be here for large page use only");
  2789         page_size = large_page_size();
  2790       } else {
  2791         // If the alignment hint is less than the large page
  2792         // size, the VM wants a particular alignment (thus the hint)
  2793         // for internal reasons.  Try to set the mpss range using
  2794         // the alignment_hint.
  2795         page_size = alignment_hint;
  2797       // Since this is a hint, ignore any failures.
  2798       (void)Solaris::set_mpss_range(addr, bytes, page_size);
  2800     return true;
  2802   return false;
  2805 // Uncommit the pages in a specified region.
  2806 void os::free_memory(char* addr, size_t bytes) {
  2807   if (madvise(addr, bytes, MADV_FREE) < 0) {
  2808     debug_only(warning("MADV_FREE failed."));
  2809     return;
  2813 bool os::create_stack_guard_pages(char* addr, size_t size) {
  2814   return os::commit_memory(addr, size);
  2817 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2818   return os::uncommit_memory(addr, size);
  2821 // Change the page size in a given range.
  2822 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2823   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
  2824   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
  2825   Solaris::set_mpss_range(addr, bytes, alignment_hint);
  2828 // Tell the OS to make the range local to the first-touching LWP
  2829 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2830   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2831   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
  2832     debug_only(warning("MADV_ACCESS_LWP failed."));
  2836 // Tell the OS that this range would be accessed from different LWPs.
  2837 void os::numa_make_global(char *addr, size_t bytes) {
  2838   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
  2839   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
  2840     debug_only(warning("MADV_ACCESS_MANY failed."));
  2844 // Get the number of the locality groups.
  2845 size_t os::numa_get_groups_num() {
  2846   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
  2847   return n != -1 ? n : 1;
  2850 // Get a list of leaf locality groups. A leaf lgroup is group that
  2851 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
  2852 // board. An LWP is assigned to one of these groups upon creation.
  2853 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2854    if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
  2855      ids[0] = 0;
  2856      return 1;
  2858    int result_size = 0, top = 1, bottom = 0, cur = 0;
  2859    for (int k = 0; k < size; k++) {
  2860      int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
  2861                                     (Solaris::lgrp_id_t*)&ids[top], size - top);
  2862      if (r == -1) {
  2863        ids[0] = 0;
  2864        return 1;
  2866      if (!r) {
  2867        // That's a leaf node.
  2868        assert (bottom <= cur, "Sanity check");
  2869        // Check if the node has memory
  2870        if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
  2871                                    NULL, 0, LGRP_RSRC_MEM) > 0) {
  2872          ids[bottom++] = ids[cur];
  2875      top += r;
  2876      cur++;
  2878    if (bottom == 0) {
  2879      // Handle a situation, when the OS reports no memory available.
  2880      // Assume UMA architecture.
  2881      ids[0] = 0;
  2882      return 1;
  2884    return bottom;
  2887 // Detect the topology change. Typically happens during CPU plugging-unplugging.
  2888 bool os::numa_topology_changed() {
  2889   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
  2890   if (is_stale != -1 && is_stale) {
  2891     Solaris::lgrp_fini(Solaris::lgrp_cookie());
  2892     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
  2893     assert(c != 0, "Failure to initialize LGRP API");
  2894     Solaris::set_lgrp_cookie(c);
  2895     return true;
  2897   return false;
  2900 // Get the group id of the current LWP.
  2901 int os::numa_get_group_id() {
  2902   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
  2903   if (lgrp_id == -1) {
  2904     return 0;
  2906   const int size = os::numa_get_groups_num();
  2907   int *ids = (int*)alloca(size * sizeof(int));
  2909   // Get the ids of all lgroups with memory; r is the count.
  2910   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
  2911                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
  2912   if (r <= 0) {
  2913     return 0;
  2915   return ids[os::random() % r];
  2918 // Request information about the page.
  2919 bool os::get_page_info(char *start, page_info* info) {
  2920   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2921   uint64_t addr = (uintptr_t)start;
  2922   uint64_t outdata[2];
  2923   uint_t validity = 0;
  2925   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
  2926     return false;
  2929   info->size = 0;
  2930   info->lgrp_id = -1;
  2932   if ((validity & 1) != 0) {
  2933     if ((validity & 2) != 0) {
  2934       info->lgrp_id = outdata[0];
  2936     if ((validity & 4) != 0) {
  2937       info->size = outdata[1];
  2939     return true;
  2941   return false;
  2944 // Scan the pages from start to end until a page different than
  2945 // the one described in the info parameter is encountered.
  2946 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2947   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
  2948   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
  2949   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT];
  2950   uint_t validity[MAX_MEMINFO_CNT];
  2952   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
  2953   uint64_t p = (uint64_t)start;
  2954   while (p < (uint64_t)end) {
  2955     addrs[0] = p;
  2956     size_t addrs_count = 1;
  2957     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] < (uint64_t)end) {
  2958       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
  2959       addrs_count++;
  2962     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
  2963       return NULL;
  2966     size_t i = 0;
  2967     for (; i < addrs_count; i++) {
  2968       if ((validity[i] & 1) != 0) {
  2969         if ((validity[i] & 4) != 0) {
  2970           if (outdata[types * i + 1] != page_expected->size) {
  2971             break;
  2973         } else
  2974           if (page_expected->size != 0) {
  2975             break;
  2978         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
  2979           if (outdata[types * i] != page_expected->lgrp_id) {
  2980             break;
  2983       } else {
  2984         return NULL;
  2988     if (i != addrs_count) {
  2989       if ((validity[i] & 2) != 0) {
  2990         page_found->lgrp_id = outdata[types * i];
  2991       } else {
  2992         page_found->lgrp_id = -1;
  2994       if ((validity[i] & 4) != 0) {
  2995         page_found->size = outdata[types * i + 1];
  2996       } else {
  2997         page_found->size = 0;
  2999       return (char*)addrs[i];
  3002     p = addrs[addrs_count - 1] + page_size;
  3004   return end;
  3007 bool os::uncommit_memory(char* addr, size_t bytes) {
  3008   size_t size = bytes;
  3009   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3010   // uncommitted page. Otherwise, the read/write might succeed if we
  3011   // have enough swap space to back the physical page.
  3012   return
  3013     NULL != Solaris::mmap_chunk(addr, size,
  3014                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
  3015                                 PROT_NONE);
  3018 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
  3019   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
  3021   if (b == MAP_FAILED) {
  3022     return NULL;
  3024   return b;
  3027 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes, size_t alignment_hint, bool fixed) {
  3028   char* addr = requested_addr;
  3029   int flags = MAP_PRIVATE | MAP_NORESERVE;
  3031   assert(!(fixed && (alignment_hint > 0)), "alignment hint meaningless with fixed mmap");
  3033   if (fixed) {
  3034     flags |= MAP_FIXED;
  3035   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
  3036     flags |= MAP_ALIGN;
  3037     addr = (char*) alignment_hint;
  3040   // Map uncommitted pages PROT_NONE so we fail early if we touch an
  3041   // uncommitted page. Otherwise, the read/write might succeed if we
  3042   // have enough swap space to back the physical page.
  3043   return mmap_chunk(addr, bytes, flags, PROT_NONE);
  3046 char* os::reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
  3047   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint, (requested_addr != NULL));
  3049   guarantee(requested_addr == NULL || requested_addr == addr,
  3050             "OS failed to return requested mmap address.");
  3051   return addr;
  3054 // Reserve memory at an arbitrary address, only if that area is
  3055 // available (and not reserved for something else).
  3057 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  3058   const int max_tries = 10;
  3059   char* base[max_tries];
  3060   size_t size[max_tries];
  3062   // Solaris adds a gap between mmap'ed regions.  The size of the gap
  3063   // is dependent on the requested size and the MMU.  Our initial gap
  3064   // value here is just a guess and will be corrected later.
  3065   bool had_top_overlap = false;
  3066   bool have_adjusted_gap = false;
  3067   size_t gap = 0x400000;
  3069   // Assert only that the size is a multiple of the page size, since
  3070   // that's all that mmap requires, and since that's all we really know
  3071   // about at this low abstraction level.  If we need higher alignment,
  3072   // we can either pass an alignment to this method or verify alignment
  3073   // in one of the methods further up the call chain.  See bug 5044738.
  3074   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  3076   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
  3077   // Give it a try, if the kernel honors the hint we can return immediately.
  3078   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
  3079   volatile int err = errno;
  3080   if (addr == requested_addr) {
  3081     return addr;
  3082   } else if (addr != NULL) {
  3083     unmap_memory(addr, bytes);
  3086   if (PrintMiscellaneous && Verbose) {
  3087     char buf[256];
  3088     buf[0] = '\0';
  3089     if (addr == NULL) {
  3090       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
  3092     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
  3093             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
  3094             "%s", bytes, requested_addr, addr, buf);
  3097   // Address hint method didn't work.  Fall back to the old method.
  3098   // In theory, once SNV becomes our oldest supported platform, this
  3099   // code will no longer be needed.
  3100   //
  3101   // Repeatedly allocate blocks until the block is allocated at the
  3102   // right spot. Give up after max_tries.
  3103   int i;
  3104   for (i = 0; i < max_tries; ++i) {
  3105     base[i] = reserve_memory(bytes);
  3107     if (base[i] != NULL) {
  3108       // Is this the block we wanted?
  3109       if (base[i] == requested_addr) {
  3110         size[i] = bytes;
  3111         break;
  3114       // check that the gap value is right
  3115       if (had_top_overlap && !have_adjusted_gap) {
  3116         size_t actual_gap = base[i-1] - base[i] - bytes;
  3117         if (gap != actual_gap) {
  3118           // adjust the gap value and retry the last 2 allocations
  3119           assert(i > 0, "gap adjustment code problem");
  3120           have_adjusted_gap = true;  // adjust the gap only once, just in case
  3121           gap = actual_gap;
  3122           if (PrintMiscellaneous && Verbose) {
  3123             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
  3125           unmap_memory(base[i], bytes);
  3126           unmap_memory(base[i-1], size[i-1]);
  3127           i-=2;
  3128           continue;
  3132       // Does this overlap the block we wanted? Give back the overlapped
  3133       // parts and try again.
  3134       //
  3135       // There is still a bug in this code: if top_overlap == bytes,
  3136       // the overlap is offset from requested region by the value of gap.
  3137       // In this case giving back the overlapped part will not work,
  3138       // because we'll give back the entire block at base[i] and
  3139       // therefore the subsequent allocation will not generate a new gap.
  3140       // This could be fixed with a new algorithm that used larger
  3141       // or variable size chunks to find the requested region -
  3142       // but such a change would introduce additional complications.
  3143       // It's rare enough that the planets align for this bug,
  3144       // so we'll just wait for a fix for 6204603/5003415 which
  3145       // will provide a mmap flag to allow us to avoid this business.
  3147       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  3148       if (top_overlap >= 0 && top_overlap < bytes) {
  3149         had_top_overlap = true;
  3150         unmap_memory(base[i], top_overlap);
  3151         base[i] += top_overlap;
  3152         size[i] = bytes - top_overlap;
  3153       } else {
  3154         size_t bottom_overlap = base[i] + bytes - requested_addr;
  3155         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  3156           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
  3157             warning("attempt_reserve_memory_at: possible alignment bug");
  3159           unmap_memory(requested_addr, bottom_overlap);
  3160           size[i] = bytes - bottom_overlap;
  3161         } else {
  3162           size[i] = bytes;
  3168   // Give back the unused reserved pieces.
  3170   for (int j = 0; j < i; ++j) {
  3171     if (base[j] != NULL) {
  3172       unmap_memory(base[j], size[j]);
  3176   return (i < max_tries) ? requested_addr : NULL;
  3179 bool os::release_memory(char* addr, size_t bytes) {
  3180   size_t size = bytes;
  3181   return munmap(addr, size) == 0;
  3184 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
  3185   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
  3186          "addr must be page aligned");
  3187   int retVal = mprotect(addr, bytes, prot);
  3188   return retVal == 0;
  3191 // Protect memory (Used to pass readonly pages through
  3192 // JNI GetArray<type>Elements with empty arrays.)
  3193 // Also, used for serialization page and for compressed oops null pointer
  3194 // checking.
  3195 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  3196                         bool is_committed) {
  3197   unsigned int p = 0;
  3198   switch (prot) {
  3199   case MEM_PROT_NONE: p = PROT_NONE; break;
  3200   case MEM_PROT_READ: p = PROT_READ; break;
  3201   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  3202   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  3203   default:
  3204     ShouldNotReachHere();
  3206   // is_committed is unused.
  3207   return solaris_mprotect(addr, bytes, p);
  3210 // guard_memory and unguard_memory only happens within stack guard pages.
  3211 // Since ISM pertains only to the heap, guard and unguard memory should not
  3212 /// happen with an ISM region.
  3213 bool os::guard_memory(char* addr, size_t bytes) {
  3214   return solaris_mprotect(addr, bytes, PROT_NONE);
  3217 bool os::unguard_memory(char* addr, size_t bytes) {
  3218   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
  3221 // Large page support
  3223 // UseLargePages is the master flag to enable/disable large page memory.
  3224 // UseMPSS and UseISM are supported for compatibility reasons. Their combined
  3225 // effects can be described in the following table:
  3226 //
  3227 // UseLargePages UseMPSS UseISM
  3228 //    false         *       *   => UseLargePages is the master switch, turning
  3229 //                                 it off will turn off both UseMPSS and
  3230 //                                 UseISM. VM will not use large page memory
  3231 //                                 regardless the settings of UseMPSS/UseISM.
  3232 //     true      false    false => Unless future Solaris provides other
  3233 //                                 mechanism to use large page memory, this
  3234 //                                 combination is equivalent to -UseLargePages,
  3235 //                                 VM will not use large page memory
  3236 //     true      true     false => JVM will use MPSS for large page memory.
  3237 //                                 This is the default behavior.
  3238 //     true      false    true  => JVM will use ISM for large page memory.
  3239 //     true      true     true  => JVM will use ISM if it is available.
  3240 //                                 Otherwise, JVM will fall back to MPSS.
  3241 //                                 Becaues ISM is now available on all
  3242 //                                 supported Solaris versions, this combination
  3243 //                                 is equivalent to +UseISM -UseMPSS.
  3245 typedef int (*getpagesizes_func_type) (size_t[], int);
  3246 static size_t _large_page_size = 0;
  3248 bool os::Solaris::ism_sanity_check(bool warn, size_t * page_size) {
  3249   // x86 uses either 2M or 4M page, depending on whether PAE (Physical Address
  3250   // Extensions) mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. Sparc
  3251   // can support multiple page sizes.
  3253   // Don't bother to probe page size because getpagesizes() comes with MPSS.
  3254   // ISM is only recommended on old Solaris where there is no MPSS support.
  3255   // Simply choose a conservative value as default.
  3256   *page_size = LargePageSizeInBytes ? LargePageSizeInBytes :
  3257                SPARC_ONLY(4 * M) IA32_ONLY(4 * M) AMD64_ONLY(2 * M)
  3258                ARM_ONLY(2 * M);
  3260   // ISM is available on all supported Solaris versions
  3261   return true;
  3264 // Insertion sort for small arrays (descending order).
  3265 static void insertion_sort_descending(size_t* array, int len) {
  3266   for (int i = 0; i < len; i++) {
  3267     size_t val = array[i];
  3268     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
  3269       size_t tmp = array[key];
  3270       array[key] = array[key - 1];
  3271       array[key - 1] = tmp;
  3276 bool os::Solaris::mpss_sanity_check(bool warn, size_t * page_size) {
  3277   getpagesizes_func_type getpagesizes_func =
  3278     CAST_TO_FN_PTR(getpagesizes_func_type, dlsym(RTLD_DEFAULT, "getpagesizes"));
  3279   if (getpagesizes_func == NULL) {
  3280     if (warn) {
  3281       warning("MPSS is not supported by the operating system.");
  3283     return false;
  3286   const unsigned int usable_count = VM_Version::page_size_count();
  3287   if (usable_count == 1) {
  3288     return false;
  3291   // Fill the array of page sizes.
  3292   int n = getpagesizes_func(_page_sizes, page_sizes_max);
  3293   assert(n > 0, "Solaris bug?");
  3294   if (n == page_sizes_max) {
  3295     // Add a sentinel value (necessary only if the array was completely filled
  3296     // since it is static (zeroed at initialization)).
  3297     _page_sizes[--n] = 0;
  3298     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
  3300   assert(_page_sizes[n] == 0, "missing sentinel");
  3302   if (n == 1) return false;     // Only one page size available.
  3304   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
  3305   // select up to usable_count elements.  First sort the array, find the first
  3306   // acceptable value, then copy the usable sizes to the top of the array and
  3307   // trim the rest.  Make sure to include the default page size :-).
  3308   //
  3309   // A better policy could get rid of the 4M limit by taking the sizes of the
  3310   // important VM memory regions (java heap and possibly the code cache) into
  3311   // account.
  3312   insertion_sort_descending(_page_sizes, n);
  3313   const size_t size_limit =
  3314     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
  3315   int beg;
  3316   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */ ;
  3317   const int end = MIN2((int)usable_count, n) - 1;
  3318   for (int cur = 0; cur < end; ++cur, ++beg) {
  3319     _page_sizes[cur] = _page_sizes[beg];
  3321   _page_sizes[end] = vm_page_size();
  3322   _page_sizes[end + 1] = 0;
  3324   if (_page_sizes[end] > _page_sizes[end - 1]) {
  3325     // Default page size is not the smallest; sort again.
  3326     insertion_sort_descending(_page_sizes, end + 1);
  3328   *page_size = _page_sizes[0];
  3330   return true;
  3333 bool os::large_page_init() {
  3334   if (!UseLargePages) {
  3335     UseISM = false;
  3336     UseMPSS = false;
  3337     return false;
  3340   // print a warning if any large page related flag is specified on command line
  3341   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
  3342                          !FLAG_IS_DEFAULT(UseISM)               ||
  3343                          !FLAG_IS_DEFAULT(UseMPSS)              ||
  3344                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
  3345   UseISM = UseISM &&
  3346            Solaris::ism_sanity_check(warn_on_failure, &_large_page_size);
  3347   if (UseISM) {
  3348     // ISM disables MPSS to be compatible with old JDK behavior
  3349     UseMPSS = false;
  3350     _page_sizes[0] = _large_page_size;
  3351     _page_sizes[1] = vm_page_size();
  3354   UseMPSS = UseMPSS &&
  3355             Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
  3357   UseLargePages = UseISM || UseMPSS;
  3358   return UseLargePages;
  3361 bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
  3362   // Signal to OS that we want large pages for addresses
  3363   // from addr, addr + bytes
  3364   struct memcntl_mha mpss_struct;
  3365   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
  3366   mpss_struct.mha_pagesize = align;
  3367   mpss_struct.mha_flags = 0;
  3368   if (memcntl(start, bytes, MC_HAT_ADVISE,
  3369               (caddr_t) &mpss_struct, 0, 0) < 0) {
  3370     debug_only(warning("Attempt to use MPSS failed."));
  3371     return false;
  3373   return true;
  3376 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
  3377   // "exec" is passed in but not used.  Creating the shared image for
  3378   // the code cache doesn't have an SHM_X executable permission to check.
  3379   assert(UseLargePages && UseISM, "only for ISM large pages");
  3381   size_t size = bytes;
  3382   char* retAddr = NULL;
  3383   int shmid;
  3384   key_t ismKey;
  3386   bool warn_on_failure = UseISM &&
  3387                         (!FLAG_IS_DEFAULT(UseLargePages)         ||
  3388                          !FLAG_IS_DEFAULT(UseISM)                ||
  3389                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  3390                         );
  3391   char msg[128];
  3393   ismKey = IPC_PRIVATE;
  3395   // Create a large shared memory region to attach to based on size.
  3396   // Currently, size is the total size of the heap
  3397   shmid = shmget(ismKey, size, SHM_R | SHM_W | IPC_CREAT);
  3398   if (shmid == -1){
  3399      if (warn_on_failure) {
  3400        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  3401        warning(msg);
  3403      return NULL;
  3406   // Attach to the region
  3407   retAddr = (char *) shmat(shmid, 0, SHM_SHARE_MMU | SHM_R | SHM_W);
  3408   int err = errno;
  3410   // Remove shmid. If shmat() is successful, the actual shared memory segment
  3411   // will be deleted when it's detached by shmdt() or when the process
  3412   // terminates. If shmat() is not successful this will remove the shared
  3413   // segment immediately.
  3414   shmctl(shmid, IPC_RMID, NULL);
  3416   if (retAddr == (char *) -1) {
  3417     if (warn_on_failure) {
  3418       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  3419       warning(msg);
  3421     return NULL;
  3424   return retAddr;
  3427 bool os::release_memory_special(char* base, size_t bytes) {
  3428   // detaching the SHM segment will also delete it, see reserve_memory_special()
  3429   int rslt = shmdt(base);
  3430   return rslt == 0;
  3433 size_t os::large_page_size() {
  3434   return _large_page_size;
  3437 // MPSS allows application to commit large page memory on demand; with ISM
  3438 // the entire memory region must be allocated as shared memory.
  3439 bool os::can_commit_large_page_memory() {
  3440   return UseISM ? false : true;
  3443 bool os::can_execute_large_page_memory() {
  3444   return UseISM ? false : true;
  3447 static int os_sleep(jlong millis, bool interruptible) {
  3448   const jlong limit = INT_MAX;
  3449   jlong prevtime;
  3450   int res;
  3452   while (millis > limit) {
  3453     if ((res = os_sleep(limit, interruptible)) != OS_OK)
  3454       return res;
  3455     millis -= limit;
  3458   // Restart interrupted polls with new parameters until the proper delay
  3459   // has been completed.
  3461   prevtime = getTimeMillis();
  3463   while (millis > 0) {
  3464     jlong newtime;
  3466     if (!interruptible) {
  3467       // Following assert fails for os::yield_all:
  3468       // assert(!thread->is_Java_thread(), "must not be java thread");
  3469       res = poll(NULL, 0, millis);
  3470     } else {
  3471       JavaThread *jt = JavaThread::current();
  3473       INTERRUPTIBLE_NORESTART_VM_ALWAYS(poll(NULL, 0, millis), res, jt,
  3474         os::Solaris::clear_interrupted);
  3477     // INTERRUPTIBLE_NORESTART_VM_ALWAYS returns res == OS_INTRPT for
  3478     // thread.Interrupt.
  3480     // See c/r 6751923. Poll can return 0 before time
  3481     // has elapsed if time is set via clock_settime (as NTP does).
  3482     // res == 0 if poll timed out (see man poll RETURN VALUES)
  3483     // using the logic below checks that we really did
  3484     // sleep at least "millis" if not we'll sleep again.
  3485     if( ( res == 0 ) || ((res == OS_ERR) && (errno == EINTR))) {
  3486       newtime = getTimeMillis();
  3487       assert(newtime >= prevtime, "time moving backwards");
  3488     /* Doing prevtime and newtime in microseconds doesn't help precision,
  3489        and trying to round up to avoid lost milliseconds can result in a
  3490        too-short delay. */
  3491       millis -= newtime - prevtime;
  3492       if(millis <= 0)
  3493         return OS_OK;
  3494       prevtime = newtime;
  3495     } else
  3496       return res;
  3499   return OS_OK;
  3502 // Read calls from inside the vm need to perform state transitions
  3503 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  3504   INTERRUPTIBLE_RETURN_INT_VM(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3507 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
  3508   INTERRUPTIBLE_RETURN_INT(::read(fd, buf, nBytes), os::Solaris::clear_interrupted);
  3511 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  3512   assert(thread == Thread::current(),  "thread consistency check");
  3514   // TODO-FIXME: this should be removed.
  3515   // On Solaris machines (especially 2.5.1) we found that sometimes the VM gets into a live lock
  3516   // situation with a JavaThread being starved out of a lwp. The kernel doesn't seem to generate
  3517   // a SIGWAITING signal which would enable the threads library to create a new lwp for the starving
  3518   // thread. We suspect that because the Watcher thread keeps waking up at periodic intervals the kernel
  3519   // is fooled into believing that the system is making progress. In the code below we block the
  3520   // the watcher thread while safepoint is in progress so that it would not appear as though the
  3521   // system is making progress.
  3522   if (!Solaris::T2_libthread() &&
  3523       thread->is_Watcher_thread() && SafepointSynchronize::is_synchronizing() && !Arguments::has_profile()) {
  3524     // We now try to acquire the threads lock. Since this lock is held by the VM thread during
  3525     // the entire safepoint, the watcher thread will  line up here during the safepoint.
  3526     Threads_lock->lock_without_safepoint_check();
  3527     Threads_lock->unlock();
  3530   if (thread->is_Java_thread()) {
  3531     // This is a JavaThread so we honor the _thread_blocked protocol
  3532     // even for sleeps of 0 milliseconds. This was originally done
  3533     // as a workaround for bug 4338139. However, now we also do it
  3534     // to honor the suspend-equivalent protocol.
  3536     JavaThread *jt = (JavaThread *) thread;
  3537     ThreadBlockInVM tbivm(jt);
  3539     jt->set_suspend_equivalent();
  3540     // cleared by handle_special_suspend_equivalent_condition() or
  3541     // java_suspend_self() via check_and_wait_while_suspended()
  3543     int ret_code;
  3544     if (millis <= 0) {
  3545       thr_yield();
  3546       ret_code = 0;
  3547     } else {
  3548       // The original sleep() implementation did not create an
  3549       // OSThreadWaitState helper for sleeps of 0 milliseconds.
  3550       // I'm preserving that decision for now.
  3551       OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  3553       ret_code = os_sleep(millis, interruptible);
  3556     // were we externally suspended while we were waiting?
  3557     jt->check_and_wait_while_suspended();
  3559     return ret_code;
  3562   // non-JavaThread from this point on:
  3564   if (millis <= 0) {
  3565     thr_yield();
  3566     return 0;
  3569   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  3571   return os_sleep(millis, interruptible);
  3574 int os::naked_sleep() {
  3575   // %% make the sleep time an integer flag. for now use 1 millisec.
  3576   return os_sleep(1, false);
  3579 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  3580 void os::infinite_sleep() {
  3581   while (true) {    // sleep forever ...
  3582     ::sleep(100);   // ... 100 seconds at a time
  3586 // Used to convert frequent JVM_Yield() to nops
  3587 bool os::dont_yield() {
  3588   if (DontYieldALot) {
  3589     static hrtime_t last_time = 0;
  3590     hrtime_t diff = getTimeNanos() - last_time;
  3592     if (diff < DontYieldALotInterval * 1000000)
  3593       return true;
  3595     last_time += diff;
  3597     return false;
  3599   else {
  3600     return false;
  3604 // Caveat: Solaris os::yield() causes a thread-state transition whereas
  3605 // the linux and win32 implementations do not.  This should be checked.
  3607 void os::yield() {
  3608   // Yields to all threads with same or greater priority
  3609   os::sleep(Thread::current(), 0, false);
  3612 // Note that yield semantics are defined by the scheduling class to which
  3613 // the thread currently belongs.  Typically, yield will _not yield to
  3614 // other equal or higher priority threads that reside on the dispatch queues
  3615 // of other CPUs.
  3617 os::YieldResult os::NakedYield() { thr_yield(); return os::YIELD_UNKNOWN; }
  3620 // On Solaris we found that yield_all doesn't always yield to all other threads.
  3621 // There have been cases where there is a thread ready to execute but it doesn't
  3622 // get an lwp as the VM thread continues to spin with sleeps of 1 millisecond.
  3623 // The 1 millisecond wait doesn't seem long enough for the kernel to issue a
  3624 // SIGWAITING signal which will cause a new lwp to be created. So we count the
  3625 // number of times yield_all is called in the one loop and increase the sleep
  3626 // time after 8 attempts. If this fails too we increase the concurrency level
  3627 // so that the starving thread would get an lwp
  3629 void os::yield_all(int attempts) {
  3630   // Yields to all threads, including threads with lower priorities
  3631   if (attempts == 0) {
  3632     os::sleep(Thread::current(), 1, false);
  3633   } else {
  3634     int iterations = attempts % 30;
  3635     if (iterations == 0 && !os::Solaris::T2_libthread()) {
  3636       // thr_setconcurrency and _getconcurrency make sense only under T1.
  3637       int noofLWPS = thr_getconcurrency();
  3638       if (noofLWPS < (Threads::number_of_threads() + 2)) {
  3639         thr_setconcurrency(thr_getconcurrency() + 1);
  3641     } else if (iterations < 25) {
  3642       os::sleep(Thread::current(), 1, false);
  3643     } else {
  3644       os::sleep(Thread::current(), 10, false);
  3649 // Called from the tight loops to possibly influence time-sharing heuristics
  3650 void os::loop_breaker(int attempts) {
  3651   os::yield_all(attempts);
  3655 // Interface for setting lwp priorities.  If we are using T2 libthread,
  3656 // which forces the use of BoundThreads or we manually set UseBoundThreads,
  3657 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
  3658 // function is meaningless in this mode so we must adjust the real lwp's priority
  3659 // The routines below implement the getting and setting of lwp priorities.
  3660 //
  3661 // Note: There are three priority scales used on Solaris.  Java priotities
  3662 //       which range from 1 to 10, libthread "thr_setprio" scale which range
  3663 //       from 0 to 127, and the current scheduling class of the process we
  3664 //       are running in.  This is typically from -60 to +60.
  3665 //       The setting of the lwp priorities in done after a call to thr_setprio
  3666 //       so Java priorities are mapped to libthread priorities and we map from
  3667 //       the latter to lwp priorities.  We don't keep priorities stored in
  3668 //       Java priorities since some of our worker threads want to set priorities
  3669 //       higher than all Java threads.
  3670 //
  3671 // For related information:
  3672 // (1)  man -s 2 priocntl
  3673 // (2)  man -s 4 priocntl
  3674 // (3)  man dispadmin
  3675 // =    librt.so
  3676 // =    libthread/common/rtsched.c - thrp_setlwpprio().
  3677 // =    ps -cL <pid> ... to validate priority.
  3678 // =    sched_get_priority_min and _max
  3679 //              pthread_create
  3680 //              sched_setparam
  3681 //              pthread_setschedparam
  3682 //
  3683 // Assumptions:
  3684 // +    We assume that all threads in the process belong to the same
  3685 //              scheduling class.   IE. an homogenous process.
  3686 // +    Must be root or in IA group to change change "interactive" attribute.
  3687 //              Priocntl() will fail silently.  The only indication of failure is when
  3688 //              we read-back the value and notice that it hasn't changed.
  3689 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
  3690 // +    For RT, change timeslice as well.  Invariant:
  3691 //              constant "priority integral"
  3692 //              Konst == TimeSlice * (60-Priority)
  3693 //              Given a priority, compute appropriate timeslice.
  3694 // +    Higher numerical values have higher priority.
  3696 // sched class attributes
  3697 typedef struct {
  3698         int   schedPolicy;              // classID
  3699         int   maxPrio;
  3700         int   minPrio;
  3701 } SchedInfo;
  3704 static SchedInfo tsLimits, iaLimits, rtLimits;
  3706 #ifdef ASSERT
  3707 static int  ReadBackValidate = 1;
  3708 #endif
  3709 static int  myClass     = 0;
  3710 static int  myMin       = 0;
  3711 static int  myMax       = 0;
  3712 static int  myCur       = 0;
  3713 static bool priocntl_enable = false;
  3716 // Call the version of priocntl suitable for all supported versions
  3717 // of Solaris. We need to call through this wrapper so that we can
  3718 // build on Solaris 9 and run on Solaris 8, 9 and 10.
  3719 //
  3720 // This code should be removed if we ever stop supporting Solaris 8
  3721 // and earlier releases.
  3723 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3724 typedef long (*priocntl_type)(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg);
  3725 static priocntl_type priocntl_ptr = priocntl_stub;
  3727 // Stub to set the value of the real pointer, and then call the real
  3728 // function.
  3730 static long priocntl_stub(int pcver, idtype_t idtype, id_t id, int cmd, caddr_t arg) {
  3731   // Try Solaris 8- name only.
  3732   priocntl_type tmp = (priocntl_type)dlsym(RTLD_DEFAULT, "__priocntl");
  3733   guarantee(tmp != NULL, "priocntl function not found.");
  3734   priocntl_ptr = tmp;
  3735   return (*priocntl_ptr)(PC_VERSION, idtype, id, cmd, arg);
  3739 // lwp_priocntl_init
  3740 //
  3741 // Try to determine the priority scale for our process.
  3742 //
  3743 // Return errno or 0 if OK.
  3744 //
  3745 static
  3746 int     lwp_priocntl_init ()
  3748   int rslt;
  3749   pcinfo_t ClassInfo;
  3750   pcparms_t ParmInfo;
  3751   int i;
  3753   if (!UseThreadPriorities) return 0;
  3755   // We are using Bound threads, we need to determine our priority ranges
  3756   if (os::Solaris::T2_libthread() || UseBoundThreads) {
  3757     // If ThreadPriorityPolicy is 1, switch tables
  3758     if (ThreadPriorityPolicy == 1) {
  3759       for (i = 0 ; i < MaxPriority+1; i++)
  3760         os::java_to_os_priority[i] = prio_policy1[i];
  3763   // Not using Bound Threads, set to ThreadPolicy 1
  3764   else {
  3765     for ( i = 0 ; i < MaxPriority+1; i++ ) {
  3766       os::java_to_os_priority[i] = prio_policy1[i];
  3768     return 0;
  3772   // Get IDs for a set of well-known scheduling classes.
  3773   // TODO-FIXME: GETCLINFO returns the current # of classes in the
  3774   // the system.  We should have a loop that iterates over the
  3775   // classID values, which are known to be "small" integers.
  3777   strcpy(ClassInfo.pc_clname, "TS");
  3778   ClassInfo.pc_cid = -1;
  3779   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3780   if (rslt < 0) return errno;
  3781   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
  3782   tsLimits.schedPolicy = ClassInfo.pc_cid;
  3783   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
  3784   tsLimits.minPrio = -tsLimits.maxPrio;
  3786   strcpy(ClassInfo.pc_clname, "IA");
  3787   ClassInfo.pc_cid = -1;
  3788   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3789   if (rslt < 0) return errno;
  3790   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
  3791   iaLimits.schedPolicy = ClassInfo.pc_cid;
  3792   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
  3793   iaLimits.minPrio = -iaLimits.maxPrio;
  3795   strcpy(ClassInfo.pc_clname, "RT");
  3796   ClassInfo.pc_cid = -1;
  3797   rslt = (*priocntl_ptr)(PC_VERSION, P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
  3798   if (rslt < 0) return errno;
  3799   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
  3800   rtLimits.schedPolicy = ClassInfo.pc_cid;
  3801   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
  3802   rtLimits.minPrio = 0;
  3805   // Query our "current" scheduling class.
  3806   // This will normally be IA,TS or, rarely, RT.
  3807   memset (&ParmInfo, 0, sizeof(ParmInfo));
  3808   ParmInfo.pc_cid = PC_CLNULL;
  3809   rslt = (*priocntl_ptr) (PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo );
  3810   if ( rslt < 0 ) return errno;
  3811   myClass = ParmInfo.pc_cid;
  3813   // We now know our scheduling classId, get specific information
  3814   // the class.
  3815   ClassInfo.pc_cid = myClass;
  3816   ClassInfo.pc_clname[0] = 0;
  3817   rslt = (*priocntl_ptr) (PC_VERSION, (idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo );
  3818   if ( rslt < 0 ) return errno;
  3820   if (ThreadPriorityVerbose)
  3821     tty->print_cr ("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
  3823   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3824   ParmInfo.pc_cid = PC_CLNULL;
  3825   rslt = (*priocntl_ptr)(PC_VERSION, P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
  3826   if (rslt < 0) return errno;
  3828   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3829     myMin = rtLimits.minPrio;
  3830     myMax = rtLimits.maxPrio;
  3831   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3832     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3833     myMin = iaLimits.minPrio;
  3834     myMax = iaLimits.maxPrio;
  3835     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
  3836   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3837     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3838     myMin = tsLimits.minPrio;
  3839     myMax = tsLimits.maxPrio;
  3840     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
  3841   } else {
  3842     // No clue - punt
  3843     if (ThreadPriorityVerbose)
  3844       tty->print_cr ("Unknown scheduling class: %s ... \n", ClassInfo.pc_clname);
  3845     return EINVAL;      // no clue, punt
  3848   if (ThreadPriorityVerbose)
  3849         tty->print_cr ("Thread priority Range: [%d..%d]\n", myMin, myMax);
  3851   priocntl_enable = true;  // Enable changing priorities
  3852   return 0;
  3855 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
  3856 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
  3857 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
  3860 // scale_to_lwp_priority
  3861 //
  3862 // Convert from the libthread "thr_setprio" scale to our current
  3863 // lwp scheduling class scale.
  3864 //
  3865 static
  3866 int     scale_to_lwp_priority (int rMin, int rMax, int x)
  3868   int v;
  3870   if (x == 127) return rMax;            // avoid round-down
  3871     v = (((x*(rMax-rMin)))/128)+rMin;
  3872   return v;
  3876 // set_lwp_priority
  3877 //
  3878 // Set the priority of the lwp.  This call should only be made
  3879 // when using bound threads (T2 threads are bound by default).
  3880 //
  3881 int     set_lwp_priority (int ThreadID, int lwpid, int newPrio )
  3883   int rslt;
  3884   int Actual, Expected, prv;
  3885   pcparms_t ParmInfo;                   // for GET-SET
  3886 #ifdef ASSERT
  3887   pcparms_t ReadBack;                   // for readback
  3888 #endif
  3890   // Set priority via PC_GETPARMS, update, PC_SETPARMS
  3891   // Query current values.
  3892   // TODO: accelerate this by eliminating the PC_GETPARMS call.
  3893   // Cache "pcparms_t" in global ParmCache.
  3894   // TODO: elide set-to-same-value
  3896   // If something went wrong on init, don't change priorities.
  3897   if ( !priocntl_enable ) {
  3898     if (ThreadPriorityVerbose)
  3899       tty->print_cr("Trying to set priority but init failed, ignoring");
  3900     return EINVAL;
  3904   // If lwp hasn't started yet, just return
  3905   // the _start routine will call us again.
  3906   if ( lwpid <= 0 ) {
  3907     if (ThreadPriorityVerbose) {
  3908       tty->print_cr ("deferring the set_lwp_priority of thread " INTPTR_FORMAT " to %d, lwpid not set",
  3909                      ThreadID, newPrio);
  3911     return 0;
  3914   if (ThreadPriorityVerbose) {
  3915     tty->print_cr ("set_lwp_priority(" INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
  3916                    ThreadID, lwpid, newPrio);
  3919   memset(&ParmInfo, 0, sizeof(pcparms_t));
  3920   ParmInfo.pc_cid = PC_CLNULL;
  3921   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
  3922   if (rslt < 0) return errno;
  3924   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3925     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
  3926     rtInfo->rt_pri     = scale_to_lwp_priority (rtLimits.minPrio, rtLimits.maxPrio, newPrio);
  3927     rtInfo->rt_tqsecs  = RT_NOCHANGE;
  3928     rtInfo->rt_tqnsecs = RT_NOCHANGE;
  3929     if (ThreadPriorityVerbose) {
  3930       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
  3932   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3933     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
  3934     int maxClamped     = MIN2(iaLimits.maxPrio, (int)iaInfo->ia_uprilim);
  3935     iaInfo->ia_upri    = scale_to_lwp_priority(iaLimits.minPrio, maxClamped, newPrio);
  3936     iaInfo->ia_uprilim = IA_NOCHANGE;
  3937     iaInfo->ia_mode    = IA_NOCHANGE;
  3938     if (ThreadPriorityVerbose) {
  3939       tty->print_cr ("IA: [%d...%d] %d->%d\n",
  3940                iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
  3942   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3943     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
  3944     int maxClamped     = MIN2(tsLimits.maxPrio, (int)tsInfo->ts_uprilim);
  3945     prv                = tsInfo->ts_upri;
  3946     tsInfo->ts_upri    = scale_to_lwp_priority(tsLimits.minPrio, maxClamped, newPrio);
  3947     tsInfo->ts_uprilim = IA_NOCHANGE;
  3948     if (ThreadPriorityVerbose) {
  3949       tty->print_cr ("TS: %d [%d...%d] %d->%d\n",
  3950                prv, tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
  3952     if (prv == tsInfo->ts_upri) return 0;
  3953   } else {
  3954     if ( ThreadPriorityVerbose ) {
  3955       tty->print_cr ("Unknown scheduling class\n");
  3957       return EINVAL;    // no clue, punt
  3960   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
  3961   if (ThreadPriorityVerbose && rslt) {
  3962     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
  3964   if (rslt < 0) return errno;
  3966 #ifdef ASSERT
  3967   // Sanity check: read back what we just attempted to set.
  3968   // In theory it could have changed in the interim ...
  3969   //
  3970   // The priocntl system call is tricky.
  3971   // Sometimes it'll validate the priority value argument and
  3972   // return EINVAL if unhappy.  At other times it fails silently.
  3973   // Readbacks are prudent.
  3975   if (!ReadBackValidate) return 0;
  3977   memset(&ReadBack, 0, sizeof(pcparms_t));
  3978   ReadBack.pc_cid = PC_CLNULL;
  3979   rslt = (*priocntl_ptr)(PC_VERSION, P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
  3980   assert(rslt >= 0, "priocntl failed");
  3981   Actual = Expected = 0xBAD;
  3982   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
  3983   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
  3984     Actual   = RTPRI(ReadBack)->rt_pri;
  3985     Expected = RTPRI(ParmInfo)->rt_pri;
  3986   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
  3987     Actual   = IAPRI(ReadBack)->ia_upri;
  3988     Expected = IAPRI(ParmInfo)->ia_upri;
  3989   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
  3990     Actual   = TSPRI(ReadBack)->ts_upri;
  3991     Expected = TSPRI(ParmInfo)->ts_upri;
  3992   } else {
  3993     if ( ThreadPriorityVerbose ) {
  3994       tty->print_cr("set_lwp_priority: unexpected class in readback: %d\n", ParmInfo.pc_cid);
  3998   if (Actual != Expected) {
  3999     if ( ThreadPriorityVerbose ) {
  4000       tty->print_cr ("set_lwp_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
  4001              lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
  4004 #endif
  4006   return 0;
  4011 // Solaris only gives access to 128 real priorities at a time,
  4012 // so we expand Java's ten to fill this range.  This would be better
  4013 // if we dynamically adjusted relative priorities.
  4014 //
  4015 // The ThreadPriorityPolicy option allows us to select 2 different
  4016 // priority scales.
  4017 //
  4018 // ThreadPriorityPolicy=0
  4019 // Since the Solaris' default priority is MaximumPriority, we do not
  4020 // set a priority lower than Max unless a priority lower than
  4021 // NormPriority is requested.
  4022 //
  4023 // ThreadPriorityPolicy=1
  4024 // This mode causes the priority table to get filled with
  4025 // linear values.  NormPriority get's mapped to 50% of the
  4026 // Maximum priority an so on.  This will cause VM threads
  4027 // to get unfair treatment against other Solaris processes
  4028 // which do not explicitly alter their thread priorities.
  4029 //
  4032 int os::java_to_os_priority[MaxPriority + 1] = {
  4033   -99999,         // 0 Entry should never be used
  4035   0,              // 1 MinPriority
  4036   32,             // 2
  4037   64,             // 3
  4039   96,             // 4
  4040   127,            // 5 NormPriority
  4041   127,            // 6
  4043   127,            // 7
  4044   127,            // 8
  4045   127,            // 9 NearMaxPriority
  4047   127             // 10 MaxPriority
  4048 };
  4051 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  4052   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
  4053   if ( !UseThreadPriorities ) return OS_OK;
  4054   int status = thr_setprio(thread->osthread()->thread_id(), newpri);
  4055   if ( os::Solaris::T2_libthread() || (UseBoundThreads && thread->osthread()->is_vm_created()) )
  4056     status |= (set_lwp_priority (thread->osthread()->thread_id(),
  4057                     thread->osthread()->lwp_id(), newpri ));
  4058   return (status == 0) ? OS_OK : OS_ERR;
  4062 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  4063   int p;
  4064   if ( !UseThreadPriorities ) {
  4065     *priority_ptr = NormalPriority;
  4066     return OS_OK;
  4068   int status = thr_getprio(thread->osthread()->thread_id(), &p);
  4069   if (status != 0) {
  4070     return OS_ERR;
  4072   *priority_ptr = p;
  4073   return OS_OK;
  4077 // Hint to the underlying OS that a task switch would not be good.
  4078 // Void return because it's a hint and can fail.
  4079 void os::hint_no_preempt() {
  4080   schedctl_start(schedctl_init());
  4083 void os::interrupt(Thread* thread) {
  4084   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4086   OSThread* osthread = thread->osthread();
  4088   int isInterrupted = osthread->interrupted();
  4089   if (!isInterrupted) {
  4090       osthread->set_interrupted(true);
  4091       OrderAccess::fence();
  4092       // os::sleep() is implemented with either poll (NULL,0,timeout) or
  4093       // by parking on _SleepEvent.  If the former, thr_kill will unwedge
  4094       // the sleeper by SIGINTR, otherwise the unpark() will wake the sleeper.
  4095       ParkEvent * const slp = thread->_SleepEvent ;
  4096       if (slp != NULL) slp->unpark() ;
  4099   // For JSR166:  unpark after setting status but before thr_kill -dl
  4100   if (thread->is_Java_thread()) {
  4101     ((JavaThread*)thread)->parker()->unpark();
  4104   // Handle interruptible wait() ...
  4105   ParkEvent * const ev = thread->_ParkEvent ;
  4106   if (ev != NULL) ev->unpark() ;
  4108   // When events are used everywhere for os::sleep, then this thr_kill
  4109   // will only be needed if UseVMInterruptibleIO is true.
  4111   if (!isInterrupted) {
  4112     int status = thr_kill(osthread->thread_id(), os::Solaris::SIGinterrupt());
  4113     assert_status(status == 0, status, "thr_kill");
  4115     // Bump thread interruption counter
  4116     RuntimeService::record_thread_interrupt_signaled_count();
  4121 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  4122   assert(Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer");
  4124   OSThread* osthread = thread->osthread();
  4126   bool res = osthread->interrupted();
  4128   // NOTE that since there is no "lock" around these two operations,
  4129   // there is the possibility that the interrupted flag will be
  4130   // "false" but that the interrupt event will be set. This is
  4131   // intentional. The effect of this is that Object.wait() will appear
  4132   // to have a spurious wakeup, which is not harmful, and the
  4133   // possibility is so rare that it is not worth the added complexity
  4134   // to add yet another lock. It has also been recommended not to put
  4135   // the interrupted flag into the os::Solaris::Event structure,
  4136   // because it hides the issue.
  4137   if (res && clear_interrupted) {
  4138     osthread->set_interrupted(false);
  4140   return res;
  4144 void os::print_statistics() {
  4147 int os::message_box(const char* title, const char* message) {
  4148   int i;
  4149   fdStream err(defaultStream::error_fd());
  4150   for (i = 0; i < 78; i++) err.print_raw("=");
  4151   err.cr();
  4152   err.print_raw_cr(title);
  4153   for (i = 0; i < 78; i++) err.print_raw("-");
  4154   err.cr();
  4155   err.print_raw_cr(message);
  4156   for (i = 0; i < 78; i++) err.print_raw("=");
  4157   err.cr();
  4159   char buf[16];
  4160   // Prevent process from exiting upon "read error" without consuming all CPU
  4161   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  4163   return buf[0] == 'y' || buf[0] == 'Y';
  4166 // A lightweight implementation that does not suspend the target thread and
  4167 // thus returns only a hint. Used for profiling only!
  4168 ExtendedPC os::get_thread_pc(Thread* thread) {
  4169   // Make sure that it is called by the watcher and the Threads lock is owned.
  4170   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
  4171   // For now, is only used to profile the VM Thread
  4172   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  4173   ExtendedPC epc;
  4175   GetThreadPC_Callback  cb(ProfileVM_lock);
  4176   OSThread *osthread = thread->osthread();
  4177   const int time_to_wait = 400; // 400ms wait for initial response
  4178   int status = cb.interrupt(thread, time_to_wait);
  4180   if (cb.is_done() ) {
  4181     epc = cb.addr();
  4182   } else {
  4183     DEBUG_ONLY(tty->print_cr("Failed to get pc for thread: %d got %d status",
  4184                               osthread->thread_id(), status););
  4185     // epc is already NULL
  4187   return epc;
  4191 // This does not do anything on Solaris. This is basically a hook for being
  4192 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
  4193 void os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method, JavaCallArguments* args, Thread* thread) {
  4194   f(value, method, args, thread);
  4197 // This routine may be used by user applications as a "hook" to catch signals.
  4198 // The user-defined signal handler must pass unrecognized signals to this
  4199 // routine, and if it returns true (non-zero), then the signal handler must
  4200 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  4201 // routine will never retun false (zero), but instead will execute a VM panic
  4202 // routine kill the process.
  4203 //
  4204 // If this routine returns false, it is OK to call it again.  This allows
  4205 // the user-defined signal handler to perform checks either before or after
  4206 // the VM performs its own checks.  Naturally, the user code would be making
  4207 // a serious error if it tried to handle an exception (such as a null check
  4208 // or breakpoint) that the VM was generating for its own correct operation.
  4209 //
  4210 // This routine may recognize any of the following kinds of signals:
  4211 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
  4212 // os::Solaris::SIGasync
  4213 // It should be consulted by handlers for any of those signals.
  4214 // It explicitly does not recognize os::Solaris::SIGinterrupt
  4215 //
  4216 // The caller of this routine must pass in the three arguments supplied
  4217 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  4218 // field of the structure passed to sigaction().  This routine assumes that
  4219 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  4220 //
  4221 // Note that the VM will print warnings if it detects conflicting signal
  4222 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  4223 //
  4224 extern "C" int JVM_handle_solaris_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
  4227 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
  4228   JVM_handle_solaris_signal(sig, info, ucVoid, true);
  4231 /* Do not delete - if guarantee is ever removed,  a signal handler (even empty)
  4232    is needed to provoke threads blocked on IO to return an EINTR
  4233    Note: this explicitly does NOT call JVM_handle_solaris_signal and
  4234    does NOT participate in signal chaining due to requirement for
  4235    NOT setting SA_RESTART to make EINTR work. */
  4236 extern "C" void sigINTRHandler(int sig, siginfo_t* info, void* ucVoid) {
  4237    if (UseSignalChaining) {
  4238       struct sigaction *actp = os::Solaris::get_chained_signal_action(sig);
  4239       if (actp && actp->sa_handler) {
  4240         vm_exit_during_initialization("Signal chaining detected for VM interrupt signal, try -XX:+UseAltSigs");
  4245 // This boolean allows users to forward their own non-matching signals
  4246 // to JVM_handle_solaris_signal, harmlessly.
  4247 bool os::Solaris::signal_handlers_are_installed = false;
  4249 // For signal-chaining
  4250 bool os::Solaris::libjsig_is_loaded = false;
  4251 typedef struct sigaction *(*get_signal_t)(int);
  4252 get_signal_t os::Solaris::get_signal_action = NULL;
  4254 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
  4255   struct sigaction *actp = NULL;
  4257   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
  4258     // Retrieve the old signal handler from libjsig
  4259     actp = (*get_signal_action)(sig);
  4261   if (actp == NULL) {
  4262     // Retrieve the preinstalled signal handler from jvm
  4263     actp = get_preinstalled_handler(sig);
  4266   return actp;
  4269 static bool call_chained_handler(struct sigaction *actp, int sig,
  4270                                  siginfo_t *siginfo, void *context) {
  4271   // Call the old signal handler
  4272   if (actp->sa_handler == SIG_DFL) {
  4273     // It's more reasonable to let jvm treat it as an unexpected exception
  4274     // instead of taking the default action.
  4275     return false;
  4276   } else if (actp->sa_handler != SIG_IGN) {
  4277     if ((actp->sa_flags & SA_NODEFER) == 0) {
  4278       // automaticlly block the signal
  4279       sigaddset(&(actp->sa_mask), sig);
  4282     sa_handler_t hand;
  4283     sa_sigaction_t sa;
  4284     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  4285     // retrieve the chained handler
  4286     if (siginfo_flag_set) {
  4287       sa = actp->sa_sigaction;
  4288     } else {
  4289       hand = actp->sa_handler;
  4292     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  4293       actp->sa_handler = SIG_DFL;
  4296     // try to honor the signal mask
  4297     sigset_t oset;
  4298     thr_sigsetmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  4300     // call into the chained handler
  4301     if (siginfo_flag_set) {
  4302       (*sa)(sig, siginfo, context);
  4303     } else {
  4304       (*hand)(sig);
  4307     // restore the signal mask
  4308     thr_sigsetmask(SIG_SETMASK, &oset, 0);
  4310   // Tell jvm's signal handler the signal is taken care of.
  4311   return true;
  4314 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  4315   bool chained = false;
  4316   // signal-chaining
  4317   if (UseSignalChaining) {
  4318     struct sigaction *actp = get_chained_signal_action(sig);
  4319     if (actp != NULL) {
  4320       chained = call_chained_handler(actp, sig, siginfo, context);
  4323   return chained;
  4326 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
  4327   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4328   if (preinstalled_sigs[sig] != 0) {
  4329     return &chainedsigactions[sig];
  4331   return NULL;
  4334 void os::Solaris::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  4336   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
  4337   assert((chainedsigactions != (struct sigaction *)NULL) && (preinstalled_sigs != (int *)NULL) , "signals not yet initialized");
  4338   chainedsigactions[sig] = oldAct;
  4339   preinstalled_sigs[sig] = 1;
  4342 void os::Solaris::set_signal_handler(int sig, bool set_installed, bool oktochain) {
  4343   // Check for overwrite.
  4344   struct sigaction oldAct;
  4345   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  4346   void* oldhand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  4347                                       : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  4348   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  4349       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  4350       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
  4351     if (AllowUserSignalHandlers || !set_installed) {
  4352       // Do not overwrite; user takes responsibility to forward to us.
  4353       return;
  4354     } else if (UseSignalChaining) {
  4355       if (oktochain) {
  4356         // save the old handler in jvm
  4357         save_preinstalled_handler(sig, oldAct);
  4358       } else {
  4359         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal, try -XX:+UseAltSigs.");
  4361       // libjsig also interposes the sigaction() call below and saves the
  4362       // old sigaction on it own.
  4363     } else {
  4364       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  4365                     "%#lx for signal %d.", (long)oldhand, sig));
  4369   struct sigaction sigAct;
  4370   sigfillset(&(sigAct.sa_mask));
  4371   sigAct.sa_handler = SIG_DFL;
  4373   sigAct.sa_sigaction = signalHandler;
  4374   // Handle SIGSEGV on alternate signal stack if
  4375   // not using stack banging
  4376   if (!UseStackBanging && sig == SIGSEGV) {
  4377     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
  4378   // Interruptible i/o requires SA_RESTART cleared so EINTR
  4379   // is returned instead of restarting system calls
  4380   } else if (sig == os::Solaris::SIGinterrupt()) {
  4381     sigemptyset(&sigAct.sa_mask);
  4382     sigAct.sa_handler = NULL;
  4383     sigAct.sa_flags = SA_SIGINFO;
  4384     sigAct.sa_sigaction = sigINTRHandler;
  4385   } else {
  4386     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
  4388   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
  4390   sigaction(sig, &sigAct, &oldAct);
  4392   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  4393                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  4394   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  4398 #define DO_SIGNAL_CHECK(sig) \
  4399   if (!sigismember(&check_signal_done, sig)) \
  4400     os::Solaris::check_signal_handler(sig)
  4402 // This method is a periodic task to check for misbehaving JNI applications
  4403 // under CheckJNI, we can add any periodic checks here
  4405 void os::run_periodic_checks() {
  4406   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
  4407   // thereby preventing a NULL checks.
  4408   if(!check_addr0_done) check_addr0_done = check_addr0(tty);
  4410   if (check_signals == false) return;
  4412   // SEGV and BUS if overridden could potentially prevent
  4413   // generation of hs*.log in the event of a crash, debugging
  4414   // such a case can be very challenging, so we absolutely
  4415   // check for the following for a good measure:
  4416   DO_SIGNAL_CHECK(SIGSEGV);
  4417   DO_SIGNAL_CHECK(SIGILL);
  4418   DO_SIGNAL_CHECK(SIGFPE);
  4419   DO_SIGNAL_CHECK(SIGBUS);
  4420   DO_SIGNAL_CHECK(SIGPIPE);
  4421   DO_SIGNAL_CHECK(SIGXFSZ);
  4423   // ReduceSignalUsage allows the user to override these handlers
  4424   // see comments at the very top and jvm_solaris.h
  4425   if (!ReduceSignalUsage) {
  4426     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  4427     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  4428     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  4429     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  4432   // See comments above for using JVM1/JVM2 and UseAltSigs
  4433   DO_SIGNAL_CHECK(os::Solaris::SIGinterrupt());
  4434   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
  4438 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  4440 static os_sigaction_t os_sigaction = NULL;
  4442 void os::Solaris::check_signal_handler(int sig) {
  4443   char buf[O_BUFLEN];
  4444   address jvmHandler = NULL;
  4446   struct sigaction act;
  4447   if (os_sigaction == NULL) {
  4448     // only trust the default sigaction, in case it has been interposed
  4449     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  4450     if (os_sigaction == NULL) return;
  4453   os_sigaction(sig, (struct sigaction*)NULL, &act);
  4455   address thisHandler = (act.sa_flags & SA_SIGINFO)
  4456     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  4457     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  4460   switch(sig) {
  4461     case SIGSEGV:
  4462     case SIGBUS:
  4463     case SIGFPE:
  4464     case SIGPIPE:
  4465     case SIGXFSZ:
  4466     case SIGILL:
  4467       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4468       break;
  4470     case SHUTDOWN1_SIGNAL:
  4471     case SHUTDOWN2_SIGNAL:
  4472     case SHUTDOWN3_SIGNAL:
  4473     case BREAK_SIGNAL:
  4474       jvmHandler = (address)user_handler();
  4475       break;
  4477     default:
  4478       int intrsig = os::Solaris::SIGinterrupt();
  4479       int asynsig = os::Solaris::SIGasync();
  4481       if (sig == intrsig) {
  4482         jvmHandler = CAST_FROM_FN_PTR(address, sigINTRHandler);
  4483       } else if (sig == asynsig) {
  4484         jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
  4485       } else {
  4486         return;
  4488       break;
  4492   if (thisHandler != jvmHandler) {
  4493     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  4494     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  4495     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  4496     // No need to check this sig any longer
  4497     sigaddset(&check_signal_done, sig);
  4498   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
  4499     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  4500     tty->print("expected:" PTR32_FORMAT, os::Solaris::get_our_sigflags(sig));
  4501     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  4502     // No need to check this sig any longer
  4503     sigaddset(&check_signal_done, sig);
  4506   // Print all the signal handler state
  4507   if (sigismember(&check_signal_done, sig)) {
  4508     print_signal_handlers(tty, buf, O_BUFLEN);
  4513 void os::Solaris::install_signal_handlers() {
  4514   bool libjsigdone = false;
  4515   signal_handlers_are_installed = true;
  4517   // signal-chaining
  4518   typedef void (*signal_setting_t)();
  4519   signal_setting_t begin_signal_setting = NULL;
  4520   signal_setting_t end_signal_setting = NULL;
  4521   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4522                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  4523   if (begin_signal_setting != NULL) {
  4524     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  4525                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  4526     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  4527                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  4528     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
  4529                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
  4530     libjsig_is_loaded = true;
  4531     if (os::Solaris::get_libjsig_version != NULL) {
  4532       libjsigversion =  (*os::Solaris::get_libjsig_version)();
  4534     assert(UseSignalChaining, "should enable signal-chaining");
  4536   if (libjsig_is_loaded) {
  4537     // Tell libjsig jvm is setting signal handlers
  4538     (*begin_signal_setting)();
  4541   set_signal_handler(SIGSEGV, true, true);
  4542   set_signal_handler(SIGPIPE, true, true);
  4543   set_signal_handler(SIGXFSZ, true, true);
  4544   set_signal_handler(SIGBUS, true, true);
  4545   set_signal_handler(SIGILL, true, true);
  4546   set_signal_handler(SIGFPE, true, true);
  4549   if (os::Solaris::SIGinterrupt() > OLDMAXSIGNUM || os::Solaris::SIGasync() > OLDMAXSIGNUM) {
  4551     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
  4552     // can not register overridable signals which might be > 32
  4553     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
  4554     // Tell libjsig jvm has finished setting signal handlers
  4555       (*end_signal_setting)();
  4556       libjsigdone = true;
  4560   // Never ok to chain our SIGinterrupt
  4561   set_signal_handler(os::Solaris::SIGinterrupt(), true, false);
  4562   set_signal_handler(os::Solaris::SIGasync(), true, true);
  4564   if (libjsig_is_loaded && !libjsigdone) {
  4565     // Tell libjsig jvm finishes setting signal handlers
  4566     (*end_signal_setting)();
  4569   // We don't activate signal checker if libjsig is in place, we trust ourselves
  4570   // and if UserSignalHandler is installed all bets are off
  4571   if (CheckJNICalls) {
  4572     if (libjsig_is_loaded) {
  4573       tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  4574       check_signals = false;
  4576     if (AllowUserSignalHandlers) {
  4577       tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  4578       check_signals = false;
  4584 void report_error(const char* file_name, int line_no, const char* title, const char* format, ...);
  4586 const char * signames[] = {
  4587   "SIG0",
  4588   "SIGHUP", "SIGINT", "SIGQUIT", "SIGILL", "SIGTRAP",
  4589   "SIGABRT", "SIGEMT", "SIGFPE", "SIGKILL", "SIGBUS",
  4590   "SIGSEGV", "SIGSYS", "SIGPIPE", "SIGALRM", "SIGTERM",
  4591   "SIGUSR1", "SIGUSR2", "SIGCLD", "SIGPWR", "SIGWINCH",
  4592   "SIGURG", "SIGPOLL", "SIGSTOP", "SIGTSTP", "SIGCONT",
  4593   "SIGTTIN", "SIGTTOU", "SIGVTALRM", "SIGPROF", "SIGXCPU",
  4594   "SIGXFSZ", "SIGWAITING", "SIGLWP", "SIGFREEZE", "SIGTHAW",
  4595   "SIGCANCEL", "SIGLOST"
  4596 };
  4598 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  4599   if (0 < exception_code && exception_code <= SIGRTMAX) {
  4600     // signal
  4601     if (exception_code < sizeof(signames)/sizeof(const char*)) {
  4602        jio_snprintf(buf, size, "%s", signames[exception_code]);
  4603     } else {
  4604        jio_snprintf(buf, size, "SIG%d", exception_code);
  4606     return buf;
  4607   } else {
  4608     return NULL;
  4612 // (Static) wrappers for the new libthread API
  4613 int_fnP_thread_t_iP_uP_stack_tP_gregset_t os::Solaris::_thr_getstate;
  4614 int_fnP_thread_t_i_gregset_t os::Solaris::_thr_setstate;
  4615 int_fnP_thread_t_i os::Solaris::_thr_setmutator;
  4616 int_fnP_thread_t os::Solaris::_thr_suspend_mutator;
  4617 int_fnP_thread_t os::Solaris::_thr_continue_mutator;
  4619 // (Static) wrapper for getisax(2) call.
  4620 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
  4622 // (Static) wrappers for the liblgrp API
  4623 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
  4624 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
  4625 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
  4626 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
  4627 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
  4628 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
  4629 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
  4630 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
  4631 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
  4633 // (Static) wrapper for meminfo() call.
  4634 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
  4636 static address resolve_symbol_lazy(const char* name) {
  4637   address addr = (address) dlsym(RTLD_DEFAULT, name);
  4638   if(addr == NULL) {
  4639     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
  4640     addr = (address) dlsym(RTLD_NEXT, name);
  4642   return addr;
  4645 static address resolve_symbol(const char* name) {
  4646   address addr = resolve_symbol_lazy(name);
  4647   if(addr == NULL) {
  4648     fatal(dlerror());
  4650   return addr;
  4655 // isT2_libthread()
  4656 //
  4657 // Routine to determine if we are currently using the new T2 libthread.
  4658 //
  4659 // We determine if we are using T2 by reading /proc/self/lstatus and
  4660 // looking for a thread with the ASLWP bit set.  If we find this status
  4661 // bit set, we must assume that we are NOT using T2.  The T2 team
  4662 // has approved this algorithm.
  4663 //
  4664 // We need to determine if we are running with the new T2 libthread
  4665 // since setting native thread priorities is handled differently
  4666 // when using this library.  All threads created using T2 are bound
  4667 // threads. Calling thr_setprio is meaningless in this case.
  4668 //
  4669 bool isT2_libthread() {
  4670   static prheader_t * lwpArray = NULL;
  4671   static int lwpSize = 0;
  4672   static int lwpFile = -1;
  4673   lwpstatus_t * that;
  4674   char lwpName [128];
  4675   bool isT2 = false;
  4677 #define ADR(x)  ((uintptr_t)(x))
  4678 #define LWPINDEX(ary,ix)   ((lwpstatus_t *)(((ary)->pr_entsize * (ix)) + (ADR((ary) + 1))))
  4680   lwpFile = ::open("/proc/self/lstatus", O_RDONLY, 0);
  4681   if (lwpFile < 0) {
  4682       if (ThreadPriorityVerbose) warning ("Couldn't open /proc/self/lstatus\n");
  4683       return false;
  4685   lwpSize = 16*1024;
  4686   for (;;) {
  4687     ::lseek64 (lwpFile, 0, SEEK_SET);
  4688     lwpArray = (prheader_t *)NEW_C_HEAP_ARRAY(char, lwpSize);
  4689     if (::read(lwpFile, lwpArray, lwpSize) < 0) {
  4690       if (ThreadPriorityVerbose) warning("Error reading /proc/self/lstatus\n");
  4691       break;
  4693     if ((lwpArray->pr_nent * lwpArray->pr_entsize) <= lwpSize) {
  4694        // We got a good snapshot - now iterate over the list.
  4695       int aslwpcount = 0;
  4696       for (int i = 0; i < lwpArray->pr_nent; i++ ) {
  4697         that = LWPINDEX(lwpArray,i);
  4698         if (that->pr_flags & PR_ASLWP) {
  4699           aslwpcount++;
  4702       if (aslwpcount == 0) isT2 = true;
  4703       break;
  4705     lwpSize = lwpArray->pr_nent * lwpArray->pr_entsize;
  4706     FREE_C_HEAP_ARRAY(char, lwpArray);  // retry.
  4709   FREE_C_HEAP_ARRAY(char, lwpArray);
  4710   ::close (lwpFile);
  4711   if (ThreadPriorityVerbose) {
  4712     if (isT2) tty->print_cr("We are running with a T2 libthread\n");
  4713     else tty->print_cr("We are not running with a T2 libthread\n");
  4715   return isT2;
  4719 void os::Solaris::libthread_init() {
  4720   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
  4722   // Determine if we are running with the new T2 libthread
  4723   os::Solaris::set_T2_libthread(isT2_libthread());
  4725   lwp_priocntl_init();
  4727   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
  4728   if(func == NULL) {
  4729     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
  4730     // Guarantee that this VM is running on an new enough OS (5.6 or
  4731     // later) that it will have a new enough libthread.so.
  4732     guarantee(func != NULL, "libthread.so is too old.");
  4735   // Initialize the new libthread getstate API wrappers
  4736   func = resolve_symbol("thr_getstate");
  4737   os::Solaris::set_thr_getstate(CAST_TO_FN_PTR(int_fnP_thread_t_iP_uP_stack_tP_gregset_t, func));
  4739   func = resolve_symbol("thr_setstate");
  4740   os::Solaris::set_thr_setstate(CAST_TO_FN_PTR(int_fnP_thread_t_i_gregset_t, func));
  4742   func = resolve_symbol("thr_setmutator");
  4743   os::Solaris::set_thr_setmutator(CAST_TO_FN_PTR(int_fnP_thread_t_i, func));
  4745   func = resolve_symbol("thr_suspend_mutator");
  4746   os::Solaris::set_thr_suspend_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4748   func = resolve_symbol("thr_continue_mutator");
  4749   os::Solaris::set_thr_continue_mutator(CAST_TO_FN_PTR(int_fnP_thread_t, func));
  4751   int size;
  4752   void (*handler_info_func)(address *, int *);
  4753   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
  4754   handler_info_func(&handler_start, &size);
  4755   handler_end = handler_start + size;
  4759 int_fnP_mutex_tP os::Solaris::_mutex_lock;
  4760 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
  4761 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
  4762 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
  4763 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
  4764 int os::Solaris::_mutex_scope = USYNC_THREAD;
  4766 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
  4767 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
  4768 int_fnP_cond_tP os::Solaris::_cond_signal;
  4769 int_fnP_cond_tP os::Solaris::_cond_broadcast;
  4770 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
  4771 int_fnP_cond_tP os::Solaris::_cond_destroy;
  4772 int os::Solaris::_cond_scope = USYNC_THREAD;
  4774 void os::Solaris::synchronization_init() {
  4775   if(UseLWPSynchronization) {
  4776     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
  4777     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
  4778     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
  4779     os::Solaris::set_mutex_init(lwp_mutex_init);
  4780     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
  4781     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4783     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
  4784     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
  4785     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
  4786     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
  4787     os::Solaris::set_cond_init(lwp_cond_init);
  4788     os::Solaris::set_cond_destroy(lwp_cond_destroy);
  4789     os::Solaris::set_cond_scope(USYNC_THREAD);
  4791   else {
  4792     os::Solaris::set_mutex_scope(USYNC_THREAD);
  4793     os::Solaris::set_cond_scope(USYNC_THREAD);
  4795     if(UsePthreads) {
  4796       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
  4797       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
  4798       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
  4799       os::Solaris::set_mutex_init(pthread_mutex_default_init);
  4800       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
  4802       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
  4803       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
  4804       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
  4805       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
  4806       os::Solaris::set_cond_init(pthread_cond_default_init);
  4807       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
  4809     else {
  4810       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
  4811       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
  4812       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
  4813       os::Solaris::set_mutex_init(::mutex_init);
  4814       os::Solaris::set_mutex_destroy(::mutex_destroy);
  4816       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
  4817       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
  4818       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
  4819       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
  4820       os::Solaris::set_cond_init(::cond_init);
  4821       os::Solaris::set_cond_destroy(::cond_destroy);
  4826 bool os::Solaris::liblgrp_init() {
  4827   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
  4828   if (handle != NULL) {
  4829     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
  4830     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
  4831     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
  4832     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
  4833     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
  4834     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
  4835     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
  4836     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
  4837                                        dlsym(handle, "lgrp_cookie_stale")));
  4839     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
  4840     set_lgrp_cookie(c);
  4841     return true;
  4843   return false;
  4846 void os::Solaris::misc_sym_init() {
  4847   address func;
  4849   // getisax
  4850   func = resolve_symbol_lazy("getisax");
  4851   if (func != NULL) {
  4852     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
  4855   // meminfo
  4856   func = resolve_symbol_lazy("meminfo");
  4857   if (func != NULL) {
  4858     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
  4862 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
  4863   assert(_getisax != NULL, "_getisax not set");
  4864   return _getisax(array, n);
  4867 // Symbol doesn't exist in Solaris 8 pset.h
  4868 #ifndef PS_MYID
  4869 #define PS_MYID -3
  4870 #endif
  4872 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
  4873 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
  4874 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
  4876 void init_pset_getloadavg_ptr(void) {
  4877   pset_getloadavg_ptr =
  4878     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
  4879   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
  4880     warning("pset_getloadavg function not found");
  4884 int os::Solaris::_dev_zero_fd = -1;
  4886 // this is called _before_ the global arguments have been parsed
  4887 void os::init(void) {
  4888   _initial_pid = getpid();
  4890   max_hrtime = first_hrtime = gethrtime();
  4892   init_random(1234567);
  4894   page_size = sysconf(_SC_PAGESIZE);
  4895   if (page_size == -1)
  4896     fatal(err_msg("os_solaris.cpp: os::init: sysconf failed (%s)",
  4897                   strerror(errno)));
  4898   init_page_sizes((size_t) page_size);
  4900   Solaris::initialize_system_info();
  4902   // Initialize misc. symbols as soon as possible, so we can use them
  4903   // if we need them.
  4904   Solaris::misc_sym_init();
  4906   int fd = ::open("/dev/zero", O_RDWR);
  4907   if (fd < 0) {
  4908     fatal(err_msg("os::init: cannot open /dev/zero (%s)", strerror(errno)));
  4909   } else {
  4910     Solaris::set_dev_zero_fd(fd);
  4912     // Close on exec, child won't inherit.
  4913     fcntl(fd, F_SETFD, FD_CLOEXEC);
  4916   clock_tics_per_sec = CLK_TCK;
  4918   // check if dladdr1() exists; dladdr1 can provide more information than
  4919   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
  4920   // and is available on linker patches for 5.7 and 5.8.
  4921   // libdl.so must have been loaded, this call is just an entry lookup
  4922   void * hdl = dlopen("libdl.so", RTLD_NOW);
  4923   if (hdl)
  4924     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
  4926   // (Solaris only) this switches to calls that actually do locking.
  4927   ThreadCritical::initialize();
  4929   main_thread = thr_self();
  4931   // Constant minimum stack size allowed. It must be at least
  4932   // the minimum of what the OS supports (thr_min_stack()), and
  4933   // enough to allow the thread to get to user bytecode execution.
  4934   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
  4935   // If the pagesize of the VM is greater than 8K determine the appropriate
  4936   // number of initial guard pages.  The user can change this with the
  4937   // command line arguments, if needed.
  4938   if (vm_page_size() > 8*K) {
  4939     StackYellowPages = 1;
  4940     StackRedPages = 1;
  4941     StackShadowPages = round_to((StackShadowPages*8*K), vm_page_size()) / vm_page_size();
  4945 // To install functions for atexit system call
  4946 extern "C" {
  4947   static void perfMemory_exit_helper() {
  4948     perfMemory_exit();
  4952 // this is called _after_ the global arguments have been parsed
  4953 jint os::init_2(void) {
  4954   // try to enable extended file IO ASAP, see 6431278
  4955   os::Solaris::try_enable_extended_io();
  4957   // Allocate a single page and mark it as readable for safepoint polling.  Also
  4958   // use this first mmap call to check support for MAP_ALIGN.
  4959   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
  4960                                                       page_size,
  4961                                                       MAP_PRIVATE | MAP_ALIGN,
  4962                                                       PROT_READ);
  4963   if (polling_page == NULL) {
  4964     has_map_align = false;
  4965     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
  4966                                                 PROT_READ);
  4969   os::set_polling_page(polling_page);
  4971 #ifndef PRODUCT
  4972   if( Verbose && PrintMiscellaneous )
  4973     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  4974 #endif
  4976   if (!UseMembar) {
  4977     address mem_serialize_page = (address)Solaris::mmap_chunk( NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE );
  4978     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  4979     os::set_memory_serialize_page( mem_serialize_page );
  4981 #ifndef PRODUCT
  4982     if(Verbose && PrintMiscellaneous)
  4983       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  4984 #endif
  4987   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
  4989   // Check minimum allowable stack size for thread creation and to initialize
  4990   // the java system classes, including StackOverflowError - depends on page
  4991   // size.  Add a page for compiler2 recursion in main thread.
  4992   // Add in 2*BytesPerWord times page size to account for VM stack during
  4993   // class initialization depending on 32 or 64 bit VM.
  4994   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
  4995             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  4996                     2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
  4998   size_t threadStackSizeInBytes = ThreadStackSize * K;
  4999   if (threadStackSizeInBytes != 0 &&
  5000     threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
  5001     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
  5002                   os::Solaris::min_stack_allowed/K);
  5003     return JNI_ERR;
  5006   // For 64kbps there will be a 64kb page size, which makes
  5007   // the usable default stack size quite a bit less.  Increase the
  5008   // stack for 64kb (or any > than 8kb) pages, this increases
  5009   // virtual memory fragmentation (since we're not creating the
  5010   // stack on a power of 2 boundary.  The real fix for this
  5011   // should be to fix the guard page mechanism.
  5013   if (vm_page_size() > 8*K) {
  5014       threadStackSizeInBytes = (threadStackSizeInBytes != 0)
  5015          ? threadStackSizeInBytes +
  5016            ((StackYellowPages + StackRedPages) * vm_page_size())
  5017          : 0;
  5018       ThreadStackSize = threadStackSizeInBytes/K;
  5021   // Make the stack size a multiple of the page size so that
  5022   // the yellow/red zones can be guarded.
  5023   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  5024         vm_page_size()));
  5026   Solaris::libthread_init();
  5028   if (UseNUMA) {
  5029     if (!Solaris::liblgrp_init()) {
  5030       UseNUMA = false;
  5031     } else {
  5032       size_t lgrp_limit = os::numa_get_groups_num();
  5033       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
  5034       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
  5035       FREE_C_HEAP_ARRAY(int, lgrp_ids);
  5036       if (lgrp_num < 2) {
  5037         // There's only one locality group, disable NUMA.
  5038         UseNUMA = false;
  5041     if (!UseNUMA && ForceNUMA) {
  5042       UseNUMA = true;
  5046   Solaris::signal_sets_init();
  5047   Solaris::init_signal_mem();
  5048   Solaris::install_signal_handlers();
  5050   if (libjsigversion < JSIG_VERSION_1_4_1) {
  5051     Maxlibjsigsigs = OLDMAXSIGNUM;
  5054   // initialize synchronization primitives to use either thread or
  5055   // lwp synchronization (controlled by UseLWPSynchronization)
  5056   Solaris::synchronization_init();
  5058   if (MaxFDLimit) {
  5059     // set the number of file descriptors to max. print out error
  5060     // if getrlimit/setrlimit fails but continue regardless.
  5061     struct rlimit nbr_files;
  5062     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  5063     if (status != 0) {
  5064       if (PrintMiscellaneous && (Verbose || WizardMode))
  5065         perror("os::init_2 getrlimit failed");
  5066     } else {
  5067       nbr_files.rlim_cur = nbr_files.rlim_max;
  5068       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  5069       if (status != 0) {
  5070         if (PrintMiscellaneous && (Verbose || WizardMode))
  5071           perror("os::init_2 setrlimit failed");
  5076   // Calculate theoretical max. size of Threads to guard gainst
  5077   // artifical out-of-memory situations, where all available address-
  5078   // space has been reserved by thread stacks. Default stack size is 1Mb.
  5079   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
  5080     JavaThread::stack_size_at_create() : (1*K*K);
  5081   assert(pre_thread_stack_size != 0, "Must have a stack");
  5082   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
  5083   // we should start doing Virtual Memory banging. Currently when the threads will
  5084   // have used all but 200Mb of space.
  5085   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
  5086   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
  5088   // at-exit methods are called in the reverse order of their registration.
  5089   // In Solaris 7 and earlier, atexit functions are called on return from
  5090   // main or as a result of a call to exit(3C). There can be only 32 of
  5091   // these functions registered and atexit() does not set errno. In Solaris
  5092   // 8 and later, there is no limit to the number of functions registered
  5093   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
  5094   // functions are called upon dlclose(3DL) in addition to return from main
  5095   // and exit(3C).
  5097   if (PerfAllowAtExitRegistration) {
  5098     // only register atexit functions if PerfAllowAtExitRegistration is set.
  5099     // atexit functions can be delayed until process exit time, which
  5100     // can be problematic for embedded VM situations. Embedded VMs should
  5101     // call DestroyJavaVM() to assure that VM resources are released.
  5103     // note: perfMemory_exit_helper atexit function may be removed in
  5104     // the future if the appropriate cleanup code can be added to the
  5105     // VM_Exit VMOperation's doit method.
  5106     if (atexit(perfMemory_exit_helper) != 0) {
  5107       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  5111   // Init pset_loadavg function pointer
  5112   init_pset_getloadavg_ptr();
  5114   return JNI_OK;
  5117 void os::init_3(void) {
  5118   return;
  5121 // Mark the polling page as unreadable
  5122 void os::make_polling_page_unreadable(void) {
  5123   if( mprotect((char *)_polling_page, page_size, PROT_NONE) != 0 )
  5124     fatal("Could not disable polling page");
  5125 };
  5127 // Mark the polling page as readable
  5128 void os::make_polling_page_readable(void) {
  5129   if( mprotect((char *)_polling_page, page_size, PROT_READ) != 0 )
  5130     fatal("Could not enable polling page");
  5131 };
  5133 // OS interface.
  5135 bool os::check_heap(bool force) { return true; }
  5137 typedef int (*vsnprintf_t)(char* buf, size_t count, const char* fmt, va_list argptr);
  5138 static vsnprintf_t sol_vsnprintf = NULL;
  5140 int local_vsnprintf(char* buf, size_t count, const char* fmt, va_list argptr) {
  5141   if (!sol_vsnprintf) {
  5142     //search  for the named symbol in the objects that were loaded after libjvm
  5143     void* where = RTLD_NEXT;
  5144     if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5145         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5146     if (!sol_vsnprintf){
  5147       //search  for the named symbol in the objects that were loaded before libjvm
  5148       where = RTLD_DEFAULT;
  5149       if ((sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "__vsnprintf"))) == NULL)
  5150         sol_vsnprintf = CAST_TO_FN_PTR(vsnprintf_t, dlsym(where, "vsnprintf"));
  5151       assert(sol_vsnprintf != NULL, "vsnprintf not found");
  5154   return (*sol_vsnprintf)(buf, count, fmt, argptr);
  5158 // Is a (classpath) directory empty?
  5159 bool os::dir_is_empty(const char* path) {
  5160   DIR *dir = NULL;
  5161   struct dirent *ptr;
  5163   dir = opendir(path);
  5164   if (dir == NULL) return true;
  5166   /* Scan the directory */
  5167   bool result = true;
  5168   char buf[sizeof(struct dirent) + MAX_PATH];
  5169   struct dirent *dbuf = (struct dirent *) buf;
  5170   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
  5171     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  5172       result = false;
  5175   closedir(dir);
  5176   return result;
  5179 // This code originates from JDK's sysOpen and open64_w
  5180 // from src/solaris/hpi/src/system_md.c
  5182 #ifndef O_DELETE
  5183 #define O_DELETE 0x10000
  5184 #endif
  5186 // Open a file. Unlink the file immediately after open returns
  5187 // if the specified oflag has the O_DELETE flag set.
  5188 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  5190 int os::open(const char *path, int oflag, int mode) {
  5191   if (strlen(path) > MAX_PATH - 1) {
  5192     errno = ENAMETOOLONG;
  5193     return -1;
  5195   int fd;
  5196   int o_delete = (oflag & O_DELETE);
  5197   oflag = oflag & ~O_DELETE;
  5199   fd = ::open64(path, oflag, mode);
  5200   if (fd == -1) return -1;
  5202   //If the open succeeded, the file might still be a directory
  5204     struct stat64 buf64;
  5205     int ret = ::fstat64(fd, &buf64);
  5206     int st_mode = buf64.st_mode;
  5208     if (ret != -1) {
  5209       if ((st_mode & S_IFMT) == S_IFDIR) {
  5210         errno = EISDIR;
  5211         ::close(fd);
  5212         return -1;
  5214     } else {
  5215       ::close(fd);
  5216       return -1;
  5219     /*
  5220      * 32-bit Solaris systems suffer from:
  5222      * - an historical default soft limit of 256 per-process file
  5223      *   descriptors that is too low for many Java programs.
  5225      * - a design flaw where file descriptors created using stdio
  5226      *   fopen must be less than 256, _even_ when the first limit above
  5227      *   has been raised.  This can cause calls to fopen (but not calls to
  5228      *   open, for example) to fail mysteriously, perhaps in 3rd party
  5229      *   native code (although the JDK itself uses fopen).  One can hardly
  5230      *   criticize them for using this most standard of all functions.
  5232      * We attempt to make everything work anyways by:
  5234      * - raising the soft limit on per-process file descriptors beyond
  5235      *   256
  5237      * - As of Solaris 10u4, we can request that Solaris raise the 256
  5238      *   stdio fopen limit by calling function enable_extended_FILE_stdio.
  5239      *   This is done in init_2 and recorded in enabled_extended_FILE_stdio
  5241      * - If we are stuck on an old (pre 10u4) Solaris system, we can
  5242      *   workaround the bug by remapping non-stdio file descriptors below
  5243      *   256 to ones beyond 256, which is done below.
  5245      * See:
  5246      * 1085341: 32-bit stdio routines should support file descriptors >255
  5247      * 6533291: Work around 32-bit Solaris stdio limit of 256 open files
  5248      * 6431278: Netbeans crash on 32 bit Solaris: need to call
  5249      *          enable_extended_FILE_stdio() in VM initialisation
  5250      * Giri Mandalika's blog
  5251      * http://technopark02.blogspot.com/2005_05_01_archive.html
  5252      */
  5253 #ifndef  _LP64
  5254      if ((!enabled_extended_FILE_stdio) && fd < 256) {
  5255          int newfd = ::fcntl(fd, F_DUPFD, 256);
  5256          if (newfd != -1) {
  5257              ::close(fd);
  5258              fd = newfd;
  5261 #endif // 32-bit Solaris
  5262     /*
  5263      * All file descriptors that are opened in the JVM and not
  5264      * specifically destined for a subprocess should have the
  5265      * close-on-exec flag set.  If we don't set it, then careless 3rd
  5266      * party native code might fork and exec without closing all
  5267      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  5268      * UNIXProcess.c), and this in turn might:
  5270      * - cause end-of-file to fail to be detected on some file
  5271      *   descriptors, resulting in mysterious hangs, or
  5273      * - might cause an fopen in the subprocess to fail on a system
  5274      *   suffering from bug 1085341.
  5276      * (Yes, the default setting of the close-on-exec flag is a Unix
  5277      * design flaw)
  5279      * See:
  5280      * 1085341: 32-bit stdio routines should support file descriptors >255
  5281      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  5282      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  5283      */
  5284 #ifdef FD_CLOEXEC
  5286         int flags = ::fcntl(fd, F_GETFD);
  5287         if (flags != -1)
  5288             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  5290 #endif
  5292   if (o_delete != 0) {
  5293     ::unlink(path);
  5295   return fd;
  5298 // create binary file, rewriting existing file if required
  5299 int os::create_binary_file(const char* path, bool rewrite_existing) {
  5300   int oflags = O_WRONLY | O_CREAT;
  5301   if (!rewrite_existing) {
  5302     oflags |= O_EXCL;
  5304   return ::open64(path, oflags, S_IREAD | S_IWRITE);
  5307 // return current position of file pointer
  5308 jlong os::current_file_offset(int fd) {
  5309   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
  5312 // move file pointer to the specified offset
  5313 jlong os::seek_to_file_offset(int fd, jlong offset) {
  5314   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
  5317 jlong os::lseek(int fd, jlong offset, int whence) {
  5318   return (jlong) ::lseek64(fd, offset, whence);
  5321 char * os::native_path(char *path) {
  5322   return path;
  5325 int os::ftruncate(int fd, jlong length) {
  5326   return ::ftruncate64(fd, length);
  5329 int os::fsync(int fd)  {
  5330   RESTARTABLE_RETURN_INT(::fsync(fd));
  5333 int os::available(int fd, jlong *bytes) {
  5334   jlong cur, end;
  5335   int mode;
  5336   struct stat64 buf64;
  5338   if (::fstat64(fd, &buf64) >= 0) {
  5339     mode = buf64.st_mode;
  5340     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  5341       /*
  5342       * XXX: is the following call interruptible? If so, this might
  5343       * need to go through the INTERRUPT_IO() wrapper as for other
  5344       * blocking, interruptible calls in this file.
  5345       */
  5346       int n,ioctl_return;
  5348       INTERRUPTIBLE(::ioctl(fd, FIONREAD, &n),ioctl_return,os::Solaris::clear_interrupted);
  5349       if (ioctl_return>= 0) {
  5350           *bytes = n;
  5351         return 1;
  5355   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
  5356     return 0;
  5357   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
  5358     return 0;
  5359   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
  5360     return 0;
  5362   *bytes = end - cur;
  5363   return 1;
  5366 // Map a block of memory.
  5367 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  5368                      char *addr, size_t bytes, bool read_only,
  5369                      bool allow_exec) {
  5370   int prot;
  5371   int flags;
  5373   if (read_only) {
  5374     prot = PROT_READ;
  5375     flags = MAP_SHARED;
  5376   } else {
  5377     prot = PROT_READ | PROT_WRITE;
  5378     flags = MAP_PRIVATE;
  5381   if (allow_exec) {
  5382     prot |= PROT_EXEC;
  5385   if (addr != NULL) {
  5386     flags |= MAP_FIXED;
  5389   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  5390                                      fd, file_offset);
  5391   if (mapped_address == MAP_FAILED) {
  5392     return NULL;
  5394   return mapped_address;
  5398 // Remap a block of memory.
  5399 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  5400                        char *addr, size_t bytes, bool read_only,
  5401                        bool allow_exec) {
  5402   // same as map_memory() on this OS
  5403   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  5404                         allow_exec);
  5408 // Unmap a block of memory.
  5409 bool os::unmap_memory(char* addr, size_t bytes) {
  5410   return munmap(addr, bytes) == 0;
  5413 void os::pause() {
  5414   char filename[MAX_PATH];
  5415   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  5416     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  5417   } else {
  5418     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  5421   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  5422   if (fd != -1) {
  5423     struct stat buf;
  5424     ::close(fd);
  5425     while (::stat(filename, &buf) == 0) {
  5426       (void)::poll(NULL, 0, 100);
  5428   } else {
  5429     jio_fprintf(stderr,
  5430       "Could not open pause file '%s', continuing immediately.\n", filename);
  5434 #ifndef PRODUCT
  5435 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5436 // Turn this on if you need to trace synch operations.
  5437 // Set RECORD_SYNCH_LIMIT to a large-enough value,
  5438 // and call record_synch_enable and record_synch_disable
  5439 // around the computation of interest.
  5441 void record_synch(char* name, bool returning);  // defined below
  5443 class RecordSynch {
  5444   char* _name;
  5445  public:
  5446   RecordSynch(char* name) :_name(name)
  5447                  { record_synch(_name, false); }
  5448   ~RecordSynch() { record_synch(_name,   true);  }
  5449 };
  5451 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
  5452 extern "C" ret name params {                                    \
  5453   typedef ret name##_t params;                                  \
  5454   static name##_t* implem = NULL;                               \
  5455   static int callcount = 0;                                     \
  5456   if (implem == NULL) {                                         \
  5457     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
  5458     if (implem == NULL)  fatal(dlerror());                      \
  5459   }                                                             \
  5460   ++callcount;                                                  \
  5461   RecordSynch _rs(#name);                                       \
  5462   inner;                                                        \
  5463   return implem args;                                           \
  5465 // in dbx, examine callcounts this way:
  5466 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
  5468 #define CHECK_POINTER_OK(p) \
  5469   (Universe::perm_gen() == NULL || !Universe::is_reserved_heap((oop)(p)))
  5470 #define CHECK_MU \
  5471   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
  5472 #define CHECK_CV \
  5473   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
  5474 #define CHECK_P(p) \
  5475   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
  5477 #define CHECK_MUTEX(mutex_op) \
  5478 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
  5480 CHECK_MUTEX(   mutex_lock)
  5481 CHECK_MUTEX(  _mutex_lock)
  5482 CHECK_MUTEX( mutex_unlock)
  5483 CHECK_MUTEX(_mutex_unlock)
  5484 CHECK_MUTEX( mutex_trylock)
  5485 CHECK_MUTEX(_mutex_trylock)
  5487 #define CHECK_COND(cond_op) \
  5488 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU;CHECK_CV);
  5490 CHECK_COND( cond_wait);
  5491 CHECK_COND(_cond_wait);
  5492 CHECK_COND(_cond_wait_cancel);
  5494 #define CHECK_COND2(cond_op) \
  5495 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU;CHECK_CV);
  5497 CHECK_COND2( cond_timedwait);
  5498 CHECK_COND2(_cond_timedwait);
  5499 CHECK_COND2(_cond_timedwait_cancel);
  5501 // do the _lwp_* versions too
  5502 #define mutex_t lwp_mutex_t
  5503 #define cond_t  lwp_cond_t
  5504 CHECK_MUTEX(  _lwp_mutex_lock)
  5505 CHECK_MUTEX(  _lwp_mutex_unlock)
  5506 CHECK_MUTEX(  _lwp_mutex_trylock)
  5507 CHECK_MUTEX( __lwp_mutex_lock)
  5508 CHECK_MUTEX( __lwp_mutex_unlock)
  5509 CHECK_MUTEX( __lwp_mutex_trylock)
  5510 CHECK_MUTEX(___lwp_mutex_lock)
  5511 CHECK_MUTEX(___lwp_mutex_unlock)
  5513 CHECK_COND(  _lwp_cond_wait);
  5514 CHECK_COND( __lwp_cond_wait);
  5515 CHECK_COND(___lwp_cond_wait);
  5517 CHECK_COND2(  _lwp_cond_timedwait);
  5518 CHECK_COND2( __lwp_cond_timedwait);
  5519 #undef mutex_t
  5520 #undef cond_t
  5522 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5523 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
  5524 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5525 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
  5526 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5527 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
  5528 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5529 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
  5532 // recording machinery:
  5534 enum { RECORD_SYNCH_LIMIT = 200 };
  5535 char* record_synch_name[RECORD_SYNCH_LIMIT];
  5536 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
  5537 bool record_synch_returning[RECORD_SYNCH_LIMIT];
  5538 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
  5539 int record_synch_count = 0;
  5540 bool record_synch_enabled = false;
  5542 // in dbx, examine recorded data this way:
  5543 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
  5545 void record_synch(char* name, bool returning) {
  5546   if (record_synch_enabled) {
  5547     if (record_synch_count < RECORD_SYNCH_LIMIT) {
  5548       record_synch_name[record_synch_count] = name;
  5549       record_synch_returning[record_synch_count] = returning;
  5550       record_synch_thread[record_synch_count] = thr_self();
  5551       record_synch_arg0ptr[record_synch_count] = &name;
  5552       record_synch_count++;
  5554     // put more checking code here:
  5555     // ...
  5559 void record_synch_enable() {
  5560   // start collecting trace data, if not already doing so
  5561   if (!record_synch_enabled)  record_synch_count = 0;
  5562   record_synch_enabled = true;
  5565 void record_synch_disable() {
  5566   // stop collecting trace data
  5567   record_synch_enabled = false;
  5570 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
  5571 #endif // PRODUCT
  5573 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5574 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
  5575                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
  5578 // JVMTI & JVM monitoring and management support
  5579 // The thread_cpu_time() and current_thread_cpu_time() are only
  5580 // supported if is_thread_cpu_time_supported() returns true.
  5581 // They are not supported on Solaris T1.
  5583 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  5584 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  5585 // of a thread.
  5586 //
  5587 // current_thread_cpu_time() and thread_cpu_time(Thread *)
  5588 // returns the fast estimate available on the platform.
  5590 // hrtime_t gethrvtime() return value includes
  5591 // user time but does not include system time
  5592 jlong os::current_thread_cpu_time() {
  5593   return (jlong) gethrvtime();
  5596 jlong os::thread_cpu_time(Thread *thread) {
  5597   // return user level CPU time only to be consistent with
  5598   // what current_thread_cpu_time returns.
  5599   // thread_cpu_time_info() must be changed if this changes
  5600   return os::thread_cpu_time(thread, false /* user time only */);
  5603 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  5604   if (user_sys_cpu_time) {
  5605     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  5606   } else {
  5607     return os::current_thread_cpu_time();
  5611 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  5612   char proc_name[64];
  5613   int count;
  5614   prusage_t prusage;
  5615   jlong lwp_time;
  5616   int fd;
  5618   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
  5619                      getpid(),
  5620                      thread->osthread()->lwp_id());
  5621   fd = ::open(proc_name, O_RDONLY);
  5622   if ( fd == -1 ) return -1;
  5624   do {
  5625     count = ::pread(fd,
  5626                   (void *)&prusage.pr_utime,
  5627                   thr_time_size,
  5628                   thr_time_off);
  5629   } while (count < 0 && errno == EINTR);
  5630   ::close(fd);
  5631   if ( count < 0 ) return -1;
  5633   if (user_sys_cpu_time) {
  5634     // user + system CPU time
  5635     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
  5636                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
  5637                  (jlong)prusage.pr_stime.tv_nsec +
  5638                  (jlong)prusage.pr_utime.tv_nsec;
  5639   } else {
  5640     // user level CPU time only
  5641     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
  5642                 (jlong)prusage.pr_utime.tv_nsec;
  5645   return(lwp_time);
  5648 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5649   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5650   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5651   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5652   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5655 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  5656   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
  5657   info_ptr->may_skip_backward = false;    // elapsed time not wall time
  5658   info_ptr->may_skip_forward = false;     // elapsed time not wall time
  5659   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
  5662 bool os::is_thread_cpu_time_supported() {
  5663   if ( os::Solaris::T2_libthread() || UseBoundThreads ) {
  5664     return true;
  5665   } else {
  5666     return false;
  5670 // System loadavg support.  Returns -1 if load average cannot be obtained.
  5671 // Return the load average for our processor set if the primitive exists
  5672 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
  5673 int os::loadavg(double loadavg[], int nelem) {
  5674   if (pset_getloadavg_ptr != NULL) {
  5675     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
  5676   } else {
  5677     return ::getloadavg(loadavg, nelem);
  5681 //---------------------------------------------------------------------------------
  5683 static address same_page(address x, address y) {
  5684   intptr_t page_bits = -os::vm_page_size();
  5685   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  5686     return x;
  5687   else if (x > y)
  5688     return (address)(intptr_t(y) | ~page_bits) + 1;
  5689   else
  5690     return (address)(intptr_t(y) & page_bits);
  5693 bool os::find(address addr, outputStream* st) {
  5694   Dl_info dlinfo;
  5695   memset(&dlinfo, 0, sizeof(dlinfo));
  5696   if (dladdr(addr, &dlinfo)) {
  5697 #ifdef _LP64
  5698     st->print("0x%016lx: ", addr);
  5699 #else
  5700     st->print("0x%08x: ", addr);
  5701 #endif
  5702     if (dlinfo.dli_sname != NULL)
  5703       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
  5704     else if (dlinfo.dli_fname)
  5705       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
  5706     else
  5707       st->print("<absolute address>");
  5708     if (dlinfo.dli_fname)  st->print(" in %s", dlinfo.dli_fname);
  5709 #ifdef _LP64
  5710     if (dlinfo.dli_fbase)  st->print(" at 0x%016lx", dlinfo.dli_fbase);
  5711 #else
  5712     if (dlinfo.dli_fbase)  st->print(" at 0x%08x", dlinfo.dli_fbase);
  5713 #endif
  5714     st->cr();
  5716     if (Verbose) {
  5717       // decode some bytes around the PC
  5718       address begin = same_page(addr-40, addr);
  5719       address end   = same_page(addr+40, addr);
  5720       address       lowest = (address) dlinfo.dli_sname;
  5721       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  5722       if (begin < lowest)  begin = lowest;
  5723       Dl_info dlinfo2;
  5724       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  5725           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  5726         end = (address) dlinfo2.dli_saddr;
  5727       Disassembler::decode(begin, end, st);
  5729     return true;
  5731   return false;
  5734 // Following function has been added to support HotSparc's libjvm.so running
  5735 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
  5736 // src/solaris/hpi/native_threads in the EVM codebase.
  5737 //
  5738 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
  5739 // libraries and should thus be removed. We will leave it behind for a while
  5740 // until we no longer want to able to run on top of 1.3.0 Solaris production
  5741 // JDK. See 4341971.
  5743 #define STACK_SLACK 0x800
  5745 extern "C" {
  5746   intptr_t sysThreadAvailableStackWithSlack() {
  5747     stack_t st;
  5748     intptr_t retval, stack_top;
  5749     retval = thr_stksegment(&st);
  5750     assert(retval == 0, "incorrect return value from thr_stksegment");
  5751     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
  5752     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
  5753     stack_top=(intptr_t)st.ss_sp-st.ss_size;
  5754     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
  5758 // Just to get the Kernel build to link on solaris for testing.
  5760 extern "C" {
  5761 class ASGCT_CallTrace;
  5762 void AsyncGetCallTrace(ASGCT_CallTrace *trace, jint depth, void* ucontext)
  5763   KERNEL_RETURN;
  5767 // ObjectMonitor park-unpark infrastructure ...
  5768 //
  5769 // We implement Solaris and Linux PlatformEvents with the
  5770 // obvious condvar-mutex-flag triple.
  5771 // Another alternative that works quite well is pipes:
  5772 // Each PlatformEvent consists of a pipe-pair.
  5773 // The thread associated with the PlatformEvent
  5774 // calls park(), which reads from the input end of the pipe.
  5775 // Unpark() writes into the other end of the pipe.
  5776 // The write-side of the pipe must be set NDELAY.
  5777 // Unfortunately pipes consume a large # of handles.
  5778 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
  5779 // Using pipes for the 1st few threads might be workable, however.
  5780 //
  5781 // park() is permitted to return spuriously.
  5782 // Callers of park() should wrap the call to park() in
  5783 // an appropriate loop.  A litmus test for the correct
  5784 // usage of park is the following: if park() were modified
  5785 // to immediately return 0 your code should still work,
  5786 // albeit degenerating to a spin loop.
  5787 //
  5788 // An interesting optimization for park() is to use a trylock()
  5789 // to attempt to acquire the mutex.  If the trylock() fails
  5790 // then we know that a concurrent unpark() operation is in-progress.
  5791 // in that case the park() code could simply set _count to 0
  5792 // and return immediately.  The subsequent park() operation *might*
  5793 // return immediately.  That's harmless as the caller of park() is
  5794 // expected to loop.  By using trylock() we will have avoided a
  5795 // avoided a context switch caused by contention on the per-thread mutex.
  5796 //
  5797 // TODO-FIXME:
  5798 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the
  5799 //     objectmonitor implementation.
  5800 // 2.  Collapse the JSR166 parker event, and the
  5801 //     objectmonitor ParkEvent into a single "Event" construct.
  5802 // 3.  In park() and unpark() add:
  5803 //     assert (Thread::current() == AssociatedWith).
  5804 // 4.  add spurious wakeup injection on a -XX:EarlyParkReturn=N switch.
  5805 //     1-out-of-N park() operations will return immediately.
  5806 //
  5807 // _Event transitions in park()
  5808 //   -1 => -1 : illegal
  5809 //    1 =>  0 : pass - return immediately
  5810 //    0 => -1 : block
  5811 //
  5812 // _Event serves as a restricted-range semaphore.
  5813 //
  5814 // Another possible encoding of _Event would be with
  5815 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
  5816 //
  5817 // TODO-FIXME: add DTRACE probes for:
  5818 // 1.   Tx parks
  5819 // 2.   Ty unparks Tx
  5820 // 3.   Tx resumes from park
  5823 // value determined through experimentation
  5824 #define ROUNDINGFIX 11
  5826 // utility to compute the abstime argument to timedwait.
  5827 // TODO-FIXME: switch from compute_abstime() to unpackTime().
  5829 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
  5830   // millis is the relative timeout time
  5831   // abstime will be the absolute timeout time
  5832   if (millis < 0)  millis = 0;
  5833   struct timeval now;
  5834   int status = gettimeofday(&now, NULL);
  5835   assert(status == 0, "gettimeofday");
  5836   jlong seconds = millis / 1000;
  5837   jlong max_wait_period;
  5839   if (UseLWPSynchronization) {
  5840     // forward port of fix for 4275818 (not sleeping long enough)
  5841     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
  5842     // _lwp_cond_timedwait() used a round_down algorithm rather
  5843     // than a round_up. For millis less than our roundfactor
  5844     // it rounded down to 0 which doesn't meet the spec.
  5845     // For millis > roundfactor we may return a bit sooner, but
  5846     // since we can not accurately identify the patch level and
  5847     // this has already been fixed in Solaris 9 and 8 we will
  5848     // leave it alone rather than always rounding down.
  5850     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
  5851        // It appears that when we go directly through Solaris _lwp_cond_timedwait()
  5852            // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
  5853            max_wait_period = 21000000;
  5854   } else {
  5855     max_wait_period = 50000000;
  5857   millis %= 1000;
  5858   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
  5859      seconds = max_wait_period;
  5861   abstime->tv_sec = now.tv_sec  + seconds;
  5862   long       usec = now.tv_usec + millis * 1000;
  5863   if (usec >= 1000000) {
  5864     abstime->tv_sec += 1;
  5865     usec -= 1000000;
  5867   abstime->tv_nsec = usec * 1000;
  5868   return abstime;
  5871 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  5872 // Conceptually TryPark() should be equivalent to park(0).
  5874 int os::PlatformEvent::TryPark() {
  5875   for (;;) {
  5876     const int v = _Event ;
  5877     guarantee ((v == 0) || (v == 1), "invariant") ;
  5878     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  5882 void os::PlatformEvent::park() {           // AKA: down()
  5883   // Invariant: Only the thread associated with the Event/PlatformEvent
  5884   // may call park().
  5885   int v ;
  5886   for (;;) {
  5887       v = _Event ;
  5888       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5890   guarantee (v >= 0, "invariant") ;
  5891   if (v == 0) {
  5892      // Do this the hard way by blocking ...
  5893      // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5894      // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  5895      // Only for SPARC >= V8PlusA
  5896 #if defined(__sparc) && defined(COMPILER2)
  5897      if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5898 #endif
  5899      int status = os::Solaris::mutex_lock(_mutex);
  5900      assert_status(status == 0, status,  "mutex_lock");
  5901      guarantee (_nParked == 0, "invariant") ;
  5902      ++ _nParked ;
  5903      while (_Event < 0) {
  5904         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  5905         // Treat this the same as if the wait was interrupted
  5906         // With usr/lib/lwp going to kernel, always handle ETIME
  5907         status = os::Solaris::cond_wait(_cond, _mutex);
  5908         if (status == ETIME) status = EINTR ;
  5909         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  5911      -- _nParked ;
  5912      _Event = 0 ;
  5913      status = os::Solaris::mutex_unlock(_mutex);
  5914      assert_status(status == 0, status, "mutex_unlock");
  5918 int os::PlatformEvent::park(jlong millis) {
  5919   guarantee (_nParked == 0, "invariant") ;
  5920   int v ;
  5921   for (;;) {
  5922       v = _Event ;
  5923       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  5925   guarantee (v >= 0, "invariant") ;
  5926   if (v != 0) return OS_OK ;
  5928   int ret = OS_TIMEOUT;
  5929   timestruc_t abst;
  5930   compute_abstime (&abst, millis);
  5932   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  5933   // For Solaris SPARC set fprs.FEF=0 prior to parking.
  5934   // Only for SPARC >= V8PlusA
  5935 #if defined(__sparc) && defined(COMPILER2)
  5936  if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  5937 #endif
  5938   int status = os::Solaris::mutex_lock(_mutex);
  5939   assert_status(status == 0, status, "mutex_lock");
  5940   guarantee (_nParked == 0, "invariant") ;
  5941   ++ _nParked ;
  5942   while (_Event < 0) {
  5943      int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
  5944      assert_status(status == 0 || status == EINTR ||
  5945                    status == ETIME || status == ETIMEDOUT,
  5946                    status, "cond_timedwait");
  5947      if (!FilterSpuriousWakeups) break ;                // previous semantics
  5948      if (status == ETIME || status == ETIMEDOUT) break ;
  5949      // We consume and ignore EINTR and spurious wakeups.
  5951   -- _nParked ;
  5952   if (_Event >= 0) ret = OS_OK ;
  5953   _Event = 0 ;
  5954   status = os::Solaris::mutex_unlock(_mutex);
  5955   assert_status(status == 0, status, "mutex_unlock");
  5956   return ret;
  5959 void os::PlatformEvent::unpark() {
  5960   int v, AnyWaiters;
  5962   // Increment _Event.
  5963   // Another acceptable implementation would be to simply swap 1
  5964   // into _Event:
  5965   //   if (Swap (&_Event, 1) < 0) {
  5966   //      mutex_lock (_mutex) ; AnyWaiters = nParked; mutex_unlock (_mutex) ;
  5967   //      if (AnyWaiters) cond_signal (_cond) ;
  5968   //   }
  5970   for (;;) {
  5971     v = _Event ;
  5972     if (v > 0) {
  5973        // The LD of _Event could have reordered or be satisfied
  5974        // by a read-aside from this processor's write buffer.
  5975        // To avoid problems execute a barrier and then
  5976        // ratify the value.  A degenerate CAS() would also work.
  5977        // Viz., CAS (v+0, &_Event, v) == v).
  5978        OrderAccess::fence() ;
  5979        if (_Event == v) return ;
  5980        continue ;
  5982     if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  5985   // If the thread associated with the event was parked, wake it.
  5986   if (v < 0) {
  5987      int status ;
  5988      // Wait for the thread assoc with the PlatformEvent to vacate.
  5989      status = os::Solaris::mutex_lock(_mutex);
  5990      assert_status(status == 0, status, "mutex_lock");
  5991      AnyWaiters = _nParked ;
  5992      status = os::Solaris::mutex_unlock(_mutex);
  5993      assert_status(status == 0, status, "mutex_unlock");
  5994      guarantee (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  5995      if (AnyWaiters != 0) {
  5996        // We intentional signal *after* dropping the lock
  5997        // to avoid a common class of futile wakeups.
  5998        status = os::Solaris::cond_signal(_cond);
  5999        assert_status(status == 0, status, "cond_signal");
  6004 // JSR166
  6005 // -------------------------------------------------------
  6007 /*
  6008  * The solaris and linux implementations of park/unpark are fairly
  6009  * conservative for now, but can be improved. They currently use a
  6010  * mutex/condvar pair, plus _counter.
  6011  * Park decrements _counter if > 0, else does a condvar wait.  Unpark
  6012  * sets count to 1 and signals condvar.  Only one thread ever waits
  6013  * on the condvar. Contention seen when trying to park implies that someone
  6014  * is unparking you, so don't wait. And spurious returns are fine, so there
  6015  * is no need to track notifications.
  6016  */
  6018 #define NANOSECS_PER_SEC 1000000000
  6019 #define NANOSECS_PER_MILLISEC 1000000
  6020 #define MAX_SECS 100000000
  6022 /*
  6023  * This code is common to linux and solaris and will be moved to a
  6024  * common place in dolphin.
  6026  * The passed in time value is either a relative time in nanoseconds
  6027  * or an absolute time in milliseconds. Either way it has to be unpacked
  6028  * into suitable seconds and nanoseconds components and stored in the
  6029  * given timespec structure.
  6030  * Given time is a 64-bit value and the time_t used in the timespec is only
  6031  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
  6032  * overflow if times way in the future are given. Further on Solaris versions
  6033  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  6034  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  6035  * As it will be 28 years before "now + 100000000" will overflow we can
  6036  * ignore overflow and just impose a hard-limit on seconds using the value
  6037  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  6038  * years from "now".
  6039  */
  6040 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  6041   assert (time > 0, "convertTime");
  6043   struct timeval now;
  6044   int status = gettimeofday(&now, NULL);
  6045   assert(status == 0, "gettimeofday");
  6047   time_t max_secs = now.tv_sec + MAX_SECS;
  6049   if (isAbsolute) {
  6050     jlong secs = time / 1000;
  6051     if (secs > max_secs) {
  6052       absTime->tv_sec = max_secs;
  6054     else {
  6055       absTime->tv_sec = secs;
  6057     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  6059   else {
  6060     jlong secs = time / NANOSECS_PER_SEC;
  6061     if (secs >= MAX_SECS) {
  6062       absTime->tv_sec = max_secs;
  6063       absTime->tv_nsec = 0;
  6065     else {
  6066       absTime->tv_sec = now.tv_sec + secs;
  6067       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  6068       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  6069         absTime->tv_nsec -= NANOSECS_PER_SEC;
  6070         ++absTime->tv_sec; // note: this must be <= max_secs
  6074   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  6075   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  6076   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  6077   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  6080 void Parker::park(bool isAbsolute, jlong time) {
  6082   // Optional fast-path check:
  6083   // Return immediately if a permit is available.
  6084   if (_counter > 0) {
  6085       _counter = 0 ;
  6086       OrderAccess::fence();
  6087       return ;
  6090   // Optional fast-exit: Check interrupt before trying to wait
  6091   Thread* thread = Thread::current();
  6092   assert(thread->is_Java_thread(), "Must be JavaThread");
  6093   JavaThread *jt = (JavaThread *)thread;
  6094   if (Thread::is_interrupted(thread, false)) {
  6095     return;
  6098   // First, demultiplex/decode time arguments
  6099   timespec absTime;
  6100   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  6101     return;
  6103   if (time > 0) {
  6104     // Warning: this code might be exposed to the old Solaris time
  6105     // round-down bugs.  Grep "roundingFix" for details.
  6106     unpackTime(&absTime, isAbsolute, time);
  6109   // Enter safepoint region
  6110   // Beware of deadlocks such as 6317397.
  6111   // The per-thread Parker:: _mutex is a classic leaf-lock.
  6112   // In particular a thread must never block on the Threads_lock while
  6113   // holding the Parker:: mutex.  If safepoints are pending both the
  6114   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  6115   ThreadBlockInVM tbivm(jt);
  6117   // Don't wait if cannot get lock since interference arises from
  6118   // unblocking.  Also. check interrupt before trying wait
  6119   if (Thread::is_interrupted(thread, false) ||
  6120       os::Solaris::mutex_trylock(_mutex) != 0) {
  6121     return;
  6124   int status ;
  6126   if (_counter > 0)  { // no wait needed
  6127     _counter = 0;
  6128     status = os::Solaris::mutex_unlock(_mutex);
  6129     assert (status == 0, "invariant") ;
  6130     OrderAccess::fence();
  6131     return;
  6134 #ifdef ASSERT
  6135   // Don't catch signals while blocked; let the running threads have the signals.
  6136   // (This allows a debugger to break into the running thread.)
  6137   sigset_t oldsigs;
  6138   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
  6139   thr_sigsetmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  6140 #endif
  6142   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  6143   jt->set_suspend_equivalent();
  6144   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  6146   // Do this the hard way by blocking ...
  6147   // See http://monaco.sfbay/detail.jsf?cr=5094058.
  6148   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
  6149   // Only for SPARC >= V8PlusA
  6150 #if defined(__sparc) && defined(COMPILER2)
  6151   if (ClearFPUAtPark) { _mark_fpu_nosave() ; }
  6152 #endif
  6154   if (time == 0) {
  6155     status = os::Solaris::cond_wait (_cond, _mutex) ;
  6156   } else {
  6157     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
  6159   // Note that an untimed cond_wait() can sometimes return ETIME on older
  6160   // versions of the Solaris.
  6161   assert_status(status == 0 || status == EINTR ||
  6162                 status == ETIME || status == ETIMEDOUT,
  6163                 status, "cond_timedwait");
  6165 #ifdef ASSERT
  6166   thr_sigsetmask(SIG_SETMASK, &oldsigs, NULL);
  6167 #endif
  6168   _counter = 0 ;
  6169   status = os::Solaris::mutex_unlock(_mutex);
  6170   assert_status(status == 0, status, "mutex_unlock") ;
  6172   // If externally suspended while waiting, re-suspend
  6173   if (jt->handle_special_suspend_equivalent_condition()) {
  6174     jt->java_suspend_self();
  6176   OrderAccess::fence();
  6179 void Parker::unpark() {
  6180   int s, status ;
  6181   status = os::Solaris::mutex_lock (_mutex) ;
  6182   assert (status == 0, "invariant") ;
  6183   s = _counter;
  6184   _counter = 1;
  6185   status = os::Solaris::mutex_unlock (_mutex) ;
  6186   assert (status == 0, "invariant") ;
  6188   if (s < 1) {
  6189     status = os::Solaris::cond_signal (_cond) ;
  6190     assert (status == 0, "invariant") ;
  6194 extern char** environ;
  6196 // Run the specified command in a separate process. Return its exit value,
  6197 // or -1 on failure (e.g. can't fork a new process).
  6198 // Unlike system(), this function can be called from signal handler. It
  6199 // doesn't block SIGINT et al.
  6200 int os::fork_and_exec(char* cmd) {
  6201   char * argv[4];
  6202   argv[0] = (char *)"sh";
  6203   argv[1] = (char *)"-c";
  6204   argv[2] = cmd;
  6205   argv[3] = NULL;
  6207   // fork is async-safe, fork1 is not so can't use in signal handler
  6208   pid_t pid;
  6209   Thread* t = ThreadLocalStorage::get_thread_slow();
  6210   if (t != NULL && t->is_inside_signal_handler()) {
  6211     pid = fork();
  6212   } else {
  6213     pid = fork1();
  6216   if (pid < 0) {
  6217     // fork failed
  6218     warning("fork failed: %s", strerror(errno));
  6219     return -1;
  6221   } else if (pid == 0) {
  6222     // child process
  6224     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
  6225     execve("/usr/bin/sh", argv, environ);
  6227     // execve failed
  6228     _exit(-1);
  6230   } else  {
  6231     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  6232     // care about the actual exit code, for now.
  6234     int status;
  6236     // Wait for the child process to exit.  This returns immediately if
  6237     // the child has already exited. */
  6238     while (waitpid(pid, &status, 0) < 0) {
  6239         switch (errno) {
  6240         case ECHILD: return 0;
  6241         case EINTR: break;
  6242         default: return -1;
  6246     if (WIFEXITED(status)) {
  6247        // The child exited normally; get its exit code.
  6248        return WEXITSTATUS(status);
  6249     } else if (WIFSIGNALED(status)) {
  6250        // The child exited because of a signal
  6251        // The best value to return is 0x80 + signal number,
  6252        // because that is what all Unix shells do, and because
  6253        // it allows callers to distinguish between process exit and
  6254        // process death by signal.
  6255        return 0x80 + WTERMSIG(status);
  6256     } else {
  6257        // Unknown exit code; pass it through
  6258        return status;
  6263 // is_headless_jre()
  6264 //
  6265 // Test for the existence of libmawt in motif21 or xawt directories
  6266 // in order to report if we are running in a headless jre
  6267 //
  6268 bool os::is_headless_jre() {
  6269     struct stat statbuf;
  6270     char buf[MAXPATHLEN];
  6271     char libmawtpath[MAXPATHLEN];
  6272     const char *xawtstr  = "/xawt/libmawt.so";
  6273     const char *motifstr = "/motif21/libmawt.so";
  6274     char *p;
  6276     // Get path to libjvm.so
  6277     os::jvm_path(buf, sizeof(buf));
  6279     // Get rid of libjvm.so
  6280     p = strrchr(buf, '/');
  6281     if (p == NULL) return false;
  6282     else *p = '\0';
  6284     // Get rid of client or server
  6285     p = strrchr(buf, '/');
  6286     if (p == NULL) return false;
  6287     else *p = '\0';
  6289     // check xawt/libmawt.so
  6290     strcpy(libmawtpath, buf);
  6291     strcat(libmawtpath, xawtstr);
  6292     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6294     // check motif21/libmawt.so
  6295     strcpy(libmawtpath, buf);
  6296     strcat(libmawtpath, motifstr);
  6297     if (::stat(libmawtpath, &statbuf) == 0) return false;
  6299     return true;
  6302 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
  6303   INTERRUPTIBLE_RETURN_INT(::write(fd, buf, nBytes), os::Solaris::clear_interrupted);
  6306 int os::close(int fd) {
  6307   RESTARTABLE_RETURN_INT(::close(fd));
  6310 int os::socket_close(int fd) {
  6311   RESTARTABLE_RETURN_INT(::close(fd));
  6314 int os::recv(int fd, char *buf, int nBytes, int flags) {
  6315   INTERRUPTIBLE_RETURN_INT(::recv(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6319 int os::send(int fd, char *buf, int nBytes, int flags) {
  6320   INTERRUPTIBLE_RETURN_INT(::send(fd, buf, nBytes, flags), os::Solaris::clear_interrupted);
  6323 int os::raw_send(int fd, char *buf, int nBytes, int flags) {
  6324   RESTARTABLE_RETURN_INT(::send(fd, buf, nBytes, flags));
  6327 // As both poll and select can be interrupted by signals, we have to be
  6328 // prepared to restart the system call after updating the timeout, unless
  6329 // a poll() is done with timeout == -1, in which case we repeat with this
  6330 // "wait forever" value.
  6332 int os::timeout(int fd, long timeout) {
  6333   int res;
  6334   struct timeval t;
  6335   julong prevtime, newtime;
  6336   static const char* aNull = 0;
  6337   struct pollfd pfd;
  6338   pfd.fd = fd;
  6339   pfd.events = POLLIN;
  6341   gettimeofday(&t, &aNull);
  6342   prevtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec / 1000;
  6344   for(;;) {
  6345     INTERRUPTIBLE_NORESTART(::poll(&pfd, 1, timeout), res, os::Solaris::clear_interrupted);
  6346     if(res == OS_ERR && errno == EINTR) {
  6347         if(timeout != -1) {
  6348           gettimeofday(&t, &aNull);
  6349           newtime = ((julong)t.tv_sec * 1000)  +  t.tv_usec /1000;
  6350           timeout -= newtime - prevtime;
  6351           if(timeout <= 0)
  6352             return OS_OK;
  6353           prevtime = newtime;
  6355     } else return res;
  6359 int os::connect(int fd, struct sockaddr *him, int len) {
  6360   int _result;
  6361   INTERRUPTIBLE_NORESTART(::connect(fd, him, len), _result,
  6362                           os::Solaris::clear_interrupted);
  6364   // Depending on when thread interruption is reset, _result could be
  6365   // one of two values when errno == EINTR
  6367   if (((_result == OS_INTRPT) || (_result == OS_ERR))
  6368                                         && (errno == EINTR)) {
  6369      /* restarting a connect() changes its errno semantics */
  6370      INTERRUPTIBLE(::connect(fd, him, len), _result,
  6371                      os::Solaris::clear_interrupted);
  6372      /* undo these changes */
  6373      if (_result == OS_ERR) {
  6374        if (errno == EALREADY) {
  6375          errno = EINPROGRESS; /* fall through */
  6376        } else if (errno == EISCONN) {
  6377          errno = 0;
  6378          return OS_OK;
  6382    return _result;
  6385 int os::accept(int fd, struct sockaddr *him, int *len) {
  6386   if (fd < 0)
  6387    return OS_ERR;
  6388   INTERRUPTIBLE_RETURN_INT((int)::accept(fd, him,\
  6389     (socklen_t*) len), os::Solaris::clear_interrupted);
  6392 int os::recvfrom(int fd, char *buf, int nBytes, int flags,
  6393                              sockaddr *from, int *fromlen) {
  6394    //%%note jvm_r11
  6395   INTERRUPTIBLE_RETURN_INT((int)::recvfrom(fd, buf, nBytes,\
  6396     flags, from, fromlen), os::Solaris::clear_interrupted);
  6399 int os::sendto(int fd, char *buf, int len, int flags,
  6400                            struct sockaddr *to, int tolen) {
  6401   //%%note jvm_r11
  6402   INTERRUPTIBLE_RETURN_INT((int)::sendto(fd, buf, len, flags,\
  6403     to, tolen), os::Solaris::clear_interrupted);
  6406 int os::socket_available(int fd, jint *pbytes) {
  6407    if (fd < 0)
  6408      return OS_OK;
  6410    int ret;
  6412    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  6414    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  6415    // is expected to return 0 on failure and 1 on success to the jdk.
  6417    return (ret == OS_ERR) ? 0 : 1;
  6421 int os::bind(int fd, struct sockaddr *him, int len) {
  6422    INTERRUPTIBLE_RETURN_INT_NORESTART(::bind(fd, him, len),\
  6423      os::Solaris::clear_interrupted);

mercurial