src/share/vm/opto/memnode.cpp

Mon, 09 Mar 2009 03:17:11 -0700

author
twisti
date
Mon, 09 Mar 2009 03:17:11 -0700
changeset 1059
337400e7a5dd
parent 1040
98cb887364d3
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6797305: Add LoadUB and LoadUI opcode class
Summary: Add a LoadUB (unsigned byte) and LoadUI (unsigned int) opcode class so we have these load optimizations in the first place and do not need to handle them in the matcher.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    29 #include "incls/_precompiled.incl"
    30 #include "incls/_memnode.cpp.incl"
    32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    34 //=============================================================================
    35 uint MemNode::size_of() const { return sizeof(*this); }
    37 const TypePtr *MemNode::adr_type() const {
    38   Node* adr = in(Address);
    39   const TypePtr* cross_check = NULL;
    40   DEBUG_ONLY(cross_check = _adr_type);
    41   return calculate_adr_type(adr->bottom_type(), cross_check);
    42 }
    44 #ifndef PRODUCT
    45 void MemNode::dump_spec(outputStream *st) const {
    46   if (in(Address) == NULL)  return; // node is dead
    47 #ifndef ASSERT
    48   // fake the missing field
    49   const TypePtr* _adr_type = NULL;
    50   if (in(Address) != NULL)
    51     _adr_type = in(Address)->bottom_type()->isa_ptr();
    52 #endif
    53   dump_adr_type(this, _adr_type, st);
    55   Compile* C = Compile::current();
    56   if( C->alias_type(_adr_type)->is_volatile() )
    57     st->print(" Volatile!");
    58 }
    60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    61   st->print(" @");
    62   if (adr_type == NULL) {
    63     st->print("NULL");
    64   } else {
    65     adr_type->dump_on(st);
    66     Compile* C = Compile::current();
    67     Compile::AliasType* atp = NULL;
    68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    69     if (atp == NULL)
    70       st->print(", idx=?\?;");
    71     else if (atp->index() == Compile::AliasIdxBot)
    72       st->print(", idx=Bot;");
    73     else if (atp->index() == Compile::AliasIdxTop)
    74       st->print(", idx=Top;");
    75     else if (atp->index() == Compile::AliasIdxRaw)
    76       st->print(", idx=Raw;");
    77     else {
    78       ciField* field = atp->field();
    79       if (field) {
    80         st->print(", name=");
    81         field->print_name_on(st);
    82       }
    83       st->print(", idx=%d;", atp->index());
    84     }
    85   }
    86 }
    88 extern void print_alias_types();
    90 #endif
    92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
    93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
    94   if (tinst == NULL || !tinst->is_known_instance_field())
    95     return mchain;  // don't try to optimize non-instance types
    96   uint instance_id = tinst->instance_id();
    97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
    98   Node *prev = NULL;
    99   Node *result = mchain;
   100   while (prev != result) {
   101     prev = result;
   102     if (result == start_mem)
   103       break;  // hit one of our sentinels
   104     // skip over a call which does not affect this memory slice
   105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   106       Node *proj_in = result->in(0);
   107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   108         break;  // hit one of our sentinels
   109       } else if (proj_in->is_Call()) {
   110         CallNode *call = proj_in->as_Call();
   111         if (!call->may_modify(t_adr, phase)) {
   112           result = call->in(TypeFunc::Memory);
   113         }
   114       } else if (proj_in->is_Initialize()) {
   115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   116         // Stop if this is the initialization for the object instance which
   117         // which contains this memory slice, otherwise skip over it.
   118         if (alloc != NULL && alloc->_idx != instance_id) {
   119           result = proj_in->in(TypeFunc::Memory);
   120         }
   121       } else if (proj_in->is_MemBar()) {
   122         result = proj_in->in(TypeFunc::Memory);
   123       } else {
   124         assert(false, "unexpected projection");
   125       }
   126     } else if (result->is_MergeMem()) {
   127       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   128     }
   129   }
   130   return result;
   131 }
   133 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   134   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   135   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   136   PhaseIterGVN *igvn = phase->is_IterGVN();
   137   Node *result = mchain;
   138   result = optimize_simple_memory_chain(result, t_adr, phase);
   139   if (is_instance && igvn != NULL  && result->is_Phi()) {
   140     PhiNode *mphi = result->as_Phi();
   141     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   142     const TypePtr *t = mphi->adr_type();
   143     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   144         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   145         t->is_oopptr()->cast_to_exactness(true)
   146          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   147          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   148       // clone the Phi with our address type
   149       result = mphi->split_out_instance(t_adr, igvn);
   150     } else {
   151       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   152     }
   153   }
   154   return result;
   155 }
   157 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   158   uint alias_idx = phase->C->get_alias_index(tp);
   159   Node *mem = mmem;
   160 #ifdef ASSERT
   161   {
   162     // Check that current type is consistent with the alias index used during graph construction
   163     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   164     bool consistent =  adr_check == NULL || adr_check->empty() ||
   165                        phase->C->must_alias(adr_check, alias_idx );
   166     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   167     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   168                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   169         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   170         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   171           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   172           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   173       // don't assert if it is dead code.
   174       consistent = true;
   175     }
   176     if( !consistent ) {
   177       st->print("alias_idx==%d, adr_check==", alias_idx);
   178       if( adr_check == NULL ) {
   179         st->print("NULL");
   180       } else {
   181         adr_check->dump();
   182       }
   183       st->cr();
   184       print_alias_types();
   185       assert(consistent, "adr_check must match alias idx");
   186     }
   187   }
   188 #endif
   189   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   190   // means an array I have not precisely typed yet.  Do not do any
   191   // alias stuff with it any time soon.
   192   const TypeOopPtr *tinst = tp->isa_oopptr();
   193   if( tp->base() != Type::AnyPtr &&
   194       !(tinst &&
   195         tinst->klass()->is_java_lang_Object() &&
   196         tinst->offset() == Type::OffsetBot) ) {
   197     // compress paths and change unreachable cycles to TOP
   198     // If not, we can update the input infinitely along a MergeMem cycle
   199     // Equivalent code in PhiNode::Ideal
   200     Node* m  = phase->transform(mmem);
   201     // If transformed to a MergeMem, get the desired slice
   202     // Otherwise the returned node represents memory for every slice
   203     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   204     // Update input if it is progress over what we have now
   205   }
   206   return mem;
   207 }
   209 //--------------------------Ideal_common---------------------------------------
   210 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   211 // Unhook non-raw memories from complete (macro-expanded) initializations.
   212 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   213   // If our control input is a dead region, kill all below the region
   214   Node *ctl = in(MemNode::Control);
   215   if (ctl && remove_dead_region(phase, can_reshape))
   216     return this;
   217   ctl = in(MemNode::Control);
   218   // Don't bother trying to transform a dead node
   219   if( ctl && ctl->is_top() )  return NodeSentinel;
   221   // Ignore if memory is dead, or self-loop
   222   Node *mem = in(MemNode::Memory);
   223   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   224   assert( mem != this, "dead loop in MemNode::Ideal" );
   226   Node *address = in(MemNode::Address);
   227   const Type *t_adr = phase->type( address );
   228   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   230   PhaseIterGVN *igvn = phase->is_IterGVN();
   231   if( can_reshape && igvn != NULL && igvn->_worklist.member(address) ) {
   232     // The address's base and type may change when the address is processed.
   233     // Delay this mem node transformation until the address is processed.
   234     phase->is_IterGVN()->_worklist.push(this);
   235     return NodeSentinel; // caller will return NULL
   236   }
   238   // Avoid independent memory operations
   239   Node* old_mem = mem;
   241   // The code which unhooks non-raw memories from complete (macro-expanded)
   242   // initializations was removed. After macro-expansion all stores catched
   243   // by Initialize node became raw stores and there is no information
   244   // which memory slices they modify. So it is unsafe to move any memory
   245   // operation above these stores. Also in most cases hooked non-raw memories
   246   // were already unhooked by using information from detect_ptr_independence()
   247   // and find_previous_store().
   249   if (mem->is_MergeMem()) {
   250     MergeMemNode* mmem = mem->as_MergeMem();
   251     const TypePtr *tp = t_adr->is_ptr();
   253     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   254   }
   256   if (mem != old_mem) {
   257     set_req(MemNode::Memory, mem);
   258     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   259     return this;
   260   }
   262   // let the subclass continue analyzing...
   263   return NULL;
   264 }
   266 // Helper function for proving some simple control dominations.
   267 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   268 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   269 // is not a constant (dominated by the method's StartNode).
   270 // Used by MemNode::find_previous_store to prove that the
   271 // control input of a memory operation predates (dominates)
   272 // an allocation it wants to look past.
   273 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   274   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   275     return false; // Conservative answer for dead code
   277   // Check 'dom'. Skip Proj and CatchProj nodes.
   278   dom = dom->find_exact_control(dom);
   279   if (dom == NULL || dom->is_top())
   280     return false; // Conservative answer for dead code
   282   if (dom == sub) {
   283     // For the case when, for example, 'sub' is Initialize and the original
   284     // 'dom' is Proj node of the 'sub'.
   285     return false;
   286   }
   288   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   289     return true;
   291   // 'dom' dominates 'sub' if its control edge and control edges
   292   // of all its inputs dominate or equal to sub's control edge.
   294   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   295   // Or Region for the check in LoadNode::Ideal();
   296   // 'sub' should have sub->in(0) != NULL.
   297   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   298          sub->is_Region(), "expecting only these nodes");
   300   // Get control edge of 'sub'.
   301   Node* orig_sub = sub;
   302   sub = sub->find_exact_control(sub->in(0));
   303   if (sub == NULL || sub->is_top())
   304     return false; // Conservative answer for dead code
   306   assert(sub->is_CFG(), "expecting control");
   308   if (sub == dom)
   309     return true;
   311   if (sub->is_Start() || sub->is_Root())
   312     return false;
   314   {
   315     // Check all control edges of 'dom'.
   317     ResourceMark rm;
   318     Arena* arena = Thread::current()->resource_area();
   319     Node_List nlist(arena);
   320     Unique_Node_List dom_list(arena);
   322     dom_list.push(dom);
   323     bool only_dominating_controls = false;
   325     for (uint next = 0; next < dom_list.size(); next++) {
   326       Node* n = dom_list.at(next);
   327       if (n == orig_sub)
   328         return false; // One of dom's inputs dominated by sub.
   329       if (!n->is_CFG() && n->pinned()) {
   330         // Check only own control edge for pinned non-control nodes.
   331         n = n->find_exact_control(n->in(0));
   332         if (n == NULL || n->is_top())
   333           return false; // Conservative answer for dead code
   334         assert(n->is_CFG(), "expecting control");
   335         dom_list.push(n);
   336       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   337         only_dominating_controls = true;
   338       } else if (n->is_CFG()) {
   339         if (n->dominates(sub, nlist))
   340           only_dominating_controls = true;
   341         else
   342           return false;
   343       } else {
   344         // First, own control edge.
   345         Node* m = n->find_exact_control(n->in(0));
   346         if (m != NULL) {
   347           if (m->is_top())
   348             return false; // Conservative answer for dead code
   349           dom_list.push(m);
   350         }
   351         // Now, the rest of edges.
   352         uint cnt = n->req();
   353         for (uint i = 1; i < cnt; i++) {
   354           m = n->find_exact_control(n->in(i));
   355           if (m == NULL || m->is_top())
   356             continue;
   357           dom_list.push(m);
   358         }
   359       }
   360     }
   361     return only_dominating_controls;
   362   }
   363 }
   365 //---------------------detect_ptr_independence---------------------------------
   366 // Used by MemNode::find_previous_store to prove that two base
   367 // pointers are never equal.
   368 // The pointers are accompanied by their associated allocations,
   369 // if any, which have been previously discovered by the caller.
   370 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   371                                       Node* p2, AllocateNode* a2,
   372                                       PhaseTransform* phase) {
   373   // Attempt to prove that these two pointers cannot be aliased.
   374   // They may both manifestly be allocations, and they should differ.
   375   // Or, if they are not both allocations, they can be distinct constants.
   376   // Otherwise, one is an allocation and the other a pre-existing value.
   377   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   378     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   379   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   380     return (a1 != a2);
   381   } else if (a1 != NULL) {                  // one allocation a1
   382     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   383     return all_controls_dominate(p2, a1);
   384   } else { //(a2 != NULL)                   // one allocation a2
   385     return all_controls_dominate(p1, a2);
   386   }
   387   return false;
   388 }
   391 // The logic for reordering loads and stores uses four steps:
   392 // (a) Walk carefully past stores and initializations which we
   393 //     can prove are independent of this load.
   394 // (b) Observe that the next memory state makes an exact match
   395 //     with self (load or store), and locate the relevant store.
   396 // (c) Ensure that, if we were to wire self directly to the store,
   397 //     the optimizer would fold it up somehow.
   398 // (d) Do the rewiring, and return, depending on some other part of
   399 //     the optimizer to fold up the load.
   400 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   401 // specific to loads and stores, so they are handled by the callers.
   402 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   403 //
   404 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   405   Node*         ctrl   = in(MemNode::Control);
   406   Node*         adr    = in(MemNode::Address);
   407   intptr_t      offset = 0;
   408   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   409   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   411   if (offset == Type::OffsetBot)
   412     return NULL;            // cannot unalias unless there are precise offsets
   414   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   416   intptr_t size_in_bytes = memory_size();
   418   Node* mem = in(MemNode::Memory);   // start searching here...
   420   int cnt = 50;             // Cycle limiter
   421   for (;;) {                // While we can dance past unrelated stores...
   422     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   424     if (mem->is_Store()) {
   425       Node* st_adr = mem->in(MemNode::Address);
   426       intptr_t st_offset = 0;
   427       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   428       if (st_base == NULL)
   429         break;              // inscrutable pointer
   430       if (st_offset != offset && st_offset != Type::OffsetBot) {
   431         const int MAX_STORE = BytesPerLong;
   432         if (st_offset >= offset + size_in_bytes ||
   433             st_offset <= offset - MAX_STORE ||
   434             st_offset <= offset - mem->as_Store()->memory_size()) {
   435           // Success:  The offsets are provably independent.
   436           // (You may ask, why not just test st_offset != offset and be done?
   437           // The answer is that stores of different sizes can co-exist
   438           // in the same sequence of RawMem effects.  We sometimes initialize
   439           // a whole 'tile' of array elements with a single jint or jlong.)
   440           mem = mem->in(MemNode::Memory);
   441           continue;           // (a) advance through independent store memory
   442         }
   443       }
   444       if (st_base != base &&
   445           detect_ptr_independence(base, alloc,
   446                                   st_base,
   447                                   AllocateNode::Ideal_allocation(st_base, phase),
   448                                   phase)) {
   449         // Success:  The bases are provably independent.
   450         mem = mem->in(MemNode::Memory);
   451         continue;           // (a) advance through independent store memory
   452       }
   454       // (b) At this point, if the bases or offsets do not agree, we lose,
   455       // since we have not managed to prove 'this' and 'mem' independent.
   456       if (st_base == base && st_offset == offset) {
   457         return mem;         // let caller handle steps (c), (d)
   458       }
   460     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   461       InitializeNode* st_init = mem->in(0)->as_Initialize();
   462       AllocateNode*  st_alloc = st_init->allocation();
   463       if (st_alloc == NULL)
   464         break;              // something degenerated
   465       bool known_identical = false;
   466       bool known_independent = false;
   467       if (alloc == st_alloc)
   468         known_identical = true;
   469       else if (alloc != NULL)
   470         known_independent = true;
   471       else if (all_controls_dominate(this, st_alloc))
   472         known_independent = true;
   474       if (known_independent) {
   475         // The bases are provably independent: Either they are
   476         // manifestly distinct allocations, or else the control
   477         // of this load dominates the store's allocation.
   478         int alias_idx = phase->C->get_alias_index(adr_type());
   479         if (alias_idx == Compile::AliasIdxRaw) {
   480           mem = st_alloc->in(TypeFunc::Memory);
   481         } else {
   482           mem = st_init->memory(alias_idx);
   483         }
   484         continue;           // (a) advance through independent store memory
   485       }
   487       // (b) at this point, if we are not looking at a store initializing
   488       // the same allocation we are loading from, we lose.
   489       if (known_identical) {
   490         // From caller, can_see_stored_value will consult find_captured_store.
   491         return mem;         // let caller handle steps (c), (d)
   492       }
   494     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   495       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   496       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   497         CallNode *call = mem->in(0)->as_Call();
   498         if (!call->may_modify(addr_t, phase)) {
   499           mem = call->in(TypeFunc::Memory);
   500           continue;         // (a) advance through independent call memory
   501         }
   502       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   503         mem = mem->in(0)->in(TypeFunc::Memory);
   504         continue;           // (a) advance through independent MemBar memory
   505       } else if (mem->is_MergeMem()) {
   506         int alias_idx = phase->C->get_alias_index(adr_type());
   507         mem = mem->as_MergeMem()->memory_at(alias_idx);
   508         continue;           // (a) advance through independent MergeMem memory
   509       }
   510     }
   512     // Unless there is an explicit 'continue', we must bail out here,
   513     // because 'mem' is an inscrutable memory state (e.g., a call).
   514     break;
   515   }
   517   return NULL;              // bail out
   518 }
   520 //----------------------calculate_adr_type-------------------------------------
   521 // Helper function.  Notices when the given type of address hits top or bottom.
   522 // Also, asserts a cross-check of the type against the expected address type.
   523 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   524   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   525   #ifdef PRODUCT
   526   cross_check = NULL;
   527   #else
   528   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   529   #endif
   530   const TypePtr* tp = t->isa_ptr();
   531   if (tp == NULL) {
   532     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   533     return TypePtr::BOTTOM;           // touches lots of memory
   534   } else {
   535     #ifdef ASSERT
   536     // %%%% [phh] We don't check the alias index if cross_check is
   537     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   538     if (cross_check != NULL &&
   539         cross_check != TypePtr::BOTTOM &&
   540         cross_check != TypeRawPtr::BOTTOM) {
   541       // Recheck the alias index, to see if it has changed (due to a bug).
   542       Compile* C = Compile::current();
   543       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   544              "must stay in the original alias category");
   545       // The type of the address must be contained in the adr_type,
   546       // disregarding "null"-ness.
   547       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   548       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   549       assert(cross_check->meet(tp_notnull) == cross_check,
   550              "real address must not escape from expected memory type");
   551     }
   552     #endif
   553     return tp;
   554   }
   555 }
   557 //------------------------adr_phi_is_loop_invariant----------------------------
   558 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   559 // loop is loop invariant. Make a quick traversal of Phi and associated
   560 // CastPP nodes, looking to see if they are a closed group within the loop.
   561 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   562   // The idea is that the phi-nest must boil down to only CastPP nodes
   563   // with the same data. This implies that any path into the loop already
   564   // includes such a CastPP, and so the original cast, whatever its input,
   565   // must be covered by an equivalent cast, with an earlier control input.
   566   ResourceMark rm;
   568   // The loop entry input of the phi should be the unique dominating
   569   // node for every Phi/CastPP in the loop.
   570   Unique_Node_List closure;
   571   closure.push(adr_phi->in(LoopNode::EntryControl));
   573   // Add the phi node and the cast to the worklist.
   574   Unique_Node_List worklist;
   575   worklist.push(adr_phi);
   576   if( cast != NULL ){
   577     if( !cast->is_ConstraintCast() ) return false;
   578     worklist.push(cast);
   579   }
   581   // Begin recursive walk of phi nodes.
   582   while( worklist.size() ){
   583     // Take a node off the worklist
   584     Node *n = worklist.pop();
   585     if( !closure.member(n) ){
   586       // Add it to the closure.
   587       closure.push(n);
   588       // Make a sanity check to ensure we don't waste too much time here.
   589       if( closure.size() > 20) return false;
   590       // This node is OK if:
   591       //  - it is a cast of an identical value
   592       //  - or it is a phi node (then we add its inputs to the worklist)
   593       // Otherwise, the node is not OK, and we presume the cast is not invariant
   594       if( n->is_ConstraintCast() ){
   595         worklist.push(n->in(1));
   596       } else if( n->is_Phi() ) {
   597         for( uint i = 1; i < n->req(); i++ ) {
   598           worklist.push(n->in(i));
   599         }
   600       } else {
   601         return false;
   602       }
   603     }
   604   }
   606   // Quit when the worklist is empty, and we've found no offending nodes.
   607   return true;
   608 }
   610 //------------------------------Ideal_DU_postCCP-------------------------------
   611 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   612 // going away in this pass and we need to make this memory op depend on the
   613 // gating null check.
   614 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   615   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   616 }
   618 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   619 // some sense; we get to keep around the knowledge that an oop is not-null
   620 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   621 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   622 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   623 // some of the more trivial cases in the optimizer.  Removing more useless
   624 // Phi's started allowing Loads to illegally float above null checks.  I gave
   625 // up on this approach.  CNC 10/20/2000
   626 // This static method may be called not from MemNode (EncodePNode calls it).
   627 // Only the control edge of the node 'n' might be updated.
   628 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   629   Node *skipped_cast = NULL;
   630   // Need a null check?  Regular static accesses do not because they are
   631   // from constant addresses.  Array ops are gated by the range check (which
   632   // always includes a NULL check).  Just check field ops.
   633   if( n->in(MemNode::Control) == NULL ) {
   634     // Scan upwards for the highest location we can place this memory op.
   635     while( true ) {
   636       switch( adr->Opcode() ) {
   638       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   639         adr = adr->in(AddPNode::Base);
   640         continue;
   642       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   643         adr = adr->in(1);
   644         continue;
   646       case Op_CastPP:
   647         // If the CastPP is useless, just peek on through it.
   648         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   649           // Remember the cast that we've peeked though. If we peek
   650           // through more than one, then we end up remembering the highest
   651           // one, that is, if in a loop, the one closest to the top.
   652           skipped_cast = adr;
   653           adr = adr->in(1);
   654           continue;
   655         }
   656         // CastPP is going away in this pass!  We need this memory op to be
   657         // control-dependent on the test that is guarding the CastPP.
   658         ccp->hash_delete(n);
   659         n->set_req(MemNode::Control, adr->in(0));
   660         ccp->hash_insert(n);
   661         return n;
   663       case Op_Phi:
   664         // Attempt to float above a Phi to some dominating point.
   665         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   666           // If we've already peeked through a Cast (which could have set the
   667           // control), we can't float above a Phi, because the skipped Cast
   668           // may not be loop invariant.
   669           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   670             adr = adr->in(1);
   671             continue;
   672           }
   673         }
   675         // Intentional fallthrough!
   677         // No obvious dominating point.  The mem op is pinned below the Phi
   678         // by the Phi itself.  If the Phi goes away (no true value is merged)
   679         // then the mem op can float, but not indefinitely.  It must be pinned
   680         // behind the controls leading to the Phi.
   681       case Op_CheckCastPP:
   682         // These usually stick around to change address type, however a
   683         // useless one can be elided and we still need to pick up a control edge
   684         if (adr->in(0) == NULL) {
   685           // This CheckCastPP node has NO control and is likely useless. But we
   686           // need check further up the ancestor chain for a control input to keep
   687           // the node in place. 4959717.
   688           skipped_cast = adr;
   689           adr = adr->in(1);
   690           continue;
   691         }
   692         ccp->hash_delete(n);
   693         n->set_req(MemNode::Control, adr->in(0));
   694         ccp->hash_insert(n);
   695         return n;
   697         // List of "safe" opcodes; those that implicitly block the memory
   698         // op below any null check.
   699       case Op_CastX2P:          // no null checks on native pointers
   700       case Op_Parm:             // 'this' pointer is not null
   701       case Op_LoadP:            // Loading from within a klass
   702       case Op_LoadN:            // Loading from within a klass
   703       case Op_LoadKlass:        // Loading from within a klass
   704       case Op_LoadNKlass:       // Loading from within a klass
   705       case Op_ConP:             // Loading from a klass
   706       case Op_ConN:             // Loading from a klass
   707       case Op_CreateEx:         // Sucking up the guts of an exception oop
   708       case Op_Con:              // Reading from TLS
   709       case Op_CMoveP:           // CMoveP is pinned
   710       case Op_CMoveN:           // CMoveN is pinned
   711         break;                  // No progress
   713       case Op_Proj:             // Direct call to an allocation routine
   714       case Op_SCMemProj:        // Memory state from store conditional ops
   715 #ifdef ASSERT
   716         {
   717           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   718           const Node* call = adr->in(0);
   719           if (call->is_CallJava()) {
   720             const CallJavaNode* call_java = call->as_CallJava();
   721             const TypeTuple *r = call_java->tf()->range();
   722             assert(r->cnt() > TypeFunc::Parms, "must return value");
   723             const Type* ret_type = r->field_at(TypeFunc::Parms);
   724             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   725             // We further presume that this is one of
   726             // new_instance_Java, new_array_Java, or
   727             // the like, but do not assert for this.
   728           } else if (call->is_Allocate()) {
   729             // similar case to new_instance_Java, etc.
   730           } else if (!call->is_CallLeaf()) {
   731             // Projections from fetch_oop (OSR) are allowed as well.
   732             ShouldNotReachHere();
   733           }
   734         }
   735 #endif
   736         break;
   737       default:
   738         ShouldNotReachHere();
   739       }
   740       break;
   741     }
   742   }
   744   return  NULL;               // No progress
   745 }
   748 //=============================================================================
   749 uint LoadNode::size_of() const { return sizeof(*this); }
   750 uint LoadNode::cmp( const Node &n ) const
   751 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   752 const Type *LoadNode::bottom_type() const { return _type; }
   753 uint LoadNode::ideal_reg() const {
   754   return Matcher::base2reg[_type->base()];
   755 }
   757 #ifndef PRODUCT
   758 void LoadNode::dump_spec(outputStream *st) const {
   759   MemNode::dump_spec(st);
   760   if( !Verbose && !WizardMode ) {
   761     // standard dump does this in Verbose and WizardMode
   762     st->print(" #"); _type->dump_on(st);
   763   }
   764 }
   765 #endif
   768 //----------------------------LoadNode::make-----------------------------------
   769 // Polymorphic factory method:
   770 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   771   Compile* C = gvn.C;
   773   // sanity check the alias category against the created node type
   774   assert(!(adr_type->isa_oopptr() &&
   775            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   776          "use LoadKlassNode instead");
   777   assert(!(adr_type->isa_aryptr() &&
   778            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   779          "use LoadRangeNode instead");
   780   switch (bt) {
   781   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   782   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   783   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   784   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   785   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   786   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   787   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
   788   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
   789   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   790   case T_OBJECT:
   791 #ifdef _LP64
   792     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   793       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   794       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
   795     } else
   796 #endif
   797     {
   798       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
   799       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   800     }
   801   }
   802   ShouldNotReachHere();
   803   return (LoadNode*)NULL;
   804 }
   806 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   807   bool require_atomic = true;
   808   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   809 }
   814 //------------------------------hash-------------------------------------------
   815 uint LoadNode::hash() const {
   816   // unroll addition of interesting fields
   817   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   818 }
   820 //---------------------------can_see_stored_value------------------------------
   821 // This routine exists to make sure this set of tests is done the same
   822 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   823 // will change the graph shape in a way which makes memory alive twice at the
   824 // same time (uses the Oracle model of aliasing), then some
   825 // LoadXNode::Identity will fold things back to the equivalence-class model
   826 // of aliasing.
   827 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   828   Node* ld_adr = in(MemNode::Address);
   830   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   831   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   832   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   833       atp->field() != NULL && !atp->field()->is_volatile()) {
   834     uint alias_idx = atp->index();
   835     bool final = atp->field()->is_final();
   836     Node* result = NULL;
   837     Node* current = st;
   838     // Skip through chains of MemBarNodes checking the MergeMems for
   839     // new states for the slice of this load.  Stop once any other
   840     // kind of node is encountered.  Loads from final memory can skip
   841     // through any kind of MemBar but normal loads shouldn't skip
   842     // through MemBarAcquire since the could allow them to move out of
   843     // a synchronized region.
   844     while (current->is_Proj()) {
   845       int opc = current->in(0)->Opcode();
   846       if ((final && opc == Op_MemBarAcquire) ||
   847           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
   848         Node* mem = current->in(0)->in(TypeFunc::Memory);
   849         if (mem->is_MergeMem()) {
   850           MergeMemNode* merge = mem->as_MergeMem();
   851           Node* new_st = merge->memory_at(alias_idx);
   852           if (new_st == merge->base_memory()) {
   853             // Keep searching
   854             current = merge->base_memory();
   855             continue;
   856           }
   857           // Save the new memory state for the slice and fall through
   858           // to exit.
   859           result = new_st;
   860         }
   861       }
   862       break;
   863     }
   864     if (result != NULL) {
   865       st = result;
   866     }
   867   }
   870   // Loop around twice in the case Load -> Initialize -> Store.
   871   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   872   for (int trip = 0; trip <= 1; trip++) {
   874     if (st->is_Store()) {
   875       Node* st_adr = st->in(MemNode::Address);
   876       if (!phase->eqv(st_adr, ld_adr)) {
   877         // Try harder before giving up...  Match raw and non-raw pointers.
   878         intptr_t st_off = 0;
   879         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   880         if (alloc == NULL)       return NULL;
   881         intptr_t ld_off = 0;
   882         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   883         if (alloc != allo2)      return NULL;
   884         if (ld_off != st_off)    return NULL;
   885         // At this point we have proven something like this setup:
   886         //  A = Allocate(...)
   887         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
   888         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
   889         // (Actually, we haven't yet proven the Q's are the same.)
   890         // In other words, we are loading from a casted version of
   891         // the same pointer-and-offset that we stored to.
   892         // Thus, we are able to replace L by V.
   893       }
   894       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
   895       if (store_Opcode() != st->Opcode())
   896         return NULL;
   897       return st->in(MemNode::ValueIn);
   898     }
   900     intptr_t offset = 0;  // scratch
   902     // A load from a freshly-created object always returns zero.
   903     // (This can happen after LoadNode::Ideal resets the load's memory input
   904     // to find_captured_store, which returned InitializeNode::zero_memory.)
   905     if (st->is_Proj() && st->in(0)->is_Allocate() &&
   906         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
   907         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
   908       // return a zero value for the load's basic type
   909       // (This is one of the few places where a generic PhaseTransform
   910       // can create new nodes.  Think of it as lazily manifesting
   911       // virtually pre-existing constants.)
   912       return phase->zerocon(memory_type());
   913     }
   915     // A load from an initialization barrier can match a captured store.
   916     if (st->is_Proj() && st->in(0)->is_Initialize()) {
   917       InitializeNode* init = st->in(0)->as_Initialize();
   918       AllocateNode* alloc = init->allocation();
   919       if (alloc != NULL &&
   920           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
   921         // examine a captured store value
   922         st = init->find_captured_store(offset, memory_size(), phase);
   923         if (st != NULL)
   924           continue;             // take one more trip around
   925       }
   926     }
   928     break;
   929   }
   931   return NULL;
   932 }
   934 //----------------------is_instance_field_load_with_local_phi------------------
   935 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
   936   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
   937       in(MemNode::Address)->is_AddP() ) {
   938     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
   939     // Only instances.
   940     if( t_oop != NULL && t_oop->is_known_instance_field() &&
   941         t_oop->offset() != Type::OffsetBot &&
   942         t_oop->offset() != Type::OffsetTop) {
   943       return true;
   944     }
   945   }
   946   return false;
   947 }
   949 //------------------------------Identity---------------------------------------
   950 // Loads are identity if previous store is to same address
   951 Node *LoadNode::Identity( PhaseTransform *phase ) {
   952   // If the previous store-maker is the right kind of Store, and the store is
   953   // to the same address, then we are equal to the value stored.
   954   Node* mem = in(MemNode::Memory);
   955   Node* value = can_see_stored_value(mem, phase);
   956   if( value ) {
   957     // byte, short & char stores truncate naturally.
   958     // A load has to load the truncated value which requires
   959     // some sort of masking operation and that requires an
   960     // Ideal call instead of an Identity call.
   961     if (memory_size() < BytesPerInt) {
   962       // If the input to the store does not fit with the load's result type,
   963       // it must be truncated via an Ideal call.
   964       if (!phase->type(value)->higher_equal(phase->type(this)))
   965         return this;
   966     }
   967     // (This works even when value is a Con, but LoadNode::Value
   968     // usually runs first, producing the singleton type of the Con.)
   969     return value;
   970   }
   972   // Search for an existing data phi which was generated before for the same
   973   // instance's field to avoid infinite generation of phis in a loop.
   974   Node *region = mem->in(0);
   975   if (is_instance_field_load_with_local_phi(region)) {
   976     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
   977     int this_index  = phase->C->get_alias_index(addr_t);
   978     int this_offset = addr_t->offset();
   979     int this_id    = addr_t->is_oopptr()->instance_id();
   980     const Type* this_type = bottom_type();
   981     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   982       Node* phi = region->fast_out(i);
   983       if (phi->is_Phi() && phi != mem &&
   984           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
   985         return phi;
   986       }
   987     }
   988   }
   990   return this;
   991 }
   994 // Returns true if the AliasType refers to the field that holds the
   995 // cached box array.  Currently only handles the IntegerCache case.
   996 static bool is_autobox_cache(Compile::AliasType* atp) {
   997   if (atp != NULL && atp->field() != NULL) {
   998     ciField* field = atp->field();
   999     ciSymbol* klass = field->holder()->name();
  1000     if (field->name() == ciSymbol::cache_field_name() &&
  1001         field->holder()->uses_default_loader() &&
  1002         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1003       return true;
  1006   return false;
  1009 // Fetch the base value in the autobox array
  1010 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1011   if (atp != NULL && atp->field() != NULL) {
  1012     ciField* field = atp->field();
  1013     ciSymbol* klass = field->holder()->name();
  1014     if (field->name() == ciSymbol::cache_field_name() &&
  1015         field->holder()->uses_default_loader() &&
  1016         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1017       assert(field->is_constant(), "what?");
  1018       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1019       // Fetch the box object at the base of the array and get its value
  1020       ciInstance* box = array->obj_at(0)->as_instance();
  1021       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1022       if (ik->nof_nonstatic_fields() == 1) {
  1023         // This should be true nonstatic_field_at requires calling
  1024         // nof_nonstatic_fields so check it anyway
  1025         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1026         cache_offset = c.as_int();
  1028       return true;
  1031   return false;
  1034 // Returns true if the AliasType refers to the value field of an
  1035 // autobox object.  Currently only handles Integer.
  1036 static bool is_autobox_object(Compile::AliasType* atp) {
  1037   if (atp != NULL && atp->field() != NULL) {
  1038     ciField* field = atp->field();
  1039     ciSymbol* klass = field->holder()->name();
  1040     if (field->name() == ciSymbol::value_name() &&
  1041         field->holder()->uses_default_loader() &&
  1042         klass == ciSymbol::java_lang_Integer()) {
  1043       return true;
  1046   return false;
  1050 // We're loading from an object which has autobox behaviour.
  1051 // If this object is result of a valueOf call we'll have a phi
  1052 // merging a newly allocated object and a load from the cache.
  1053 // We want to replace this load with the original incoming
  1054 // argument to the valueOf call.
  1055 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1056   Node* base = in(Address)->in(AddPNode::Base);
  1057   if (base->is_Phi() && base->req() == 3) {
  1058     AllocateNode* allocation = NULL;
  1059     int allocation_index = -1;
  1060     int load_index = -1;
  1061     for (uint i = 1; i < base->req(); i++) {
  1062       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1063       if (allocation != NULL) {
  1064         allocation_index = i;
  1065         load_index = 3 - allocation_index;
  1066         break;
  1069     bool has_load = ( allocation != NULL &&
  1070                       (base->in(load_index)->is_Load() ||
  1071                        base->in(load_index)->is_DecodeN() &&
  1072                        base->in(load_index)->in(1)->is_Load()) );
  1073     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1074       // Push the loads from the phi that comes from valueOf up
  1075       // through it to allow elimination of the loads and the recovery
  1076       // of the original value.
  1077       Node* mem_phi = in(Memory);
  1078       Node* offset = in(Address)->in(AddPNode::Offset);
  1079       Node* region = base->in(0);
  1081       Node* in1 = clone();
  1082       Node* in1_addr = in1->in(Address)->clone();
  1083       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1084       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1085       in1_addr->set_req(AddPNode::Offset, offset);
  1086       in1->set_req(0, region->in(allocation_index));
  1087       in1->set_req(Address, in1_addr);
  1088       in1->set_req(Memory, mem_phi->in(allocation_index));
  1090       Node* in2 = clone();
  1091       Node* in2_addr = in2->in(Address)->clone();
  1092       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1093       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1094       in2_addr->set_req(AddPNode::Offset, offset);
  1095       in2->set_req(0, region->in(load_index));
  1096       in2->set_req(Address, in2_addr);
  1097       in2->set_req(Memory, mem_phi->in(load_index));
  1099       in1_addr = phase->transform(in1_addr);
  1100       in1 =      phase->transform(in1);
  1101       in2_addr = phase->transform(in2_addr);
  1102       in2 =      phase->transform(in2);
  1104       PhiNode* result = PhiNode::make_blank(region, this);
  1105       result->set_req(allocation_index, in1);
  1106       result->set_req(load_index, in2);
  1107       return result;
  1109   } else if (base->is_Load() ||
  1110              base->is_DecodeN() && base->in(1)->is_Load()) {
  1111     if (base->is_DecodeN()) {
  1112       // Get LoadN node which loads cached Integer object
  1113       base = base->in(1);
  1115     // Eliminate the load of Integer.value for integers from the cache
  1116     // array by deriving the value from the index into the array.
  1117     // Capture the offset of the load and then reverse the computation.
  1118     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1119     if (load_base->is_DecodeN()) {
  1120       // Get LoadN node which loads IntegerCache.cache field
  1121       load_base = load_base->in(1);
  1123     if (load_base != NULL) {
  1124       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1125       intptr_t cache_offset;
  1126       int shift = -1;
  1127       Node* cache = NULL;
  1128       if (is_autobox_cache(atp)) {
  1129         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1130         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1132       if (cache != NULL && base->in(Address)->is_AddP()) {
  1133         Node* elements[4];
  1134         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1135         int cache_low;
  1136         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1137           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1138           // Add up all the offsets making of the address of the load
  1139           Node* result = elements[0];
  1140           for (int i = 1; i < count; i++) {
  1141             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
  1143           // Remove the constant offset from the address and then
  1144           // remove the scaling of the offset to recover the original index.
  1145           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
  1146           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1147             // Peel the shift off directly but wrap it in a dummy node
  1148             // since Ideal can't return existing nodes
  1149             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
  1150           } else {
  1151             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
  1153 #ifdef _LP64
  1154           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
  1155 #endif
  1156           return result;
  1161   return NULL;
  1164 //------------------------------split_through_phi------------------------------
  1165 // Split instance field load through Phi.
  1166 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1167   Node* mem     = in(MemNode::Memory);
  1168   Node* address = in(MemNode::Address);
  1169   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1170   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1172   assert(mem->is_Phi() && (t_oop != NULL) &&
  1173          t_oop->is_known_instance_field(), "invalide conditions");
  1175   Node *region = mem->in(0);
  1176   if (region == NULL) {
  1177     return NULL; // Wait stable graph
  1179   uint cnt = mem->req();
  1180   for( uint i = 1; i < cnt; i++ ) {
  1181     Node *in = mem->in(i);
  1182     if( in == NULL ) {
  1183       return NULL; // Wait stable graph
  1186   // Check for loop invariant.
  1187   if (cnt == 3) {
  1188     for( uint i = 1; i < cnt; i++ ) {
  1189       Node *in = mem->in(i);
  1190       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1191       if (m == mem) {
  1192         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1193         return this;
  1197   // Split through Phi (see original code in loopopts.cpp).
  1198   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1200   // Do nothing here if Identity will find a value
  1201   // (to avoid infinite chain of value phis generation).
  1202   if ( !phase->eqv(this, this->Identity(phase)) )
  1203     return NULL;
  1205   // Skip the split if the region dominates some control edge of the address.
  1206   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
  1207     return NULL;
  1209   const Type* this_type = this->bottom_type();
  1210   int this_index  = phase->C->get_alias_index(addr_t);
  1211   int this_offset = addr_t->offset();
  1212   int this_iid    = addr_t->is_oopptr()->instance_id();
  1213   int wins = 0;
  1214   PhaseIterGVN *igvn = phase->is_IterGVN();
  1215   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1216   for( uint i = 1; i < region->req(); i++ ) {
  1217     Node *x;
  1218     Node* the_clone = NULL;
  1219     if( region->in(i) == phase->C->top() ) {
  1220       x = phase->C->top();      // Dead path?  Use a dead data op
  1221     } else {
  1222       x = this->clone();        // Else clone up the data op
  1223       the_clone = x;            // Remember for possible deletion.
  1224       // Alter data node to use pre-phi inputs
  1225       if( this->in(0) == region ) {
  1226         x->set_req( 0, region->in(i) );
  1227       } else {
  1228         x->set_req( 0, NULL );
  1230       for( uint j = 1; j < this->req(); j++ ) {
  1231         Node *in = this->in(j);
  1232         if( in->is_Phi() && in->in(0) == region )
  1233           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
  1236     // Check for a 'win' on some paths
  1237     const Type *t = x->Value(igvn);
  1239     bool singleton = t->singleton();
  1241     // See comments in PhaseIdealLoop::split_thru_phi().
  1242     if( singleton && t == Type::TOP ) {
  1243       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1246     if( singleton ) {
  1247       wins++;
  1248       x = igvn->makecon(t);
  1249     } else {
  1250       // We now call Identity to try to simplify the cloned node.
  1251       // Note that some Identity methods call phase->type(this).
  1252       // Make sure that the type array is big enough for
  1253       // our new node, even though we may throw the node away.
  1254       // (This tweaking with igvn only works because x is a new node.)
  1255       igvn->set_type(x, t);
  1256       // If x is a TypeNode, capture any more-precise type permanently into Node
  1257       // otherwise it will be not updated during igvn->transform since
  1258       // igvn->type(x) is set to x->Value() already.
  1259       x->raise_bottom_type(t);
  1260       Node *y = x->Identity(igvn);
  1261       if( y != x ) {
  1262         wins++;
  1263         x = y;
  1264       } else {
  1265         y = igvn->hash_find(x);
  1266         if( y ) {
  1267           wins++;
  1268           x = y;
  1269         } else {
  1270           // Else x is a new node we are keeping
  1271           // We do not need register_new_node_with_optimizer
  1272           // because set_type has already been called.
  1273           igvn->_worklist.push(x);
  1277     if (x != the_clone && the_clone != NULL)
  1278       igvn->remove_dead_node(the_clone);
  1279     phi->set_req(i, x);
  1281   if( wins > 0 ) {
  1282     // Record Phi
  1283     igvn->register_new_node_with_optimizer(phi);
  1284     return phi;
  1286   igvn->remove_dead_node(phi);
  1287   return NULL;
  1290 //------------------------------Ideal------------------------------------------
  1291 // If the load is from Field memory and the pointer is non-null, we can
  1292 // zero out the control input.
  1293 // If the offset is constant and the base is an object allocation,
  1294 // try to hook me up to the exact initializing store.
  1295 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1296   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1297   if (p)  return (p == NodeSentinel) ? NULL : p;
  1299   Node* ctrl    = in(MemNode::Control);
  1300   Node* address = in(MemNode::Address);
  1302   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1303   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1304   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1305       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1306     ctrl = ctrl->in(0);
  1307     set_req(MemNode::Control,ctrl);
  1310   // Check for useless control edge in some common special cases
  1311   if (in(MemNode::Control) != NULL) {
  1312     intptr_t ignore = 0;
  1313     Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1314     if (base != NULL
  1315         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1316         && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw
  1317         && all_controls_dominate(base, phase->C->start())) {
  1318       // A method-invariant, non-null address (constant or 'this' argument).
  1319       set_req(MemNode::Control, NULL);
  1323   if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
  1324     Node* base = in(Address)->in(AddPNode::Base);
  1325     if (base != NULL) {
  1326       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1327       if (is_autobox_object(atp)) {
  1328         Node* result = eliminate_autobox(phase);
  1329         if (result != NULL) return result;
  1334   Node* mem = in(MemNode::Memory);
  1335   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1337   if (addr_t != NULL) {
  1338     // try to optimize our memory input
  1339     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1340     if (opt_mem != mem) {
  1341       set_req(MemNode::Memory, opt_mem);
  1342       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1343       return this;
  1345     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1346     if (can_reshape && opt_mem->is_Phi() &&
  1347         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1348       // Split instance field load through Phi.
  1349       Node* result = split_through_phi(phase);
  1350       if (result != NULL) return result;
  1354   // Check for prior store with a different base or offset; make Load
  1355   // independent.  Skip through any number of them.  Bail out if the stores
  1356   // are in an endless dead cycle and report no progress.  This is a key
  1357   // transform for Reflection.  However, if after skipping through the Stores
  1358   // we can't then fold up against a prior store do NOT do the transform as
  1359   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1360   // array memory alive twice: once for the hoisted Load and again after the
  1361   // bypassed Store.  This situation only works if EVERYBODY who does
  1362   // anti-dependence work knows how to bypass.  I.e. we need all
  1363   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1364   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1365   // fold up, do so.
  1366   Node* prev_mem = find_previous_store(phase);
  1367   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1368   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1369     // (c) See if we can fold up on the spot, but don't fold up here.
  1370     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1371     // just return a prior value, which is done by Identity calls.
  1372     if (can_see_stored_value(prev_mem, phase)) {
  1373       // Make ready for step (d):
  1374       set_req(MemNode::Memory, prev_mem);
  1375       return this;
  1379   return NULL;                  // No further progress
  1382 // Helper to recognize certain Klass fields which are invariant across
  1383 // some group of array types (e.g., int[] or all T[] where T < Object).
  1384 const Type*
  1385 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1386                                  ciKlass* klass) const {
  1387   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1388     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1389     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1390     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1391     return TypeInt::make(klass->modifier_flags());
  1393   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1394     // The field is Klass::_access_flags.  Return its (constant) value.
  1395     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1396     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1397     return TypeInt::make(klass->access_flags());
  1399   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1400     // The field is Klass::_layout_helper.  Return its constant value if known.
  1401     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1402     return TypeInt::make(klass->layout_helper());
  1405   // No match.
  1406   return NULL;
  1409 //------------------------------Value-----------------------------------------
  1410 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1411   // Either input is TOP ==> the result is TOP
  1412   Node* mem = in(MemNode::Memory);
  1413   const Type *t1 = phase->type(mem);
  1414   if (t1 == Type::TOP)  return Type::TOP;
  1415   Node* adr = in(MemNode::Address);
  1416   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1417   if (tp == NULL || tp->empty())  return Type::TOP;
  1418   int off = tp->offset();
  1419   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1421   // Try to guess loaded type from pointer type
  1422   if (tp->base() == Type::AryPtr) {
  1423     const Type *t = tp->is_aryptr()->elem();
  1424     // Don't do this for integer types. There is only potential profit if
  1425     // the element type t is lower than _type; that is, for int types, if _type is
  1426     // more restrictive than t.  This only happens here if one is short and the other
  1427     // char (both 16 bits), and in those cases we've made an intentional decision
  1428     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1429     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1430     //
  1431     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1432     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1433     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1434     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1435     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1436     // In fact, that could have been the original type of p1, and p1 could have
  1437     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1438     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1439     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1440         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1441       // t might actually be lower than _type, if _type is a unique
  1442       // concrete subclass of abstract class t.
  1443       // Make sure the reference is not into the header, by comparing
  1444       // the offset against the offset of the start of the array's data.
  1445       // Different array types begin at slightly different offsets (12 vs. 16).
  1446       // We choose T_BYTE as an example base type that is least restrictive
  1447       // as to alignment, which will therefore produce the smallest
  1448       // possible base offset.
  1449       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1450       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1451         const Type* jt = t->join(_type);
  1452         // In any case, do not allow the join, per se, to empty out the type.
  1453         if (jt->empty() && !t->empty()) {
  1454           // This can happen if a interface-typed array narrows to a class type.
  1455           jt = _type;
  1458         if (EliminateAutoBox) {
  1459           // The pointers in the autobox arrays are always non-null
  1460           Node* base = in(Address)->in(AddPNode::Base);
  1461           if (base != NULL) {
  1462             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
  1463             if (is_autobox_cache(atp)) {
  1464               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1468         return jt;
  1471   } else if (tp->base() == Type::InstPtr) {
  1472     assert( off != Type::OffsetBot ||
  1473             // arrays can be cast to Objects
  1474             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1475             // unsafe field access may not have a constant offset
  1476             phase->C->has_unsafe_access(),
  1477             "Field accesses must be precise" );
  1478     // For oop loads, we expect the _type to be precise
  1479   } else if (tp->base() == Type::KlassPtr) {
  1480     assert( off != Type::OffsetBot ||
  1481             // arrays can be cast to Objects
  1482             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1483             // also allow array-loading from the primary supertype
  1484             // array during subtype checks
  1485             Opcode() == Op_LoadKlass,
  1486             "Field accesses must be precise" );
  1487     // For klass/static loads, we expect the _type to be precise
  1490   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1491   if (tkls != NULL && !StressReflectiveCode) {
  1492     ciKlass* klass = tkls->klass();
  1493     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1494       // We are loading a field from a Klass metaobject whose identity
  1495       // is known at compile time (the type is "exact" or "precise").
  1496       // Check for fields we know are maintained as constants by the VM.
  1497       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1498         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1499         // (Folds up type checking code.)
  1500         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1501         return TypeInt::make(klass->super_check_offset());
  1503       // Compute index into primary_supers array
  1504       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1505       // Check for overflowing; use unsigned compare to handle the negative case.
  1506       if( depth < ciKlass::primary_super_limit() ) {
  1507         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1508         // (Folds up type checking code.)
  1509         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1510         ciKlass *ss = klass->super_of_depth(depth);
  1511         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1513       const Type* aift = load_array_final_field(tkls, klass);
  1514       if (aift != NULL)  return aift;
  1515       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
  1516           && klass->is_array_klass()) {
  1517         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
  1518         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1519         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1520         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1522       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
  1523         // The field is Klass::_java_mirror.  Return its (constant) value.
  1524         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1525         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1526         return TypeInstPtr::make(klass->java_mirror());
  1530     // We can still check if we are loading from the primary_supers array at a
  1531     // shallow enough depth.  Even though the klass is not exact, entries less
  1532     // than or equal to its super depth are correct.
  1533     if (klass->is_loaded() ) {
  1534       ciType *inner = klass->klass();
  1535       while( inner->is_obj_array_klass() )
  1536         inner = inner->as_obj_array_klass()->base_element_type();
  1537       if( inner->is_instance_klass() &&
  1538           !inner->as_instance_klass()->flags().is_interface() ) {
  1539         // Compute index into primary_supers array
  1540         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
  1541         // Check for overflowing; use unsigned compare to handle the negative case.
  1542         if( depth < ciKlass::primary_super_limit() &&
  1543             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1544           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1545           // (Folds up type checking code.)
  1546           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1547           ciKlass *ss = klass->super_of_depth(depth);
  1548           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1553     // If the type is enough to determine that the thing is not an array,
  1554     // we can give the layout_helper a positive interval type.
  1555     // This will help short-circuit some reflective code.
  1556     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
  1557         && !klass->is_array_klass() // not directly typed as an array
  1558         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1559         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1560         ) {
  1561       // Note:  When interfaces are reliable, we can narrow the interface
  1562       // test to (klass != Serializable && klass != Cloneable).
  1563       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1564       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1565       // The key property of this type is that it folds up tests
  1566       // for array-ness, since it proves that the layout_helper is positive.
  1567       // Thus, a generic value like the basic object layout helper works fine.
  1568       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1572   // If we are loading from a freshly-allocated object, produce a zero,
  1573   // if the load is provably beyond the header of the object.
  1574   // (Also allow a variable load from a fresh array to produce zero.)
  1575   if (ReduceFieldZeroing) {
  1576     Node* value = can_see_stored_value(mem,phase);
  1577     if (value != NULL && value->is_Con())
  1578       return value->bottom_type();
  1581   const TypeOopPtr *tinst = tp->isa_oopptr();
  1582   if (tinst != NULL && tinst->is_known_instance_field()) {
  1583     // If we have an instance type and our memory input is the
  1584     // programs's initial memory state, there is no matching store,
  1585     // so just return a zero of the appropriate type
  1586     Node *mem = in(MemNode::Memory);
  1587     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1588       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1589       return Type::get_zero_type(_type->basic_type());
  1592   return _type;
  1595 //------------------------------match_edge-------------------------------------
  1596 // Do we Match on this edge index or not?  Match only the address.
  1597 uint LoadNode::match_edge(uint idx) const {
  1598   return idx == MemNode::Address;
  1601 //--------------------------LoadBNode::Ideal--------------------------------------
  1602 //
  1603 //  If the previous store is to the same address as this load,
  1604 //  and the value stored was larger than a byte, replace this load
  1605 //  with the value stored truncated to a byte.  If no truncation is
  1606 //  needed, the replacement is done in LoadNode::Identity().
  1607 //
  1608 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1609   Node* mem = in(MemNode::Memory);
  1610   Node* value = can_see_stored_value(mem,phase);
  1611   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1612     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
  1613     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
  1615   // Identity call will handle the case where truncation is not needed.
  1616   return LoadNode::Ideal(phase, can_reshape);
  1619 //--------------------------LoadUBNode::Ideal-------------------------------------
  1620 //
  1621 //  If the previous store is to the same address as this load,
  1622 //  and the value stored was larger than a byte, replace this load
  1623 //  with the value stored truncated to a byte.  If no truncation is
  1624 //  needed, the replacement is done in LoadNode::Identity().
  1625 //
  1626 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1627   Node* mem = in(MemNode::Memory);
  1628   Node* value = can_see_stored_value(mem, phase);
  1629   if (value && !phase->type(value)->higher_equal(_type))
  1630     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
  1631   // Identity call will handle the case where truncation is not needed.
  1632   return LoadNode::Ideal(phase, can_reshape);
  1635 //--------------------------LoadUSNode::Ideal-------------------------------------
  1636 //
  1637 //  If the previous store is to the same address as this load,
  1638 //  and the value stored was larger than a char, replace this load
  1639 //  with the value stored truncated to a char.  If no truncation is
  1640 //  needed, the replacement is done in LoadNode::Identity().
  1641 //
  1642 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1643   Node* mem = in(MemNode::Memory);
  1644   Node* value = can_see_stored_value(mem,phase);
  1645   if( value && !phase->type(value)->higher_equal( _type ) )
  1646     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
  1647   // Identity call will handle the case where truncation is not needed.
  1648   return LoadNode::Ideal(phase, can_reshape);
  1651 //--------------------------LoadSNode::Ideal--------------------------------------
  1652 //
  1653 //  If the previous store is to the same address as this load,
  1654 //  and the value stored was larger than a short, replace this load
  1655 //  with the value stored truncated to a short.  If no truncation is
  1656 //  needed, the replacement is done in LoadNode::Identity().
  1657 //
  1658 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1659   Node* mem = in(MemNode::Memory);
  1660   Node* value = can_see_stored_value(mem,phase);
  1661   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1662     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
  1663     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
  1665   // Identity call will handle the case where truncation is not needed.
  1666   return LoadNode::Ideal(phase, can_reshape);
  1669 //=============================================================================
  1670 //----------------------------LoadKlassNode::make------------------------------
  1671 // Polymorphic factory method:
  1672 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1673   Compile* C = gvn.C;
  1674   Node *ctl = NULL;
  1675   // sanity check the alias category against the created node type
  1676   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
  1677   assert(adr_type != NULL, "expecting TypeOopPtr");
  1678 #ifdef _LP64
  1679   if (adr_type->is_ptr_to_narrowoop()) {
  1680     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
  1681     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
  1683 #endif
  1684   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1685   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
  1688 //------------------------------Value------------------------------------------
  1689 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1690   return klass_value_common(phase);
  1693 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1694   // Either input is TOP ==> the result is TOP
  1695   const Type *t1 = phase->type( in(MemNode::Memory) );
  1696   if (t1 == Type::TOP)  return Type::TOP;
  1697   Node *adr = in(MemNode::Address);
  1698   const Type *t2 = phase->type( adr );
  1699   if (t2 == Type::TOP)  return Type::TOP;
  1700   const TypePtr *tp = t2->is_ptr();
  1701   if (TypePtr::above_centerline(tp->ptr()) ||
  1702       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1704   // Return a more precise klass, if possible
  1705   const TypeInstPtr *tinst = tp->isa_instptr();
  1706   if (tinst != NULL) {
  1707     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1708     int offset = tinst->offset();
  1709     if (ik == phase->C->env()->Class_klass()
  1710         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1711             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1712       // We are loading a special hidden field from a Class mirror object,
  1713       // the field which points to the VM's Klass metaobject.
  1714       ciType* t = tinst->java_mirror_type();
  1715       // java_mirror_type returns non-null for compile-time Class constants.
  1716       if (t != NULL) {
  1717         // constant oop => constant klass
  1718         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1719           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1721         if (!t->is_klass()) {
  1722           // a primitive Class (e.g., int.class) has NULL for a klass field
  1723           return TypePtr::NULL_PTR;
  1725         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1726         return TypeKlassPtr::make(t->as_klass());
  1728       // non-constant mirror, so we can't tell what's going on
  1730     if( !ik->is_loaded() )
  1731       return _type;             // Bail out if not loaded
  1732     if (offset == oopDesc::klass_offset_in_bytes()) {
  1733       if (tinst->klass_is_exact()) {
  1734         return TypeKlassPtr::make(ik);
  1736       // See if we can become precise: no subklasses and no interface
  1737       // (Note:  We need to support verified interfaces.)
  1738       if (!ik->is_interface() && !ik->has_subklass()) {
  1739         //assert(!UseExactTypes, "this code should be useless with exact types");
  1740         // Add a dependence; if any subclass added we need to recompile
  1741         if (!ik->is_final()) {
  1742           // %%% should use stronger assert_unique_concrete_subtype instead
  1743           phase->C->dependencies()->assert_leaf_type(ik);
  1745         // Return precise klass
  1746         return TypeKlassPtr::make(ik);
  1749       // Return root of possible klass
  1750       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1754   // Check for loading klass from an array
  1755   const TypeAryPtr *tary = tp->isa_aryptr();
  1756   if( tary != NULL ) {
  1757     ciKlass *tary_klass = tary->klass();
  1758     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1759         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1760       if (tary->klass_is_exact()) {
  1761         return TypeKlassPtr::make(tary_klass);
  1763       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1764       // If the klass is an object array, we defer the question to the
  1765       // array component klass.
  1766       if( ak->is_obj_array_klass() ) {
  1767         assert( ak->is_loaded(), "" );
  1768         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1769         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1770           ciInstanceKlass* ik = base_k->as_instance_klass();
  1771           // See if we can become precise: no subklasses and no interface
  1772           if (!ik->is_interface() && !ik->has_subklass()) {
  1773             //assert(!UseExactTypes, "this code should be useless with exact types");
  1774             // Add a dependence; if any subclass added we need to recompile
  1775             if (!ik->is_final()) {
  1776               phase->C->dependencies()->assert_leaf_type(ik);
  1778             // Return precise array klass
  1779             return TypeKlassPtr::make(ak);
  1782         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  1783       } else {                  // Found a type-array?
  1784         //assert(!UseExactTypes, "this code should be useless with exact types");
  1785         assert( ak->is_type_array_klass(), "" );
  1786         return TypeKlassPtr::make(ak); // These are always precise
  1791   // Check for loading klass from an array klass
  1792   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1793   if (tkls != NULL && !StressReflectiveCode) {
  1794     ciKlass* klass = tkls->klass();
  1795     if( !klass->is_loaded() )
  1796       return _type;             // Bail out if not loaded
  1797     if( klass->is_obj_array_klass() &&
  1798         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
  1799       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  1800       // // Always returning precise element type is incorrect,
  1801       // // e.g., element type could be object and array may contain strings
  1802       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  1804       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  1805       // according to the element type's subclassing.
  1806       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  1808     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  1809         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
  1810       ciKlass* sup = klass->as_instance_klass()->super();
  1811       // The field is Klass::_super.  Return its (constant) value.
  1812       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  1813       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  1817   // Bailout case
  1818   return LoadNode::Value(phase);
  1821 //------------------------------Identity---------------------------------------
  1822 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  1823 // Also feed through the klass in Allocate(...klass...)._klass.
  1824 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  1825   return klass_identity_common(phase);
  1828 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  1829   Node* x = LoadNode::Identity(phase);
  1830   if (x != this)  return x;
  1832   // Take apart the address into an oop and and offset.
  1833   // Return 'this' if we cannot.
  1834   Node*    adr    = in(MemNode::Address);
  1835   intptr_t offset = 0;
  1836   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1837   if (base == NULL)     return this;
  1838   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  1839   if (toop == NULL)     return this;
  1841   // We can fetch the klass directly through an AllocateNode.
  1842   // This works even if the klass is not constant (clone or newArray).
  1843   if (offset == oopDesc::klass_offset_in_bytes()) {
  1844     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  1845     if (allocated_klass != NULL) {
  1846       return allocated_klass;
  1850   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
  1851   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
  1852   // See inline_native_Class_query for occurrences of these patterns.
  1853   // Java Example:  x.getClass().isAssignableFrom(y)
  1854   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  1855   //
  1856   // This improves reflective code, often making the Class
  1857   // mirror go completely dead.  (Current exception:  Class
  1858   // mirrors may appear in debug info, but we could clean them out by
  1859   // introducing a new debug info operator for klassOop.java_mirror).
  1860   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  1861       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1862           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1863     // We are loading a special hidden field from a Class mirror,
  1864     // the field which points to its Klass or arrayKlass metaobject.
  1865     if (base->is_Load()) {
  1866       Node* adr2 = base->in(MemNode::Address);
  1867       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  1868       if (tkls != NULL && !tkls->empty()
  1869           && (tkls->klass()->is_instance_klass() ||
  1870               tkls->klass()->is_array_klass())
  1871           && adr2->is_AddP()
  1872           ) {
  1873         int mirror_field = Klass::java_mirror_offset_in_bytes();
  1874         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1875           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
  1877         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
  1878           return adr2->in(AddPNode::Base);
  1884   return this;
  1888 //------------------------------Value------------------------------------------
  1889 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  1890   const Type *t = klass_value_common(phase);
  1891   if (t == Type::TOP)
  1892     return t;
  1894   return t->make_narrowoop();
  1897 //------------------------------Identity---------------------------------------
  1898 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  1899 // Also feed through the klass in Allocate(...klass...)._klass.
  1900 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  1901   Node *x = klass_identity_common(phase);
  1903   const Type *t = phase->type( x );
  1904   if( t == Type::TOP ) return x;
  1905   if( t->isa_narrowoop()) return x;
  1907   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
  1910 //------------------------------Value-----------------------------------------
  1911 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  1912   // Either input is TOP ==> the result is TOP
  1913   const Type *t1 = phase->type( in(MemNode::Memory) );
  1914   if( t1 == Type::TOP ) return Type::TOP;
  1915   Node *adr = in(MemNode::Address);
  1916   const Type *t2 = phase->type( adr );
  1917   if( t2 == Type::TOP ) return Type::TOP;
  1918   const TypePtr *tp = t2->is_ptr();
  1919   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  1920   const TypeAryPtr *tap = tp->isa_aryptr();
  1921   if( !tap ) return _type;
  1922   return tap->size();
  1925 //-------------------------------Ideal---------------------------------------
  1926 // Feed through the length in AllocateArray(...length...)._length.
  1927 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1928   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1929   if (p)  return (p == NodeSentinel) ? NULL : p;
  1931   // Take apart the address into an oop and and offset.
  1932   // Return 'this' if we cannot.
  1933   Node*    adr    = in(MemNode::Address);
  1934   intptr_t offset = 0;
  1935   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  1936   if (base == NULL)     return NULL;
  1937   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1938   if (tary == NULL)     return NULL;
  1940   // We can fetch the length directly through an AllocateArrayNode.
  1941   // This works even if the length is not constant (clone or newArray).
  1942   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1943     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  1944     if (alloc != NULL) {
  1945       Node* allocated_length = alloc->Ideal_length();
  1946       Node* len = alloc->make_ideal_length(tary, phase);
  1947       if (allocated_length != len) {
  1948         // New CastII improves on this.
  1949         return len;
  1954   return NULL;
  1957 //------------------------------Identity---------------------------------------
  1958 // Feed through the length in AllocateArray(...length...)._length.
  1959 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  1960   Node* x = LoadINode::Identity(phase);
  1961   if (x != this)  return x;
  1963   // Take apart the address into an oop and and offset.
  1964   // Return 'this' if we cannot.
  1965   Node*    adr    = in(MemNode::Address);
  1966   intptr_t offset = 0;
  1967   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  1968   if (base == NULL)     return this;
  1969   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  1970   if (tary == NULL)     return this;
  1972   // We can fetch the length directly through an AllocateArrayNode.
  1973   // This works even if the length is not constant (clone or newArray).
  1974   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1975     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  1976     if (alloc != NULL) {
  1977       Node* allocated_length = alloc->Ideal_length();
  1978       // Do not allow make_ideal_length to allocate a CastII node.
  1979       Node* len = alloc->make_ideal_length(tary, phase, false);
  1980       if (allocated_length == len) {
  1981         // Return allocated_length only if it would not be improved by a CastII.
  1982         return allocated_length;
  1987   return this;
  1991 //=============================================================================
  1992 //---------------------------StoreNode::make-----------------------------------
  1993 // Polymorphic factory method:
  1994 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  1995   Compile* C = gvn.C;
  1997   switch (bt) {
  1998   case T_BOOLEAN:
  1999   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
  2000   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
  2001   case T_CHAR:
  2002   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
  2003   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
  2004   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
  2005   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
  2006   case T_ADDRESS:
  2007   case T_OBJECT:
  2008 #ifdef _LP64
  2009     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
  2010         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
  2011          adr->bottom_type()->isa_rawptr())) {
  2012       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2013       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
  2014     } else
  2015 #endif
  2017       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
  2020   ShouldNotReachHere();
  2021   return (StoreNode*)NULL;
  2024 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2025   bool require_atomic = true;
  2026   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2030 //--------------------------bottom_type----------------------------------------
  2031 const Type *StoreNode::bottom_type() const {
  2032   return Type::MEMORY;
  2035 //------------------------------hash-------------------------------------------
  2036 uint StoreNode::hash() const {
  2037   // unroll addition of interesting fields
  2038   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2040   // Since they are not commoned, do not hash them:
  2041   return NO_HASH;
  2044 //------------------------------Ideal------------------------------------------
  2045 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2046 // When a store immediately follows a relevant allocation/initialization,
  2047 // try to capture it into the initialization, or hoist it above.
  2048 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2049   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2050   if (p)  return (p == NodeSentinel) ? NULL : p;
  2052   Node* mem     = in(MemNode::Memory);
  2053   Node* address = in(MemNode::Address);
  2055   // Back-to-back stores to same address?  Fold em up.
  2056   // Generally unsafe if I have intervening uses...
  2057   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
  2058     // Looking at a dead closed cycle of memory?
  2059     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2061     assert(Opcode() == mem->Opcode() ||
  2062            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2063            "no mismatched stores, except on raw memory");
  2065     if (mem->outcnt() == 1 &&           // check for intervening uses
  2066         mem->as_Store()->memory_size() <= this->memory_size()) {
  2067       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2068       // For example, 'mem' might be the final state at a conditional return.
  2069       // Or, 'mem' might be used by some node which is live at the same time
  2070       // 'this' is live, which might be unschedulable.  So, require exactly
  2071       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2072       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2073       if (can_reshape) {  // (%%% is this an anachronism?)
  2074         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2075                   phase->is_IterGVN());
  2076       } else {
  2077         // It's OK to do this in the parser, since DU info is always accurate,
  2078         // and the parser always refers to nodes via SafePointNode maps.
  2079         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2081       return this;
  2085   // Capture an unaliased, unconditional, simple store into an initializer.
  2086   // Or, if it is independent of the allocation, hoist it above the allocation.
  2087   if (ReduceFieldZeroing && /*can_reshape &&*/
  2088       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2089     InitializeNode* init = mem->in(0)->as_Initialize();
  2090     intptr_t offset = init->can_capture_store(this, phase);
  2091     if (offset > 0) {
  2092       Node* moved = init->capture_store(this, offset, phase);
  2093       // If the InitializeNode captured me, it made a raw copy of me,
  2094       // and I need to disappear.
  2095       if (moved != NULL) {
  2096         // %%% hack to ensure that Ideal returns a new node:
  2097         mem = MergeMemNode::make(phase->C, mem);
  2098         return mem;             // fold me away
  2103   return NULL;                  // No further progress
  2106 //------------------------------Value-----------------------------------------
  2107 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2108   // Either input is TOP ==> the result is TOP
  2109   const Type *t1 = phase->type( in(MemNode::Memory) );
  2110   if( t1 == Type::TOP ) return Type::TOP;
  2111   const Type *t2 = phase->type( in(MemNode::Address) );
  2112   if( t2 == Type::TOP ) return Type::TOP;
  2113   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2114   if( t3 == Type::TOP ) return Type::TOP;
  2115   return Type::MEMORY;
  2118 //------------------------------Identity---------------------------------------
  2119 // Remove redundant stores:
  2120 //   Store(m, p, Load(m, p)) changes to m.
  2121 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2122 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2123   Node* mem = in(MemNode::Memory);
  2124   Node* adr = in(MemNode::Address);
  2125   Node* val = in(MemNode::ValueIn);
  2127   // Load then Store?  Then the Store is useless
  2128   if (val->is_Load() &&
  2129       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
  2130       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
  2131       val->as_Load()->store_Opcode() == Opcode()) {
  2132     return mem;
  2135   // Two stores in a row of the same value?
  2136   if (mem->is_Store() &&
  2137       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
  2138       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
  2139       mem->Opcode() == Opcode()) {
  2140     return mem;
  2143   // Store of zero anywhere into a freshly-allocated object?
  2144   // Then the store is useless.
  2145   // (It must already have been captured by the InitializeNode.)
  2146   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2147     // a newly allocated object is already all-zeroes everywhere
  2148     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2149       return mem;
  2152     // the store may also apply to zero-bits in an earlier object
  2153     Node* prev_mem = find_previous_store(phase);
  2154     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2155     if (prev_mem != NULL) {
  2156       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2157       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2158         // prev_val and val might differ by a cast; it would be good
  2159         // to keep the more informative of the two.
  2160         return mem;
  2165   return this;
  2168 //------------------------------match_edge-------------------------------------
  2169 // Do we Match on this edge index or not?  Match only memory & value
  2170 uint StoreNode::match_edge(uint idx) const {
  2171   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2174 //------------------------------cmp--------------------------------------------
  2175 // Do not common stores up together.  They generally have to be split
  2176 // back up anyways, so do not bother.
  2177 uint StoreNode::cmp( const Node &n ) const {
  2178   return (&n == this);          // Always fail except on self
  2181 //------------------------------Ideal_masked_input-----------------------------
  2182 // Check for a useless mask before a partial-word store
  2183 // (StoreB ... (AndI valIn conIa) )
  2184 // If (conIa & mask == mask) this simplifies to
  2185 // (StoreB ... (valIn) )
  2186 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2187   Node *val = in(MemNode::ValueIn);
  2188   if( val->Opcode() == Op_AndI ) {
  2189     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2190     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2191       set_req(MemNode::ValueIn, val->in(1));
  2192       return this;
  2195   return NULL;
  2199 //------------------------------Ideal_sign_extended_input----------------------
  2200 // Check for useless sign-extension before a partial-word store
  2201 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2202 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2203 // (StoreB ... (valIn) )
  2204 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2205   Node *val = in(MemNode::ValueIn);
  2206   if( val->Opcode() == Op_RShiftI ) {
  2207     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2208     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2209       Node *shl = val->in(1);
  2210       if( shl->Opcode() == Op_LShiftI ) {
  2211         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2212         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2213           set_req(MemNode::ValueIn, shl->in(1));
  2214           return this;
  2219   return NULL;
  2222 //------------------------------value_never_loaded-----------------------------------
  2223 // Determine whether there are any possible loads of the value stored.
  2224 // For simplicity, we actually check if there are any loads from the
  2225 // address stored to, not just for loads of the value stored by this node.
  2226 //
  2227 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2228   Node *adr = in(Address);
  2229   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2230   if (adr_oop == NULL)
  2231     return false;
  2232   if (!adr_oop->is_known_instance_field())
  2233     return false; // if not a distinct instance, there may be aliases of the address
  2234   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2235     Node *use = adr->fast_out(i);
  2236     int opc = use->Opcode();
  2237     if (use->is_Load() || use->is_LoadStore()) {
  2238       return false;
  2241   return true;
  2244 //=============================================================================
  2245 //------------------------------Ideal------------------------------------------
  2246 // If the store is from an AND mask that leaves the low bits untouched, then
  2247 // we can skip the AND operation.  If the store is from a sign-extension
  2248 // (a left shift, then right shift) we can skip both.
  2249 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2250   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2251   if( progress != NULL ) return progress;
  2253   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2254   if( progress != NULL ) return progress;
  2256   // Finally check the default case
  2257   return StoreNode::Ideal(phase, can_reshape);
  2260 //=============================================================================
  2261 //------------------------------Ideal------------------------------------------
  2262 // If the store is from an AND mask that leaves the low bits untouched, then
  2263 // we can skip the AND operation
  2264 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2265   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2266   if( progress != NULL ) return progress;
  2268   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2269   if( progress != NULL ) return progress;
  2271   // Finally check the default case
  2272   return StoreNode::Ideal(phase, can_reshape);
  2275 //=============================================================================
  2276 //------------------------------Identity---------------------------------------
  2277 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2278   // No need to card mark when storing a null ptr
  2279   Node* my_store = in(MemNode::OopStore);
  2280   if (my_store->is_Store()) {
  2281     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2282     if( t1 == TypePtr::NULL_PTR ) {
  2283       return in(MemNode::Memory);
  2286   return this;
  2289 //------------------------------Value-----------------------------------------
  2290 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2291   // Either input is TOP ==> the result is TOP
  2292   const Type *t = phase->type( in(MemNode::Memory) );
  2293   if( t == Type::TOP ) return Type::TOP;
  2294   t = phase->type( in(MemNode::Address) );
  2295   if( t == Type::TOP ) return Type::TOP;
  2296   t = phase->type( in(MemNode::ValueIn) );
  2297   if( t == Type::TOP ) return Type::TOP;
  2298   // If extra input is TOP ==> the result is TOP
  2299   t = phase->type( in(MemNode::OopStore) );
  2300   if( t == Type::TOP ) return Type::TOP;
  2302   return StoreNode::Value( phase );
  2306 //=============================================================================
  2307 //----------------------------------SCMemProjNode------------------------------
  2308 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2310   return bottom_type();
  2313 //=============================================================================
  2314 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
  2315   init_req(MemNode::Control, c  );
  2316   init_req(MemNode::Memory , mem);
  2317   init_req(MemNode::Address, adr);
  2318   init_req(MemNode::ValueIn, val);
  2319   init_req(         ExpectedIn, ex );
  2320   init_class_id(Class_LoadStore);
  2324 //=============================================================================
  2325 //-------------------------------adr_type--------------------------------------
  2326 // Do we Match on this edge index or not?  Do not match memory
  2327 const TypePtr* ClearArrayNode::adr_type() const {
  2328   Node *adr = in(3);
  2329   return MemNode::calculate_adr_type(adr->bottom_type());
  2332 //------------------------------match_edge-------------------------------------
  2333 // Do we Match on this edge index or not?  Do not match memory
  2334 uint ClearArrayNode::match_edge(uint idx) const {
  2335   return idx > 1;
  2338 //------------------------------Identity---------------------------------------
  2339 // Clearing a zero length array does nothing
  2340 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2341   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2344 //------------------------------Idealize---------------------------------------
  2345 // Clearing a short array is faster with stores
  2346 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2347   const int unit = BytesPerLong;
  2348   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2349   if (!t)  return NULL;
  2350   if (!t->is_con())  return NULL;
  2351   intptr_t raw_count = t->get_con();
  2352   intptr_t size = raw_count;
  2353   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2354   // Clearing nothing uses the Identity call.
  2355   // Negative clears are possible on dead ClearArrays
  2356   // (see jck test stmt114.stmt11402.val).
  2357   if (size <= 0 || size % unit != 0)  return NULL;
  2358   intptr_t count = size / unit;
  2359   // Length too long; use fast hardware clear
  2360   if (size > Matcher::init_array_short_size)  return NULL;
  2361   Node *mem = in(1);
  2362   if( phase->type(mem)==Type::TOP ) return NULL;
  2363   Node *adr = in(3);
  2364   const Type* at = phase->type(adr);
  2365   if( at==Type::TOP ) return NULL;
  2366   const TypePtr* atp = at->isa_ptr();
  2367   // adjust atp to be the correct array element address type
  2368   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2369   else              atp = atp->add_offset(Type::OffsetBot);
  2370   // Get base for derived pointer purposes
  2371   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2372   Node *base = adr->in(1);
  2374   Node *zero = phase->makecon(TypeLong::ZERO);
  2375   Node *off  = phase->MakeConX(BytesPerLong);
  2376   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2377   count--;
  2378   while( count-- ) {
  2379     mem = phase->transform(mem);
  2380     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
  2381     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
  2383   return mem;
  2386 //----------------------------clear_memory-------------------------------------
  2387 // Generate code to initialize object storage to zero.
  2388 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2389                                    intptr_t start_offset,
  2390                                    Node* end_offset,
  2391                                    PhaseGVN* phase) {
  2392   Compile* C = phase->C;
  2393   intptr_t offset = start_offset;
  2395   int unit = BytesPerLong;
  2396   if ((offset % unit) != 0) {
  2397     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
  2398     adr = phase->transform(adr);
  2399     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2400     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2401     mem = phase->transform(mem);
  2402     offset += BytesPerInt;
  2404   assert((offset % unit) == 0, "");
  2406   // Initialize the remaining stuff, if any, with a ClearArray.
  2407   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2410 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2411                                    Node* start_offset,
  2412                                    Node* end_offset,
  2413                                    PhaseGVN* phase) {
  2414   if (start_offset == end_offset) {
  2415     // nothing to do
  2416     return mem;
  2419   Compile* C = phase->C;
  2420   int unit = BytesPerLong;
  2421   Node* zbase = start_offset;
  2422   Node* zend  = end_offset;
  2424   // Scale to the unit required by the CPU:
  2425   if (!Matcher::init_array_count_is_in_bytes) {
  2426     Node* shift = phase->intcon(exact_log2(unit));
  2427     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
  2428     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
  2431   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
  2432   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
  2434   // Bulk clear double-words
  2435   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
  2436   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
  2437   return phase->transform(mem);
  2440 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2441                                    intptr_t start_offset,
  2442                                    intptr_t end_offset,
  2443                                    PhaseGVN* phase) {
  2444   if (start_offset == end_offset) {
  2445     // nothing to do
  2446     return mem;
  2449   Compile* C = phase->C;
  2450   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2451   intptr_t done_offset = end_offset;
  2452   if ((done_offset % BytesPerLong) != 0) {
  2453     done_offset -= BytesPerInt;
  2455   if (done_offset > start_offset) {
  2456     mem = clear_memory(ctl, mem, dest,
  2457                        start_offset, phase->MakeConX(done_offset), phase);
  2459   if (done_offset < end_offset) { // emit the final 32-bit store
  2460     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2461     adr = phase->transform(adr);
  2462     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2463     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2464     mem = phase->transform(mem);
  2465     done_offset += BytesPerInt;
  2467   assert(done_offset == end_offset, "");
  2468   return mem;
  2471 //=============================================================================
  2472 // Do we match on this edge? No memory edges
  2473 uint StrCompNode::match_edge(uint idx) const {
  2474   return idx == 5 || idx == 6;
  2477 //------------------------------Ideal------------------------------------------
  2478 // Return a node which is more "ideal" than the current node.  Strip out
  2479 // control copies
  2480 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2481   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2484 //------------------------------Ideal------------------------------------------
  2485 // Return a node which is more "ideal" than the current node.  Strip out
  2486 // control copies
  2487 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2488   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2492 //=============================================================================
  2493 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2494   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2495     _adr_type(C->get_adr_type(alias_idx))
  2497   init_class_id(Class_MemBar);
  2498   Node* top = C->top();
  2499   init_req(TypeFunc::I_O,top);
  2500   init_req(TypeFunc::FramePtr,top);
  2501   init_req(TypeFunc::ReturnAdr,top);
  2502   if (precedent != NULL)
  2503     init_req(TypeFunc::Parms, precedent);
  2506 //------------------------------cmp--------------------------------------------
  2507 uint MemBarNode::hash() const { return NO_HASH; }
  2508 uint MemBarNode::cmp( const Node &n ) const {
  2509   return (&n == this);          // Always fail except on self
  2512 //------------------------------make-------------------------------------------
  2513 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2514   int len = Precedent + (pn == NULL? 0: 1);
  2515   switch (opcode) {
  2516   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
  2517   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
  2518   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
  2519   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
  2520   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
  2521   default:                 ShouldNotReachHere(); return NULL;
  2525 //------------------------------Ideal------------------------------------------
  2526 // Return a node which is more "ideal" than the current node.  Strip out
  2527 // control copies
  2528 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2529   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2532 //------------------------------Value------------------------------------------
  2533 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2534   if( !in(0) ) return Type::TOP;
  2535   if( phase->type(in(0)) == Type::TOP )
  2536     return Type::TOP;
  2537   return TypeTuple::MEMBAR;
  2540 //------------------------------match------------------------------------------
  2541 // Construct projections for memory.
  2542 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2543   switch (proj->_con) {
  2544   case TypeFunc::Control:
  2545   case TypeFunc::Memory:
  2546     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2548   ShouldNotReachHere();
  2549   return NULL;
  2552 //===========================InitializeNode====================================
  2553 // SUMMARY:
  2554 // This node acts as a memory barrier on raw memory, after some raw stores.
  2555 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2556 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2557 // It can coalesce related raw stores into larger units (called 'tiles').
  2558 // It can avoid zeroing new storage for memory units which have raw inits.
  2559 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2560 //
  2561 // EXAMPLE:
  2562 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2563 //   ctl = incoming control; mem* = incoming memory
  2564 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2565 // First allocate uninitialized memory and fill in the header:
  2566 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2567 //   ctl := alloc.Control; mem* := alloc.Memory*
  2568 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2569 // Then initialize to zero the non-header parts of the raw memory block:
  2570 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2571 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2572 // After the initialize node executes, the object is ready for service:
  2573 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2574 // Suppose its body is immediately initialized as {1,2}:
  2575 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2576 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2577 //   mem.SLICE(#short[*]) := store2
  2578 //
  2579 // DETAILS:
  2580 // An InitializeNode collects and isolates object initialization after
  2581 // an AllocateNode and before the next possible safepoint.  As a
  2582 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2583 // down past any safepoint or any publication of the allocation.
  2584 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2585 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2586 //
  2587 // The semantics of the InitializeNode include an implicit zeroing of
  2588 // the new object from object header to the end of the object.
  2589 // (The object header and end are determined by the AllocateNode.)
  2590 //
  2591 // Certain stores may be added as direct inputs to the InitializeNode.
  2592 // These stores must update raw memory, and they must be to addresses
  2593 // derived from the raw address produced by AllocateNode, and with
  2594 // a constant offset.  They must be ordered by increasing offset.
  2595 // The first one is at in(RawStores), the last at in(req()-1).
  2596 // Unlike most memory operations, they are not linked in a chain,
  2597 // but are displayed in parallel as users of the rawmem output of
  2598 // the allocation.
  2599 //
  2600 // (See comments in InitializeNode::capture_store, which continue
  2601 // the example given above.)
  2602 //
  2603 // When the associated Allocate is macro-expanded, the InitializeNode
  2604 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2605 // may also be created at that point to represent any required zeroing.
  2606 // The InitializeNode is then marked 'complete', prohibiting further
  2607 // capturing of nearby memory operations.
  2608 //
  2609 // During macro-expansion, all captured initializations which store
  2610 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2611 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2612 // initialized in fewer memory operations.  Memory words which are
  2613 // covered by neither tiles nor non-constant stores are pre-zeroed
  2614 // by explicit stores of zero.  (The code shape happens to do all
  2615 // zeroing first, then all other stores, with both sequences occurring
  2616 // in order of ascending offsets.)
  2617 //
  2618 // Alternatively, code may be inserted between an AllocateNode and its
  2619 // InitializeNode, to perform arbitrary initialization of the new object.
  2620 // E.g., the object copying intrinsics insert complex data transfers here.
  2621 // The initialization must then be marked as 'complete' disable the
  2622 // built-in zeroing semantics and the collection of initializing stores.
  2623 //
  2624 // While an InitializeNode is incomplete, reads from the memory state
  2625 // produced by it are optimizable if they match the control edge and
  2626 // new oop address associated with the allocation/initialization.
  2627 // They return a stored value (if the offset matches) or else zero.
  2628 // A write to the memory state, if it matches control and address,
  2629 // and if it is to a constant offset, may be 'captured' by the
  2630 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2631 // inside the initialization, to the raw oop produced by the allocation.
  2632 // Operations on addresses which are provably distinct (e.g., to
  2633 // other AllocateNodes) are allowed to bypass the initialization.
  2634 //
  2635 // The effect of all this is to consolidate object initialization
  2636 // (both arrays and non-arrays, both piecewise and bulk) into a
  2637 // single location, where it can be optimized as a unit.
  2638 //
  2639 // Only stores with an offset less than TrackedInitializationLimit words
  2640 // will be considered for capture by an InitializeNode.  This puts a
  2641 // reasonable limit on the complexity of optimized initializations.
  2643 //---------------------------InitializeNode------------------------------------
  2644 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  2645   : _is_complete(false),
  2646     MemBarNode(C, adr_type, rawoop)
  2648   init_class_id(Class_Initialize);
  2650   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  2651   assert(in(RawAddress) == rawoop, "proper init");
  2652   // Note:  allocation() can be NULL, for secondary initialization barriers
  2655 // Since this node is not matched, it will be processed by the
  2656 // register allocator.  Declare that there are no constraints
  2657 // on the allocation of the RawAddress edge.
  2658 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  2659   // This edge should be set to top, by the set_complete.  But be conservative.
  2660   if (idx == InitializeNode::RawAddress)
  2661     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  2662   return RegMask::Empty;
  2665 Node* InitializeNode::memory(uint alias_idx) {
  2666   Node* mem = in(Memory);
  2667   if (mem->is_MergeMem()) {
  2668     return mem->as_MergeMem()->memory_at(alias_idx);
  2669   } else {
  2670     // incoming raw memory is not split
  2671     return mem;
  2675 bool InitializeNode::is_non_zero() {
  2676   if (is_complete())  return false;
  2677   remove_extra_zeroes();
  2678   return (req() > RawStores);
  2681 void InitializeNode::set_complete(PhaseGVN* phase) {
  2682   assert(!is_complete(), "caller responsibility");
  2683   _is_complete = true;
  2685   // After this node is complete, it contains a bunch of
  2686   // raw-memory initializations.  There is no need for
  2687   // it to have anything to do with non-raw memory effects.
  2688   // Therefore, tell all non-raw users to re-optimize themselves,
  2689   // after skipping the memory effects of this initialization.
  2690   PhaseIterGVN* igvn = phase->is_IterGVN();
  2691   if (igvn)  igvn->add_users_to_worklist(this);
  2694 // convenience function
  2695 // return false if the init contains any stores already
  2696 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  2697   InitializeNode* init = initialization();
  2698   if (init == NULL || init->is_complete())  return false;
  2699   init->remove_extra_zeroes();
  2700   // for now, if this allocation has already collected any inits, bail:
  2701   if (init->is_non_zero())  return false;
  2702   init->set_complete(phase);
  2703   return true;
  2706 void InitializeNode::remove_extra_zeroes() {
  2707   if (req() == RawStores)  return;
  2708   Node* zmem = zero_memory();
  2709   uint fill = RawStores;
  2710   for (uint i = fill; i < req(); i++) {
  2711     Node* n = in(i);
  2712     if (n->is_top() || n == zmem)  continue;  // skip
  2713     if (fill < i)  set_req(fill, n);          // compact
  2714     ++fill;
  2716   // delete any empty spaces created:
  2717   while (fill < req()) {
  2718     del_req(fill);
  2722 // Helper for remembering which stores go with which offsets.
  2723 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  2724   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  2725   intptr_t offset = -1;
  2726   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  2727                                                phase, offset);
  2728   if (base == NULL)     return -1;  // something is dead,
  2729   if (offset < 0)       return -1;  //        dead, dead
  2730   return offset;
  2733 // Helper for proving that an initialization expression is
  2734 // "simple enough" to be folded into an object initialization.
  2735 // Attempts to prove that a store's initial value 'n' can be captured
  2736 // within the initialization without creating a vicious cycle, such as:
  2737 //     { Foo p = new Foo(); p.next = p; }
  2738 // True for constants and parameters and small combinations thereof.
  2739 bool InitializeNode::detect_init_independence(Node* n,
  2740                                               bool st_is_pinned,
  2741                                               int& count) {
  2742   if (n == NULL)      return true;   // (can this really happen?)
  2743   if (n->is_Proj())   n = n->in(0);
  2744   if (n == this)      return false;  // found a cycle
  2745   if (n->is_Con())    return true;
  2746   if (n->is_Start())  return true;   // params, etc., are OK
  2747   if (n->is_Root())   return true;   // even better
  2749   Node* ctl = n->in(0);
  2750   if (ctl != NULL && !ctl->is_top()) {
  2751     if (ctl->is_Proj())  ctl = ctl->in(0);
  2752     if (ctl == this)  return false;
  2754     // If we already know that the enclosing memory op is pinned right after
  2755     // the init, then any control flow that the store has picked up
  2756     // must have preceded the init, or else be equal to the init.
  2757     // Even after loop optimizations (which might change control edges)
  2758     // a store is never pinned *before* the availability of its inputs.
  2759     if (!MemNode::all_controls_dominate(n, this))
  2760       return false;                  // failed to prove a good control
  2764   // Check data edges for possible dependencies on 'this'.
  2765   if ((count += 1) > 20)  return false;  // complexity limit
  2766   for (uint i = 1; i < n->req(); i++) {
  2767     Node* m = n->in(i);
  2768     if (m == NULL || m == n || m->is_top())  continue;
  2769     uint first_i = n->find_edge(m);
  2770     if (i != first_i)  continue;  // process duplicate edge just once
  2771     if (!detect_init_independence(m, st_is_pinned, count)) {
  2772       return false;
  2776   return true;
  2779 // Here are all the checks a Store must pass before it can be moved into
  2780 // an initialization.  Returns zero if a check fails.
  2781 // On success, returns the (constant) offset to which the store applies,
  2782 // within the initialized memory.
  2783 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
  2784   const int FAIL = 0;
  2785   if (st->req() != MemNode::ValueIn + 1)
  2786     return FAIL;                // an inscrutable StoreNode (card mark?)
  2787   Node* ctl = st->in(MemNode::Control);
  2788   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  2789     return FAIL;                // must be unconditional after the initialization
  2790   Node* mem = st->in(MemNode::Memory);
  2791   if (!(mem->is_Proj() && mem->in(0) == this))
  2792     return FAIL;                // must not be preceded by other stores
  2793   Node* adr = st->in(MemNode::Address);
  2794   intptr_t offset;
  2795   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  2796   if (alloc == NULL)
  2797     return FAIL;                // inscrutable address
  2798   if (alloc != allocation())
  2799     return FAIL;                // wrong allocation!  (store needs to float up)
  2800   Node* val = st->in(MemNode::ValueIn);
  2801   int complexity_count = 0;
  2802   if (!detect_init_independence(val, true, complexity_count))
  2803     return FAIL;                // stored value must be 'simple enough'
  2805   return offset;                // success
  2808 // Find the captured store in(i) which corresponds to the range
  2809 // [start..start+size) in the initialized object.
  2810 // If there is one, return its index i.  If there isn't, return the
  2811 // negative of the index where it should be inserted.
  2812 // Return 0 if the queried range overlaps an initialization boundary
  2813 // or if dead code is encountered.
  2814 // If size_in_bytes is zero, do not bother with overlap checks.
  2815 int InitializeNode::captured_store_insertion_point(intptr_t start,
  2816                                                    int size_in_bytes,
  2817                                                    PhaseTransform* phase) {
  2818   const int FAIL = 0, MAX_STORE = BytesPerLong;
  2820   if (is_complete())
  2821     return FAIL;                // arraycopy got here first; punt
  2823   assert(allocation() != NULL, "must be present");
  2825   // no negatives, no header fields:
  2826   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  2828   // after a certain size, we bail out on tracking all the stores:
  2829   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  2830   if (start >= ti_limit)  return FAIL;
  2832   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  2833     if (i >= limit)  return -(int)i; // not found; here is where to put it
  2835     Node*    st     = in(i);
  2836     intptr_t st_off = get_store_offset(st, phase);
  2837     if (st_off < 0) {
  2838       if (st != zero_memory()) {
  2839         return FAIL;            // bail out if there is dead garbage
  2841     } else if (st_off > start) {
  2842       // ...we are done, since stores are ordered
  2843       if (st_off < start + size_in_bytes) {
  2844         return FAIL;            // the next store overlaps
  2846       return -(int)i;           // not found; here is where to put it
  2847     } else if (st_off < start) {
  2848       if (size_in_bytes != 0 &&
  2849           start < st_off + MAX_STORE &&
  2850           start < st_off + st->as_Store()->memory_size()) {
  2851         return FAIL;            // the previous store overlaps
  2853     } else {
  2854       if (size_in_bytes != 0 &&
  2855           st->as_Store()->memory_size() != size_in_bytes) {
  2856         return FAIL;            // mismatched store size
  2858       return i;
  2861     ++i;
  2865 // Look for a captured store which initializes at the offset 'start'
  2866 // with the given size.  If there is no such store, and no other
  2867 // initialization interferes, then return zero_memory (the memory
  2868 // projection of the AllocateNode).
  2869 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  2870                                           PhaseTransform* phase) {
  2871   assert(stores_are_sane(phase), "");
  2872   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2873   if (i == 0) {
  2874     return NULL;                // something is dead
  2875   } else if (i < 0) {
  2876     return zero_memory();       // just primordial zero bits here
  2877   } else {
  2878     Node* st = in(i);           // here is the store at this position
  2879     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  2880     return st;
  2884 // Create, as a raw pointer, an address within my new object at 'offset'.
  2885 Node* InitializeNode::make_raw_address(intptr_t offset,
  2886                                        PhaseTransform* phase) {
  2887   Node* addr = in(RawAddress);
  2888   if (offset != 0) {
  2889     Compile* C = phase->C;
  2890     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
  2891                                                  phase->MakeConX(offset)) );
  2893   return addr;
  2896 // Clone the given store, converting it into a raw store
  2897 // initializing a field or element of my new object.
  2898 // Caller is responsible for retiring the original store,
  2899 // with subsume_node or the like.
  2900 //
  2901 // From the example above InitializeNode::InitializeNode,
  2902 // here are the old stores to be captured:
  2903 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2904 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2905 //
  2906 // Here is the changed code; note the extra edges on init:
  2907 //   alloc = (Allocate ...)
  2908 //   rawoop = alloc.RawAddress
  2909 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  2910 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  2911 //   init = (Initialize alloc.Control alloc.Memory rawoop
  2912 //                      rawstore1 rawstore2)
  2913 //
  2914 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  2915                                     PhaseTransform* phase) {
  2916   assert(stores_are_sane(phase), "");
  2918   if (start < 0)  return NULL;
  2919   assert(can_capture_store(st, phase) == start, "sanity");
  2921   Compile* C = phase->C;
  2922   int size_in_bytes = st->memory_size();
  2923   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  2924   if (i == 0)  return NULL;     // bail out
  2925   Node* prev_mem = NULL;        // raw memory for the captured store
  2926   if (i > 0) {
  2927     prev_mem = in(i);           // there is a pre-existing store under this one
  2928     set_req(i, C->top());       // temporarily disconnect it
  2929     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  2930   } else {
  2931     i = -i;                     // no pre-existing store
  2932     prev_mem = zero_memory();   // a slice of the newly allocated object
  2933     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  2934       set_req(--i, C->top());   // reuse this edge; it has been folded away
  2935     else
  2936       ins_req(i, C->top());     // build a new edge
  2938   Node* new_st = st->clone();
  2939   new_st->set_req(MemNode::Control, in(Control));
  2940   new_st->set_req(MemNode::Memory,  prev_mem);
  2941   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  2942   new_st = phase->transform(new_st);
  2944   // At this point, new_st might have swallowed a pre-existing store
  2945   // at the same offset, or perhaps new_st might have disappeared,
  2946   // if it redundantly stored the same value (or zero to fresh memory).
  2948   // In any case, wire it in:
  2949   set_req(i, new_st);
  2951   // The caller may now kill the old guy.
  2952   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  2953   assert(check_st == new_st || check_st == NULL, "must be findable");
  2954   assert(!is_complete(), "");
  2955   return new_st;
  2958 static bool store_constant(jlong* tiles, int num_tiles,
  2959                            intptr_t st_off, int st_size,
  2960                            jlong con) {
  2961   if ((st_off & (st_size-1)) != 0)
  2962     return false;               // strange store offset (assume size==2**N)
  2963   address addr = (address)tiles + st_off;
  2964   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  2965   switch (st_size) {
  2966   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  2967   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  2968   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  2969   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  2970   default: return false;        // strange store size (detect size!=2**N here)
  2972   return true;                  // return success to caller
  2975 // Coalesce subword constants into int constants and possibly
  2976 // into long constants.  The goal, if the CPU permits,
  2977 // is to initialize the object with a small number of 64-bit tiles.
  2978 // Also, convert floating-point constants to bit patterns.
  2979 // Non-constants are not relevant to this pass.
  2980 //
  2981 // In terms of the running example on InitializeNode::InitializeNode
  2982 // and InitializeNode::capture_store, here is the transformation
  2983 // of rawstore1 and rawstore2 into rawstore12:
  2984 //   alloc = (Allocate ...)
  2985 //   rawoop = alloc.RawAddress
  2986 //   tile12 = 0x00010002
  2987 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  2988 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  2989 //
  2990 void
  2991 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  2992                                         Node* size_in_bytes,
  2993                                         PhaseGVN* phase) {
  2994   Compile* C = phase->C;
  2996   assert(stores_are_sane(phase), "");
  2997   // Note:  After this pass, they are not completely sane,
  2998   // since there may be some overlaps.
  3000   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3002   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3003   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3004   size_limit = MIN2(size_limit, ti_limit);
  3005   size_limit = align_size_up(size_limit, BytesPerLong);
  3006   int num_tiles = size_limit / BytesPerLong;
  3008   // allocate space for the tile map:
  3009   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3010   jlong  tiles_buf[small_len];
  3011   Node*  nodes_buf[small_len];
  3012   jlong  inits_buf[small_len];
  3013   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3014                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3015   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3016                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3017   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3018                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3019   // tiles: exact bitwise model of all primitive constants
  3020   // nodes: last constant-storing node subsumed into the tiles model
  3021   // inits: which bytes (in each tile) are touched by any initializations
  3023   //// Pass A: Fill in the tile model with any relevant stores.
  3025   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3026   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3027   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3028   Node* zmem = zero_memory(); // initially zero memory state
  3029   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3030     Node* st = in(i);
  3031     intptr_t st_off = get_store_offset(st, phase);
  3033     // Figure out the store's offset and constant value:
  3034     if (st_off < header_size)             continue; //skip (ignore header)
  3035     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3036     int st_size = st->as_Store()->memory_size();
  3037     if (st_off + st_size > size_limit)    break;
  3039     // Record which bytes are touched, whether by constant or not.
  3040     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3041       continue;                 // skip (strange store size)
  3043     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3044     if (!val->singleton())                continue; //skip (non-con store)
  3045     BasicType type = val->basic_type();
  3047     jlong con = 0;
  3048     switch (type) {
  3049     case T_INT:    con = val->is_int()->get_con();  break;
  3050     case T_LONG:   con = val->is_long()->get_con(); break;
  3051     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3052     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3053     default:                              continue; //skip (odd store type)
  3056     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3057         st->Opcode() == Op_StoreL) {
  3058       continue;                 // This StoreL is already optimal.
  3061     // Store down the constant.
  3062     store_constant(tiles, num_tiles, st_off, st_size, con);
  3064     intptr_t j = st_off >> LogBytesPerLong;
  3066     if (type == T_INT && st_size == BytesPerInt
  3067         && (st_off & BytesPerInt) == BytesPerInt) {
  3068       jlong lcon = tiles[j];
  3069       if (!Matcher::isSimpleConstant64(lcon) &&
  3070           st->Opcode() == Op_StoreI) {
  3071         // This StoreI is already optimal by itself.
  3072         jint* intcon = (jint*) &tiles[j];
  3073         intcon[1] = 0;  // undo the store_constant()
  3075         // If the previous store is also optimal by itself, back up and
  3076         // undo the action of the previous loop iteration... if we can.
  3077         // But if we can't, just let the previous half take care of itself.
  3078         st = nodes[j];
  3079         st_off -= BytesPerInt;
  3080         con = intcon[0];
  3081         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3082           assert(st_off >= header_size, "still ignoring header");
  3083           assert(get_store_offset(st, phase) == st_off, "must be");
  3084           assert(in(i-1) == zmem, "must be");
  3085           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3086           assert(con == tcon->is_int()->get_con(), "must be");
  3087           // Undo the effects of the previous loop trip, which swallowed st:
  3088           intcon[0] = 0;        // undo store_constant()
  3089           set_req(i-1, st);     // undo set_req(i, zmem)
  3090           nodes[j] = NULL;      // undo nodes[j] = st
  3091           --old_subword;        // undo ++old_subword
  3093         continue;               // This StoreI is already optimal.
  3097     // This store is not needed.
  3098     set_req(i, zmem);
  3099     nodes[j] = st;              // record for the moment
  3100     if (st_size < BytesPerLong) // something has changed
  3101           ++old_subword;        // includes int/float, but who's counting...
  3102     else  ++old_long;
  3105   if ((old_subword + old_long) == 0)
  3106     return;                     // nothing more to do
  3108   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3109   // Be sure to insert them before overlapping non-constant stores.
  3110   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3111   for (int j = 0; j < num_tiles; j++) {
  3112     jlong con  = tiles[j];
  3113     jlong init = inits[j];
  3114     if (con == 0)  continue;
  3115     jint con0,  con1;           // split the constant, address-wise
  3116     jint init0, init1;          // split the init map, address-wise
  3117     { union { jlong con; jint intcon[2]; } u;
  3118       u.con = con;
  3119       con0  = u.intcon[0];
  3120       con1  = u.intcon[1];
  3121       u.con = init;
  3122       init0 = u.intcon[0];
  3123       init1 = u.intcon[1];
  3126     Node* old = nodes[j];
  3127     assert(old != NULL, "need the prior store");
  3128     intptr_t offset = (j * BytesPerLong);
  3130     bool split = !Matcher::isSimpleConstant64(con);
  3132     if (offset < header_size) {
  3133       assert(offset + BytesPerInt >= header_size, "second int counts");
  3134       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3135       split = true;             // only the second word counts
  3136       // Example:  int a[] = { 42 ... }
  3137     } else if (con0 == 0 && init0 == -1) {
  3138       split = true;             // first word is covered by full inits
  3139       // Example:  int a[] = { ... foo(), 42 ... }
  3140     } else if (con1 == 0 && init1 == -1) {
  3141       split = true;             // second word is covered by full inits
  3142       // Example:  int a[] = { ... 42, foo() ... }
  3145     // Here's a case where init0 is neither 0 nor -1:
  3146     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3147     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3148     // In this case the tile is not split; it is (jlong)42.
  3149     // The big tile is stored down, and then the foo() value is inserted.
  3150     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3152     Node* ctl = old->in(MemNode::Control);
  3153     Node* adr = make_raw_address(offset, phase);
  3154     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3156     // One or two coalesced stores to plop down.
  3157     Node*    st[2];
  3158     intptr_t off[2];
  3159     int  nst = 0;
  3160     if (!split) {
  3161       ++new_long;
  3162       off[nst] = offset;
  3163       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3164                                   phase->longcon(con), T_LONG);
  3165     } else {
  3166       // Omit either if it is a zero.
  3167       if (con0 != 0) {
  3168         ++new_int;
  3169         off[nst]  = offset;
  3170         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3171                                     phase->intcon(con0), T_INT);
  3173       if (con1 != 0) {
  3174         ++new_int;
  3175         offset += BytesPerInt;
  3176         adr = make_raw_address(offset, phase);
  3177         off[nst]  = offset;
  3178         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3179                                     phase->intcon(con1), T_INT);
  3183     // Insert second store first, then the first before the second.
  3184     // Insert each one just before any overlapping non-constant stores.
  3185     while (nst > 0) {
  3186       Node* st1 = st[--nst];
  3187       C->copy_node_notes_to(st1, old);
  3188       st1 = phase->transform(st1);
  3189       offset = off[nst];
  3190       assert(offset >= header_size, "do not smash header");
  3191       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3192       guarantee(ins_idx != 0, "must re-insert constant store");
  3193       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3194       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3195         set_req(--ins_idx, st1);
  3196       else
  3197         ins_req(ins_idx, st1);
  3201   if (PrintCompilation && WizardMode)
  3202     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3203                   old_subword, old_long, new_int, new_long);
  3204   if (C->log() != NULL)
  3205     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3206                    old_subword, old_long, new_int, new_long);
  3208   // Clean up any remaining occurrences of zmem:
  3209   remove_extra_zeroes();
  3212 // Explore forward from in(start) to find the first fully initialized
  3213 // word, and return its offset.  Skip groups of subword stores which
  3214 // together initialize full words.  If in(start) is itself part of a
  3215 // fully initialized word, return the offset of in(start).  If there
  3216 // are no following full-word stores, or if something is fishy, return
  3217 // a negative value.
  3218 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3219   int       int_map = 0;
  3220   intptr_t  int_map_off = 0;
  3221   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3223   for (uint i = start, limit = req(); i < limit; i++) {
  3224     Node* st = in(i);
  3226     intptr_t st_off = get_store_offset(st, phase);
  3227     if (st_off < 0)  break;  // return conservative answer
  3229     int st_size = st->as_Store()->memory_size();
  3230     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3231       return st_off;            // we found a complete word init
  3234     // update the map:
  3236     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3237     if (this_int_off != int_map_off) {
  3238       // reset the map:
  3239       int_map = 0;
  3240       int_map_off = this_int_off;
  3243     int subword_off = st_off - this_int_off;
  3244     int_map |= right_n_bits(st_size) << subword_off;
  3245     if ((int_map & FULL_MAP) == FULL_MAP) {
  3246       return this_int_off;      // we found a complete word init
  3249     // Did this store hit or cross the word boundary?
  3250     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3251     if (next_int_off == this_int_off + BytesPerInt) {
  3252       // We passed the current int, without fully initializing it.
  3253       int_map_off = next_int_off;
  3254       int_map >>= BytesPerInt;
  3255     } else if (next_int_off > this_int_off + BytesPerInt) {
  3256       // We passed the current and next int.
  3257       return this_int_off + BytesPerInt;
  3261   return -1;
  3265 // Called when the associated AllocateNode is expanded into CFG.
  3266 // At this point, we may perform additional optimizations.
  3267 // Linearize the stores by ascending offset, to make memory
  3268 // activity as coherent as possible.
  3269 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3270                                       intptr_t header_size,
  3271                                       Node* size_in_bytes,
  3272                                       PhaseGVN* phase) {
  3273   assert(!is_complete(), "not already complete");
  3274   assert(stores_are_sane(phase), "");
  3275   assert(allocation() != NULL, "must be present");
  3277   remove_extra_zeroes();
  3279   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3280     // reduce instruction count for common initialization patterns
  3281     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3283   Node* zmem = zero_memory();   // initially zero memory state
  3284   Node* inits = zmem;           // accumulating a linearized chain of inits
  3285   #ifdef ASSERT
  3286   intptr_t first_offset = allocation()->minimum_header_size();
  3287   intptr_t last_init_off = first_offset;  // previous init offset
  3288   intptr_t last_init_end = first_offset;  // previous init offset+size
  3289   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3290   #endif
  3291   intptr_t zeroes_done = header_size;
  3293   bool do_zeroing = true;       // we might give up if inits are very sparse
  3294   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3296   if (ZeroTLAB)  do_zeroing = false;
  3297   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3299   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3300     Node* st = in(i);
  3301     intptr_t st_off = get_store_offset(st, phase);
  3302     if (st_off < 0)
  3303       break;                    // unknown junk in the inits
  3304     if (st->in(MemNode::Memory) != zmem)
  3305       break;                    // complicated store chains somehow in list
  3307     int st_size = st->as_Store()->memory_size();
  3308     intptr_t next_init_off = st_off + st_size;
  3310     if (do_zeroing && zeroes_done < next_init_off) {
  3311       // See if this store needs a zero before it or under it.
  3312       intptr_t zeroes_needed = st_off;
  3314       if (st_size < BytesPerInt) {
  3315         // Look for subword stores which only partially initialize words.
  3316         // If we find some, we must lay down some word-level zeroes first,
  3317         // underneath the subword stores.
  3318         //
  3319         // Examples:
  3320         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3321         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3322         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3323         //
  3324         // Note:  coalesce_subword_stores may have already done this,
  3325         // if it was prompted by constant non-zero subword initializers.
  3326         // But this case can still arise with non-constant stores.
  3328         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3330         // In the examples above:
  3331         //   in(i)          p   q   r   s     x   y     z
  3332         //   st_off        12  13  14  15    12  13    14
  3333         //   st_size        1   1   1   1     1   1     1
  3334         //   next_full_s.  12  16  16  16    16  16    16
  3335         //   z's_done      12  16  16  16    12  16    12
  3336         //   z's_needed    12  16  16  16    16  16    16
  3337         //   zsize          0   0   0   0     4   0     4
  3338         if (next_full_store < 0) {
  3339           // Conservative tack:  Zero to end of current word.
  3340           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3341         } else {
  3342           // Zero to beginning of next fully initialized word.
  3343           // Or, don't zero at all, if we are already in that word.
  3344           assert(next_full_store >= zeroes_needed, "must go forward");
  3345           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3346           zeroes_needed = next_full_store;
  3350       if (zeroes_needed > zeroes_done) {
  3351         intptr_t zsize = zeroes_needed - zeroes_done;
  3352         // Do some incremental zeroing on rawmem, in parallel with inits.
  3353         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3354         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3355                                               zeroes_done, zeroes_needed,
  3356                                               phase);
  3357         zeroes_done = zeroes_needed;
  3358         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3359           do_zeroing = false;   // leave the hole, next time
  3363     // Collect the store and move on:
  3364     st->set_req(MemNode::Memory, inits);
  3365     inits = st;                 // put it on the linearized chain
  3366     set_req(i, zmem);           // unhook from previous position
  3368     if (zeroes_done == st_off)
  3369       zeroes_done = next_init_off;
  3371     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3373     #ifdef ASSERT
  3374     // Various order invariants.  Weaker than stores_are_sane because
  3375     // a large constant tile can be filled in by smaller non-constant stores.
  3376     assert(st_off >= last_init_off, "inits do not reverse");
  3377     last_init_off = st_off;
  3378     const Type* val = NULL;
  3379     if (st_size >= BytesPerInt &&
  3380         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3381         (int)val->basic_type() < (int)T_OBJECT) {
  3382       assert(st_off >= last_tile_end, "tiles do not overlap");
  3383       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3384       last_tile_end = MAX2(last_tile_end, next_init_off);
  3385     } else {
  3386       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3387       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3388       assert(st_off      >= last_init_end, "inits do not overlap");
  3389       last_init_end = next_init_off;  // it's a non-tile
  3391     #endif //ASSERT
  3394   remove_extra_zeroes();        // clear out all the zmems left over
  3395   add_req(inits);
  3397   if (!ZeroTLAB) {
  3398     // If anything remains to be zeroed, zero it all now.
  3399     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3400     // if it is the last unused 4 bytes of an instance, forget about it
  3401     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3402     if (zeroes_done + BytesPerLong >= size_limit) {
  3403       assert(allocation() != NULL, "");
  3404       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3405       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3406       if (zeroes_done == k->layout_helper())
  3407         zeroes_done = size_limit;
  3409     if (zeroes_done < size_limit) {
  3410       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3411                                             zeroes_done, size_in_bytes, phase);
  3415   set_complete(phase);
  3416   return rawmem;
  3420 #ifdef ASSERT
  3421 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3422   if (is_complete())
  3423     return true;                // stores could be anything at this point
  3424   assert(allocation() != NULL, "must be present");
  3425   intptr_t last_off = allocation()->minimum_header_size();
  3426   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3427     Node* st = in(i);
  3428     intptr_t st_off = get_store_offset(st, phase);
  3429     if (st_off < 0)  continue;  // ignore dead garbage
  3430     if (last_off > st_off) {
  3431       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3432       this->dump(2);
  3433       assert(false, "ascending store offsets");
  3434       return false;
  3436     last_off = st_off + st->as_Store()->memory_size();
  3438   return true;
  3440 #endif //ASSERT
  3445 //============================MergeMemNode=====================================
  3446 //
  3447 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3448 // contributing store or call operations.  Each contributor provides the memory
  3449 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3450 // if a MergeMem has an input X for alias category #6, then any memory reference
  3451 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3452 // to using the MergeMem as a whole.
  3453 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3454 //
  3455 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3456 //
  3457 // In one special case (and more cases in the future), alias categories overlap.
  3458 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3459 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3460 // it is exactly equivalent to that state W:
  3461 //   MergeMem(<Bot>: W) <==> W
  3462 //
  3463 // Usually, the merge has more than one input.  In that case, where inputs
  3464 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3465 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3466 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3467 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3468 //
  3469 // A merge can take a "wide" memory state as one of its narrow inputs.
  3470 // This simply means that the merge observes out only the relevant parts of
  3471 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3472 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3473 //
  3474 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3475 // and that memory slices "leak through":
  3476 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3477 //
  3478 // But, in such a cascade, repeated memory slices can "block the leak":
  3479 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3480 //
  3481 // In the last example, Y is not part of the combined memory state of the
  3482 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3483 // memory states from arising, so you can be sure that the state Y is somehow
  3484 // a precursor to state Y'.
  3485 //
  3486 //
  3487 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3488 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3489 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3490 // Compile::alias_type (and kin) produce and manage these indexes.
  3491 //
  3492 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3493 // (Note that this provides quick access to the top node inside MergeMem methods,
  3494 // without the need to reach out via TLS to Compile::current.)
  3495 //
  3496 // As a consequence of what was just described, a MergeMem that represents a full
  3497 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3498 // containing all alias categories.
  3499 //
  3500 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3501 //
  3502 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3503 // a memory state for the alias type <N>, or else the top node, meaning that
  3504 // there is no particular input for that alias type.  Note that the length of
  3505 // a MergeMem is variable, and may be extended at any time to accommodate new
  3506 // memory states at larger alias indexes.  When merges grow, they are of course
  3507 // filled with "top" in the unused in() positions.
  3508 //
  3509 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3510 // (Top was chosen because it works smoothly with passes like GCM.)
  3511 //
  3512 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3513 // the type of random VM bits like TLS references.)  Since it is always the
  3514 // first non-Bot memory slice, some low-level loops use it to initialize an
  3515 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3516 //
  3517 //
  3518 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3519 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3520 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3521 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3522 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3523 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3524 //
  3525 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3526 // really that different from the other memory inputs.  An abbreviation called
  3527 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3528 //
  3529 //
  3530 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3531 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3532 // that "emerges though" the base memory will be marked as excluding the alias types
  3533 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3534 //
  3535 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3536 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3537 //
  3538 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3539 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3540 // actually a disjoint union of memory states, rather than an overlay.
  3541 //
  3543 //------------------------------MergeMemNode-----------------------------------
  3544 Node* MergeMemNode::make_empty_memory() {
  3545   Node* empty_memory = (Node*) Compile::current()->top();
  3546   assert(empty_memory->is_top(), "correct sentinel identity");
  3547   return empty_memory;
  3550 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3551   init_class_id(Class_MergeMem);
  3552   // all inputs are nullified in Node::Node(int)
  3553   // set_input(0, NULL);  // no control input
  3555   // Initialize the edges uniformly to top, for starters.
  3556   Node* empty_mem = make_empty_memory();
  3557   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  3558     init_req(i,empty_mem);
  3560   assert(empty_memory() == empty_mem, "");
  3562   if( new_base != NULL && new_base->is_MergeMem() ) {
  3563     MergeMemNode* mdef = new_base->as_MergeMem();
  3564     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  3565     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  3566       mms.set_memory(mms.memory2());
  3568     assert(base_memory() == mdef->base_memory(), "");
  3569   } else {
  3570     set_base_memory(new_base);
  3574 // Make a new, untransformed MergeMem with the same base as 'mem'.
  3575 // If mem is itself a MergeMem, populate the result with the same edges.
  3576 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  3577   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
  3580 //------------------------------cmp--------------------------------------------
  3581 uint MergeMemNode::hash() const { return NO_HASH; }
  3582 uint MergeMemNode::cmp( const Node &n ) const {
  3583   return (&n == this);          // Always fail except on self
  3586 //------------------------------Identity---------------------------------------
  3587 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  3588   // Identity if this merge point does not record any interesting memory
  3589   // disambiguations.
  3590   Node* base_mem = base_memory();
  3591   Node* empty_mem = empty_memory();
  3592   if (base_mem != empty_mem) {  // Memory path is not dead?
  3593     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3594       Node* mem = in(i);
  3595       if (mem != empty_mem && mem != base_mem) {
  3596         return this;            // Many memory splits; no change
  3600   return base_mem;              // No memory splits; ID on the one true input
  3603 //------------------------------Ideal------------------------------------------
  3604 // This method is invoked recursively on chains of MergeMem nodes
  3605 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  3606   // Remove chain'd MergeMems
  3607   //
  3608   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  3609   // relative to the "in(Bot)".  Since we are patching both at the same time,
  3610   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  3611   // but rewrite each "in(i)" relative to the new "in(Bot)".
  3612   Node *progress = NULL;
  3615   Node* old_base = base_memory();
  3616   Node* empty_mem = empty_memory();
  3617   if (old_base == empty_mem)
  3618     return NULL; // Dead memory path.
  3620   MergeMemNode* old_mbase;
  3621   if (old_base != NULL && old_base->is_MergeMem())
  3622     old_mbase = old_base->as_MergeMem();
  3623   else
  3624     old_mbase = NULL;
  3625   Node* new_base = old_base;
  3627   // simplify stacked MergeMems in base memory
  3628   if (old_mbase)  new_base = old_mbase->base_memory();
  3630   // the base memory might contribute new slices beyond my req()
  3631   if (old_mbase)  grow_to_match(old_mbase);
  3633   // Look carefully at the base node if it is a phi.
  3634   PhiNode* phi_base;
  3635   if (new_base != NULL && new_base->is_Phi())
  3636     phi_base = new_base->as_Phi();
  3637   else
  3638     phi_base = NULL;
  3640   Node*    phi_reg = NULL;
  3641   uint     phi_len = (uint)-1;
  3642   if (phi_base != NULL && !phi_base->is_copy()) {
  3643     // do not examine phi if degraded to a copy
  3644     phi_reg = phi_base->region();
  3645     phi_len = phi_base->req();
  3646     // see if the phi is unfinished
  3647     for (uint i = 1; i < phi_len; i++) {
  3648       if (phi_base->in(i) == NULL) {
  3649         // incomplete phi; do not look at it yet!
  3650         phi_reg = NULL;
  3651         phi_len = (uint)-1;
  3652         break;
  3657   // Note:  We do not call verify_sparse on entry, because inputs
  3658   // can normalize to the base_memory via subsume_node or similar
  3659   // mechanisms.  This method repairs that damage.
  3661   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  3663   // Look at each slice.
  3664   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3665     Node* old_in = in(i);
  3666     // calculate the old memory value
  3667     Node* old_mem = old_in;
  3668     if (old_mem == empty_mem)  old_mem = old_base;
  3669     assert(old_mem == memory_at(i), "");
  3671     // maybe update (reslice) the old memory value
  3673     // simplify stacked MergeMems
  3674     Node* new_mem = old_mem;
  3675     MergeMemNode* old_mmem;
  3676     if (old_mem != NULL && old_mem->is_MergeMem())
  3677       old_mmem = old_mem->as_MergeMem();
  3678     else
  3679       old_mmem = NULL;
  3680     if (old_mmem == this) {
  3681       // This can happen if loops break up and safepoints disappear.
  3682       // A merge of BotPtr (default) with a RawPtr memory derived from a
  3683       // safepoint can be rewritten to a merge of the same BotPtr with
  3684       // the BotPtr phi coming into the loop.  If that phi disappears
  3685       // also, we can end up with a self-loop of the mergemem.
  3686       // In general, if loops degenerate and memory effects disappear,
  3687       // a mergemem can be left looking at itself.  This simply means
  3688       // that the mergemem's default should be used, since there is
  3689       // no longer any apparent effect on this slice.
  3690       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  3691       //       from start.  Update the input to TOP.
  3692       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  3694     else if (old_mmem != NULL) {
  3695       new_mem = old_mmem->memory_at(i);
  3697     // else preceding memory was not a MergeMem
  3699     // replace equivalent phis (unfortunately, they do not GVN together)
  3700     if (new_mem != NULL && new_mem != new_base &&
  3701         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  3702       if (new_mem->is_Phi()) {
  3703         PhiNode* phi_mem = new_mem->as_Phi();
  3704         for (uint i = 1; i < phi_len; i++) {
  3705           if (phi_base->in(i) != phi_mem->in(i)) {
  3706             phi_mem = NULL;
  3707             break;
  3710         if (phi_mem != NULL) {
  3711           // equivalent phi nodes; revert to the def
  3712           new_mem = new_base;
  3717     // maybe store down a new value
  3718     Node* new_in = new_mem;
  3719     if (new_in == new_base)  new_in = empty_mem;
  3721     if (new_in != old_in) {
  3722       // Warning:  Do not combine this "if" with the previous "if"
  3723       // A memory slice might have be be rewritten even if it is semantically
  3724       // unchanged, if the base_memory value has changed.
  3725       set_req(i, new_in);
  3726       progress = this;          // Report progress
  3730   if (new_base != old_base) {
  3731     set_req(Compile::AliasIdxBot, new_base);
  3732     // Don't use set_base_memory(new_base), because we need to update du.
  3733     assert(base_memory() == new_base, "");
  3734     progress = this;
  3737   if( base_memory() == this ) {
  3738     // a self cycle indicates this memory path is dead
  3739     set_req(Compile::AliasIdxBot, empty_mem);
  3742   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  3743   // Recursion must occur after the self cycle check above
  3744   if( base_memory()->is_MergeMem() ) {
  3745     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  3746     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  3747     if( m != NULL && (m->is_top() ||
  3748         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  3749       // propagate rollup of dead cycle to self
  3750       set_req(Compile::AliasIdxBot, empty_mem);
  3754   if( base_memory() == empty_mem ) {
  3755     progress = this;
  3756     // Cut inputs during Parse phase only.
  3757     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  3758     if( !can_reshape ) {
  3759       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3760         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  3765   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  3766     // Check if PhiNode::Ideal's "Split phis through memory merges"
  3767     // transform should be attempted. Look for this->phi->this cycle.
  3768     uint merge_width = req();
  3769     if (merge_width > Compile::AliasIdxRaw) {
  3770       PhiNode* phi = base_memory()->as_Phi();
  3771       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  3772         if (phi->in(i) == this) {
  3773           phase->is_IterGVN()->_worklist.push(phi);
  3774           break;
  3780   assert(progress || verify_sparse(), "please, no dups of base");
  3781   return progress;
  3784 //-------------------------set_base_memory-------------------------------------
  3785 void MergeMemNode::set_base_memory(Node *new_base) {
  3786   Node* empty_mem = empty_memory();
  3787   set_req(Compile::AliasIdxBot, new_base);
  3788   assert(memory_at(req()) == new_base, "must set default memory");
  3789   // Clear out other occurrences of new_base:
  3790   if (new_base != empty_mem) {
  3791     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3792       if (in(i) == new_base)  set_req(i, empty_mem);
  3797 //------------------------------out_RegMask------------------------------------
  3798 const RegMask &MergeMemNode::out_RegMask() const {
  3799   return RegMask::Empty;
  3802 //------------------------------dump_spec--------------------------------------
  3803 #ifndef PRODUCT
  3804 void MergeMemNode::dump_spec(outputStream *st) const {
  3805   st->print(" {");
  3806   Node* base_mem = base_memory();
  3807   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  3808     Node* mem = memory_at(i);
  3809     if (mem == base_mem) { st->print(" -"); continue; }
  3810     st->print( " N%d:", mem->_idx );
  3811     Compile::current()->get_adr_type(i)->dump_on(st);
  3813   st->print(" }");
  3815 #endif // !PRODUCT
  3818 #ifdef ASSERT
  3819 static bool might_be_same(Node* a, Node* b) {
  3820   if (a == b)  return true;
  3821   if (!(a->is_Phi() || b->is_Phi()))  return false;
  3822   // phis shift around during optimization
  3823   return true;  // pretty stupid...
  3826 // verify a narrow slice (either incoming or outgoing)
  3827 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  3828   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  3829   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  3830   if (Node::in_dump())      return;  // muzzle asserts when printing
  3831   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  3832   assert(n != NULL, "");
  3833   // Elide intervening MergeMem's
  3834   while (n->is_MergeMem()) {
  3835     n = n->as_MergeMem()->memory_at(alias_idx);
  3837   Compile* C = Compile::current();
  3838   const TypePtr* n_adr_type = n->adr_type();
  3839   if (n == m->empty_memory()) {
  3840     // Implicit copy of base_memory()
  3841   } else if (n_adr_type != TypePtr::BOTTOM) {
  3842     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  3843     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  3844   } else {
  3845     // A few places like make_runtime_call "know" that VM calls are narrow,
  3846     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  3847     bool expected_wide_mem = false;
  3848     if (n == m->base_memory()) {
  3849       expected_wide_mem = true;
  3850     } else if (alias_idx == Compile::AliasIdxRaw ||
  3851                n == m->memory_at(Compile::AliasIdxRaw)) {
  3852       expected_wide_mem = true;
  3853     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  3854       // memory can "leak through" calls on channels that
  3855       // are write-once.  Allow this also.
  3856       expected_wide_mem = true;
  3858     assert(expected_wide_mem, "expected narrow slice replacement");
  3861 #else // !ASSERT
  3862 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  3863 #endif
  3866 //-----------------------------memory_at---------------------------------------
  3867 Node* MergeMemNode::memory_at(uint alias_idx) const {
  3868   assert(alias_idx >= Compile::AliasIdxRaw ||
  3869          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  3870          "must avoid base_memory and AliasIdxTop");
  3872   // Otherwise, it is a narrow slice.
  3873   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  3874   Compile *C = Compile::current();
  3875   if (is_empty_memory(n)) {
  3876     // the array is sparse; empty slots are the "top" node
  3877     n = base_memory();
  3878     assert(Node::in_dump()
  3879            || n == NULL || n->bottom_type() == Type::TOP
  3880            || n->adr_type() == TypePtr::BOTTOM
  3881            || n->adr_type() == TypeRawPtr::BOTTOM
  3882            || Compile::current()->AliasLevel() == 0,
  3883            "must be a wide memory");
  3884     // AliasLevel == 0 if we are organizing the memory states manually.
  3885     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  3886   } else {
  3887     // make sure the stored slice is sane
  3888     #ifdef ASSERT
  3889     if (is_error_reported() || Node::in_dump()) {
  3890     } else if (might_be_same(n, base_memory())) {
  3891       // Give it a pass:  It is a mostly harmless repetition of the base.
  3892       // This can arise normally from node subsumption during optimization.
  3893     } else {
  3894       verify_memory_slice(this, alias_idx, n);
  3896     #endif
  3898   return n;
  3901 //---------------------------set_memory_at-------------------------------------
  3902 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  3903   verify_memory_slice(this, alias_idx, n);
  3904   Node* empty_mem = empty_memory();
  3905   if (n == base_memory())  n = empty_mem;  // collapse default
  3906   uint need_req = alias_idx+1;
  3907   if (req() < need_req) {
  3908     if (n == empty_mem)  return;  // already the default, so do not grow me
  3909     // grow the sparse array
  3910     do {
  3911       add_req(empty_mem);
  3912     } while (req() < need_req);
  3914   set_req( alias_idx, n );
  3919 //--------------------------iteration_setup------------------------------------
  3920 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  3921   if (other != NULL) {
  3922     grow_to_match(other);
  3923     // invariant:  the finite support of mm2 is within mm->req()
  3924     #ifdef ASSERT
  3925     for (uint i = req(); i < other->req(); i++) {
  3926       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  3928     #endif
  3930   // Replace spurious copies of base_memory by top.
  3931   Node* base_mem = base_memory();
  3932   if (base_mem != NULL && !base_mem->is_top()) {
  3933     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  3934       if (in(i) == base_mem)
  3935         set_req(i, empty_memory());
  3940 //---------------------------grow_to_match-------------------------------------
  3941 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  3942   Node* empty_mem = empty_memory();
  3943   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  3944   // look for the finite support of the other memory
  3945   for (uint i = other->req(); --i >= req(); ) {
  3946     if (other->in(i) != empty_mem) {
  3947       uint new_len = i+1;
  3948       while (req() < new_len)  add_req(empty_mem);
  3949       break;
  3954 //---------------------------verify_sparse-------------------------------------
  3955 #ifndef PRODUCT
  3956 bool MergeMemNode::verify_sparse() const {
  3957   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  3958   Node* base_mem = base_memory();
  3959   // The following can happen in degenerate cases, since empty==top.
  3960   if (is_empty_memory(base_mem))  return true;
  3961   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  3962     assert(in(i) != NULL, "sane slice");
  3963     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  3965   return true;
  3968 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  3969   Node* n;
  3970   n = mm->in(idx);
  3971   if (mem == n)  return true;  // might be empty_memory()
  3972   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  3973   if (mem == n)  return true;
  3974   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  3975     if (mem == n)  return true;
  3976     if (n == NULL)  break;
  3978   return false;
  3980 #endif // !PRODUCT

mercurial