src/share/vm/runtime/os.cpp

Tue, 26 Aug 2014 13:38:33 -0700

author
amurillo
date
Tue, 26 Aug 2014 13:38:33 -0700
changeset 7061
3374ec4c4448
parent 7032
fa62fb12cdca
child 7074
833b0f92429a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/javaClasses.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "classfile/vmSymbols.hpp"
    30 #include "code/icBuffer.hpp"
    31 #include "code/vtableStubs.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "interpreter/interpreter.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #ifdef ASSERT
    36 #include "memory/guardedMemory.hpp"
    37 #endif
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvm.h"
    40 #include "prims/jvm_misc.hpp"
    41 #include "prims/privilegedStack.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/frame.inline.hpp"
    44 #include "runtime/interfaceSupport.hpp"
    45 #include "runtime/java.hpp"
    46 #include "runtime/javaCalls.hpp"
    47 #include "runtime/mutexLocker.hpp"
    48 #include "runtime/os.hpp"
    49 #include "runtime/stubRoutines.hpp"
    50 #include "runtime/thread.inline.hpp"
    51 #include "services/attachListener.hpp"
    52 #include "services/memTracker.hpp"
    53 #include "services/threadService.hpp"
    54 #include "utilities/defaultStream.hpp"
    55 #include "utilities/events.hpp"
    56 #ifdef TARGET_OS_FAMILY_linux
    57 # include "os_linux.inline.hpp"
    58 #endif
    59 #ifdef TARGET_OS_FAMILY_solaris
    60 # include "os_solaris.inline.hpp"
    61 #endif
    62 #ifdef TARGET_OS_FAMILY_windows
    63 # include "os_windows.inline.hpp"
    64 #endif
    65 #ifdef TARGET_OS_FAMILY_bsd
    66 # include "os_bsd.inline.hpp"
    67 #endif
    69 # include <signal.h>
    71 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    73 OSThread*         os::_starting_thread    = NULL;
    74 address           os::_polling_page       = NULL;
    75 volatile int32_t* os::_mem_serialize_page = NULL;
    76 uintptr_t         os::_serialize_page_mask = 0;
    77 long              os::_rand_seed          = 1;
    78 int               os::_processor_count    = 0;
    79 size_t            os::_page_sizes[os::page_sizes_max];
    81 #ifndef PRODUCT
    82 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
    83 julong os::alloc_bytes = 0;         // # of bytes allocated
    84 julong os::num_frees = 0;           // # of calls to free
    85 julong os::free_bytes = 0;          // # of bytes freed
    86 #endif
    88 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
    90 void os_init_globals() {
    91   // Called from init_globals().
    92   // See Threads::create_vm() in thread.cpp, and init.cpp.
    93   os::init_globals();
    94 }
    96 // Fill in buffer with current local time as an ISO-8601 string.
    97 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
    98 // Returns buffer, or NULL if it failed.
    99 // This would mostly be a call to
   100 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
   101 // except that on Windows the %z behaves badly, so we do it ourselves.
   102 // Also, people wanted milliseconds on there,
   103 // and strftime doesn't do milliseconds.
   104 char* os::iso8601_time(char* buffer, size_t buffer_length) {
   105   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
   106   //                                      1         2
   107   //                             12345678901234567890123456789
   108   static const char* iso8601_format =
   109     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
   110   static const size_t needed_buffer = 29;
   112   // Sanity check the arguments
   113   if (buffer == NULL) {
   114     assert(false, "NULL buffer");
   115     return NULL;
   116   }
   117   if (buffer_length < needed_buffer) {
   118     assert(false, "buffer_length too small");
   119     return NULL;
   120   }
   121   // Get the current time
   122   jlong milliseconds_since_19700101 = javaTimeMillis();
   123   const int milliseconds_per_microsecond = 1000;
   124   const time_t seconds_since_19700101 =
   125     milliseconds_since_19700101 / milliseconds_per_microsecond;
   126   const int milliseconds_after_second =
   127     milliseconds_since_19700101 % milliseconds_per_microsecond;
   128   // Convert the time value to a tm and timezone variable
   129   struct tm time_struct;
   130   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
   131     assert(false, "Failed localtime_pd");
   132     return NULL;
   133   }
   134 #if defined(_ALLBSD_SOURCE)
   135   const time_t zone = (time_t) time_struct.tm_gmtoff;
   136 #else
   137   const time_t zone = timezone;
   138 #endif
   140   // If daylight savings time is in effect,
   141   // we are 1 hour East of our time zone
   142   const time_t seconds_per_minute = 60;
   143   const time_t minutes_per_hour = 60;
   144   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
   145   time_t UTC_to_local = zone;
   146   if (time_struct.tm_isdst > 0) {
   147     UTC_to_local = UTC_to_local - seconds_per_hour;
   148   }
   149   // Compute the time zone offset.
   150   //    localtime_pd() sets timezone to the difference (in seconds)
   151   //    between UTC and and local time.
   152   //    ISO 8601 says we need the difference between local time and UTC,
   153   //    we change the sign of the localtime_pd() result.
   154   const time_t local_to_UTC = -(UTC_to_local);
   155   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
   156   char sign_local_to_UTC = '+';
   157   time_t abs_local_to_UTC = local_to_UTC;
   158   if (local_to_UTC < 0) {
   159     sign_local_to_UTC = '-';
   160     abs_local_to_UTC = -(abs_local_to_UTC);
   161   }
   162   // Convert time zone offset seconds to hours and minutes.
   163   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
   164   const time_t zone_min =
   165     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
   167   // Print an ISO 8601 date and time stamp into the buffer
   168   const int year = 1900 + time_struct.tm_year;
   169   const int month = 1 + time_struct.tm_mon;
   170   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
   171                                    year,
   172                                    month,
   173                                    time_struct.tm_mday,
   174                                    time_struct.tm_hour,
   175                                    time_struct.tm_min,
   176                                    time_struct.tm_sec,
   177                                    milliseconds_after_second,
   178                                    sign_local_to_UTC,
   179                                    zone_hours,
   180                                    zone_min);
   181   if (printed == 0) {
   182     assert(false, "Failed jio_printf");
   183     return NULL;
   184   }
   185   return buffer;
   186 }
   188 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
   189 #ifdef ASSERT
   190   if (!(!thread->is_Java_thread() ||
   191          Thread::current() == thread  ||
   192          Threads_lock->owned_by_self()
   193          || thread->is_Compiler_thread()
   194         )) {
   195     assert(false, "possibility of dangling Thread pointer");
   196   }
   197 #endif
   199   if (p >= MinPriority && p <= MaxPriority) {
   200     int priority = java_to_os_priority[p];
   201     return set_native_priority(thread, priority);
   202   } else {
   203     assert(false, "Should not happen");
   204     return OS_ERR;
   205   }
   206 }
   208 // The mapping from OS priority back to Java priority may be inexact because
   209 // Java priorities can map M:1 with native priorities. If you want the definite
   210 // Java priority then use JavaThread::java_priority()
   211 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
   212   int p;
   213   int os_prio;
   214   OSReturn ret = get_native_priority(thread, &os_prio);
   215   if (ret != OS_OK) return ret;
   217   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
   218     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
   219   } else {
   220     // niceness values are in reverse order
   221     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
   222   }
   223   priority = (ThreadPriority)p;
   224   return OS_OK;
   225 }
   228 // --------------------- sun.misc.Signal (optional) ---------------------
   231 // SIGBREAK is sent by the keyboard to query the VM state
   232 #ifndef SIGBREAK
   233 #define SIGBREAK SIGQUIT
   234 #endif
   236 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
   239 static void signal_thread_entry(JavaThread* thread, TRAPS) {
   240   os::set_priority(thread, NearMaxPriority);
   241   while (true) {
   242     int sig;
   243     {
   244       // FIXME : Currently we have not decieded what should be the status
   245       //         for this java thread blocked here. Once we decide about
   246       //         that we should fix this.
   247       sig = os::signal_wait();
   248     }
   249     if (sig == os::sigexitnum_pd()) {
   250        // Terminate the signal thread
   251        return;
   252     }
   254     switch (sig) {
   255       case SIGBREAK: {
   256         // Check if the signal is a trigger to start the Attach Listener - in that
   257         // case don't print stack traces.
   258         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
   259           continue;
   260         }
   261         // Print stack traces
   262         // Any SIGBREAK operations added here should make sure to flush
   263         // the output stream (e.g. tty->flush()) after output.  See 4803766.
   264         // Each module also prints an extra carriage return after its output.
   265         VM_PrintThreads op;
   266         VMThread::execute(&op);
   267         VM_PrintJNI jni_op;
   268         VMThread::execute(&jni_op);
   269         VM_FindDeadlocks op1(tty);
   270         VMThread::execute(&op1);
   271         Universe::print_heap_at_SIGBREAK();
   272         if (PrintClassHistogram) {
   273           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
   274           VMThread::execute(&op1);
   275         }
   276         if (JvmtiExport::should_post_data_dump()) {
   277           JvmtiExport::post_data_dump();
   278         }
   279         break;
   280       }
   281       default: {
   282         // Dispatch the signal to java
   283         HandleMark hm(THREAD);
   284         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
   285         KlassHandle klass (THREAD, k);
   286         if (klass.not_null()) {
   287           JavaValue result(T_VOID);
   288           JavaCallArguments args;
   289           args.push_int(sig);
   290           JavaCalls::call_static(
   291             &result,
   292             klass,
   293             vmSymbols::dispatch_name(),
   294             vmSymbols::int_void_signature(),
   295             &args,
   296             THREAD
   297           );
   298         }
   299         if (HAS_PENDING_EXCEPTION) {
   300           // tty is initialized early so we don't expect it to be null, but
   301           // if it is we can't risk doing an initialization that might
   302           // trigger additional out-of-memory conditions
   303           if (tty != NULL) {
   304             char klass_name[256];
   305             char tmp_sig_name[16];
   306             const char* sig_name = "UNKNOWN";
   307             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
   308               name()->as_klass_external_name(klass_name, 256);
   309             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
   310               sig_name = tmp_sig_name;
   311             warning("Exception %s occurred dispatching signal %s to handler"
   312                     "- the VM may need to be forcibly terminated",
   313                     klass_name, sig_name );
   314           }
   315           CLEAR_PENDING_EXCEPTION;
   316         }
   317       }
   318     }
   319   }
   320 }
   322 void os::init_before_ergo() {
   323   // We need to initialize large page support here because ergonomics takes some
   324   // decisions depending on large page support and the calculated large page size.
   325   large_page_init();
   326 }
   328 void os::signal_init() {
   329   if (!ReduceSignalUsage) {
   330     // Setup JavaThread for processing signals
   331     EXCEPTION_MARK;
   332     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
   333     instanceKlassHandle klass (THREAD, k);
   334     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
   336     const char thread_name[] = "Signal Dispatcher";
   337     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
   339     // Initialize thread_oop to put it into the system threadGroup
   340     Handle thread_group (THREAD, Universe::system_thread_group());
   341     JavaValue result(T_VOID);
   342     JavaCalls::call_special(&result, thread_oop,
   343                            klass,
   344                            vmSymbols::object_initializer_name(),
   345                            vmSymbols::threadgroup_string_void_signature(),
   346                            thread_group,
   347                            string,
   348                            CHECK);
   350     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
   351     JavaCalls::call_special(&result,
   352                             thread_group,
   353                             group,
   354                             vmSymbols::add_method_name(),
   355                             vmSymbols::thread_void_signature(),
   356                             thread_oop,         // ARG 1
   357                             CHECK);
   359     os::signal_init_pd();
   361     { MutexLocker mu(Threads_lock);
   362       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
   364       // At this point it may be possible that no osthread was created for the
   365       // JavaThread due to lack of memory. We would have to throw an exception
   366       // in that case. However, since this must work and we do not allow
   367       // exceptions anyway, check and abort if this fails.
   368       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
   369         vm_exit_during_initialization("java.lang.OutOfMemoryError",
   370                                       "unable to create new native thread");
   371       }
   373       java_lang_Thread::set_thread(thread_oop(), signal_thread);
   374       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
   375       java_lang_Thread::set_daemon(thread_oop());
   377       signal_thread->set_threadObj(thread_oop());
   378       Threads::add(signal_thread);
   379       Thread::start(signal_thread);
   380     }
   381     // Handle ^BREAK
   382     os::signal(SIGBREAK, os::user_handler());
   383   }
   384 }
   387 void os::terminate_signal_thread() {
   388   if (!ReduceSignalUsage)
   389     signal_notify(sigexitnum_pd());
   390 }
   393 // --------------------- loading libraries ---------------------
   395 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
   396 extern struct JavaVM_ main_vm;
   398 static void* _native_java_library = NULL;
   400 void* os::native_java_library() {
   401   if (_native_java_library == NULL) {
   402     char buffer[JVM_MAXPATHLEN];
   403     char ebuf[1024];
   405     // Try to load verify dll first. In 1.3 java dll depends on it and is not
   406     // always able to find it when the loading executable is outside the JDK.
   407     // In order to keep working with 1.2 we ignore any loading errors.
   408     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   409                        "verify")) {
   410       dll_load(buffer, ebuf, sizeof(ebuf));
   411     }
   413     // Load java dll
   414     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   415                        "java")) {
   416       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
   417     }
   418     if (_native_java_library == NULL) {
   419       vm_exit_during_initialization("Unable to load native library", ebuf);
   420     }
   422 #if defined(__OpenBSD__)
   423     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
   424     // ignore errors
   425     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
   426                        "net")) {
   427       dll_load(buffer, ebuf, sizeof(ebuf));
   428     }
   429 #endif
   430   }
   431   static jboolean onLoaded = JNI_FALSE;
   432   if (onLoaded) {
   433     // We may have to wait to fire OnLoad until TLS is initialized.
   434     if (ThreadLocalStorage::is_initialized()) {
   435       // The JNI_OnLoad handling is normally done by method load in
   436       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
   437       // explicitly so we have to check for JNI_OnLoad as well
   438       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
   439       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
   440           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
   441       if (JNI_OnLoad != NULL) {
   442         JavaThread* thread = JavaThread::current();
   443         ThreadToNativeFromVM ttn(thread);
   444         HandleMark hm(thread);
   445         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
   446         onLoaded = JNI_TRUE;
   447         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
   448           vm_exit_during_initialization("Unsupported JNI version");
   449         }
   450       }
   451     }
   452   }
   453   return _native_java_library;
   454 }
   456 /*
   457  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
   458  * If check_lib == true then we are looking for an
   459  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
   460  * this library is statically linked into the image.
   461  * If check_lib == false then we will look for the appropriate symbol in the
   462  * executable if agent_lib->is_static_lib() == true or in the shared library
   463  * referenced by 'handle'.
   464  */
   465 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
   466                               const char *syms[], size_t syms_len) {
   467   assert(agent_lib != NULL, "sanity check");
   468   const char *lib_name;
   469   void *handle = agent_lib->os_lib();
   470   void *entryName = NULL;
   471   char *agent_function_name;
   472   size_t i;
   474   // If checking then use the agent name otherwise test is_static_lib() to
   475   // see how to process this lookup
   476   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
   477   for (i = 0; i < syms_len; i++) {
   478     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
   479     if (agent_function_name == NULL) {
   480       break;
   481     }
   482     entryName = dll_lookup(handle, agent_function_name);
   483     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
   484     if (entryName != NULL) {
   485       break;
   486     }
   487   }
   488   return entryName;
   489 }
   491 // See if the passed in agent is statically linked into the VM image.
   492 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
   493                             size_t syms_len) {
   494   void *ret;
   495   void *proc_handle;
   496   void *save_handle;
   498   assert(agent_lib != NULL, "sanity check");
   499   if (agent_lib->name() == NULL) {
   500     return false;
   501   }
   502   proc_handle = get_default_process_handle();
   503   // Check for Agent_OnLoad/Attach_lib_name function
   504   save_handle = agent_lib->os_lib();
   505   // We want to look in this process' symbol table.
   506   agent_lib->set_os_lib(proc_handle);
   507   ret = find_agent_function(agent_lib, true, syms, syms_len);
   508   if (ret != NULL) {
   509     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
   510     agent_lib->set_valid();
   511     agent_lib->set_static_lib(true);
   512     return true;
   513   }
   514   agent_lib->set_os_lib(save_handle);
   515   return false;
   516 }
   518 // --------------------- heap allocation utilities ---------------------
   520 char *os::strdup(const char *str, MEMFLAGS flags) {
   521   size_t size = strlen(str);
   522   char *dup_str = (char *)malloc(size + 1, flags);
   523   if (dup_str == NULL) return NULL;
   524   strcpy(dup_str, str);
   525   return dup_str;
   526 }
   530 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
   532 #ifdef ASSERT
   533 static void verify_memory(void* ptr) {
   534   GuardedMemory guarded(ptr);
   535   if (!guarded.verify_guards()) {
   536     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
   537     tty->print_cr("## memory stomp:");
   538     guarded.print_on(tty);
   539     fatal("memory stomping error");
   540   }
   541 }
   542 #endif
   544 //
   545 // This function supports testing of the malloc out of memory
   546 // condition without really running the system out of memory.
   547 //
   548 static u_char* testMalloc(size_t alloc_size) {
   549   assert(MallocMaxTestWords > 0, "sanity check");
   551   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
   552     return NULL;
   553   }
   555   u_char* ptr = (u_char*)::malloc(alloc_size);
   557   if (ptr != NULL) {
   558     Atomic::add(((jint) (alloc_size / BytesPerWord)),
   559                 (volatile jint *) &cur_malloc_words);
   560   }
   561   return ptr;
   562 }
   564 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
   565   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   566   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   568 #ifdef ASSERT
   569   // checking for the WatcherThread and crash_protection first
   570   // since os::malloc can be called when the libjvm.{dll,so} is
   571   // first loaded and we don't have a thread yet.
   572   // try to find the thread after we see that the watcher thread
   573   // exists and has crash protection.
   574   WatcherThread *wt = WatcherThread::watcher_thread();
   575   if (wt != NULL && wt->has_crash_protection()) {
   576     Thread* thread = ThreadLocalStorage::get_thread_slow();
   577     if (thread == wt) {
   578       assert(!wt->has_crash_protection(),
   579           "Can't malloc with crash protection from WatcherThread");
   580     }
   581   }
   582 #endif
   584   if (size == 0) {
   585     // return a valid pointer if size is zero
   586     // if NULL is returned the calling functions assume out of memory.
   587     size = 1;
   588   }
   590 #ifndef ASSERT
   591   const size_t alloc_size = size;
   592 #else
   593   const size_t alloc_size = GuardedMemory::get_total_size(size);
   594   if (size > alloc_size) { // Check for rollover.
   595     return NULL;
   596   }
   597 #endif
   599   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   601   u_char* ptr;
   602   if (MallocMaxTestWords > 0) {
   603     ptr = testMalloc(alloc_size);
   604   } else {
   605     ptr = (u_char*)::malloc(alloc_size);
   606   }
   608 #ifdef ASSERT
   609   if (ptr == NULL) {
   610     return NULL;
   611   }
   612   // Wrap memory with guard
   613   GuardedMemory guarded(ptr, size);
   614   ptr = guarded.get_user_ptr();
   615 #endif
   616   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   617     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   618     breakpoint();
   619   }
   620   debug_only(if (paranoid) verify_memory(ptr));
   621   if (PrintMalloc && tty != NULL) {
   622     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   623   }
   625   // we do not track guard memory
   626   MemTracker::record_malloc((address)ptr, size, memflags, caller == 0 ? CALLER_PC : caller);
   628   return ptr;
   629 }
   632 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
   633 #ifndef ASSERT
   634   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
   635   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
   636   MemTracker::Tracker tkr = MemTracker::get_realloc_tracker();
   637   void* ptr = ::realloc(memblock, size);
   638   if (ptr != NULL) {
   639     tkr.record((address)memblock, (address)ptr, size, memflags,
   640      caller == 0 ? CALLER_PC : caller);
   641   } else {
   642     tkr.discard();
   643   }
   644   return ptr;
   645 #else
   646   if (memblock == NULL) {
   647     return os::malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
   648   }
   649   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   650     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
   651     breakpoint();
   652   }
   653   verify_memory(memblock);
   654   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   655   if (size == 0) {
   656     return NULL;
   657   }
   658   // always move the block
   659   void* ptr = os::malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
   660   if (PrintMalloc) {
   661     tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
   662   }
   663   // Copy to new memory if malloc didn't fail
   664   if ( ptr != NULL ) {
   665     GuardedMemory guarded(memblock);
   666     memcpy(ptr, memblock, MIN2(size, guarded.get_user_size()));
   667     if (paranoid) verify_memory(ptr);
   668     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
   669       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
   670       breakpoint();
   671     }
   672     os::free(memblock);
   673   }
   674   return ptr;
   675 #endif
   676 }
   679 void  os::free(void *memblock, MEMFLAGS memflags) {
   680   address trackp = (address) memblock;
   681   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
   682 #ifdef ASSERT
   683   if (memblock == NULL) return;
   684   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
   685     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
   686     breakpoint();
   687   }
   688   verify_memory(memblock);
   689   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
   691   GuardedMemory guarded(memblock);
   692   size_t size = guarded.get_user_size();
   693   inc_stat_counter(&free_bytes, size);
   694   memblock = guarded.release_for_freeing();
   695   if (PrintMalloc && tty != NULL) {
   696       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
   697   }
   698 #endif
   699   MemTracker::record_free(trackp, memflags);
   701   ::free(memblock);
   702 }
   704 void os::init_random(long initval) {
   705   _rand_seed = initval;
   706 }
   709 long os::random() {
   710   /* standard, well-known linear congruential random generator with
   711    * next_rand = (16807*seed) mod (2**31-1)
   712    * see
   713    * (1) "Random Number Generators: Good Ones Are Hard to Find",
   714    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
   715    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
   716    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
   717   */
   718   const long a = 16807;
   719   const unsigned long m = 2147483647;
   720   const long q = m / a;        assert(q == 127773, "weird math");
   721   const long r = m % a;        assert(r == 2836, "weird math");
   723   // compute az=2^31p+q
   724   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
   725   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
   726   lo += (hi & 0x7FFF) << 16;
   728   // if q overflowed, ignore the overflow and increment q
   729   if (lo > m) {
   730     lo &= m;
   731     ++lo;
   732   }
   733   lo += hi >> 15;
   735   // if (p+q) overflowed, ignore the overflow and increment (p+q)
   736   if (lo > m) {
   737     lo &= m;
   738     ++lo;
   739   }
   740   return (_rand_seed = lo);
   741 }
   743 // The INITIALIZED state is distinguished from the SUSPENDED state because the
   744 // conditions in which a thread is first started are different from those in which
   745 // a suspension is resumed.  These differences make it hard for us to apply the
   746 // tougher checks when starting threads that we want to do when resuming them.
   747 // However, when start_thread is called as a result of Thread.start, on a Java
   748 // thread, the operation is synchronized on the Java Thread object.  So there
   749 // cannot be a race to start the thread and hence for the thread to exit while
   750 // we are working on it.  Non-Java threads that start Java threads either have
   751 // to do so in a context in which races are impossible, or should do appropriate
   752 // locking.
   754 void os::start_thread(Thread* thread) {
   755   // guard suspend/resume
   756   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
   757   OSThread* osthread = thread->osthread();
   758   osthread->set_state(RUNNABLE);
   759   pd_start_thread(thread);
   760 }
   762 //---------------------------------------------------------------------------
   763 // Helper functions for fatal error handler
   765 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
   766   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
   768   int cols = 0;
   769   int cols_per_line = 0;
   770   switch (unitsize) {
   771     case 1: cols_per_line = 16; break;
   772     case 2: cols_per_line = 8;  break;
   773     case 4: cols_per_line = 4;  break;
   774     case 8: cols_per_line = 2;  break;
   775     default: return;
   776   }
   778   address p = start;
   779   st->print(PTR_FORMAT ":   ", start);
   780   while (p < end) {
   781     switch (unitsize) {
   782       case 1: st->print("%02x", *(u1*)p); break;
   783       case 2: st->print("%04x", *(u2*)p); break;
   784       case 4: st->print("%08x", *(u4*)p); break;
   785       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
   786     }
   787     p += unitsize;
   788     cols++;
   789     if (cols >= cols_per_line && p < end) {
   790        cols = 0;
   791        st->cr();
   792        st->print(PTR_FORMAT ":   ", p);
   793     } else {
   794        st->print(" ");
   795     }
   796   }
   797   st->cr();
   798 }
   800 void os::print_environment_variables(outputStream* st, const char** env_list,
   801                                      char* buffer, int len) {
   802   if (env_list) {
   803     st->print_cr("Environment Variables:");
   805     for (int i = 0; env_list[i] != NULL; i++) {
   806       if (getenv(env_list[i], buffer, len)) {
   807         st->print("%s", env_list[i]);
   808         st->print("=");
   809         st->print_cr("%s", buffer);
   810       }
   811     }
   812   }
   813 }
   815 void os::print_cpu_info(outputStream* st) {
   816   // cpu
   817   st->print("CPU:");
   818   st->print("total %d", os::processor_count());
   819   // It's not safe to query number of active processors after crash
   820   // st->print("(active %d)", os::active_processor_count());
   821   st->print(" %s", VM_Version::cpu_features());
   822   st->cr();
   823   pd_print_cpu_info(st);
   824 }
   826 void os::print_date_and_time(outputStream *st) {
   827   const int secs_per_day  = 86400;
   828   const int secs_per_hour = 3600;
   829   const int secs_per_min  = 60;
   831   time_t tloc;
   832   (void)time(&tloc);
   833   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
   835   double t = os::elapsedTime();
   836   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
   837   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
   838   //       before printf. We lost some precision, but who cares?
   839   int eltime = (int)t;  // elapsed time in seconds
   841   // print elapsed time in a human-readable format:
   842   int eldays = eltime / secs_per_day;
   843   int day_secs = eldays * secs_per_day;
   844   int elhours = (eltime - day_secs) / secs_per_hour;
   845   int hour_secs = elhours * secs_per_hour;
   846   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
   847   int minute_secs = elmins * secs_per_min;
   848   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
   849   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
   850 }
   852 // moved from debug.cpp (used to be find()) but still called from there
   853 // The verbose parameter is only set by the debug code in one case
   854 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
   855   address addr = (address)x;
   856   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
   857   if (b != NULL) {
   858     if (b->is_buffer_blob()) {
   859       // the interpreter is generated into a buffer blob
   860       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
   861       if (i != NULL) {
   862         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
   863         i->print_on(st);
   864         return;
   865       }
   866       if (Interpreter::contains(addr)) {
   867         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
   868                      " (not bytecode specific)", addr);
   869         return;
   870       }
   871       //
   872       if (AdapterHandlerLibrary::contains(b)) {
   873         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
   874         AdapterHandlerLibrary::print_handler_on(st, b);
   875       }
   876       // the stubroutines are generated into a buffer blob
   877       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
   878       if (d != NULL) {
   879         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
   880         d->print_on(st);
   881         st->cr();
   882         return;
   883       }
   884       if (StubRoutines::contains(addr)) {
   885         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
   886                      "stub routine", addr);
   887         return;
   888       }
   889       // the InlineCacheBuffer is using stubs generated into a buffer blob
   890       if (InlineCacheBuffer::contains(addr)) {
   891         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
   892         return;
   893       }
   894       VtableStub* v = VtableStubs::stub_containing(addr);
   895       if (v != NULL) {
   896         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
   897         v->print_on(st);
   898         st->cr();
   899         return;
   900       }
   901     }
   902     nmethod* nm = b->as_nmethod_or_null();
   903     if (nm != NULL) {
   904       ResourceMark rm;
   905       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
   906                 addr, (int)(addr - nm->entry_point()), nm);
   907       if (verbose) {
   908         st->print(" for ");
   909         nm->method()->print_value_on(st);
   910       }
   911       st->cr();
   912       nm->print_nmethod(verbose);
   913       return;
   914     }
   915     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
   916     b->print_on(st);
   917     return;
   918   }
   920   if (Universe::heap()->is_in(addr)) {
   921     HeapWord* p = Universe::heap()->block_start(addr);
   922     bool print = false;
   923     // If we couldn't find it it just may mean that heap wasn't parseable
   924     // See if we were just given an oop directly
   925     if (p != NULL && Universe::heap()->block_is_obj(p)) {
   926       print = true;
   927     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
   928       p = (HeapWord*) addr;
   929       print = true;
   930     }
   931     if (print) {
   932       if (p == (HeapWord*) addr) {
   933         st->print_cr(INTPTR_FORMAT " is an oop", addr);
   934       } else {
   935         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
   936       }
   937       oop(p)->print_on(st);
   938       return;
   939     }
   940   } else {
   941     if (Universe::heap()->is_in_reserved(addr)) {
   942       st->print_cr(INTPTR_FORMAT " is an unallocated location "
   943                    "in the heap", addr);
   944       return;
   945     }
   946   }
   947   if (JNIHandles::is_global_handle((jobject) addr)) {
   948     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
   949     return;
   950   }
   951   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
   952     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
   953     return;
   954   }
   955 #ifndef PRODUCT
   956   // we don't keep the block list in product mode
   957   if (JNIHandleBlock::any_contains((jobject) addr)) {
   958     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
   959     return;
   960   }
   961 #endif
   963   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
   964     // Check for privilege stack
   965     if (thread->privileged_stack_top() != NULL &&
   966         thread->privileged_stack_top()->contains(addr)) {
   967       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
   968                    "for thread: " INTPTR_FORMAT, addr, thread);
   969       if (verbose) thread->print_on(st);
   970       return;
   971     }
   972     // If the addr is a java thread print information about that.
   973     if (addr == (address)thread) {
   974       if (verbose) {
   975         thread->print_on(st);
   976       } else {
   977         st->print_cr(INTPTR_FORMAT " is a thread", addr);
   978       }
   979       return;
   980     }
   981     // If the addr is in the stack region for this thread then report that
   982     // and print thread info
   983     if (thread->stack_base() >= addr &&
   984         addr > (thread->stack_base() - thread->stack_size())) {
   985       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
   986                    INTPTR_FORMAT, addr, thread);
   987       if (verbose) thread->print_on(st);
   988       return;
   989     }
   991   }
   993   // Check if in metaspace and print types that have vptrs (only method now)
   994   if (Metaspace::contains(addr)) {
   995     if (Method::has_method_vptr((const void*)addr)) {
   996       ((Method*)addr)->print_value_on(st);
   997       st->cr();
   998     } else {
   999       // Use addr->print() from the debugger instead (not here)
  1000       st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
  1002     return;
  1005   // Try an OS specific find
  1006   if (os::find(addr, st)) {
  1007     return;
  1010   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
  1013 // Looks like all platforms except IA64 can use the same function to check
  1014 // if C stack is walkable beyond current frame. The check for fp() is not
  1015 // necessary on Sparc, but it's harmless.
  1016 bool os::is_first_C_frame(frame* fr) {
  1017 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
  1018   // On IA64 we have to check if the callers bsp is still valid
  1019   // (i.e. within the register stack bounds).
  1020   // Notice: this only works for threads created by the VM and only if
  1021   // we walk the current stack!!! If we want to be able to walk
  1022   // arbitrary other threads, we'll have to somehow store the thread
  1023   // object in the frame.
  1024   Thread *thread = Thread::current();
  1025   if ((address)fr->fp() <=
  1026       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
  1027     // This check is a little hacky, because on Linux the first C
  1028     // frame's ('start_thread') register stack frame starts at
  1029     // "register_stack_base + 0x48" while on HPUX, the first C frame's
  1030     // ('__pthread_bound_body') register stack frame seems to really
  1031     // start at "register_stack_base".
  1032     return true;
  1033   } else {
  1034     return false;
  1036 #elif defined(IA64) && defined(_WIN32)
  1037   return true;
  1038 #else
  1039   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
  1040   // Check usp first, because if that's bad the other accessors may fault
  1041   // on some architectures.  Ditto ufp second, etc.
  1042   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
  1043   // sp on amd can be 32 bit aligned.
  1044   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
  1046   uintptr_t usp    = (uintptr_t)fr->sp();
  1047   if ((usp & sp_align_mask) != 0) return true;
  1049   uintptr_t ufp    = (uintptr_t)fr->fp();
  1050   if ((ufp & fp_align_mask) != 0) return true;
  1052   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
  1053   if ((old_sp & sp_align_mask) != 0) return true;
  1054   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
  1056   uintptr_t old_fp = (uintptr_t)fr->link();
  1057   if ((old_fp & fp_align_mask) != 0) return true;
  1058   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
  1060   // stack grows downwards; if old_fp is below current fp or if the stack
  1061   // frame is too large, either the stack is corrupted or fp is not saved
  1062   // on stack (i.e. on x86, ebp may be used as general register). The stack
  1063   // is not walkable beyond current frame.
  1064   if (old_fp < ufp) return true;
  1065   if (old_fp - ufp > 64 * K) return true;
  1067   return false;
  1068 #endif
  1071 #ifdef ASSERT
  1072 extern "C" void test_random() {
  1073   const double m = 2147483647;
  1074   double mean = 0.0, variance = 0.0, t;
  1075   long reps = 10000;
  1076   unsigned long seed = 1;
  1078   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
  1079   os::init_random(seed);
  1080   long num;
  1081   for (int k = 0; k < reps; k++) {
  1082     num = os::random();
  1083     double u = (double)num / m;
  1084     assert(u >= 0.0 && u <= 1.0, "bad random number!");
  1086     // calculate mean and variance of the random sequence
  1087     mean += u;
  1088     variance += (u*u);
  1090   mean /= reps;
  1091   variance /= (reps - 1);
  1093   assert(num == 1043618065, "bad seed");
  1094   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
  1095   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
  1096   const double eps = 0.0001;
  1097   t = fabsd(mean - 0.5018);
  1098   assert(t < eps, "bad mean");
  1099   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
  1100   assert(t < eps, "bad variance");
  1102 #endif
  1105 // Set up the boot classpath.
  1107 char* os::format_boot_path(const char* format_string,
  1108                            const char* home,
  1109                            int home_len,
  1110                            char fileSep,
  1111                            char pathSep) {
  1112     assert((fileSep == '/' && pathSep == ':') ||
  1113            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
  1115     // Scan the format string to determine the length of the actual
  1116     // boot classpath, and handle platform dependencies as well.
  1117     int formatted_path_len = 0;
  1118     const char* p;
  1119     for (p = format_string; *p != 0; ++p) {
  1120         if (*p == '%') formatted_path_len += home_len - 1;
  1121         ++formatted_path_len;
  1124     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
  1125     if (formatted_path == NULL) {
  1126         return NULL;
  1129     // Create boot classpath from format, substituting separator chars and
  1130     // java home directory.
  1131     char* q = formatted_path;
  1132     for (p = format_string; *p != 0; ++p) {
  1133         switch (*p) {
  1134         case '%':
  1135             strcpy(q, home);
  1136             q += home_len;
  1137             break;
  1138         case '/':
  1139             *q++ = fileSep;
  1140             break;
  1141         case ':':
  1142             *q++ = pathSep;
  1143             break;
  1144         default:
  1145             *q++ = *p;
  1148     *q = '\0';
  1150     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
  1151     return formatted_path;
  1155 bool os::set_boot_path(char fileSep, char pathSep) {
  1156     const char* home = Arguments::get_java_home();
  1157     int home_len = (int)strlen(home);
  1159     static const char* meta_index_dir_format = "%/lib/";
  1160     static const char* meta_index_format = "%/lib/meta-index";
  1161     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
  1162     if (meta_index == NULL) return false;
  1163     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
  1164     if (meta_index_dir == NULL) return false;
  1165     Arguments::set_meta_index_path(meta_index, meta_index_dir);
  1167     // Any modification to the JAR-file list, for the boot classpath must be
  1168     // aligned with install/install/make/common/Pack.gmk. Note: boot class
  1169     // path class JARs, are stripped for StackMapTable to reduce download size.
  1170     static const char classpath_format[] =
  1171         "%/lib/resources.jar:"
  1172         "%/lib/rt.jar:"
  1173         "%/lib/sunrsasign.jar:"
  1174         "%/lib/jsse.jar:"
  1175         "%/lib/jce.jar:"
  1176         "%/lib/charsets.jar:"
  1177         "%/lib/jfr.jar:"
  1178         "%/classes";
  1179     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
  1180     if (sysclasspath == NULL) return false;
  1181     Arguments::set_sysclasspath(sysclasspath);
  1183     return true;
  1186 /*
  1187  * Splits a path, based on its separator, the number of
  1188  * elements is returned back in n.
  1189  * It is the callers responsibility to:
  1190  *   a> check the value of n, and n may be 0.
  1191  *   b> ignore any empty path elements
  1192  *   c> free up the data.
  1193  */
  1194 char** os::split_path(const char* path, int* n) {
  1195   *n = 0;
  1196   if (path == NULL || strlen(path) == 0) {
  1197     return NULL;
  1199   const char psepchar = *os::path_separator();
  1200   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
  1201   if (inpath == NULL) {
  1202     return NULL;
  1204   strcpy(inpath, path);
  1205   int count = 1;
  1206   char* p = strchr(inpath, psepchar);
  1207   // Get a count of elements to allocate memory
  1208   while (p != NULL) {
  1209     count++;
  1210     p++;
  1211     p = strchr(p, psepchar);
  1213   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
  1214   if (opath == NULL) {
  1215     return NULL;
  1218   // do the actual splitting
  1219   p = inpath;
  1220   for (int i = 0 ; i < count ; i++) {
  1221     size_t len = strcspn(p, os::path_separator());
  1222     if (len > JVM_MAXPATHLEN) {
  1223       return NULL;
  1225     // allocate the string and add terminator storage
  1226     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
  1227     if (s == NULL) {
  1228       return NULL;
  1230     strncpy(s, p, len);
  1231     s[len] = '\0';
  1232     opath[i] = s;
  1233     p += len + 1;
  1235   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
  1236   *n = count;
  1237   return opath;
  1240 void os::set_memory_serialize_page(address page) {
  1241   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
  1242   _mem_serialize_page = (volatile int32_t *)page;
  1243   // We initialize the serialization page shift count here
  1244   // We assume a cache line size of 64 bytes
  1245   assert(SerializePageShiftCount == count,
  1246          "thread size changed, fix SerializePageShiftCount constant");
  1247   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
  1250 static volatile intptr_t SerializePageLock = 0;
  1252 // This method is called from signal handler when SIGSEGV occurs while the current
  1253 // thread tries to store to the "read-only" memory serialize page during state
  1254 // transition.
  1255 void os::block_on_serialize_page_trap() {
  1256   if (TraceSafepoint) {
  1257     tty->print_cr("Block until the serialize page permission restored");
  1259   // When VMThread is holding the SerializePageLock during modifying the
  1260   // access permission of the memory serialize page, the following call
  1261   // will block until the permission of that page is restored to rw.
  1262   // Generally, it is unsafe to manipulate locks in signal handlers, but in
  1263   // this case, it's OK as the signal is synchronous and we know precisely when
  1264   // it can occur.
  1265   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
  1266   Thread::muxRelease(&SerializePageLock);
  1269 // Serialize all thread state variables
  1270 void os::serialize_thread_states() {
  1271   // On some platforms such as Solaris & Linux, the time duration of the page
  1272   // permission restoration is observed to be much longer than expected  due to
  1273   // scheduler starvation problem etc. To avoid the long synchronization
  1274   // time and expensive page trap spinning, 'SerializePageLock' is used to block
  1275   // the mutator thread if such case is encountered. See bug 6546278 for details.
  1276   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
  1277   os::protect_memory((char *)os::get_memory_serialize_page(),
  1278                      os::vm_page_size(), MEM_PROT_READ);
  1279   os::protect_memory((char *)os::get_memory_serialize_page(),
  1280                      os::vm_page_size(), MEM_PROT_RW);
  1281   Thread::muxRelease(&SerializePageLock);
  1284 // Returns true if the current stack pointer is above the stack shadow
  1285 // pages, false otherwise.
  1287 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
  1288   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
  1289   address sp = current_stack_pointer();
  1290   // Check if we have StackShadowPages above the yellow zone.  This parameter
  1291   // is dependent on the depth of the maximum VM call stack possible from
  1292   // the handler for stack overflow.  'instanceof' in the stack overflow
  1293   // handler or a println uses at least 8k stack of VM and native code
  1294   // respectively.
  1295   const int framesize_in_bytes =
  1296     Interpreter::size_top_interpreter_activation(method()) * wordSize;
  1297   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
  1298                       * vm_page_size()) + framesize_in_bytes;
  1299   // The very lower end of the stack
  1300   address stack_limit = thread->stack_base() - thread->stack_size();
  1301   return (sp > (stack_limit + reserved_area));
  1304 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
  1305                                 uint min_pages)
  1307   assert(min_pages > 0, "sanity");
  1308   if (UseLargePages) {
  1309     const size_t max_page_size = region_max_size / min_pages;
  1311     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
  1312       const size_t sz = _page_sizes[i];
  1313       const size_t mask = sz - 1;
  1314       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
  1315         // The largest page size with no fragmentation.
  1316         return sz;
  1319       if (sz <= max_page_size) {
  1320         // The largest page size that satisfies the min_pages requirement.
  1321         return sz;
  1326   return vm_page_size();
  1329 #ifndef PRODUCT
  1330 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
  1332   if (TracePageSizes) {
  1333     tty->print("%s: ", str);
  1334     for (int i = 0; i < count; ++i) {
  1335       tty->print(" " SIZE_FORMAT, page_sizes[i]);
  1337     tty->cr();
  1341 void os::trace_page_sizes(const char* str, const size_t region_min_size,
  1342                           const size_t region_max_size, const size_t page_size,
  1343                           const char* base, const size_t size)
  1345   if (TracePageSizes) {
  1346     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
  1347                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
  1348                   " size=" SIZE_FORMAT,
  1349                   str, region_min_size, region_max_size,
  1350                   page_size, base, size);
  1353 #endif  // #ifndef PRODUCT
  1355 // This is the working definition of a server class machine:
  1356 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
  1357 // because the graphics memory (?) sometimes masks physical memory.
  1358 // If you want to change the definition of a server class machine
  1359 // on some OS or platform, e.g., >=4GB on Windohs platforms,
  1360 // then you'll have to parameterize this method based on that state,
  1361 // as was done for logical processors here, or replicate and
  1362 // specialize this method for each platform.  (Or fix os to have
  1363 // some inheritance structure and use subclassing.  Sigh.)
  1364 // If you want some platform to always or never behave as a server
  1365 // class machine, change the setting of AlwaysActAsServerClassMachine
  1366 // and NeverActAsServerClassMachine in globals*.hpp.
  1367 bool os::is_server_class_machine() {
  1368   // First check for the early returns
  1369   if (NeverActAsServerClassMachine) {
  1370     return false;
  1372   if (AlwaysActAsServerClassMachine) {
  1373     return true;
  1375   // Then actually look at the machine
  1376   bool         result            = false;
  1377   const unsigned int    server_processors = 2;
  1378   const julong server_memory     = 2UL * G;
  1379   // We seem not to get our full complement of memory.
  1380   //     We allow some part (1/8?) of the memory to be "missing",
  1381   //     based on the sizes of DIMMs, and maybe graphics cards.
  1382   const julong missing_memory   = 256UL * M;
  1384   /* Is this a server class machine? */
  1385   if ((os::active_processor_count() >= (int)server_processors) &&
  1386       (os::physical_memory() >= (server_memory - missing_memory))) {
  1387     const unsigned int logical_processors =
  1388       VM_Version::logical_processors_per_package();
  1389     if (logical_processors > 1) {
  1390       const unsigned int physical_packages =
  1391         os::active_processor_count() / logical_processors;
  1392       if (physical_packages > server_processors) {
  1393         result = true;
  1395     } else {
  1396       result = true;
  1399   return result;
  1402 void os::SuspendedThreadTask::run() {
  1403   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
  1404   internal_do_task();
  1405   _done = true;
  1408 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
  1409   return os::pd_create_stack_guard_pages(addr, bytes);
  1412 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
  1413   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1414   if (result != NULL) {
  1415     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
  1418   return result;
  1421 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
  1422    MEMFLAGS flags) {
  1423   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
  1424   if (result != NULL) {
  1425     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
  1426     MemTracker::record_virtual_memory_type((address)result, flags);
  1429   return result;
  1432 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
  1433   char* result = pd_attempt_reserve_memory_at(bytes, addr);
  1434   if (result != NULL) {
  1435     MemTracker::record_virtual_memory_reserve((address)result, bytes, mtNone, CALLER_PC);
  1437   return result;
  1440 void os::split_reserved_memory(char *base, size_t size,
  1441                                  size_t split, bool realloc) {
  1442   pd_split_reserved_memory(base, size, split, realloc);
  1445 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
  1446   bool res = pd_commit_memory(addr, bytes, executable);
  1447   if (res) {
  1448     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1450   return res;
  1453 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
  1454                               bool executable) {
  1455   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
  1456   if (res) {
  1457     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1459   return res;
  1462 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
  1463                                const char* mesg) {
  1464   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
  1465   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
  1468 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
  1469                                bool executable, const char* mesg) {
  1470   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
  1471   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
  1474 bool os::uncommit_memory(char* addr, size_t bytes) {
  1475   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
  1476   bool res = pd_uncommit_memory(addr, bytes);
  1477   if (res) {
  1478     tkr.record((address)addr, bytes);
  1479   } else {
  1480     tkr.discard();
  1482   return res;
  1485 bool os::release_memory(char* addr, size_t bytes) {
  1486   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1487   bool res = pd_release_memory(addr, bytes);
  1488   if (res) {
  1489     tkr.record((address)addr, bytes);
  1490   } else {
  1491     tkr.discard();
  1493   return res;
  1497 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
  1498                            char *addr, size_t bytes, bool read_only,
  1499                            bool allow_exec) {
  1500   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
  1501   if (result != NULL) {
  1502     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, mtNone, CALLER_PC);
  1504   return result;
  1507 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
  1508                              char *addr, size_t bytes, bool read_only,
  1509                              bool allow_exec) {
  1510   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
  1511                     read_only, allow_exec);
  1514 bool os::unmap_memory(char *addr, size_t bytes) {
  1515   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
  1516   bool result = pd_unmap_memory(addr, bytes);
  1517   if (result) {
  1518     tkr.record((address)addr, bytes);
  1519   } else {
  1520     tkr.discard();
  1522   return result;
  1525 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1526   pd_free_memory(addr, bytes, alignment_hint);
  1529 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  1530   pd_realign_memory(addr, bytes, alignment_hint);
  1533 #ifndef TARGET_OS_FAMILY_windows
  1534 /* try to switch state from state "from" to state "to"
  1535  * returns the state set after the method is complete
  1536  */
  1537 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
  1538                                                          os::SuspendResume::State to)
  1540   os::SuspendResume::State result =
  1541     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
  1542   if (result == from) {
  1543     // success
  1544     return to;
  1546   return result;
  1548 #endif

mercurial