src/cpu/mips/vm/macroAssembler_mips.cpp

Thu, 24 May 2018 19:57:44 +0800

author
aoqi
date
Thu, 24 May 2018 19:57:44 +0800
changeset 8867
34020d024017
parent 8865
ffcdff41a92f
child 9043
7519f4bf92b5
permissions
-rw-r--r--

[Code Reorganization] delete Trailing whitespace

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2017, Loongson Technology. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/assembler.hpp"
    28 #include "asm/assembler.inline.hpp"
    29 #include "asm/macroAssembler.inline.hpp"
    30 #include "compiler/disassembler.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/resourceArea.hpp"
    35 #include "memory/universe.hpp"
    36 #include "prims/methodHandles.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/interfaceSupport.hpp"
    39 #include "runtime/objectMonitor.hpp"
    40 #include "runtime/os.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "utilities/macros.hpp"
    44 #if INCLUDE_ALL_GCS
    45 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    46 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    47 #include "gc_implementation/g1/heapRegion.hpp"
    48 #endif // INCLUDE_ALL_GCS
    50 // Implementation of MacroAssembler
    52 intptr_t MacroAssembler::i[32] = {0};
    53 float MacroAssembler::f[32] = {0.0};
    55 void MacroAssembler::print(outputStream *s) {
    56   unsigned int k;
    57   for(k=0; k<sizeof(i)/sizeof(i[0]); k++) {
    58     s->print_cr("i%d = 0x%.16lx", k, i[k]);
    59   }
    60   s->cr();
    62   for(k=0; k<sizeof(f)/sizeof(f[0]); k++) {
    63     s->print_cr("f%d = %f", k, f[k]);
    64   }
    65   s->cr();
    66 }
    68 int MacroAssembler::i_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->i[k]; }
    69 int MacroAssembler::f_offset(unsigned int k) { return (intptr_t)&((MacroAssembler*)0)->f[k]; }
    71 void MacroAssembler::save_registers(MacroAssembler *masm) {
    72 #define __ masm->
    73   for(int k=0; k<32; k++) {
    74     __ sw (as_Register(k), A0, i_offset(k));
    75   }
    77   for(int k=0; k<32; k++) {
    78     __ swc1 (as_FloatRegister(k), A0, f_offset(k));
    79   }
    80 #undef __
    81 }
    83 void MacroAssembler::restore_registers(MacroAssembler *masm) {
    84 #define __ masm->
    85   for(int k=0; k<32; k++) {
    86     __ lw (as_Register(k), A0, i_offset(k));
    87   }
    89   for(int k=0; k<32; k++) {
    90     __ lwc1 (as_FloatRegister(k), A0, f_offset(k));
    91   }
    92 #undef __
    93 }
    96 void MacroAssembler::pd_patch_instruction(address branch, address target) {
    97   jint& stub_inst = *(jint*) branch;
    98   jint *pc = (jint *)branch;
   100 /* *
   101   move(AT, RA); // dadd
   102   emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   103   nop();
   104         lui(T9, 0); // to be patched
   105         ori(T9, 0);
   106   daddu(T9, T9, RA);
   107   move(RA, AT);
   108   jr(T9);
   109  */
   110   if((opcode(stub_inst) == special_op) && (special(stub_inst) == dadd_op)) {
   112     assert(opcode(pc[3]) == lui_op
   113           && opcode(pc[4]) == ori_op
   114           && special(pc[5]) == daddu_op, "Not a branch label patch");
   115     if(!(opcode(pc[3]) == lui_op
   116           && opcode(pc[4]) == ori_op
   117           && special(pc[5]) == daddu_op)) { tty->print_cr("Not a branch label patch"); }
   119     int offset = target - branch;
   120     if (!is_simm16(offset)) {
   121       pc[3] = (pc[3] & 0xffff0000) | high16(offset - 12);
   122       pc[4] = (pc[4] & 0xffff0000) | low16(offset - 12);
   123     } else {
   124       /* revert to "beq + nop" */
   125       CodeBuffer cb(branch, 4 * 10);
   126       MacroAssembler masm(&cb);
   127 #define __ masm.
   128       __ b(target);
   129       __ nop();
   130       __ nop();
   131       __ nop();
   132       __ nop();
   133       __ nop();
   134       __ nop();
   135       __ nop();
   136     }
   137     return;
   138   } else if (special(pc[4]) == jr_op
   139              && opcode(pc[4]) == special_op
   140              && (((opcode(pc[0]) == lui_op) || opcode(pc[0]) == daddiu_op) || (opcode(pc[0]) == ori_op))) {
   142     CodeBuffer cb(branch, 4 * 4);
   143     MacroAssembler masm(&cb);
   144     masm.patchable_set48(T9, (long)(target));
   145     return;
   146   }
   148 #ifndef PRODUCT
   149   if (!is_simm16((target - branch - 4) >> 2)) {
   150     tty->print_cr("Illegal patching: target=0x%lx", target);
   151     int *p = (int *)branch;
   152     for (int i = -10; i < 10; i++) {
   153        tty->print("0x%lx, ", p[i]);
   154     }
   155     tty->print_cr("");
   156   }
   157 #endif
   159   stub_inst = patched_branch(target - branch, stub_inst, 0);
   160 }
   162 static inline address first_cache_address() {
   163   return CodeCache::low_bound() + sizeof(HeapBlock::Header);
   164 }
   166 static inline address last_cache_address() {
   167   return CodeCache::high_bound() - Assembler::InstructionSize;
   168 }
   170 int MacroAssembler::call_size(address target, bool far, bool patchable) {
   171   if (patchable) return 6 << Assembler::LogInstructionSize;
   172   if (!far) return 2 << Assembler::LogInstructionSize; // jal + nop
   173   return (insts_for_set64((jlong)target) + 2) << Assembler::LogInstructionSize;
   174 }
   176 // Can we reach target using jal/j from anywhere
   177 // in the code cache (because code can be relocated)?
   178 bool MacroAssembler::reachable_from_cache(address target) {
   179   address cl = first_cache_address();
   180   address ch = last_cache_address();
   182   return fit_in_jal(target, cl) && fit_in_jal(target, ch);
   183 }
   185 void MacroAssembler::general_jump(address target) {
   186   if (reachable_from_cache(target)) {
   187     j(target);
   188     nop();
   189   } else {
   190     set64(T9, (long)target);
   191     jr(T9);
   192     nop();
   193   }
   194 }
   196 int MacroAssembler::insts_for_general_jump(address target) {
   197   if (reachable_from_cache(target)) {
   198     //j(target);
   199     //nop();
   200     return 2;
   201   } else {
   202     //set64(T9, (long)target);
   203     //jr(T9);
   204     //nop();
   205     return insts_for_set64((jlong)target) + 2;
   206   }
   207 }
   209 void MacroAssembler::patchable_jump(address target) {
   210   if (reachable_from_cache(target)) {
   211     nop();
   212     nop();
   213     nop();
   214     nop();
   215     j(target);
   216     nop();
   217   } else {
   218     patchable_set48(T9, (long)target);
   219     jr(T9);
   220     nop();
   221   }
   222 }
   224 int MacroAssembler::insts_for_patchable_jump(address target) {
   225   return 6;
   226 }
   228 void MacroAssembler::general_call(address target) {
   229   if (reachable_from_cache(target)) {
   230     jal(target);
   231     nop();
   232   } else {
   233     set64(T9, (long)target);
   234     jalr(T9);
   235     nop();
   236   }
   237 }
   239 int MacroAssembler::insts_for_general_call(address target) {
   240   if (reachable_from_cache(target)) {
   241     //jal(target);
   242     //nop();
   243     return 2;
   244   } else {
   245     //set64(T9, (long)target);
   246     //jalr(T9);
   247     //nop();
   248     return insts_for_set64((jlong)target) + 2;
   249   }
   250 }
   252 void MacroAssembler::patchable_call(address target) {
   253   if (reachable_from_cache(target)) {
   254     nop();
   255     nop();
   256     nop();
   257     nop();
   258     jal(target);
   259     nop();
   260   } else {
   261     patchable_set48(T9, (long)target);
   262     jalr(T9);
   263     nop();
   264   }
   265 }
   267 int MacroAssembler::insts_for_patchable_call(address target) {
   268   return 6;
   269 }
   271 void MacroAssembler::beq_far(Register rs, Register rt, address entry) {
   272   u_char * cur_pc = pc();
   274   /* Jin: Near/Far jump */
   275   if(is_simm16((entry - pc() - 4) / 4)) {
   276     Assembler::beq(rs, rt, offset(entry));
   277   } else {
   278     Label not_jump;
   279     bne(rs, rt, not_jump);
   280     delayed()->nop();
   282     b_far(entry);
   283     delayed()->nop();
   285     bind(not_jump);
   286     has_delay_slot();
   287   }
   288 }
   290 void MacroAssembler::beq_far(Register rs, Register rt, Label& L) {
   291   if (L.is_bound()) {
   292     beq_far(rs, rt, target(L));
   293   } else {
   294     u_char * cur_pc = pc();
   295     Label not_jump;
   296     bne(rs, rt, not_jump);
   297     delayed()->nop();
   299     b_far(L);
   300     delayed()->nop();
   302     bind(not_jump);
   303     has_delay_slot();
   304   }
   305 }
   307 void MacroAssembler::bne_far(Register rs, Register rt, address entry) {
   308   u_char * cur_pc = pc();
   310   /* Jin: Near/Far jump */
   311   if(is_simm16((entry - pc() - 4) / 4)) {
   312     Assembler::bne(rs, rt, offset(entry));
   313   } else {
   314     Label not_jump;
   315     beq(rs, rt, not_jump);
   316     delayed()->nop();
   318     b_far(entry);
   319     delayed()->nop();
   321     bind(not_jump);
   322     has_delay_slot();
   323   }
   324 }
   326 void MacroAssembler::bne_far(Register rs, Register rt, Label& L) {
   327   if (L.is_bound()) {
   328     bne_far(rs, rt, target(L));
   329   } else {
   330     u_char * cur_pc = pc();
   331     Label not_jump;
   332     beq(rs, rt, not_jump);
   333     delayed()->nop();
   335     b_far(L);
   336     delayed()->nop();
   338     bind(not_jump);
   339     has_delay_slot();
   340   }
   341 }
   343 void MacroAssembler::beq_long(Register rs, Register rt, Label& L) {
   344   Label not_taken;
   346   bne(rs, rt, not_taken);
   347   nop();
   349   jmp_far(L);
   351   bind(not_taken);
   352 }
   354 void MacroAssembler::bne_long(Register rs, Register rt, Label& L) {
   355   Label not_taken;
   357   beq(rs, rt, not_taken);
   358   nop();
   360   jmp_far(L);
   362   bind(not_taken);
   363 }
   365 void MacroAssembler::bc1t_long(Label& L) {
   366   Label not_taken;
   368   bc1f(not_taken);
   369   nop();
   371   jmp_far(L);
   373   bind(not_taken);
   374 }
   376 void MacroAssembler::bc1f_long(Label& L) {
   377   Label not_taken;
   379   bc1t(not_taken);
   380   nop();
   382   jmp_far(L);
   384   bind(not_taken);
   385 }
   387 void MacroAssembler::b_far(Label& L) {
   388   if (L.is_bound()) {
   389     b_far(target(L));
   390   } else {
   391     volatile address dest = target(L);
   392 /*
   393 MacroAssembler::pd_patch_instruction branch=55651ed514, target=55651ef6d8
   394    0x00000055651ed514: dadd at, ra, zero
   395    0x00000055651ed518: [4110001]bgezal zero, 0x00000055651ed520
   397    0x00000055651ed51c: sll zero, zero, 0
   398    0x00000055651ed520: lui t9, 0x0
   399    0x00000055651ed524: ori t9, t9, 0x21b8
   400    0x00000055651ed528: daddu t9, t9, ra
   401    0x00000055651ed52c: dadd ra, at, zero
   402    0x00000055651ed530: jr t9
   403    0x00000055651ed534: sll zero, zero, 0
   404 */
   405     move(AT, RA);
   406     emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   407     nop();
   408     lui(T9, 0); // to be patched
   409     ori(T9, T9, 0);
   410     daddu(T9, T9, RA);
   411     move(RA, AT);
   412     jr(T9);
   413   }
   414 }
   416 void MacroAssembler::b_far(address entry) {
   417   u_char * cur_pc = pc();
   419   /* Jin: Near/Far jump */
   420   if(is_simm16((entry - pc() - 4) / 4)) {
   421     b(offset(entry));
   422   } else {
   423     /* address must be bounded */
   424     move(AT, RA);
   425     emit_long(insn_ORRI(regimm_op, 0, bgezal_op, 1));
   426     nop();
   427     li32(T9, entry - pc());
   428     daddu(T9, T9, RA);
   429     move(RA, AT);
   430     jr(T9);
   431   }
   432 }
   434 void MacroAssembler::ld_ptr(Register rt, Register offset, Register base) {
   435   addu_long(AT, base, offset);
   436   ld_ptr(rt, 0, AT);
   437 }
   439 void MacroAssembler::st_ptr(Register rt, Register offset, Register base) {
   440   addu_long(AT, base, offset);
   441   st_ptr(rt, 0, AT);
   442 }
   444 void MacroAssembler::ld_long(Register rt, Register offset, Register base) {
   445   addu_long(AT, base, offset);
   446   ld_long(rt, 0, AT);
   447 }
   449 void MacroAssembler::st_long(Register rt, Register offset, Register base) {
   450   addu_long(AT, base, offset);
   451   st_long(rt, 0, AT);
   452 }
   454 Address MacroAssembler::as_Address(AddressLiteral adr) {
   455   return Address(adr.target(), adr.rspec());
   456 }
   458 Address MacroAssembler::as_Address(ArrayAddress adr) {
   459   return Address::make_array(adr);
   460 }
   462 // tmp_reg1 and tmp_reg2 should be saved outside of atomic_inc32 (caller saved).
   463 void MacroAssembler::atomic_inc32(address counter_addr, int inc, Register tmp_reg1, Register tmp_reg2) {
   464   Label again;
   466   li(tmp_reg1, counter_addr);
   467   bind(again);
   468   if(UseSyncLevel >= 3000 || UseSyncLevel < 2000) sync();
   469   ll(tmp_reg2, tmp_reg1, 0);
   470   addi(tmp_reg2, tmp_reg2, inc);
   471   sc(tmp_reg2, tmp_reg1, 0);
   472   beq(tmp_reg2, R0, again);
   473   delayed()->nop();
   474 }
   476 int MacroAssembler::biased_locking_enter(Register lock_reg,
   477                                          Register obj_reg,
   478                                          Register swap_reg,
   479                                          Register tmp_reg,
   480                                          bool swap_reg_contains_mark,
   481                                          Label& done,
   482                                          Label* slow_case,
   483                                          BiasedLockingCounters* counters) {
   484   assert(UseBiasedLocking, "why call this otherwise?");
   485   bool need_tmp_reg = false;
   486   if (tmp_reg == noreg) {
   487     need_tmp_reg = true;
   488     tmp_reg = T9;
   489   }
   490   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, AT);
   491   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
   492   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
   493   Address saved_mark_addr(lock_reg, 0);
   495   // Biased locking
   496   // See whether the lock is currently biased toward our thread and
   497   // whether the epoch is still valid
   498   // Note that the runtime guarantees sufficient alignment of JavaThread
   499   // pointers to allow age to be placed into low bits
   500   // First check to see whether biasing is even enabled for this object
   501   Label cas_label;
   502   int null_check_offset = -1;
   503   if (!swap_reg_contains_mark) {
   504     null_check_offset = offset();
   505     ld_ptr(swap_reg, mark_addr);
   506   }
   508   if (need_tmp_reg) {
   509     push(tmp_reg);
   510   }
   511   move(tmp_reg, swap_reg);
   512   andi(tmp_reg, tmp_reg, markOopDesc::biased_lock_mask_in_place);
   513 #ifdef _LP64
   514   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   515   dsub(AT, AT, tmp_reg);
   516 #else
   517   addi(AT, R0, markOopDesc::biased_lock_pattern);
   518   sub(AT, AT, tmp_reg);
   519 #endif
   520   if (need_tmp_reg) {
   521     pop(tmp_reg);
   522   }
   524   bne(AT, R0, cas_label);
   525   delayed()->nop();
   528   // The bias pattern is present in the object's header. Need to check
   529   // whether the bias owner and the epoch are both still current.
   530   // Note that because there is no current thread register on MIPS we
   531   // need to store off the mark word we read out of the object to
   532   // avoid reloading it and needing to recheck invariants below. This
   533   // store is unfortunate but it makes the overall code shorter and
   534   // simpler.
   535   st_ptr(swap_reg, saved_mark_addr);
   536   if (need_tmp_reg) {
   537     push(tmp_reg);
   538   }
   539   if (swap_reg_contains_mark) {
   540     null_check_offset = offset();
   541   }
   542   load_prototype_header(tmp_reg, obj_reg);
   543   xorr(tmp_reg, tmp_reg, swap_reg);
   544   get_thread(swap_reg);
   545   xorr(swap_reg, swap_reg, tmp_reg);
   547   move(AT, ~((int) markOopDesc::age_mask_in_place));
   548   andr(swap_reg, swap_reg, AT);
   550   if (PrintBiasedLockingStatistics) {
   551     Label L;
   552     bne(swap_reg, R0, L);
   553     delayed()->nop();
   554     push(tmp_reg);
   555     push(A0);
   556     atomic_inc32((address)BiasedLocking::biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   557     pop(A0);
   558     pop(tmp_reg);
   559     bind(L);
   560   }
   561   if (need_tmp_reg) {
   562     pop(tmp_reg);
   563   }
   564   beq(swap_reg, R0, done);
   565   delayed()->nop();
   566   Label try_revoke_bias;
   567   Label try_rebias;
   569   // At this point we know that the header has the bias pattern and
   570   // that we are not the bias owner in the current epoch. We need to
   571   // figure out more details about the state of the header in order to
   572   // know what operations can be legally performed on the object's
   573   // header.
   575   // If the low three bits in the xor result aren't clear, that means
   576   // the prototype header is no longer biased and we have to revoke
   577   // the bias on this object.
   579   move(AT, markOopDesc::biased_lock_mask_in_place);
   580   andr(AT, swap_reg, AT);
   581   bne(AT, R0, try_revoke_bias);
   582   delayed()->nop();
   583   // Biasing is still enabled for this data type. See whether the
   584   // epoch of the current bias is still valid, meaning that the epoch
   585   // bits of the mark word are equal to the epoch bits of the
   586   // prototype header. (Note that the prototype header's epoch bits
   587   // only change at a safepoint.) If not, attempt to rebias the object
   588   // toward the current thread. Note that we must be absolutely sure
   589   // that the current epoch is invalid in order to do this because
   590   // otherwise the manipulations it performs on the mark word are
   591   // illegal.
   593   move(AT, markOopDesc::epoch_mask_in_place);
   594   andr(AT,swap_reg, AT);
   595   bne(AT, R0, try_rebias);
   596   delayed()->nop();
   597   // The epoch of the current bias is still valid but we know nothing
   598   // about the owner; it might be set or it might be clear. Try to
   599   // acquire the bias of the object using an atomic operation. If this
   600   // fails we will go in to the runtime to revoke the object's bias.
   601   // Note that we first construct the presumed unbiased header so we
   602   // don't accidentally blow away another thread's valid bias.
   604   ld_ptr(swap_reg, saved_mark_addr);
   606   move(AT, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
   607   andr(swap_reg, swap_reg, AT);
   609   if (need_tmp_reg) {
   610     push(tmp_reg);
   611   }
   612   get_thread(tmp_reg);
   613   orr(tmp_reg, tmp_reg, swap_reg);
   614   //if (os::is_MP()) {
   615   //  sync();
   616   //}
   617   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   618   if (need_tmp_reg) {
   619     pop(tmp_reg);
   620   }
   621   // If the biasing toward our thread failed, this means that
   622   // another thread succeeded in biasing it toward itself and we
   623   // need to revoke that bias. The revocation will occur in the
   624   // interpreter runtime in the slow case.
   625   if (PrintBiasedLockingStatistics) {
   626     Label L;
   627     bne(AT, R0, L);
   628     delayed()->nop();
   629     push(tmp_reg);
   630     push(A0);
   631     atomic_inc32((address)BiasedLocking::anonymously_biased_lock_entry_count_addr(), 1, A0, tmp_reg);
   632     pop(A0);
   633     pop(tmp_reg);
   634     bind(L);
   635   }
   636   if (slow_case != NULL) {
   637     beq_far(AT, R0, *slow_case);
   638     delayed()->nop();
   639   }
   640   b(done);
   641   delayed()->nop();
   643   bind(try_rebias);
   644   // At this point we know the epoch has expired, meaning that the
   645   // current "bias owner", if any, is actually invalid. Under these
   646   // circumstances _only_, we are allowed to use the current header's
   647   // value as the comparison value when doing the cas to acquire the
   648   // bias in the current epoch. In other words, we allow transfer of
   649   // the bias from one thread to another directly in this situation.
   650   //
   651   // FIXME: due to a lack of registers we currently blow away the age
   652   // bits in this situation. Should attempt to preserve them.
   653   if (need_tmp_reg) {
   654     push(tmp_reg);
   655   }
   656   load_prototype_header(tmp_reg, obj_reg);
   657   get_thread(swap_reg);
   658   orr(tmp_reg, tmp_reg, swap_reg);
   659   ld_ptr(swap_reg, saved_mark_addr);
   661   //if (os::is_MP()) {
   662   //  sync();
   663   //}
   664   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   665   if (need_tmp_reg) {
   666     pop(tmp_reg);
   667   }
   668   // If the biasing toward our thread failed, then another thread
   669   // succeeded in biasing it toward itself and we need to revoke that
   670   // bias. The revocation will occur in the runtime in the slow case.
   671   if (PrintBiasedLockingStatistics) {
   672     Label L;
   673     bne(AT, R0, L);
   674     delayed()->nop();
   675     push(AT);
   676     push(tmp_reg);
   677     atomic_inc32((address)BiasedLocking::rebiased_lock_entry_count_addr(), 1, AT, tmp_reg);
   678     pop(tmp_reg);
   679     pop(AT);
   680     bind(L);
   681   }
   682   if (slow_case != NULL) {
   683     beq_far(AT, R0, *slow_case);
   684     delayed()->nop();
   685   }
   687   b(done);
   688   delayed()->nop();
   689   bind(try_revoke_bias);
   690   // The prototype mark in the klass doesn't have the bias bit set any
   691   // more, indicating that objects of this data type are not supposed
   692   // to be biased any more. We are going to try to reset the mark of
   693   // this object to the prototype value and fall through to the
   694   // CAS-based locking scheme. Note that if our CAS fails, it means
   695   // that another thread raced us for the privilege of revoking the
   696   // bias of this particular object, so it's okay to continue in the
   697   // normal locking code.
   698   //
   699   // FIXME: due to a lack of registers we currently blow away the age
   700   // bits in this situation. Should attempt to preserve them.
   701   ld_ptr(swap_reg, saved_mark_addr);
   703   if (need_tmp_reg) {
   704     push(tmp_reg);
   705   }
   706   load_prototype_header(tmp_reg, obj_reg);
   707   //if (os::is_MP()) {
   708   // lock();
   709   //}
   710   cmpxchg(tmp_reg, Address(obj_reg, 0), swap_reg);
   711   if (need_tmp_reg) {
   712     pop(tmp_reg);
   713   }
   714   // Fall through to the normal CAS-based lock, because no matter what
   715   // the result of the above CAS, some thread must have succeeded in
   716   // removing the bias bit from the object's header.
   717   if (PrintBiasedLockingStatistics) {
   718     Label L;
   719     bne(AT, R0, L);
   720     delayed()->nop();
   721     push(AT);
   722     push(tmp_reg);
   723     atomic_inc32((address)BiasedLocking::revoked_lock_entry_count_addr(), 1, AT, tmp_reg);
   724     pop(tmp_reg);
   725     pop(AT);
   726     bind(L);
   727   }
   729   bind(cas_label);
   730   return null_check_offset;
   731 }
   733 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
   734   assert(UseBiasedLocking, "why call this otherwise?");
   736   // Check for biased locking unlock case, which is a no-op
   737   // Note: we do not have to check the thread ID for two reasons.
   738   // First, the interpreter checks for IllegalMonitorStateException at
   739   // a higher level. Second, if the bias was revoked while we held the
   740   // lock, the object could not be rebiased toward another thread, so
   741   // the bias bit would be clear.
   742 #ifdef _LP64
   743   ld(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   744   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   745   daddi(AT, R0, markOopDesc::biased_lock_pattern);
   746 #else
   747   lw(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
   748   andi(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
   749   addi(AT, R0, markOopDesc::biased_lock_pattern);
   750 #endif
   752   beq(AT, temp_reg, done);
   753   delayed()->nop();
   754 }
   756 // the stack pointer adjustment is needed. see InterpreterMacroAssembler::super_call_VM_leaf
   757 // this method will handle the stack problem, you need not to preserve the stack space for the argument now
   758 void MacroAssembler::call_VM_leaf_base(address entry_point, int number_of_arguments) {
   759   Label L, E;
   761   assert(number_of_arguments <= 4, "just check");
   763   andi(AT, SP, 0xf);
   764   beq(AT, R0, L);
   765   delayed()->nop();
   766   daddi(SP, SP, -8);
   767   call(entry_point, relocInfo::runtime_call_type);
   768   delayed()->nop();
   769   daddi(SP, SP, 8);
   770   b(E);
   771   delayed()->nop();
   773   bind(L);
   774   call(entry_point, relocInfo::runtime_call_type);
   775   delayed()->nop();
   776   bind(E);
   777 }
   780 void MacroAssembler::jmp(address entry) {
   781   patchable_set48(T9, (long)entry);
   782   jr(T9);
   783 }
   785 void MacroAssembler::jmp(address entry, relocInfo::relocType rtype) {
   786   switch (rtype) {
   787     case relocInfo::runtime_call_type:
   788     case relocInfo::none:
   789       jmp(entry);
   790       break;
   791     default:
   792       {
   793       InstructionMark im(this);
   794       relocate(rtype);
   795       patchable_set48(T9, (long)entry);
   796       jr(T9);
   797       }
   798       break;
   799   }
   800 }
   802 void MacroAssembler::jmp_far(Label& L) {
   803   if (L.is_bound()) {
   804     address entry = target(L);
   805     assert(entry != NULL, "jmp most probably wrong");
   806     InstructionMark im(this);
   808     relocate(relocInfo::internal_word_type);
   809     patchable_set48(T9, (long)entry);
   810   } else {
   811     InstructionMark im(this);
   812     L.add_patch_at(code(), locator());
   814     relocate(relocInfo::internal_word_type);
   815     patchable_set48(T9, (long)pc());
   816   }
   818   jr(T9);
   819   nop();
   820 }
   821 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
   822   int oop_index;
   823   if (obj) {
   824     oop_index = oop_recorder()->find_index(obj);
   825   } else {
   826     oop_index = oop_recorder()->allocate_metadata_index(obj);
   827   }
   828   relocate(metadata_Relocation::spec(oop_index));
   829   patchable_set48(AT, (long)obj);
   830   sd(AT, dst);
   831 }
   833 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
   834   int oop_index;
   835   if (obj) {
   836     oop_index = oop_recorder()->find_index(obj);
   837   } else {
   838     oop_index = oop_recorder()->allocate_metadata_index(obj);
   839   }
   840   relocate(metadata_Relocation::spec(oop_index));
   841   patchable_set48(dst, (long)obj);
   842 }
   844 void MacroAssembler::call(address entry) {
   845 // c/c++ code assume T9 is entry point, so we just always move entry to t9
   846 // maybe there is some more graceful method to handle this. FIXME
   847 // For more info, see class NativeCall.
   848 #ifndef _LP64
   849   move(T9, (int)entry);
   850 #else
   851   patchable_set48(T9, (long)entry);
   852 #endif
   853   jalr(T9);
   854 }
   856 void MacroAssembler::call(address entry, relocInfo::relocType rtype) {
   857   switch (rtype) {
   858     case relocInfo::runtime_call_type:
   859     case relocInfo::none:
   860       call(entry);
   861       break;
   862     default:
   863       {
   864   InstructionMark im(this);
   865   relocate(rtype);
   866   call(entry);
   867       }
   868       break;
   869   }
   870 }
   872 void MacroAssembler::call(address entry, RelocationHolder& rh)
   873 {
   874   switch (rh.type()) {
   875     case relocInfo::runtime_call_type:
   876     case relocInfo::none:
   877       call(entry);
   878       break;
   879     default:
   880       {
   881   InstructionMark im(this);
   882   relocate(rh);
   883   call(entry);
   884       }
   885       break;
   886   }
   887 }
   889 void MacroAssembler::ic_call(address entry) {
   890   RelocationHolder rh = virtual_call_Relocation::spec(pc());
   891   patchable_set48(IC_Klass, (long)Universe::non_oop_word());
   892   assert(entry != NULL, "call most probably wrong");
   893   InstructionMark im(this);
   894   relocate(rh);
   895   patchable_call(entry);
   896 }
   898 void MacroAssembler::c2bool(Register r) {
   899   Label L;
   900   Assembler::beq(r, R0, L);
   901   delayed()->nop();
   902   move(r, 1);
   903   bind(L);
   904 }
   906 #ifndef PRODUCT
   907 extern "C" void findpc(intptr_t x);
   908 #endif
   910 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
   911   // In order to get locks to work, we need to fake a in_VM state
   912   JavaThread* thread = JavaThread::current();
   913   JavaThreadState saved_state = thread->thread_state();
   914   thread->set_thread_state(_thread_in_vm);
   915   if (ShowMessageBoxOnError) {
   916     JavaThread* thread = JavaThread::current();
   917     JavaThreadState saved_state = thread->thread_state();
   918     thread->set_thread_state(_thread_in_vm);
   919     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   920       ttyLocker ttyl;
   921       BytecodeCounter::print();
   922     }
   923     // To see where a verify_oop failed, get $ebx+40/X for this frame.
   924     // This is the value of eip which points to where verify_oop will return.
   925     if (os::message_box(msg, "Execution stopped, print registers?")) {
   926       ttyLocker ttyl;
   927       tty->print_cr("eip = 0x%08x", eip);
   928 #ifndef PRODUCT
   929       tty->cr();
   930       findpc(eip);
   931       tty->cr();
   932 #endif
   933       tty->print_cr("rax, = 0x%08x", rax);
   934       tty->print_cr("rbx, = 0x%08x", rbx);
   935       tty->print_cr("rcx = 0x%08x", rcx);
   936       tty->print_cr("rdx = 0x%08x", rdx);
   937       tty->print_cr("rdi = 0x%08x", rdi);
   938       tty->print_cr("rsi = 0x%08x", rsi);
   939       tty->print_cr("rbp, = 0x%08x", rbp);
   940       tty->print_cr("rsp = 0x%08x", rsp);
   941       BREAKPOINT;
   942     }
   943   } else {
   944     ttyLocker ttyl;
   945     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   946     assert(false, "DEBUG MESSAGE");
   947   }
   948   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
   949 }
   951 void MacroAssembler::debug(char* msg/*, RegistersForDebugging* regs*/) {
   952   if ( ShowMessageBoxOnError ) {
   953     JavaThreadState saved_state = JavaThread::current()->thread_state();
   954     JavaThread::current()->set_thread_state(_thread_in_vm);
   955     {
   956       // In order to get locks work, we need to fake a in_VM state
   957       ttyLocker ttyl;
   958       ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
   959       if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
   960   BytecodeCounter::print();
   961       }
   963       //      if (os::message_box(msg, "Execution stopped, print registers?"))
   964       //        regs->print(::tty);
   965     }
   966     ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
   967   }
   968   else
   969     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
   970 }
   973 void MacroAssembler::stop(const char* msg) {
   974   li(A0, (long)msg);
   975 #ifndef _LP64
   976   //reserver space for argument. added by yjl 7/10/2005
   977   addiu(SP, SP, - 1 * wordSize);
   978 #endif
   979   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   980   delayed()->nop();
   981 #ifndef _LP64
   982   //restore space for argument
   983   addiu(SP, SP, 1 * wordSize);
   984 #endif
   985   brk(17);
   986 }
   988 void MacroAssembler::warn(const char* msg) {
   989 #ifdef _LP64
   990   pushad();
   991   li(A0, (long)msg);
   992   push(S2);
   993   move(AT, -(StackAlignmentInBytes));
   994   move(S2, SP);     // use S2 as a sender SP holder
   995   andr(SP, SP, AT); // align stack as required by ABI
   996   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
   997   delayed()->nop();
   998   move(SP, S2);     // use S2 as a sender SP holder
   999   pop(S2);
  1000   popad();
  1001 #else
  1002   pushad();
  1003   addi(SP, SP, -4);
  1004   sw(A0, SP, -1 * wordSize);
  1005   li(A0, (long)msg);
  1006   addi(SP, SP, -1 * wordSize);
  1007   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  1008   delayed()->nop();
  1009   addi(SP, SP, 1 * wordSize);
  1010   lw(A0, SP, -1 * wordSize);
  1011   addi(SP, SP, 4);
  1012   popad();
  1013 #endif
  1016 void MacroAssembler::print_reg(Register reg) {
  1017 /*
  1018 char *s = getenv("PRINT_REG");
  1019 if (s == NULL)
  1020   return;
  1021 if (strcmp(s, "1") != 0)
  1022   return;
  1023 */
  1024   void * cur_pc = pc();
  1025   pushad();
  1026   NOT_LP64(push(FP);)
  1028   li(A0, (long)reg->name());
  1029   if (reg == SP)
  1030     addiu(A1, SP, wordSize * 23); //23 registers saved in pushad()
  1031   else if (reg == A0)
  1032     ld(A1, SP, wordSize * 19); //A0 has been modified by li(A0, (long)reg->name()). Ugly Code!
  1033   else
  1034     move(A1, reg);
  1035   li(A2, (long)cur_pc);
  1036   push(S2);
  1037   move(AT, -(StackAlignmentInBytes));
  1038   move(S2, SP);     // use S2 as a sender SP holder
  1039   andr(SP, SP, AT); // align stack as required by ABI
  1040   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_reg_with_pc),relocInfo::runtime_call_type);
  1041   delayed()->nop();
  1042   move(SP, S2);     // use S2 as a sender SP holder
  1043   pop(S2);
  1044   NOT_LP64(pop(FP);)
  1045   popad();
  1047 /*
  1048   pushad();
  1049 #ifdef _LP64
  1050   if (reg == SP)
  1051     addiu(A0, SP, wordSize * 23); //23 registers saved in pushad()
  1052   else
  1053     move(A0, reg);
  1054   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
  1055   delayed()->nop();
  1056 #else
  1057   push(FP);
  1058   move(A0, reg);
  1059   dsrl32(A1, reg, 0);
  1060   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_int),relocInfo::runtime_call_type);
  1061   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_long),relocInfo::runtime_call_type);
  1062   delayed()->nop();
  1063   pop(FP);
  1064 #endif
  1065   popad();
  1066   pushad();
  1067   NOT_LP64(push(FP);)
  1068   char b[50];
  1069   sprintf((char *)b, " pc: %p\n",cur_pc);
  1070   li(A0, (long)(char *)b);
  1071   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1072   delayed()->nop();
  1073   NOT_LP64(pop(FP);)
  1074   popad();
  1075 */
  1078 void MacroAssembler::print_reg(FloatRegister reg) {
  1079   void * cur_pc = pc();
  1080   pushad();
  1081   NOT_LP64(push(FP);)
  1082   li(A0, (long)reg->name());
  1083   push(S2);
  1084   move(AT, -(StackAlignmentInBytes));
  1085   move(S2, SP);     // use S2 as a sender SP holder
  1086   andr(SP, SP, AT); // align stack as required by ABI
  1087   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1088   delayed()->nop();
  1089   move(SP, S2);     // use S2 as a sender SP holder
  1090   pop(S2);
  1091   NOT_LP64(pop(FP);)
  1092   popad();
  1094   pushad();
  1095   NOT_LP64(push(FP);)
  1096 #if 1
  1097   move(FP, SP);
  1098   move(AT, -(StackAlignmentInBytes));
  1099   andr(SP , SP , AT);
  1100   mov_d(F12, reg);
  1101   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_double),relocInfo::runtime_call_type);
  1102   delayed()->nop();
  1103   move(SP, FP);
  1104 #else
  1105   mov_s(F12, reg);
  1106   //call(CAST_FROM_FN_PTR(address, SharedRuntime::print_float),relocInfo::runtime_call_type);
  1107   //delayed()->nop();
  1108 #endif
  1109   NOT_LP64(pop(FP);)
  1110   popad();
  1112 #if 0
  1113   pushad();
  1114   NOT_LP64(push(FP);)
  1115   char* b = new char[50];
  1116   sprintf(b, " pc: %p\n", cur_pc);
  1117   li(A0, (long)b);
  1118   call(CAST_FROM_FN_PTR(address, SharedRuntime::print_str),relocInfo::runtime_call_type);
  1119   delayed()->nop();
  1120   NOT_LP64(pop(FP);)
  1121   popad();
  1122 #endif
  1125 void MacroAssembler::increment(Register reg, int imm) {
  1126   if (!imm) return;
  1127   if (is_simm16(imm)) {
  1128 #ifdef _LP64
  1129     daddiu(reg, reg, imm);
  1130 #else
  1131     addiu(reg, reg, imm);
  1132 #endif
  1133   } else {
  1134     move(AT, imm);
  1135 #ifdef _LP64
  1136     daddu(reg, reg, AT);
  1137 #else
  1138     addu(reg, reg, AT);
  1139 #endif
  1143 void MacroAssembler::decrement(Register reg, int imm) {
  1144   increment(reg, -imm);
  1148 void MacroAssembler::call_VM(Register oop_result,
  1149                              address entry_point,
  1150                              bool check_exceptions) {
  1151   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  1154 void MacroAssembler::call_VM(Register oop_result,
  1155                              address entry_point,
  1156                              Register arg_1,
  1157                              bool check_exceptions) {
  1158   if (arg_1!=A1) move(A1, arg_1);
  1159   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  1162 void MacroAssembler::call_VM(Register oop_result,
  1163                              address entry_point,
  1164                              Register arg_1,
  1165                              Register arg_2,
  1166                              bool check_exceptions) {
  1167   if (arg_1!=A1) move(A1, arg_1);
  1168   if (arg_2!=A2) move(A2, arg_2);
  1169   assert(arg_2 != A1, "smashed argument");
  1170   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  1173 void MacroAssembler::call_VM(Register oop_result,
  1174                              address entry_point,
  1175                              Register arg_1,
  1176                              Register arg_2,
  1177                              Register arg_3,
  1178                              bool check_exceptions) {
  1179   if (arg_1!=A1) move(A1, arg_1);
  1180   if (arg_2!=A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1181   if (arg_3!=A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1182   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  1185 void MacroAssembler::call_VM(Register oop_result,
  1186                              Register last_java_sp,
  1187                              address entry_point,
  1188                              int number_of_arguments,
  1189                              bool check_exceptions) {
  1190   call_VM_base(oop_result, NOREG, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1193 void MacroAssembler::call_VM(Register oop_result,
  1194                              Register last_java_sp,
  1195                              address entry_point,
  1196                              Register arg_1,
  1197                              bool check_exceptions) {
  1198   if (arg_1 != A1) move(A1, arg_1);
  1199   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1202 void MacroAssembler::call_VM(Register oop_result,
  1203                              Register last_java_sp,
  1204                              address entry_point,
  1205                              Register arg_1,
  1206                              Register arg_2,
  1207                              bool check_exceptions) {
  1208   if (arg_1 != A1) move(A1, arg_1);
  1209   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1210   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1213 void MacroAssembler::call_VM(Register oop_result,
  1214                              Register last_java_sp,
  1215                              address entry_point,
  1216                              Register arg_1,
  1217                              Register arg_2,
  1218                              Register arg_3,
  1219                              bool check_exceptions) {
  1220   if (arg_1 != A1) move(A1, arg_1);
  1221   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A1, "smashed argument");
  1222   if (arg_3 != A3) move(A3, arg_3); assert(arg_3 != A1 && arg_3 != A2, "smashed argument");
  1223   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1226 void MacroAssembler::call_VM_base(Register oop_result,
  1227                                   Register java_thread,
  1228                                   Register last_java_sp,
  1229                                   address  entry_point,
  1230                                   int      number_of_arguments,
  1231                                   bool     check_exceptions) {
  1233   address before_call_pc;
  1234   // determine java_thread register
  1235   if (!java_thread->is_valid()) {
  1236 #ifndef OPT_THREAD
  1237     java_thread = T2;
  1238     get_thread(java_thread);
  1239 #else
  1240     java_thread = TREG;
  1241 #endif
  1243   // determine last_java_sp register
  1244   if (!last_java_sp->is_valid()) {
  1245     last_java_sp = SP;
  1247   // debugging support
  1248   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1249   assert(number_of_arguments <= 4   , "cannot have negative number of arguments");
  1250   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  1251   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  1253   assert(last_java_sp != FP, "this code doesn't work for last_java_sp == fp, which currently can't portably work anyway since C2 doesn't save ebp");
  1255   // set last Java frame before call
  1256   before_call_pc = (address)pc();
  1257   set_last_Java_frame(java_thread, last_java_sp, FP, before_call_pc);
  1259   // do the call
  1260   move(A0, java_thread);
  1261   call(entry_point, relocInfo::runtime_call_type);
  1262   delayed()->nop();
  1264   // restore the thread (cannot use the pushed argument since arguments
  1265   // may be overwritten by C code generated by an optimizing compiler);
  1266   // however can use the register value directly if it is callee saved.
  1267 #ifndef OPT_THREAD
  1268   get_thread(java_thread);
  1269 #else
  1270 #ifdef ASSERT
  1272     Label L;
  1273     get_thread(AT);
  1274     beq(java_thread, AT, L);
  1275     delayed()->nop();
  1276     stop("MacroAssembler::call_VM_base: TREG not callee saved?");
  1277     bind(L);
  1279 #endif
  1280 #endif
  1282   // discard thread and arguments
  1283   ld_ptr(SP, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1284   // reset last Java frame
  1285   reset_last_Java_frame(java_thread, false, true);
  1287   check_and_handle_popframe(java_thread);
  1288   check_and_handle_earlyret(java_thread);
  1289   if (check_exceptions) {
  1290     // check for pending exceptions (java_thread is set upon return)
  1291     Label L;
  1292 #ifdef _LP64
  1293     ld(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1294 #else
  1295     lw(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
  1296 #endif
  1297     beq(AT, R0, L);
  1298     delayed()->nop();
  1299     li(AT, before_call_pc);
  1300     push(AT);
  1301     jmp(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1302     delayed()->nop();
  1303     bind(L);
  1306   // get oop result if there is one and reset the value in the thread
  1307   if (oop_result->is_valid()) {
  1308 #ifdef _LP64
  1309     ld(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1310     sd(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1311 #else
  1312     lw(oop_result, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1313     sw(R0, java_thread, in_bytes(JavaThread::vm_result_offset()));
  1314 #endif
  1315     verify_oop(oop_result);
  1319 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1321   move(V0, SP);
  1322   //we also reserve space for java_thread here
  1323 #ifndef _LP64
  1324   daddi(SP, SP, (1 + number_of_arguments) * (- wordSize));
  1325 #endif
  1326   move(AT, -(StackAlignmentInBytes));
  1327   andr(SP, SP, AT);
  1328   call_VM_base(oop_result, NOREG, V0, entry_point, number_of_arguments, check_exceptions);
  1332 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  1333   call_VM_leaf_base(entry_point, number_of_arguments);
  1336 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  1337   if (arg_0 != A0) move(A0, arg_0);
  1338   call_VM_leaf(entry_point, 1);
  1341 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  1342   if (arg_0 != A0) move(A0, arg_0);
  1343   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1344   call_VM_leaf(entry_point, 2);
  1347 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  1348   if (arg_0 != A0) move(A0, arg_0);
  1349   if (arg_1 != A1) move(A1, arg_1); assert(arg_1 != A0, "smashed argument");
  1350   if (arg_2 != A2) move(A2, arg_2); assert(arg_2 != A0 && arg_2 != A1, "smashed argument");
  1351   call_VM_leaf(entry_point, 3);
  1353 void MacroAssembler::super_call_VM_leaf(address entry_point) {
  1354   MacroAssembler::call_VM_leaf_base(entry_point, 0);
  1358 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1359                                                    Register arg_1) {
  1360   if (arg_1 != A0) move(A0, arg_1);
  1361   MacroAssembler::call_VM_leaf_base(entry_point, 1);
  1365 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1366                                                    Register arg_1,
  1367                                                    Register arg_2) {
  1368   if (arg_1 != A0) move(A0, arg_1);
  1369   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1370   MacroAssembler::call_VM_leaf_base(entry_point, 2);
  1372 void MacroAssembler::super_call_VM_leaf(address entry_point,
  1373                                                    Register arg_1,
  1374                                                    Register arg_2,
  1375                                                    Register arg_3) {
  1376   if (arg_1 != A0) move(A0, arg_1);
  1377   if (arg_2 != A1) move(A1, arg_2); assert(arg_2 != A0, "smashed argument");
  1378   if (arg_3 != A2) move(A2, arg_3); assert(arg_3 != A0 && arg_3 != A1, "smashed argument");
  1379   MacroAssembler::call_VM_leaf_base(entry_point, 3);
  1382 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  1385 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  1388 void MacroAssembler::null_check(Register reg, int offset) {
  1389   if (needs_explicit_null_check(offset)) {
  1390     // provoke OS NULL exception if reg = NULL by
  1391     // accessing M[reg] w/o changing any (non-CC) registers
  1392     // NOTE: cmpl is plenty here to provoke a segv
  1393     lw(AT, reg, 0);
  1394     // Note: should probably use testl(rax, Address(reg, 0));
  1395     //       may be shorter code (however, this version of
  1396     //       testl needs to be implemented first)
  1397   } else {
  1398     // nothing to do, (later) access of M[reg + offset]
  1399     // will provoke OS NULL exception if reg = NULL
  1403 void MacroAssembler::enter() {
  1404   push2(RA, FP);
  1405   move(FP, SP);
  1408 void MacroAssembler::leave() {
  1409 #ifndef _LP64
  1410   //move(SP, FP);
  1411   //pop2(FP, RA);
  1412   addi(SP, FP, 2 * wordSize);
  1413   lw(RA, SP, - 1 * wordSize);
  1414   lw(FP, SP, - 2 * wordSize);
  1415 #else
  1416   daddi(SP, FP, 2 * wordSize);
  1417   ld(RA, SP, - 1 * wordSize);
  1418   ld(FP, SP, - 2 * wordSize);
  1419 #endif
  1421 /*
  1422 void MacroAssembler::os_breakpoint() {
  1423   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  1424   // (e.g., MSVC can't call ps() otherwise)
  1425   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  1427 */
  1428 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  1429   // determine java_thread register
  1430   if (!java_thread->is_valid()) {
  1431 #ifndef OPT_THREAD
  1432     java_thread = T1;
  1433     get_thread(java_thread);
  1434 #else
  1435     java_thread = TREG;
  1436 #endif
  1438   // we must set sp to zero to clear frame
  1439   st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1440   // must clear fp, so that compiled frames are not confused; it is possible
  1441   // that we need it only for debugging
  1442   if(clear_fp)
  1443     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1445   if (clear_pc)
  1446     st_ptr(R0, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1449 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  1450                                            bool clear_pc) {
  1451   Register thread = TREG;
  1452 #ifndef OPT_THREAD
  1453   get_thread(thread);
  1454 #endif
  1455   // we must set sp to zero to clear frame
  1456   sd(R0, Address(thread, JavaThread::last_Java_sp_offset()));
  1457   // must clear fp, so that compiled frames are not confused; it is
  1458   // possible that we need it only for debugging
  1459   if (clear_fp) {
  1460     sd(R0, Address(thread, JavaThread::last_Java_fp_offset()));
  1463   if (clear_pc) {
  1464     sd(R0, Address(thread, JavaThread::last_Java_pc_offset()));
  1468 // Write serialization page so VM thread can do a pseudo remote membar.
  1469 // We use the current thread pointer to calculate a thread specific
  1470 // offset to write to within the page. This minimizes bus traffic
  1471 // due to cache line collision.
  1472 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  1473   move(tmp, thread);
  1474   srl(tmp, tmp,os::get_serialize_page_shift_count());
  1475   move(AT, (os::vm_page_size() - sizeof(int)));
  1476   andr(tmp, tmp,AT);
  1477   sw(tmp,Address(tmp, (intptr_t)os::get_memory_serialize_page()));
  1480 // Calls to C land
  1481 //
  1482 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  1483 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  1484 // has to be reset to 0. This is required to allow proper stack traversal.
  1485 void MacroAssembler::set_last_Java_frame(Register java_thread,
  1486                                          Register last_java_sp,
  1487                                          Register last_java_fp,
  1488                                          address  last_java_pc) {
  1489   // determine java_thread register
  1490   if (!java_thread->is_valid()) {
  1491 #ifndef OPT_THREAD
  1492     java_thread = T2;
  1493     get_thread(java_thread);
  1494 #else
  1495     java_thread = TREG;
  1496 #endif
  1498   // determine last_java_sp register
  1499   if (!last_java_sp->is_valid()) {
  1500     last_java_sp = SP;
  1503   // last_java_fp is optional
  1505   if (last_java_fp->is_valid()) {
  1506     st_ptr(last_java_fp, java_thread, in_bytes(JavaThread::last_Java_fp_offset()));
  1509   // last_java_pc is optional
  1511   if (last_java_pc != NULL) {
  1512     relocate(relocInfo::internal_pc_type);
  1513     patchable_set48(AT, (long)last_java_pc);
  1514     st_ptr(AT, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
  1516   st_ptr(last_java_sp, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
  1519 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  1520                                          Register last_java_fp,
  1521                                          address  last_java_pc) {
  1522   // determine last_java_sp register
  1523   if (!last_java_sp->is_valid()) {
  1524     last_java_sp = SP;
  1527   Register thread = TREG;
  1528 #ifndef OPT_THREAD
  1529   get_thread(thread);
  1530 #endif
  1531   // last_java_fp is optional
  1532   if (last_java_fp->is_valid()) {
  1533     sd(last_java_fp, Address(thread, JavaThread::last_Java_fp_offset()));
  1536   // last_java_pc is optional
  1537   if (last_java_pc != NULL) {
  1538     Address java_pc(thread,
  1539                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1540     li(AT, (intptr_t)(last_java_pc));
  1541     sd(AT, java_pc);
  1544   sd(last_java_sp, Address(thread, JavaThread::last_Java_sp_offset()));
  1547 //////////////////////////////////////////////////////////////////////////////////
  1548 #if INCLUDE_ALL_GCS
  1550 void MacroAssembler::g1_write_barrier_pre(Register obj,
  1551                                           Register pre_val,
  1552                                           Register thread,
  1553                                           Register tmp,
  1554                                           bool tosca_live,
  1555                                           bool expand_call) {
  1557   // If expand_call is true then we expand the call_VM_leaf macro
  1558   // directly to skip generating the check by
  1559   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
  1561 #ifdef _LP64
  1562   assert(thread == TREG, "must be");
  1563 #endif // _LP64
  1565   Label done;
  1566   Label runtime;
  1568   assert(pre_val != noreg, "check this code");
  1570   if (obj != noreg) {
  1571     assert_different_registers(obj, pre_val, tmp);
  1572     assert(pre_val != V0, "check this code");
  1575   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1576                                        PtrQueue::byte_offset_of_active()));
  1577   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1578                                        PtrQueue::byte_offset_of_index()));
  1579   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  1580                                        PtrQueue::byte_offset_of_buf()));
  1583   // Is marking active?
  1584   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  1585     lw(AT, in_progress);
  1586   } else {
  1587     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  1588     lb(AT, in_progress);
  1590   beq(AT, R0, done);
  1591   nop();
  1593   // Do we need to load the previous value?
  1594   if (obj != noreg) {
  1595     load_heap_oop(pre_val, Address(obj, 0));
  1598   // Is the previous value null?
  1599   beq(pre_val, R0, done);
  1600   nop();
  1602   // Can we store original value in the thread's buffer?
  1603   // Is index == 0?
  1604   // (The index field is typed as size_t.)
  1606   ld(tmp, index);
  1607   beq(tmp, R0, runtime);
  1608   nop();
  1610   daddiu(tmp, tmp, -1 * wordSize);
  1611   sd(tmp, index);
  1612   ld(AT, buffer);
  1613   daddu(tmp, tmp, AT);
  1615   // Record the previous value
  1616   sd(pre_val, tmp, 0);
  1617   beq(R0, R0, done);
  1618   nop();
  1620   bind(runtime);
  1621   // save the live input values
  1622   if (tosca_live) push(V0);
  1624   if (obj != noreg && obj != V0) push(obj);
  1626   if (pre_val != V0) push(pre_val);
  1628   // Calling the runtime using the regular call_VM_leaf mechanism generates
  1629   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
  1630   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
  1631   //
  1632   // If we care generating the pre-barrier without a frame (e.g. in the
  1633   // intrinsified Reference.get() routine) then ebp might be pointing to
  1634   // the caller frame and so this check will most likely fail at runtime.
  1635   //
  1636   // Expanding the call directly bypasses the generation of the check.
  1637   // So when we do not have have a full interpreter frame on the stack
  1638   // expand_call should be passed true.
  1640   NOT_LP64( push(thread); )
  1642   if (expand_call) {
  1643     LP64_ONLY( assert(pre_val != A1, "smashed arg"); )
  1644     if (thread != A1) move(A1, thread);
  1645     if (pre_val != A0) move(A0, pre_val);
  1646     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
  1647   } else {
  1648     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
  1651   NOT_LP64( pop(thread); )
  1653   // save the live input values
  1654   if (pre_val != V0)
  1655     pop(pre_val);
  1657   if (obj != noreg && obj != V0)
  1658     pop(obj);
  1660   if(tosca_live) pop(V0);
  1662   bind(done);
  1665 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  1666                                            Register new_val,
  1667                                            Register thread,
  1668                                            Register tmp,
  1669                                            Register tmp2) {
  1670   assert(tmp  != AT, "must be");
  1671   assert(tmp2 != AT, "must be");
  1672 #ifdef _LP64
  1673   assert(thread == TREG, "must be");
  1674 #endif // _LP64
  1676   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1677                                        PtrQueue::byte_offset_of_index()));
  1678   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  1679                                        PtrQueue::byte_offset_of_buf()));
  1681   BarrierSet* bs = Universe::heap()->barrier_set();
  1682   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1683   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1685   Label done;
  1686   Label runtime;
  1688   // Does store cross heap regions?
  1689   xorr(AT, store_addr, new_val);
  1690   dsrl(AT, AT, HeapRegion::LogOfHRGrainBytes);
  1691   beq(AT, R0, done);
  1692   nop();
  1695   // crosses regions, storing NULL?
  1696   beq(new_val, R0, done);
  1697   nop();
  1699   // storing region crossing non-NULL, is card already dirty?
  1700   const Register card_addr = tmp;
  1701   const Register cardtable = tmp2;
  1703   move(card_addr, store_addr);
  1704   dsrl(card_addr, card_addr, CardTableModRefBS::card_shift);
  1705   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
  1706   // a valid address and therefore is not properly handled by the relocation code.
  1707   set64(cardtable, (intptr_t)ct->byte_map_base);
  1708   daddu(card_addr, card_addr, cardtable);
  1710   lb(AT, card_addr, 0);
  1711   daddiu(AT, AT, -1 * (int)G1SATBCardTableModRefBS::g1_young_card_val());
  1712   beq(AT, R0, done);
  1713   nop();
  1715   sync();
  1716   lb(AT, card_addr, 0);
  1717   daddiu(AT, AT, -1 * (int)(int)CardTableModRefBS::dirty_card_val());
  1718   beq(AT, R0, done);
  1719   nop();
  1722   // storing a region crossing, non-NULL oop, card is clean.
  1723   // dirty card and log.
  1724   move(AT, (int)CardTableModRefBS::dirty_card_val());
  1725   sb(AT, card_addr, 0);
  1727   lw(AT, queue_index);
  1728   beq(AT, R0, runtime);
  1729   nop();
  1730   daddiu(AT, AT, -1 * wordSize);
  1731   sw(AT, queue_index);
  1732   ld(tmp2, buffer);
  1733 #ifdef _LP64
  1734   ld(AT, queue_index);
  1735   daddu(tmp2, tmp2, AT);
  1736   sd(card_addr, tmp2, 0);
  1737 #else
  1738   lw(AT, queue_index);
  1739   addu32(tmp2, tmp2, AT);
  1740   sw(card_addr, tmp2, 0);
  1741 #endif
  1742   beq(R0, R0, done);
  1743   nop();
  1745   bind(runtime);
  1746   // save the live input values
  1747   push(store_addr);
  1748   push(new_val);
  1749 #ifdef _LP64
  1750   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, TREG);
  1751 #else
  1752   push(thread);
  1753   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  1754   pop(thread);
  1755 #endif
  1756   pop(new_val);
  1757   pop(store_addr);
  1759   bind(done);
  1762 #endif // INCLUDE_ALL_GCS
  1763 //////////////////////////////////////////////////////////////////////////////////
  1766 void MacroAssembler::store_check(Register obj) {
  1767   // Does a store check for the oop in register obj. The content of
  1768   // register obj is destroyed afterwards.
  1769   store_check_part_1(obj);
  1770   store_check_part_2(obj);
  1773 void MacroAssembler::store_check(Register obj, Address dst) {
  1774   store_check(obj);
  1778 // split the store check operation so that other instructions can be scheduled inbetween
  1779 void MacroAssembler::store_check_part_1(Register obj) {
  1780   BarrierSet* bs = Universe::heap()->barrier_set();
  1781   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1782 #ifdef _LP64
  1783   dsrl(obj, obj, CardTableModRefBS::card_shift);
  1784 #else
  1785   shr(obj, CardTableModRefBS::card_shift);
  1786 #endif
  1789 void MacroAssembler::store_check_part_2(Register obj) {
  1790   BarrierSet* bs = Universe::heap()->barrier_set();
  1791   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  1792   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1793   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1795   set64(AT, (long)ct->byte_map_base);
  1796 #ifdef _LP64
  1797   dadd(AT, AT, obj);
  1798 #else
  1799   add(AT, AT, obj);
  1800 #endif
  1801   if (UseConcMarkSweepGC) sync();
  1802   sb(R0, AT, 0);
  1805 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  1806 void MacroAssembler::tlab_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1807                                    Register t1, Register t2, Label& slow_case) {
  1808   assert_different_registers(obj, var_size_in_bytes, t1, t2, AT);
  1810   Register end = t2;
  1811 #ifndef OPT_THREAD
  1812   Register thread = t1;
  1813   get_thread(thread);
  1814 #else
  1815   Register thread = TREG;
  1816 #endif
  1817   verify_tlab(t1, t2);//blows t1&t2
  1819   ld_ptr(obj, thread, in_bytes(JavaThread::tlab_top_offset()));
  1821   if (var_size_in_bytes == NOREG) {
  1822     // i dont think we need move con_size_in_bytes to a register first.
  1823     // by yjl 8/17/2005
  1824     assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1825     addi(end, obj, con_size_in_bytes);
  1826   } else {
  1827     add(end, obj, var_size_in_bytes);
  1830   ld_ptr(AT, thread, in_bytes(JavaThread::tlab_end_offset()));
  1831   sltu(AT, AT, end);
  1832   bne_far(AT, R0, slow_case);
  1833   delayed()->nop();
  1836   // update the tlab top pointer
  1837   st_ptr(end, thread, in_bytes(JavaThread::tlab_top_offset()));
  1839   // recover var_size_in_bytes if necessary
  1840   /*if (var_size_in_bytes == end) {
  1841     sub(var_size_in_bytes, end, obj);
  1842     }*/
  1844   verify_tlab(t1, t2);
  1847 // Defines obj, preserves var_size_in_bytes
  1848 void MacroAssembler::eden_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes,
  1849                                    Register t1, Register t2, Label& slow_case) {
  1850   assert_different_registers(obj, var_size_in_bytes, t1, AT);
  1851   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1852     // No allocation in the shared eden.
  1853     b_far(slow_case);
  1854     delayed()->nop();
  1855   } else {
  1857 #ifndef _LP64
  1858     Address heap_top(t1, Assembler::split_low((intptr_t)Universe::heap()->top_addr()));
  1859     lui(t1, split_high((intptr_t)Universe::heap()->top_addr()));
  1860 #else
  1861     Address heap_top(t1);
  1862     li(t1, (long)Universe::heap()->top_addr());
  1863 #endif
  1864     ld_ptr(obj, heap_top);
  1866     Register end = t2;
  1867     Label retry;
  1869     bind(retry);
  1870     if (var_size_in_bytes == NOREG) {
  1871     // i dont think we need move con_size_in_bytes to a register first.
  1872       assert(is_simm16(con_size_in_bytes), "fixme by moving imm to a register first");
  1873       addi(end, obj, con_size_in_bytes);
  1874     } else {
  1875       add(end, obj, var_size_in_bytes);
  1877     // if end < obj then we wrapped around => object too long => slow case
  1878     sltu(AT, end, obj);
  1879     bne_far(AT, R0, slow_case);
  1880     delayed()->nop();
  1882     li(AT, (long)Universe::heap()->end_addr());
  1883     sltu(AT, AT, end);
  1884     bne_far(AT, R0, slow_case);
  1885     delayed()->nop();
  1886     // Compare obj with the top addr, and if still equal, store the new top addr in
  1887     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  1888     // it otherwise. Use lock prefix for atomicity on MPs.
  1889     //if (os::is_MP()) {
  1890     //  sync();
  1891     //}
  1893     // if someone beat us on the allocation, try again, otherwise continue
  1894     cmpxchg(end, heap_top, obj);
  1895     beq_far(AT, R0, retry);    //by yyq
  1896     delayed()->nop();
  1901 // C2 doesn't invoke this one.
  1902 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  1903   Register top = T0;
  1904   Register t1  = T1;
  1905 /* Jin: tlab_refill() is called in
  1907      [c1_Runtime1_mips.cpp] Runtime1::generate_code_for(new_type_array_id);
  1909   In generate_code_for(), T2 has been assigned as a register(length), which is used
  1910  after calling tlab_refill();
  1911   Therefore, tlab_refill() should not use T2.
  1913  Source:
  1915 Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException
  1916         at java.lang.System.arraycopy(Native Method)
  1917         at java.util.Arrays.copyOf(Arrays.java:2799)  <-- alloc_array
  1918         at sun.misc.Resource.getBytes(Resource.java:117)
  1919         at java.net.URLClassLoader.defineClass(URLClassLoader.java:273)
  1920         at java.net.URLClassLoader.findClass(URLClassLoader.java:205)
  1921         at java.lang.ClassLoader.loadClass(ClassLoader.java:321)
  1922  */
  1923   Register t2  = T9;
  1924   Register t3  = T3;
  1925   Register thread_reg = T8;
  1926   Label do_refill, discard_tlab;
  1927   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { //by yyq
  1928     // No allocation in the shared eden.
  1929     b(slow_case);
  1930     delayed()->nop();
  1933   get_thread(thread_reg);
  1935   ld_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  1936   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  1938   // calculate amount of free space
  1939   sub(t1, t1, top);
  1940   shr(t1, LogHeapWordSize);
  1942   // Retain tlab and allocate object in shared space if
  1943   // the amount free in the tlab is too large to discard.
  1944   ld_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1945   slt(AT, t2, t1);
  1946   beq(AT, R0, discard_tlab);
  1947   delayed()->nop();
  1949   // Retain
  1951 #ifndef _LP64
  1952   move(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1953 #else
  1954   li(AT, ThreadLocalAllocBuffer::refill_waste_limit_increment());
  1955 #endif
  1956   add(t2, t2, AT);
  1957   st_ptr(t2, thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  1959   if (TLABStats) {
  1960     // increment number of slow_allocations
  1961     lw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1962     addiu(AT, AT, 1);
  1963     sw(AT, thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  1965   b(try_eden);
  1966   delayed()->nop();
  1968   bind(discard_tlab);
  1969   if (TLABStats) {
  1970     // increment number of refills
  1971     lw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1972     addi(AT, AT, 1);
  1973     sw(AT, thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  1974     // accumulate wastage -- t1 is amount free in tlab
  1975     lw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1976     add(AT, AT, t1);
  1977     sw(AT, thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  1980   // if tlab is currently allocated (top or end != null) then
  1981   // fill [top, end + alignment_reserve) with array object
  1982   beq(top, R0, do_refill);
  1983   delayed()->nop();
  1985   // set up the mark word
  1986   li(AT, (long)markOopDesc::prototype()->copy_set_hash(0x2));
  1987   st_ptr(AT, top, oopDesc::mark_offset_in_bytes());
  1989   // set the length to the remaining space
  1990   addi(t1, t1, - typeArrayOopDesc::header_size(T_INT));
  1991   addi(t1, t1, ThreadLocalAllocBuffer::alignment_reserve());
  1992   shl(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  1993   sw(t1, top, arrayOopDesc::length_offset_in_bytes());
  1995   // set klass to intArrayKlass
  1996 #ifndef _LP64
  1997   lui(AT, split_high((intptr_t)Universe::intArrayKlassObj_addr()));
  1998   lw(t1, AT, split_low((intptr_t)Universe::intArrayKlassObj_addr()));
  1999 #else
  2000   li(AT, (intptr_t)Universe::intArrayKlassObj_addr());
  2001   ld_ptr(t1, AT, 0);
  2002 #endif
  2003   //st_ptr(t1, top, oopDesc::klass_offset_in_bytes());
  2004   store_klass(top, t1);
  2006   // refill the tlab with an eden allocation
  2007   bind(do_refill);
  2008   ld_ptr(t1, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  2009   shl(t1, LogHeapWordSize);
  2010   // add object_size ??
  2011   eden_allocate(top, t1, 0, t2, t3, slow_case);
  2013   // Check that t1 was preserved in eden_allocate.
  2014 #ifdef ASSERT
  2015   if (UseTLAB) {
  2016     Label ok;
  2017     assert_different_registers(thread_reg, t1);
  2018     ld_ptr(AT, thread_reg, in_bytes(JavaThread::tlab_size_offset()));
  2019     shl(AT, LogHeapWordSize);
  2020     beq(AT, t1, ok);
  2021     delayed()->nop();
  2022     stop("assert(t1 != tlab size)");
  2023     should_not_reach_here();
  2025     bind(ok);
  2027 #endif
  2028   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_start_offset()));
  2029   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_top_offset()));
  2030   add(top, top, t1);
  2031   addi(top, top, - ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  2032   st_ptr(top, thread_reg, in_bytes(JavaThread::tlab_end_offset()));
  2033   verify_tlab(t1, t2);
  2034   b(retry);
  2035   delayed()->nop();
  2038 static const double     pi_4 =  0.7853981633974483;
  2040 // the x86 version is to clumsy, i dont think we need that fuss. maybe i'm wrong, FIXME
  2041 // must get argument(a double) in F12/F13
  2042 //void MacroAssembler::trigfunc(char trig, bool preserve_cpu_regs, int num_fpu_regs_in_use) {
  2043 //We need to preseve the register which maybe modified during the Call @Jerome
  2044 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  2045 //save all modified register here
  2046 //  if (preserve_cpu_regs) {
  2047 //  }
  2048 //FIXME, in the disassembly of tirgfunc, only used V0,V1,T9, SP,RA,so we ony save V0,V1,T9
  2049   pushad();
  2050 //we should preserve the stack space before we call
  2051   addi(SP, SP, -wordSize * 2);
  2052         switch (trig){
  2053     case 's' :
  2054                   call( CAST_FROM_FN_PTR(address, SharedRuntime::dsin), relocInfo::runtime_call_type );
  2055       delayed()->nop();
  2056       break;
  2057     case 'c':
  2058       call( CAST_FROM_FN_PTR(address, SharedRuntime::dcos), relocInfo::runtime_call_type );
  2059       delayed()->nop();
  2060       break;
  2061     case 't':
  2062       call( CAST_FROM_FN_PTR(address, SharedRuntime::dtan), relocInfo::runtime_call_type );
  2063       delayed()->nop();
  2064       break;
  2065     default:assert (false, "bad intrinsic");
  2066     break;
  2070   addi(SP, SP, wordSize * 2);
  2071   popad();
  2072 //  if (preserve_cpu_regs) {
  2073 //  }
  2076 #ifdef _LP64
  2077 void MacroAssembler::li(Register rd, long imm) {
  2078   if (imm <= max_jint && imm >= min_jint) {
  2079     li32(rd, (int)imm);
  2080   } else if (julong(imm) <= 0xFFFFFFFF) {
  2081     assert_not_delayed();
  2082     // lui sign-extends, so we can't use that.
  2083     ori(rd, R0, julong(imm) >> 16);
  2084     dsll(rd, rd, 16);
  2085     ori(rd, rd, split_low(imm));
  2086   //aoqi_test
  2087   //} else if ((imm > 0) && ((imm >> 48) == 0)) {
  2088   } else if ((imm > 0) && is_simm16(imm >> 32)) {
  2089     /* A 48-bit address */
  2090     li48(rd, imm);
  2091   } else {
  2092     li64(rd, imm);
  2095 #else
  2096 void MacroAssembler::li(Register rd, long imm) {
  2097   li32(rd, (int)imm);
  2099 #endif
  2101 void MacroAssembler::li32(Register reg, int imm) {
  2102   if (is_simm16(imm)) {
  2103     /* Jin: for imm < 0, we should use addi instead of addiu.
  2105      *  java.lang.StringCoding$StringDecoder.decode(jobject, jint, jint)
  2107      *  78 move [int:-1|I] [a0|I]
  2108      *    : daddi a0, zero, 0xffffffff  (correct)
  2109      *    : daddiu a0, zero, 0xffffffff (incorrect)
  2110      */
  2111     if (imm >= 0)
  2112       addiu(reg, R0, imm);
  2113     else
  2114       addi(reg, R0, imm);
  2115   } else {
  2116     lui(reg, split_low(imm >> 16));
  2117     if (split_low(imm))
  2118       ori(reg, reg, split_low(imm));
  2122 #ifdef _LP64
  2123 void MacroAssembler::set64(Register d, jlong value) {
  2124   assert_not_delayed();
  2126   int hi = (int)(value >> 32);
  2127   int lo = (int)(value & ~0);
  2129   if (value == lo) {  // 32-bit integer
  2130     if (is_simm16(value)) {
  2131       daddiu(d, R0, value);
  2132     } else {
  2133       lui(d, split_low(value >> 16));
  2134       if (split_low(value)) {
  2135         ori(d, d, split_low(value));
  2138   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2139       ori(d, R0, julong(value) >> 16);
  2140       dsll(d, d, 16);
  2141       if (split_low(value)) {
  2142         ori(d, d, split_low(value));
  2144   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  2145     // 4 insts
  2146     li48(d, value);
  2147   } else {  // li64
  2148     // 6 insts
  2149     li64(d, value);
  2154 int MacroAssembler::insts_for_set64(jlong value) {
  2155   int hi = (int)(value >> 32);
  2156   int lo = (int)(value & ~0);
  2158   int count = 0;
  2160   if (value == lo) {  // 32-bit integer
  2161     if (is_simm16(value)) {
  2162       //daddiu(d, R0, value);
  2163       count++;
  2164     } else {
  2165       //lui(d, split_low(value >> 16));
  2166       count++;
  2167       if (split_low(value)) {
  2168         //ori(d, d, split_low(value));
  2169         count++;
  2172   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2173       //ori(d, R0, julong(value) >> 16);
  2174       //dsll(d, d, 16);
  2175       count += 2;
  2176       if (split_low(value)) {
  2177         //ori(d, d, split_low(value));
  2178         count++;
  2180   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  2181     // 4 insts
  2182     //li48(d, value);
  2183     count += 4;
  2184   } else {  // li64
  2185     // 6 insts
  2186     //li64(d, value);
  2187     count += 6;
  2190   return count;
  2193 void MacroAssembler::patchable_set48(Register d, jlong value) {
  2194   assert_not_delayed();
  2196   int hi = (int)(value >> 32);
  2197   int lo = (int)(value & ~0);
  2199   int count = 0;
  2201   if (value == lo) {  // 32-bit integer
  2202     if (is_simm16(value)) {
  2203       daddiu(d, R0, value);
  2204       count += 1;
  2205     } else {
  2206       lui(d, split_low(value >> 16));
  2207       count += 1;
  2208       if (split_low(value)) {
  2209         ori(d, d, split_low(value));
  2210         count += 1;
  2213   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2214       ori(d, R0, julong(value) >> 16);
  2215       dsll(d, d, 16);
  2216       count += 2;
  2217       if (split_low(value)) {
  2218         ori(d, d, split_low(value));
  2219         count += 1;
  2221   } else if ((value> 0) && is_simm16(value >> 32)) {  // li48
  2222     // 4 insts
  2223     li48(d, value);
  2224     count += 4;
  2225   } else {  // li64
  2226     tty->print_cr("value = 0x%x", value);
  2227     guarantee(false, "Not supported yet !");
  2230   for (count; count < 4; count++) {
  2231     nop();
  2235 void MacroAssembler::patchable_set32(Register d, jlong value) {
  2236   assert_not_delayed();
  2238   int hi = (int)(value >> 32);
  2239   int lo = (int)(value & ~0);
  2241   int count = 0;
  2243   if (value == lo) {  // 32-bit integer
  2244     if (is_simm16(value)) {
  2245       daddiu(d, R0, value);
  2246       count += 1;
  2247     } else {
  2248       lui(d, split_low(value >> 16));
  2249       count += 1;
  2250       if (split_low(value)) {
  2251         ori(d, d, split_low(value));
  2252         count += 1;
  2255   } else if (hi == 0) {  // hardware zero-extends to upper 32
  2256       ori(d, R0, julong(value) >> 16);
  2257       dsll(d, d, 16);
  2258       count += 2;
  2259       if (split_low(value)) {
  2260         ori(d, d, split_low(value));
  2261         count += 1;
  2263   } else {
  2264     tty->print_cr("value = 0x%x", value);
  2265     guarantee(false, "Not supported yet !");
  2268   for (count; count < 3; count++) {
  2269     nop();
  2273 void MacroAssembler::patchable_call32(Register d, jlong value) {
  2274   assert_not_delayed();
  2276   int hi = (int)(value >> 32);
  2277   int lo = (int)(value & ~0);
  2279   int count = 0;
  2281   if (value == lo) {  // 32-bit integer
  2282     if (is_simm16(value)) {
  2283       daddiu(d, R0, value);
  2284       count += 1;
  2285     } else {
  2286       lui(d, split_low(value >> 16));
  2287       count += 1;
  2288       if (split_low(value)) {
  2289         ori(d, d, split_low(value));
  2290         count += 1;
  2293   } else {
  2294     tty->print_cr("value = 0x%x", value);
  2295     guarantee(false, "Not supported yet !");
  2298   for (count; count < 2; count++) {
  2299     nop();
  2303 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
  2304   assert(UseCompressedClassPointers, "should only be used for compressed header");
  2305   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2307   int klass_index = oop_recorder()->find_index(k);
  2308   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  2309   long narrowKlass = (long)Klass::encode_klass(k);
  2311   relocate(rspec, Assembler::narrow_oop_operand);
  2312   patchable_set48(dst, narrowKlass);
  2316 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  2317   assert(UseCompressedOops, "should only be used for compressed header");
  2318   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  2320   int oop_index = oop_recorder()->find_index(obj);
  2321   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  2323   relocate(rspec, Assembler::narrow_oop_operand);
  2324   patchable_set48(dst, oop_index);
  2327 void MacroAssembler::li64(Register rd, long imm) {
  2328   assert_not_delayed();
  2329   lui(rd, imm >> 48);
  2330   ori(rd, rd, split_low(imm >> 32));
  2331   dsll(rd, rd, 16);
  2332   ori(rd, rd, split_low(imm >> 16));
  2333   dsll(rd, rd, 16);
  2334   ori(rd, rd, split_low(imm));
  2337 void MacroAssembler::li48(Register rd, long imm) {
  2338   assert_not_delayed();
  2339   assert(is_simm16(imm >> 32), "Not a 48-bit address");
  2340   lui(rd, imm >> 32);
  2341   ori(rd, rd, split_low(imm >> 16));
  2342   dsll(rd, rd, 16);
  2343   ori(rd, rd, split_low(imm));
  2345 #endif
  2346 // NOTE: i dont push eax as i486.
  2347 // the x86 save eax for it use eax as the jump register
  2348 void MacroAssembler::verify_oop(Register reg, const char* s) {
  2349   /*
  2350      if (!VerifyOops) return;
  2352   // Pass register number to verify_oop_subroutine
  2353   char* b = new char[strlen(s) + 50];
  2354   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  2355   push(rax);                          // save rax,
  2356   push(reg);                          // pass register argument
  2357   ExternalAddress buffer((address) b);
  2358   // avoid using pushptr, as it modifies scratch registers
  2359   // and our contract is not to modify anything
  2360   movptr(rax, buffer.addr());
  2361   push(rax);
  2362   // call indirectly to solve generation ordering problem
  2363   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  2364   call(rax);
  2365    */
  2366   if (!VerifyOops) return;
  2367   const char * b = NULL;
  2368   stringStream ss;
  2369   ss.print("verify_oop: %s: %s", reg->name(), s);
  2370   b = code_string(ss.as_string());
  2371 #ifdef _LP64
  2372   pushad();
  2373   move(A1, reg);
  2374   li(A0, (long)b);
  2375   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2376   ld(T9, AT, 0);
  2377   jalr(T9);
  2378   delayed()->nop();
  2379   popad();
  2380 #else
  2381   // Pass register number to verify_oop_subroutine
  2382   sw(T0, SP, - wordSize);
  2383   sw(T1, SP, - 2*wordSize);
  2384   sw(RA, SP, - 3*wordSize);
  2385   sw(A0, SP ,- 4*wordSize);
  2386   sw(A1, SP ,- 5*wordSize);
  2387   sw(AT, SP ,- 6*wordSize);
  2388   sw(T9, SP ,- 7*wordSize);
  2389   addiu(SP, SP, - 7 * wordSize);
  2390   move(A1, reg);
  2391   li(A0, (long)b);
  2392   // call indirectly to solve generation ordering problem
  2393   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2394   lw(T9, AT, 0);
  2395   jalr(T9);
  2396   delayed()->nop();
  2397   lw(T0, SP, 6* wordSize);
  2398   lw(T1, SP, 5* wordSize);
  2399   lw(RA, SP, 4* wordSize);
  2400   lw(A0, SP, 3* wordSize);
  2401   lw(A1, SP, 2* wordSize);
  2402   lw(AT, SP, 1* wordSize);
  2403   lw(T9, SP, 0* wordSize);
  2404   addiu(SP, SP, 7 * wordSize);
  2405 #endif
  2409 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  2410   if (!VerifyOops) {
  2411     nop();
  2412     return;
  2414   // Pass register number to verify_oop_subroutine
  2415   const char * b = NULL;
  2416   stringStream ss;
  2417   ss.print("verify_oop_addr: %s",  s);
  2418   b = code_string(ss.as_string());
  2420   st_ptr(T0, SP, - wordSize);
  2421   st_ptr(T1, SP, - 2*wordSize);
  2422   st_ptr(RA, SP, - 3*wordSize);
  2423   st_ptr(A0, SP, - 4*wordSize);
  2424   st_ptr(A1, SP, - 5*wordSize);
  2425   st_ptr(AT, SP, - 6*wordSize);
  2426   st_ptr(T9, SP, - 7*wordSize);
  2427   ld_ptr(A1, addr);   // addr may use SP, so load from it before change SP
  2428   addiu(SP, SP, - 7 * wordSize);
  2430   li(A0, (long)b);
  2431   // call indirectly to solve generation ordering problem
  2432   li(AT, (long)StubRoutines::verify_oop_subroutine_entry_address());
  2433   ld_ptr(T9, AT, 0);
  2434   jalr(T9);
  2435   delayed()->nop();
  2436   ld_ptr(T0, SP, 6* wordSize);
  2437   ld_ptr(T1, SP, 5* wordSize);
  2438   ld_ptr(RA, SP, 4* wordSize);
  2439   ld_ptr(A0, SP, 3* wordSize);
  2440   ld_ptr(A1, SP, 2* wordSize);
  2441   ld_ptr(AT, SP, 1* wordSize);
  2442   ld_ptr(T9, SP, 0* wordSize);
  2443   addiu(SP, SP, 7 * wordSize);
  2446 // used registers :  T0, T1
  2447 void MacroAssembler::verify_oop_subroutine() {
  2448   // RA: ra
  2449   // A0: char* error message
  2450   // A1: oop   object to verify
  2452   Label exit, error;
  2453   // increment counter
  2454   li(T0, (long)StubRoutines::verify_oop_count_addr());
  2455   lw(AT, T0, 0);
  2456 #ifdef _LP64
  2457   daddi(AT, AT, 1);
  2458 #else
  2459   addi(AT, AT, 1);
  2460 #endif
  2461   sw(AT, T0, 0);
  2463   // make sure object is 'reasonable'
  2464   beq(A1, R0, exit);         // if obj is NULL it is ok
  2465   delayed()->nop();
  2467   // Check if the oop is in the right area of memory
  2468   //const int oop_mask = Universe::verify_oop_mask();
  2469   //const int oop_bits = Universe::verify_oop_bits();
  2470   const uintptr_t oop_mask = Universe::verify_oop_mask();
  2471   const uintptr_t oop_bits = Universe::verify_oop_bits();
  2472   li(AT, oop_mask);
  2473   andr(T0, A1, AT);
  2474   li(AT, oop_bits);
  2475   bne(T0, AT, error);
  2476   delayed()->nop();
  2478   // make sure klass is 'reasonable'
  2479   //add for compressedoops
  2480   reinit_heapbase();
  2481   //add for compressedoops
  2482   load_klass(T0, A1);
  2483   beq(T0, R0, error);                        // if klass is NULL it is broken
  2484   delayed()->nop();
  2485   #if 0
  2486   //FIXME:wuhui.
  2487   // Check if the klass is in the right area of memory
  2488   //const int klass_mask = Universe::verify_klass_mask();
  2489   //const int klass_bits = Universe::verify_klass_bits();
  2490   const uintptr_t klass_mask = Universe::verify_klass_mask();
  2491   const uintptr_t klass_bits = Universe::verify_klass_bits();
  2493   li(AT, klass_mask);
  2494   andr(T1, T0, AT);
  2495   li(AT, klass_bits);
  2496   bne(T1, AT, error);
  2497   delayed()->nop();
  2498   // make sure klass' klass is 'reasonable'
  2499   //add for compressedoops
  2500   load_klass(T0, T0);
  2501   beq(T0, R0, error);  // if klass' klass is NULL it is broken
  2502   delayed()->nop();
  2504   li(AT, klass_mask);
  2505   andr(T1, T0, AT);
  2506   li(AT, klass_bits);
  2507   bne(T1, AT, error);
  2508   delayed()->nop();     // if klass not in right area of memory it is broken too.
  2509 #endif
  2510   // return if everything seems ok
  2511   bind(exit);
  2513   jr(RA);
  2514   delayed()->nop();
  2516   // handle errors
  2517   bind(error);
  2518   pushad();
  2519 #ifndef _LP64
  2520   addi(SP, SP, (-1) * wordSize);
  2521 #endif
  2522   call(CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2523   delayed()->nop();
  2524 #ifndef _LP64
  2525   addiu(SP, SP, 1 * wordSize);
  2526 #endif
  2527   popad();
  2528   jr(RA);
  2529   delayed()->nop();
  2532 void MacroAssembler::verify_tlab(Register t1, Register t2) {
  2533 #ifdef ASSERT
  2534   assert_different_registers(t1, t2, AT);
  2535   if (UseTLAB && VerifyOops) {
  2536     Label next, ok;
  2538     get_thread(t1);
  2540     ld_ptr(t2, t1, in_bytes(JavaThread::tlab_top_offset()));
  2541     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_start_offset()));
  2542     sltu(AT, t2, AT);
  2543     beq(AT, R0, next);
  2544     delayed()->nop();
  2546     stop("assert(top >= start)");
  2548     bind(next);
  2549     ld_ptr(AT, t1, in_bytes(JavaThread::tlab_end_offset()));
  2550     sltu(AT, AT, t2);
  2551     beq(AT, R0, ok);
  2552     delayed()->nop();
  2554     stop("assert(top <= end)");
  2556     bind(ok);
  2559 #endif
  2561  RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2562                                                        Register tmp,
  2563                                                        int offset) {
  2564    intptr_t value = *delayed_value_addr;
  2565    if (value != 0)
  2566    return RegisterOrConstant(value + offset);
  2567    AddressLiteral a(delayed_value_addr);
  2568    // load indirectly to solve generation ordering problem
  2569    //movptr(tmp, ExternalAddress((address) delayed_value_addr));
  2570    //ld(tmp, a);
  2571    if (offset != 0)
  2572      daddi(tmp,tmp, offset);
  2574    return RegisterOrConstant(tmp);
  2577 void MacroAssembler::hswap(Register reg) {
  2578   //short
  2579   //andi(reg, reg, 0xffff);
  2580   srl(AT, reg, 8);
  2581   sll(reg, reg, 24);
  2582   sra(reg, reg, 16);
  2583   orr(reg, reg, AT);
  2586 void MacroAssembler::huswap(Register reg) {
  2587 #ifdef _LP64
  2588   dsrl(AT, reg, 8);
  2589   dsll(reg, reg, 24);
  2590   dsrl(reg, reg, 16);
  2591   orr(reg, reg, AT);
  2592   andi(reg, reg, 0xffff);
  2593 #else
  2594   //andi(reg, reg, 0xffff);
  2595   srl(AT, reg, 8);
  2596   sll(reg, reg, 24);
  2597   srl(reg, reg, 16);
  2598   orr(reg, reg, AT);
  2599 #endif
  2602 // something funny to do this will only one more register AT
  2603 // 32 bits
  2604 void MacroAssembler::swap(Register reg) {
  2605   srl(AT, reg, 8);
  2606   sll(reg, reg, 24);
  2607   orr(reg, reg, AT);
  2608   //reg : 4 1 2 3
  2609   srl(AT, AT, 16);
  2610   xorr(AT, AT, reg);
  2611   andi(AT, AT, 0xff);
  2612   //AT : 0 0 0 1^3);
  2613   xorr(reg, reg, AT);
  2614   //reg : 4 1 2 1
  2615   sll(AT, AT, 16);
  2616   xorr(reg, reg, AT);
  2617   //reg : 4 3 2 1
  2620 #ifdef _LP64
  2622 /* do 32-bit CAS using MIPS64 lld/scd
  2624   Jin: cas_int should only compare 32-bits of the memory value.
  2625        However, lld/scd will do 64-bit operation, which violates the intention of cas_int.
  2626        To simulate a 32-bit atomic operation, the value loaded with LLD should be split into
  2627        tow halves, and only the low-32 bits is compared. If equals, the low-32 bits of newval,
  2628        plus the high-32 bits or memory value, are stored togethor with SCD.
  2630 Example:
  2632       double d = 3.1415926;
  2633       System.err.println("hello" + d);
  2635   sun.misc.FloatingDecimal$1.<init>()
  2637    `- java.util.concurrent.atomic.AtomicInteger::compareAndSet()
  2639   38 cas_int [a7a7|J] [a0|I] [a6|I]
  2640 // a0: 0xffffffffe8ea9f63 pc: 0x55647f3354
  2641 // a6: 0x4ab325aa
  2643 again:
  2644    0x00000055647f3c5c: lld at, 0x0(a7)                          ; 64-bit load, "0xe8ea9f63"
  2646    0x00000055647f3c60: sll t9, at, 0                            ; t9: low-32 bits (sign extended)
  2647    0x00000055647f3c64: dsrl32 t8, at, 0                         ; t8: high-32 bits
  2648    0x00000055647f3c68: dsll32 t8, t8, 0
  2649    0x00000055647f3c6c: bne t9, a0, 0x00000055647f3c9c           ; goto nequal
  2650    0x00000055647f3c70: sll zero, zero, 0
  2652    0x00000055647f3c74: ori v1, zero, 0xffffffff                 ; v1: low-32 bits of newval (sign unextended)
  2653    0x00000055647f3c78: dsll v1, v1, 16                          ; v1 = a6 & 0xFFFFFFFF;
  2654    0x00000055647f3c7c: ori v1, v1, 0xffffffff
  2655    0x00000055647f3c80: and v1, a6, v1
  2656    0x00000055647f3c84: or at, t8, v1
  2657    0x00000055647f3c88: scd at, 0x0(a7)
  2658    0x00000055647f3c8c: beq at, zero, 0x00000055647f3c5c         ; goto again
  2659    0x00000055647f3c90: sll zero, zero, 0
  2660    0x00000055647f3c94: beq zero, zero, 0x00000055647f45ac       ; goto done
  2661    0x00000055647f3c98: sll zero, zero, 0
  2662 nequal:
  2663    0x00000055647f45a4: dadd a0, t9, zero
  2664    0x00000055647f45a8: dadd at, zero, zero
  2665 done:
  2666 */
  2668 void MacroAssembler::cmpxchg32(Register x_reg, Address dest, Register c_reg) {
  2669   /* 2012/11/11 Jin: MIPS64 can use ll/sc for 32-bit atomic memory access */
  2670   Label done, again, nequal;
  2672   bind(again);
  2674   if(UseSyncLevel >= 3000 || UseSyncLevel < 2000) sync();
  2675   ll(AT, dest);
  2676   bne(AT, c_reg, nequal);
  2677   delayed()->nop();
  2679   move(AT, x_reg);
  2680   sc(AT, dest);
  2681   beq(AT, R0, again);
  2682   delayed()->nop();
  2683   b(done);
  2684   delayed()->nop();
  2686   // not xchged
  2687   bind(nequal);
  2688   sync();
  2689   move(c_reg, AT);
  2690   move(AT, R0);
  2692   bind(done);
  2694 #endif  // cmpxchg32
  2696 void MacroAssembler::cmpxchg(Register x_reg, Address dest, Register c_reg) {
  2697   Label done, again, nequal;
  2699   bind(again);
  2700   if(UseSyncLevel >= 3000 || UseSyncLevel < 2000) sync();
  2701 #ifdef _LP64
  2702   lld(AT, dest);
  2703 #else
  2704   ll(AT, dest);
  2705 #endif
  2706   bne(AT, c_reg, nequal);
  2707   delayed()->nop();
  2709   move(AT, x_reg);
  2710 #ifdef _LP64
  2711   scd(AT, dest);
  2712 #else
  2713   sc(AT, dest);
  2714 #endif
  2715   beq(AT, R0, again);
  2716   delayed()->nop();
  2717   b(done);
  2718   delayed()->nop();
  2720   // not xchged
  2721   bind(nequal);
  2722   sync();
  2723   move(c_reg, AT);
  2724   move(AT, R0);
  2726   bind(done);
  2729 void MacroAssembler::cmpxchg8(Register x_regLo, Register x_regHi, Address dest, Register c_regLo, Register c_regHi) {
  2730   Label done, again, nequal;
  2732   Register x_reg = x_regLo;
  2733   dsll32(x_regHi, x_regHi, 0);
  2734   dsll32(x_regLo, x_regLo, 0);
  2735   dsrl32(x_regLo, x_regLo, 0);
  2736   orr(x_reg, x_regLo, x_regHi);
  2738   Register c_reg = c_regLo;
  2739   dsll32(c_regHi, c_regHi, 0);
  2740   dsll32(c_regLo, c_regLo, 0);
  2741   dsrl32(c_regLo, c_regLo, 0);
  2742   orr(c_reg, c_regLo, c_regHi);
  2744   bind(again);
  2746   if(UseSyncLevel >= 3000 || UseSyncLevel < 2000) sync();
  2747   lld(AT, dest);
  2748   bne(AT, c_reg, nequal);
  2749   delayed()->nop();
  2751   //move(AT, x_reg);
  2752   dadd(AT, x_reg, R0);
  2753   scd(AT, dest);
  2754   beq(AT, R0, again);
  2755   delayed()->nop();
  2756   b(done);
  2757   delayed()->nop();
  2759   // not xchged
  2760   bind(nequal);
  2761   sync();
  2762   //move(c_reg, AT);
  2763   //move(AT, R0);
  2764   dadd(c_reg, AT, R0);
  2765   dadd(AT, R0, R0);
  2766   bind(done);
  2769 // be sure the three register is different
  2770 void MacroAssembler::rem_s(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2771   assert_different_registers(tmp, fs, ft);
  2772   div_s(tmp, fs, ft);
  2773   trunc_l_s(tmp, tmp);
  2774   cvt_s_l(tmp, tmp);
  2775   mul_s(tmp, tmp, ft);
  2776   sub_s(fd, fs, tmp);
  2779 // be sure the three register is different
  2780 void MacroAssembler::rem_d(FloatRegister fd, FloatRegister fs, FloatRegister ft, FloatRegister tmp) {
  2781   assert_different_registers(tmp, fs, ft);
  2782   div_d(tmp, fs, ft);
  2783   trunc_l_d(tmp, tmp);
  2784   cvt_d_l(tmp, tmp);
  2785   mul_d(tmp, tmp, ft);
  2786   sub_d(fd, fs, tmp);
  2789 // Fast_Lock and Fast_Unlock used by C2
  2791 // Because the transitions from emitted code to the runtime
  2792 // monitorenter/exit helper stubs are so slow it's critical that
  2793 // we inline both the stack-locking fast-path and the inflated fast path.
  2794 //
  2795 // See also: cmpFastLock and cmpFastUnlock.
  2796 //
  2797 // What follows is a specialized inline transliteration of the code
  2798 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
  2799 // another option would be to emit TrySlowEnter and TrySlowExit methods
  2800 // at startup-time.  These methods would accept arguments as
  2801 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
  2802 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
  2803 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
  2804 // In practice, however, the # of lock sites is bounded and is usually small.
  2805 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
  2806 // if the processor uses simple bimodal branch predictors keyed by EIP
  2807 // Since the helper routines would be called from multiple synchronization
  2808 // sites.
  2809 //
  2810 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
  2811 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
  2812 // to those specialized methods.  That'd give us a mostly platform-independent
  2813 // implementation that the JITs could optimize and inline at their pleasure.
  2814 // Done correctly, the only time we'd need to cross to native could would be
  2815 // to park() or unpark() threads.  We'd also need a few more unsafe operators
  2816 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
  2817 // (b) explicit barriers or fence operations.
  2818 //
  2819 // TODO:
  2820 //
  2821 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
  2822 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
  2823 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
  2824 //    the lock operators would typically be faster than reifying Self.
  2825 //
  2826 // *  Ideally I'd define the primitives as:
  2827 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
  2828 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
  2829 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
  2830 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
  2831 //    Furthermore the register assignments are overconstrained, possibly resulting in
  2832 //    sub-optimal code near the synchronization site.
  2833 //
  2834 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
  2835 //    Alternately, use a better sp-proximity test.
  2836 //
  2837 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
  2838 //    Either one is sufficient to uniquely identify a thread.
  2839 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
  2840 //
  2841 // *  Intrinsify notify() and notifyAll() for the common cases where the
  2842 //    object is locked by the calling thread but the waitlist is empty.
  2843 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
  2844 //
  2845 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
  2846 //    But beware of excessive branch density on AMD Opterons.
  2847 //
  2848 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
  2849 //    or failure of the fast-path.  If the fast-path fails then we pass
  2850 //    control to the slow-path, typically in C.  In Fast_Lock and
  2851 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
  2852 //    will emit a conditional branch immediately after the node.
  2853 //    So we have branches to branches and lots of ICC.ZF games.
  2854 //    Instead, it might be better to have C2 pass a "FailureLabel"
  2855 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
  2856 //    will drop through the node.  ICC.ZF is undefined at exit.
  2857 //    In the case of failure, the node will branch directly to the
  2858 //    FailureLabel
  2861 // obj: object to lock
  2862 // box: on-stack box address (displaced header location) - KILLED
  2863 // rax,: tmp -- KILLED
  2864 // scr: tmp -- KILLED
  2865 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg, Register scrReg) {
  2867   // Ensure the register assignents are disjoint
  2868   guarantee (objReg != boxReg, "") ;
  2869   guarantee (objReg != tmpReg, "") ;
  2870   guarantee (objReg != scrReg, "") ;
  2871   guarantee (boxReg != tmpReg, "") ;
  2872   guarantee (boxReg != scrReg, "") ;
  2875   block_comment("FastLock");
  2876   /*
  2877      move(AT, 0x0);
  2878      return;
  2879      */
  2880   if (PrintBiasedLockingStatistics) {
  2881     push(tmpReg);
  2882     atomic_inc32((address)BiasedLocking::total_entry_count_addr(), 1, AT, tmpReg);
  2883     pop(tmpReg);
  2886   if (EmitSync & 1) {
  2887     move(AT, 0x0);
  2888     return;
  2889   } else
  2890     if (EmitSync & 2) {
  2891       Label DONE_LABEL ;
  2892       if (UseBiasedLocking) {
  2893         // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  2894         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2897       ld(tmpReg, Address(objReg, 0)) ;          // fetch markword
  2898       ori(tmpReg, tmpReg, 0x1);
  2899       sd(tmpReg, Address(boxReg, 0));           // Anticipate successful CAS
  2901       cmpxchg(boxReg, Address(objReg, 0), tmpReg);          // Updates tmpReg
  2902       bne(AT, R0, DONE_LABEL);
  2903       delayed()->nop();
  2905       // Recursive locking
  2906       dsubu(tmpReg, tmpReg, SP);
  2907       li(AT, (7 - os::vm_page_size() ));
  2908       andr(tmpReg, tmpReg, AT);
  2909       sd(tmpReg, Address(boxReg, 0));
  2910       bind(DONE_LABEL) ;
  2911     } else {
  2912       // Possible cases that we'll encounter in fast_lock
  2913       // ------------------------------------------------
  2914       // * Inflated
  2915       //    -- unlocked
  2916       //    -- Locked
  2917       //       = by self
  2918       //       = by other
  2919       // * biased
  2920       //    -- by Self
  2921       //    -- by other
  2922       // * neutral
  2923       // * stack-locked
  2924       //    -- by self
  2925       //       = sp-proximity test hits
  2926       //       = sp-proximity test generates false-negative
  2927       //    -- by other
  2928       //
  2930       Label IsInflated, DONE_LABEL, PopDone ;
  2932       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
  2933       // order to reduce the number of conditional branches in the most common cases.
  2934       // Beware -- there's a subtle invariant that fetch of the markword
  2935       // at [FETCH], below, will never observe a biased encoding (*101b).
  2936       // If this invariant is not held we risk exclusion (safety) failure.
  2937       if (UseBiasedLocking && !UseOptoBiasInlining) {
  2938         biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL);
  2941       ld(tmpReg, Address(objReg, 0)) ;         //Fetch the markword of the object.
  2942       andi(AT, tmpReg, markOopDesc::monitor_value);
  2943       bne(AT, R0, IsInflated);                      // inflated vs stack-locked|neutral|bias
  2944       delayed()->nop();
  2946       // Attempt stack-locking ...
  2947       ori (tmpReg, tmpReg, markOopDesc::unlocked_value);
  2948       sd(tmpReg, Address(boxReg, 0));          // Anticipate successful CAS
  2949       //if (os::is_MP()) {
  2950       //  sync();
  2951       //}
  2953       cmpxchg(boxReg, Address(objReg, 0), tmpReg);           // Updates tmpReg
  2954       //AT == 1: unlocked
  2956       if (PrintBiasedLockingStatistics) {
  2957         Label L;
  2958         beq(AT, R0, L);
  2959         delayed()->nop();
  2960         push(T0);
  2961         push(T1);
  2962         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2963         pop(T1);
  2964         pop(T0);
  2965         bind(L);
  2967       bne(AT, R0, DONE_LABEL);
  2968       delayed()->nop();
  2970       // Recursive locking
  2971       // The object is stack-locked: markword contains stack pointer to BasicLock.
  2972       // Locked by current thread if difference with current SP is less than one page.
  2973       dsubu(tmpReg, tmpReg, SP);
  2974       li(AT, 7 - os::vm_page_size() );
  2975       andr(tmpReg, tmpReg, AT);
  2976       sd(tmpReg, Address(boxReg, 0));
  2977       if (PrintBiasedLockingStatistics) {
  2978         Label L;
  2979         // tmpReg == 0 => BiasedLocking::_fast_path_entry_count++
  2980         bne(tmpReg, R0, L);
  2981         delayed()->nop();
  2982         push(T0);
  2983         push(T1);
  2984         atomic_inc32((address)BiasedLocking::fast_path_entry_count_addr(), 1, T0, T1);
  2985         pop(T1);
  2986         pop(T0);
  2987         bind(L);
  2989       sltiu(AT, tmpReg, 1); /* AT = (tmpReg == 0) ? 1 : 0 */
  2991       b(DONE_LABEL) ;
  2992       delayed()->nop();
  2994       bind(IsInflated) ;
  2995       // The object's monitor m is unlocked iff m->owner == NULL,
  2996       // otherwise m->owner may contain a thread or a stack address.
  2998       // TODO: someday avoid the ST-before-CAS penalty by
  2999       // relocating (deferring) the following ST.
  3000       // We should also think about trying a CAS without having
  3001       // fetched _owner.  If the CAS is successful we may
  3002       // avoid an RTO->RTS upgrade on the $line.
  3003       // Without cast to int32_t a movptr will destroy r10 which is typically obj
  3004       li(AT, (int32_t)intptr_t(markOopDesc::unused_mark()));
  3005       sd(AT, Address(boxReg, 0));
  3007       move(boxReg, tmpReg) ;
  3008       ld(tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3009       // if (m->owner != 0) => AT = 0, goto slow path.
  3010       move(AT, R0);
  3011       bne(tmpReg, R0, DONE_LABEL);
  3012       delayed()->nop();
  3014 #ifndef OPT_THREAD
  3015       get_thread (TREG) ;
  3016 #endif
  3017       // It's inflated and appears unlocked
  3018       //if (os::is_MP()) {
  3019       //  sync();
  3020       //}
  3021       cmpxchg(TREG, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), tmpReg) ;
  3022       // Intentional fall-through into DONE_LABEL ...
  3025       // DONE_LABEL is a hot target - we'd really like to place it at the
  3026       // start of cache line by padding with NOPs.
  3027       // See the AMD and Intel software optimization manuals for the
  3028       // most efficient "long" NOP encodings.
  3029       // Unfortunately none of our alignment mechanisms suffice.
  3030       bind(DONE_LABEL);
  3032       // At DONE_LABEL the AT is set as follows ...
  3033       // Fast_Unlock uses the same protocol.
  3034       // AT == 1 -> Success
  3035       // AT == 0 -> Failure - force control through the slow-path
  3037       // Avoid branch-to-branch on AMD processors
  3038       // This appears to be superstition.
  3039       if (EmitSync & 32) nop() ;
  3044 // obj: object to unlock
  3045 // box: box address (displaced header location), killed.  Must be EAX.
  3046 // rbx,: killed tmp; cannot be obj nor box.
  3047 //
  3048 // Some commentary on balanced locking:
  3049 //
  3050 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
  3051 // Methods that don't have provably balanced locking are forced to run in the
  3052 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
  3053 // The interpreter provides two properties:
  3054 // I1:  At return-time the interpreter automatically and quietly unlocks any
  3055 //      objects acquired the current activation (frame).  Recall that the
  3056 //      interpreter maintains an on-stack list of locks currently held by
  3057 //      a frame.
  3058 // I2:  If a method attempts to unlock an object that is not held by the
  3059 //      the frame the interpreter throws IMSX.
  3060 //
  3061 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
  3062 // B() doesn't have provably balanced locking so it runs in the interpreter.
  3063 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
  3064 // is still locked by A().
  3065 //
  3066 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
  3067 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
  3068 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
  3069 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
  3071 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg) {
  3073   guarantee (objReg != boxReg, "") ;
  3074   guarantee (objReg != tmpReg, "") ;
  3075   guarantee (boxReg != tmpReg, "") ;
  3079   block_comment("FastUnlock");
  3082   if (EmitSync & 4) {
  3083     // Disable - inhibit all inlining.  Force control through the slow-path
  3084     move(AT, 0x0);
  3085     return;
  3086   } else
  3087     if (EmitSync & 8) {
  3088       Label DONE_LABEL ;
  3089       if (UseBiasedLocking) {
  3090         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3092       // classic stack-locking code ...
  3093       ld(tmpReg, Address(boxReg, 0)) ;
  3094       beq(tmpReg, R0, DONE_LABEL) ;
  3095       move(AT, 0x1);  // delay slot
  3097       cmpxchg(tmpReg, Address(objReg, 0), boxReg);          // Uses EAX which is box
  3098       bind(DONE_LABEL);
  3099     } else {
  3100       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
  3102       // Critically, the biased locking test must have precedence over
  3103       // and appear before the (box->dhw == 0) recursive stack-lock test.
  3104       if (UseBiasedLocking && !UseOptoBiasInlining) {
  3105         biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3108       ld(AT, Address(boxReg, 0)) ;            // Examine the displaced header
  3109       beq(AT, R0, DONE_LABEL) ;      // 0 indicates recursive stack-lock
  3110       delayed()->daddiu(AT, R0, 0x1);
  3112       ld(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
  3113       andi(AT, tmpReg, markOopDesc::monitor_value) ;                     // Inflated?
  3114       beq(AT, R0, Stacked) ;                     // Inflated?
  3115       delayed()->nop();
  3117       bind(Inflated) ;
  3118       // It's inflated.
  3119       // Despite our balanced locking property we still check that m->_owner == Self
  3120       // as java routines or native JNI code called by this thread might
  3121       // have released the lock.
  3122       // Refer to the comments in synchronizer.cpp for how we might encode extra
  3123       // state in _succ so we can avoid fetching EntryList|cxq.
  3124       //
  3125       // I'd like to add more cases in fast_lock() and fast_unlock() --
  3126       // such as recursive enter and exit -- but we have to be wary of
  3127       // I$ bloat, T$ effects and BP$ effects.
  3128       //
  3129       // If there's no contention try a 1-0 exit.  That is, exit without
  3130       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
  3131       // we detect and recover from the race that the 1-0 exit admits.
  3132       //
  3133       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
  3134       // before it STs null into _owner, releasing the lock.  Updates
  3135       // to data protected by the critical section must be visible before
  3136       // we drop the lock (and thus before any other thread could acquire
  3137       // the lock and observe the fields protected by the lock).
  3138       // IA32's memory-model is SPO, so STs are ordered with respect to
  3139       // each other and there's no need for an explicit barrier (fence).
  3140       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3141 #ifndef OPT_THREAD
  3142       get_thread (TREG) ;
  3143 #endif
  3145       // It's inflated
  3146       ld(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3147       xorr(boxReg, boxReg, TREG);
  3149       ld(AT, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
  3150       orr(boxReg, boxReg, AT);
  3152       move(AT, R0);
  3153       bne(boxReg, R0, DONE_LABEL);
  3154       delayed()->nop();
  3156       ld(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ;
  3157       ld(AT, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ;
  3158       orr(boxReg, boxReg, AT);
  3160       move(AT, R0);
  3161       bne(boxReg, R0, DONE_LABEL);
  3162       delayed()->nop();
  3164       sync();
  3165       sd(R0, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
  3166       move(AT, 0x1);
  3167       b(DONE_LABEL);
  3168       delayed()->nop();
  3170       bind  (Stacked);
  3171       ld(tmpReg, Address(boxReg, 0)) ;
  3172       //if (os::is_MP()) { sync(); }
  3173       cmpxchg(tmpReg, Address(objReg, 0), boxReg);
  3175       if (EmitSync & 65536) {
  3176         bind (CheckSucc);
  3179       bind(DONE_LABEL);
  3181       // Avoid branch to branch on AMD processors
  3182       if (EmitSync & 32768) { nop() ; }
  3186 void MacroAssembler::align(int modulus) {
  3187   while (offset() % modulus != 0) nop();
  3191 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3192   //Unimplemented();
  3195 #ifdef _LP64
  3196 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, A4, A5, A6, A7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  3198 /* FIXME: Jin: In MIPS64, F0~23 are all caller-saved registers */
  3199 FloatRegister caller_saved_fpu_registers[] = {F0, F12, F13};
  3200 #else
  3201 Register caller_saved_registers[] = {AT, V0, V1, A0, A1, A2, A3, T4, T5, T6, T7, T0, T1, T2, T3, T8, T9, GP, RA, FP};
  3203 Register caller_saved_fpu_registers[] = {};
  3204 #endif
  3206 //We preserve all caller-saved register
  3207 void  MacroAssembler::pushad(){
  3208   int i;
  3210   /* Fixed-point registers */
  3211   int len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  3212   daddi(SP, SP, -1 * len * wordSize);
  3213   for (i = 0; i < len; i++)
  3215 #ifdef _LP64
  3216     sd(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3217 #else
  3218     sw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3219 #endif
  3222   /* Floating-point registers */
  3223   len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  3224   daddi(SP, SP, -1 * len * wordSize);
  3225   for (i = 0; i < len; i++)
  3227 #ifdef _LP64
  3228     sdc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3229 #else
  3230     swc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3231 #endif
  3233 };
  3235 void  MacroAssembler::popad(){
  3236   int i;
  3238   /* Floating-point registers */
  3239   int len = sizeof(caller_saved_fpu_registers) / sizeof(caller_saved_fpu_registers[0]);
  3240   for (i = 0; i < len; i++)
  3242 #ifdef _LP64
  3243     ldc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3244 #else
  3245     lwc1(caller_saved_fpu_registers[i], SP, (len - i - 1) * wordSize);
  3246 #endif
  3248   daddi(SP, SP, len * wordSize);
  3250   /* Fixed-point registers */
  3251   len = sizeof(caller_saved_registers) / sizeof(caller_saved_registers[0]);
  3252   for (i = 0; i < len; i++)
  3254 #ifdef _LP64
  3255     ld(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3256 #else
  3257     lw(caller_saved_registers[i], SP, (len - i - 1) * wordSize);
  3258 #endif
  3260   daddi(SP, SP, len * wordSize);
  3261 };
  3263 void MacroAssembler::push2(Register reg1, Register reg2) {
  3264 #ifdef _LP64
  3265   daddi(SP, SP, -16);
  3266   sd(reg2, SP, 0);
  3267   sd(reg1, SP, 8);
  3268 #else
  3269   addi(SP, SP, -8);
  3270   sw(reg2, SP, 0);
  3271   sw(reg1, SP, 4);
  3272 #endif
  3275 void MacroAssembler::pop2(Register reg1, Register reg2) {
  3276 #ifdef _LP64
  3277   ld(reg1, SP, 0);
  3278   ld(reg2, SP, 8);
  3279   daddi(SP, SP, 16);
  3280 #else
  3281   lw(reg1, SP, 0);
  3282   lw(reg2, SP, 4);
  3283   addi(SP, SP, 8);
  3284 #endif
  3287 //for UseCompressedOops Option
  3288 void MacroAssembler::load_klass(Register dst, Register src) {
  3289 #ifdef _LP64
  3290   if(UseCompressedClassPointers){
  3291     lwu(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  3292     decode_klass_not_null(dst);
  3293   } else
  3294 #endif
  3295   ld(dst, src, oopDesc::klass_offset_in_bytes());
  3298 void MacroAssembler::store_klass(Register dst, Register src) {
  3299 #ifdef _LP64
  3300   if(UseCompressedClassPointers){
  3301     encode_klass_not_null(src);
  3302     sw(src, dst, oopDesc::klass_offset_in_bytes());
  3303   } else {
  3304 #endif
  3305     sd(src, dst, oopDesc::klass_offset_in_bytes());
  3309 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  3310   load_klass(dst, src);
  3311   ld(dst, Address(dst, Klass::prototype_header_offset()));
  3314 #ifdef _LP64
  3315 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  3316   if (UseCompressedClassPointers) {
  3317     sw(src, dst, oopDesc::klass_gap_offset_in_bytes());
  3321 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  3322   if(UseCompressedOops){
  3323     lwu(dst, src);
  3324     decode_heap_oop(dst);
  3325   } else {
  3326     ld(dst, src);
  3330 void MacroAssembler::store_heap_oop(Address dst, Register src){
  3331   if(UseCompressedOops){
  3332     assert(!dst.uses(src), "not enough registers");
  3333     encode_heap_oop(src);
  3334     sw(src, dst);
  3335   } else {
  3336     sd(src, dst);
  3340 void MacroAssembler::store_heap_oop_null(Address dst){
  3341   if(UseCompressedOops){
  3342     sw(R0, dst);
  3343   } else {
  3344     sd(R0, dst);
  3348 #ifdef ASSERT
  3349 void MacroAssembler::verify_heapbase(const char* msg) {
  3350   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
  3351   assert (Universe::heap() != NULL, "java heap should be initialized");
  3353 #endif
  3356 // Algorithm must match oop.inline.hpp encode_heap_oop.
  3357 void MacroAssembler::encode_heap_oop(Register r) {
  3358 #ifdef ASSERT
  3359   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3360 #endif
  3361   verify_oop(r, "broken oop in encode_heap_oop");
  3362   if (Universe::narrow_oop_base() == NULL) {
  3363     if (Universe::narrow_oop_shift() != 0) {
  3364       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3365       shr(r, LogMinObjAlignmentInBytes);
  3367     return;
  3370   movz(r, S5_heapbase, r);
  3371   dsub(r, r, S5_heapbase);
  3372   if (Universe::narrow_oop_shift() != 0) {
  3373     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3374     shr(r, LogMinObjAlignmentInBytes);
  3378 void MacroAssembler::encode_heap_oop(Register dst, Register src) {
  3379 #ifdef ASSERT
  3380   verify_heapbase("MacroAssembler::encode_heap_oop:heap base corrupted?");
  3381 #endif
  3382   verify_oop(src, "broken oop in encode_heap_oop");
  3383   if (Universe::narrow_oop_base() == NULL) {
  3384     if (Universe::narrow_oop_shift() != 0) {
  3385       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3386       dsrl(dst, src, LogMinObjAlignmentInBytes);
  3387     } else {
  3388       if (dst != src) move(dst, src);
  3390   } else {
  3391     if (dst == src) {
  3392       movz(dst, S5_heapbase, dst);
  3393       dsub(dst, dst, S5_heapbase);
  3394       if (Universe::narrow_oop_shift() != 0) {
  3395         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3396         shr(dst, LogMinObjAlignmentInBytes);
  3398     } else {
  3399       dsub(dst, src, S5_heapbase);
  3400       if (Universe::narrow_oop_shift() != 0) {
  3401         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3402         shr(dst, LogMinObjAlignmentInBytes);
  3404       movz(dst, R0, src);
  3409 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  3410   assert (UseCompressedOops, "should be compressed");
  3411 #ifdef ASSERT
  3412   if (CheckCompressedOops) {
  3413     Label ok;
  3414     bne(r, R0, ok);
  3415     delayed()->nop();
  3416     stop("null oop passed to encode_heap_oop_not_null");
  3417     bind(ok);
  3419 #endif
  3420   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  3421   if (Universe::narrow_oop_base() != NULL) {
  3422     dsub(r, r, S5_heapbase);
  3424   if (Universe::narrow_oop_shift() != 0) {
  3425     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3426     shr(r, LogMinObjAlignmentInBytes);
  3431 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  3432   assert (UseCompressedOops, "should be compressed");
  3433 #ifdef ASSERT
  3434   if (CheckCompressedOops) {
  3435     Label ok;
  3436     bne(src, R0, ok);
  3437     delayed()->nop();
  3438     stop("null oop passed to encode_heap_oop_not_null2");
  3439     bind(ok);
  3441 #endif
  3442   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  3444   if (Universe::narrow_oop_base() != NULL) {
  3445     dsub(dst, src, S5_heapbase);
  3446     if (Universe::narrow_oop_shift() != 0) {
  3447       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3448       shr(dst, LogMinObjAlignmentInBytes);
  3450   } else {
  3451     if (Universe::narrow_oop_shift() != 0) {
  3452       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3453       dsrl(dst, src, LogMinObjAlignmentInBytes);
  3454     } else {
  3455       if (dst != src) move(dst, src);
  3460 void  MacroAssembler::decode_heap_oop(Register r) {
  3461 #ifdef ASSERT
  3462   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3463 #endif
  3464   if (Universe::narrow_oop_base() == NULL) {
  3465     if (Universe::narrow_oop_shift() != 0) {
  3466       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3467       shl(r, LogMinObjAlignmentInBytes);
  3469   } else {
  3470     move(AT, r);
  3471     if (Universe::narrow_oop_shift() != 0) {
  3472       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3473       shl(r, LogMinObjAlignmentInBytes);
  3475     dadd(r, r, S5_heapbase);
  3476     movz(r, R0, AT);
  3478   verify_oop(r, "broken oop in decode_heap_oop");
  3481 void  MacroAssembler::decode_heap_oop(Register dst, Register src) {
  3482 #ifdef ASSERT
  3483   verify_heapbase("MacroAssembler::decode_heap_oop corrupted?");
  3484 #endif
  3485   if (Universe::narrow_oop_base() == NULL) {
  3486     if (Universe::narrow_oop_shift() != 0) {
  3487       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3488       if (dst != src) nop(); // DON'T DELETE THIS GUY.
  3489       dsll(dst, src, LogMinObjAlignmentInBytes);
  3490     } else {
  3491       if (dst != src) move(dst, src);
  3493   } else {
  3494     if (dst == src) {
  3495       move(AT, dst);
  3496       if (Universe::narrow_oop_shift() != 0) {
  3497         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3498         shl(dst, LogMinObjAlignmentInBytes);
  3500       dadd(dst, dst, S5_heapbase);
  3501       movz(dst, R0, AT);
  3502     } else {
  3503       if (Universe::narrow_oop_shift() != 0) {
  3504         assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3505         dsll(dst, src, LogMinObjAlignmentInBytes);
  3506         daddu(dst, dst, S5_heapbase);
  3507       } else {
  3508         daddu(dst, src, S5_heapbase);
  3510       movz(dst, R0, src);
  3513   verify_oop(dst, "broken oop in decode_heap_oop");
  3516 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  3517   // Note: it will change flags
  3518   assert (UseCompressedOops, "should only be used for compressed headers");
  3519   assert (Universe::heap() != NULL, "java heap should be initialized");
  3520   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3521   // vtableStubs also counts instructions in pd_code_size_limit.
  3522   // Also do not verify_oop as this is called by verify_oop.
  3523   if (Universe::narrow_oop_shift() != 0) {
  3524     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3525     shl(r, LogMinObjAlignmentInBytes);
  3526     if (Universe::narrow_oop_base() != NULL) {
  3527       daddu(r, r, S5_heapbase);
  3529   } else {
  3530     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3534 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  3535   assert (UseCompressedOops, "should only be used for compressed headers");
  3536   assert (Universe::heap() != NULL, "java heap should be initialized");
  3538   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3539   // vtableStubs also counts instructions in pd_code_size_limit.
  3540   // Also do not verify_oop as this is called by verify_oop.
  3541   //lea(dst, Address(S5_heapbase, src, Address::times_8, 0));
  3542   if (Universe::narrow_oop_shift() != 0) {
  3543     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  3544     if (LogMinObjAlignmentInBytes == Address::times_8) {
  3545       dsll(dst, src, LogMinObjAlignmentInBytes);
  3546       daddu(dst, dst, S5_heapbase);
  3547     } else {
  3548       dsll(dst, src, LogMinObjAlignmentInBytes);
  3549       if (Universe::narrow_oop_base() != NULL) {
  3550         daddu(dst, dst, S5_heapbase);
  3553   } else {
  3554     assert (Universe::narrow_oop_base() == NULL, "sanity");
  3555     if (dst != src) {
  3556       move(dst, src);
  3561 void MacroAssembler::encode_klass_not_null(Register r) {
  3562   if (Universe::narrow_klass_base() != NULL) {
  3563     assert(r != AT, "Encoding a klass in AT");
  3564     set64(AT, (int64_t)Universe::narrow_klass_base());
  3565     dsub(r, r, AT);
  3567   if (Universe::narrow_klass_shift() != 0) {
  3568     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3569     shr(r, LogKlassAlignmentInBytes);
  3573 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
  3574   if (dst == src) {
  3575     encode_klass_not_null(src);
  3576   } else {
  3577     if (Universe::narrow_klass_base() != NULL) {
  3578       set64(dst, (int64_t)Universe::narrow_klass_base());
  3579       dsub(dst, src, dst);
  3580       if (Universe::narrow_klass_shift() != 0) {
  3581         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3582         shr(dst, LogKlassAlignmentInBytes);
  3584     } else {
  3585       if (Universe::narrow_klass_shift() != 0) {
  3586         assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3587         dsrl(dst, src, LogKlassAlignmentInBytes);
  3588       } else {
  3589         move(dst, src);
  3595 // Function instr_size_for_decode_klass_not_null() counts the instructions
  3596 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
  3597 // when (Universe::heap() != NULL).  Hence, if the instructions they
  3598 // generate change, then this method needs to be updated.
  3599 int MacroAssembler::instr_size_for_decode_klass_not_null() {
  3600   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
  3601   if (Universe::narrow_klass_base() != NULL) {
  3602     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
  3603     return (Universe::narrow_klass_shift() == 0 ? 4 * 9 : 4 * 10);
  3604   } else {
  3605     // longest load decode klass function, mov64, leaq
  3606     return (Universe::narrow_klass_shift() == 0 ? 4 * 0 : 4 * 1);
  3610 void  MacroAssembler::decode_klass_not_null(Register r) {
  3611   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3612   assert(r != AT, "Decoding a klass in AT");
  3613   // Cannot assert, unverified entry point counts instructions (see .ad file)
  3614   // vtableStubs also counts instructions in pd_code_size_limit.
  3615   // Also do not verify_oop as this is called by verify_oop.
  3616   if (Universe::narrow_klass_shift() != 0) {
  3617     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3618     shl(r, LogKlassAlignmentInBytes);
  3620   if (Universe::narrow_klass_base() != NULL) {
  3621     set64(AT, (int64_t)Universe::narrow_klass_base());
  3622     daddu(r, r, AT);
  3623     //Not neccessary for MIPS at all.
  3624     //reinit_heapbase();
  3628 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
  3629   assert (UseCompressedClassPointers, "should only be used for compressed headers");
  3631   if (dst == src) {
  3632     decode_klass_not_null(dst);
  3633   } else {
  3634     // Cannot assert, unverified entry point counts instructions (see .ad file)
  3635     // vtableStubs also counts instructions in pd_code_size_limit.
  3636     // Also do not verify_oop as this is called by verify_oop.
  3637     set64(dst, (int64_t)Universe::narrow_klass_base());
  3638     if (Universe::narrow_klass_shift() != 0) {
  3639       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
  3640       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
  3641       dsll(AT, src, Address::times_8);
  3642       daddu(dst, dst, AT);
  3643     } else {
  3644       daddu(dst, src, dst);
  3649 void MacroAssembler::incrementl(Register reg, int value) {
  3650   if (value == min_jint) {
  3651      move(AT, value);
  3652      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3653      return;
  3655   if (value <  0) { decrementl(reg, -value); return; }
  3656   if (value == 0) {                        ; return; }
  3658   if(Assembler::is_simm16(value)) {
  3659      NOT_LP64(addiu(reg, reg, value));
  3660      LP64_ONLY(move(AT, value); addu32(reg, reg, AT));
  3661   } else {
  3662      move(AT, value);
  3663      LP64_ONLY(addu32(reg, reg, AT)) NOT_LP64(addu(reg, reg, AT));
  3667 void MacroAssembler::decrementl(Register reg, int value) {
  3668   if (value == min_jint) {
  3669      move(AT, value);
  3670      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3671      return;
  3673   if (value <  0) { incrementl(reg, -value); return; }
  3674   if (value == 0) {                        ; return; }
  3676   if (Assembler::is_simm16(value)) {
  3677      NOT_LP64(addiu(reg, reg, -value));
  3678      LP64_ONLY(move(AT, value); subu32(reg, reg, AT));
  3679   } else {
  3680      move(AT, value);
  3681      LP64_ONLY(subu32(reg, reg, AT)) NOT_LP64(subu(reg, reg, AT));
  3685 void MacroAssembler::reinit_heapbase() {
  3686   if (UseCompressedOops || UseCompressedClassPointers) {
  3687     if (Universe::heap() != NULL) {
  3688       if (Universe::narrow_oop_base() == NULL) {
  3689         move(S5_heapbase, R0);
  3690       } else {
  3691         set64(S5_heapbase, (int64_t)Universe::narrow_ptrs_base());
  3693     } else {
  3694       set64(S5_heapbase, (intptr_t)Universe::narrow_ptrs_base_addr());
  3695       ld(S5_heapbase, S5_heapbase, 0);
  3699 #endif // _LP64
  3701 void MacroAssembler::check_klass_subtype(Register sub_klass,
  3702                            Register super_klass,
  3703                            Register temp_reg,
  3704                            Label& L_success) {
  3705 //implement ind   gen_subtype_check
  3706   Label L_failure;
  3707   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  3708   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  3709   bind(L_failure);
  3712 SkipIfEqual::SkipIfEqual(
  3713     MacroAssembler* masm, const bool* flag_addr, bool value) {
  3714   _masm = masm;
  3715   _masm->li(AT, (address)flag_addr);
  3716   _masm->lb(AT,AT,0);
  3717   _masm->addi(AT,AT,-value);
  3718   _masm->beq(AT,R0,_label);
  3719   _masm->delayed()->nop();
  3721 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  3722                                                    Register super_klass,
  3723                                                    Register temp_reg,
  3724                                                    Label* L_success,
  3725                                                    Label* L_failure,
  3726                                                    Label* L_slow_path,
  3727                                         RegisterOrConstant super_check_offset) {
  3728   assert_different_registers(sub_klass, super_klass, temp_reg);
  3729   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  3730   if (super_check_offset.is_register()) {
  3731     assert_different_registers(sub_klass, super_klass,
  3732                                super_check_offset.as_register());
  3733   } else if (must_load_sco) {
  3734     assert(temp_reg != noreg, "supply either a temp or a register offset");
  3737   Label L_fallthrough;
  3738   int label_nulls = 0;
  3739   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3740   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3741   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  3742   assert(label_nulls <= 1, "at most one NULL in the batch");
  3744   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3745   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  3746   // If the pointers are equal, we are done (e.g., String[] elements).
  3747   // This self-check enables sharing of secondary supertype arrays among
  3748   // non-primary types such as array-of-interface.  Otherwise, each such
  3749   // type would need its own customized SSA.
  3750   // We move this check to the front of the fast path because many
  3751   // type checks are in fact trivially successful in this manner,
  3752   // so we get a nicely predicted branch right at the start of the check.
  3753   beq(sub_klass, super_klass, *L_success);
  3754   delayed()->nop();
  3755   // Check the supertype display:
  3756   if (must_load_sco) {
  3757     // Positive movl does right thing on LP64.
  3758     lwu(temp_reg, super_klass, sco_offset);
  3759     super_check_offset = RegisterOrConstant(temp_reg);
  3761   dsll(AT, super_check_offset.register_or_noreg(), Address::times_1);
  3762   daddu(AT, sub_klass, AT);
  3763   ld(AT, AT, super_check_offset.constant_or_zero()*Address::times_1);
  3765   // This check has worked decisively for primary supers.
  3766   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3767   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3768   // This works in the same check above because of a tricky aliasing
  3769   // between the super_cache and the primary super display elements.
  3770   // (The 'super_check_addr' can address either, as the case requires.)
  3771   // Note that the cache is updated below if it does not help us find
  3772   // what we need immediately.
  3773   // So if it was a primary super, we can just fail immediately.
  3774   // Otherwise, it's the slow path for us (no success at this point).
  3776   if (super_check_offset.is_register()) {
  3777     beq(super_klass, AT, *L_success);
  3778     delayed()->nop();
  3779     addi(AT, super_check_offset.as_register(), -sc_offset);
  3780     if (L_failure == &L_fallthrough) {
  3781       beq(AT, R0, *L_slow_path);
  3782       delayed()->nop();
  3783     } else {
  3784       bne(AT, R0, *L_failure);
  3785       delayed()->nop();
  3786       b(*L_slow_path);
  3787       delayed()->nop();
  3789   } else if (super_check_offset.as_constant() == sc_offset) {
  3790     // Need a slow path; fast failure is impossible.
  3791     if (L_slow_path == &L_fallthrough) {
  3792       beq(super_klass, AT, *L_success);
  3793       delayed()->nop();
  3794     } else {
  3795       bne(super_klass, AT, *L_slow_path);
  3796       delayed()->nop();
  3797       b(*L_success);
  3798       delayed()->nop();
  3800   } else {
  3801     // No slow path; it's a fast decision.
  3802     if (L_failure == &L_fallthrough) {
  3803       beq(super_klass, AT, *L_success);
  3804       delayed()->nop();
  3805     } else {
  3806       bne(super_klass, AT, *L_failure);
  3807       delayed()->nop();
  3808       b(*L_success);
  3809       delayed()->nop();
  3813   bind(L_fallthrough);
  3818 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3819                                                    Register super_klass,
  3820                                                    Register temp_reg,
  3821                                                    Register temp2_reg,
  3822                                                    Label* L_success,
  3823                                                    Label* L_failure,
  3824                                                    bool set_cond_codes) {
  3825   assert_different_registers(sub_klass, super_klass, temp_reg);
  3826   if (temp2_reg != noreg)
  3827     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  3828   else
  3829     temp2_reg = T9;
  3830 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  3832   Label L_fallthrough;
  3833   int label_nulls = 0;
  3834   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3835   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3836   assert(label_nulls <= 1, "at most one NULL in the batch");
  3838   // a couple of useful fields in sub_klass:
  3839   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  3840   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3841   Address secondary_supers_addr(sub_klass, ss_offset);
  3842   Address super_cache_addr(     sub_klass, sc_offset);
  3844   // Do a linear scan of the secondary super-klass chain.
  3845   // This code is rarely used, so simplicity is a virtue here.
  3846   // The repne_scan instruction uses fixed registers, which we must spill.
  3847   // Don't worry too much about pre-existing connections with the input regs.
  3849   // Get super_klass value into rax (even if it was in rdi or rcx).
  3850 #ifndef PRODUCT
  3851   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3852   ExternalAddress pst_counter_addr((address) pst_counter);
  3853   NOT_LP64(  incrementl(pst_counter_addr) );
  3854 #endif //PRODUCT
  3856   // We will consult the secondary-super array.
  3857   ld(temp_reg, secondary_supers_addr);
  3858   // Load the array length.  (Positive movl does right thing on LP64.)
  3859   lw(temp2_reg, Address(temp_reg, Array<Klass*>::length_offset_in_bytes()));
  3860   // Skip to start of data.
  3861   daddiu(temp_reg, temp_reg, Array<Klass*>::base_offset_in_bytes());
  3863   // Scan RCX words at [RDI] for an occurrence of RAX.
  3864   // Set NZ/Z based on last compare.
  3865   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  3866   // not change flags (only scas instruction which is repeated sets flags).
  3867   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  3869   /* 2013/4/3 Jin: OpenJDK8 never compresses klass pointers in secondary-super array. */
  3870   Label Loop, subtype;
  3871   bind(Loop);
  3872   beq(temp2_reg, R0, *L_failure);
  3873   delayed()->nop();
  3874   ld(AT, temp_reg, 0);
  3875   beq(AT, super_klass, subtype);
  3876   delayed()->daddi(temp_reg, temp_reg, 1 * wordSize);
  3877   b(Loop);
  3878   delayed()->daddi(temp2_reg, temp2_reg, -1);
  3880   bind(subtype);
  3881   sd(super_klass, super_cache_addr);
  3882   if (L_success != &L_fallthrough) {
  3883     b(*L_success);
  3884     delayed()->nop();
  3887   // Success.  Cache the super we found and proceed in triumph.
  3888 #undef IS_A_TEMP
  3890   bind(L_fallthrough);
  3893 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
  3894   ld(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  3895   sd(R0, Address(java_thread, JavaThread::vm_result_offset()));
  3896   verify_oop(oop_result, "broken oop in call_VM_base");
  3899 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
  3900   ld(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
  3901   sd(R0, Address(java_thread, JavaThread::vm_result_2_offset()));
  3904 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3905                                          int extra_slot_offset) {
  3906   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3907   int stackElementSize = Interpreter::stackElementSize;
  3908   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  3909 #ifdef ASSERT
  3910   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  3911   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  3912 #endif
  3913   Register             scale_reg    = NOREG;
  3914   Address::ScaleFactor scale_factor = Address::no_scale;
  3915   if (arg_slot.is_constant()) {
  3916     offset += arg_slot.as_constant() * stackElementSize;
  3917   } else {
  3918     scale_reg    = arg_slot.as_register();
  3919     scale_factor = Address::times_8;
  3921   // 2014/07/31 Fu: We don't push RA on stack in prepare_invoke.
  3922   //  offset += wordSize;           // return PC is on stack
  3923   if(scale_reg==NOREG) return Address(SP, offset);
  3924   else {
  3925   dsll(scale_reg, scale_reg, scale_factor);
  3926   daddu(scale_reg, SP, scale_reg);
  3927   return Address(scale_reg, offset);
  3931 SkipIfEqual::~SkipIfEqual() {
  3932   _masm->bind(_label);
  3935 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  3936   switch (size_in_bytes) {
  3937 #ifndef _LP64
  3938   case  8:
  3939     assert(dst2 != noreg, "second dest register required");
  3940     lw(dst,  src);
  3941     lw(dst2, src.plus_disp(BytesPerInt));
  3942     break;
  3943 #else
  3944   case  8:  ld(dst, src); break;
  3945 #endif
  3946   case  4:  lw(dst, src); break;
  3947   case  2:  is_signed ? lh(dst, src) : lhu(dst, src); break;
  3948   case  1:  is_signed ? lb( dst, src) : lbu( dst, src); break;
  3949   default:  ShouldNotReachHere();
  3953 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  3954   switch (size_in_bytes) {
  3955 #ifndef _LP64
  3956   case  8:
  3957     assert(src2 != noreg, "second source register required");
  3958     sw(src, dst);
  3959     sw(src2, dst.plus_disp(BytesPerInt));
  3960     break;
  3961 #else
  3962   case  8:  sd(src, dst); break;
  3963 #endif
  3964   case  4:  sw(src, dst); break;
  3965   case  2:  sh(src, dst); break;
  3966   case  1:  sb(src, dst); break;
  3967   default:  ShouldNotReachHere();
  3971 // Look up the method for a megamorphic invokeinterface call.
  3972 // The target method is determined by <intf_klass, itable_index>.
  3973 // The receiver klass is in recv_klass.
  3974 // On success, the result will be in method_result, and execution falls through.
  3975 // On failure, execution transfers to the given label.
  3976 void MacroAssembler::lookup_interface_method(Register recv_klass,
  3977                                              Register intf_klass,
  3978                                              RegisterOrConstant itable_index,
  3979                                              Register method_result,
  3980                                              Register scan_temp,
  3981                                              Label& L_no_such_interface) {
  3982   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  3983   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  3984          "caller must use same register for non-constant itable index as for method");
  3986   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  3987   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  3988   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  3989   int scan_step   = itableOffsetEntry::size() * wordSize;
  3990   int vte_size    = vtableEntry::size() * wordSize;
  3991   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  3992   assert(vte_size == wordSize, "else adjust times_vte_scale");
  3994   lw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
  3996   // %%% Could store the aligned, prescaled offset in the klassoop.
  3997   dsll(scan_temp, scan_temp, times_vte_scale);
  3998   daddu(scan_temp, recv_klass, scan_temp);
  3999   daddiu(scan_temp, scan_temp, vtable_base);
  4000   if (HeapWordsPerLong > 1) {
  4001     // Round up to align_object_offset boundary
  4002     // see code for InstanceKlass::start_of_itable!
  4003     round_to(scan_temp, BytesPerLong);
  4006   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  4007   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  4008   if (itable_index.is_constant()) {
  4009     set64(AT, (int)itable_index.is_constant());
  4010     dsll(AT, AT, (int)Address::times_ptr);
  4011   } else {
  4012     dsll(AT, itable_index.as_register(), (int)Address::times_ptr);
  4014   daddu(AT, AT, recv_klass);
  4015   daddiu(recv_klass, AT, itentry_off);
  4017   Label search, found_method;
  4019   for (int peel = 1; peel >= 0; peel--) {
  4020     ld(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  4022     if (peel) {
  4023       beq(intf_klass, method_result, found_method);
  4024       nop();
  4025     } else {
  4026       bne(intf_klass, method_result, search);
  4027       nop();
  4028       // (invert the test to fall through to found_method...)
  4031     if (!peel)  break;
  4033     bind(search);
  4035     // Check that the previous entry is non-null.  A null entry means that
  4036     // the receiver class doesn't implement the interface, and wasn't the
  4037     // same as when the caller was compiled.
  4038     beq(method_result, R0, L_no_such_interface);
  4039     nop();
  4040     daddiu(scan_temp, scan_temp, scan_step);
  4043   bind(found_method);
  4045   // Got a hit.
  4046   lw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  4047   if(UseLoongsonISA) {
  4048     gsldx(method_result, recv_klass, scan_temp, 0);
  4049   } else {
  4050     daddu(AT, recv_klass, scan_temp);
  4051     ld(method_result, AT);
  4055 // virtual method calling
  4056 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  4057                                            RegisterOrConstant vtable_index,
  4058                                            Register method_result) {
  4059   Register tmp = GP;
  4060   push(tmp);
  4062   if (vtable_index.is_constant()) {
  4063     assert_different_registers(recv_klass, method_result, tmp);
  4064   } else {
  4065     assert_different_registers(recv_klass, method_result, vtable_index.as_register(), tmp);
  4067   const int base = InstanceKlass::vtable_start_offset() * wordSize;
  4068   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
  4069 /*
  4070   Address vtable_entry_addr(recv_klass,
  4071                             vtable_index, Address::times_ptr,
  4072                             base + vtableEntry::method_offset_in_bytes());
  4073 */
  4074   if (vtable_index.is_constant()) {
  4075     set64(AT, vtable_index.as_constant());
  4076     dsll(AT, AT, (int)Address::times_ptr);
  4077   } else {
  4078     dsll(AT, vtable_index.as_register(), (int)Address::times_ptr);
  4080   set64(tmp, base + vtableEntry::method_offset_in_bytes());
  4081   daddu(tmp, tmp, AT);
  4082   daddu(tmp, tmp, recv_klass);
  4083   ld(method_result, tmp, 0);
  4085   pop(tmp);

mercurial