src/cpu/x86/vm/x86_64.ad

Mon, 09 Mar 2009 03:17:11 -0700

author
twisti
date
Mon, 09 Mar 2009 03:17:11 -0700
changeset 1059
337400e7a5dd
parent 1057
56aae7be60d4
child 1063
7bb995fbd3c0
child 1077
660978a2a31a
permissions
-rw-r--r--

6797305: Add LoadUB and LoadUI opcode class
Summary: Add a LoadUB (unsigned byte) and LoadUI (unsigned int) opcode class so we have these load optimizations in the first place and do not need to handle them in the matcher.
Reviewed-by: never, kvn

     1 //
     2 // Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4 //
     5 // This code is free software; you can redistribute it and/or modify it
     6 // under the terms of the GNU General Public License version 2 only, as
     7 // published by the Free Software Foundation.
     8 //
     9 // This code is distributed in the hope that it will be useful, but WITHOUT
    10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12 // version 2 for more details (a copy is included in the LICENSE file that
    13 // accompanied this code).
    14 //
    15 // You should have received a copy of the GNU General Public License version
    16 // 2 along with this work; if not, write to the Free Software Foundation,
    17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18 //
    19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20 // CA 95054 USA or visit www.sun.com if you need additional information or
    21 // have any questions.
    22 //
    23 //
    25 // AMD64 Architecture Description File
    27 //----------REGISTER DEFINITION BLOCK------------------------------------------
    28 // This information is used by the matcher and the register allocator to
    29 // describe individual registers and classes of registers within the target
    30 // archtecture.
    32 register %{
    33 //----------Architecture Description Register Definitions----------------------
    34 // General Registers
    35 // "reg_def"  name ( register save type, C convention save type,
    36 //                   ideal register type, encoding );
    37 // Register Save Types:
    38 //
    39 // NS  = No-Save:       The register allocator assumes that these registers
    40 //                      can be used without saving upon entry to the method, &
    41 //                      that they do not need to be saved at call sites.
    42 //
    43 // SOC = Save-On-Call:  The register allocator assumes that these registers
    44 //                      can be used without saving upon entry to the method,
    45 //                      but that they must be saved at call sites.
    46 //
    47 // SOE = Save-On-Entry: The register allocator assumes that these registers
    48 //                      must be saved before using them upon entry to the
    49 //                      method, but they do not need to be saved at call
    50 //                      sites.
    51 //
    52 // AS  = Always-Save:   The register allocator assumes that these registers
    53 //                      must be saved before using them upon entry to the
    54 //                      method, & that they must be saved at call sites.
    55 //
    56 // Ideal Register Type is used to determine how to save & restore a
    57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
    59 //
    60 // The encoding number is the actual bit-pattern placed into the opcodes.
    62 // General Registers
    63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
    64 // used as byte registers)
    66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
    67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
    68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
    70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
    71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
    73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
    74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
    76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
    77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
    79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
    80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
    82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
    83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
    85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
    86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
    87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
    89 #ifdef _WIN64
    91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
    92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
    94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
    95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
    97 #else
    99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
   100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
   102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
   103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
   105 #endif
   107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
   108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
   110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
   111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
   113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
   114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
   116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
   117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
   119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
   120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
   122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
   123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
   125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
   126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
   128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
   129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
   132 // Floating Point Registers
   134 // XMM registers.  128-bit registers or 4 words each, labeled (a)-d.
   135 // Word a in each register holds a Float, words ab hold a Double.  We
   136 // currently do not use the SIMD capabilities, so registers cd are
   137 // unused at the moment.
   138 // XMM8-XMM15 must be encoded with REX.
   139 // Linux ABI:   No register preserved across function calls
   140 //              XMM0-XMM7 might hold parameters
   141 // Windows ABI: XMM6-XMM15 preserved across function calls
   142 //              XMM0-XMM3 might hold parameters
   144 reg_def XMM0   (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg());
   145 reg_def XMM0_H (SOC, SOC, Op_RegF,  0, xmm0->as_VMReg()->next());
   147 reg_def XMM1   (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg());
   148 reg_def XMM1_H (SOC, SOC, Op_RegF,  1, xmm1->as_VMReg()->next());
   150 reg_def XMM2   (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg());
   151 reg_def XMM2_H (SOC, SOC, Op_RegF,  2, xmm2->as_VMReg()->next());
   153 reg_def XMM3   (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg());
   154 reg_def XMM3_H (SOC, SOC, Op_RegF,  3, xmm3->as_VMReg()->next());
   156 reg_def XMM4   (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg());
   157 reg_def XMM4_H (SOC, SOC, Op_RegF,  4, xmm4->as_VMReg()->next());
   159 reg_def XMM5   (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg());
   160 reg_def XMM5_H (SOC, SOC, Op_RegF,  5, xmm5->as_VMReg()->next());
   162 #ifdef _WIN64
   164 reg_def XMM6   (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg());
   165 reg_def XMM6_H (SOC, SOE, Op_RegF,  6, xmm6->as_VMReg()->next());
   167 reg_def XMM7   (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg());
   168 reg_def XMM7_H (SOC, SOE, Op_RegF,  7, xmm7->as_VMReg()->next());
   170 reg_def XMM8   (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg());
   171 reg_def XMM8_H (SOC, SOE, Op_RegF,  8, xmm8->as_VMReg()->next());
   173 reg_def XMM9   (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg());
   174 reg_def XMM9_H (SOC, SOE, Op_RegF,  9, xmm9->as_VMReg()->next());
   176 reg_def XMM10  (SOC, SOE, Op_RegF, 10, xmm10->as_VMReg());
   177 reg_def XMM10_H(SOC, SOE, Op_RegF, 10, xmm10->as_VMReg()->next());
   179 reg_def XMM11  (SOC, SOE, Op_RegF, 11, xmm11->as_VMReg());
   180 reg_def XMM11_H(SOC, SOE, Op_RegF, 11, xmm11->as_VMReg()->next());
   182 reg_def XMM12  (SOC, SOE, Op_RegF, 12, xmm12->as_VMReg());
   183 reg_def XMM12_H(SOC, SOE, Op_RegF, 12, xmm12->as_VMReg()->next());
   185 reg_def XMM13  (SOC, SOE, Op_RegF, 13, xmm13->as_VMReg());
   186 reg_def XMM13_H(SOC, SOE, Op_RegF, 13, xmm13->as_VMReg()->next());
   188 reg_def XMM14  (SOC, SOE, Op_RegF, 14, xmm14->as_VMReg());
   189 reg_def XMM14_H(SOC, SOE, Op_RegF, 14, xmm14->as_VMReg()->next());
   191 reg_def XMM15  (SOC, SOE, Op_RegF, 15, xmm15->as_VMReg());
   192 reg_def XMM15_H(SOC, SOE, Op_RegF, 15, xmm15->as_VMReg()->next());
   194 #else
   196 reg_def XMM6   (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg());
   197 reg_def XMM6_H (SOC, SOC, Op_RegF,  6, xmm6->as_VMReg()->next());
   199 reg_def XMM7   (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg());
   200 reg_def XMM7_H (SOC, SOC, Op_RegF,  7, xmm7->as_VMReg()->next());
   202 reg_def XMM8   (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg());
   203 reg_def XMM8_H (SOC, SOC, Op_RegF,  8, xmm8->as_VMReg()->next());
   205 reg_def XMM9   (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg());
   206 reg_def XMM9_H (SOC, SOC, Op_RegF,  9, xmm9->as_VMReg()->next());
   208 reg_def XMM10  (SOC, SOC, Op_RegF, 10, xmm10->as_VMReg());
   209 reg_def XMM10_H(SOC, SOC, Op_RegF, 10, xmm10->as_VMReg()->next());
   211 reg_def XMM11  (SOC, SOC, Op_RegF, 11, xmm11->as_VMReg());
   212 reg_def XMM11_H(SOC, SOC, Op_RegF, 11, xmm11->as_VMReg()->next());
   214 reg_def XMM12  (SOC, SOC, Op_RegF, 12, xmm12->as_VMReg());
   215 reg_def XMM12_H(SOC, SOC, Op_RegF, 12, xmm12->as_VMReg()->next());
   217 reg_def XMM13  (SOC, SOC, Op_RegF, 13, xmm13->as_VMReg());
   218 reg_def XMM13_H(SOC, SOC, Op_RegF, 13, xmm13->as_VMReg()->next());
   220 reg_def XMM14  (SOC, SOC, Op_RegF, 14, xmm14->as_VMReg());
   221 reg_def XMM14_H(SOC, SOC, Op_RegF, 14, xmm14->as_VMReg()->next());
   223 reg_def XMM15  (SOC, SOC, Op_RegF, 15, xmm15->as_VMReg());
   224 reg_def XMM15_H(SOC, SOC, Op_RegF, 15, xmm15->as_VMReg()->next());
   226 #endif // _WIN64
   228 reg_def RFLAGS(SOC, SOC, 0, 16, VMRegImpl::Bad());
   230 // Specify priority of register selection within phases of register
   231 // allocation.  Highest priority is first.  A useful heuristic is to
   232 // give registers a low priority when they are required by machine
   233 // instructions, like EAX and EDX on I486, and choose no-save registers
   234 // before save-on-call, & save-on-call before save-on-entry.  Registers
   235 // which participate in fixed calling sequences should come last.
   236 // Registers which are used as pairs must fall on an even boundary.
   238 alloc_class chunk0(R10,         R10_H,
   239                    R11,         R11_H,
   240                    R8,          R8_H,
   241                    R9,          R9_H,
   242                    R12,         R12_H,
   243                    RCX,         RCX_H,
   244                    RBX,         RBX_H,
   245                    RDI,         RDI_H,
   246                    RDX,         RDX_H,
   247                    RSI,         RSI_H,
   248                    RAX,         RAX_H,
   249                    RBP,         RBP_H,
   250                    R13,         R13_H,
   251                    R14,         R14_H,
   252                    R15,         R15_H,
   253                    RSP,         RSP_H);
   255 // XXX probably use 8-15 first on Linux
   256 alloc_class chunk1(XMM0,  XMM0_H,
   257                    XMM1,  XMM1_H,
   258                    XMM2,  XMM2_H,
   259                    XMM3,  XMM3_H,
   260                    XMM4,  XMM4_H,
   261                    XMM5,  XMM5_H,
   262                    XMM6,  XMM6_H,
   263                    XMM7,  XMM7_H,
   264                    XMM8,  XMM8_H,
   265                    XMM9,  XMM9_H,
   266                    XMM10, XMM10_H,
   267                    XMM11, XMM11_H,
   268                    XMM12, XMM12_H,
   269                    XMM13, XMM13_H,
   270                    XMM14, XMM14_H,
   271                    XMM15, XMM15_H);
   273 alloc_class chunk2(RFLAGS);
   276 //----------Architecture Description Register Classes--------------------------
   277 // Several register classes are automatically defined based upon information in
   278 // this architecture description.
   279 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
   280 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
   281 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
   282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   283 //
   285 // Class for all pointer registers (including RSP)
   286 reg_class any_reg(RAX, RAX_H,
   287                   RDX, RDX_H,
   288                   RBP, RBP_H,
   289                   RDI, RDI_H,
   290                   RSI, RSI_H,
   291                   RCX, RCX_H,
   292                   RBX, RBX_H,
   293                   RSP, RSP_H,
   294                   R8,  R8_H,
   295                   R9,  R9_H,
   296                   R10, R10_H,
   297                   R11, R11_H,
   298                   R12, R12_H,
   299                   R13, R13_H,
   300                   R14, R14_H,
   301                   R15, R15_H);
   303 // Class for all pointer registers except RSP
   304 reg_class ptr_reg(RAX, RAX_H,
   305                   RDX, RDX_H,
   306                   RBP, RBP_H,
   307                   RDI, RDI_H,
   308                   RSI, RSI_H,
   309                   RCX, RCX_H,
   310                   RBX, RBX_H,
   311                   R8,  R8_H,
   312                   R9,  R9_H,
   313                   R10, R10_H,
   314                   R11, R11_H,
   315                   R13, R13_H,
   316                   R14, R14_H);
   318 // Class for all pointer registers except RAX and RSP
   319 reg_class ptr_no_rax_reg(RDX, RDX_H,
   320                          RBP, RBP_H,
   321                          RDI, RDI_H,
   322                          RSI, RSI_H,
   323                          RCX, RCX_H,
   324                          RBX, RBX_H,
   325                          R8,  R8_H,
   326                          R9,  R9_H,
   327                          R10, R10_H,
   328                          R11, R11_H,
   329                          R12, R12_H,
   330                          R13, R13_H,
   331                          R14, R14_H);
   333 reg_class ptr_no_rbp_reg(RDX, RDX_H,
   334                          RAX, RAX_H,
   335                          RDI, RDI_H,
   336                          RSI, RSI_H,
   337                          RCX, RCX_H,
   338                          RBX, RBX_H,
   339                          R8,  R8_H,
   340                          R9,  R9_H,
   341                          R10, R10_H,
   342                          R11, R11_H,
   343                          R12, R12_H,
   344                          R13, R13_H,
   345                          R14, R14_H);
   347 // Class for all pointer registers except RAX, RBX and RSP
   348 reg_class ptr_no_rax_rbx_reg(RDX, RDX_H,
   349                              RBP, RBP_H,
   350                              RDI, RDI_H,
   351                              RSI, RSI_H,
   352                              RCX, RCX_H,
   353                              R8,  R8_H,
   354                              R9,  R9_H,
   355                              R10, R10_H,
   356                              R11, R11_H,
   357                              R12, R12_H,
   358                              R13, R13_H,
   359                              R14, R14_H);
   361 // Singleton class for RAX pointer register
   362 reg_class ptr_rax_reg(RAX, RAX_H);
   364 // Singleton class for RBX pointer register
   365 reg_class ptr_rbx_reg(RBX, RBX_H);
   367 // Singleton class for RSI pointer register
   368 reg_class ptr_rsi_reg(RSI, RSI_H);
   370 // Singleton class for RDI pointer register
   371 reg_class ptr_rdi_reg(RDI, RDI_H);
   373 // Singleton class for RBP pointer register
   374 reg_class ptr_rbp_reg(RBP, RBP_H);
   376 // Singleton class for stack pointer
   377 reg_class ptr_rsp_reg(RSP, RSP_H);
   379 // Singleton class for TLS pointer
   380 reg_class ptr_r15_reg(R15, R15_H);
   382 // Class for all long registers (except RSP)
   383 reg_class long_reg(RAX, RAX_H,
   384                    RDX, RDX_H,
   385                    RBP, RBP_H,
   386                    RDI, RDI_H,
   387                    RSI, RSI_H,
   388                    RCX, RCX_H,
   389                    RBX, RBX_H,
   390                    R8,  R8_H,
   391                    R9,  R9_H,
   392                    R10, R10_H,
   393                    R11, R11_H,
   394                    R13, R13_H,
   395                    R14, R14_H);
   397 // Class for all long registers except RAX, RDX (and RSP)
   398 reg_class long_no_rax_rdx_reg(RBP, RBP_H,
   399                               RDI, RDI_H,
   400                               RSI, RSI_H,
   401                               RCX, RCX_H,
   402                               RBX, RBX_H,
   403                               R8,  R8_H,
   404                               R9,  R9_H,
   405                               R10, R10_H,
   406                               R11, R11_H,
   407                               R13, R13_H,
   408                               R14, R14_H);
   410 // Class for all long registers except RCX (and RSP)
   411 reg_class long_no_rcx_reg(RBP, RBP_H,
   412                           RDI, RDI_H,
   413                           RSI, RSI_H,
   414                           RAX, RAX_H,
   415                           RDX, RDX_H,
   416                           RBX, RBX_H,
   417                           R8,  R8_H,
   418                           R9,  R9_H,
   419                           R10, R10_H,
   420                           R11, R11_H,
   421                           R13, R13_H,
   422                           R14, R14_H);
   424 // Class for all long registers except RAX (and RSP)
   425 reg_class long_no_rax_reg(RBP, RBP_H,
   426                           RDX, RDX_H,
   427                           RDI, RDI_H,
   428                           RSI, RSI_H,
   429                           RCX, RCX_H,
   430                           RBX, RBX_H,
   431                           R8,  R8_H,
   432                           R9,  R9_H,
   433                           R10, R10_H,
   434                           R11, R11_H,
   435                           R13, R13_H,
   436                           R14, R14_H);
   438 // Singleton class for RAX long register
   439 reg_class long_rax_reg(RAX, RAX_H);
   441 // Singleton class for RCX long register
   442 reg_class long_rcx_reg(RCX, RCX_H);
   444 // Singleton class for RDX long register
   445 reg_class long_rdx_reg(RDX, RDX_H);
   447 // Singleton class for R12 long register
   448 reg_class long_r12_reg(R12, R12_H);
   450 // Class for all int registers (except RSP)
   451 reg_class int_reg(RAX,
   452                   RDX,
   453                   RBP,
   454                   RDI,
   455                   RSI,
   456                   RCX,
   457                   RBX,
   458                   R8,
   459                   R9,
   460                   R10,
   461                   R11,
   462                   R13,
   463                   R14);
   465 // Class for all int registers except RCX (and RSP)
   466 reg_class int_no_rcx_reg(RAX,
   467                          RDX,
   468                          RBP,
   469                          RDI,
   470                          RSI,
   471                          RBX,
   472                          R8,
   473                          R9,
   474                          R10,
   475                          R11,
   476                          R13,
   477                          R14);
   479 // Class for all int registers except RAX, RDX (and RSP)
   480 reg_class int_no_rax_rdx_reg(RBP,
   481                              RDI,
   482                              RSI,
   483                              RCX,
   484                              RBX,
   485                              R8,
   486                              R9,
   487                              R10,
   488                              R11,
   489                              R13,
   490                              R14);
   492 // Singleton class for RAX int register
   493 reg_class int_rax_reg(RAX);
   495 // Singleton class for RBX int register
   496 reg_class int_rbx_reg(RBX);
   498 // Singleton class for RCX int register
   499 reg_class int_rcx_reg(RCX);
   501 // Singleton class for RCX int register
   502 reg_class int_rdx_reg(RDX);
   504 // Singleton class for RCX int register
   505 reg_class int_rdi_reg(RDI);
   507 // Singleton class for instruction pointer
   508 // reg_class ip_reg(RIP);
   510 // Singleton class for condition codes
   511 reg_class int_flags(RFLAGS);
   513 // Class for all float registers
   514 reg_class float_reg(XMM0,
   515                     XMM1,
   516                     XMM2,
   517                     XMM3,
   518                     XMM4,
   519                     XMM5,
   520                     XMM6,
   521                     XMM7,
   522                     XMM8,
   523                     XMM9,
   524                     XMM10,
   525                     XMM11,
   526                     XMM12,
   527                     XMM13,
   528                     XMM14,
   529                     XMM15);
   531 // Class for all double registers
   532 reg_class double_reg(XMM0,  XMM0_H,
   533                      XMM1,  XMM1_H,
   534                      XMM2,  XMM2_H,
   535                      XMM3,  XMM3_H,
   536                      XMM4,  XMM4_H,
   537                      XMM5,  XMM5_H,
   538                      XMM6,  XMM6_H,
   539                      XMM7,  XMM7_H,
   540                      XMM8,  XMM8_H,
   541                      XMM9,  XMM9_H,
   542                      XMM10, XMM10_H,
   543                      XMM11, XMM11_H,
   544                      XMM12, XMM12_H,
   545                      XMM13, XMM13_H,
   546                      XMM14, XMM14_H,
   547                      XMM15, XMM15_H);
   548 %}
   551 //----------SOURCE BLOCK-------------------------------------------------------
   552 // This is a block of C++ code which provides values, functions, and
   553 // definitions necessary in the rest of the architecture description
   554 source %{
   555 #define   RELOC_IMM64    Assembler::imm_operand
   556 #define   RELOC_DISP32   Assembler::disp32_operand
   558 #define __ _masm.
   560 // !!!!! Special hack to get all types of calls to specify the byte offset
   561 //       from the start of the call to the point where the return address
   562 //       will point.
   563 int MachCallStaticJavaNode::ret_addr_offset()
   564 {
   565   return 5; // 5 bytes from start of call to where return address points
   566 }
   568 int MachCallDynamicJavaNode::ret_addr_offset()
   569 {
   570   return 15; // 15 bytes from start of call to where return address points
   571 }
   573 // In os_cpu .ad file
   574 // int MachCallRuntimeNode::ret_addr_offset()
   576 // Indicate if the safepoint node needs the polling page as an input.
   577 // Since amd64 does not have absolute addressing but RIP-relative
   578 // addressing and the polling page is within 2G, it doesn't.
   579 bool SafePointNode::needs_polling_address_input()
   580 {
   581   return false;
   582 }
   584 //
   585 // Compute padding required for nodes which need alignment
   586 //
   588 // The address of the call instruction needs to be 4-byte aligned to
   589 // ensure that it does not span a cache line so that it can be patched.
   590 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
   591 {
   592   current_offset += 1; // skip call opcode byte
   593   return round_to(current_offset, alignment_required()) - current_offset;
   594 }
   596 // The address of the call instruction needs to be 4-byte aligned to
   597 // ensure that it does not span a cache line so that it can be patched.
   598 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
   599 {
   600   current_offset += 11; // skip movq instruction + call opcode byte
   601   return round_to(current_offset, alignment_required()) - current_offset;
   602 }
   604 #ifndef PRODUCT
   605 void MachBreakpointNode::format(PhaseRegAlloc*, outputStream* st) const
   606 {
   607   st->print("INT3");
   608 }
   609 #endif
   611 // EMIT_RM()
   612 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3)
   613 {
   614   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
   615   *(cbuf.code_end()) = c;
   616   cbuf.set_code_end(cbuf.code_end() + 1);
   617 }
   619 // EMIT_CC()
   620 void emit_cc(CodeBuffer &cbuf, int f1, int f2)
   621 {
   622   unsigned char c = (unsigned char) (f1 | f2);
   623   *(cbuf.code_end()) = c;
   624   cbuf.set_code_end(cbuf.code_end() + 1);
   625 }
   627 // EMIT_OPCODE()
   628 void emit_opcode(CodeBuffer &cbuf, int code)
   629 {
   630   *(cbuf.code_end()) = (unsigned char) code;
   631   cbuf.set_code_end(cbuf.code_end() + 1);
   632 }
   634 // EMIT_OPCODE() w/ relocation information
   635 void emit_opcode(CodeBuffer &cbuf,
   636                  int code, relocInfo::relocType reloc, int offset, int format)
   637 {
   638   cbuf.relocate(cbuf.inst_mark() + offset, reloc, format);
   639   emit_opcode(cbuf, code);
   640 }
   642 // EMIT_D8()
   643 void emit_d8(CodeBuffer &cbuf, int d8)
   644 {
   645   *(cbuf.code_end()) = (unsigned char) d8;
   646   cbuf.set_code_end(cbuf.code_end() + 1);
   647 }
   649 // EMIT_D16()
   650 void emit_d16(CodeBuffer &cbuf, int d16)
   651 {
   652   *((short *)(cbuf.code_end())) = d16;
   653   cbuf.set_code_end(cbuf.code_end() + 2);
   654 }
   656 // EMIT_D32()
   657 void emit_d32(CodeBuffer &cbuf, int d32)
   658 {
   659   *((int *)(cbuf.code_end())) = d32;
   660   cbuf.set_code_end(cbuf.code_end() + 4);
   661 }
   663 // EMIT_D64()
   664 void emit_d64(CodeBuffer &cbuf, int64_t d64)
   665 {
   666   *((int64_t*) (cbuf.code_end())) = d64;
   667   cbuf.set_code_end(cbuf.code_end() + 8);
   668 }
   670 // emit 32 bit value and construct relocation entry from relocInfo::relocType
   671 void emit_d32_reloc(CodeBuffer& cbuf,
   672                     int d32,
   673                     relocInfo::relocType reloc,
   674                     int format)
   675 {
   676   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
   677   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   679   *((int*) (cbuf.code_end())) = d32;
   680   cbuf.set_code_end(cbuf.code_end() + 4);
   681 }
   683 // emit 32 bit value and construct relocation entry from RelocationHolder
   684 void emit_d32_reloc(CodeBuffer& cbuf,
   685                     int d32,
   686                     RelocationHolder const& rspec,
   687                     int format)
   688 {
   689 #ifdef ASSERT
   690   if (rspec.reloc()->type() == relocInfo::oop_type &&
   691       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
   692     assert(oop((intptr_t)d32)->is_oop() && oop((intptr_t)d32)->is_perm(), "cannot embed non-perm oops in code");
   693   }
   694 #endif
   695   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   697   *((int* )(cbuf.code_end())) = d32;
   698   cbuf.set_code_end(cbuf.code_end() + 4);
   699 }
   701 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
   702   address next_ip = cbuf.code_end() + 4;
   703   emit_d32_reloc(cbuf, (int) (addr - next_ip),
   704                  external_word_Relocation::spec(addr),
   705                  RELOC_DISP32);
   706 }
   709 // emit 64 bit value and construct relocation entry from relocInfo::relocType
   710 void emit_d64_reloc(CodeBuffer& cbuf,
   711                     int64_t d64,
   712                     relocInfo::relocType reloc,
   713                     int format)
   714 {
   715   cbuf.relocate(cbuf.inst_mark(), reloc, format);
   717   *((int64_t*) (cbuf.code_end())) = d64;
   718   cbuf.set_code_end(cbuf.code_end() + 8);
   719 }
   721 // emit 64 bit value and construct relocation entry from RelocationHolder
   722 void emit_d64_reloc(CodeBuffer& cbuf,
   723                     int64_t d64,
   724                     RelocationHolder const& rspec,
   725                     int format)
   726 {
   727 #ifdef ASSERT
   728   if (rspec.reloc()->type() == relocInfo::oop_type &&
   729       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
   730     assert(oop(d64)->is_oop() && oop(d64)->is_perm(),
   731            "cannot embed non-perm oops in code");
   732   }
   733 #endif
   734   cbuf.relocate(cbuf.inst_mark(), rspec, format);
   736   *((int64_t*) (cbuf.code_end())) = d64;
   737   cbuf.set_code_end(cbuf.code_end() + 8);
   738 }
   740 // Access stack slot for load or store
   741 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
   742 {
   743   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
   744   if (-0x80 <= disp && disp < 0x80) {
   745     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
   746     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   747     emit_d8(cbuf, disp);     // Displacement  // R/M byte
   748   } else {
   749     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
   750     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
   751     emit_d32(cbuf, disp);     // Displacement // R/M byte
   752   }
   753 }
   755    // rRegI ereg, memory mem) %{    // emit_reg_mem
   756 void encode_RegMem(CodeBuffer &cbuf,
   757                    int reg,
   758                    int base, int index, int scale, int disp, bool disp_is_oop)
   759 {
   760   assert(!disp_is_oop, "cannot have disp");
   761   int regenc = reg & 7;
   762   int baseenc = base & 7;
   763   int indexenc = index & 7;
   765   // There is no index & no scale, use form without SIB byte
   766   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
   767     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   768     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   769       emit_rm(cbuf, 0x0, regenc, baseenc); // *
   770     } else if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   771       // If 8-bit displacement, mode 0x1
   772       emit_rm(cbuf, 0x1, regenc, baseenc); // *
   773       emit_d8(cbuf, disp);
   774     } else {
   775       // If 32-bit displacement
   776       if (base == -1) { // Special flag for absolute address
   777         emit_rm(cbuf, 0x0, regenc, 0x5); // *
   778         if (disp_is_oop) {
   779           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   780         } else {
   781           emit_d32(cbuf, disp);
   782         }
   783       } else {
   784         // Normal base + offset
   785         emit_rm(cbuf, 0x2, regenc, baseenc); // *
   786         if (disp_is_oop) {
   787           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   788         } else {
   789           emit_d32(cbuf, disp);
   790         }
   791       }
   792     }
   793   } else {
   794     // Else, encode with the SIB byte
   795     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
   796     if (disp == 0 && base != RBP_enc && base != R13_enc) {
   797       // If no displacement
   798       emit_rm(cbuf, 0x0, regenc, 0x4); // *
   799       emit_rm(cbuf, scale, indexenc, baseenc);
   800     } else {
   801       if (-0x80 <= disp && disp < 0x80 && !disp_is_oop) {
   802         // If 8-bit displacement, mode 0x1
   803         emit_rm(cbuf, 0x1, regenc, 0x4); // *
   804         emit_rm(cbuf, scale, indexenc, baseenc);
   805         emit_d8(cbuf, disp);
   806       } else {
   807         // If 32-bit displacement
   808         if (base == 0x04 ) {
   809           emit_rm(cbuf, 0x2, regenc, 0x4);
   810           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
   811         } else {
   812           emit_rm(cbuf, 0x2, regenc, 0x4);
   813           emit_rm(cbuf, scale, indexenc, baseenc); // *
   814         }
   815         if (disp_is_oop) {
   816           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
   817         } else {
   818           emit_d32(cbuf, disp);
   819         }
   820       }
   821     }
   822   }
   823 }
   825 void encode_copy(CodeBuffer &cbuf, int dstenc, int srcenc)
   826 {
   827   if (dstenc != srcenc) {
   828     if (dstenc < 8) {
   829       if (srcenc >= 8) {
   830         emit_opcode(cbuf, Assembler::REX_B);
   831         srcenc -= 8;
   832       }
   833     } else {
   834       if (srcenc < 8) {
   835         emit_opcode(cbuf, Assembler::REX_R);
   836       } else {
   837         emit_opcode(cbuf, Assembler::REX_RB);
   838         srcenc -= 8;
   839       }
   840       dstenc -= 8;
   841     }
   843     emit_opcode(cbuf, 0x8B);
   844     emit_rm(cbuf, 0x3, dstenc, srcenc);
   845   }
   846 }
   848 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
   849   if( dst_encoding == src_encoding ) {
   850     // reg-reg copy, use an empty encoding
   851   } else {
   852     MacroAssembler _masm(&cbuf);
   854     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
   855   }
   856 }
   859 //=============================================================================
   860 #ifndef PRODUCT
   861 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   862 {
   863   Compile* C = ra_->C;
   865   int framesize = C->frame_slots() << LogBytesPerInt;
   866   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   867   // Remove wordSize for return adr already pushed
   868   // and another for the RBP we are going to save
   869   framesize -= 2*wordSize;
   870   bool need_nop = true;
   872   // Calls to C2R adapters often do not accept exceptional returns.
   873   // We require that their callers must bang for them.  But be
   874   // careful, because some VM calls (such as call site linkage) can
   875   // use several kilobytes of stack.  But the stack safety zone should
   876   // account for that.  See bugs 4446381, 4468289, 4497237.
   877   if (C->need_stack_bang(framesize)) {
   878     st->print_cr("# stack bang"); st->print("\t");
   879     need_nop = false;
   880   }
   881   st->print_cr("pushq   rbp"); st->print("\t");
   883   if (VerifyStackAtCalls) {
   884     // Majik cookie to verify stack depth
   885     st->print_cr("pushq   0xffffffffbadb100d"
   886                   "\t# Majik cookie for stack depth check");
   887     st->print("\t");
   888     framesize -= wordSize; // Remove 2 for cookie
   889     need_nop = false;
   890   }
   892   if (framesize) {
   893     st->print("subq    rsp, #%d\t# Create frame", framesize);
   894     if (framesize < 0x80 && need_nop) {
   895       st->print("\n\tnop\t# nop for patch_verified_entry");
   896     }
   897   }
   898 }
   899 #endif
   901 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
   902 {
   903   Compile* C = ra_->C;
   905   // WARNING: Initial instruction MUST be 5 bytes or longer so that
   906   // NativeJump::patch_verified_entry will be able to patch out the entry
   907   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
   908   // depth is ok at 5 bytes, the frame allocation can be either 3 or
   909   // 6 bytes. So if we don't do the fldcw or the push then we must
   910   // use the 6 byte frame allocation even if we have no frame. :-(
   911   // If method sets FPU control word do it now
   913   int framesize = C->frame_slots() << LogBytesPerInt;
   914   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   915   // Remove wordSize for return adr already pushed
   916   // and another for the RBP we are going to save
   917   framesize -= 2*wordSize;
   918   bool need_nop = true;
   920   // Calls to C2R adapters often do not accept exceptional returns.
   921   // We require that their callers must bang for them.  But be
   922   // careful, because some VM calls (such as call site linkage) can
   923   // use several kilobytes of stack.  But the stack safety zone should
   924   // account for that.  See bugs 4446381, 4468289, 4497237.
   925   if (C->need_stack_bang(framesize)) {
   926     MacroAssembler masm(&cbuf);
   927     masm.generate_stack_overflow_check(framesize);
   928     need_nop = false;
   929   }
   931   // We always push rbp so that on return to interpreter rbp will be
   932   // restored correctly and we can correct the stack.
   933   emit_opcode(cbuf, 0x50 | RBP_enc);
   935   if (VerifyStackAtCalls) {
   936     // Majik cookie to verify stack depth
   937     emit_opcode(cbuf, 0x68); // pushq (sign-extended) 0xbadb100d
   938     emit_d32(cbuf, 0xbadb100d);
   939     framesize -= wordSize; // Remove 2 for cookie
   940     need_nop = false;
   941   }
   943   if (framesize) {
   944     emit_opcode(cbuf, Assembler::REX_W);
   945     if (framesize < 0x80) {
   946       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
   947       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   948       emit_d8(cbuf, framesize);
   949       if (need_nop) {
   950         emit_opcode(cbuf, 0x90); // nop
   951       }
   952     } else {
   953       emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
   954       emit_rm(cbuf, 0x3, 0x05, RSP_enc);
   955       emit_d32(cbuf, framesize);
   956     }
   957   }
   959   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
   961 #ifdef ASSERT
   962   if (VerifyStackAtCalls) {
   963     Label L;
   964     MacroAssembler masm(&cbuf);
   965     masm.push(rax);
   966     masm.mov(rax, rsp);
   967     masm.andptr(rax, StackAlignmentInBytes-1);
   968     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
   969     masm.pop(rax);
   970     masm.jcc(Assembler::equal, L);
   971     masm.stop("Stack is not properly aligned!");
   972     masm.bind(L);
   973   }
   974 #endif
   975 }
   977 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
   978 {
   979   return MachNode::size(ra_); // too many variables; just compute it
   980                               // the hard way
   981 }
   983 int MachPrologNode::reloc() const
   984 {
   985   return 0; // a large enough number
   986 }
   988 //=============================================================================
   989 #ifndef PRODUCT
   990 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
   991 {
   992   Compile* C = ra_->C;
   993   int framesize = C->frame_slots() << LogBytesPerInt;
   994   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
   995   // Remove word for return adr already pushed
   996   // and RBP
   997   framesize -= 2*wordSize;
   999   if (framesize) {
  1000     st->print_cr("addq\trsp, %d\t# Destroy frame", framesize);
  1001     st->print("\t");
  1004   st->print_cr("popq\trbp");
  1005   if (do_polling() && C->is_method_compilation()) {
  1006     st->print_cr("\ttestl\trax, [rip + #offset_to_poll_page]\t"
  1007                   "# Safepoint: poll for GC");
  1008     st->print("\t");
  1011 #endif
  1013 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1015   Compile* C = ra_->C;
  1016   int framesize = C->frame_slots() << LogBytesPerInt;
  1017   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1018   // Remove word for return adr already pushed
  1019   // and RBP
  1020   framesize -= 2*wordSize;
  1022   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
  1024   if (framesize) {
  1025     emit_opcode(cbuf, Assembler::REX_W);
  1026     if (framesize < 0x80) {
  1027       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
  1028       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1029       emit_d8(cbuf, framesize);
  1030     } else {
  1031       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
  1032       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
  1033       emit_d32(cbuf, framesize);
  1037   // popq rbp
  1038   emit_opcode(cbuf, 0x58 | RBP_enc);
  1040   if (do_polling() && C->is_method_compilation()) {
  1041     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  1042     // XXX reg_mem doesn't support RIP-relative addressing yet
  1043     cbuf.set_inst_mark();
  1044     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_return_type, 0); // XXX
  1045     emit_opcode(cbuf, 0x85); // testl
  1046     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  1047     // cbuf.inst_mark() is beginning of instruction
  1048     emit_d32_reloc(cbuf, os::get_polling_page());
  1049 //                    relocInfo::poll_return_type,
  1053 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
  1055   Compile* C = ra_->C;
  1056   int framesize = C->frame_slots() << LogBytesPerInt;
  1057   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
  1058   // Remove word for return adr already pushed
  1059   // and RBP
  1060   framesize -= 2*wordSize;
  1062   uint size = 0;
  1064   if (do_polling() && C->is_method_compilation()) {
  1065     size += 6;
  1068   // count popq rbp
  1069   size++;
  1071   if (framesize) {
  1072     if (framesize < 0x80) {
  1073       size += 4;
  1074     } else if (framesize) {
  1075       size += 7;
  1079   return size;
  1082 int MachEpilogNode::reloc() const
  1084   return 2; // a large enough number
  1087 const Pipeline* MachEpilogNode::pipeline() const
  1089   return MachNode::pipeline_class();
  1092 int MachEpilogNode::safepoint_offset() const
  1094   return 0;
  1097 //=============================================================================
  1099 enum RC {
  1100   rc_bad,
  1101   rc_int,
  1102   rc_float,
  1103   rc_stack
  1104 };
  1106 static enum RC rc_class(OptoReg::Name reg)
  1108   if( !OptoReg::is_valid(reg)  ) return rc_bad;
  1110   if (OptoReg::is_stack(reg)) return rc_stack;
  1112   VMReg r = OptoReg::as_VMReg(reg);
  1114   if (r->is_Register()) return rc_int;
  1116   assert(r->is_XMMRegister(), "must be");
  1117   return rc_float;
  1120 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
  1121                                        PhaseRegAlloc* ra_,
  1122                                        bool do_size,
  1123                                        outputStream* st) const
  1126   // Get registers to move
  1127   OptoReg::Name src_second = ra_->get_reg_second(in(1));
  1128   OptoReg::Name src_first = ra_->get_reg_first(in(1));
  1129   OptoReg::Name dst_second = ra_->get_reg_second(this);
  1130   OptoReg::Name dst_first = ra_->get_reg_first(this);
  1132   enum RC src_second_rc = rc_class(src_second);
  1133   enum RC src_first_rc = rc_class(src_first);
  1134   enum RC dst_second_rc = rc_class(dst_second);
  1135   enum RC dst_first_rc = rc_class(dst_first);
  1137   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
  1138          "must move at least 1 register" );
  1140   if (src_first == dst_first && src_second == dst_second) {
  1141     // Self copy, no move
  1142     return 0;
  1143   } else if (src_first_rc == rc_stack) {
  1144     // mem ->
  1145     if (dst_first_rc == rc_stack) {
  1146       // mem -> mem
  1147       assert(src_second != dst_first, "overlap");
  1148       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1149           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1150         // 64-bit
  1151         int src_offset = ra_->reg2offset(src_first);
  1152         int dst_offset = ra_->reg2offset(dst_first);
  1153         if (cbuf) {
  1154           emit_opcode(*cbuf, 0xFF);
  1155           encode_RegMem(*cbuf, RSI_enc, RSP_enc, 0x4, 0, src_offset, false);
  1157           emit_opcode(*cbuf, 0x8F);
  1158           encode_RegMem(*cbuf, RAX_enc, RSP_enc, 0x4, 0, dst_offset, false);
  1160 #ifndef PRODUCT
  1161         } else if (!do_size) {
  1162           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
  1163                      "popq    [rsp + #%d]",
  1164                      src_offset,
  1165                      dst_offset);
  1166 #endif
  1168         return
  1169           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) +
  1170           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4));
  1171       } else {
  1172         // 32-bit
  1173         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1174         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1175         // No pushl/popl, so:
  1176         int src_offset = ra_->reg2offset(src_first);
  1177         int dst_offset = ra_->reg2offset(dst_first);
  1178         if (cbuf) {
  1179           emit_opcode(*cbuf, Assembler::REX_W);
  1180           emit_opcode(*cbuf, 0x89);
  1181           emit_opcode(*cbuf, 0x44);
  1182           emit_opcode(*cbuf, 0x24);
  1183           emit_opcode(*cbuf, 0xF8);
  1185           emit_opcode(*cbuf, 0x8B);
  1186           encode_RegMem(*cbuf,
  1187                         RAX_enc,
  1188                         RSP_enc, 0x4, 0, src_offset,
  1189                         false);
  1191           emit_opcode(*cbuf, 0x89);
  1192           encode_RegMem(*cbuf,
  1193                         RAX_enc,
  1194                         RSP_enc, 0x4, 0, dst_offset,
  1195                         false);
  1197           emit_opcode(*cbuf, Assembler::REX_W);
  1198           emit_opcode(*cbuf, 0x8B);
  1199           emit_opcode(*cbuf, 0x44);
  1200           emit_opcode(*cbuf, 0x24);
  1201           emit_opcode(*cbuf, 0xF8);
  1203 #ifndef PRODUCT
  1204         } else if (!do_size) {
  1205           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
  1206                      "movl    rax, [rsp + #%d]\n\t"
  1207                      "movl    [rsp + #%d], rax\n\t"
  1208                      "movq    rax, [rsp - #8]",
  1209                      src_offset,
  1210                      dst_offset);
  1211 #endif
  1213         return
  1214           5 + // movq
  1215           3 + ((src_offset == 0) ? 0 : (src_offset < 0x80 ? 1 : 4)) + // movl
  1216           3 + ((dst_offset == 0) ? 0 : (dst_offset < 0x80 ? 1 : 4)) + // movl
  1217           5; // movq
  1219     } else if (dst_first_rc == rc_int) {
  1220       // mem -> gpr
  1221       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1222           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1223         // 64-bit
  1224         int offset = ra_->reg2offset(src_first);
  1225         if (cbuf) {
  1226           if (Matcher::_regEncode[dst_first] < 8) {
  1227             emit_opcode(*cbuf, Assembler::REX_W);
  1228           } else {
  1229             emit_opcode(*cbuf, Assembler::REX_WR);
  1231           emit_opcode(*cbuf, 0x8B);
  1232           encode_RegMem(*cbuf,
  1233                         Matcher::_regEncode[dst_first],
  1234                         RSP_enc, 0x4, 0, offset,
  1235                         false);
  1236 #ifndef PRODUCT
  1237         } else if (!do_size) {
  1238           st->print("movq    %s, [rsp + #%d]\t# spill",
  1239                      Matcher::regName[dst_first],
  1240                      offset);
  1241 #endif
  1243         return
  1244           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1245       } else {
  1246         // 32-bit
  1247         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1248         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1249         int offset = ra_->reg2offset(src_first);
  1250         if (cbuf) {
  1251           if (Matcher::_regEncode[dst_first] >= 8) {
  1252             emit_opcode(*cbuf, Assembler::REX_R);
  1254           emit_opcode(*cbuf, 0x8B);
  1255           encode_RegMem(*cbuf,
  1256                         Matcher::_regEncode[dst_first],
  1257                         RSP_enc, 0x4, 0, offset,
  1258                         false);
  1259 #ifndef PRODUCT
  1260         } else if (!do_size) {
  1261           st->print("movl    %s, [rsp + #%d]\t# spill",
  1262                      Matcher::regName[dst_first],
  1263                      offset);
  1264 #endif
  1266         return
  1267           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1268           ((Matcher::_regEncode[dst_first] < 8)
  1269            ? 3
  1270            : 4); // REX
  1272     } else if (dst_first_rc == rc_float) {
  1273       // mem-> xmm
  1274       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1275           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1276         // 64-bit
  1277         int offset = ra_->reg2offset(src_first);
  1278         if (cbuf) {
  1279           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  1280           if (Matcher::_regEncode[dst_first] >= 8) {
  1281             emit_opcode(*cbuf, Assembler::REX_R);
  1283           emit_opcode(*cbuf, 0x0F);
  1284           emit_opcode(*cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  1285           encode_RegMem(*cbuf,
  1286                         Matcher::_regEncode[dst_first],
  1287                         RSP_enc, 0x4, 0, offset,
  1288                         false);
  1289 #ifndef PRODUCT
  1290         } else if (!do_size) {
  1291           st->print("%s  %s, [rsp + #%d]\t# spill",
  1292                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
  1293                      Matcher::regName[dst_first],
  1294                      offset);
  1295 #endif
  1297         return
  1298           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1299           ((Matcher::_regEncode[dst_first] < 8)
  1300            ? 5
  1301            : 6); // REX
  1302       } else {
  1303         // 32-bit
  1304         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1305         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1306         int offset = ra_->reg2offset(src_first);
  1307         if (cbuf) {
  1308           emit_opcode(*cbuf, 0xF3);
  1309           if (Matcher::_regEncode[dst_first] >= 8) {
  1310             emit_opcode(*cbuf, Assembler::REX_R);
  1312           emit_opcode(*cbuf, 0x0F);
  1313           emit_opcode(*cbuf, 0x10);
  1314           encode_RegMem(*cbuf,
  1315                         Matcher::_regEncode[dst_first],
  1316                         RSP_enc, 0x4, 0, offset,
  1317                         false);
  1318 #ifndef PRODUCT
  1319         } else if (!do_size) {
  1320           st->print("movss   %s, [rsp + #%d]\t# spill",
  1321                      Matcher::regName[dst_first],
  1322                      offset);
  1323 #endif
  1325         return
  1326           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1327           ((Matcher::_regEncode[dst_first] < 8)
  1328            ? 5
  1329            : 6); // REX
  1332   } else if (src_first_rc == rc_int) {
  1333     // gpr ->
  1334     if (dst_first_rc == rc_stack) {
  1335       // gpr -> mem
  1336       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1337           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1338         // 64-bit
  1339         int offset = ra_->reg2offset(dst_first);
  1340         if (cbuf) {
  1341           if (Matcher::_regEncode[src_first] < 8) {
  1342             emit_opcode(*cbuf, Assembler::REX_W);
  1343           } else {
  1344             emit_opcode(*cbuf, Assembler::REX_WR);
  1346           emit_opcode(*cbuf, 0x89);
  1347           encode_RegMem(*cbuf,
  1348                         Matcher::_regEncode[src_first],
  1349                         RSP_enc, 0x4, 0, offset,
  1350                         false);
  1351 #ifndef PRODUCT
  1352         } else if (!do_size) {
  1353           st->print("movq    [rsp + #%d], %s\t# spill",
  1354                      offset,
  1355                      Matcher::regName[src_first]);
  1356 #endif
  1358         return ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) + 4; // REX
  1359       } else {
  1360         // 32-bit
  1361         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1362         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1363         int offset = ra_->reg2offset(dst_first);
  1364         if (cbuf) {
  1365           if (Matcher::_regEncode[src_first] >= 8) {
  1366             emit_opcode(*cbuf, Assembler::REX_R);
  1368           emit_opcode(*cbuf, 0x89);
  1369           encode_RegMem(*cbuf,
  1370                         Matcher::_regEncode[src_first],
  1371                         RSP_enc, 0x4, 0, offset,
  1372                         false);
  1373 #ifndef PRODUCT
  1374         } else if (!do_size) {
  1375           st->print("movl    [rsp + #%d], %s\t# spill",
  1376                      offset,
  1377                      Matcher::regName[src_first]);
  1378 #endif
  1380         return
  1381           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1382           ((Matcher::_regEncode[src_first] < 8)
  1383            ? 3
  1384            : 4); // REX
  1386     } else if (dst_first_rc == rc_int) {
  1387       // gpr -> gpr
  1388       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1389           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1390         // 64-bit
  1391         if (cbuf) {
  1392           if (Matcher::_regEncode[dst_first] < 8) {
  1393             if (Matcher::_regEncode[src_first] < 8) {
  1394               emit_opcode(*cbuf, Assembler::REX_W);
  1395             } else {
  1396               emit_opcode(*cbuf, Assembler::REX_WB);
  1398           } else {
  1399             if (Matcher::_regEncode[src_first] < 8) {
  1400               emit_opcode(*cbuf, Assembler::REX_WR);
  1401             } else {
  1402               emit_opcode(*cbuf, Assembler::REX_WRB);
  1405           emit_opcode(*cbuf, 0x8B);
  1406           emit_rm(*cbuf, 0x3,
  1407                   Matcher::_regEncode[dst_first] & 7,
  1408                   Matcher::_regEncode[src_first] & 7);
  1409 #ifndef PRODUCT
  1410         } else if (!do_size) {
  1411           st->print("movq    %s, %s\t# spill",
  1412                      Matcher::regName[dst_first],
  1413                      Matcher::regName[src_first]);
  1414 #endif
  1416         return 3; // REX
  1417       } else {
  1418         // 32-bit
  1419         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1420         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1421         if (cbuf) {
  1422           if (Matcher::_regEncode[dst_first] < 8) {
  1423             if (Matcher::_regEncode[src_first] >= 8) {
  1424               emit_opcode(*cbuf, Assembler::REX_B);
  1426           } else {
  1427             if (Matcher::_regEncode[src_first] < 8) {
  1428               emit_opcode(*cbuf, Assembler::REX_R);
  1429             } else {
  1430               emit_opcode(*cbuf, Assembler::REX_RB);
  1433           emit_opcode(*cbuf, 0x8B);
  1434           emit_rm(*cbuf, 0x3,
  1435                   Matcher::_regEncode[dst_first] & 7,
  1436                   Matcher::_regEncode[src_first] & 7);
  1437 #ifndef PRODUCT
  1438         } else if (!do_size) {
  1439           st->print("movl    %s, %s\t# spill",
  1440                      Matcher::regName[dst_first],
  1441                      Matcher::regName[src_first]);
  1442 #endif
  1444         return
  1445           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1446           ? 2
  1447           : 3; // REX
  1449     } else if (dst_first_rc == rc_float) {
  1450       // gpr -> xmm
  1451       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1452           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1453         // 64-bit
  1454         if (cbuf) {
  1455           emit_opcode(*cbuf, 0x66);
  1456           if (Matcher::_regEncode[dst_first] < 8) {
  1457             if (Matcher::_regEncode[src_first] < 8) {
  1458               emit_opcode(*cbuf, Assembler::REX_W);
  1459             } else {
  1460               emit_opcode(*cbuf, Assembler::REX_WB);
  1462           } else {
  1463             if (Matcher::_regEncode[src_first] < 8) {
  1464               emit_opcode(*cbuf, Assembler::REX_WR);
  1465             } else {
  1466               emit_opcode(*cbuf, Assembler::REX_WRB);
  1469           emit_opcode(*cbuf, 0x0F);
  1470           emit_opcode(*cbuf, 0x6E);
  1471           emit_rm(*cbuf, 0x3,
  1472                   Matcher::_regEncode[dst_first] & 7,
  1473                   Matcher::_regEncode[src_first] & 7);
  1474 #ifndef PRODUCT
  1475         } else if (!do_size) {
  1476           st->print("movdq   %s, %s\t# spill",
  1477                      Matcher::regName[dst_first],
  1478                      Matcher::regName[src_first]);
  1479 #endif
  1481         return 5; // REX
  1482       } else {
  1483         // 32-bit
  1484         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1485         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1486         if (cbuf) {
  1487           emit_opcode(*cbuf, 0x66);
  1488           if (Matcher::_regEncode[dst_first] < 8) {
  1489             if (Matcher::_regEncode[src_first] >= 8) {
  1490               emit_opcode(*cbuf, Assembler::REX_B);
  1492           } else {
  1493             if (Matcher::_regEncode[src_first] < 8) {
  1494               emit_opcode(*cbuf, Assembler::REX_R);
  1495             } else {
  1496               emit_opcode(*cbuf, Assembler::REX_RB);
  1499           emit_opcode(*cbuf, 0x0F);
  1500           emit_opcode(*cbuf, 0x6E);
  1501           emit_rm(*cbuf, 0x3,
  1502                   Matcher::_regEncode[dst_first] & 7,
  1503                   Matcher::_regEncode[src_first] & 7);
  1504 #ifndef PRODUCT
  1505         } else if (!do_size) {
  1506           st->print("movdl   %s, %s\t# spill",
  1507                      Matcher::regName[dst_first],
  1508                      Matcher::regName[src_first]);
  1509 #endif
  1511         return
  1512           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1513           ? 4
  1514           : 5; // REX
  1517   } else if (src_first_rc == rc_float) {
  1518     // xmm ->
  1519     if (dst_first_rc == rc_stack) {
  1520       // xmm -> mem
  1521       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1522           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1523         // 64-bit
  1524         int offset = ra_->reg2offset(dst_first);
  1525         if (cbuf) {
  1526           emit_opcode(*cbuf, 0xF2);
  1527           if (Matcher::_regEncode[src_first] >= 8) {
  1528               emit_opcode(*cbuf, Assembler::REX_R);
  1530           emit_opcode(*cbuf, 0x0F);
  1531           emit_opcode(*cbuf, 0x11);
  1532           encode_RegMem(*cbuf,
  1533                         Matcher::_regEncode[src_first],
  1534                         RSP_enc, 0x4, 0, offset,
  1535                         false);
  1536 #ifndef PRODUCT
  1537         } else if (!do_size) {
  1538           st->print("movsd   [rsp + #%d], %s\t# spill",
  1539                      offset,
  1540                      Matcher::regName[src_first]);
  1541 #endif
  1543         return
  1544           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1545           ((Matcher::_regEncode[src_first] < 8)
  1546            ? 5
  1547            : 6); // REX
  1548       } else {
  1549         // 32-bit
  1550         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1551         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1552         int offset = ra_->reg2offset(dst_first);
  1553         if (cbuf) {
  1554           emit_opcode(*cbuf, 0xF3);
  1555           if (Matcher::_regEncode[src_first] >= 8) {
  1556               emit_opcode(*cbuf, Assembler::REX_R);
  1558           emit_opcode(*cbuf, 0x0F);
  1559           emit_opcode(*cbuf, 0x11);
  1560           encode_RegMem(*cbuf,
  1561                         Matcher::_regEncode[src_first],
  1562                         RSP_enc, 0x4, 0, offset,
  1563                         false);
  1564 #ifndef PRODUCT
  1565         } else if (!do_size) {
  1566           st->print("movss   [rsp + #%d], %s\t# spill",
  1567                      offset,
  1568                      Matcher::regName[src_first]);
  1569 #endif
  1571         return
  1572           ((offset == 0) ? 0 : (offset < 0x80 ? 1 : 4)) +
  1573           ((Matcher::_regEncode[src_first] < 8)
  1574            ? 5
  1575            : 6); // REX
  1577     } else if (dst_first_rc == rc_int) {
  1578       // xmm -> gpr
  1579       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1580           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1581         // 64-bit
  1582         if (cbuf) {
  1583           emit_opcode(*cbuf, 0x66);
  1584           if (Matcher::_regEncode[dst_first] < 8) {
  1585             if (Matcher::_regEncode[src_first] < 8) {
  1586               emit_opcode(*cbuf, Assembler::REX_W);
  1587             } else {
  1588               emit_opcode(*cbuf, Assembler::REX_WR); // attention!
  1590           } else {
  1591             if (Matcher::_regEncode[src_first] < 8) {
  1592               emit_opcode(*cbuf, Assembler::REX_WB); // attention!
  1593             } else {
  1594               emit_opcode(*cbuf, Assembler::REX_WRB);
  1597           emit_opcode(*cbuf, 0x0F);
  1598           emit_opcode(*cbuf, 0x7E);
  1599           emit_rm(*cbuf, 0x3,
  1600                   Matcher::_regEncode[dst_first] & 7,
  1601                   Matcher::_regEncode[src_first] & 7);
  1602 #ifndef PRODUCT
  1603         } else if (!do_size) {
  1604           st->print("movdq   %s, %s\t# spill",
  1605                      Matcher::regName[dst_first],
  1606                      Matcher::regName[src_first]);
  1607 #endif
  1609         return 5; // REX
  1610       } else {
  1611         // 32-bit
  1612         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1613         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1614         if (cbuf) {
  1615           emit_opcode(*cbuf, 0x66);
  1616           if (Matcher::_regEncode[dst_first] < 8) {
  1617             if (Matcher::_regEncode[src_first] >= 8) {
  1618               emit_opcode(*cbuf, Assembler::REX_R); // attention!
  1620           } else {
  1621             if (Matcher::_regEncode[src_first] < 8) {
  1622               emit_opcode(*cbuf, Assembler::REX_B); // attention!
  1623             } else {
  1624               emit_opcode(*cbuf, Assembler::REX_RB);
  1627           emit_opcode(*cbuf, 0x0F);
  1628           emit_opcode(*cbuf, 0x7E);
  1629           emit_rm(*cbuf, 0x3,
  1630                   Matcher::_regEncode[dst_first] & 7,
  1631                   Matcher::_regEncode[src_first] & 7);
  1632 #ifndef PRODUCT
  1633         } else if (!do_size) {
  1634           st->print("movdl   %s, %s\t# spill",
  1635                      Matcher::regName[dst_first],
  1636                      Matcher::regName[src_first]);
  1637 #endif
  1639         return
  1640           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1641           ? 4
  1642           : 5; // REX
  1644     } else if (dst_first_rc == rc_float) {
  1645       // xmm -> xmm
  1646       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
  1647           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
  1648         // 64-bit
  1649         if (cbuf) {
  1650           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  1651           if (Matcher::_regEncode[dst_first] < 8) {
  1652             if (Matcher::_regEncode[src_first] >= 8) {
  1653               emit_opcode(*cbuf, Assembler::REX_B);
  1655           } else {
  1656             if (Matcher::_regEncode[src_first] < 8) {
  1657               emit_opcode(*cbuf, Assembler::REX_R);
  1658             } else {
  1659               emit_opcode(*cbuf, Assembler::REX_RB);
  1662           emit_opcode(*cbuf, 0x0F);
  1663           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1664           emit_rm(*cbuf, 0x3,
  1665                   Matcher::_regEncode[dst_first] & 7,
  1666                   Matcher::_regEncode[src_first] & 7);
  1667 #ifndef PRODUCT
  1668         } else if (!do_size) {
  1669           st->print("%s  %s, %s\t# spill",
  1670                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
  1671                      Matcher::regName[dst_first],
  1672                      Matcher::regName[src_first]);
  1673 #endif
  1675         return
  1676           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1677           ? 4
  1678           : 5; // REX
  1679       } else {
  1680         // 32-bit
  1681         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
  1682         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
  1683         if (cbuf) {
  1684           if (!UseXmmRegToRegMoveAll)
  1685             emit_opcode(*cbuf, 0xF3);
  1686           if (Matcher::_regEncode[dst_first] < 8) {
  1687             if (Matcher::_regEncode[src_first] >= 8) {
  1688               emit_opcode(*cbuf, Assembler::REX_B);
  1690           } else {
  1691             if (Matcher::_regEncode[src_first] < 8) {
  1692               emit_opcode(*cbuf, Assembler::REX_R);
  1693             } else {
  1694               emit_opcode(*cbuf, Assembler::REX_RB);
  1697           emit_opcode(*cbuf, 0x0F);
  1698           emit_opcode(*cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  1699           emit_rm(*cbuf, 0x3,
  1700                   Matcher::_regEncode[dst_first] & 7,
  1701                   Matcher::_regEncode[src_first] & 7);
  1702 #ifndef PRODUCT
  1703         } else if (!do_size) {
  1704           st->print("%s  %s, %s\t# spill",
  1705                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
  1706                      Matcher::regName[dst_first],
  1707                      Matcher::regName[src_first]);
  1708 #endif
  1710         return
  1711           (Matcher::_regEncode[src_first] < 8 && Matcher::_regEncode[dst_first] < 8)
  1712           ? (UseXmmRegToRegMoveAll ? 3 : 4)
  1713           : (UseXmmRegToRegMoveAll ? 4 : 5); // REX
  1718   assert(0," foo ");
  1719   Unimplemented();
  1721   return 0;
  1724 #ifndef PRODUCT
  1725 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const
  1727   implementation(NULL, ra_, false, st);
  1729 #endif
  1731 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const
  1733   implementation(&cbuf, ra_, false, NULL);
  1736 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const
  1738   return implementation(NULL, ra_, true, NULL);
  1741 //=============================================================================
  1742 #ifndef PRODUCT
  1743 void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const
  1745   st->print("nop \t# %d bytes pad for loops and calls", _count);
  1747 #endif
  1749 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const
  1751   MacroAssembler _masm(&cbuf);
  1752   __ nop(_count);
  1755 uint MachNopNode::size(PhaseRegAlloc*) const
  1757   return _count;
  1761 //=============================================================================
  1762 #ifndef PRODUCT
  1763 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1765   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1766   int reg = ra_->get_reg_first(this);
  1767   st->print("leaq    %s, [rsp + #%d]\t# box lock",
  1768             Matcher::regName[reg], offset);
  1770 #endif
  1772 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1774   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1775   int reg = ra_->get_encode(this);
  1776   if (offset >= 0x80) {
  1777     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1778     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1779     emit_rm(cbuf, 0x2, reg & 7, 0x04);
  1780     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1781     emit_d32(cbuf, offset);
  1782   } else {
  1783     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
  1784     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
  1785     emit_rm(cbuf, 0x1, reg & 7, 0x04);
  1786     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
  1787     emit_d8(cbuf, offset);
  1791 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
  1793   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1794   return (offset < 0x80) ? 5 : 8; // REX
  1797 //=============================================================================
  1799 // emit call stub, compiled java to interpreter
  1800 void emit_java_to_interp(CodeBuffer& cbuf)
  1802   // Stub is fixed up when the corresponding call is converted from
  1803   // calling compiled code to calling interpreted code.
  1804   // movq rbx, 0
  1805   // jmp -5 # to self
  1807   address mark = cbuf.inst_mark();  // get mark within main instrs section
  1809   // Note that the code buffer's inst_mark is always relative to insts.
  1810   // That's why we must use the macroassembler to generate a stub.
  1811   MacroAssembler _masm(&cbuf);
  1813   address base =
  1814   __ start_a_stub(Compile::MAX_stubs_size);
  1815   if (base == NULL)  return;  // CodeBuffer::expand failed
  1816   // static stub relocation stores the instruction address of the call
  1817   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM64);
  1818   // static stub relocation also tags the methodOop in the code-stream.
  1819   __ movoop(rbx, (jobject) NULL);  // method is zapped till fixup time
  1820   // This is recognized as unresolved by relocs/nativeinst/ic code
  1821   __ jump(RuntimeAddress(__ pc()));
  1823   // Update current stubs pointer and restore code_end.
  1824   __ end_a_stub();
  1827 // size of call stub, compiled java to interpretor
  1828 uint size_java_to_interp()
  1830   return 15;  // movq (1+1+8); jmp (1+4)
  1833 // relocation entries for call stub, compiled java to interpretor
  1834 uint reloc_java_to_interp()
  1836   return 4; // 3 in emit_java_to_interp + 1 in Java_Static_Call
  1839 //=============================================================================
  1840 #ifndef PRODUCT
  1841 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
  1843   if (UseCompressedOops) {
  1844     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t", oopDesc::klass_offset_in_bytes());
  1845     st->print_cr("leaq    rscratch1, [r12_heapbase, r, Address::times_8, 0]");
  1846     st->print_cr("cmpq    rax, rscratch1\t # Inline cache check");
  1847   } else {
  1848     st->print_cr("cmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes() #%d]\t"
  1849                  "# Inline cache check", oopDesc::klass_offset_in_bytes());
  1851   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
  1852   st->print_cr("\tnop");
  1853   if (!OptoBreakpoint) {
  1854     st->print_cr("\tnop");
  1857 #endif
  1859 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
  1861   MacroAssembler masm(&cbuf);
  1862 #ifdef ASSERT
  1863   uint code_size = cbuf.code_size();
  1864 #endif
  1865   if (UseCompressedOops) {
  1866     masm.load_klass(rscratch1, j_rarg0);
  1867     masm.cmpptr(rax, rscratch1);
  1868   } else {
  1869     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
  1872   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
  1874   /* WARNING these NOPs are critical so that verified entry point is properly
  1875      aligned for patching by NativeJump::patch_verified_entry() */
  1876   int nops_cnt = 1;
  1877   if (!OptoBreakpoint) {
  1878     // Leave space for int3
  1879      nops_cnt += 1;
  1881   if (UseCompressedOops) {
  1882     // ??? divisible by 4 is aligned?
  1883     nops_cnt += 1;
  1885   masm.nop(nops_cnt);
  1887   assert(cbuf.code_size() - code_size == size(ra_),
  1888          "checking code size of inline cache node");
  1891 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
  1893   if (UseCompressedOops) {
  1894     return OptoBreakpoint ? 19 : 20;
  1895   } else {
  1896     return OptoBreakpoint ? 11 : 12;
  1901 //=============================================================================
  1902 uint size_exception_handler()
  1904   // NativeCall instruction size is the same as NativeJump.
  1905   // Note that this value is also credited (in output.cpp) to
  1906   // the size of the code section.
  1907   return NativeJump::instruction_size;
  1910 // Emit exception handler code.
  1911 int emit_exception_handler(CodeBuffer& cbuf)
  1914   // Note that the code buffer's inst_mark is always relative to insts.
  1915   // That's why we must use the macroassembler to generate a handler.
  1916   MacroAssembler _masm(&cbuf);
  1917   address base =
  1918   __ start_a_stub(size_exception_handler());
  1919   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1920   int offset = __ offset();
  1921   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
  1922   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
  1923   __ end_a_stub();
  1924   return offset;
  1927 uint size_deopt_handler()
  1929   // three 5 byte instructions
  1930   return 15;
  1933 // Emit deopt handler code.
  1934 int emit_deopt_handler(CodeBuffer& cbuf)
  1937   // Note that the code buffer's inst_mark is always relative to insts.
  1938   // That's why we must use the macroassembler to generate a handler.
  1939   MacroAssembler _masm(&cbuf);
  1940   address base =
  1941   __ start_a_stub(size_deopt_handler());
  1942   if (base == NULL)  return 0;  // CodeBuffer::expand failed
  1943   int offset = __ offset();
  1944   address the_pc = (address) __ pc();
  1945   Label next;
  1946   // push a "the_pc" on the stack without destroying any registers
  1947   // as they all may be live.
  1949   // push address of "next"
  1950   __ call(next, relocInfo::none); // reloc none is fine since it is a disp32
  1951   __ bind(next);
  1952   // adjust it so it matches "the_pc"
  1953   __ subptr(Address(rsp, 0), __ offset() - offset);
  1954   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
  1955   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
  1956   __ end_a_stub();
  1957   return offset;
  1960 static void emit_double_constant(CodeBuffer& cbuf, double x) {
  1961   int mark = cbuf.insts()->mark_off();
  1962   MacroAssembler _masm(&cbuf);
  1963   address double_address = __ double_constant(x);
  1964   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1965   emit_d32_reloc(cbuf,
  1966                  (int) (double_address - cbuf.code_end() - 4),
  1967                  internal_word_Relocation::spec(double_address),
  1968                  RELOC_DISP32);
  1971 static void emit_float_constant(CodeBuffer& cbuf, float x) {
  1972   int mark = cbuf.insts()->mark_off();
  1973   MacroAssembler _masm(&cbuf);
  1974   address float_address = __ float_constant(x);
  1975   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
  1976   emit_d32_reloc(cbuf,
  1977                  (int) (float_address - cbuf.code_end() - 4),
  1978                  internal_word_Relocation::spec(float_address),
  1979                  RELOC_DISP32);
  1983 int Matcher::regnum_to_fpu_offset(int regnum)
  1985   return regnum - 32; // The FP registers are in the second chunk
  1988 // This is UltraSparc specific, true just means we have fast l2f conversion
  1989 const bool Matcher::convL2FSupported(void) {
  1990   return true;
  1993 // Vector width in bytes
  1994 const uint Matcher::vector_width_in_bytes(void) {
  1995   return 8;
  1998 // Vector ideal reg
  1999 const uint Matcher::vector_ideal_reg(void) {
  2000   return Op_RegD;
  2003 // Is this branch offset short enough that a short branch can be used?
  2004 //
  2005 // NOTE: If the platform does not provide any short branch variants, then
  2006 //       this method should return false for offset 0.
  2007 bool Matcher::is_short_branch_offset(int rule, int offset) {
  2008   // the short version of jmpConUCF2 contains multiple branches,
  2009   // making the reach slightly less
  2010   if (rule == jmpConUCF2_rule)
  2011     return (-126 <= offset && offset <= 125);
  2012   return (-128 <= offset && offset <= 127);
  2015 const bool Matcher::isSimpleConstant64(jlong value) {
  2016   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
  2017   //return value == (int) value;  // Cf. storeImmL and immL32.
  2019   // Probably always true, even if a temp register is required.
  2020   return true;
  2023 // The ecx parameter to rep stosq for the ClearArray node is in words.
  2024 const bool Matcher::init_array_count_is_in_bytes = false;
  2026 // Threshold size for cleararray.
  2027 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2029 // Should the Matcher clone shifts on addressing modes, expecting them
  2030 // to be subsumed into complex addressing expressions or compute them
  2031 // into registers?  True for Intel but false for most RISCs
  2032 const bool Matcher::clone_shift_expressions = true;
  2034 // Is it better to copy float constants, or load them directly from
  2035 // memory?  Intel can load a float constant from a direct address,
  2036 // requiring no extra registers.  Most RISCs will have to materialize
  2037 // an address into a register first, so they would do better to copy
  2038 // the constant from stack.
  2039 const bool Matcher::rematerialize_float_constants = true; // XXX
  2041 // If CPU can load and store mis-aligned doubles directly then no
  2042 // fixup is needed.  Else we split the double into 2 integer pieces
  2043 // and move it piece-by-piece.  Only happens when passing doubles into
  2044 // C code as the Java calling convention forces doubles to be aligned.
  2045 const bool Matcher::misaligned_doubles_ok = true;
  2047 // No-op on amd64
  2048 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
  2050 // Advertise here if the CPU requires explicit rounding operations to
  2051 // implement the UseStrictFP mode.
  2052 const bool Matcher::strict_fp_requires_explicit_rounding = true;
  2054 // Do floats take an entire double register or just half?
  2055 const bool Matcher::float_in_double = true;
  2056 // Do ints take an entire long register or just half?
  2057 const bool Matcher::int_in_long = true;
  2059 // Return whether or not this register is ever used as an argument.
  2060 // This function is used on startup to build the trampoline stubs in
  2061 // generateOptoStub.  Registers not mentioned will be killed by the VM
  2062 // call in the trampoline, and arguments in those registers not be
  2063 // available to the callee.
  2064 bool Matcher::can_be_java_arg(int reg)
  2066   return
  2067     reg ==  RDI_num || reg ==  RDI_H_num ||
  2068     reg ==  RSI_num || reg ==  RSI_H_num ||
  2069     reg ==  RDX_num || reg ==  RDX_H_num ||
  2070     reg ==  RCX_num || reg ==  RCX_H_num ||
  2071     reg ==   R8_num || reg ==   R8_H_num ||
  2072     reg ==   R9_num || reg ==   R9_H_num ||
  2073     reg ==  R12_num || reg ==  R12_H_num ||
  2074     reg == XMM0_num || reg == XMM0_H_num ||
  2075     reg == XMM1_num || reg == XMM1_H_num ||
  2076     reg == XMM2_num || reg == XMM2_H_num ||
  2077     reg == XMM3_num || reg == XMM3_H_num ||
  2078     reg == XMM4_num || reg == XMM4_H_num ||
  2079     reg == XMM5_num || reg == XMM5_H_num ||
  2080     reg == XMM6_num || reg == XMM6_H_num ||
  2081     reg == XMM7_num || reg == XMM7_H_num;
  2084 bool Matcher::is_spillable_arg(int reg)
  2086   return can_be_java_arg(reg);
  2089 // Register for DIVI projection of divmodI
  2090 RegMask Matcher::divI_proj_mask() {
  2091   return INT_RAX_REG_mask;
  2094 // Register for MODI projection of divmodI
  2095 RegMask Matcher::modI_proj_mask() {
  2096   return INT_RDX_REG_mask;
  2099 // Register for DIVL projection of divmodL
  2100 RegMask Matcher::divL_proj_mask() {
  2101   return LONG_RAX_REG_mask;
  2104 // Register for MODL projection of divmodL
  2105 RegMask Matcher::modL_proj_mask() {
  2106   return LONG_RDX_REG_mask;
  2109 static Address build_address(int b, int i, int s, int d) {
  2110   Register index = as_Register(i);
  2111   Address::ScaleFactor scale = (Address::ScaleFactor)s;
  2112   if (index == rsp) {
  2113     index = noreg;
  2114     scale = Address::no_scale;
  2116   Address addr(as_Register(b), index, scale, d);
  2117   return addr;
  2120 %}
  2122 //----------ENCODING BLOCK-----------------------------------------------------
  2123 // This block specifies the encoding classes used by the compiler to
  2124 // output byte streams.  Encoding classes are parameterized macros
  2125 // used by Machine Instruction Nodes in order to generate the bit
  2126 // encoding of the instruction.  Operands specify their base encoding
  2127 // interface with the interface keyword.  There are currently
  2128 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
  2129 // COND_INTER.  REG_INTER causes an operand to generate a function
  2130 // which returns its register number when queried.  CONST_INTER causes
  2131 // an operand to generate a function which returns the value of the
  2132 // constant when queried.  MEMORY_INTER causes an operand to generate
  2133 // four functions which return the Base Register, the Index Register,
  2134 // the Scale Value, and the Offset Value of the operand when queried.
  2135 // COND_INTER causes an operand to generate six functions which return
  2136 // the encoding code (ie - encoding bits for the instruction)
  2137 // associated with each basic boolean condition for a conditional
  2138 // instruction.
  2139 //
  2140 // Instructions specify two basic values for encoding.  Again, a
  2141 // function is available to check if the constant displacement is an
  2142 // oop. They use the ins_encode keyword to specify their encoding
  2143 // classes (which must be a sequence of enc_class names, and their
  2144 // parameters, specified in the encoding block), and they use the
  2145 // opcode keyword to specify, in order, their primary, secondary, and
  2146 // tertiary opcode.  Only the opcode sections which a particular
  2147 // instruction needs for encoding need to be specified.
  2148 encode %{
  2149   // Build emit functions for each basic byte or larger field in the
  2150   // intel encoding scheme (opcode, rm, sib, immediate), and call them
  2151   // from C++ code in the enc_class source block.  Emit functions will
  2152   // live in the main source block for now.  In future, we can
  2153   // generalize this by adding a syntax that specifies the sizes of
  2154   // fields in an order, so that the adlc can build the emit functions
  2155   // automagically
  2157   // Emit primary opcode
  2158   enc_class OpcP
  2159   %{
  2160     emit_opcode(cbuf, $primary);
  2161   %}
  2163   // Emit secondary opcode
  2164   enc_class OpcS
  2165   %{
  2166     emit_opcode(cbuf, $secondary);
  2167   %}
  2169   // Emit tertiary opcode
  2170   enc_class OpcT
  2171   %{
  2172     emit_opcode(cbuf, $tertiary);
  2173   %}
  2175   // Emit opcode directly
  2176   enc_class Opcode(immI d8)
  2177   %{
  2178     emit_opcode(cbuf, $d8$$constant);
  2179   %}
  2181   // Emit size prefix
  2182   enc_class SizePrefix
  2183   %{
  2184     emit_opcode(cbuf, 0x66);
  2185   %}
  2187   enc_class reg(rRegI reg)
  2188   %{
  2189     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
  2190   %}
  2192   enc_class reg_reg(rRegI dst, rRegI src)
  2193   %{
  2194     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2195   %}
  2197   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
  2198   %{
  2199     emit_opcode(cbuf, $opcode$$constant);
  2200     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2201   %}
  2203   enc_class cmpfp_fixup()
  2204   %{
  2205     // jnp,s exit
  2206     emit_opcode(cbuf, 0x7B);
  2207     emit_d8(cbuf, 0x0A);
  2209     // pushfq
  2210     emit_opcode(cbuf, 0x9C);
  2212     // andq $0xffffff2b, (%rsp)
  2213     emit_opcode(cbuf, Assembler::REX_W);
  2214     emit_opcode(cbuf, 0x81);
  2215     emit_opcode(cbuf, 0x24);
  2216     emit_opcode(cbuf, 0x24);
  2217     emit_d32(cbuf, 0xffffff2b);
  2219     // popfq
  2220     emit_opcode(cbuf, 0x9D);
  2222     // nop (target for branch to avoid branch to branch)
  2223     emit_opcode(cbuf, 0x90);
  2224   %}
  2226   enc_class cmpfp3(rRegI dst)
  2227   %{
  2228     int dstenc = $dst$$reg;
  2230     // movl $dst, -1
  2231     if (dstenc >= 8) {
  2232       emit_opcode(cbuf, Assembler::REX_B);
  2234     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  2235     emit_d32(cbuf, -1);
  2237     // jp,s done
  2238     emit_opcode(cbuf, 0x7A);
  2239     emit_d8(cbuf, dstenc < 4 ? 0x08 : 0x0A);
  2241     // jb,s done
  2242     emit_opcode(cbuf, 0x72);
  2243     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  2245     // setne $dst
  2246     if (dstenc >= 4) {
  2247       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  2249     emit_opcode(cbuf, 0x0F);
  2250     emit_opcode(cbuf, 0x95);
  2251     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  2253     // movzbl $dst, $dst
  2254     if (dstenc >= 4) {
  2255       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  2257     emit_opcode(cbuf, 0x0F);
  2258     emit_opcode(cbuf, 0xB6);
  2259     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  2260   %}
  2262   enc_class cdql_enc(no_rax_rdx_RegI div)
  2263   %{
  2264     // Full implementation of Java idiv and irem; checks for
  2265     // special case as described in JVM spec., p.243 & p.271.
  2266     //
  2267     //         normal case                           special case
  2268     //
  2269     // input : rax: dividend                         min_int
  2270     //         reg: divisor                          -1
  2271     //
  2272     // output: rax: quotient  (= rax idiv reg)       min_int
  2273     //         rdx: remainder (= rax irem reg)       0
  2274     //
  2275     //  Code sequnce:
  2276     //
  2277     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
  2278     //    5:   75 07/08                jne    e <normal>
  2279     //    7:   33 d2                   xor    %edx,%edx
  2280     //  [div >= 8 -> offset + 1]
  2281     //  [REX_B]
  2282     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
  2283     //    c:   74 03/04                je     11 <done>
  2284     // 000000000000000e <normal>:
  2285     //    e:   99                      cltd
  2286     //  [div >= 8 -> offset + 1]
  2287     //  [REX_B]
  2288     //    f:   f7 f9                   idiv   $div
  2289     // 0000000000000011 <done>:
  2291     // cmp    $0x80000000,%eax
  2292     emit_opcode(cbuf, 0x3d);
  2293     emit_d8(cbuf, 0x00);
  2294     emit_d8(cbuf, 0x00);
  2295     emit_d8(cbuf, 0x00);
  2296     emit_d8(cbuf, 0x80);
  2298     // jne    e <normal>
  2299     emit_opcode(cbuf, 0x75);
  2300     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
  2302     // xor    %edx,%edx
  2303     emit_opcode(cbuf, 0x33);
  2304     emit_d8(cbuf, 0xD2);
  2306     // cmp    $0xffffffffffffffff,%ecx
  2307     if ($div$$reg >= 8) {
  2308       emit_opcode(cbuf, Assembler::REX_B);
  2310     emit_opcode(cbuf, 0x83);
  2311     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2312     emit_d8(cbuf, 0xFF);
  2314     // je     11 <done>
  2315     emit_opcode(cbuf, 0x74);
  2316     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
  2318     // <normal>
  2319     // cltd
  2320     emit_opcode(cbuf, 0x99);
  2322     // idivl (note: must be emitted by the user of this rule)
  2323     // <done>
  2324   %}
  2326   enc_class cdqq_enc(no_rax_rdx_RegL div)
  2327   %{
  2328     // Full implementation of Java ldiv and lrem; checks for
  2329     // special case as described in JVM spec., p.243 & p.271.
  2330     //
  2331     //         normal case                           special case
  2332     //
  2333     // input : rax: dividend                         min_long
  2334     //         reg: divisor                          -1
  2335     //
  2336     // output: rax: quotient  (= rax idiv reg)       min_long
  2337     //         rdx: remainder (= rax irem reg)       0
  2338     //
  2339     //  Code sequnce:
  2340     //
  2341     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
  2342     //    7:   00 00 80
  2343     //    a:   48 39 d0                cmp    %rdx,%rax
  2344     //    d:   75 08                   jne    17 <normal>
  2345     //    f:   33 d2                   xor    %edx,%edx
  2346     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
  2347     //   15:   74 05                   je     1c <done>
  2348     // 0000000000000017 <normal>:
  2349     //   17:   48 99                   cqto
  2350     //   19:   48 f7 f9                idiv   $div
  2351     // 000000000000001c <done>:
  2353     // mov    $0x8000000000000000,%rdx
  2354     emit_opcode(cbuf, Assembler::REX_W);
  2355     emit_opcode(cbuf, 0xBA);
  2356     emit_d8(cbuf, 0x00);
  2357     emit_d8(cbuf, 0x00);
  2358     emit_d8(cbuf, 0x00);
  2359     emit_d8(cbuf, 0x00);
  2360     emit_d8(cbuf, 0x00);
  2361     emit_d8(cbuf, 0x00);
  2362     emit_d8(cbuf, 0x00);
  2363     emit_d8(cbuf, 0x80);
  2365     // cmp    %rdx,%rax
  2366     emit_opcode(cbuf, Assembler::REX_W);
  2367     emit_opcode(cbuf, 0x39);
  2368     emit_d8(cbuf, 0xD0);
  2370     // jne    17 <normal>
  2371     emit_opcode(cbuf, 0x75);
  2372     emit_d8(cbuf, 0x08);
  2374     // xor    %edx,%edx
  2375     emit_opcode(cbuf, 0x33);
  2376     emit_d8(cbuf, 0xD2);
  2378     // cmp    $0xffffffffffffffff,$div
  2379     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
  2380     emit_opcode(cbuf, 0x83);
  2381     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
  2382     emit_d8(cbuf, 0xFF);
  2384     // je     1e <done>
  2385     emit_opcode(cbuf, 0x74);
  2386     emit_d8(cbuf, 0x05);
  2388     // <normal>
  2389     // cqto
  2390     emit_opcode(cbuf, Assembler::REX_W);
  2391     emit_opcode(cbuf, 0x99);
  2393     // idivq (note: must be emitted by the user of this rule)
  2394     // <done>
  2395   %}
  2397   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
  2398   enc_class OpcSE(immI imm)
  2399   %{
  2400     // Emit primary opcode and set sign-extend bit
  2401     // Check for 8-bit immediate, and set sign extend bit in opcode
  2402     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2403       emit_opcode(cbuf, $primary | 0x02);
  2404     } else {
  2405       // 32-bit immediate
  2406       emit_opcode(cbuf, $primary);
  2408   %}
  2410   enc_class OpcSErm(rRegI dst, immI imm)
  2411   %{
  2412     // OpcSEr/m
  2413     int dstenc = $dst$$reg;
  2414     if (dstenc >= 8) {
  2415       emit_opcode(cbuf, Assembler::REX_B);
  2416       dstenc -= 8;
  2418     // Emit primary opcode and set sign-extend bit
  2419     // Check for 8-bit immediate, and set sign extend bit in opcode
  2420     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2421       emit_opcode(cbuf, $primary | 0x02);
  2422     } else {
  2423       // 32-bit immediate
  2424       emit_opcode(cbuf, $primary);
  2426     // Emit r/m byte with secondary opcode, after primary opcode.
  2427     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2428   %}
  2430   enc_class OpcSErm_wide(rRegL dst, immI imm)
  2431   %{
  2432     // OpcSEr/m
  2433     int dstenc = $dst$$reg;
  2434     if (dstenc < 8) {
  2435       emit_opcode(cbuf, Assembler::REX_W);
  2436     } else {
  2437       emit_opcode(cbuf, Assembler::REX_WB);
  2438       dstenc -= 8;
  2440     // Emit primary opcode and set sign-extend bit
  2441     // Check for 8-bit immediate, and set sign extend bit in opcode
  2442     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2443       emit_opcode(cbuf, $primary | 0x02);
  2444     } else {
  2445       // 32-bit immediate
  2446       emit_opcode(cbuf, $primary);
  2448     // Emit r/m byte with secondary opcode, after primary opcode.
  2449     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2450   %}
  2452   enc_class Con8or32(immI imm)
  2453   %{
  2454     // Check for 8-bit immediate, and set sign extend bit in opcode
  2455     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
  2456       $$$emit8$imm$$constant;
  2457     } else {
  2458       // 32-bit immediate
  2459       $$$emit32$imm$$constant;
  2461   %}
  2463   enc_class Lbl(label labl)
  2464   %{
  2465     // JMP, CALL
  2466     Label* l = $labl$$label;
  2467     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2468   %}
  2470   enc_class LblShort(label labl)
  2471   %{
  2472     // JMP, CALL
  2473     Label* l = $labl$$label;
  2474     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2475     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2476     emit_d8(cbuf, disp);
  2477   %}
  2479   enc_class opc2_reg(rRegI dst)
  2480   %{
  2481     // BSWAP
  2482     emit_cc(cbuf, $secondary, $dst$$reg);
  2483   %}
  2485   enc_class opc3_reg(rRegI dst)
  2486   %{
  2487     // BSWAP
  2488     emit_cc(cbuf, $tertiary, $dst$$reg);
  2489   %}
  2491   enc_class reg_opc(rRegI div)
  2492   %{
  2493     // INC, DEC, IDIV, IMOD, JMP indirect, ...
  2494     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
  2495   %}
  2497   enc_class Jcc(cmpOp cop, label labl)
  2498   %{
  2499     // JCC
  2500     Label* l = $labl$$label;
  2501     $$$emit8$primary;
  2502     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2503     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0);
  2504   %}
  2506   enc_class JccShort (cmpOp cop, label labl)
  2507   %{
  2508   // JCC
  2509     Label *l = $labl$$label;
  2510     emit_cc(cbuf, $primary, $cop$$cmpcode);
  2511     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
  2512     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
  2513     emit_d8(cbuf, disp);
  2514   %}
  2516   enc_class enc_cmov(cmpOp cop)
  2517   %{
  2518     // CMOV
  2519     $$$emit8$primary;
  2520     emit_cc(cbuf, $secondary, $cop$$cmpcode);
  2521   %}
  2523   enc_class enc_cmovf_branch(cmpOp cop, regF dst, regF src)
  2524   %{
  2525     // Invert sense of branch from sense of cmov
  2526     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2527     emit_d8(cbuf, ($dst$$reg < 8 && $src$$reg < 8)
  2528                   ? (UseXmmRegToRegMoveAll ? 3 : 4)
  2529                   : (UseXmmRegToRegMoveAll ? 4 : 5) ); // REX
  2530     // UseXmmRegToRegMoveAll ? movaps(dst, src) : movss(dst, src)
  2531     if (!UseXmmRegToRegMoveAll) emit_opcode(cbuf, 0xF3);
  2532     if ($dst$$reg < 8) {
  2533       if ($src$$reg >= 8) {
  2534         emit_opcode(cbuf, Assembler::REX_B);
  2536     } else {
  2537       if ($src$$reg < 8) {
  2538         emit_opcode(cbuf, Assembler::REX_R);
  2539       } else {
  2540         emit_opcode(cbuf, Assembler::REX_RB);
  2543     emit_opcode(cbuf, 0x0F);
  2544     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2545     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2546   %}
  2548   enc_class enc_cmovd_branch(cmpOp cop, regD dst, regD src)
  2549   %{
  2550     // Invert sense of branch from sense of cmov
  2551     emit_cc(cbuf, 0x70, $cop$$cmpcode ^ 1);
  2552     emit_d8(cbuf, $dst$$reg < 8 && $src$$reg < 8 ? 4 : 5); // REX
  2554     //  UseXmmRegToRegMoveAll ? movapd(dst, src) : movsd(dst, src)
  2555     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x66 : 0xF2);
  2556     if ($dst$$reg < 8) {
  2557       if ($src$$reg >= 8) {
  2558         emit_opcode(cbuf, Assembler::REX_B);
  2560     } else {
  2561       if ($src$$reg < 8) {
  2562         emit_opcode(cbuf, Assembler::REX_R);
  2563       } else {
  2564         emit_opcode(cbuf, Assembler::REX_RB);
  2567     emit_opcode(cbuf, 0x0F);
  2568     emit_opcode(cbuf, UseXmmRegToRegMoveAll ? 0x28 : 0x10);
  2569     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
  2570   %}
  2572   enc_class enc_PartialSubtypeCheck()
  2573   %{
  2574     Register Rrdi = as_Register(RDI_enc); // result register
  2575     Register Rrax = as_Register(RAX_enc); // super class
  2576     Register Rrcx = as_Register(RCX_enc); // killed
  2577     Register Rrsi = as_Register(RSI_enc); // sub class
  2578     Label hit, miss, cmiss;
  2580     MacroAssembler _masm(&cbuf);
  2581     // Compare super with sub directly, since super is not in its own SSA.
  2582     // The compiler used to emit this test, but we fold it in here,
  2583     // to allow platform-specific tweaking on sparc.
  2584     __ cmpptr(Rrax, Rrsi);
  2585     __ jcc(Assembler::equal, hit);
  2586 #ifndef PRODUCT
  2587     __ lea(Rrcx, ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
  2588     __ incrementl(Address(Rrcx, 0));
  2589 #endif //PRODUCT
  2590     __ movptr(Rrdi, Address(Rrsi, 
  2591                           sizeof(oopDesc) + 
  2592                           Klass::secondary_supers_offset_in_bytes()));
  2593     __ movl(Rrcx, Address(Rrdi, arrayOopDesc::length_offset_in_bytes()));
  2594     __ addptr(Rrdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  2595     if (UseCompressedOops) {
  2596       __ encode_heap_oop(Rrax);
  2597       __ repne_scanl();
  2598       __ jcc(Assembler::notEqual, cmiss);
  2599       __ decode_heap_oop(Rrax);
  2600       __ movptr(Address(Rrsi,
  2601                       sizeof(oopDesc) +
  2602                       Klass::secondary_super_cache_offset_in_bytes()),
  2603               Rrax);
  2604       __ jmp(hit);
  2605       __ bind(cmiss);
  2606       __ decode_heap_oop(Rrax);
  2607       __ jmp(miss);
  2608     } else {
  2609       __ repne_scan();
  2610       __ jcc(Assembler::notEqual, miss);
  2611       __ movptr(Address(Rrsi,
  2612                       sizeof(oopDesc) +
  2613                       Klass::secondary_super_cache_offset_in_bytes()),
  2614               Rrax);
  2616     __ bind(hit);
  2617     if ($primary) {
  2618       __ xorptr(Rrdi, Rrdi);
  2620     __ bind(miss);
  2621   %}
  2623   enc_class Java_To_Interpreter(method meth)
  2624   %{
  2625     // CALL Java_To_Interpreter
  2626     // This is the instruction starting address for relocation info.
  2627     cbuf.set_inst_mark();
  2628     $$$emit8$primary;
  2629     // CALL directly to the runtime
  2630     emit_d32_reloc(cbuf,
  2631                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2632                    runtime_call_Relocation::spec(),
  2633                    RELOC_DISP32);
  2634   %}
  2636   enc_class Java_Static_Call(method meth)
  2637   %{
  2638     // JAVA STATIC CALL
  2639     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
  2640     // determine who we intended to call.
  2641     cbuf.set_inst_mark();
  2642     $$$emit8$primary;
  2644     if (!_method) {
  2645       emit_d32_reloc(cbuf,
  2646                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2647                      runtime_call_Relocation::spec(),
  2648                      RELOC_DISP32);
  2649     } else if (_optimized_virtual) {
  2650       emit_d32_reloc(cbuf,
  2651                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2652                      opt_virtual_call_Relocation::spec(),
  2653                      RELOC_DISP32);
  2654     } else {
  2655       emit_d32_reloc(cbuf,
  2656                      (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2657                      static_call_Relocation::spec(),
  2658                      RELOC_DISP32);
  2660     if (_method) {
  2661       // Emit stub for static call
  2662       emit_java_to_interp(cbuf);
  2664   %}
  2666   enc_class Java_Dynamic_Call(method meth)
  2667   %{
  2668     // JAVA DYNAMIC CALL
  2669     // !!!!!
  2670     // Generate  "movq rax, -1", placeholder instruction to load oop-info
  2671     // emit_call_dynamic_prologue( cbuf );
  2672     cbuf.set_inst_mark();
  2674     // movq rax, -1
  2675     emit_opcode(cbuf, Assembler::REX_W);
  2676     emit_opcode(cbuf, 0xB8 | RAX_enc);
  2677     emit_d64_reloc(cbuf,
  2678                    (int64_t) Universe::non_oop_word(),
  2679                    oop_Relocation::spec_for_immediate(), RELOC_IMM64);
  2680     address virtual_call_oop_addr = cbuf.inst_mark();
  2681     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
  2682     // who we intended to call.
  2683     cbuf.set_inst_mark();
  2684     $$$emit8$primary;
  2685     emit_d32_reloc(cbuf,
  2686                    (int) ($meth$$method - ((intptr_t) cbuf.code_end()) - 4),
  2687                    virtual_call_Relocation::spec(virtual_call_oop_addr),
  2688                    RELOC_DISP32);
  2689   %}
  2691   enc_class Java_Compiled_Call(method meth)
  2692   %{
  2693     // JAVA COMPILED CALL
  2694     int disp = in_bytes(methodOopDesc:: from_compiled_offset());
  2696     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
  2697     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
  2699     // callq *disp(%rax)
  2700     cbuf.set_inst_mark();
  2701     $$$emit8$primary;
  2702     if (disp < 0x80) {
  2703       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
  2704       emit_d8(cbuf, disp); // Displacement
  2705     } else {
  2706       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
  2707       emit_d32(cbuf, disp); // Displacement
  2709   %}
  2711   enc_class reg_opc_imm(rRegI dst, immI8 shift)
  2712   %{
  2713     // SAL, SAR, SHR
  2714     int dstenc = $dst$$reg;
  2715     if (dstenc >= 8) {
  2716       emit_opcode(cbuf, Assembler::REX_B);
  2717       dstenc -= 8;
  2719     $$$emit8$primary;
  2720     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2721     $$$emit8$shift$$constant;
  2722   %}
  2724   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
  2725   %{
  2726     // SAL, SAR, SHR
  2727     int dstenc = $dst$$reg;
  2728     if (dstenc < 8) {
  2729       emit_opcode(cbuf, Assembler::REX_W);
  2730     } else {
  2731       emit_opcode(cbuf, Assembler::REX_WB);
  2732       dstenc -= 8;
  2734     $$$emit8$primary;
  2735     emit_rm(cbuf, 0x3, $secondary, dstenc);
  2736     $$$emit8$shift$$constant;
  2737   %}
  2739   enc_class load_immI(rRegI dst, immI src)
  2740   %{
  2741     int dstenc = $dst$$reg;
  2742     if (dstenc >= 8) {
  2743       emit_opcode(cbuf, Assembler::REX_B);
  2744       dstenc -= 8;
  2746     emit_opcode(cbuf, 0xB8 | dstenc);
  2747     $$$emit32$src$$constant;
  2748   %}
  2750   enc_class load_immL(rRegL dst, immL src)
  2751   %{
  2752     int dstenc = $dst$$reg;
  2753     if (dstenc < 8) {
  2754       emit_opcode(cbuf, Assembler::REX_W);
  2755     } else {
  2756       emit_opcode(cbuf, Assembler::REX_WB);
  2757       dstenc -= 8;
  2759     emit_opcode(cbuf, 0xB8 | dstenc);
  2760     emit_d64(cbuf, $src$$constant);
  2761   %}
  2763   enc_class load_immUL32(rRegL dst, immUL32 src)
  2764   %{
  2765     // same as load_immI, but this time we care about zeroes in the high word
  2766     int dstenc = $dst$$reg;
  2767     if (dstenc >= 8) {
  2768       emit_opcode(cbuf, Assembler::REX_B);
  2769       dstenc -= 8;
  2771     emit_opcode(cbuf, 0xB8 | dstenc);
  2772     $$$emit32$src$$constant;
  2773   %}
  2775   enc_class load_immL32(rRegL dst, immL32 src)
  2776   %{
  2777     int dstenc = $dst$$reg;
  2778     if (dstenc < 8) {
  2779       emit_opcode(cbuf, Assembler::REX_W);
  2780     } else {
  2781       emit_opcode(cbuf, Assembler::REX_WB);
  2782       dstenc -= 8;
  2784     emit_opcode(cbuf, 0xC7);
  2785     emit_rm(cbuf, 0x03, 0x00, dstenc);
  2786     $$$emit32$src$$constant;
  2787   %}
  2789   enc_class load_immP31(rRegP dst, immP32 src)
  2790   %{
  2791     // same as load_immI, but this time we care about zeroes in the high word
  2792     int dstenc = $dst$$reg;
  2793     if (dstenc >= 8) {
  2794       emit_opcode(cbuf, Assembler::REX_B);
  2795       dstenc -= 8;
  2797     emit_opcode(cbuf, 0xB8 | dstenc);
  2798     $$$emit32$src$$constant;
  2799   %}
  2801   enc_class load_immP(rRegP dst, immP src)
  2802   %{
  2803     int dstenc = $dst$$reg;
  2804     if (dstenc < 8) {
  2805       emit_opcode(cbuf, Assembler::REX_W);
  2806     } else {
  2807       emit_opcode(cbuf, Assembler::REX_WB);
  2808       dstenc -= 8;
  2810     emit_opcode(cbuf, 0xB8 | dstenc);
  2811     // This next line should be generated from ADLC
  2812     if ($src->constant_is_oop()) {
  2813       emit_d64_reloc(cbuf, $src$$constant, relocInfo::oop_type, RELOC_IMM64);
  2814     } else {
  2815       emit_d64(cbuf, $src$$constant);
  2817   %}
  2819   enc_class load_immF(regF dst, immF con)
  2820   %{
  2821     // XXX reg_mem doesn't support RIP-relative addressing yet
  2822     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2823     emit_float_constant(cbuf, $con$$constant);
  2824   %}
  2826   enc_class load_immD(regD dst, immD con)
  2827   %{
  2828     // XXX reg_mem doesn't support RIP-relative addressing yet
  2829     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2830     emit_double_constant(cbuf, $con$$constant);
  2831   %}
  2833   enc_class load_conF (regF dst, immF con) %{    // Load float constant
  2834     emit_opcode(cbuf, 0xF3);
  2835     if ($dst$$reg >= 8) {
  2836       emit_opcode(cbuf, Assembler::REX_R);
  2838     emit_opcode(cbuf, 0x0F);
  2839     emit_opcode(cbuf, 0x10);
  2840     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2841     emit_float_constant(cbuf, $con$$constant);
  2842   %}
  2844   enc_class load_conD (regD dst, immD con) %{    // Load double constant
  2845     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
  2846     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  2847     if ($dst$$reg >= 8) {
  2848       emit_opcode(cbuf, Assembler::REX_R);
  2850     emit_opcode(cbuf, 0x0F);
  2851     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
  2852     emit_rm(cbuf, 0x0, $dst$$reg & 7, 0x5); // 00 reg 101
  2853     emit_double_constant(cbuf, $con$$constant);
  2854   %}
  2856   // Encode a reg-reg copy.  If it is useless, then empty encoding.
  2857   enc_class enc_copy(rRegI dst, rRegI src)
  2858   %{
  2859     encode_copy(cbuf, $dst$$reg, $src$$reg);
  2860   %}
  2862   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
  2863   enc_class enc_CopyXD( RegD dst, RegD src ) %{
  2864     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
  2865   %}
  2867   enc_class enc_copy_always(rRegI dst, rRegI src)
  2868   %{
  2869     int srcenc = $src$$reg;
  2870     int dstenc = $dst$$reg;
  2872     if (dstenc < 8) {
  2873       if (srcenc >= 8) {
  2874         emit_opcode(cbuf, Assembler::REX_B);
  2875         srcenc -= 8;
  2877     } else {
  2878       if (srcenc < 8) {
  2879         emit_opcode(cbuf, Assembler::REX_R);
  2880       } else {
  2881         emit_opcode(cbuf, Assembler::REX_RB);
  2882         srcenc -= 8;
  2884       dstenc -= 8;
  2887     emit_opcode(cbuf, 0x8B);
  2888     emit_rm(cbuf, 0x3, dstenc, srcenc);
  2889   %}
  2891   enc_class enc_copy_wide(rRegL dst, rRegL src)
  2892   %{
  2893     int srcenc = $src$$reg;
  2894     int dstenc = $dst$$reg;
  2896     if (dstenc != srcenc) {
  2897       if (dstenc < 8) {
  2898         if (srcenc < 8) {
  2899           emit_opcode(cbuf, Assembler::REX_W);
  2900         } else {
  2901           emit_opcode(cbuf, Assembler::REX_WB);
  2902           srcenc -= 8;
  2904       } else {
  2905         if (srcenc < 8) {
  2906           emit_opcode(cbuf, Assembler::REX_WR);
  2907         } else {
  2908           emit_opcode(cbuf, Assembler::REX_WRB);
  2909           srcenc -= 8;
  2911         dstenc -= 8;
  2913       emit_opcode(cbuf, 0x8B);
  2914       emit_rm(cbuf, 0x3, dstenc, srcenc);
  2916   %}
  2918   enc_class Con32(immI src)
  2919   %{
  2920     // Output immediate
  2921     $$$emit32$src$$constant;
  2922   %}
  2924   enc_class Con64(immL src)
  2925   %{
  2926     // Output immediate
  2927     emit_d64($src$$constant);
  2928   %}
  2930   enc_class Con32F_as_bits(immF src)
  2931   %{
  2932     // Output Float immediate bits
  2933     jfloat jf = $src$$constant;
  2934     jint jf_as_bits = jint_cast(jf);
  2935     emit_d32(cbuf, jf_as_bits);
  2936   %}
  2938   enc_class Con16(immI src)
  2939   %{
  2940     // Output immediate
  2941     $$$emit16$src$$constant;
  2942   %}
  2944   // How is this different from Con32??? XXX
  2945   enc_class Con_d32(immI src)
  2946   %{
  2947     emit_d32(cbuf,$src$$constant);
  2948   %}
  2950   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
  2951     // Output immediate memory reference
  2952     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
  2953     emit_d32(cbuf, 0x00);
  2954   %}
  2956   enc_class jump_enc(rRegL switch_val, rRegI dest) %{
  2957     MacroAssembler masm(&cbuf);
  2959     Register switch_reg = as_Register($switch_val$$reg);
  2960     Register dest_reg   = as_Register($dest$$reg);
  2961     address table_base  = masm.address_table_constant(_index2label);
  2963     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2964     // to do that and the compiler is using that register as one it can allocate.
  2965     // So we build it all by hand.
  2966     // Address index(noreg, switch_reg, Address::times_1);
  2967     // ArrayAddress dispatch(table, index);
  2969     Address dispatch(dest_reg, switch_reg, Address::times_1);
  2971     masm.lea(dest_reg, InternalAddress(table_base));
  2972     masm.jmp(dispatch);
  2973   %}
  2975   enc_class jump_enc_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  2976     MacroAssembler masm(&cbuf);
  2978     Register switch_reg = as_Register($switch_val$$reg);
  2979     Register dest_reg   = as_Register($dest$$reg);
  2980     address table_base  = masm.address_table_constant(_index2label);
  2982     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  2983     // to do that and the compiler is using that register as one it can allocate.
  2984     // So we build it all by hand.
  2985     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2986     // ArrayAddress dispatch(table, index);
  2988     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant, (int)$offset$$constant);
  2990     masm.lea(dest_reg, InternalAddress(table_base));
  2991     masm.jmp(dispatch);
  2992   %}
  2994   enc_class jump_enc_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  2995     MacroAssembler masm(&cbuf);
  2997     Register switch_reg = as_Register($switch_val$$reg);
  2998     Register dest_reg   = as_Register($dest$$reg);
  2999     address table_base  = masm.address_table_constant(_index2label);
  3001     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
  3002     // to do that and the compiler is using that register as one it can allocate.
  3003     // So we build it all by hand.
  3004     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  3005     // ArrayAddress dispatch(table, index);
  3007     Address dispatch(dest_reg, switch_reg, (Address::ScaleFactor)$shift$$constant);
  3008     masm.lea(dest_reg, InternalAddress(table_base));
  3009     masm.jmp(dispatch);
  3011   %}
  3013   enc_class lock_prefix()
  3014   %{
  3015     if (os::is_MP()) {
  3016       emit_opcode(cbuf, 0xF0); // lock
  3018   %}
  3020   enc_class REX_mem(memory mem)
  3021   %{
  3022     if ($mem$$base >= 8) {
  3023       if ($mem$$index < 8) {
  3024         emit_opcode(cbuf, Assembler::REX_B);
  3025       } else {
  3026         emit_opcode(cbuf, Assembler::REX_XB);
  3028     } else {
  3029       if ($mem$$index >= 8) {
  3030         emit_opcode(cbuf, Assembler::REX_X);
  3033   %}
  3035   enc_class REX_mem_wide(memory mem)
  3036   %{
  3037     if ($mem$$base >= 8) {
  3038       if ($mem$$index < 8) {
  3039         emit_opcode(cbuf, Assembler::REX_WB);
  3040       } else {
  3041         emit_opcode(cbuf, Assembler::REX_WXB);
  3043     } else {
  3044       if ($mem$$index < 8) {
  3045         emit_opcode(cbuf, Assembler::REX_W);
  3046       } else {
  3047         emit_opcode(cbuf, Assembler::REX_WX);
  3050   %}
  3052   // for byte regs
  3053   enc_class REX_breg(rRegI reg)
  3054   %{
  3055     if ($reg$$reg >= 4) {
  3056       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3058   %}
  3060   // for byte regs
  3061   enc_class REX_reg_breg(rRegI dst, rRegI src)
  3062   %{
  3063     if ($dst$$reg < 8) {
  3064       if ($src$$reg >= 4) {
  3065         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
  3067     } else {
  3068       if ($src$$reg < 8) {
  3069         emit_opcode(cbuf, Assembler::REX_R);
  3070       } else {
  3071         emit_opcode(cbuf, Assembler::REX_RB);
  3074   %}
  3076   // for byte regs
  3077   enc_class REX_breg_mem(rRegI reg, memory mem)
  3078   %{
  3079     if ($reg$$reg < 8) {
  3080       if ($mem$$base < 8) {
  3081         if ($mem$$index >= 8) {
  3082           emit_opcode(cbuf, Assembler::REX_X);
  3083         } else if ($reg$$reg >= 4) {
  3084           emit_opcode(cbuf, Assembler::REX);
  3086       } else {
  3087         if ($mem$$index < 8) {
  3088           emit_opcode(cbuf, Assembler::REX_B);
  3089         } else {
  3090           emit_opcode(cbuf, Assembler::REX_XB);
  3093     } else {
  3094       if ($mem$$base < 8) {
  3095         if ($mem$$index < 8) {
  3096           emit_opcode(cbuf, Assembler::REX_R);
  3097         } else {
  3098           emit_opcode(cbuf, Assembler::REX_RX);
  3100       } else {
  3101         if ($mem$$index < 8) {
  3102           emit_opcode(cbuf, Assembler::REX_RB);
  3103         } else {
  3104           emit_opcode(cbuf, Assembler::REX_RXB);
  3108   %}
  3110   enc_class REX_reg(rRegI reg)
  3111   %{
  3112     if ($reg$$reg >= 8) {
  3113       emit_opcode(cbuf, Assembler::REX_B);
  3115   %}
  3117   enc_class REX_reg_wide(rRegI reg)
  3118   %{
  3119     if ($reg$$reg < 8) {
  3120       emit_opcode(cbuf, Assembler::REX_W);
  3121     } else {
  3122       emit_opcode(cbuf, Assembler::REX_WB);
  3124   %}
  3126   enc_class REX_reg_reg(rRegI dst, rRegI src)
  3127   %{
  3128     if ($dst$$reg < 8) {
  3129       if ($src$$reg >= 8) {
  3130         emit_opcode(cbuf, Assembler::REX_B);
  3132     } else {
  3133       if ($src$$reg < 8) {
  3134         emit_opcode(cbuf, Assembler::REX_R);
  3135       } else {
  3136         emit_opcode(cbuf, Assembler::REX_RB);
  3139   %}
  3141   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
  3142   %{
  3143     if ($dst$$reg < 8) {
  3144       if ($src$$reg < 8) {
  3145         emit_opcode(cbuf, Assembler::REX_W);
  3146       } else {
  3147         emit_opcode(cbuf, Assembler::REX_WB);
  3149     } else {
  3150       if ($src$$reg < 8) {
  3151         emit_opcode(cbuf, Assembler::REX_WR);
  3152       } else {
  3153         emit_opcode(cbuf, Assembler::REX_WRB);
  3156   %}
  3158   enc_class REX_reg_mem(rRegI reg, memory mem)
  3159   %{
  3160     if ($reg$$reg < 8) {
  3161       if ($mem$$base < 8) {
  3162         if ($mem$$index >= 8) {
  3163           emit_opcode(cbuf, Assembler::REX_X);
  3165       } else {
  3166         if ($mem$$index < 8) {
  3167           emit_opcode(cbuf, Assembler::REX_B);
  3168         } else {
  3169           emit_opcode(cbuf, Assembler::REX_XB);
  3172     } else {
  3173       if ($mem$$base < 8) {
  3174         if ($mem$$index < 8) {
  3175           emit_opcode(cbuf, Assembler::REX_R);
  3176         } else {
  3177           emit_opcode(cbuf, Assembler::REX_RX);
  3179       } else {
  3180         if ($mem$$index < 8) {
  3181           emit_opcode(cbuf, Assembler::REX_RB);
  3182         } else {
  3183           emit_opcode(cbuf, Assembler::REX_RXB);
  3187   %}
  3189   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
  3190   %{
  3191     if ($reg$$reg < 8) {
  3192       if ($mem$$base < 8) {
  3193         if ($mem$$index < 8) {
  3194           emit_opcode(cbuf, Assembler::REX_W);
  3195         } else {
  3196           emit_opcode(cbuf, Assembler::REX_WX);
  3198       } else {
  3199         if ($mem$$index < 8) {
  3200           emit_opcode(cbuf, Assembler::REX_WB);
  3201         } else {
  3202           emit_opcode(cbuf, Assembler::REX_WXB);
  3205     } else {
  3206       if ($mem$$base < 8) {
  3207         if ($mem$$index < 8) {
  3208           emit_opcode(cbuf, Assembler::REX_WR);
  3209         } else {
  3210           emit_opcode(cbuf, Assembler::REX_WRX);
  3212       } else {
  3213         if ($mem$$index < 8) {
  3214           emit_opcode(cbuf, Assembler::REX_WRB);
  3215         } else {
  3216           emit_opcode(cbuf, Assembler::REX_WRXB);
  3220   %}
  3222   enc_class reg_mem(rRegI ereg, memory mem)
  3223   %{
  3224     // High registers handle in encode_RegMem
  3225     int reg = $ereg$$reg;
  3226     int base = $mem$$base;
  3227     int index = $mem$$index;
  3228     int scale = $mem$$scale;
  3229     int disp = $mem$$disp;
  3230     bool disp_is_oop = $mem->disp_is_oop();
  3232     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_is_oop);
  3233   %}
  3235   enc_class RM_opc_mem(immI rm_opcode, memory mem)
  3236   %{
  3237     int rm_byte_opcode = $rm_opcode$$constant;
  3239     // High registers handle in encode_RegMem
  3240     int base = $mem$$base;
  3241     int index = $mem$$index;
  3242     int scale = $mem$$scale;
  3243     int displace = $mem$$disp;
  3245     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when
  3246                                             // working with static
  3247                                             // globals
  3248     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
  3249                   disp_is_oop);
  3250   %}
  3252   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
  3253   %{
  3254     int reg_encoding = $dst$$reg;
  3255     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
  3256     int index        = 0x04;            // 0x04 indicates no index
  3257     int scale        = 0x00;            // 0x00 indicates no scale
  3258     int displace     = $src1$$constant; // 0x00 indicates no displacement
  3259     bool disp_is_oop = false;
  3260     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
  3261                   disp_is_oop);
  3262   %}
  3264   enc_class neg_reg(rRegI dst)
  3265   %{
  3266     int dstenc = $dst$$reg;
  3267     if (dstenc >= 8) {
  3268       emit_opcode(cbuf, Assembler::REX_B);
  3269       dstenc -= 8;
  3271     // NEG $dst
  3272     emit_opcode(cbuf, 0xF7);
  3273     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3274   %}
  3276   enc_class neg_reg_wide(rRegI dst)
  3277   %{
  3278     int dstenc = $dst$$reg;
  3279     if (dstenc < 8) {
  3280       emit_opcode(cbuf, Assembler::REX_W);
  3281     } else {
  3282       emit_opcode(cbuf, Assembler::REX_WB);
  3283       dstenc -= 8;
  3285     // NEG $dst
  3286     emit_opcode(cbuf, 0xF7);
  3287     emit_rm(cbuf, 0x3, 0x03, dstenc);
  3288   %}
  3290   enc_class setLT_reg(rRegI dst)
  3291   %{
  3292     int dstenc = $dst$$reg;
  3293     if (dstenc >= 8) {
  3294       emit_opcode(cbuf, Assembler::REX_B);
  3295       dstenc -= 8;
  3296     } else if (dstenc >= 4) {
  3297       emit_opcode(cbuf, Assembler::REX);
  3299     // SETLT $dst
  3300     emit_opcode(cbuf, 0x0F);
  3301     emit_opcode(cbuf, 0x9C);
  3302     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3303   %}
  3305   enc_class setNZ_reg(rRegI dst)
  3306   %{
  3307     int dstenc = $dst$$reg;
  3308     if (dstenc >= 8) {
  3309       emit_opcode(cbuf, Assembler::REX_B);
  3310       dstenc -= 8;
  3311     } else if (dstenc >= 4) {
  3312       emit_opcode(cbuf, Assembler::REX);
  3314     // SETNZ $dst
  3315     emit_opcode(cbuf, 0x0F);
  3316     emit_opcode(cbuf, 0x95);
  3317     emit_rm(cbuf, 0x3, 0x0, dstenc);
  3318   %}
  3320   enc_class enc_cmpLTP(no_rcx_RegI p, no_rcx_RegI q, no_rcx_RegI y,
  3321                        rcx_RegI tmp)
  3322   %{
  3323     // cadd_cmpLT
  3325     int tmpReg = $tmp$$reg;
  3327     int penc = $p$$reg;
  3328     int qenc = $q$$reg;
  3329     int yenc = $y$$reg;
  3331     // subl $p,$q
  3332     if (penc < 8) {
  3333       if (qenc >= 8) {
  3334         emit_opcode(cbuf, Assembler::REX_B);
  3336     } else {
  3337       if (qenc < 8) {
  3338         emit_opcode(cbuf, Assembler::REX_R);
  3339       } else {
  3340         emit_opcode(cbuf, Assembler::REX_RB);
  3343     emit_opcode(cbuf, 0x2B);
  3344     emit_rm(cbuf, 0x3, penc & 7, qenc & 7);
  3346     // sbbl $tmp, $tmp
  3347     emit_opcode(cbuf, 0x1B);
  3348     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
  3350     // andl $tmp, $y
  3351     if (yenc >= 8) {
  3352       emit_opcode(cbuf, Assembler::REX_B);
  3354     emit_opcode(cbuf, 0x23);
  3355     emit_rm(cbuf, 0x3, tmpReg, yenc & 7);
  3357     // addl $p,$tmp
  3358     if (penc >= 8) {
  3359         emit_opcode(cbuf, Assembler::REX_R);
  3361     emit_opcode(cbuf, 0x03);
  3362     emit_rm(cbuf, 0x3, penc & 7, tmpReg);
  3363   %}
  3365   // Compare the lonogs and set -1, 0, or 1 into dst
  3366   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
  3367   %{
  3368     int src1enc = $src1$$reg;
  3369     int src2enc = $src2$$reg;
  3370     int dstenc = $dst$$reg;
  3372     // cmpq $src1, $src2
  3373     if (src1enc < 8) {
  3374       if (src2enc < 8) {
  3375         emit_opcode(cbuf, Assembler::REX_W);
  3376       } else {
  3377         emit_opcode(cbuf, Assembler::REX_WB);
  3379     } else {
  3380       if (src2enc < 8) {
  3381         emit_opcode(cbuf, Assembler::REX_WR);
  3382       } else {
  3383         emit_opcode(cbuf, Assembler::REX_WRB);
  3386     emit_opcode(cbuf, 0x3B);
  3387     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
  3389     // movl $dst, -1
  3390     if (dstenc >= 8) {
  3391       emit_opcode(cbuf, Assembler::REX_B);
  3393     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
  3394     emit_d32(cbuf, -1);
  3396     // jl,s done
  3397     emit_opcode(cbuf, 0x7C);
  3398     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
  3400     // setne $dst
  3401     if (dstenc >= 4) {
  3402       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
  3404     emit_opcode(cbuf, 0x0F);
  3405     emit_opcode(cbuf, 0x95);
  3406     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
  3408     // movzbl $dst, $dst
  3409     if (dstenc >= 4) {
  3410       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
  3412     emit_opcode(cbuf, 0x0F);
  3413     emit_opcode(cbuf, 0xB6);
  3414     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
  3415   %}
  3417   enc_class Push_ResultXD(regD dst) %{
  3418     int dstenc = $dst$$reg;
  3420     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [RSP]
  3422     // UseXmmLoadAndClearUpper ? movsd dst,[rsp] : movlpd dst,[rsp]
  3423     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
  3424     if (dstenc >= 8) {
  3425       emit_opcode(cbuf, Assembler::REX_R);
  3427     emit_opcode  (cbuf, 0x0F );
  3428     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12 );
  3429     encode_RegMem(cbuf, dstenc, RSP_enc, 0x4, 0, 0, false);
  3431     // add rsp,8
  3432     emit_opcode(cbuf, Assembler::REX_W);
  3433     emit_opcode(cbuf,0x83);
  3434     emit_rm(cbuf,0x3, 0x0, RSP_enc);
  3435     emit_d8(cbuf,0x08);
  3436   %}
  3438   enc_class Push_SrcXD(regD src) %{
  3439     int srcenc = $src$$reg;
  3441     // subq rsp,#8
  3442     emit_opcode(cbuf, Assembler::REX_W);
  3443     emit_opcode(cbuf, 0x83);
  3444     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3445     emit_d8(cbuf, 0x8);
  3447     // movsd [rsp],src
  3448     emit_opcode(cbuf, 0xF2);
  3449     if (srcenc >= 8) {
  3450       emit_opcode(cbuf, Assembler::REX_R);
  3452     emit_opcode(cbuf, 0x0F);
  3453     emit_opcode(cbuf, 0x11);
  3454     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false);
  3456     // fldd [rsp]
  3457     emit_opcode(cbuf, 0x66);
  3458     emit_opcode(cbuf, 0xDD);
  3459     encode_RegMem(cbuf, 0x0, RSP_enc, 0x4, 0, 0, false);
  3460   %}
  3463   enc_class movq_ld(regD dst, memory mem) %{
  3464     MacroAssembler _masm(&cbuf);
  3465     __ movq($dst$$XMMRegister, $mem$$Address);
  3466   %}
  3468   enc_class movq_st(memory mem, regD src) %{
  3469     MacroAssembler _masm(&cbuf);
  3470     __ movq($mem$$Address, $src$$XMMRegister);
  3471   %}
  3473   enc_class pshufd_8x8(regF dst, regF src) %{
  3474     MacroAssembler _masm(&cbuf);
  3476     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
  3477     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
  3478     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
  3479   %}
  3481   enc_class pshufd_4x16(regF dst, regF src) %{
  3482     MacroAssembler _masm(&cbuf);
  3484     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
  3485   %}
  3487   enc_class pshufd(regD dst, regD src, int mode) %{
  3488     MacroAssembler _masm(&cbuf);
  3490     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
  3491   %}
  3493   enc_class pxor(regD dst, regD src) %{
  3494     MacroAssembler _masm(&cbuf);
  3496     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
  3497   %}
  3499   enc_class mov_i2x(regD dst, rRegI src) %{
  3500     MacroAssembler _masm(&cbuf);
  3502     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
  3503   %}
  3505   // obj: object to lock
  3506   // box: box address (header location) -- killed
  3507   // tmp: rax -- killed
  3508   // scr: rbx -- killed
  3509   //
  3510   // What follows is a direct transliteration of fast_lock() and fast_unlock()
  3511   // from i486.ad.  See that file for comments.
  3512   // TODO: where possible switch from movq (r, 0) to movl(r,0) and
  3513   // use the shorter encoding.  (Movl clears the high-order 32-bits).
  3516   enc_class Fast_Lock(rRegP obj, rRegP box, rax_RegI tmp, rRegP scr)
  3517   %{
  3518     Register objReg = as_Register((int)$obj$$reg);
  3519     Register boxReg = as_Register((int)$box$$reg);
  3520     Register tmpReg = as_Register($tmp$$reg);
  3521     Register scrReg = as_Register($scr$$reg);
  3522     MacroAssembler masm(&cbuf);
  3524     // Verify uniqueness of register assignments -- necessary but not sufficient
  3525     assert (objReg != boxReg && objReg != tmpReg &&
  3526             objReg != scrReg && tmpReg != scrReg, "invariant") ;
  3528     if (_counters != NULL) {
  3529       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
  3531     if (EmitSync & 1) {
  3532         // Without cast to int32_t a movptr will destroy r10 which is typically obj
  3533         masm.movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ; 
  3534         masm.cmpptr(rsp, (int32_t)NULL_WORD) ; 
  3535     } else
  3536     if (EmitSync & 2) {
  3537         Label DONE_LABEL;
  3538         if (UseBiasedLocking) {
  3539            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
  3540           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
  3542         // QQQ was movl...
  3543         masm.movptr(tmpReg, 0x1);
  3544         masm.orptr(tmpReg, Address(objReg, 0));
  3545         masm.movptr(Address(boxReg, 0), tmpReg);
  3546         if (os::is_MP()) {
  3547           masm.lock();
  3549         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
  3550         masm.jcc(Assembler::equal, DONE_LABEL);
  3552         // Recursive locking
  3553         masm.subptr(tmpReg, rsp);
  3554         masm.andptr(tmpReg, 7 - os::vm_page_size());
  3555         masm.movptr(Address(boxReg, 0), tmpReg);
  3557         masm.bind(DONE_LABEL);
  3558         masm.nop(); // avoid branch to branch
  3559     } else {
  3560         Label DONE_LABEL, IsInflated, Egress;
  3562         masm.movptr(tmpReg, Address(objReg, 0)) ; 
  3563         masm.testl (tmpReg, 0x02) ;         // inflated vs stack-locked|neutral|biased
  3564         masm.jcc   (Assembler::notZero, IsInflated) ; 
  3566         // it's stack-locked, biased or neutral
  3567         // TODO: optimize markword triage order to reduce the number of
  3568         // conditional branches in the most common cases.
  3569         // Beware -- there's a subtle invariant that fetch of the markword
  3570         // at [FETCH], below, will never observe a biased encoding (*101b).
  3571         // If this invariant is not held we'll suffer exclusion (safety) failure.
  3573         if (UseBiasedLocking && !UseOptoBiasInlining) {
  3574           masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, _counters);
  3575           masm.movptr(tmpReg, Address(objReg, 0)) ;        // [FETCH]
  3578         // was q will it destroy high?
  3579         masm.orl   (tmpReg, 1) ; 
  3580         masm.movptr(Address(boxReg, 0), tmpReg) ;  
  3581         if (os::is_MP()) { masm.lock(); } 
  3582         masm.cmpxchgptr(boxReg, Address(objReg, 0)); // Updates tmpReg
  3583         if (_counters != NULL) {
  3584            masm.cond_inc32(Assembler::equal,
  3585                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3587         masm.jcc   (Assembler::equal, DONE_LABEL);
  3589         // Recursive locking
  3590         masm.subptr(tmpReg, rsp);
  3591         masm.andptr(tmpReg, 7 - os::vm_page_size());
  3592         masm.movptr(Address(boxReg, 0), tmpReg);
  3593         if (_counters != NULL) {
  3594            masm.cond_inc32(Assembler::equal,
  3595                            ExternalAddress((address) _counters->fast_path_entry_count_addr()));
  3597         masm.jmp   (DONE_LABEL) ;
  3599         masm.bind  (IsInflated) ;
  3600         // It's inflated
  3602         // TODO: someday avoid the ST-before-CAS penalty by
  3603         // relocating (deferring) the following ST.
  3604         // We should also think about trying a CAS without having
  3605         // fetched _owner.  If the CAS is successful we may
  3606         // avoid an RTO->RTS upgrade on the $line.
  3607         // Without cast to int32_t a movptr will destroy r10 which is typically obj
  3608         masm.movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark())) ; 
  3610         masm.mov    (boxReg, tmpReg) ; 
  3611         masm.movptr (tmpReg, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3612         masm.testptr(tmpReg, tmpReg) ;   
  3613         masm.jcc    (Assembler::notZero, DONE_LABEL) ; 
  3615         // It's inflated and appears unlocked
  3616         if (os::is_MP()) { masm.lock(); } 
  3617         masm.cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3618         // Intentional fall-through into DONE_LABEL ...
  3620         masm.bind  (DONE_LABEL) ;
  3621         masm.nop   () ;                 // avoid jmp to jmp
  3623   %}
  3625   // obj: object to unlock
  3626   // box: box address (displaced header location), killed
  3627   // RBX: killed tmp; cannot be obj nor box
  3628   enc_class Fast_Unlock(rRegP obj, rax_RegP box, rRegP tmp)
  3629   %{
  3631     Register objReg = as_Register($obj$$reg);
  3632     Register boxReg = as_Register($box$$reg);
  3633     Register tmpReg = as_Register($tmp$$reg);
  3634     MacroAssembler masm(&cbuf);
  3636     if (EmitSync & 4) { 
  3637        masm.cmpptr(rsp, 0) ; 
  3638     } else
  3639     if (EmitSync & 8) {
  3640        Label DONE_LABEL;
  3641        if (UseBiasedLocking) {
  3642          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3645        // Check whether the displaced header is 0
  3646        //(=> recursive unlock)
  3647        masm.movptr(tmpReg, Address(boxReg, 0));
  3648        masm.testptr(tmpReg, tmpReg);
  3649        masm.jcc(Assembler::zero, DONE_LABEL);
  3651        // If not recursive lock, reset the header to displaced header
  3652        if (os::is_MP()) {
  3653          masm.lock();
  3655        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3656        masm.bind(DONE_LABEL);
  3657        masm.nop(); // avoid branch to branch
  3658     } else {
  3659        Label DONE_LABEL, Stacked, CheckSucc ;
  3661        if (UseBiasedLocking && !UseOptoBiasInlining) {
  3662          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
  3665        masm.movptr(tmpReg, Address(objReg, 0)) ; 
  3666        masm.cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD) ; 
  3667        masm.jcc   (Assembler::zero, DONE_LABEL) ; 
  3668        masm.testl (tmpReg, 0x02) ; 
  3669        masm.jcc   (Assembler::zero, Stacked) ; 
  3671        // It's inflated
  3672        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
  3673        masm.xorptr(boxReg, r15_thread) ; 
  3674        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ; 
  3675        masm.jcc   (Assembler::notZero, DONE_LABEL) ; 
  3676        masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
  3677        masm.orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
  3678        masm.jcc   (Assembler::notZero, CheckSucc) ; 
  3679        masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ; 
  3680        masm.jmp   (DONE_LABEL) ; 
  3682        if ((EmitSync & 65536) == 0) { 
  3683          Label LSuccess, LGoSlowPath ;
  3684          masm.bind  (CheckSucc) ;
  3685          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3686          masm.jcc   (Assembler::zero, LGoSlowPath) ;
  3688          // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
  3689          // the explicit ST;MEMBAR combination, but masm doesn't currently support
  3690          // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
  3691          // are all faster when the write buffer is populated.
  3692          masm.movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3693          if (os::is_MP()) {
  3694             masm.lock () ; masm.addl (Address(rsp, 0), 0) ;
  3696          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD) ;
  3697          masm.jcc   (Assembler::notZero, LSuccess) ;
  3699          masm.movptr (boxReg, (int32_t)NULL_WORD) ;                   // box is really EAX
  3700          if (os::is_MP()) { masm.lock(); }
  3701          masm.cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
  3702          masm.jcc   (Assembler::notEqual, LSuccess) ;
  3703          // Intentional fall-through into slow-path
  3705          masm.bind  (LGoSlowPath) ;
  3706          masm.orl   (boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
  3707          masm.jmp   (DONE_LABEL) ;
  3709          masm.bind  (LSuccess) ;
  3710          masm.testl (boxReg, 0) ;                      // set ICC.ZF=1 to indicate success
  3711          masm.jmp   (DONE_LABEL) ;
  3714        masm.bind  (Stacked) ; 
  3715        masm.movptr(tmpReg, Address (boxReg, 0)) ;      // re-fetch
  3716        if (os::is_MP()) { masm.lock(); } 
  3717        masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
  3719        if (EmitSync & 65536) {
  3720           masm.bind (CheckSucc) ;
  3722        masm.bind(DONE_LABEL);
  3723        if (EmitSync & 32768) {
  3724           masm.nop();                      // avoid branch to branch
  3727   %}
  3729   enc_class enc_String_Compare()
  3730   %{
  3731     Label RCX_GOOD_LABEL, LENGTH_DIFF_LABEL,
  3732           POP_LABEL, DONE_LABEL, CONT_LABEL,
  3733           WHILE_HEAD_LABEL;
  3734     MacroAssembler masm(&cbuf);
  3736     // Get the first character position in both strings
  3737     //         [8] char array, [12] offset, [16] count
  3738     int value_offset  = java_lang_String::value_offset_in_bytes();
  3739     int offset_offset = java_lang_String::offset_offset_in_bytes();
  3740     int count_offset  = java_lang_String::count_offset_in_bytes();
  3741     int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3743     masm.load_heap_oop(rax, Address(rsi, value_offset));
  3744     masm.movl(rcx, Address(rsi, offset_offset));
  3745     masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
  3746     masm.load_heap_oop(rbx, Address(rdi, value_offset));
  3747     masm.movl(rcx, Address(rdi, offset_offset));
  3748     masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
  3750     // Compute the minimum of the string lengths(rsi) and the
  3751     // difference of the string lengths (stack)
  3753     masm.movl(rdi, Address(rdi, count_offset));
  3754     masm.movl(rsi, Address(rsi, count_offset));
  3755     masm.movl(rcx, rdi);
  3756     masm.subl(rdi, rsi);
  3757     masm.push(rdi);
  3758     masm.cmov(Assembler::lessEqual, rsi, rcx);
  3760     // Is the minimum length zero?
  3761     masm.bind(RCX_GOOD_LABEL);
  3762     masm.testl(rsi, rsi);
  3763     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3765     // Load first characters
  3766     masm.load_unsigned_short(rcx, Address(rbx, 0));
  3767     masm.load_unsigned_short(rdi, Address(rax, 0));
  3769     // Compare first characters
  3770     masm.subl(rcx, rdi);
  3771     masm.jcc(Assembler::notZero,  POP_LABEL);
  3772     masm.decrementl(rsi);
  3773     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  3776       // Check after comparing first character to see if strings are equivalent
  3777       Label LSkip2;
  3778       // Check if the strings start at same location
  3779       masm.cmpptr(rbx, rax);
  3780       masm.jcc(Assembler::notEqual, LSkip2);
  3782       // Check if the length difference is zero (from stack)
  3783       masm.cmpl(Address(rsp, 0), 0x0);
  3784       masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  3786       // Strings might not be equivalent
  3787       masm.bind(LSkip2);
  3790     // Shift RAX and RBX to the end of the arrays, negate min
  3791     masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
  3792     masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
  3793     masm.negptr(rsi);
  3795     // Compare the rest of the characters
  3796     masm.bind(WHILE_HEAD_LABEL);
  3797     masm.load_unsigned_short(rcx, Address(rbx, rsi, Address::times_2, 0));
  3798     masm.load_unsigned_short(rdi, Address(rax, rsi, Address::times_2, 0));
  3799     masm.subl(rcx, rdi);
  3800     masm.jcc(Assembler::notZero, POP_LABEL);
  3801     masm.increment(rsi);
  3802     masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
  3804     // Strings are equal up to min length.  Return the length difference.
  3805     masm.bind(LENGTH_DIFF_LABEL);
  3806     masm.pop(rcx);
  3807     masm.jmp(DONE_LABEL);
  3809     // Discard the stored length difference
  3810     masm.bind(POP_LABEL);
  3811     masm.addptr(rsp, 8);
  3813     // That's it
  3814     masm.bind(DONE_LABEL);
  3815   %}
  3817   enc_class enc_Array_Equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI tmp1, rbx_RegI tmp2, rcx_RegI result) %{
  3818     Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
  3819     MacroAssembler masm(&cbuf);
  3821     Register ary1Reg   = as_Register($ary1$$reg);
  3822     Register ary2Reg   = as_Register($ary2$$reg);
  3823     Register tmp1Reg   = as_Register($tmp1$$reg);
  3824     Register tmp2Reg   = as_Register($tmp2$$reg);
  3825     Register resultReg = as_Register($result$$reg);
  3827     int length_offset  = arrayOopDesc::length_offset_in_bytes();
  3828     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  3830     // Check the input args
  3831     masm.cmpq(ary1Reg, ary2Reg);                        
  3832     masm.jcc(Assembler::equal, TRUE_LABEL);
  3833     masm.testq(ary1Reg, ary1Reg);                       
  3834     masm.jcc(Assembler::zero, FALSE_LABEL);
  3835     masm.testq(ary2Reg, ary2Reg);                       
  3836     masm.jcc(Assembler::zero, FALSE_LABEL);
  3838     // Check the lengths
  3839     masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
  3840     masm.movl(resultReg, Address(ary2Reg, length_offset));
  3841     masm.cmpl(tmp2Reg, resultReg);
  3842     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3843     masm.testl(resultReg, resultReg);
  3844     masm.jcc(Assembler::zero, TRUE_LABEL);
  3846     // Get the number of 4 byte vectors to compare
  3847     masm.shrl(resultReg, 1);
  3849     // Check for odd-length arrays
  3850     masm.andl(tmp2Reg, 1);
  3851     masm.testl(tmp2Reg, tmp2Reg);
  3852     masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
  3854     // Compare 2-byte "tail" at end of arrays
  3855     masm.load_unsigned_short(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3856     masm.load_unsigned_short(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3857     masm.cmpl(tmp1Reg, tmp2Reg);
  3858     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3859     masm.testl(resultReg, resultReg);
  3860     masm.jcc(Assembler::zero, TRUE_LABEL);
  3862     // Setup compare loop
  3863     masm.bind(COMPARE_LOOP_HDR);
  3864     // Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
  3865     masm.leaq(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
  3866     masm.leaq(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
  3867     masm.negq(resultReg);
  3869     // 4-byte-wide compare loop
  3870     masm.bind(COMPARE_LOOP);
  3871     masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
  3872     masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
  3873     masm.cmpl(ary1Reg, ary2Reg);
  3874     masm.jcc(Assembler::notEqual, FALSE_LABEL);
  3875     masm.incrementq(resultReg);
  3876     masm.jcc(Assembler::notZero, COMPARE_LOOP);
  3878     masm.bind(TRUE_LABEL);
  3879     masm.movl(resultReg, 1);   // return true
  3880     masm.jmp(DONE_LABEL);
  3882     masm.bind(FALSE_LABEL);
  3883     masm.xorl(resultReg, resultReg); // return false
  3885     // That's it
  3886     masm.bind(DONE_LABEL);
  3887   %}
  3889   enc_class enc_rethrow()
  3890   %{
  3891     cbuf.set_inst_mark();
  3892     emit_opcode(cbuf, 0xE9); // jmp entry
  3893     emit_d32_reloc(cbuf,
  3894                    (int) (OptoRuntime::rethrow_stub() - cbuf.code_end() - 4),
  3895                    runtime_call_Relocation::spec(),
  3896                    RELOC_DISP32);
  3897   %}
  3899   enc_class absF_encoding(regF dst)
  3900   %{
  3901     int dstenc = $dst$$reg;
  3902     address signmask_address = (address) StubRoutines::x86::float_sign_mask();
  3904     cbuf.set_inst_mark();
  3905     if (dstenc >= 8) {
  3906       emit_opcode(cbuf, Assembler::REX_R);
  3907       dstenc -= 8;
  3909     // XXX reg_mem doesn't support RIP-relative addressing yet
  3910     emit_opcode(cbuf, 0x0F);
  3911     emit_opcode(cbuf, 0x54);
  3912     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3913     emit_d32_reloc(cbuf, signmask_address);
  3914   %}
  3916   enc_class absD_encoding(regD dst)
  3917   %{
  3918     int dstenc = $dst$$reg;
  3919     address signmask_address = (address) StubRoutines::x86::double_sign_mask();
  3921     cbuf.set_inst_mark();
  3922     emit_opcode(cbuf, 0x66);
  3923     if (dstenc >= 8) {
  3924       emit_opcode(cbuf, Assembler::REX_R);
  3925       dstenc -= 8;
  3927     // XXX reg_mem doesn't support RIP-relative addressing yet
  3928     emit_opcode(cbuf, 0x0F);
  3929     emit_opcode(cbuf, 0x54);
  3930     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3931     emit_d32_reloc(cbuf, signmask_address);
  3932   %}
  3934   enc_class negF_encoding(regF dst)
  3935   %{
  3936     int dstenc = $dst$$reg;
  3937     address signflip_address = (address) StubRoutines::x86::float_sign_flip();
  3939     cbuf.set_inst_mark();
  3940     if (dstenc >= 8) {
  3941       emit_opcode(cbuf, Assembler::REX_R);
  3942       dstenc -= 8;
  3944     // XXX reg_mem doesn't support RIP-relative addressing yet
  3945     emit_opcode(cbuf, 0x0F);
  3946     emit_opcode(cbuf, 0x57);
  3947     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3948     emit_d32_reloc(cbuf, signflip_address);
  3949   %}
  3951   enc_class negD_encoding(regD dst)
  3952   %{
  3953     int dstenc = $dst$$reg;
  3954     address signflip_address = (address) StubRoutines::x86::double_sign_flip();
  3956     cbuf.set_inst_mark();
  3957     emit_opcode(cbuf, 0x66);
  3958     if (dstenc >= 8) {
  3959       emit_opcode(cbuf, Assembler::REX_R);
  3960       dstenc -= 8;
  3962     // XXX reg_mem doesn't support RIP-relative addressing yet
  3963     emit_opcode(cbuf, 0x0F);
  3964     emit_opcode(cbuf, 0x57);
  3965     emit_rm(cbuf, 0x0, dstenc, 0x5);  // 00 reg 101
  3966     emit_d32_reloc(cbuf, signflip_address);
  3967   %}
  3969   enc_class f2i_fixup(rRegI dst, regF src)
  3970   %{
  3971     int dstenc = $dst$$reg;
  3972     int srcenc = $src$$reg;
  3974     // cmpl $dst, #0x80000000
  3975     if (dstenc >= 8) {
  3976       emit_opcode(cbuf, Assembler::REX_B);
  3978     emit_opcode(cbuf, 0x81);
  3979     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  3980     emit_d32(cbuf, 0x80000000);
  3982     // jne,s done
  3983     emit_opcode(cbuf, 0x75);
  3984     if (srcenc < 8 && dstenc < 8) {
  3985       emit_d8(cbuf, 0xF);
  3986     } else if (srcenc >= 8 && dstenc >= 8) {
  3987       emit_d8(cbuf, 0x11);
  3988     } else {
  3989       emit_d8(cbuf, 0x10);
  3992     // subq rsp, #8
  3993     emit_opcode(cbuf, Assembler::REX_W);
  3994     emit_opcode(cbuf, 0x83);
  3995     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  3996     emit_d8(cbuf, 8);
  3998     // movss [rsp], $src
  3999     emit_opcode(cbuf, 0xF3);
  4000     if (srcenc >= 8) {
  4001       emit_opcode(cbuf, Assembler::REX_R);
  4003     emit_opcode(cbuf, 0x0F);
  4004     emit_opcode(cbuf, 0x11);
  4005     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4007     // call f2i_fixup
  4008     cbuf.set_inst_mark();
  4009     emit_opcode(cbuf, 0xE8);
  4010     emit_d32_reloc(cbuf,
  4011                    (int)
  4012                    (StubRoutines::x86::f2i_fixup() - cbuf.code_end() - 4),
  4013                    runtime_call_Relocation::spec(),
  4014                    RELOC_DISP32);
  4016     // popq $dst
  4017     if (dstenc >= 8) {
  4018       emit_opcode(cbuf, Assembler::REX_B);
  4020     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4022     // done:
  4023   %}
  4025   enc_class f2l_fixup(rRegL dst, regF src)
  4026   %{
  4027     int dstenc = $dst$$reg;
  4028     int srcenc = $src$$reg;
  4029     address const_address = (address) StubRoutines::x86::double_sign_flip();
  4031     // cmpq $dst, [0x8000000000000000]
  4032     cbuf.set_inst_mark();
  4033     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  4034     emit_opcode(cbuf, 0x39);
  4035     // XXX reg_mem doesn't support RIP-relative addressing yet
  4036     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  4037     emit_d32_reloc(cbuf, const_address);
  4040     // jne,s done
  4041     emit_opcode(cbuf, 0x75);
  4042     if (srcenc < 8 && dstenc < 8) {
  4043       emit_d8(cbuf, 0xF);
  4044     } else if (srcenc >= 8 && dstenc >= 8) {
  4045       emit_d8(cbuf, 0x11);
  4046     } else {
  4047       emit_d8(cbuf, 0x10);
  4050     // subq rsp, #8
  4051     emit_opcode(cbuf, Assembler::REX_W);
  4052     emit_opcode(cbuf, 0x83);
  4053     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4054     emit_d8(cbuf, 8);
  4056     // movss [rsp], $src
  4057     emit_opcode(cbuf, 0xF3);
  4058     if (srcenc >= 8) {
  4059       emit_opcode(cbuf, Assembler::REX_R);
  4061     emit_opcode(cbuf, 0x0F);
  4062     emit_opcode(cbuf, 0x11);
  4063     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4065     // call f2l_fixup
  4066     cbuf.set_inst_mark();
  4067     emit_opcode(cbuf, 0xE8);
  4068     emit_d32_reloc(cbuf,
  4069                    (int)
  4070                    (StubRoutines::x86::f2l_fixup() - cbuf.code_end() - 4),
  4071                    runtime_call_Relocation::spec(),
  4072                    RELOC_DISP32);
  4074     // popq $dst
  4075     if (dstenc >= 8) {
  4076       emit_opcode(cbuf, Assembler::REX_B);
  4078     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4080     // done:
  4081   %}
  4083   enc_class d2i_fixup(rRegI dst, regD src)
  4084   %{
  4085     int dstenc = $dst$$reg;
  4086     int srcenc = $src$$reg;
  4088     // cmpl $dst, #0x80000000
  4089     if (dstenc >= 8) {
  4090       emit_opcode(cbuf, Assembler::REX_B);
  4092     emit_opcode(cbuf, 0x81);
  4093     emit_rm(cbuf, 0x3, 0x7, dstenc & 7);
  4094     emit_d32(cbuf, 0x80000000);
  4096     // jne,s done
  4097     emit_opcode(cbuf, 0x75);
  4098     if (srcenc < 8 && dstenc < 8) {
  4099       emit_d8(cbuf, 0xF);
  4100     } else if (srcenc >= 8 && dstenc >= 8) {
  4101       emit_d8(cbuf, 0x11);
  4102     } else {
  4103       emit_d8(cbuf, 0x10);
  4106     // subq rsp, #8
  4107     emit_opcode(cbuf, Assembler::REX_W);
  4108     emit_opcode(cbuf, 0x83);
  4109     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4110     emit_d8(cbuf, 8);
  4112     // movsd [rsp], $src
  4113     emit_opcode(cbuf, 0xF2);
  4114     if (srcenc >= 8) {
  4115       emit_opcode(cbuf, Assembler::REX_R);
  4117     emit_opcode(cbuf, 0x0F);
  4118     emit_opcode(cbuf, 0x11);
  4119     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4121     // call d2i_fixup
  4122     cbuf.set_inst_mark();
  4123     emit_opcode(cbuf, 0xE8);
  4124     emit_d32_reloc(cbuf,
  4125                    (int)
  4126                    (StubRoutines::x86::d2i_fixup() - cbuf.code_end() - 4),
  4127                    runtime_call_Relocation::spec(),
  4128                    RELOC_DISP32);
  4130     // popq $dst
  4131     if (dstenc >= 8) {
  4132       emit_opcode(cbuf, Assembler::REX_B);
  4134     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4136     // done:
  4137   %}
  4139   enc_class d2l_fixup(rRegL dst, regD src)
  4140   %{
  4141     int dstenc = $dst$$reg;
  4142     int srcenc = $src$$reg;
  4143     address const_address = (address) StubRoutines::x86::double_sign_flip();
  4145     // cmpq $dst, [0x8000000000000000]
  4146     cbuf.set_inst_mark();
  4147     emit_opcode(cbuf, dstenc < 8 ? Assembler::REX_W : Assembler::REX_WR);
  4148     emit_opcode(cbuf, 0x39);
  4149     // XXX reg_mem doesn't support RIP-relative addressing yet
  4150     emit_rm(cbuf, 0x0, dstenc & 7, 0x5); // 00 reg 101
  4151     emit_d32_reloc(cbuf, const_address);
  4154     // jne,s done
  4155     emit_opcode(cbuf, 0x75);
  4156     if (srcenc < 8 && dstenc < 8) {
  4157       emit_d8(cbuf, 0xF);
  4158     } else if (srcenc >= 8 && dstenc >= 8) {
  4159       emit_d8(cbuf, 0x11);
  4160     } else {
  4161       emit_d8(cbuf, 0x10);
  4164     // subq rsp, #8
  4165     emit_opcode(cbuf, Assembler::REX_W);
  4166     emit_opcode(cbuf, 0x83);
  4167     emit_rm(cbuf, 0x3, 0x5, RSP_enc);
  4168     emit_d8(cbuf, 8);
  4170     // movsd [rsp], $src
  4171     emit_opcode(cbuf, 0xF2);
  4172     if (srcenc >= 8) {
  4173       emit_opcode(cbuf, Assembler::REX_R);
  4175     emit_opcode(cbuf, 0x0F);
  4176     emit_opcode(cbuf, 0x11);
  4177     encode_RegMem(cbuf, srcenc, RSP_enc, 0x4, 0, 0, false); // 2 bytes
  4179     // call d2l_fixup
  4180     cbuf.set_inst_mark();
  4181     emit_opcode(cbuf, 0xE8);
  4182     emit_d32_reloc(cbuf,
  4183                    (int)
  4184                    (StubRoutines::x86::d2l_fixup() - cbuf.code_end() - 4),
  4185                    runtime_call_Relocation::spec(),
  4186                    RELOC_DISP32);
  4188     // popq $dst
  4189     if (dstenc >= 8) {
  4190       emit_opcode(cbuf, Assembler::REX_B);
  4192     emit_opcode(cbuf, 0x58 | (dstenc & 7));
  4194     // done:
  4195   %}
  4197   enc_class enc_membar_acquire
  4198   %{
  4199     // [jk] not needed currently, if you enable this and it really
  4200     // emits code don't forget to the remove the "size(0)" line in
  4201     // membar_acquire()
  4202     // MacroAssembler masm(&cbuf);
  4203     // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
  4204     //                                         Assembler::LoadLoad));
  4205   %}
  4207   enc_class enc_membar_release
  4208   %{
  4209     // [jk] not needed currently, if you enable this and it really
  4210     // emits code don't forget to the remove the "size(0)" line in
  4211     // membar_release()
  4212     // MacroAssembler masm(&cbuf);
  4213     // masm.membar(Assembler::Membar_mask_bits(Assembler::LoadStore |
  4214     //                                         Assembler::StoreStore));
  4215   %}
  4217   enc_class enc_membar_volatile
  4218   %{
  4219     MacroAssembler masm(&cbuf);
  4220     masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  4221                                             Assembler::StoreStore));
  4222   %}
  4224   // Safepoint Poll.  This polls the safepoint page, and causes an
  4225   // exception if it is not readable. Unfortunately, it kills
  4226   // RFLAGS in the process.
  4227   enc_class enc_safepoint_poll
  4228   %{
  4229     // testl %rax, off(%rip) // Opcode + ModRM + Disp32 == 6 bytes
  4230     // XXX reg_mem doesn't support RIP-relative addressing yet
  4231     cbuf.set_inst_mark();
  4232     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0); // XXX
  4233     emit_opcode(cbuf, 0x85); // testl
  4234     emit_rm(cbuf, 0x0, RAX_enc, 0x5); // 00 rax 101 == 0x5
  4235     // cbuf.inst_mark() is beginning of instruction
  4236     emit_d32_reloc(cbuf, os::get_polling_page());
  4237 //                    relocInfo::poll_type,
  4238   %}
  4239 %}
  4243 //----------FRAME--------------------------------------------------------------
  4244 // Definition of frame structure and management information.
  4245 //
  4246 //  S T A C K   L A Y O U T    Allocators stack-slot number
  4247 //                             |   (to get allocators register number
  4248 //  G  Owned by    |        |  v    add OptoReg::stack0())
  4249 //  r   CALLER     |        |
  4250 //  o     |        +--------+      pad to even-align allocators stack-slot
  4251 //  w     V        |  pad0  |        numbers; owned by CALLER
  4252 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
  4253 //  h     ^        |   in   |  5
  4254 //        |        |  args  |  4   Holes in incoming args owned by SELF
  4255 //  |     |        |        |  3
  4256 //  |     |        +--------+
  4257 //  V     |        | old out|      Empty on Intel, window on Sparc
  4258 //        |    old |preserve|      Must be even aligned.
  4259 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
  4260 //        |        |   in   |  3   area for Intel ret address
  4261 //     Owned by    |preserve|      Empty on Sparc.
  4262 //       SELF      +--------+
  4263 //        |        |  pad2  |  2   pad to align old SP
  4264 //        |        +--------+  1
  4265 //        |        | locks  |  0
  4266 //        |        +--------+----> OptoReg::stack0(), even aligned
  4267 //        |        |  pad1  | 11   pad to align new SP
  4268 //        |        +--------+
  4269 //        |        |        | 10
  4270 //        |        | spills |  9   spills
  4271 //        V        |        |  8   (pad0 slot for callee)
  4272 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
  4273 //        ^        |  out   |  7
  4274 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
  4275 //     Owned by    +--------+
  4276 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
  4277 //        |    new |preserve|      Must be even-aligned.
  4278 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
  4279 //        |        |        |
  4280 //
  4281 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
  4282 //         known from SELF's arguments and the Java calling convention.
  4283 //         Region 6-7 is determined per call site.
  4284 // Note 2: If the calling convention leaves holes in the incoming argument
  4285 //         area, those holes are owned by SELF.  Holes in the outgoing area
  4286 //         are owned by the CALLEE.  Holes should not be nessecary in the
  4287 //         incoming area, as the Java calling convention is completely under
  4288 //         the control of the AD file.  Doubles can be sorted and packed to
  4289 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
  4290 //         varargs C calling conventions.
  4291 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
  4292 //         even aligned with pad0 as needed.
  4293 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
  4294 //         region 6-11 is even aligned; it may be padded out more so that
  4295 //         the region from SP to FP meets the minimum stack alignment.
  4296 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
  4297 //         alignment.  Region 11, pad1, may be dynamically extended so that
  4298 //         SP meets the minimum alignment.
  4300 frame
  4301 %{
  4302   // What direction does stack grow in (assumed to be same for C & Java)
  4303   stack_direction(TOWARDS_LOW);
  4305   // These three registers define part of the calling convention
  4306   // between compiled code and the interpreter.
  4307   inline_cache_reg(RAX);                // Inline Cache Register
  4308   interpreter_method_oop_reg(RBX);      // Method Oop Register when
  4309                                         // calling interpreter
  4311   // Optional: name the operand used by cisc-spilling to access
  4312   // [stack_pointer + offset]
  4313   cisc_spilling_operand_name(indOffset32);
  4315   // Number of stack slots consumed by locking an object
  4316   sync_stack_slots(2);
  4318   // Compiled code's Frame Pointer
  4319   frame_pointer(RSP);
  4321   // Interpreter stores its frame pointer in a register which is
  4322   // stored to the stack by I2CAdaptors.
  4323   // I2CAdaptors convert from interpreted java to compiled java.
  4324   interpreter_frame_pointer(RBP);
  4326   // Stack alignment requirement
  4327   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
  4329   // Number of stack slots between incoming argument block and the start of
  4330   // a new frame.  The PROLOG must add this many slots to the stack.  The
  4331   // EPILOG must remove this many slots.  amd64 needs two slots for
  4332   // return address.
  4333   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
  4335   // Number of outgoing stack slots killed above the out_preserve_stack_slots
  4336   // for calls to C.  Supports the var-args backing area for register parms.
  4337   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
  4339   // The after-PROLOG location of the return address.  Location of
  4340   // return address specifies a type (REG or STACK) and a number
  4341   // representing the register number (i.e. - use a register name) or
  4342   // stack slot.
  4343   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
  4344   // Otherwise, it is above the locks and verification slot and alignment word
  4345   return_addr(STACK - 2 +
  4346               round_to(2 + 2 * VerifyStackAtCalls +
  4347                        Compile::current()->fixed_slots(),
  4348                        WordsPerLong * 2));
  4350   // Body of function which returns an integer array locating
  4351   // arguments either in registers or in stack slots.  Passed an array
  4352   // of ideal registers called "sig" and a "length" count.  Stack-slot
  4353   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  4354   // arguments for a CALLEE.  Incoming stack arguments are
  4355   // automatically biased by the preserve_stack_slots field above.
  4357   calling_convention
  4358   %{
  4359     // No difference between ingoing/outgoing just pass false
  4360     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  4361   %}
  4363   c_calling_convention
  4364   %{
  4365     // This is obviously always outgoing
  4366     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
  4367   %}
  4369   // Location of compiled Java return values.  Same as C for now.
  4370   return_value
  4371   %{
  4372     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
  4373            "only return normal values");
  4375     static const int lo[Op_RegL + 1] = {
  4376       0,
  4377       0,
  4378       RAX_num,  // Op_RegN
  4379       RAX_num,  // Op_RegI
  4380       RAX_num,  // Op_RegP
  4381       XMM0_num, // Op_RegF
  4382       XMM0_num, // Op_RegD
  4383       RAX_num   // Op_RegL
  4384     };
  4385     static const int hi[Op_RegL + 1] = {
  4386       0,
  4387       0,
  4388       OptoReg::Bad, // Op_RegN
  4389       OptoReg::Bad, // Op_RegI
  4390       RAX_H_num,    // Op_RegP
  4391       OptoReg::Bad, // Op_RegF
  4392       XMM0_H_num,   // Op_RegD
  4393       RAX_H_num     // Op_RegL
  4394     };
  4395     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 1, "missing type");
  4396     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
  4397   %}
  4398 %}
  4400 //----------ATTRIBUTES---------------------------------------------------------
  4401 //----------Operand Attributes-------------------------------------------------
  4402 op_attrib op_cost(0);        // Required cost attribute
  4404 //----------Instruction Attributes---------------------------------------------
  4405 ins_attrib ins_cost(100);       // Required cost attribute
  4406 ins_attrib ins_size(8);         // Required size attribute (in bits)
  4407 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
  4408 ins_attrib ins_short_branch(0); // Required flag: is this instruction
  4409                                 // a non-matching short branch variant
  4410                                 // of some long branch?
  4411 ins_attrib ins_alignment(1);    // Required alignment attribute (must
  4412                                 // be a power of 2) specifies the
  4413                                 // alignment that some part of the
  4414                                 // instruction (not necessarily the
  4415                                 // start) requires.  If > 1, a
  4416                                 // compute_padding() function must be
  4417                                 // provided for the instruction
  4419 //----------OPERANDS-----------------------------------------------------------
  4420 // Operand definitions must precede instruction definitions for correct parsing
  4421 // in the ADLC because operands constitute user defined types which are used in
  4422 // instruction definitions.
  4424 //----------Simple Operands----------------------------------------------------
  4425 // Immediate Operands
  4426 // Integer Immediate
  4427 operand immI()
  4428 %{
  4429   match(ConI);
  4431   op_cost(10);
  4432   format %{ %}
  4433   interface(CONST_INTER);
  4434 %}
  4436 // Constant for test vs zero
  4437 operand immI0()
  4438 %{
  4439   predicate(n->get_int() == 0);
  4440   match(ConI);
  4442   op_cost(0);
  4443   format %{ %}
  4444   interface(CONST_INTER);
  4445 %}
  4447 // Constant for increment
  4448 operand immI1()
  4449 %{
  4450   predicate(n->get_int() == 1);
  4451   match(ConI);
  4453   op_cost(0);
  4454   format %{ %}
  4455   interface(CONST_INTER);
  4456 %}
  4458 // Constant for decrement
  4459 operand immI_M1()
  4460 %{
  4461   predicate(n->get_int() == -1);
  4462   match(ConI);
  4464   op_cost(0);
  4465   format %{ %}
  4466   interface(CONST_INTER);
  4467 %}
  4469 // Valid scale values for addressing modes
  4470 operand immI2()
  4471 %{
  4472   predicate(0 <= n->get_int() && (n->get_int() <= 3));
  4473   match(ConI);
  4475   format %{ %}
  4476   interface(CONST_INTER);
  4477 %}
  4479 operand immI8()
  4480 %{
  4481   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
  4482   match(ConI);
  4484   op_cost(5);
  4485   format %{ %}
  4486   interface(CONST_INTER);
  4487 %}
  4489 operand immI16()
  4490 %{
  4491   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
  4492   match(ConI);
  4494   op_cost(10);
  4495   format %{ %}
  4496   interface(CONST_INTER);
  4497 %}
  4499 // Constant for long shifts
  4500 operand immI_32()
  4501 %{
  4502   predicate( n->get_int() == 32 );
  4503   match(ConI);
  4505   op_cost(0);
  4506   format %{ %}
  4507   interface(CONST_INTER);
  4508 %}
  4510 // Constant for long shifts
  4511 operand immI_64()
  4512 %{
  4513   predicate( n->get_int() == 64 );
  4514   match(ConI);
  4516   op_cost(0);
  4517   format %{ %}
  4518   interface(CONST_INTER);
  4519 %}
  4521 // Pointer Immediate
  4522 operand immP()
  4523 %{
  4524   match(ConP);
  4526   op_cost(10);
  4527   format %{ %}
  4528   interface(CONST_INTER);
  4529 %}
  4531 // NULL Pointer Immediate
  4532 operand immP0()
  4533 %{
  4534   predicate(n->get_ptr() == 0);
  4535   match(ConP);
  4537   op_cost(5);
  4538   format %{ %}
  4539   interface(CONST_INTER);
  4540 %}
  4542 // Pointer Immediate
  4543 operand immN() %{
  4544   match(ConN);
  4546   op_cost(10);
  4547   format %{ %}
  4548   interface(CONST_INTER);
  4549 %}
  4551 // NULL Pointer Immediate
  4552 operand immN0() %{
  4553   predicate(n->get_narrowcon() == 0);
  4554   match(ConN);
  4556   op_cost(5);
  4557   format %{ %}
  4558   interface(CONST_INTER);
  4559 %}
  4561 operand immP31()
  4562 %{
  4563   predicate(!n->as_Type()->type()->isa_oopptr()
  4564             && (n->get_ptr() >> 31) == 0);
  4565   match(ConP);
  4567   op_cost(5);
  4568   format %{ %}
  4569   interface(CONST_INTER);
  4570 %}
  4573 // Long Immediate
  4574 operand immL()
  4575 %{
  4576   match(ConL);
  4578   op_cost(20);
  4579   format %{ %}
  4580   interface(CONST_INTER);
  4581 %}
  4583 // Long Immediate 8-bit
  4584 operand immL8()
  4585 %{
  4586   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
  4587   match(ConL);
  4589   op_cost(5);
  4590   format %{ %}
  4591   interface(CONST_INTER);
  4592 %}
  4594 // Long Immediate 32-bit unsigned
  4595 operand immUL32()
  4596 %{
  4597   predicate(n->get_long() == (unsigned int) (n->get_long()));
  4598   match(ConL);
  4600   op_cost(10);
  4601   format %{ %}
  4602   interface(CONST_INTER);
  4603 %}
  4605 // Long Immediate 32-bit signed
  4606 operand immL32()
  4607 %{
  4608   predicate(n->get_long() == (int) (n->get_long()));
  4609   match(ConL);
  4611   op_cost(15);
  4612   format %{ %}
  4613   interface(CONST_INTER);
  4614 %}
  4616 // Long Immediate zero
  4617 operand immL0()
  4618 %{
  4619   predicate(n->get_long() == 0L);
  4620   match(ConL);
  4622   op_cost(10);
  4623   format %{ %}
  4624   interface(CONST_INTER);
  4625 %}
  4627 // Constant for increment
  4628 operand immL1()
  4629 %{
  4630   predicate(n->get_long() == 1);
  4631   match(ConL);
  4633   format %{ %}
  4634   interface(CONST_INTER);
  4635 %}
  4637 // Constant for decrement
  4638 operand immL_M1()
  4639 %{
  4640   predicate(n->get_long() == -1);
  4641   match(ConL);
  4643   format %{ %}
  4644   interface(CONST_INTER);
  4645 %}
  4647 // Long Immediate: the value 10
  4648 operand immL10()
  4649 %{
  4650   predicate(n->get_long() == 10);
  4651   match(ConL);
  4653   format %{ %}
  4654   interface(CONST_INTER);
  4655 %}
  4657 // Long immediate from 0 to 127.
  4658 // Used for a shorter form of long mul by 10.
  4659 operand immL_127()
  4660 %{
  4661   predicate(0 <= n->get_long() && n->get_long() < 0x80);
  4662   match(ConL);
  4664   op_cost(10);
  4665   format %{ %}
  4666   interface(CONST_INTER);
  4667 %}
  4669 // Long Immediate: low 32-bit mask
  4670 operand immL_32bits()
  4671 %{
  4672   predicate(n->get_long() == 0xFFFFFFFFL);
  4673   match(ConL);
  4674   op_cost(20);
  4676   format %{ %}
  4677   interface(CONST_INTER);
  4678 %}
  4680 // Float Immediate zero
  4681 operand immF0()
  4682 %{
  4683   predicate(jint_cast(n->getf()) == 0);
  4684   match(ConF);
  4686   op_cost(5);
  4687   format %{ %}
  4688   interface(CONST_INTER);
  4689 %}
  4691 // Float Immediate
  4692 operand immF()
  4693 %{
  4694   match(ConF);
  4696   op_cost(15);
  4697   format %{ %}
  4698   interface(CONST_INTER);
  4699 %}
  4701 // Double Immediate zero
  4702 operand immD0()
  4703 %{
  4704   predicate(jlong_cast(n->getd()) == 0);
  4705   match(ConD);
  4707   op_cost(5);
  4708   format %{ %}
  4709   interface(CONST_INTER);
  4710 %}
  4712 // Double Immediate
  4713 operand immD()
  4714 %{
  4715   match(ConD);
  4717   op_cost(15);
  4718   format %{ %}
  4719   interface(CONST_INTER);
  4720 %}
  4722 // Immediates for special shifts (sign extend)
  4724 // Constants for increment
  4725 operand immI_16()
  4726 %{
  4727   predicate(n->get_int() == 16);
  4728   match(ConI);
  4730   format %{ %}
  4731   interface(CONST_INTER);
  4732 %}
  4734 operand immI_24()
  4735 %{
  4736   predicate(n->get_int() == 24);
  4737   match(ConI);
  4739   format %{ %}
  4740   interface(CONST_INTER);
  4741 %}
  4743 // Constant for byte-wide masking
  4744 operand immI_255()
  4745 %{
  4746   predicate(n->get_int() == 255);
  4747   match(ConI);
  4749   format %{ %}
  4750   interface(CONST_INTER);
  4751 %}
  4753 // Constant for short-wide masking
  4754 operand immI_65535()
  4755 %{
  4756   predicate(n->get_int() == 65535);
  4757   match(ConI);
  4759   format %{ %}
  4760   interface(CONST_INTER);
  4761 %}
  4763 // Constant for byte-wide masking
  4764 operand immL_255()
  4765 %{
  4766   predicate(n->get_long() == 255);
  4767   match(ConL);
  4769   format %{ %}
  4770   interface(CONST_INTER);
  4771 %}
  4773 // Constant for short-wide masking
  4774 operand immL_65535()
  4775 %{
  4776   predicate(n->get_long() == 65535);
  4777   match(ConL);
  4779   format %{ %}
  4780   interface(CONST_INTER);
  4781 %}
  4783 // Register Operands
  4784 // Integer Register
  4785 operand rRegI()
  4786 %{
  4787   constraint(ALLOC_IN_RC(int_reg));
  4788   match(RegI);
  4790   match(rax_RegI);
  4791   match(rbx_RegI);
  4792   match(rcx_RegI);
  4793   match(rdx_RegI);
  4794   match(rdi_RegI);
  4796   format %{ %}
  4797   interface(REG_INTER);
  4798 %}
  4800 // Special Registers
  4801 operand rax_RegI()
  4802 %{
  4803   constraint(ALLOC_IN_RC(int_rax_reg));
  4804   match(RegI);
  4805   match(rRegI);
  4807   format %{ "RAX" %}
  4808   interface(REG_INTER);
  4809 %}
  4811 // Special Registers
  4812 operand rbx_RegI()
  4813 %{
  4814   constraint(ALLOC_IN_RC(int_rbx_reg));
  4815   match(RegI);
  4816   match(rRegI);
  4818   format %{ "RBX" %}
  4819   interface(REG_INTER);
  4820 %}
  4822 operand rcx_RegI()
  4823 %{
  4824   constraint(ALLOC_IN_RC(int_rcx_reg));
  4825   match(RegI);
  4826   match(rRegI);
  4828   format %{ "RCX" %}
  4829   interface(REG_INTER);
  4830 %}
  4832 operand rdx_RegI()
  4833 %{
  4834   constraint(ALLOC_IN_RC(int_rdx_reg));
  4835   match(RegI);
  4836   match(rRegI);
  4838   format %{ "RDX" %}
  4839   interface(REG_INTER);
  4840 %}
  4842 operand rdi_RegI()
  4843 %{
  4844   constraint(ALLOC_IN_RC(int_rdi_reg));
  4845   match(RegI);
  4846   match(rRegI);
  4848   format %{ "RDI" %}
  4849   interface(REG_INTER);
  4850 %}
  4852 operand no_rcx_RegI()
  4853 %{
  4854   constraint(ALLOC_IN_RC(int_no_rcx_reg));
  4855   match(RegI);
  4856   match(rax_RegI);
  4857   match(rbx_RegI);
  4858   match(rdx_RegI);
  4859   match(rdi_RegI);
  4861   format %{ %}
  4862   interface(REG_INTER);
  4863 %}
  4865 operand no_rax_rdx_RegI()
  4866 %{
  4867   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
  4868   match(RegI);
  4869   match(rbx_RegI);
  4870   match(rcx_RegI);
  4871   match(rdi_RegI);
  4873   format %{ %}
  4874   interface(REG_INTER);
  4875 %}
  4877 // Pointer Register
  4878 operand any_RegP()
  4879 %{
  4880   constraint(ALLOC_IN_RC(any_reg));
  4881   match(RegP);
  4882   match(rax_RegP);
  4883   match(rbx_RegP);
  4884   match(rdi_RegP);
  4885   match(rsi_RegP);
  4886   match(rbp_RegP);
  4887   match(r15_RegP);
  4888   match(rRegP);
  4890   format %{ %}
  4891   interface(REG_INTER);
  4892 %}
  4894 operand rRegP()
  4895 %{
  4896   constraint(ALLOC_IN_RC(ptr_reg));
  4897   match(RegP);
  4898   match(rax_RegP);
  4899   match(rbx_RegP);
  4900   match(rdi_RegP);
  4901   match(rsi_RegP);
  4902   match(rbp_RegP);
  4903   match(r15_RegP);  // See Q&A below about r15_RegP.
  4905   format %{ %}
  4906   interface(REG_INTER);
  4907 %}
  4910 operand r12RegL() %{
  4911   constraint(ALLOC_IN_RC(long_r12_reg));
  4912   match(RegL);
  4914   format %{ %}
  4915   interface(REG_INTER);
  4916 %}
  4918 operand rRegN() %{
  4919   constraint(ALLOC_IN_RC(int_reg));
  4920   match(RegN);
  4922   format %{ %}
  4923   interface(REG_INTER);
  4924 %}
  4926 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
  4927 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
  4928 // It's fine for an instruction input which expects rRegP to match a r15_RegP.
  4929 // The output of an instruction is controlled by the allocator, which respects
  4930 // register class masks, not match rules.  Unless an instruction mentions
  4931 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
  4932 // by the allocator as an input.
  4934 operand no_rax_RegP()
  4935 %{
  4936   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
  4937   match(RegP);
  4938   match(rbx_RegP);
  4939   match(rsi_RegP);
  4940   match(rdi_RegP);
  4942   format %{ %}
  4943   interface(REG_INTER);
  4944 %}
  4946 operand no_rbp_RegP()
  4947 %{
  4948   constraint(ALLOC_IN_RC(ptr_no_rbp_reg));
  4949   match(RegP);
  4950   match(rbx_RegP);
  4951   match(rsi_RegP);
  4952   match(rdi_RegP);
  4954   format %{ %}
  4955   interface(REG_INTER);
  4956 %}
  4958 operand no_rax_rbx_RegP()
  4959 %{
  4960   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
  4961   match(RegP);
  4962   match(rsi_RegP);
  4963   match(rdi_RegP);
  4965   format %{ %}
  4966   interface(REG_INTER);
  4967 %}
  4969 // Special Registers
  4970 // Return a pointer value
  4971 operand rax_RegP()
  4972 %{
  4973   constraint(ALLOC_IN_RC(ptr_rax_reg));
  4974   match(RegP);
  4975   match(rRegP);
  4977   format %{ %}
  4978   interface(REG_INTER);
  4979 %}
  4981 // Special Registers
  4982 // Return a compressed pointer value
  4983 operand rax_RegN()
  4984 %{
  4985   constraint(ALLOC_IN_RC(int_rax_reg));
  4986   match(RegN);
  4987   match(rRegN);
  4989   format %{ %}
  4990   interface(REG_INTER);
  4991 %}
  4993 // Used in AtomicAdd
  4994 operand rbx_RegP()
  4995 %{
  4996   constraint(ALLOC_IN_RC(ptr_rbx_reg));
  4997   match(RegP);
  4998   match(rRegP);
  5000   format %{ %}
  5001   interface(REG_INTER);
  5002 %}
  5004 operand rsi_RegP()
  5005 %{
  5006   constraint(ALLOC_IN_RC(ptr_rsi_reg));
  5007   match(RegP);
  5008   match(rRegP);
  5010   format %{ %}
  5011   interface(REG_INTER);
  5012 %}
  5014 // Used in rep stosq
  5015 operand rdi_RegP()
  5016 %{
  5017   constraint(ALLOC_IN_RC(ptr_rdi_reg));
  5018   match(RegP);
  5019   match(rRegP);
  5021   format %{ %}
  5022   interface(REG_INTER);
  5023 %}
  5025 operand rbp_RegP()
  5026 %{
  5027   constraint(ALLOC_IN_RC(ptr_rbp_reg));
  5028   match(RegP);
  5029   match(rRegP);
  5031   format %{ %}
  5032   interface(REG_INTER);
  5033 %}
  5035 operand r15_RegP()
  5036 %{
  5037   constraint(ALLOC_IN_RC(ptr_r15_reg));
  5038   match(RegP);
  5039   match(rRegP);
  5041   format %{ %}
  5042   interface(REG_INTER);
  5043 %}
  5045 operand rRegL()
  5046 %{
  5047   constraint(ALLOC_IN_RC(long_reg));
  5048   match(RegL);
  5049   match(rax_RegL);
  5050   match(rdx_RegL);
  5052   format %{ %}
  5053   interface(REG_INTER);
  5054 %}
  5056 // Special Registers
  5057 operand no_rax_rdx_RegL()
  5058 %{
  5059   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  5060   match(RegL);
  5061   match(rRegL);
  5063   format %{ %}
  5064   interface(REG_INTER);
  5065 %}
  5067 operand no_rax_RegL()
  5068 %{
  5069   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
  5070   match(RegL);
  5071   match(rRegL);
  5072   match(rdx_RegL);
  5074   format %{ %}
  5075   interface(REG_INTER);
  5076 %}
  5078 operand no_rcx_RegL()
  5079 %{
  5080   constraint(ALLOC_IN_RC(long_no_rcx_reg));
  5081   match(RegL);
  5082   match(rRegL);
  5084   format %{ %}
  5085   interface(REG_INTER);
  5086 %}
  5088 operand rax_RegL()
  5089 %{
  5090   constraint(ALLOC_IN_RC(long_rax_reg));
  5091   match(RegL);
  5092   match(rRegL);
  5094   format %{ "RAX" %}
  5095   interface(REG_INTER);
  5096 %}
  5098 operand rcx_RegL()
  5099 %{
  5100   constraint(ALLOC_IN_RC(long_rcx_reg));
  5101   match(RegL);
  5102   match(rRegL);
  5104   format %{ %}
  5105   interface(REG_INTER);
  5106 %}
  5108 operand rdx_RegL()
  5109 %{
  5110   constraint(ALLOC_IN_RC(long_rdx_reg));
  5111   match(RegL);
  5112   match(rRegL);
  5114   format %{ %}
  5115   interface(REG_INTER);
  5116 %}
  5118 // Flags register, used as output of compare instructions
  5119 operand rFlagsReg()
  5120 %{
  5121   constraint(ALLOC_IN_RC(int_flags));
  5122   match(RegFlags);
  5124   format %{ "RFLAGS" %}
  5125   interface(REG_INTER);
  5126 %}
  5128 // Flags register, used as output of FLOATING POINT compare instructions
  5129 operand rFlagsRegU()
  5130 %{
  5131   constraint(ALLOC_IN_RC(int_flags));
  5132   match(RegFlags);
  5134   format %{ "RFLAGS_U" %}
  5135   interface(REG_INTER);
  5136 %}
  5138 operand rFlagsRegUCF() %{
  5139   constraint(ALLOC_IN_RC(int_flags));
  5140   match(RegFlags);
  5141   predicate(false);
  5143   format %{ "RFLAGS_U_CF" %}
  5144   interface(REG_INTER);
  5145 %}
  5147 // Float register operands
  5148 operand regF()
  5149 %{
  5150   constraint(ALLOC_IN_RC(float_reg));
  5151   match(RegF);
  5153   format %{ %}
  5154   interface(REG_INTER);
  5155 %}
  5157 // Double register operands
  5158 operand regD()
  5159 %{
  5160   constraint(ALLOC_IN_RC(double_reg));
  5161   match(RegD);
  5163   format %{ %}
  5164   interface(REG_INTER);
  5165 %}
  5168 //----------Memory Operands----------------------------------------------------
  5169 // Direct Memory Operand
  5170 // operand direct(immP addr)
  5171 // %{
  5172 //   match(addr);
  5174 //   format %{ "[$addr]" %}
  5175 //   interface(MEMORY_INTER) %{
  5176 //     base(0xFFFFFFFF);
  5177 //     index(0x4);
  5178 //     scale(0x0);
  5179 //     disp($addr);
  5180 //   %}
  5181 // %}
  5183 // Indirect Memory Operand
  5184 operand indirect(any_RegP reg)
  5185 %{
  5186   constraint(ALLOC_IN_RC(ptr_reg));
  5187   match(reg);
  5189   format %{ "[$reg]" %}
  5190   interface(MEMORY_INTER) %{
  5191     base($reg);
  5192     index(0x4);
  5193     scale(0x0);
  5194     disp(0x0);
  5195   %}
  5196 %}
  5198 // Indirect Memory Plus Short Offset Operand
  5199 operand indOffset8(any_RegP reg, immL8 off)
  5200 %{
  5201   constraint(ALLOC_IN_RC(ptr_reg));
  5202   match(AddP reg off);
  5204   format %{ "[$reg + $off (8-bit)]" %}
  5205   interface(MEMORY_INTER) %{
  5206     base($reg);
  5207     index(0x4);
  5208     scale(0x0);
  5209     disp($off);
  5210   %}
  5211 %}
  5213 // Indirect Memory Plus Long Offset Operand
  5214 operand indOffset32(any_RegP reg, immL32 off)
  5215 %{
  5216   constraint(ALLOC_IN_RC(ptr_reg));
  5217   match(AddP reg off);
  5219   format %{ "[$reg + $off (32-bit)]" %}
  5220   interface(MEMORY_INTER) %{
  5221     base($reg);
  5222     index(0x4);
  5223     scale(0x0);
  5224     disp($off);
  5225   %}
  5226 %}
  5228 // Indirect Memory Plus Index Register Plus Offset Operand
  5229 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
  5230 %{
  5231   constraint(ALLOC_IN_RC(ptr_reg));
  5232   match(AddP (AddP reg lreg) off);
  5234   op_cost(10);
  5235   format %{"[$reg + $off + $lreg]" %}
  5236   interface(MEMORY_INTER) %{
  5237     base($reg);
  5238     index($lreg);
  5239     scale(0x0);
  5240     disp($off);
  5241   %}
  5242 %}
  5244 // Indirect Memory Plus Index Register Plus Offset Operand
  5245 operand indIndex(any_RegP reg, rRegL lreg)
  5246 %{
  5247   constraint(ALLOC_IN_RC(ptr_reg));
  5248   match(AddP reg lreg);
  5250   op_cost(10);
  5251   format %{"[$reg + $lreg]" %}
  5252   interface(MEMORY_INTER) %{
  5253     base($reg);
  5254     index($lreg);
  5255     scale(0x0);
  5256     disp(0x0);
  5257   %}
  5258 %}
  5260 // Indirect Memory Times Scale Plus Index Register
  5261 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
  5262 %{
  5263   constraint(ALLOC_IN_RC(ptr_reg));
  5264   match(AddP reg (LShiftL lreg scale));
  5266   op_cost(10);
  5267   format %{"[$reg + $lreg << $scale]" %}
  5268   interface(MEMORY_INTER) %{
  5269     base($reg);
  5270     index($lreg);
  5271     scale($scale);
  5272     disp(0x0);
  5273   %}
  5274 %}
  5276 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
  5277 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
  5278 %{
  5279   constraint(ALLOC_IN_RC(ptr_reg));
  5280   match(AddP (AddP reg (LShiftL lreg scale)) off);
  5282   op_cost(10);
  5283   format %{"[$reg + $off + $lreg << $scale]" %}
  5284   interface(MEMORY_INTER) %{
  5285     base($reg);
  5286     index($lreg);
  5287     scale($scale);
  5288     disp($off);
  5289   %}
  5290 %}
  5292 // Indirect Narrow Oop Plus Offset Operand
  5293 operand indNarrowOopOffset(rRegN src, immL32 off) %{
  5294   constraint(ALLOC_IN_RC(ptr_reg));
  5295   match(AddP (DecodeN src) off);
  5297   op_cost(10);
  5298   format %{"[R12 + $src << 3 + $off] (compressed oop addressing)" %}
  5299   interface(MEMORY_INTER) %{
  5300     base(0xc); // R12
  5301     index($src);
  5302     scale(0x3);
  5303     disp($off);
  5304   %}
  5305 %}
  5307 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
  5308 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
  5309 %{
  5310   constraint(ALLOC_IN_RC(ptr_reg));
  5311   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
  5312   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
  5314   op_cost(10);
  5315   format %{"[$reg + $off + $idx << $scale]" %}
  5316   interface(MEMORY_INTER) %{
  5317     base($reg);
  5318     index($idx);
  5319     scale($scale);
  5320     disp($off);
  5321   %}
  5322 %}
  5324 //----------Special Memory Operands--------------------------------------------
  5325 // Stack Slot Operand - This operand is used for loading and storing temporary
  5326 //                      values on the stack where a match requires a value to
  5327 //                      flow through memory.
  5328 operand stackSlotP(sRegP reg)
  5329 %{
  5330   constraint(ALLOC_IN_RC(stack_slots));
  5331   // No match rule because this operand is only generated in matching
  5333   format %{ "[$reg]" %}
  5334   interface(MEMORY_INTER) %{
  5335     base(0x4);   // RSP
  5336     index(0x4);  // No Index
  5337     scale(0x0);  // No Scale
  5338     disp($reg);  // Stack Offset
  5339   %}
  5340 %}
  5342 operand stackSlotI(sRegI reg)
  5343 %{
  5344   constraint(ALLOC_IN_RC(stack_slots));
  5345   // No match rule because this operand is only generated in matching
  5347   format %{ "[$reg]" %}
  5348   interface(MEMORY_INTER) %{
  5349     base(0x4);   // RSP
  5350     index(0x4);  // No Index
  5351     scale(0x0);  // No Scale
  5352     disp($reg);  // Stack Offset
  5353   %}
  5354 %}
  5356 operand stackSlotF(sRegF reg)
  5357 %{
  5358   constraint(ALLOC_IN_RC(stack_slots));
  5359   // No match rule because this operand is only generated in matching
  5361   format %{ "[$reg]" %}
  5362   interface(MEMORY_INTER) %{
  5363     base(0x4);   // RSP
  5364     index(0x4);  // No Index
  5365     scale(0x0);  // No Scale
  5366     disp($reg);  // Stack Offset
  5367   %}
  5368 %}
  5370 operand stackSlotD(sRegD reg)
  5371 %{
  5372   constraint(ALLOC_IN_RC(stack_slots));
  5373   // No match rule because this operand is only generated in matching
  5375   format %{ "[$reg]" %}
  5376   interface(MEMORY_INTER) %{
  5377     base(0x4);   // RSP
  5378     index(0x4);  // No Index
  5379     scale(0x0);  // No Scale
  5380     disp($reg);  // Stack Offset
  5381   %}
  5382 %}
  5383 operand stackSlotL(sRegL reg)
  5384 %{
  5385   constraint(ALLOC_IN_RC(stack_slots));
  5386   // No match rule because this operand is only generated in matching
  5388   format %{ "[$reg]" %}
  5389   interface(MEMORY_INTER) %{
  5390     base(0x4);   // RSP
  5391     index(0x4);  // No Index
  5392     scale(0x0);  // No Scale
  5393     disp($reg);  // Stack Offset
  5394   %}
  5395 %}
  5397 //----------Conditional Branch Operands----------------------------------------
  5398 // Comparison Op  - This is the operation of the comparison, and is limited to
  5399 //                  the following set of codes:
  5400 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
  5401 //
  5402 // Other attributes of the comparison, such as unsignedness, are specified
  5403 // by the comparison instruction that sets a condition code flags register.
  5404 // That result is represented by a flags operand whose subtype is appropriate
  5405 // to the unsignedness (etc.) of the comparison.
  5406 //
  5407 // Later, the instruction which matches both the Comparison Op (a Bool) and
  5408 // the flags (produced by the Cmp) specifies the coding of the comparison op
  5409 // by matching a specific subtype of Bool operand below, such as cmpOpU.
  5411 // Comparision Code
  5412 operand cmpOp()
  5413 %{
  5414   match(Bool);
  5416   format %{ "" %}
  5417   interface(COND_INTER) %{
  5418     equal(0x4, "e");
  5419     not_equal(0x5, "ne");
  5420     less(0xC, "l");
  5421     greater_equal(0xD, "ge");
  5422     less_equal(0xE, "le");
  5423     greater(0xF, "g");
  5424   %}
  5425 %}
  5427 // Comparison Code, unsigned compare.  Used by FP also, with
  5428 // C2 (unordered) turned into GT or LT already.  The other bits
  5429 // C0 and C3 are turned into Carry & Zero flags.
  5430 operand cmpOpU()
  5431 %{
  5432   match(Bool);
  5434   format %{ "" %}
  5435   interface(COND_INTER) %{
  5436     equal(0x4, "e");
  5437     not_equal(0x5, "ne");
  5438     less(0x2, "b");
  5439     greater_equal(0x3, "nb");
  5440     less_equal(0x6, "be");
  5441     greater(0x7, "nbe");
  5442   %}
  5443 %}
  5446 // Floating comparisons that don't require any fixup for the unordered case
  5447 operand cmpOpUCF() %{
  5448   match(Bool);
  5449   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
  5450             n->as_Bool()->_test._test == BoolTest::ge ||
  5451             n->as_Bool()->_test._test == BoolTest::le ||
  5452             n->as_Bool()->_test._test == BoolTest::gt);
  5453   format %{ "" %}
  5454   interface(COND_INTER) %{
  5455     equal(0x4, "e");
  5456     not_equal(0x5, "ne");
  5457     less(0x2, "b");
  5458     greater_equal(0x3, "nb");
  5459     less_equal(0x6, "be");
  5460     greater(0x7, "nbe");
  5461   %}
  5462 %}
  5465 // Floating comparisons that can be fixed up with extra conditional jumps
  5466 operand cmpOpUCF2() %{
  5467   match(Bool);
  5468   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
  5469             n->as_Bool()->_test._test == BoolTest::eq);
  5470   format %{ "" %}
  5471   interface(COND_INTER) %{
  5472     equal(0x4, "e");
  5473     not_equal(0x5, "ne");
  5474     less(0x2, "b");
  5475     greater_equal(0x3, "nb");
  5476     less_equal(0x6, "be");
  5477     greater(0x7, "nbe");
  5478   %}
  5479 %}
  5482 //----------OPERAND CLASSES----------------------------------------------------
  5483 // Operand Classes are groups of operands that are used as to simplify
  5484 // instruction definitions by not requiring the AD writer to specify separate
  5485 // instructions for every form of operand when the instruction accepts
  5486 // multiple operand types with the same basic encoding and format.  The classic
  5487 // case of this is memory operands.
  5489 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
  5490                indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
  5491                indNarrowOopOffset);
  5493 //----------PIPELINE-----------------------------------------------------------
  5494 // Rules which define the behavior of the target architectures pipeline.
  5495 pipeline %{
  5497 //----------ATTRIBUTES---------------------------------------------------------
  5498 attributes %{
  5499   variable_size_instructions;        // Fixed size instructions
  5500   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
  5501   instruction_unit_size = 1;         // An instruction is 1 bytes long
  5502   instruction_fetch_unit_size = 16;  // The processor fetches one line
  5503   instruction_fetch_units = 1;       // of 16 bytes
  5505   // List of nop instructions
  5506   nops( MachNop );
  5507 %}
  5509 //----------RESOURCES----------------------------------------------------------
  5510 // Resources are the functional units available to the machine
  5512 // Generic P2/P3 pipeline
  5513 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
  5514 // 3 instructions decoded per cycle.
  5515 // 2 load/store ops per cycle, 1 branch, 1 FPU,
  5516 // 3 ALU op, only ALU0 handles mul instructions.
  5517 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
  5518            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
  5519            BR, FPU,
  5520            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
  5522 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5523 // Pipeline Description specifies the stages in the machine's pipeline
  5525 // Generic P2/P3 pipeline
  5526 pipe_desc(S0, S1, S2, S3, S4, S5);
  5528 //----------PIPELINE CLASSES---------------------------------------------------
  5529 // Pipeline Classes describe the stages in which input and output are
  5530 // referenced by the hardware pipeline.
  5532 // Naming convention: ialu or fpu
  5533 // Then: _reg
  5534 // Then: _reg if there is a 2nd register
  5535 // Then: _long if it's a pair of instructions implementing a long
  5536 // Then: _fat if it requires the big decoder
  5537 //   Or: _mem if it requires the big decoder and a memory unit.
  5539 // Integer ALU reg operation
  5540 pipe_class ialu_reg(rRegI dst)
  5541 %{
  5542     single_instruction;
  5543     dst    : S4(write);
  5544     dst    : S3(read);
  5545     DECODE : S0;        // any decoder
  5546     ALU    : S3;        // any alu
  5547 %}
  5549 // Long ALU reg operation
  5550 pipe_class ialu_reg_long(rRegL dst)
  5551 %{
  5552     instruction_count(2);
  5553     dst    : S4(write);
  5554     dst    : S3(read);
  5555     DECODE : S0(2);     // any 2 decoders
  5556     ALU    : S3(2);     // both alus
  5557 %}
  5559 // Integer ALU reg operation using big decoder
  5560 pipe_class ialu_reg_fat(rRegI dst)
  5561 %{
  5562     single_instruction;
  5563     dst    : S4(write);
  5564     dst    : S3(read);
  5565     D0     : S0;        // big decoder only
  5566     ALU    : S3;        // any alu
  5567 %}
  5569 // Long ALU reg operation using big decoder
  5570 pipe_class ialu_reg_long_fat(rRegL dst)
  5571 %{
  5572     instruction_count(2);
  5573     dst    : S4(write);
  5574     dst    : S3(read);
  5575     D0     : S0(2);     // big decoder only; twice
  5576     ALU    : S3(2);     // any 2 alus
  5577 %}
  5579 // Integer ALU reg-reg operation
  5580 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
  5581 %{
  5582     single_instruction;
  5583     dst    : S4(write);
  5584     src    : S3(read);
  5585     DECODE : S0;        // any decoder
  5586     ALU    : S3;        // any alu
  5587 %}
  5589 // Long ALU reg-reg operation
  5590 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
  5591 %{
  5592     instruction_count(2);
  5593     dst    : S4(write);
  5594     src    : S3(read);
  5595     DECODE : S0(2);     // any 2 decoders
  5596     ALU    : S3(2);     // both alus
  5597 %}
  5599 // Integer ALU reg-reg operation
  5600 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
  5601 %{
  5602     single_instruction;
  5603     dst    : S4(write);
  5604     src    : S3(read);
  5605     D0     : S0;        // big decoder only
  5606     ALU    : S3;        // any alu
  5607 %}
  5609 // Long ALU reg-reg operation
  5610 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
  5611 %{
  5612     instruction_count(2);
  5613     dst    : S4(write);
  5614     src    : S3(read);
  5615     D0     : S0(2);     // big decoder only; twice
  5616     ALU    : S3(2);     // both alus
  5617 %}
  5619 // Integer ALU reg-mem operation
  5620 pipe_class ialu_reg_mem(rRegI dst, memory mem)
  5621 %{
  5622     single_instruction;
  5623     dst    : S5(write);
  5624     mem    : S3(read);
  5625     D0     : S0;        // big decoder only
  5626     ALU    : S4;        // any alu
  5627     MEM    : S3;        // any mem
  5628 %}
  5630 // Integer mem operation (prefetch)
  5631 pipe_class ialu_mem(memory mem)
  5632 %{
  5633     single_instruction;
  5634     mem    : S3(read);
  5635     D0     : S0;        // big decoder only
  5636     MEM    : S3;        // any mem
  5637 %}
  5639 // Integer Store to Memory
  5640 pipe_class ialu_mem_reg(memory mem, rRegI src)
  5641 %{
  5642     single_instruction;
  5643     mem    : S3(read);
  5644     src    : S5(read);
  5645     D0     : S0;        // big decoder only
  5646     ALU    : S4;        // any alu
  5647     MEM    : S3;
  5648 %}
  5650 // // Long Store to Memory
  5651 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
  5652 // %{
  5653 //     instruction_count(2);
  5654 //     mem    : S3(read);
  5655 //     src    : S5(read);
  5656 //     D0     : S0(2);          // big decoder only; twice
  5657 //     ALU    : S4(2);     // any 2 alus
  5658 //     MEM    : S3(2);  // Both mems
  5659 // %}
  5661 // Integer Store to Memory
  5662 pipe_class ialu_mem_imm(memory mem)
  5663 %{
  5664     single_instruction;
  5665     mem    : S3(read);
  5666     D0     : S0;        // big decoder only
  5667     ALU    : S4;        // any alu
  5668     MEM    : S3;
  5669 %}
  5671 // Integer ALU0 reg-reg operation
  5672 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
  5673 %{
  5674     single_instruction;
  5675     dst    : S4(write);
  5676     src    : S3(read);
  5677     D0     : S0;        // Big decoder only
  5678     ALU0   : S3;        // only alu0
  5679 %}
  5681 // Integer ALU0 reg-mem operation
  5682 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
  5683 %{
  5684     single_instruction;
  5685     dst    : S5(write);
  5686     mem    : S3(read);
  5687     D0     : S0;        // big decoder only
  5688     ALU0   : S4;        // ALU0 only
  5689     MEM    : S3;        // any mem
  5690 %}
  5692 // Integer ALU reg-reg operation
  5693 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
  5694 %{
  5695     single_instruction;
  5696     cr     : S4(write);
  5697     src1   : S3(read);
  5698     src2   : S3(read);
  5699     DECODE : S0;        // any decoder
  5700     ALU    : S3;        // any alu
  5701 %}
  5703 // Integer ALU reg-imm operation
  5704 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
  5705 %{
  5706     single_instruction;
  5707     cr     : S4(write);
  5708     src1   : S3(read);
  5709     DECODE : S0;        // any decoder
  5710     ALU    : S3;        // any alu
  5711 %}
  5713 // Integer ALU reg-mem operation
  5714 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
  5715 %{
  5716     single_instruction;
  5717     cr     : S4(write);
  5718     src1   : S3(read);
  5719     src2   : S3(read);
  5720     D0     : S0;        // big decoder only
  5721     ALU    : S4;        // any alu
  5722     MEM    : S3;
  5723 %}
  5725 // Conditional move reg-reg
  5726 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
  5727 %{
  5728     instruction_count(4);
  5729     y      : S4(read);
  5730     q      : S3(read);
  5731     p      : S3(read);
  5732     DECODE : S0(4);     // any decoder
  5733 %}
  5735 // Conditional move reg-reg
  5736 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
  5737 %{
  5738     single_instruction;
  5739     dst    : S4(write);
  5740     src    : S3(read);
  5741     cr     : S3(read);
  5742     DECODE : S0;        // any decoder
  5743 %}
  5745 // Conditional move reg-mem
  5746 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
  5747 %{
  5748     single_instruction;
  5749     dst    : S4(write);
  5750     src    : S3(read);
  5751     cr     : S3(read);
  5752     DECODE : S0;        // any decoder
  5753     MEM    : S3;
  5754 %}
  5756 // Conditional move reg-reg long
  5757 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
  5758 %{
  5759     single_instruction;
  5760     dst    : S4(write);
  5761     src    : S3(read);
  5762     cr     : S3(read);
  5763     DECODE : S0(2);     // any 2 decoders
  5764 %}
  5766 // XXX
  5767 // // Conditional move double reg-reg
  5768 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
  5769 // %{
  5770 //     single_instruction;
  5771 //     dst    : S4(write);
  5772 //     src    : S3(read);
  5773 //     cr     : S3(read);
  5774 //     DECODE : S0;     // any decoder
  5775 // %}
  5777 // Float reg-reg operation
  5778 pipe_class fpu_reg(regD dst)
  5779 %{
  5780     instruction_count(2);
  5781     dst    : S3(read);
  5782     DECODE : S0(2);     // any 2 decoders
  5783     FPU    : S3;
  5784 %}
  5786 // Float reg-reg operation
  5787 pipe_class fpu_reg_reg(regD dst, regD src)
  5788 %{
  5789     instruction_count(2);
  5790     dst    : S4(write);
  5791     src    : S3(read);
  5792     DECODE : S0(2);     // any 2 decoders
  5793     FPU    : S3;
  5794 %}
  5796 // Float reg-reg operation
  5797 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
  5798 %{
  5799     instruction_count(3);
  5800     dst    : S4(write);
  5801     src1   : S3(read);
  5802     src2   : S3(read);
  5803     DECODE : S0(3);     // any 3 decoders
  5804     FPU    : S3(2);
  5805 %}
  5807 // Float reg-reg operation
  5808 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
  5809 %{
  5810     instruction_count(4);
  5811     dst    : S4(write);
  5812     src1   : S3(read);
  5813     src2   : S3(read);
  5814     src3   : S3(read);
  5815     DECODE : S0(4);     // any 3 decoders
  5816     FPU    : S3(2);
  5817 %}
  5819 // Float reg-reg operation
  5820 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
  5821 %{
  5822     instruction_count(4);
  5823     dst    : S4(write);
  5824     src1   : S3(read);
  5825     src2   : S3(read);
  5826     src3   : S3(read);
  5827     DECODE : S1(3);     // any 3 decoders
  5828     D0     : S0;        // Big decoder only
  5829     FPU    : S3(2);
  5830     MEM    : S3;
  5831 %}
  5833 // Float reg-mem operation
  5834 pipe_class fpu_reg_mem(regD dst, memory mem)
  5835 %{
  5836     instruction_count(2);
  5837     dst    : S5(write);
  5838     mem    : S3(read);
  5839     D0     : S0;        // big decoder only
  5840     DECODE : S1;        // any decoder for FPU POP
  5841     FPU    : S4;
  5842     MEM    : S3;        // any mem
  5843 %}
  5845 // Float reg-mem operation
  5846 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
  5847 %{
  5848     instruction_count(3);
  5849     dst    : S5(write);
  5850     src1   : S3(read);
  5851     mem    : S3(read);
  5852     D0     : S0;        // big decoder only
  5853     DECODE : S1(2);     // any decoder for FPU POP
  5854     FPU    : S4;
  5855     MEM    : S3;        // any mem
  5856 %}
  5858 // Float mem-reg operation
  5859 pipe_class fpu_mem_reg(memory mem, regD src)
  5860 %{
  5861     instruction_count(2);
  5862     src    : S5(read);
  5863     mem    : S3(read);
  5864     DECODE : S0;        // any decoder for FPU PUSH
  5865     D0     : S1;        // big decoder only
  5866     FPU    : S4;
  5867     MEM    : S3;        // any mem
  5868 %}
  5870 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
  5871 %{
  5872     instruction_count(3);
  5873     src1   : S3(read);
  5874     src2   : S3(read);
  5875     mem    : S3(read);
  5876     DECODE : S0(2);     // any decoder for FPU PUSH
  5877     D0     : S1;        // big decoder only
  5878     FPU    : S4;
  5879     MEM    : S3;        // any mem
  5880 %}
  5882 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
  5883 %{
  5884     instruction_count(3);
  5885     src1   : S3(read);
  5886     src2   : S3(read);
  5887     mem    : S4(read);
  5888     DECODE : S0;        // any decoder for FPU PUSH
  5889     D0     : S0(2);     // big decoder only
  5890     FPU    : S4;
  5891     MEM    : S3(2);     // any mem
  5892 %}
  5894 pipe_class fpu_mem_mem(memory dst, memory src1)
  5895 %{
  5896     instruction_count(2);
  5897     src1   : S3(read);
  5898     dst    : S4(read);
  5899     D0     : S0(2);     // big decoder only
  5900     MEM    : S3(2);     // any mem
  5901 %}
  5903 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
  5904 %{
  5905     instruction_count(3);
  5906     src1   : S3(read);
  5907     src2   : S3(read);
  5908     dst    : S4(read);
  5909     D0     : S0(3);     // big decoder only
  5910     FPU    : S4;
  5911     MEM    : S3(3);     // any mem
  5912 %}
  5914 pipe_class fpu_mem_reg_con(memory mem, regD src1)
  5915 %{
  5916     instruction_count(3);
  5917     src1   : S4(read);
  5918     mem    : S4(read);
  5919     DECODE : S0;        // any decoder for FPU PUSH
  5920     D0     : S0(2);     // big decoder only
  5921     FPU    : S4;
  5922     MEM    : S3(2);     // any mem
  5923 %}
  5925 // Float load constant
  5926 pipe_class fpu_reg_con(regD dst)
  5927 %{
  5928     instruction_count(2);
  5929     dst    : S5(write);
  5930     D0     : S0;        // big decoder only for the load
  5931     DECODE : S1;        // any decoder for FPU POP
  5932     FPU    : S4;
  5933     MEM    : S3;        // any mem
  5934 %}
  5936 // Float load constant
  5937 pipe_class fpu_reg_reg_con(regD dst, regD src)
  5938 %{
  5939     instruction_count(3);
  5940     dst    : S5(write);
  5941     src    : S3(read);
  5942     D0     : S0;        // big decoder only for the load
  5943     DECODE : S1(2);     // any decoder for FPU POP
  5944     FPU    : S4;
  5945     MEM    : S3;        // any mem
  5946 %}
  5948 // UnConditional branch
  5949 pipe_class pipe_jmp(label labl)
  5950 %{
  5951     single_instruction;
  5952     BR   : S3;
  5953 %}
  5955 // Conditional branch
  5956 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
  5957 %{
  5958     single_instruction;
  5959     cr    : S1(read);
  5960     BR    : S3;
  5961 %}
  5963 // Allocation idiom
  5964 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
  5965 %{
  5966     instruction_count(1); force_serialization;
  5967     fixed_latency(6);
  5968     heap_ptr : S3(read);
  5969     DECODE   : S0(3);
  5970     D0       : S2;
  5971     MEM      : S3;
  5972     ALU      : S3(2);
  5973     dst      : S5(write);
  5974     BR       : S5;
  5975 %}
  5977 // Generic big/slow expanded idiom
  5978 pipe_class pipe_slow()
  5979 %{
  5980     instruction_count(10); multiple_bundles; force_serialization;
  5981     fixed_latency(100);
  5982     D0  : S0(2);
  5983     MEM : S3(2);
  5984 %}
  5986 // The real do-nothing guy
  5987 pipe_class empty()
  5988 %{
  5989     instruction_count(0);
  5990 %}
  5992 // Define the class for the Nop node
  5993 define
  5994 %{
  5995    MachNop = empty;
  5996 %}
  5998 %}
  6000 //----------INSTRUCTIONS-------------------------------------------------------
  6001 //
  6002 // match      -- States which machine-independent subtree may be replaced
  6003 //               by this instruction.
  6004 // ins_cost   -- The estimated cost of this instruction is used by instruction
  6005 //               selection to identify a minimum cost tree of machine
  6006 //               instructions that matches a tree of machine-independent
  6007 //               instructions.
  6008 // format     -- A string providing the disassembly for this instruction.
  6009 //               The value of an instruction's operand may be inserted
  6010 //               by referring to it with a '$' prefix.
  6011 // opcode     -- Three instruction opcodes may be provided.  These are referred
  6012 //               to within an encode class as $primary, $secondary, and $tertiary
  6013 //               rrspectively.  The primary opcode is commonly used to
  6014 //               indicate the type of machine instruction, while secondary
  6015 //               and tertiary are often used for prefix options or addressing
  6016 //               modes.
  6017 // ins_encode -- A list of encode classes with parameters. The encode class
  6018 //               name must have been defined in an 'enc_class' specification
  6019 //               in the encode section of the architecture description.
  6022 //----------Load/Store/Move Instructions---------------------------------------
  6023 //----------Load Instructions--------------------------------------------------
  6025 // Load Byte (8 bit signed)
  6026 instruct loadB(rRegI dst, memory mem)
  6027 %{
  6028   match(Set dst (LoadB mem));
  6030   ins_cost(125);
  6031   format %{ "movsbl  $dst, $mem\t# byte" %}
  6033   ins_encode %{
  6034     __ movsbl($dst$$Register, $mem$$Address);
  6035   %}
  6037   ins_pipe(ialu_reg_mem);
  6038 %}
  6040 // Load Byte (8 bit signed) into Long Register
  6041 instruct loadB2L(rRegL dst, memory mem)
  6042 %{
  6043   match(Set dst (ConvI2L (LoadB mem)));
  6045   ins_cost(125);
  6046   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
  6048   ins_encode %{
  6049     __ movsbq($dst$$Register, $mem$$Address);
  6050   %}
  6052   ins_pipe(ialu_reg_mem);
  6053 %}
  6055 // Load Unsigned Byte (8 bit UNsigned)
  6056 instruct loadUB(rRegI dst, memory mem)
  6057 %{
  6058   match(Set dst (LoadUB mem));
  6060   ins_cost(125);
  6061   format %{ "movzbl  $dst, $mem\t# ubyte" %}
  6063   ins_encode %{
  6064     __ movzbl($dst$$Register, $mem$$Address);
  6065   %}
  6067   ins_pipe(ialu_reg_mem);
  6068 %}
  6070 // Load Unsigned Byte (8 bit UNsigned) into Long Register
  6071 instruct loadUB2L(rRegL dst, memory mem)
  6072 %{
  6073   match(Set dst (ConvI2L (LoadUB mem)));
  6075   ins_cost(125);
  6076   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
  6078   ins_encode %{
  6079     __ movzbq($dst$$Register, $mem$$Address);
  6080   %}
  6082   ins_pipe(ialu_reg_mem);
  6083 %}
  6085 // Load Short (16 bit signed)
  6086 instruct loadS(rRegI dst, memory mem)
  6087 %{
  6088   match(Set dst (LoadS mem));
  6090   ins_cost(125);
  6091   format %{ "movswl $dst, $mem\t# short" %}
  6093   ins_encode %{
  6094     __ movswl($dst$$Register, $mem$$Address);
  6095   %}
  6097   ins_pipe(ialu_reg_mem);
  6098 %}
  6100 // Load Short (16 bit signed) into Long Register
  6101 instruct loadS2L(rRegL dst, memory mem)
  6102 %{
  6103   match(Set dst (ConvI2L (LoadS mem)));
  6105   ins_cost(125);
  6106   format %{ "movswq $dst, $mem\t# short -> long" %}
  6108   ins_encode %{
  6109     __ movswq($dst$$Register, $mem$$Address);
  6110   %}
  6112   ins_pipe(ialu_reg_mem);
  6113 %}
  6115 // Load Unsigned Short/Char (16 bit UNsigned)
  6116 instruct loadUS(rRegI dst, memory mem)
  6117 %{
  6118   match(Set dst (LoadUS mem));
  6120   ins_cost(125);
  6121   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
  6123   ins_encode %{
  6124     __ movzwl($dst$$Register, $mem$$Address);
  6125   %}
  6127   ins_pipe(ialu_reg_mem);
  6128 %}
  6130 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
  6131 instruct loadUS2L(rRegL dst, memory mem)
  6132 %{
  6133   match(Set dst (ConvI2L (LoadUS mem)));
  6135   ins_cost(125);
  6136   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
  6138   ins_encode %{
  6139     __ movzwq($dst$$Register, $mem$$Address);
  6140   %}
  6142   ins_pipe(ialu_reg_mem);
  6143 %}
  6145 // Load Integer
  6146 instruct loadI(rRegI dst, memory mem)
  6147 %{
  6148   match(Set dst (LoadI mem));
  6150   ins_cost(125);
  6151   format %{ "movl    $dst, $mem\t# int" %}
  6153   ins_encode %{
  6154     __ movl($dst$$Register, $mem$$Address);
  6155   %}
  6157   ins_pipe(ialu_reg_mem);
  6158 %}
  6160 // Load Integer into Long Register
  6161 instruct loadI2L(rRegL dst, memory mem)
  6162 %{
  6163   match(Set dst (ConvI2L (LoadI mem)));
  6165   ins_cost(125);
  6166   format %{ "movslq  $dst, $mem\t# int -> long" %}
  6168   ins_encode %{
  6169     __ movslq($dst$$Register, $mem$$Address);
  6170   %}
  6172   ins_pipe(ialu_reg_mem);
  6173 %}
  6175 // Load Unsigned Integer into Long Register
  6176 instruct loadUI2L(rRegL dst, memory mem)
  6177 %{
  6178   match(Set dst (LoadUI2L mem));
  6180   ins_cost(125);
  6181   format %{ "movl    $dst, $mem\t# uint -> long" %}
  6183   ins_encode %{
  6184     __ movl($dst$$Register, $mem$$Address);
  6185   %}
  6187   ins_pipe(ialu_reg_mem);
  6188 %}
  6190 // Load Long
  6191 instruct loadL(rRegL dst, memory mem)
  6192 %{
  6193   match(Set dst (LoadL mem));
  6195   ins_cost(125);
  6196   format %{ "movq    $dst, $mem\t# long" %}
  6198   ins_encode %{
  6199     __ movq($dst$$Register, $mem$$Address);
  6200   %}
  6202   ins_pipe(ialu_reg_mem); // XXX
  6203 %}
  6205 // Load Range
  6206 instruct loadRange(rRegI dst, memory mem)
  6207 %{
  6208   match(Set dst (LoadRange mem));
  6210   ins_cost(125); // XXX
  6211   format %{ "movl    $dst, $mem\t# range" %}
  6212   opcode(0x8B);
  6213   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
  6214   ins_pipe(ialu_reg_mem);
  6215 %}
  6217 // Load Pointer
  6218 instruct loadP(rRegP dst, memory mem)
  6219 %{
  6220   match(Set dst (LoadP mem));
  6222   ins_cost(125); // XXX
  6223   format %{ "movq    $dst, $mem\t# ptr" %}
  6224   opcode(0x8B);
  6225   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6226   ins_pipe(ialu_reg_mem); // XXX
  6227 %}
  6229 // Load Compressed Pointer
  6230 instruct loadN(rRegN dst, memory mem)
  6231 %{
  6232    match(Set dst (LoadN mem));
  6234    ins_cost(125); // XXX
  6235    format %{ "movl    $dst, $mem\t# compressed ptr" %}
  6236    ins_encode %{
  6237      Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  6238      Register dst = as_Register($dst$$reg);
  6239      __ movl(dst, addr);
  6240    %}
  6241    ins_pipe(ialu_reg_mem); // XXX
  6242 %}
  6245 // Load Klass Pointer
  6246 instruct loadKlass(rRegP dst, memory mem)
  6247 %{
  6248   match(Set dst (LoadKlass mem));
  6250   ins_cost(125); // XXX
  6251   format %{ "movq    $dst, $mem\t# class" %}
  6252   opcode(0x8B);
  6253   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6254   ins_pipe(ialu_reg_mem); // XXX
  6255 %}
  6257 // Load narrow Klass Pointer
  6258 instruct loadNKlass(rRegN dst, memory mem)
  6259 %{
  6260   match(Set dst (LoadNKlass mem));
  6262   ins_cost(125); // XXX
  6263   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
  6264   ins_encode %{
  6265     Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  6266     Register dst = as_Register($dst$$reg);
  6267     __ movl(dst, addr);
  6268   %}
  6269   ins_pipe(ialu_reg_mem); // XXX
  6270 %}
  6272 // Load Float
  6273 instruct loadF(regF dst, memory mem)
  6274 %{
  6275   match(Set dst (LoadF mem));
  6277   ins_cost(145); // XXX
  6278   format %{ "movss   $dst, $mem\t# float" %}
  6279   opcode(0xF3, 0x0F, 0x10);
  6280   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6281   ins_pipe(pipe_slow); // XXX
  6282 %}
  6284 // Load Double
  6285 instruct loadD_partial(regD dst, memory mem)
  6286 %{
  6287   predicate(!UseXmmLoadAndClearUpper);
  6288   match(Set dst (LoadD mem));
  6290   ins_cost(145); // XXX
  6291   format %{ "movlpd  $dst, $mem\t# double" %}
  6292   opcode(0x66, 0x0F, 0x12);
  6293   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6294   ins_pipe(pipe_slow); // XXX
  6295 %}
  6297 instruct loadD(regD dst, memory mem)
  6298 %{
  6299   predicate(UseXmmLoadAndClearUpper);
  6300   match(Set dst (LoadD mem));
  6302   ins_cost(145); // XXX
  6303   format %{ "movsd   $dst, $mem\t# double" %}
  6304   opcode(0xF2, 0x0F, 0x10);
  6305   ins_encode(OpcP, REX_reg_mem(dst, mem), OpcS, OpcT, reg_mem(dst, mem));
  6306   ins_pipe(pipe_slow); // XXX
  6307 %}
  6309 // Load Aligned Packed Byte to XMM register
  6310 instruct loadA8B(regD dst, memory mem) %{
  6311   match(Set dst (Load8B mem));
  6312   ins_cost(125);
  6313   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
  6314   ins_encode( movq_ld(dst, mem));
  6315   ins_pipe( pipe_slow );
  6316 %}
  6318 // Load Aligned Packed Short to XMM register
  6319 instruct loadA4S(regD dst, memory mem) %{
  6320   match(Set dst (Load4S mem));
  6321   ins_cost(125);
  6322   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
  6323   ins_encode( movq_ld(dst, mem));
  6324   ins_pipe( pipe_slow );
  6325 %}
  6327 // Load Aligned Packed Char to XMM register
  6328 instruct loadA4C(regD dst, memory mem) %{
  6329   match(Set dst (Load4C mem));
  6330   ins_cost(125);
  6331   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
  6332   ins_encode( movq_ld(dst, mem));
  6333   ins_pipe( pipe_slow );
  6334 %}
  6336 // Load Aligned Packed Integer to XMM register
  6337 instruct load2IU(regD dst, memory mem) %{
  6338   match(Set dst (Load2I mem));
  6339   ins_cost(125);
  6340   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
  6341   ins_encode( movq_ld(dst, mem));
  6342   ins_pipe( pipe_slow );
  6343 %}
  6345 // Load Aligned Packed Single to XMM
  6346 instruct loadA2F(regD dst, memory mem) %{
  6347   match(Set dst (Load2F mem));
  6348   ins_cost(145);
  6349   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
  6350   ins_encode( movq_ld(dst, mem));
  6351   ins_pipe( pipe_slow );
  6352 %}
  6354 // Load Effective Address
  6355 instruct leaP8(rRegP dst, indOffset8 mem)
  6356 %{
  6357   match(Set dst mem);
  6359   ins_cost(110); // XXX
  6360   format %{ "leaq    $dst, $mem\t# ptr 8" %}
  6361   opcode(0x8D);
  6362   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6363   ins_pipe(ialu_reg_reg_fat);
  6364 %}
  6366 instruct leaP32(rRegP dst, indOffset32 mem)
  6367 %{
  6368   match(Set dst mem);
  6370   ins_cost(110);
  6371   format %{ "leaq    $dst, $mem\t# ptr 32" %}
  6372   opcode(0x8D);
  6373   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6374   ins_pipe(ialu_reg_reg_fat);
  6375 %}
  6377 // instruct leaPIdx(rRegP dst, indIndex mem)
  6378 // %{
  6379 //   match(Set dst mem);
  6381 //   ins_cost(110);
  6382 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
  6383 //   opcode(0x8D);
  6384 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6385 //   ins_pipe(ialu_reg_reg_fat);
  6386 // %}
  6388 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
  6389 %{
  6390   match(Set dst mem);
  6392   ins_cost(110);
  6393   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
  6394   opcode(0x8D);
  6395   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6396   ins_pipe(ialu_reg_reg_fat);
  6397 %}
  6399 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
  6400 %{
  6401   match(Set dst mem);
  6403   ins_cost(110);
  6404   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
  6405   opcode(0x8D);
  6406   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6407   ins_pipe(ialu_reg_reg_fat);
  6408 %}
  6410 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
  6411 %{
  6412   match(Set dst mem);
  6414   ins_cost(110);
  6415   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
  6416   opcode(0x8D);
  6417   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  6418   ins_pipe(ialu_reg_reg_fat);
  6419 %}
  6421 instruct loadConI(rRegI dst, immI src)
  6422 %{
  6423   match(Set dst src);
  6425   format %{ "movl    $dst, $src\t# int" %}
  6426   ins_encode(load_immI(dst, src));
  6427   ins_pipe(ialu_reg_fat); // XXX
  6428 %}
  6430 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
  6431 %{
  6432   match(Set dst src);
  6433   effect(KILL cr);
  6435   ins_cost(50);
  6436   format %{ "xorl    $dst, $dst\t# int" %}
  6437   opcode(0x33); /* + rd */
  6438   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6439   ins_pipe(ialu_reg);
  6440 %}
  6442 instruct loadConL(rRegL dst, immL src)
  6443 %{
  6444   match(Set dst src);
  6446   ins_cost(150);
  6447   format %{ "movq    $dst, $src\t# long" %}
  6448   ins_encode(load_immL(dst, src));
  6449   ins_pipe(ialu_reg);
  6450 %}
  6452 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
  6453 %{
  6454   match(Set dst src);
  6455   effect(KILL cr);
  6457   ins_cost(50);
  6458   format %{ "xorl    $dst, $dst\t# long" %}
  6459   opcode(0x33); /* + rd */
  6460   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6461   ins_pipe(ialu_reg); // XXX
  6462 %}
  6464 instruct loadConUL32(rRegL dst, immUL32 src)
  6465 %{
  6466   match(Set dst src);
  6468   ins_cost(60);
  6469   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
  6470   ins_encode(load_immUL32(dst, src));
  6471   ins_pipe(ialu_reg);
  6472 %}
  6474 instruct loadConL32(rRegL dst, immL32 src)
  6475 %{
  6476   match(Set dst src);
  6478   ins_cost(70);
  6479   format %{ "movq    $dst, $src\t# long (32-bit)" %}
  6480   ins_encode(load_immL32(dst, src));
  6481   ins_pipe(ialu_reg);
  6482 %}
  6484 instruct loadConP(rRegP dst, immP src)
  6485 %{
  6486   match(Set dst src);
  6488   format %{ "movq    $dst, $src\t# ptr" %}
  6489   ins_encode(load_immP(dst, src));
  6490   ins_pipe(ialu_reg_fat); // XXX
  6491 %}
  6493 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
  6494 %{
  6495   match(Set dst src);
  6496   effect(KILL cr);
  6498   ins_cost(50);
  6499   format %{ "xorl    $dst, $dst\t# ptr" %}
  6500   opcode(0x33); /* + rd */
  6501   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
  6502   ins_pipe(ialu_reg);
  6503 %}
  6505 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
  6506 %{
  6507   match(Set dst src);
  6508   effect(KILL cr);
  6510   ins_cost(60);
  6511   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
  6512   ins_encode(load_immP31(dst, src));
  6513   ins_pipe(ialu_reg);
  6514 %}
  6516 instruct loadConF(regF dst, immF src)
  6517 %{
  6518   match(Set dst src);
  6519   ins_cost(125);
  6521   format %{ "movss   $dst, [$src]" %}
  6522   ins_encode(load_conF(dst, src));
  6523   ins_pipe(pipe_slow);
  6524 %}
  6526 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
  6527   match(Set dst src);
  6528   effect(KILL cr);
  6529   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
  6530   ins_encode %{
  6531     Register dst = $dst$$Register;
  6532     __ xorq(dst, dst);
  6533   %}
  6534   ins_pipe(ialu_reg);
  6535 %}
  6537 instruct loadConN(rRegN dst, immN src) %{
  6538   match(Set dst src);
  6540   ins_cost(125);
  6541   format %{ "movl    $dst, $src\t# compressed ptr" %}
  6542   ins_encode %{
  6543     address con = (address)$src$$constant;
  6544     Register dst = $dst$$Register;
  6545     if (con == NULL) {
  6546       ShouldNotReachHere();
  6547     } else {
  6548       __ set_narrow_oop(dst, (jobject)$src$$constant);
  6550   %}
  6551   ins_pipe(ialu_reg_fat); // XXX
  6552 %}
  6554 instruct loadConF0(regF dst, immF0 src)
  6555 %{
  6556   match(Set dst src);
  6557   ins_cost(100);
  6559   format %{ "xorps   $dst, $dst\t# float 0.0" %}
  6560   opcode(0x0F, 0x57);
  6561   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  6562   ins_pipe(pipe_slow);
  6563 %}
  6565 // Use the same format since predicate() can not be used here.
  6566 instruct loadConD(regD dst, immD src)
  6567 %{
  6568   match(Set dst src);
  6569   ins_cost(125);
  6571   format %{ "movsd   $dst, [$src]" %}
  6572   ins_encode(load_conD(dst, src));
  6573   ins_pipe(pipe_slow);
  6574 %}
  6576 instruct loadConD0(regD dst, immD0 src)
  6577 %{
  6578   match(Set dst src);
  6579   ins_cost(100);
  6581   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
  6582   opcode(0x66, 0x0F, 0x57);
  6583   ins_encode(OpcP, REX_reg_reg(dst, dst), OpcS, OpcT, reg_reg(dst, dst));
  6584   ins_pipe(pipe_slow);
  6585 %}
  6587 instruct loadSSI(rRegI dst, stackSlotI src)
  6588 %{
  6589   match(Set dst src);
  6591   ins_cost(125);
  6592   format %{ "movl    $dst, $src\t# int stk" %}
  6593   opcode(0x8B);
  6594   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  6595   ins_pipe(ialu_reg_mem);
  6596 %}
  6598 instruct loadSSL(rRegL dst, stackSlotL src)
  6599 %{
  6600   match(Set dst src);
  6602   ins_cost(125);
  6603   format %{ "movq    $dst, $src\t# long stk" %}
  6604   opcode(0x8B);
  6605   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6606   ins_pipe(ialu_reg_mem);
  6607 %}
  6609 instruct loadSSP(rRegP dst, stackSlotP src)
  6610 %{
  6611   match(Set dst src);
  6613   ins_cost(125);
  6614   format %{ "movq    $dst, $src\t# ptr stk" %}
  6615   opcode(0x8B);
  6616   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  6617   ins_pipe(ialu_reg_mem);
  6618 %}
  6620 instruct loadSSF(regF dst, stackSlotF src)
  6621 %{
  6622   match(Set dst src);
  6624   ins_cost(125);
  6625   format %{ "movss   $dst, $src\t# float stk" %}
  6626   opcode(0xF3, 0x0F, 0x10);
  6627   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
  6628   ins_pipe(pipe_slow); // XXX
  6629 %}
  6631 // Use the same format since predicate() can not be used here.
  6632 instruct loadSSD(regD dst, stackSlotD src)
  6633 %{
  6634   match(Set dst src);
  6636   ins_cost(125);
  6637   format %{ "movsd   $dst, $src\t# double stk" %}
  6638   ins_encode  %{
  6639     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
  6640   %}
  6641   ins_pipe(pipe_slow); // XXX
  6642 %}
  6644 // Prefetch instructions.
  6645 // Must be safe to execute with invalid address (cannot fault).
  6647 instruct prefetchr( memory mem ) %{
  6648   predicate(ReadPrefetchInstr==3);
  6649   match(PrefetchRead mem);
  6650   ins_cost(125);
  6652   format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
  6653   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /0 */
  6654   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6655   ins_pipe(ialu_mem);
  6656 %}
  6658 instruct prefetchrNTA( memory mem ) %{
  6659   predicate(ReadPrefetchInstr==0);
  6660   match(PrefetchRead mem);
  6661   ins_cost(125);
  6663   format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
  6664   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6665   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6666   ins_pipe(ialu_mem);
  6667 %}
  6669 instruct prefetchrT0( memory mem ) %{
  6670   predicate(ReadPrefetchInstr==1);
  6671   match(PrefetchRead mem);
  6672   ins_cost(125);
  6674   format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
  6675   opcode(0x0F, 0x18); /* Opcode 0F 18 /1 */
  6676   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6677   ins_pipe(ialu_mem);
  6678 %}
  6680 instruct prefetchrT2( memory mem ) %{
  6681   predicate(ReadPrefetchInstr==2);
  6682   match(PrefetchRead mem);
  6683   ins_cost(125);
  6685   format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
  6686   opcode(0x0F, 0x18); /* Opcode 0F 18 /3 */
  6687   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6688   ins_pipe(ialu_mem);
  6689 %}
  6691 instruct prefetchw( memory mem ) %{
  6692   predicate(AllocatePrefetchInstr==3);
  6693   match(PrefetchWrite mem);
  6694   ins_cost(125);
  6696   format %{ "PREFETCHW $mem\t# Prefetch into level 1 cache and mark modified" %}
  6697   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
  6698   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6699   ins_pipe(ialu_mem);
  6700 %}
  6702 instruct prefetchwNTA( memory mem ) %{
  6703   predicate(AllocatePrefetchInstr==0);
  6704   match(PrefetchWrite mem);
  6705   ins_cost(125);
  6707   format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
  6708   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
  6709   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x00, mem));
  6710   ins_pipe(ialu_mem);
  6711 %}
  6713 instruct prefetchwT0( memory mem ) %{
  6714   predicate(AllocatePrefetchInstr==1);
  6715   match(PrefetchWrite mem);
  6716   ins_cost(125);
  6718   format %{ "PREFETCHT0 $mem\t# Prefetch to level 1 and 2 caches for write" %}
  6719   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
  6720   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x01, mem));
  6721   ins_pipe(ialu_mem);
  6722 %}
  6724 instruct prefetchwT2( memory mem ) %{
  6725   predicate(AllocatePrefetchInstr==2);
  6726   match(PrefetchWrite mem);
  6727   ins_cost(125);
  6729   format %{ "PREFETCHT2 $mem\t# Prefetch to level 2 cache for write" %}
  6730   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
  6731   ins_encode(REX_mem(mem), OpcP, OpcS, RM_opc_mem(0x03, mem));
  6732   ins_pipe(ialu_mem);
  6733 %}
  6735 //----------Store Instructions-------------------------------------------------
  6737 // Store Byte
  6738 instruct storeB(memory mem, rRegI src)
  6739 %{
  6740   match(Set mem (StoreB mem src));
  6742   ins_cost(125); // XXX
  6743   format %{ "movb    $mem, $src\t# byte" %}
  6744   opcode(0x88);
  6745   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
  6746   ins_pipe(ialu_mem_reg);
  6747 %}
  6749 // Store Char/Short
  6750 instruct storeC(memory mem, rRegI src)
  6751 %{
  6752   match(Set mem (StoreC mem src));
  6754   ins_cost(125); // XXX
  6755   format %{ "movw    $mem, $src\t# char/short" %}
  6756   opcode(0x89);
  6757   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6758   ins_pipe(ialu_mem_reg);
  6759 %}
  6761 // Store Integer
  6762 instruct storeI(memory mem, rRegI src)
  6763 %{
  6764   match(Set mem (StoreI mem src));
  6766   ins_cost(125); // XXX
  6767   format %{ "movl    $mem, $src\t# int" %}
  6768   opcode(0x89);
  6769   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
  6770   ins_pipe(ialu_mem_reg);
  6771 %}
  6773 // Store Long
  6774 instruct storeL(memory mem, rRegL src)
  6775 %{
  6776   match(Set mem (StoreL mem src));
  6778   ins_cost(125); // XXX
  6779   format %{ "movq    $mem, $src\t# long" %}
  6780   opcode(0x89);
  6781   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6782   ins_pipe(ialu_mem_reg); // XXX
  6783 %}
  6785 // Store Pointer
  6786 instruct storeP(memory mem, any_RegP src)
  6787 %{
  6788   match(Set mem (StoreP mem src));
  6790   ins_cost(125); // XXX
  6791   format %{ "movq    $mem, $src\t# ptr" %}
  6792   opcode(0x89);
  6793   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
  6794   ins_pipe(ialu_mem_reg);
  6795 %}
  6797 // Store NULL Pointer, mark word, or other simple pointer constant.
  6798 instruct storeImmP(memory mem, immP31 src)
  6799 %{
  6800   match(Set mem (StoreP mem src));
  6802   ins_cost(125); // XXX
  6803   format %{ "movq    $mem, $src\t# ptr" %}
  6804   opcode(0xC7); /* C7 /0 */
  6805   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  6806   ins_pipe(ialu_mem_imm);
  6807 %}
  6809 // Store Compressed Pointer
  6810 instruct storeN(memory mem, rRegN src)
  6811 %{
  6812   match(Set mem (StoreN mem src));
  6814   ins_cost(125); // XXX
  6815   format %{ "movl    $mem, $src\t# compressed ptr" %}
  6816   ins_encode %{
  6817     Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
  6818     Register src = as_Register($src$$reg);
  6819     __ movl(addr, src);
  6820   %}
  6821   ins_pipe(ialu_mem_reg);
  6822 %}
  6824 // Store Integer Immediate
  6825 instruct storeImmI(memory mem, immI src)
  6826 %{
  6827   match(Set mem (StoreI mem src));
  6829   ins_cost(150);
  6830   format %{ "movl    $mem, $src\t# int" %}
  6831   opcode(0xC7); /* C7 /0 */
  6832   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  6833   ins_pipe(ialu_mem_imm);
  6834 %}
  6836 // Store Long Immediate
  6837 instruct storeImmL(memory mem, immL32 src)
  6838 %{
  6839   match(Set mem (StoreL mem src));
  6841   ins_cost(150);
  6842   format %{ "movq    $mem, $src\t# long" %}
  6843   opcode(0xC7); /* C7 /0 */
  6844   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
  6845   ins_pipe(ialu_mem_imm);
  6846 %}
  6848 // Store Short/Char Immediate
  6849 instruct storeImmI16(memory mem, immI16 src)
  6850 %{
  6851   predicate(UseStoreImmI16);
  6852   match(Set mem (StoreC mem src));
  6854   ins_cost(150);
  6855   format %{ "movw    $mem, $src\t# short/char" %}
  6856   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
  6857   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
  6858   ins_pipe(ialu_mem_imm);
  6859 %}
  6861 // Store Byte Immediate
  6862 instruct storeImmB(memory mem, immI8 src)
  6863 %{
  6864   match(Set mem (StoreB mem src));
  6866   ins_cost(150); // XXX
  6867   format %{ "movb    $mem, $src\t# byte" %}
  6868   opcode(0xC6); /* C6 /0 */
  6869   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  6870   ins_pipe(ialu_mem_imm);
  6871 %}
  6873 // Store Aligned Packed Byte XMM register to memory
  6874 instruct storeA8B(memory mem, regD src) %{
  6875   match(Set mem (Store8B mem src));
  6876   ins_cost(145);
  6877   format %{ "MOVQ  $mem,$src\t! packed8B" %}
  6878   ins_encode( movq_st(mem, src));
  6879   ins_pipe( pipe_slow );
  6880 %}
  6882 // Store Aligned Packed Char/Short XMM register to memory
  6883 instruct storeA4C(memory mem, regD src) %{
  6884   match(Set mem (Store4C mem src));
  6885   ins_cost(145);
  6886   format %{ "MOVQ  $mem,$src\t! packed4C" %}
  6887   ins_encode( movq_st(mem, src));
  6888   ins_pipe( pipe_slow );
  6889 %}
  6891 // Store Aligned Packed Integer XMM register to memory
  6892 instruct storeA2I(memory mem, regD src) %{
  6893   match(Set mem (Store2I mem src));
  6894   ins_cost(145);
  6895   format %{ "MOVQ  $mem,$src\t! packed2I" %}
  6896   ins_encode( movq_st(mem, src));
  6897   ins_pipe( pipe_slow );
  6898 %}
  6900 // Store CMS card-mark Immediate
  6901 instruct storeImmCM0(memory mem, immI0 src)
  6902 %{
  6903   match(Set mem (StoreCM mem src));
  6905   ins_cost(150); // XXX
  6906   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
  6907   opcode(0xC6); /* C6 /0 */
  6908   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
  6909   ins_pipe(ialu_mem_imm);
  6910 %}
  6912 // Store Aligned Packed Single Float XMM register to memory
  6913 instruct storeA2F(memory mem, regD src) %{
  6914   match(Set mem (Store2F mem src));
  6915   ins_cost(145);
  6916   format %{ "MOVQ  $mem,$src\t! packed2F" %}
  6917   ins_encode( movq_st(mem, src));
  6918   ins_pipe( pipe_slow );
  6919 %}
  6921 // Store Float
  6922 instruct storeF(memory mem, regF src)
  6923 %{
  6924   match(Set mem (StoreF mem src));
  6926   ins_cost(95); // XXX
  6927   format %{ "movss   $mem, $src\t# float" %}
  6928   opcode(0xF3, 0x0F, 0x11);
  6929   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  6930   ins_pipe(pipe_slow); // XXX
  6931 %}
  6933 // Store immediate Float value (it is faster than store from XMM register)
  6934 instruct storeF_imm(memory mem, immF src)
  6935 %{
  6936   match(Set mem (StoreF mem src));
  6938   ins_cost(50);
  6939   format %{ "movl    $mem, $src\t# float" %}
  6940   opcode(0xC7); /* C7 /0 */
  6941   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  6942   ins_pipe(ialu_mem_imm);
  6943 %}
  6945 // Store Double
  6946 instruct storeD(memory mem, regD src)
  6947 %{
  6948   match(Set mem (StoreD mem src));
  6950   ins_cost(95); // XXX
  6951   format %{ "movsd   $mem, $src\t# double" %}
  6952   opcode(0xF2, 0x0F, 0x11);
  6953   ins_encode(OpcP, REX_reg_mem(src, mem), OpcS, OpcT, reg_mem(src, mem));
  6954   ins_pipe(pipe_slow); // XXX
  6955 %}
  6957 // Store immediate double 0.0 (it is faster than store from XMM register)
  6958 instruct storeD0_imm(memory mem, immD0 src)
  6959 %{
  6960   match(Set mem (StoreD mem src));
  6962   ins_cost(50);
  6963   format %{ "movq    $mem, $src\t# double 0." %}
  6964   opcode(0xC7); /* C7 /0 */
  6965   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
  6966   ins_pipe(ialu_mem_imm);
  6967 %}
  6969 instruct storeSSI(stackSlotI dst, rRegI src)
  6970 %{
  6971   match(Set dst src);
  6973   ins_cost(100);
  6974   format %{ "movl    $dst, $src\t# int stk" %}
  6975   opcode(0x89);
  6976   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  6977   ins_pipe( ialu_mem_reg );
  6978 %}
  6980 instruct storeSSL(stackSlotL dst, rRegL src)
  6981 %{
  6982   match(Set dst src);
  6984   ins_cost(100);
  6985   format %{ "movq    $dst, $src\t# long stk" %}
  6986   opcode(0x89);
  6987   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  6988   ins_pipe(ialu_mem_reg);
  6989 %}
  6991 instruct storeSSP(stackSlotP dst, rRegP src)
  6992 %{
  6993   match(Set dst src);
  6995   ins_cost(100);
  6996   format %{ "movq    $dst, $src\t# ptr stk" %}
  6997   opcode(0x89);
  6998   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  6999   ins_pipe(ialu_mem_reg);
  7000 %}
  7002 instruct storeSSF(stackSlotF dst, regF src)
  7003 %{
  7004   match(Set dst src);
  7006   ins_cost(95); // XXX
  7007   format %{ "movss   $dst, $src\t# float stk" %}
  7008   opcode(0xF3, 0x0F, 0x11);
  7009   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  7010   ins_pipe(pipe_slow); // XXX
  7011 %}
  7013 instruct storeSSD(stackSlotD dst, regD src)
  7014 %{
  7015   match(Set dst src);
  7017   ins_cost(95); // XXX
  7018   format %{ "movsd   $dst, $src\t# double stk" %}
  7019   opcode(0xF2, 0x0F, 0x11);
  7020   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
  7021   ins_pipe(pipe_slow); // XXX
  7022 %}
  7024 //----------BSWAP Instructions-------------------------------------------------
  7025 instruct bytes_reverse_int(rRegI dst) %{
  7026   match(Set dst (ReverseBytesI dst));
  7028   format %{ "bswapl  $dst" %}
  7029   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
  7030   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
  7031   ins_pipe( ialu_reg );
  7032 %}
  7034 instruct bytes_reverse_long(rRegL dst) %{
  7035   match(Set dst (ReverseBytesL dst));
  7037   format %{ "bswapq  $dst" %}
  7039   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
  7040   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
  7041   ins_pipe( ialu_reg);
  7042 %}
  7044 instruct loadI_reversed(rRegI dst, memory src) %{
  7045   match(Set dst (ReverseBytesI (LoadI src)));
  7047   format %{ "bswap_movl $dst, $src" %}
  7048   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  7049   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src), REX_reg(dst), OpcS, opc3_reg(dst));
  7050   ins_pipe( ialu_reg_mem );
  7051 %}
  7053 instruct loadL_reversed(rRegL dst, memory src) %{
  7054   match(Set dst (ReverseBytesL (LoadL src)));
  7056   format %{ "bswap_movq $dst, $src" %}
  7057   opcode(0x8B, 0x0F, 0xC8); /* Opcode 8B 0F C8 */
  7058   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src), REX_reg_wide(dst), OpcS, opc3_reg(dst));
  7059   ins_pipe( ialu_reg_mem );
  7060 %}
  7062 instruct storeI_reversed(memory dst, rRegI src) %{
  7063   match(Set dst (StoreI dst (ReverseBytesI  src)));
  7065   format %{ "movl_bswap $dst, $src" %}
  7066   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  7067   ins_encode( REX_reg(src), OpcP, opc2_reg(src), REX_reg_mem(src, dst), OpcT, reg_mem(src, dst) );
  7068   ins_pipe( ialu_mem_reg );
  7069 %}
  7071 instruct storeL_reversed(memory dst, rRegL src) %{
  7072   match(Set dst (StoreL dst (ReverseBytesL  src)));
  7074   format %{ "movq_bswap $dst, $src" %}
  7075   opcode(0x0F, 0xC8, 0x89); /* Opcode 0F C8 89 */
  7076   ins_encode( REX_reg_wide(src), OpcP, opc2_reg(src), REX_reg_mem_wide(src, dst), OpcT, reg_mem(src, dst) );
  7077   ins_pipe( ialu_mem_reg );
  7078 %}
  7080 //----------MemBar Instructions-----------------------------------------------
  7081 // Memory barrier flavors
  7083 instruct membar_acquire()
  7084 %{
  7085   match(MemBarAcquire);
  7086   ins_cost(0);
  7088   size(0);
  7089   format %{ "MEMBAR-acquire" %}
  7090   ins_encode();
  7091   ins_pipe(empty);
  7092 %}
  7094 instruct membar_acquire_lock()
  7095 %{
  7096   match(MemBarAcquire);
  7097   predicate(Matcher::prior_fast_lock(n));
  7098   ins_cost(0);
  7100   size(0);
  7101   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
  7102   ins_encode();
  7103   ins_pipe(empty);
  7104 %}
  7106 instruct membar_release()
  7107 %{
  7108   match(MemBarRelease);
  7109   ins_cost(0);
  7111   size(0);
  7112   format %{ "MEMBAR-release" %}
  7113   ins_encode();
  7114   ins_pipe(empty);
  7115 %}
  7117 instruct membar_release_lock()
  7118 %{
  7119   match(MemBarRelease);
  7120   predicate(Matcher::post_fast_unlock(n));
  7121   ins_cost(0);
  7123   size(0);
  7124   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
  7125   ins_encode();
  7126   ins_pipe(empty);
  7127 %}
  7129 instruct membar_volatile()
  7130 %{
  7131   match(MemBarVolatile);
  7132   ins_cost(400);
  7134   format %{ "MEMBAR-volatile" %}
  7135   ins_encode(enc_membar_volatile);
  7136   ins_pipe(pipe_slow);
  7137 %}
  7139 instruct unnecessary_membar_volatile()
  7140 %{
  7141   match(MemBarVolatile);
  7142   predicate(Matcher::post_store_load_barrier(n));
  7143   ins_cost(0);
  7145   size(0);
  7146   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
  7147   ins_encode();
  7148   ins_pipe(empty);
  7149 %}
  7151 //----------Move Instructions--------------------------------------------------
  7153 instruct castX2P(rRegP dst, rRegL src)
  7154 %{
  7155   match(Set dst (CastX2P src));
  7157   format %{ "movq    $dst, $src\t# long->ptr" %}
  7158   ins_encode(enc_copy_wide(dst, src));
  7159   ins_pipe(ialu_reg_reg); // XXX
  7160 %}
  7162 instruct castP2X(rRegL dst, rRegP src)
  7163 %{
  7164   match(Set dst (CastP2X src));
  7166   format %{ "movq    $dst, $src\t# ptr -> long" %}
  7167   ins_encode(enc_copy_wide(dst, src));
  7168   ins_pipe(ialu_reg_reg); // XXX
  7169 %}
  7172 // Convert oop pointer into compressed form
  7173 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
  7174   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
  7175   match(Set dst (EncodeP src));
  7176   effect(KILL cr);
  7177   format %{ "encode_heap_oop $dst,$src" %}
  7178   ins_encode %{
  7179     Register s = $src$$Register;
  7180     Register d = $dst$$Register;
  7181     if (s != d) {
  7182       __ movq(d, s);
  7184     __ encode_heap_oop(d);
  7185   %}
  7186   ins_pipe(ialu_reg_long);
  7187 %}
  7189 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
  7190   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
  7191   match(Set dst (EncodeP src));
  7192   effect(KILL cr);
  7193   format %{ "encode_heap_oop_not_null $dst,$src" %}
  7194   ins_encode %{
  7195     Register s = $src$$Register;
  7196     Register d = $dst$$Register;
  7197     __ encode_heap_oop_not_null(d, s);
  7198   %}
  7199   ins_pipe(ialu_reg_long);
  7200 %}
  7202 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
  7203   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  7204             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
  7205   match(Set dst (DecodeN src));
  7206   effect(KILL cr);
  7207   format %{ "decode_heap_oop $dst,$src" %}
  7208   ins_encode %{
  7209     Register s = $src$$Register;
  7210     Register d = $dst$$Register;
  7211     if (s != d) {
  7212       __ movq(d, s);
  7214     __ decode_heap_oop(d);
  7215   %}
  7216   ins_pipe(ialu_reg_long);
  7217 %}
  7219 instruct decodeHeapOop_not_null(rRegP dst, rRegN src) %{
  7220   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  7221             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
  7222   match(Set dst (DecodeN src));
  7223   format %{ "decode_heap_oop_not_null $dst,$src" %}
  7224   ins_encode %{
  7225     Register s = $src$$Register;
  7226     Register d = $dst$$Register;
  7227     __ decode_heap_oop_not_null(d, s);
  7228   %}
  7229   ins_pipe(ialu_reg_long);
  7230 %}
  7233 //----------Conditional Move---------------------------------------------------
  7234 // Jump
  7235 // dummy instruction for generating temp registers
  7236 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
  7237   match(Jump (LShiftL switch_val shift));
  7238   ins_cost(350);
  7239   predicate(false);
  7240   effect(TEMP dest);
  7242   format %{ "leaq    $dest, table_base\n\t"
  7243             "jmp     [$dest + $switch_val << $shift]\n\t" %}
  7244   ins_encode(jump_enc_offset(switch_val, shift, dest));
  7245   ins_pipe(pipe_jmp);
  7246   ins_pc_relative(1);
  7247 %}
  7249 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
  7250   match(Jump (AddL (LShiftL switch_val shift) offset));
  7251   ins_cost(350);
  7252   effect(TEMP dest);
  7254   format %{ "leaq    $dest, table_base\n\t"
  7255             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
  7256   ins_encode(jump_enc_addr(switch_val, shift, offset, dest));
  7257   ins_pipe(pipe_jmp);
  7258   ins_pc_relative(1);
  7259 %}
  7261 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
  7262   match(Jump switch_val);
  7263   ins_cost(350);
  7264   effect(TEMP dest);
  7266   format %{ "leaq    $dest, table_base\n\t"
  7267             "jmp     [$dest + $switch_val]\n\t" %}
  7268   ins_encode(jump_enc(switch_val, dest));
  7269   ins_pipe(pipe_jmp);
  7270   ins_pc_relative(1);
  7271 %}
  7273 // Conditional move
  7274 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
  7275 %{
  7276   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7278   ins_cost(200); // XXX
  7279   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7280   opcode(0x0F, 0x40);
  7281   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7282   ins_pipe(pipe_cmov_reg);
  7283 %}
  7285 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
  7286   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7288   ins_cost(200); // XXX
  7289   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7290   opcode(0x0F, 0x40);
  7291   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7292   ins_pipe(pipe_cmov_reg);
  7293 %}
  7295 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
  7296   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
  7297   ins_cost(200);
  7298   expand %{
  7299     cmovI_regU(cop, cr, dst, src);
  7300   %}
  7301 %}
  7303 // Conditional move
  7304 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
  7305   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7307   ins_cost(250); // XXX
  7308   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
  7309   opcode(0x0F, 0x40);
  7310   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7311   ins_pipe(pipe_cmov_mem);
  7312 %}
  7314 // Conditional move
  7315 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
  7316 %{
  7317   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7319   ins_cost(250); // XXX
  7320   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
  7321   opcode(0x0F, 0x40);
  7322   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7323   ins_pipe(pipe_cmov_mem);
  7324 %}
  7326 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
  7327   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
  7328   ins_cost(250);
  7329   expand %{
  7330     cmovI_memU(cop, cr, dst, src);
  7331   %}
  7332 %}
  7334 // Conditional move
  7335 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
  7336 %{
  7337   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7339   ins_cost(200); // XXX
  7340   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
  7341   opcode(0x0F, 0x40);
  7342   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7343   ins_pipe(pipe_cmov_reg);
  7344 %}
  7346 // Conditional move
  7347 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
  7348 %{
  7349   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7351   ins_cost(200); // XXX
  7352   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
  7353   opcode(0x0F, 0x40);
  7354   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7355   ins_pipe(pipe_cmov_reg);
  7356 %}
  7358 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
  7359   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
  7360   ins_cost(200);
  7361   expand %{
  7362     cmovN_regU(cop, cr, dst, src);
  7363   %}
  7364 %}
  7366 // Conditional move
  7367 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
  7368 %{
  7369   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7371   ins_cost(200); // XXX
  7372   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
  7373   opcode(0x0F, 0x40);
  7374   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7375   ins_pipe(pipe_cmov_reg);  // XXX
  7376 %}
  7378 // Conditional move
  7379 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
  7380 %{
  7381   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7383   ins_cost(200); // XXX
  7384   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
  7385   opcode(0x0F, 0x40);
  7386   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7387   ins_pipe(pipe_cmov_reg); // XXX
  7388 %}
  7390 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
  7391   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
  7392   ins_cost(200);
  7393   expand %{
  7394     cmovP_regU(cop, cr, dst, src);
  7395   %}
  7396 %}
  7398 // DISABLED: Requires the ADLC to emit a bottom_type call that
  7399 // correctly meets the two pointer arguments; one is an incoming
  7400 // register but the other is a memory operand.  ALSO appears to
  7401 // be buggy with implicit null checks.
  7402 //
  7403 //// Conditional move
  7404 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
  7405 //%{
  7406 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7407 //  ins_cost(250);
  7408 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7409 //  opcode(0x0F,0x40);
  7410 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7411 //  ins_pipe( pipe_cmov_mem );
  7412 //%}
  7413 //
  7414 //// Conditional move
  7415 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
  7416 //%{
  7417 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
  7418 //  ins_cost(250);
  7419 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
  7420 //  opcode(0x0F,0x40);
  7421 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
  7422 //  ins_pipe( pipe_cmov_mem );
  7423 //%}
  7425 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
  7426 %{
  7427   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7429   ins_cost(200); // XXX
  7430   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7431   opcode(0x0F, 0x40);
  7432   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7433   ins_pipe(pipe_cmov_reg);  // XXX
  7434 %}
  7436 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
  7437 %{
  7438   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7440   ins_cost(200); // XXX
  7441   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
  7442   opcode(0x0F, 0x40);
  7443   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7444   ins_pipe(pipe_cmov_mem);  // XXX
  7445 %}
  7447 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
  7448 %{
  7449   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7451   ins_cost(200); // XXX
  7452   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7453   opcode(0x0F, 0x40);
  7454   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
  7455   ins_pipe(pipe_cmov_reg); // XXX
  7456 %}
  7458 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
  7459   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
  7460   ins_cost(200);
  7461   expand %{
  7462     cmovL_regU(cop, cr, dst, src);
  7463   %}
  7464 %}
  7466 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
  7467 %{
  7468   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7470   ins_cost(200); // XXX
  7471   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
  7472   opcode(0x0F, 0x40);
  7473   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
  7474   ins_pipe(pipe_cmov_mem); // XXX
  7475 %}
  7477 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
  7478   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
  7479   ins_cost(200);
  7480   expand %{
  7481     cmovL_memU(cop, cr, dst, src);
  7482   %}
  7483 %}
  7485 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
  7486 %{
  7487   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7489   ins_cost(200); // XXX
  7490   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7491             "movss     $dst, $src\n"
  7492     "skip:" %}
  7493   ins_encode(enc_cmovf_branch(cop, dst, src));
  7494   ins_pipe(pipe_slow);
  7495 %}
  7497 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
  7498 // %{
  7499 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
  7501 //   ins_cost(200); // XXX
  7502 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
  7503 //             "movss     $dst, $src\n"
  7504 //     "skip:" %}
  7505 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
  7506 //   ins_pipe(pipe_slow);
  7507 // %}
  7509 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
  7510 %{
  7511   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7513   ins_cost(200); // XXX
  7514   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
  7515             "movss     $dst, $src\n"
  7516     "skip:" %}
  7517   ins_encode(enc_cmovf_branch(cop, dst, src));
  7518   ins_pipe(pipe_slow);
  7519 %}
  7521 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
  7522   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
  7523   ins_cost(200);
  7524   expand %{
  7525     cmovF_regU(cop, cr, dst, src);
  7526   %}
  7527 %}
  7529 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
  7530 %{
  7531   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7533   ins_cost(200); // XXX
  7534   format %{ "jn$cop    skip\t# signed cmove double\n\t"
  7535             "movsd     $dst, $src\n"
  7536     "skip:" %}
  7537   ins_encode(enc_cmovd_branch(cop, dst, src));
  7538   ins_pipe(pipe_slow);
  7539 %}
  7541 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
  7542 %{
  7543   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7545   ins_cost(200); // XXX
  7546   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
  7547             "movsd     $dst, $src\n"
  7548     "skip:" %}
  7549   ins_encode(enc_cmovd_branch(cop, dst, src));
  7550   ins_pipe(pipe_slow);
  7551 %}
  7553 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
  7554   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
  7555   ins_cost(200);
  7556   expand %{
  7557     cmovD_regU(cop, cr, dst, src);
  7558   %}
  7559 %}
  7561 //----------Arithmetic Instructions--------------------------------------------
  7562 //----------Addition Instructions----------------------------------------------
  7564 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  7565 %{
  7566   match(Set dst (AddI dst src));
  7567   effect(KILL cr);
  7569   format %{ "addl    $dst, $src\t# int" %}
  7570   opcode(0x03);
  7571   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  7572   ins_pipe(ialu_reg_reg);
  7573 %}
  7575 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  7576 %{
  7577   match(Set dst (AddI dst src));
  7578   effect(KILL cr);
  7580   format %{ "addl    $dst, $src\t# int" %}
  7581   opcode(0x81, 0x00); /* /0 id */
  7582   ins_encode(OpcSErm(dst, src), Con8or32(src));
  7583   ins_pipe( ialu_reg );
  7584 %}
  7586 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  7587 %{
  7588   match(Set dst (AddI dst (LoadI src)));
  7589   effect(KILL cr);
  7591   ins_cost(125); // XXX
  7592   format %{ "addl    $dst, $src\t# int" %}
  7593   opcode(0x03);
  7594   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  7595   ins_pipe(ialu_reg_mem);
  7596 %}
  7598 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  7599 %{
  7600   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7601   effect(KILL cr);
  7603   ins_cost(150); // XXX
  7604   format %{ "addl    $dst, $src\t# int" %}
  7605   opcode(0x01); /* Opcode 01 /r */
  7606   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  7607   ins_pipe(ialu_mem_reg);
  7608 %}
  7610 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
  7611 %{
  7612   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7613   effect(KILL cr);
  7615   ins_cost(125); // XXX
  7616   format %{ "addl    $dst, $src\t# int" %}
  7617   opcode(0x81); /* Opcode 81 /0 id */
  7618   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  7619   ins_pipe(ialu_mem_imm);
  7620 %}
  7622 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
  7623 %{
  7624   predicate(UseIncDec);
  7625   match(Set dst (AddI dst src));
  7626   effect(KILL cr);
  7628   format %{ "incl    $dst\t# int" %}
  7629   opcode(0xFF, 0x00); // FF /0
  7630   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  7631   ins_pipe(ialu_reg);
  7632 %}
  7634 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
  7635 %{
  7636   predicate(UseIncDec);
  7637   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7638   effect(KILL cr);
  7640   ins_cost(125); // XXX
  7641   format %{ "incl    $dst\t# int" %}
  7642   opcode(0xFF); /* Opcode FF /0 */
  7643   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
  7644   ins_pipe(ialu_mem_imm);
  7645 %}
  7647 // XXX why does that use AddI
  7648 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
  7649 %{
  7650   predicate(UseIncDec);
  7651   match(Set dst (AddI dst src));
  7652   effect(KILL cr);
  7654   format %{ "decl    $dst\t# int" %}
  7655   opcode(0xFF, 0x01); // FF /1
  7656   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  7657   ins_pipe(ialu_reg);
  7658 %}
  7660 // XXX why does that use AddI
  7661 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
  7662 %{
  7663   predicate(UseIncDec);
  7664   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
  7665   effect(KILL cr);
  7667   ins_cost(125); // XXX
  7668   format %{ "decl    $dst\t# int" %}
  7669   opcode(0xFF); /* Opcode FF /1 */
  7670   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
  7671   ins_pipe(ialu_mem_imm);
  7672 %}
  7674 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
  7675 %{
  7676   match(Set dst (AddI src0 src1));
  7678   ins_cost(110);
  7679   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
  7680   opcode(0x8D); /* 0x8D /r */
  7681   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  7682   ins_pipe(ialu_reg_reg);
  7683 %}
  7685 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  7686 %{
  7687   match(Set dst (AddL dst src));
  7688   effect(KILL cr);
  7690   format %{ "addq    $dst, $src\t# long" %}
  7691   opcode(0x03);
  7692   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  7693   ins_pipe(ialu_reg_reg);
  7694 %}
  7696 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  7697 %{
  7698   match(Set dst (AddL dst src));
  7699   effect(KILL cr);
  7701   format %{ "addq    $dst, $src\t# long" %}
  7702   opcode(0x81, 0x00); /* /0 id */
  7703   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  7704   ins_pipe( ialu_reg );
  7705 %}
  7707 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  7708 %{
  7709   match(Set dst (AddL dst (LoadL src)));
  7710   effect(KILL cr);
  7712   ins_cost(125); // XXX
  7713   format %{ "addq    $dst, $src\t# long" %}
  7714   opcode(0x03);
  7715   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  7716   ins_pipe(ialu_reg_mem);
  7717 %}
  7719 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  7720 %{
  7721   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7722   effect(KILL cr);
  7724   ins_cost(150); // XXX
  7725   format %{ "addq    $dst, $src\t# long" %}
  7726   opcode(0x01); /* Opcode 01 /r */
  7727   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  7728   ins_pipe(ialu_mem_reg);
  7729 %}
  7731 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  7732 %{
  7733   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7734   effect(KILL cr);
  7736   ins_cost(125); // XXX
  7737   format %{ "addq    $dst, $src\t# long" %}
  7738   opcode(0x81); /* Opcode 81 /0 id */
  7739   ins_encode(REX_mem_wide(dst),
  7740              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
  7741   ins_pipe(ialu_mem_imm);
  7742 %}
  7744 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
  7745 %{
  7746   predicate(UseIncDec);
  7747   match(Set dst (AddL dst src));
  7748   effect(KILL cr);
  7750   format %{ "incq    $dst\t# long" %}
  7751   opcode(0xFF, 0x00); // FF /0
  7752   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  7753   ins_pipe(ialu_reg);
  7754 %}
  7756 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
  7757 %{
  7758   predicate(UseIncDec);
  7759   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7760   effect(KILL cr);
  7762   ins_cost(125); // XXX
  7763   format %{ "incq    $dst\t# long" %}
  7764   opcode(0xFF); /* Opcode FF /0 */
  7765   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
  7766   ins_pipe(ialu_mem_imm);
  7767 %}
  7769 // XXX why does that use AddL
  7770 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
  7771 %{
  7772   predicate(UseIncDec);
  7773   match(Set dst (AddL dst src));
  7774   effect(KILL cr);
  7776   format %{ "decq    $dst\t# long" %}
  7777   opcode(0xFF, 0x01); // FF /1
  7778   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  7779   ins_pipe(ialu_reg);
  7780 %}
  7782 // XXX why does that use AddL
  7783 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
  7784 %{
  7785   predicate(UseIncDec);
  7786   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
  7787   effect(KILL cr);
  7789   ins_cost(125); // XXX
  7790   format %{ "decq    $dst\t# long" %}
  7791   opcode(0xFF); /* Opcode FF /1 */
  7792   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
  7793   ins_pipe(ialu_mem_imm);
  7794 %}
  7796 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
  7797 %{
  7798   match(Set dst (AddL src0 src1));
  7800   ins_cost(110);
  7801   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
  7802   opcode(0x8D); /* 0x8D /r */
  7803   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
  7804   ins_pipe(ialu_reg_reg);
  7805 %}
  7807 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
  7808 %{
  7809   match(Set dst (AddP dst src));
  7810   effect(KILL cr);
  7812   format %{ "addq    $dst, $src\t# ptr" %}
  7813   opcode(0x03);
  7814   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  7815   ins_pipe(ialu_reg_reg);
  7816 %}
  7818 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
  7819 %{
  7820   match(Set dst (AddP dst src));
  7821   effect(KILL cr);
  7823   format %{ "addq    $dst, $src\t# ptr" %}
  7824   opcode(0x81, 0x00); /* /0 id */
  7825   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  7826   ins_pipe( ialu_reg );
  7827 %}
  7829 // XXX addP mem ops ????
  7831 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
  7832 %{
  7833   match(Set dst (AddP src0 src1));
  7835   ins_cost(110);
  7836   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
  7837   opcode(0x8D); /* 0x8D /r */
  7838   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
  7839   ins_pipe(ialu_reg_reg);
  7840 %}
  7842 instruct checkCastPP(rRegP dst)
  7843 %{
  7844   match(Set dst (CheckCastPP dst));
  7846   size(0);
  7847   format %{ "# checkcastPP of $dst" %}
  7848   ins_encode(/* empty encoding */);
  7849   ins_pipe(empty);
  7850 %}
  7852 instruct castPP(rRegP dst)
  7853 %{
  7854   match(Set dst (CastPP dst));
  7856   size(0);
  7857   format %{ "# castPP of $dst" %}
  7858   ins_encode(/* empty encoding */);
  7859   ins_pipe(empty);
  7860 %}
  7862 instruct castII(rRegI dst)
  7863 %{
  7864   match(Set dst (CastII dst));
  7866   size(0);
  7867   format %{ "# castII of $dst" %}
  7868   ins_encode(/* empty encoding */);
  7869   ins_cost(0);
  7870   ins_pipe(empty);
  7871 %}
  7873 // LoadP-locked same as a regular LoadP when used with compare-swap
  7874 instruct loadPLocked(rRegP dst, memory mem)
  7875 %{
  7876   match(Set dst (LoadPLocked mem));
  7878   ins_cost(125); // XXX
  7879   format %{ "movq    $dst, $mem\t# ptr locked" %}
  7880   opcode(0x8B);
  7881   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  7882   ins_pipe(ialu_reg_mem); // XXX
  7883 %}
  7885 // LoadL-locked - same as a regular LoadL when used with compare-swap
  7886 instruct loadLLocked(rRegL dst, memory mem)
  7887 %{
  7888   match(Set dst (LoadLLocked mem));
  7890   ins_cost(125); // XXX
  7891   format %{ "movq    $dst, $mem\t# long locked" %}
  7892   opcode(0x8B);
  7893   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
  7894   ins_pipe(ialu_reg_mem); // XXX
  7895 %}
  7897 // Conditional-store of the updated heap-top.
  7898 // Used during allocation of the shared heap.
  7899 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
  7901 instruct storePConditional(memory heap_top_ptr,
  7902                            rax_RegP oldval, rRegP newval,
  7903                            rFlagsReg cr)
  7904 %{
  7905   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
  7907   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
  7908             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
  7909   opcode(0x0F, 0xB1);
  7910   ins_encode(lock_prefix,
  7911              REX_reg_mem_wide(newval, heap_top_ptr),
  7912              OpcP, OpcS,
  7913              reg_mem(newval, heap_top_ptr));
  7914   ins_pipe(pipe_cmpxchg);
  7915 %}
  7917 // Conditional-store of an int value.
  7918 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
  7919 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
  7920 %{
  7921   match(Set cr (StoreIConditional mem (Binary oldval newval)));
  7922   effect(KILL oldval);
  7924   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
  7925   opcode(0x0F, 0xB1);
  7926   ins_encode(lock_prefix,
  7927              REX_reg_mem(newval, mem),
  7928              OpcP, OpcS,
  7929              reg_mem(newval, mem));
  7930   ins_pipe(pipe_cmpxchg);
  7931 %}
  7933 // Conditional-store of a long value.
  7934 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
  7935 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
  7936 %{
  7937   match(Set cr (StoreLConditional mem (Binary oldval newval)));
  7938   effect(KILL oldval);
  7940   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
  7941   opcode(0x0F, 0xB1);
  7942   ins_encode(lock_prefix,
  7943              REX_reg_mem_wide(newval, mem),
  7944              OpcP, OpcS,
  7945              reg_mem(newval, mem));
  7946   ins_pipe(pipe_cmpxchg);
  7947 %}
  7950 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
  7951 instruct compareAndSwapP(rRegI res,
  7952                          memory mem_ptr,
  7953                          rax_RegP oldval, rRegP newval,
  7954                          rFlagsReg cr)
  7955 %{
  7956   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
  7957   effect(KILL cr, KILL oldval);
  7959   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  7960             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  7961             "sete    $res\n\t"
  7962             "movzbl  $res, $res" %}
  7963   opcode(0x0F, 0xB1);
  7964   ins_encode(lock_prefix,
  7965              REX_reg_mem_wide(newval, mem_ptr),
  7966              OpcP, OpcS,
  7967              reg_mem(newval, mem_ptr),
  7968              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  7969              REX_reg_breg(res, res), // movzbl
  7970              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  7971   ins_pipe( pipe_cmpxchg );
  7972 %}
  7974 instruct compareAndSwapL(rRegI res,
  7975                          memory mem_ptr,
  7976                          rax_RegL oldval, rRegL newval,
  7977                          rFlagsReg cr)
  7978 %{
  7979   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
  7980   effect(KILL cr, KILL oldval);
  7982   format %{ "cmpxchgq $mem_ptr,$newval\t# "
  7983             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  7984             "sete    $res\n\t"
  7985             "movzbl  $res, $res" %}
  7986   opcode(0x0F, 0xB1);
  7987   ins_encode(lock_prefix,
  7988              REX_reg_mem_wide(newval, mem_ptr),
  7989              OpcP, OpcS,
  7990              reg_mem(newval, mem_ptr),
  7991              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  7992              REX_reg_breg(res, res), // movzbl
  7993              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  7994   ins_pipe( pipe_cmpxchg );
  7995 %}
  7997 instruct compareAndSwapI(rRegI res,
  7998                          memory mem_ptr,
  7999                          rax_RegI oldval, rRegI newval,
  8000                          rFlagsReg cr)
  8001 %{
  8002   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
  8003   effect(KILL cr, KILL oldval);
  8005   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  8006             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8007             "sete    $res\n\t"
  8008             "movzbl  $res, $res" %}
  8009   opcode(0x0F, 0xB1);
  8010   ins_encode(lock_prefix,
  8011              REX_reg_mem(newval, mem_ptr),
  8012              OpcP, OpcS,
  8013              reg_mem(newval, mem_ptr),
  8014              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8015              REX_reg_breg(res, res), // movzbl
  8016              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8017   ins_pipe( pipe_cmpxchg );
  8018 %}
  8021 instruct compareAndSwapN(rRegI res,
  8022                           memory mem_ptr,
  8023                           rax_RegN oldval, rRegN newval,
  8024                           rFlagsReg cr) %{
  8025   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
  8026   effect(KILL cr, KILL oldval);
  8028   format %{ "cmpxchgl $mem_ptr,$newval\t# "
  8029             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
  8030             "sete    $res\n\t"
  8031             "movzbl  $res, $res" %}
  8032   opcode(0x0F, 0xB1);
  8033   ins_encode(lock_prefix,
  8034              REX_reg_mem(newval, mem_ptr),
  8035              OpcP, OpcS,
  8036              reg_mem(newval, mem_ptr),
  8037              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
  8038              REX_reg_breg(res, res), // movzbl
  8039              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
  8040   ins_pipe( pipe_cmpxchg );
  8041 %}
  8043 //----------Subtraction Instructions-------------------------------------------
  8045 // Integer Subtraction Instructions
  8046 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8047 %{
  8048   match(Set dst (SubI dst src));
  8049   effect(KILL cr);
  8051   format %{ "subl    $dst, $src\t# int" %}
  8052   opcode(0x2B);
  8053   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  8054   ins_pipe(ialu_reg_reg);
  8055 %}
  8057 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  8058 %{
  8059   match(Set dst (SubI dst src));
  8060   effect(KILL cr);
  8062   format %{ "subl    $dst, $src\t# int" %}
  8063   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  8064   ins_encode(OpcSErm(dst, src), Con8or32(src));
  8065   ins_pipe(ialu_reg);
  8066 %}
  8068 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  8069 %{
  8070   match(Set dst (SubI dst (LoadI src)));
  8071   effect(KILL cr);
  8073   ins_cost(125);
  8074   format %{ "subl    $dst, $src\t# int" %}
  8075   opcode(0x2B);
  8076   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  8077   ins_pipe(ialu_reg_mem);
  8078 %}
  8080 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  8081 %{
  8082   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8083   effect(KILL cr);
  8085   ins_cost(150);
  8086   format %{ "subl    $dst, $src\t# int" %}
  8087   opcode(0x29); /* Opcode 29 /r */
  8088   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  8089   ins_pipe(ialu_mem_reg);
  8090 %}
  8092 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
  8093 %{
  8094   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
  8095   effect(KILL cr);
  8097   ins_cost(125); // XXX
  8098   format %{ "subl    $dst, $src\t# int" %}
  8099   opcode(0x81); /* Opcode 81 /5 id */
  8100   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  8101   ins_pipe(ialu_mem_imm);
  8102 %}
  8104 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8105 %{
  8106   match(Set dst (SubL dst src));
  8107   effect(KILL cr);
  8109   format %{ "subq    $dst, $src\t# long" %}
  8110   opcode(0x2B);
  8111   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8112   ins_pipe(ialu_reg_reg);
  8113 %}
  8115 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
  8116 %{
  8117   match(Set dst (SubL dst src));
  8118   effect(KILL cr);
  8120   format %{ "subq    $dst, $src\t# long" %}
  8121   opcode(0x81, 0x05);  /* Opcode 81 /5 */
  8122   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  8123   ins_pipe(ialu_reg);
  8124 %}
  8126 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  8127 %{
  8128   match(Set dst (SubL dst (LoadL src)));
  8129   effect(KILL cr);
  8131   ins_cost(125);
  8132   format %{ "subq    $dst, $src\t# long" %}
  8133   opcode(0x2B);
  8134   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  8135   ins_pipe(ialu_reg_mem);
  8136 %}
  8138 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  8139 %{
  8140   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  8141   effect(KILL cr);
  8143   ins_cost(150);
  8144   format %{ "subq    $dst, $src\t# long" %}
  8145   opcode(0x29); /* Opcode 29 /r */
  8146   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  8147   ins_pipe(ialu_mem_reg);
  8148 %}
  8150 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  8151 %{
  8152   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
  8153   effect(KILL cr);
  8155   ins_cost(125); // XXX
  8156   format %{ "subq    $dst, $src\t# long" %}
  8157   opcode(0x81); /* Opcode 81 /5 id */
  8158   ins_encode(REX_mem_wide(dst),
  8159              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
  8160   ins_pipe(ialu_mem_imm);
  8161 %}
  8163 // Subtract from a pointer
  8164 // XXX hmpf???
  8165 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
  8166 %{
  8167   match(Set dst (AddP dst (SubI zero src)));
  8168   effect(KILL cr);
  8170   format %{ "subq    $dst, $src\t# ptr - int" %}
  8171   opcode(0x2B);
  8172   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  8173   ins_pipe(ialu_reg_reg);
  8174 %}
  8176 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
  8177 %{
  8178   match(Set dst (SubI zero dst));
  8179   effect(KILL cr);
  8181   format %{ "negl    $dst\t# int" %}
  8182   opcode(0xF7, 0x03);  // Opcode F7 /3
  8183   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8184   ins_pipe(ialu_reg);
  8185 %}
  8187 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
  8188 %{
  8189   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
  8190   effect(KILL cr);
  8192   format %{ "negl    $dst\t# int" %}
  8193   opcode(0xF7, 0x03);  // Opcode F7 /3
  8194   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8195   ins_pipe(ialu_reg);
  8196 %}
  8198 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
  8199 %{
  8200   match(Set dst (SubL zero dst));
  8201   effect(KILL cr);
  8203   format %{ "negq    $dst\t# long" %}
  8204   opcode(0xF7, 0x03);  // Opcode F7 /3
  8205   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8206   ins_pipe(ialu_reg);
  8207 %}
  8209 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
  8210 %{
  8211   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
  8212   effect(KILL cr);
  8214   format %{ "negq    $dst\t# long" %}
  8215   opcode(0xF7, 0x03);  // Opcode F7 /3
  8216   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8217   ins_pipe(ialu_reg);
  8218 %}
  8221 //----------Multiplication/Division Instructions-------------------------------
  8222 // Integer Multiplication Instructions
  8223 // Multiply Register
  8225 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  8226 %{
  8227   match(Set dst (MulI dst src));
  8228   effect(KILL cr);
  8230   ins_cost(300);
  8231   format %{ "imull   $dst, $src\t# int" %}
  8232   opcode(0x0F, 0xAF);
  8233   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8234   ins_pipe(ialu_reg_reg_alu0);
  8235 %}
  8237 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
  8238 %{
  8239   match(Set dst (MulI src imm));
  8240   effect(KILL cr);
  8242   ins_cost(300);
  8243   format %{ "imull   $dst, $src, $imm\t# int" %}
  8244   opcode(0x69); /* 69 /r id */
  8245   ins_encode(REX_reg_reg(dst, src),
  8246              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  8247   ins_pipe(ialu_reg_reg_alu0);
  8248 %}
  8250 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
  8251 %{
  8252   match(Set dst (MulI dst (LoadI src)));
  8253   effect(KILL cr);
  8255   ins_cost(350);
  8256   format %{ "imull   $dst, $src\t# int" %}
  8257   opcode(0x0F, 0xAF);
  8258   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
  8259   ins_pipe(ialu_reg_mem_alu0);
  8260 %}
  8262 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
  8263 %{
  8264   match(Set dst (MulI (LoadI src) imm));
  8265   effect(KILL cr);
  8267   ins_cost(300);
  8268   format %{ "imull   $dst, $src, $imm\t# int" %}
  8269   opcode(0x69); /* 69 /r id */
  8270   ins_encode(REX_reg_mem(dst, src),
  8271              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  8272   ins_pipe(ialu_reg_mem_alu0);
  8273 %}
  8275 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  8276 %{
  8277   match(Set dst (MulL dst src));
  8278   effect(KILL cr);
  8280   ins_cost(300);
  8281   format %{ "imulq   $dst, $src\t# long" %}
  8282   opcode(0x0F, 0xAF);
  8283   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8284   ins_pipe(ialu_reg_reg_alu0);
  8285 %}
  8287 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
  8288 %{
  8289   match(Set dst (MulL src imm));
  8290   effect(KILL cr);
  8292   ins_cost(300);
  8293   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8294   opcode(0x69); /* 69 /r id */
  8295   ins_encode(REX_reg_reg_wide(dst, src),
  8296              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
  8297   ins_pipe(ialu_reg_reg_alu0);
  8298 %}
  8300 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
  8301 %{
  8302   match(Set dst (MulL dst (LoadL src)));
  8303   effect(KILL cr);
  8305   ins_cost(350);
  8306   format %{ "imulq   $dst, $src\t# long" %}
  8307   opcode(0x0F, 0xAF);
  8308   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
  8309   ins_pipe(ialu_reg_mem_alu0);
  8310 %}
  8312 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
  8313 %{
  8314   match(Set dst (MulL (LoadL src) imm));
  8315   effect(KILL cr);
  8317   ins_cost(300);
  8318   format %{ "imulq   $dst, $src, $imm\t# long" %}
  8319   opcode(0x69); /* 69 /r id */
  8320   ins_encode(REX_reg_mem_wide(dst, src),
  8321              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
  8322   ins_pipe(ialu_reg_mem_alu0);
  8323 %}
  8325 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
  8326 %{
  8327   match(Set dst (MulHiL src rax));
  8328   effect(USE_KILL rax, KILL cr);
  8330   ins_cost(300);
  8331   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
  8332   opcode(0xF7, 0x5); /* Opcode F7 /5 */
  8333   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
  8334   ins_pipe(ialu_reg_reg_alu0);
  8335 %}
  8337 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8338                    rFlagsReg cr)
  8339 %{
  8340   match(Set rax (DivI rax div));
  8341   effect(KILL rdx, KILL cr);
  8343   ins_cost(30*100+10*100); // XXX
  8344   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8345             "jne,s   normal\n\t"
  8346             "xorl    rdx, rdx\n\t"
  8347             "cmpl    $div, -1\n\t"
  8348             "je,s    done\n"
  8349     "normal: cdql\n\t"
  8350             "idivl   $div\n"
  8351     "done:"        %}
  8352   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8353   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8354   ins_pipe(ialu_reg_reg_alu0);
  8355 %}
  8357 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8358                    rFlagsReg cr)
  8359 %{
  8360   match(Set rax (DivL rax div));
  8361   effect(KILL rdx, KILL cr);
  8363   ins_cost(30*100+10*100); // XXX
  8364   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8365             "cmpq    rax, rdx\n\t"
  8366             "jne,s   normal\n\t"
  8367             "xorl    rdx, rdx\n\t"
  8368             "cmpq    $div, -1\n\t"
  8369             "je,s    done\n"
  8370     "normal: cdqq\n\t"
  8371             "idivq   $div\n"
  8372     "done:"        %}
  8373   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8374   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8375   ins_pipe(ialu_reg_reg_alu0);
  8376 %}
  8378 // Integer DIVMOD with Register, both quotient and mod results
  8379 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
  8380                              rFlagsReg cr)
  8381 %{
  8382   match(DivModI rax div);
  8383   effect(KILL cr);
  8385   ins_cost(30*100+10*100); // XXX
  8386   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
  8387             "jne,s   normal\n\t"
  8388             "xorl    rdx, rdx\n\t"
  8389             "cmpl    $div, -1\n\t"
  8390             "je,s    done\n"
  8391     "normal: cdql\n\t"
  8392             "idivl   $div\n"
  8393     "done:"        %}
  8394   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8395   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8396   ins_pipe(pipe_slow);
  8397 %}
  8399 // Long DIVMOD with Register, both quotient and mod results
  8400 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
  8401                              rFlagsReg cr)
  8402 %{
  8403   match(DivModL rax div);
  8404   effect(KILL cr);
  8406   ins_cost(30*100+10*100); // XXX
  8407   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
  8408             "cmpq    rax, rdx\n\t"
  8409             "jne,s   normal\n\t"
  8410             "xorl    rdx, rdx\n\t"
  8411             "cmpq    $div, -1\n\t"
  8412             "je,s    done\n"
  8413     "normal: cdqq\n\t"
  8414             "idivq   $div\n"
  8415     "done:"        %}
  8416   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8417   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8418   ins_pipe(pipe_slow);
  8419 %}
  8421 //----------- DivL-By-Constant-Expansions--------------------------------------
  8422 // DivI cases are handled by the compiler
  8424 // Magic constant, reciprocal of 10
  8425 instruct loadConL_0x6666666666666667(rRegL dst)
  8426 %{
  8427   effect(DEF dst);
  8429   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
  8430   ins_encode(load_immL(dst, 0x6666666666666667));
  8431   ins_pipe(ialu_reg);
  8432 %}
  8434 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
  8435 %{
  8436   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
  8438   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
  8439   opcode(0xF7, 0x5); /* Opcode F7 /5 */
  8440   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
  8441   ins_pipe(ialu_reg_reg_alu0);
  8442 %}
  8444 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
  8445 %{
  8446   effect(USE_DEF dst, KILL cr);
  8448   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
  8449   opcode(0xC1, 0x7); /* C1 /7 ib */
  8450   ins_encode(reg_opc_imm_wide(dst, 0x3F));
  8451   ins_pipe(ialu_reg);
  8452 %}
  8454 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
  8455 %{
  8456   effect(USE_DEF dst, KILL cr);
  8458   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
  8459   opcode(0xC1, 0x7); /* C1 /7 ib */
  8460   ins_encode(reg_opc_imm_wide(dst, 0x2));
  8461   ins_pipe(ialu_reg);
  8462 %}
  8464 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
  8465 %{
  8466   match(Set dst (DivL src div));
  8468   ins_cost((5+8)*100);
  8469   expand %{
  8470     rax_RegL rax;                     // Killed temp
  8471     rFlagsReg cr;                     // Killed
  8472     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
  8473     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
  8474     sarL_rReg_63(src, cr);            // sarq  src, 63
  8475     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
  8476     subL_rReg(dst, src, cr);          // subl  rdx, src
  8477   %}
  8478 %}
  8480 //-----------------------------------------------------------------------------
  8482 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
  8483                    rFlagsReg cr)
  8484 %{
  8485   match(Set rdx (ModI rax div));
  8486   effect(KILL rax, KILL cr);
  8488   ins_cost(300); // XXX
  8489   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
  8490             "jne,s   normal\n\t"
  8491             "xorl    rdx, rdx\n\t"
  8492             "cmpl    $div, -1\n\t"
  8493             "je,s    done\n"
  8494     "normal: cdql\n\t"
  8495             "idivl   $div\n"
  8496     "done:"        %}
  8497   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8498   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
  8499   ins_pipe(ialu_reg_reg_alu0);
  8500 %}
  8502 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
  8503                    rFlagsReg cr)
  8504 %{
  8505   match(Set rdx (ModL rax div));
  8506   effect(KILL rax, KILL cr);
  8508   ins_cost(300); // XXX
  8509   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
  8510             "cmpq    rax, rdx\n\t"
  8511             "jne,s   normal\n\t"
  8512             "xorl    rdx, rdx\n\t"
  8513             "cmpq    $div, -1\n\t"
  8514             "je,s    done\n"
  8515     "normal: cdqq\n\t"
  8516             "idivq   $div\n"
  8517     "done:"        %}
  8518   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
  8519   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
  8520   ins_pipe(ialu_reg_reg_alu0);
  8521 %}
  8523 // Integer Shift Instructions
  8524 // Shift Left by one
  8525 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8526 %{
  8527   match(Set dst (LShiftI dst shift));
  8528   effect(KILL cr);
  8530   format %{ "sall    $dst, $shift" %}
  8531   opcode(0xD1, 0x4); /* D1 /4 */
  8532   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8533   ins_pipe(ialu_reg);
  8534 %}
  8536 // Shift Left by one
  8537 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8538 %{
  8539   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8540   effect(KILL cr);
  8542   format %{ "sall    $dst, $shift\t" %}
  8543   opcode(0xD1, 0x4); /* D1 /4 */
  8544   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8545   ins_pipe(ialu_mem_imm);
  8546 %}
  8548 // Shift Left by 8-bit immediate
  8549 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8550 %{
  8551   match(Set dst (LShiftI dst shift));
  8552   effect(KILL cr);
  8554   format %{ "sall    $dst, $shift" %}
  8555   opcode(0xC1, 0x4); /* C1 /4 ib */
  8556   ins_encode(reg_opc_imm(dst, shift));
  8557   ins_pipe(ialu_reg);
  8558 %}
  8560 // Shift Left by 8-bit immediate
  8561 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8562 %{
  8563   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8564   effect(KILL cr);
  8566   format %{ "sall    $dst, $shift" %}
  8567   opcode(0xC1, 0x4); /* C1 /4 ib */
  8568   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  8569   ins_pipe(ialu_mem_imm);
  8570 %}
  8572 // Shift Left by variable
  8573 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  8574 %{
  8575   match(Set dst (LShiftI dst shift));
  8576   effect(KILL cr);
  8578   format %{ "sall    $dst, $shift" %}
  8579   opcode(0xD3, 0x4); /* D3 /4 */
  8580   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8581   ins_pipe(ialu_reg_reg);
  8582 %}
  8584 // Shift Left by variable
  8585 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8586 %{
  8587   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
  8588   effect(KILL cr);
  8590   format %{ "sall    $dst, $shift" %}
  8591   opcode(0xD3, 0x4); /* D3 /4 */
  8592   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8593   ins_pipe(ialu_mem_reg);
  8594 %}
  8596 // Arithmetic shift right by one
  8597 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8598 %{
  8599   match(Set dst (RShiftI dst shift));
  8600   effect(KILL cr);
  8602   format %{ "sarl    $dst, $shift" %}
  8603   opcode(0xD1, 0x7); /* D1 /7 */
  8604   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8605   ins_pipe(ialu_reg);
  8606 %}
  8608 // Arithmetic shift right by one
  8609 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8610 %{
  8611   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8612   effect(KILL cr);
  8614   format %{ "sarl    $dst, $shift" %}
  8615   opcode(0xD1, 0x7); /* D1 /7 */
  8616   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8617   ins_pipe(ialu_mem_imm);
  8618 %}
  8620 // Arithmetic Shift Right by 8-bit immediate
  8621 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8622 %{
  8623   match(Set dst (RShiftI dst shift));
  8624   effect(KILL cr);
  8626   format %{ "sarl    $dst, $shift" %}
  8627   opcode(0xC1, 0x7); /* C1 /7 ib */
  8628   ins_encode(reg_opc_imm(dst, shift));
  8629   ins_pipe(ialu_mem_imm);
  8630 %}
  8632 // Arithmetic Shift Right by 8-bit immediate
  8633 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8634 %{
  8635   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8636   effect(KILL cr);
  8638   format %{ "sarl    $dst, $shift" %}
  8639   opcode(0xC1, 0x7); /* C1 /7 ib */
  8640   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  8641   ins_pipe(ialu_mem_imm);
  8642 %}
  8644 // Arithmetic Shift Right by variable
  8645 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  8646 %{
  8647   match(Set dst (RShiftI dst shift));
  8648   effect(KILL cr);
  8650   format %{ "sarl    $dst, $shift" %}
  8651   opcode(0xD3, 0x7); /* D3 /7 */
  8652   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8653   ins_pipe(ialu_reg_reg);
  8654 %}
  8656 // Arithmetic Shift Right by variable
  8657 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8658 %{
  8659   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
  8660   effect(KILL cr);
  8662   format %{ "sarl    $dst, $shift" %}
  8663   opcode(0xD3, 0x7); /* D3 /7 */
  8664   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8665   ins_pipe(ialu_mem_reg);
  8666 %}
  8668 // Logical shift right by one
  8669 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
  8670 %{
  8671   match(Set dst (URShiftI dst shift));
  8672   effect(KILL cr);
  8674   format %{ "shrl    $dst, $shift" %}
  8675   opcode(0xD1, 0x5); /* D1 /5 */
  8676   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8677   ins_pipe(ialu_reg);
  8678 %}
  8680 // Logical shift right by one
  8681 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8682 %{
  8683   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  8684   effect(KILL cr);
  8686   format %{ "shrl    $dst, $shift" %}
  8687   opcode(0xD1, 0x5); /* D1 /5 */
  8688   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8689   ins_pipe(ialu_mem_imm);
  8690 %}
  8692 // Logical Shift Right by 8-bit immediate
  8693 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
  8694 %{
  8695   match(Set dst (URShiftI dst shift));
  8696   effect(KILL cr);
  8698   format %{ "shrl    $dst, $shift" %}
  8699   opcode(0xC1, 0x5); /* C1 /5 ib */
  8700   ins_encode(reg_opc_imm(dst, shift));
  8701   ins_pipe(ialu_reg);
  8702 %}
  8704 // Logical Shift Right by 8-bit immediate
  8705 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8706 %{
  8707   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  8708   effect(KILL cr);
  8710   format %{ "shrl    $dst, $shift" %}
  8711   opcode(0xC1, 0x5); /* C1 /5 ib */
  8712   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
  8713   ins_pipe(ialu_mem_imm);
  8714 %}
  8716 // Logical Shift Right by variable
  8717 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
  8718 %{
  8719   match(Set dst (URShiftI dst shift));
  8720   effect(KILL cr);
  8722   format %{ "shrl    $dst, $shift" %}
  8723   opcode(0xD3, 0x5); /* D3 /5 */
  8724   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8725   ins_pipe(ialu_reg_reg);
  8726 %}
  8728 // Logical Shift Right by variable
  8729 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8730 %{
  8731   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
  8732   effect(KILL cr);
  8734   format %{ "shrl    $dst, $shift" %}
  8735   opcode(0xD3, 0x5); /* D3 /5 */
  8736   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
  8737   ins_pipe(ialu_mem_reg);
  8738 %}
  8740 // Long Shift Instructions
  8741 // Shift Left by one
  8742 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  8743 %{
  8744   match(Set dst (LShiftL dst shift));
  8745   effect(KILL cr);
  8747   format %{ "salq    $dst, $shift" %}
  8748   opcode(0xD1, 0x4); /* D1 /4 */
  8749   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8750   ins_pipe(ialu_reg);
  8751 %}
  8753 // Shift Left by one
  8754 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8755 %{
  8756   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  8757   effect(KILL cr);
  8759   format %{ "salq    $dst, $shift" %}
  8760   opcode(0xD1, 0x4); /* D1 /4 */
  8761   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8762   ins_pipe(ialu_mem_imm);
  8763 %}
  8765 // Shift Left by 8-bit immediate
  8766 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  8767 %{
  8768   match(Set dst (LShiftL dst shift));
  8769   effect(KILL cr);
  8771   format %{ "salq    $dst, $shift" %}
  8772   opcode(0xC1, 0x4); /* C1 /4 ib */
  8773   ins_encode(reg_opc_imm_wide(dst, shift));
  8774   ins_pipe(ialu_reg);
  8775 %}
  8777 // Shift Left by 8-bit immediate
  8778 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8779 %{
  8780   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  8781   effect(KILL cr);
  8783   format %{ "salq    $dst, $shift" %}
  8784   opcode(0xC1, 0x4); /* C1 /4 ib */
  8785   ins_encode(REX_mem_wide(dst), OpcP,
  8786              RM_opc_mem(secondary, dst), Con8or32(shift));
  8787   ins_pipe(ialu_mem_imm);
  8788 %}
  8790 // Shift Left by variable
  8791 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  8792 %{
  8793   match(Set dst (LShiftL dst shift));
  8794   effect(KILL cr);
  8796   format %{ "salq    $dst, $shift" %}
  8797   opcode(0xD3, 0x4); /* D3 /4 */
  8798   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8799   ins_pipe(ialu_reg_reg);
  8800 %}
  8802 // Shift Left by variable
  8803 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8804 %{
  8805   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
  8806   effect(KILL cr);
  8808   format %{ "salq    $dst, $shift" %}
  8809   opcode(0xD3, 0x4); /* D3 /4 */
  8810   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8811   ins_pipe(ialu_mem_reg);
  8812 %}
  8814 // Arithmetic shift right by one
  8815 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  8816 %{
  8817   match(Set dst (RShiftL dst shift));
  8818   effect(KILL cr);
  8820   format %{ "sarq    $dst, $shift" %}
  8821   opcode(0xD1, 0x7); /* D1 /7 */
  8822   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8823   ins_pipe(ialu_reg);
  8824 %}
  8826 // Arithmetic shift right by one
  8827 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8828 %{
  8829   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  8830   effect(KILL cr);
  8832   format %{ "sarq    $dst, $shift" %}
  8833   opcode(0xD1, 0x7); /* D1 /7 */
  8834   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8835   ins_pipe(ialu_mem_imm);
  8836 %}
  8838 // Arithmetic Shift Right by 8-bit immediate
  8839 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  8840 %{
  8841   match(Set dst (RShiftL dst shift));
  8842   effect(KILL cr);
  8844   format %{ "sarq    $dst, $shift" %}
  8845   opcode(0xC1, 0x7); /* C1 /7 ib */
  8846   ins_encode(reg_opc_imm_wide(dst, shift));
  8847   ins_pipe(ialu_mem_imm);
  8848 %}
  8850 // Arithmetic Shift Right by 8-bit immediate
  8851 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8852 %{
  8853   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  8854   effect(KILL cr);
  8856   format %{ "sarq    $dst, $shift" %}
  8857   opcode(0xC1, 0x7); /* C1 /7 ib */
  8858   ins_encode(REX_mem_wide(dst), OpcP,
  8859              RM_opc_mem(secondary, dst), Con8or32(shift));
  8860   ins_pipe(ialu_mem_imm);
  8861 %}
  8863 // Arithmetic Shift Right by variable
  8864 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  8865 %{
  8866   match(Set dst (RShiftL dst shift));
  8867   effect(KILL cr);
  8869   format %{ "sarq    $dst, $shift" %}
  8870   opcode(0xD3, 0x7); /* D3 /7 */
  8871   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8872   ins_pipe(ialu_reg_reg);
  8873 %}
  8875 // Arithmetic Shift Right by variable
  8876 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8877 %{
  8878   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
  8879   effect(KILL cr);
  8881   format %{ "sarq    $dst, $shift" %}
  8882   opcode(0xD3, 0x7); /* D3 /7 */
  8883   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8884   ins_pipe(ialu_mem_reg);
  8885 %}
  8887 // Logical shift right by one
  8888 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
  8889 %{
  8890   match(Set dst (URShiftL dst shift));
  8891   effect(KILL cr);
  8893   format %{ "shrq    $dst, $shift" %}
  8894   opcode(0xD1, 0x5); /* D1 /5 */
  8895   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
  8896   ins_pipe(ialu_reg);
  8897 %}
  8899 // Logical shift right by one
  8900 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
  8901 %{
  8902   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  8903   effect(KILL cr);
  8905   format %{ "shrq    $dst, $shift" %}
  8906   opcode(0xD1, 0x5); /* D1 /5 */
  8907   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8908   ins_pipe(ialu_mem_imm);
  8909 %}
  8911 // Logical Shift Right by 8-bit immediate
  8912 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
  8913 %{
  8914   match(Set dst (URShiftL dst shift));
  8915   effect(KILL cr);
  8917   format %{ "shrq    $dst, $shift" %}
  8918   opcode(0xC1, 0x5); /* C1 /5 ib */
  8919   ins_encode(reg_opc_imm_wide(dst, shift));
  8920   ins_pipe(ialu_reg);
  8921 %}
  8924 // Logical Shift Right by 8-bit immediate
  8925 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
  8926 %{
  8927   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  8928   effect(KILL cr);
  8930   format %{ "shrq    $dst, $shift" %}
  8931   opcode(0xC1, 0x5); /* C1 /5 ib */
  8932   ins_encode(REX_mem_wide(dst), OpcP,
  8933              RM_opc_mem(secondary, dst), Con8or32(shift));
  8934   ins_pipe(ialu_mem_imm);
  8935 %}
  8937 // Logical Shift Right by variable
  8938 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
  8939 %{
  8940   match(Set dst (URShiftL dst shift));
  8941   effect(KILL cr);
  8943   format %{ "shrq    $dst, $shift" %}
  8944   opcode(0xD3, 0x5); /* D3 /5 */
  8945   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  8946   ins_pipe(ialu_reg_reg);
  8947 %}
  8949 // Logical Shift Right by variable
  8950 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
  8951 %{
  8952   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
  8953   effect(KILL cr);
  8955   format %{ "shrq    $dst, $shift" %}
  8956   opcode(0xD3, 0x5); /* D3 /5 */
  8957   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
  8958   ins_pipe(ialu_mem_reg);
  8959 %}
  8961 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
  8962 // This idiom is used by the compiler for the i2b bytecode.
  8963 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
  8964 %{
  8965   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
  8967   format %{ "movsbl  $dst, $src\t# i2b" %}
  8968   opcode(0x0F, 0xBE);
  8969   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8970   ins_pipe(ialu_reg_reg);
  8971 %}
  8973 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
  8974 // This idiom is used by the compiler the i2s bytecode.
  8975 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
  8976 %{
  8977   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
  8979   format %{ "movswl  $dst, $src\t# i2s" %}
  8980   opcode(0x0F, 0xBF);
  8981   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  8982   ins_pipe(ialu_reg_reg);
  8983 %}
  8985 // ROL/ROR instructions
  8987 // ROL expand
  8988 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
  8989   effect(KILL cr, USE_DEF dst);
  8991   format %{ "roll    $dst" %}
  8992   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  8993   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  8994   ins_pipe(ialu_reg);
  8995 %}
  8997 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
  8998   effect(USE_DEF dst, USE shift, KILL cr);
  9000   format %{ "roll    $dst, $shift" %}
  9001   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  9002   ins_encode( reg_opc_imm(dst, shift) );
  9003   ins_pipe(ialu_reg);
  9004 %}
  9006 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  9007 %{
  9008   effect(USE_DEF dst, USE shift, KILL cr);
  9010   format %{ "roll    $dst, $shift" %}
  9011   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  9012   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9013   ins_pipe(ialu_reg_reg);
  9014 %}
  9015 // end of ROL expand
  9017 // Rotate Left by one
  9018 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  9019 %{
  9020   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9022   expand %{
  9023     rolI_rReg_imm1(dst, cr);
  9024   %}
  9025 %}
  9027 // Rotate Left by 8-bit immediate
  9028 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  9029 %{
  9030   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9031   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
  9033   expand %{
  9034     rolI_rReg_imm8(dst, lshift, cr);
  9035   %}
  9036 %}
  9038 // Rotate Left by variable
  9039 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9040 %{
  9041   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
  9043   expand %{
  9044     rolI_rReg_CL(dst, shift, cr);
  9045   %}
  9046 %}
  9048 // Rotate Left by variable
  9049 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  9050 %{
  9051   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
  9053   expand %{
  9054     rolI_rReg_CL(dst, shift, cr);
  9055   %}
  9056 %}
  9058 // ROR expand
  9059 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
  9060 %{
  9061   effect(USE_DEF dst, KILL cr);
  9063   format %{ "rorl    $dst" %}
  9064   opcode(0xD1, 0x1); /* D1 /1 */
  9065   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9066   ins_pipe(ialu_reg);
  9067 %}
  9069 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
  9070 %{
  9071   effect(USE_DEF dst, USE shift, KILL cr);
  9073   format %{ "rorl    $dst, $shift" %}
  9074   opcode(0xC1, 0x1); /* C1 /1 ib */
  9075   ins_encode(reg_opc_imm(dst, shift));
  9076   ins_pipe(ialu_reg);
  9077 %}
  9079 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
  9080 %{
  9081   effect(USE_DEF dst, USE shift, KILL cr);
  9083   format %{ "rorl    $dst, $shift" %}
  9084   opcode(0xD3, 0x1); /* D3 /1 */
  9085   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
  9086   ins_pipe(ialu_reg_reg);
  9087 %}
  9088 // end of ROR expand
  9090 // Rotate Right by one
  9091 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  9092 %{
  9093   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9095   expand %{
  9096     rorI_rReg_imm1(dst, cr);
  9097   %}
  9098 %}
  9100 // Rotate Right by 8-bit immediate
  9101 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  9102 %{
  9103   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  9104   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
  9106   expand %{
  9107     rorI_rReg_imm8(dst, rshift, cr);
  9108   %}
  9109 %}
  9111 // Rotate Right by variable
  9112 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9113 %{
  9114   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
  9116   expand %{
  9117     rorI_rReg_CL(dst, shift, cr);
  9118   %}
  9119 %}
  9121 // Rotate Right by variable
  9122 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
  9123 %{
  9124   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
  9126   expand %{
  9127     rorI_rReg_CL(dst, shift, cr);
  9128   %}
  9129 %}
  9131 // for long rotate
  9132 // ROL expand
  9133 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
  9134   effect(USE_DEF dst, KILL cr);
  9136   format %{ "rolq    $dst" %}
  9137   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
  9138   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9139   ins_pipe(ialu_reg);
  9140 %}
  9142 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
  9143   effect(USE_DEF dst, USE shift, KILL cr);
  9145   format %{ "rolq    $dst, $shift" %}
  9146   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
  9147   ins_encode( reg_opc_imm_wide(dst, shift) );
  9148   ins_pipe(ialu_reg);
  9149 %}
  9151 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  9152 %{
  9153   effect(USE_DEF dst, USE shift, KILL cr);
  9155   format %{ "rolq    $dst, $shift" %}
  9156   opcode(0xD3, 0x0); /* Opcode D3 /0 */
  9157   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9158   ins_pipe(ialu_reg_reg);
  9159 %}
  9160 // end of ROL expand
  9162 // Rotate Left by one
  9163 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
  9164 %{
  9165   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  9167   expand %{
  9168     rolL_rReg_imm1(dst, cr);
  9169   %}
  9170 %}
  9172 // Rotate Left by 8-bit immediate
  9173 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
  9174 %{
  9175   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  9176   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
  9178   expand %{
  9179     rolL_rReg_imm8(dst, lshift, cr);
  9180   %}
  9181 %}
  9183 // Rotate Left by variable
  9184 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9185 %{
  9186   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
  9188   expand %{
  9189     rolL_rReg_CL(dst, shift, cr);
  9190   %}
  9191 %}
  9193 // Rotate Left by variable
  9194 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  9195 %{
  9196   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
  9198   expand %{
  9199     rolL_rReg_CL(dst, shift, cr);
  9200   %}
  9201 %}
  9203 // ROR expand
  9204 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
  9205 %{
  9206   effect(USE_DEF dst, KILL cr);
  9208   format %{ "rorq    $dst" %}
  9209   opcode(0xD1, 0x1); /* D1 /1 */
  9210   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9211   ins_pipe(ialu_reg);
  9212 %}
  9214 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
  9215 %{
  9216   effect(USE_DEF dst, USE shift, KILL cr);
  9218   format %{ "rorq    $dst, $shift" %}
  9219   opcode(0xC1, 0x1); /* C1 /1 ib */
  9220   ins_encode(reg_opc_imm_wide(dst, shift));
  9221   ins_pipe(ialu_reg);
  9222 %}
  9224 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
  9225 %{
  9226   effect(USE_DEF dst, USE shift, KILL cr);
  9228   format %{ "rorq    $dst, $shift" %}
  9229   opcode(0xD3, 0x1); /* D3 /1 */
  9230   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
  9231   ins_pipe(ialu_reg_reg);
  9232 %}
  9233 // end of ROR expand
  9235 // Rotate Right by one
  9236 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
  9237 %{
  9238   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  9240   expand %{
  9241     rorL_rReg_imm1(dst, cr);
  9242   %}
  9243 %}
  9245 // Rotate Right by 8-bit immediate
  9246 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
  9247 %{
  9248   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
  9249   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
  9251   expand %{
  9252     rorL_rReg_imm8(dst, rshift, cr);
  9253   %}
  9254 %}
  9256 // Rotate Right by variable
  9257 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
  9258 %{
  9259   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
  9261   expand %{
  9262     rorL_rReg_CL(dst, shift, cr);
  9263   %}
  9264 %}
  9266 // Rotate Right by variable
  9267 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
  9268 %{
  9269   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
  9271   expand %{
  9272     rorL_rReg_CL(dst, shift, cr);
  9273   %}
  9274 %}
  9276 // Logical Instructions
  9278 // Integer Logical Instructions
  9280 // And Instructions
  9281 // And Register with Register
  9282 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9283 %{
  9284   match(Set dst (AndI dst src));
  9285   effect(KILL cr);
  9287   format %{ "andl    $dst, $src\t# int" %}
  9288   opcode(0x23);
  9289   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9290   ins_pipe(ialu_reg_reg);
  9291 %}
  9293 // And Register with Immediate 255
  9294 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
  9295 %{
  9296   match(Set dst (AndI dst src));
  9298   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
  9299   opcode(0x0F, 0xB6);
  9300   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9301   ins_pipe(ialu_reg);
  9302 %}
  9304 // And Register with Immediate 255 and promote to long
  9305 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
  9306 %{
  9307   match(Set dst (ConvI2L (AndI src mask)));
  9309   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
  9310   opcode(0x0F, 0xB6);
  9311   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9312   ins_pipe(ialu_reg);
  9313 %}
  9315 // And Register with Immediate 65535
  9316 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
  9317 %{
  9318   match(Set dst (AndI dst src));
  9320   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
  9321   opcode(0x0F, 0xB7);
  9322   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9323   ins_pipe(ialu_reg);
  9324 %}
  9326 // And Register with Immediate 65535 and promote to long
  9327 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
  9328 %{
  9329   match(Set dst (ConvI2L (AndI src mask)));
  9331   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
  9332   opcode(0x0F, 0xB7);
  9333   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
  9334   ins_pipe(ialu_reg);
  9335 %}
  9337 // And Register with Immediate
  9338 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9339 %{
  9340   match(Set dst (AndI dst src));
  9341   effect(KILL cr);
  9343   format %{ "andl    $dst, $src\t# int" %}
  9344   opcode(0x81, 0x04); /* Opcode 81 /4 */
  9345   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9346   ins_pipe(ialu_reg);
  9347 %}
  9349 // And Register with Memory
  9350 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9351 %{
  9352   match(Set dst (AndI dst (LoadI src)));
  9353   effect(KILL cr);
  9355   ins_cost(125);
  9356   format %{ "andl    $dst, $src\t# int" %}
  9357   opcode(0x23);
  9358   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9359   ins_pipe(ialu_reg_mem);
  9360 %}
  9362 // And Memory with Register
  9363 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9364 %{
  9365   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9366   effect(KILL cr);
  9368   ins_cost(150);
  9369   format %{ "andl    $dst, $src\t# int" %}
  9370   opcode(0x21); /* Opcode 21 /r */
  9371   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9372   ins_pipe(ialu_mem_reg);
  9373 %}
  9375 // And Memory with Immediate
  9376 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9377 %{
  9378   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
  9379   effect(KILL cr);
  9381   ins_cost(125);
  9382   format %{ "andl    $dst, $src\t# int" %}
  9383   opcode(0x81, 0x4); /* Opcode 81 /4 id */
  9384   ins_encode(REX_mem(dst), OpcSE(src),
  9385              RM_opc_mem(secondary, dst), Con8or32(src));
  9386   ins_pipe(ialu_mem_imm);
  9387 %}
  9389 // Or Instructions
  9390 // Or Register with Register
  9391 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9392 %{
  9393   match(Set dst (OrI dst src));
  9394   effect(KILL cr);
  9396   format %{ "orl     $dst, $src\t# int" %}
  9397   opcode(0x0B);
  9398   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9399   ins_pipe(ialu_reg_reg);
  9400 %}
  9402 // Or Register with Immediate
  9403 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9404 %{
  9405   match(Set dst (OrI dst src));
  9406   effect(KILL cr);
  9408   format %{ "orl     $dst, $src\t# int" %}
  9409   opcode(0x81, 0x01); /* Opcode 81 /1 id */
  9410   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9411   ins_pipe(ialu_reg);
  9412 %}
  9414 // Or Register with Memory
  9415 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9416 %{
  9417   match(Set dst (OrI dst (LoadI src)));
  9418   effect(KILL cr);
  9420   ins_cost(125);
  9421   format %{ "orl     $dst, $src\t# int" %}
  9422   opcode(0x0B);
  9423   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9424   ins_pipe(ialu_reg_mem);
  9425 %}
  9427 // Or Memory with Register
  9428 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9429 %{
  9430   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9431   effect(KILL cr);
  9433   ins_cost(150);
  9434   format %{ "orl     $dst, $src\t# int" %}
  9435   opcode(0x09); /* Opcode 09 /r */
  9436   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9437   ins_pipe(ialu_mem_reg);
  9438 %}
  9440 // Or Memory with Immediate
  9441 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9442 %{
  9443   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
  9444   effect(KILL cr);
  9446   ins_cost(125);
  9447   format %{ "orl     $dst, $src\t# int" %}
  9448   opcode(0x81, 0x1); /* Opcode 81 /1 id */
  9449   ins_encode(REX_mem(dst), OpcSE(src),
  9450              RM_opc_mem(secondary, dst), Con8or32(src));
  9451   ins_pipe(ialu_mem_imm);
  9452 %}
  9454 // Xor Instructions
  9455 // Xor Register with Register
  9456 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
  9457 %{
  9458   match(Set dst (XorI dst src));
  9459   effect(KILL cr);
  9461   format %{ "xorl    $dst, $src\t# int" %}
  9462   opcode(0x33);
  9463   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
  9464   ins_pipe(ialu_reg_reg);
  9465 %}
  9467 // Xor Register with Immediate -1
  9468 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
  9469   match(Set dst (XorI dst imm));  
  9471   format %{ "not    $dst" %}  
  9472   ins_encode %{
  9473      __ notl($dst$$Register);
  9474   %}
  9475   ins_pipe(ialu_reg);
  9476 %}
  9478 // Xor Register with Immediate
  9479 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
  9480 %{
  9481   match(Set dst (XorI dst src));
  9482   effect(KILL cr);
  9484   format %{ "xorl    $dst, $src\t# int" %}
  9485   opcode(0x81, 0x06); /* Opcode 81 /6 id */
  9486   ins_encode(OpcSErm(dst, src), Con8or32(src));
  9487   ins_pipe(ialu_reg);
  9488 %}
  9490 // Xor Register with Memory
  9491 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
  9492 %{
  9493   match(Set dst (XorI dst (LoadI src)));
  9494   effect(KILL cr);
  9496   ins_cost(125);
  9497   format %{ "xorl    $dst, $src\t# int" %}
  9498   opcode(0x33);
  9499   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
  9500   ins_pipe(ialu_reg_mem);
  9501 %}
  9503 // Xor Memory with Register
  9504 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
  9505 %{
  9506   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9507   effect(KILL cr);
  9509   ins_cost(150);
  9510   format %{ "xorl    $dst, $src\t# int" %}
  9511   opcode(0x31); /* Opcode 31 /r */
  9512   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
  9513   ins_pipe(ialu_mem_reg);
  9514 %}
  9516 // Xor Memory with Immediate
  9517 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
  9518 %{
  9519   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
  9520   effect(KILL cr);
  9522   ins_cost(125);
  9523   format %{ "xorl    $dst, $src\t# int" %}
  9524   opcode(0x81, 0x6); /* Opcode 81 /6 id */
  9525   ins_encode(REX_mem(dst), OpcSE(src),
  9526              RM_opc_mem(secondary, dst), Con8or32(src));
  9527   ins_pipe(ialu_mem_imm);
  9528 %}
  9531 // Long Logical Instructions
  9533 // And Instructions
  9534 // And Register with Register
  9535 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9536 %{
  9537   match(Set dst (AndL dst src));
  9538   effect(KILL cr);
  9540   format %{ "andq    $dst, $src\t# long" %}
  9541   opcode(0x23);
  9542   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9543   ins_pipe(ialu_reg_reg);
  9544 %}
  9546 // And Register with Immediate 255
  9547 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
  9548 %{
  9549   match(Set dst (AndL dst src));
  9551   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
  9552   opcode(0x0F, 0xB6);
  9553   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9554   ins_pipe(ialu_reg);
  9555 %}
  9557 // And Register with Immediate 65535
  9558 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
  9559 %{
  9560   match(Set dst (AndL dst src));
  9562   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
  9563   opcode(0x0F, 0xB7);
  9564   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
  9565   ins_pipe(ialu_reg);
  9566 %}
  9568 // And Register with Immediate
  9569 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  9570 %{
  9571   match(Set dst (AndL dst src));
  9572   effect(KILL cr);
  9574   format %{ "andq    $dst, $src\t# long" %}
  9575   opcode(0x81, 0x04); /* Opcode 81 /4 */
  9576   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  9577   ins_pipe(ialu_reg);
  9578 %}
  9580 // And Register with Memory
  9581 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  9582 %{
  9583   match(Set dst (AndL dst (LoadL src)));
  9584   effect(KILL cr);
  9586   ins_cost(125);
  9587   format %{ "andq    $dst, $src\t# long" %}
  9588   opcode(0x23);
  9589   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  9590   ins_pipe(ialu_reg_mem);
  9591 %}
  9593 // And Memory with Register
  9594 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  9595 %{
  9596   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
  9597   effect(KILL cr);
  9599   ins_cost(150);
  9600   format %{ "andq    $dst, $src\t# long" %}
  9601   opcode(0x21); /* Opcode 21 /r */
  9602   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  9603   ins_pipe(ialu_mem_reg);
  9604 %}
  9606 // And Memory with Immediate
  9607 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  9608 %{
  9609   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
  9610   effect(KILL cr);
  9612   ins_cost(125);
  9613   format %{ "andq    $dst, $src\t# long" %}
  9614   opcode(0x81, 0x4); /* Opcode 81 /4 id */
  9615   ins_encode(REX_mem_wide(dst), OpcSE(src),
  9616              RM_opc_mem(secondary, dst), Con8or32(src));
  9617   ins_pipe(ialu_mem_imm);
  9618 %}
  9620 // Or Instructions
  9621 // Or Register with Register
  9622 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9623 %{
  9624   match(Set dst (OrL dst src));
  9625   effect(KILL cr);
  9627   format %{ "orq     $dst, $src\t# long" %}
  9628   opcode(0x0B);
  9629   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9630   ins_pipe(ialu_reg_reg);
  9631 %}
  9633 // Use any_RegP to match R15 (TLS register) without spilling.
  9634 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
  9635   match(Set dst (OrL dst (CastP2X src)));
  9636   effect(KILL cr);
  9638   format %{ "orq     $dst, $src\t# long" %}
  9639   opcode(0x0B);
  9640   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9641   ins_pipe(ialu_reg_reg);
  9642 %}
  9645 // Or Register with Immediate
  9646 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  9647 %{
  9648   match(Set dst (OrL dst src));
  9649   effect(KILL cr);
  9651   format %{ "orq     $dst, $src\t# long" %}
  9652   opcode(0x81, 0x01); /* Opcode 81 /1 id */
  9653   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  9654   ins_pipe(ialu_reg);
  9655 %}
  9657 // Or Register with Memory
  9658 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  9659 %{
  9660   match(Set dst (OrL dst (LoadL src)));
  9661   effect(KILL cr);
  9663   ins_cost(125);
  9664   format %{ "orq     $dst, $src\t# long" %}
  9665   opcode(0x0B);
  9666   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  9667   ins_pipe(ialu_reg_mem);
  9668 %}
  9670 // Or Memory with Register
  9671 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  9672 %{
  9673   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
  9674   effect(KILL cr);
  9676   ins_cost(150);
  9677   format %{ "orq     $dst, $src\t# long" %}
  9678   opcode(0x09); /* Opcode 09 /r */
  9679   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  9680   ins_pipe(ialu_mem_reg);
  9681 %}
  9683 // Or Memory with Immediate
  9684 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  9685 %{
  9686   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
  9687   effect(KILL cr);
  9689   ins_cost(125);
  9690   format %{ "orq     $dst, $src\t# long" %}
  9691   opcode(0x81, 0x1); /* Opcode 81 /1 id */
  9692   ins_encode(REX_mem_wide(dst), OpcSE(src),
  9693              RM_opc_mem(secondary, dst), Con8or32(src));
  9694   ins_pipe(ialu_mem_imm);
  9695 %}
  9697 // Xor Instructions
  9698 // Xor Register with Register
  9699 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
  9700 %{
  9701   match(Set dst (XorL dst src));
  9702   effect(KILL cr);
  9704   format %{ "xorq    $dst, $src\t# long" %}
  9705   opcode(0x33);
  9706   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
  9707   ins_pipe(ialu_reg_reg);
  9708 %}
  9710 // Xor Register with Immediate -1
  9711 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
  9712   match(Set dst (XorL dst imm));  
  9714   format %{ "notq   $dst" %}  
  9715   ins_encode %{
  9716      __ notq($dst$$Register);
  9717   %}
  9718   ins_pipe(ialu_reg);
  9719 %}
  9721 // Xor Register with Immediate
  9722 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
  9723 %{
  9724   match(Set dst (XorL dst src));
  9725   effect(KILL cr);
  9727   format %{ "xorq    $dst, $src\t# long" %}
  9728   opcode(0x81, 0x06); /* Opcode 81 /6 id */
  9729   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
  9730   ins_pipe(ialu_reg);
  9731 %}
  9733 // Xor Register with Memory
  9734 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
  9735 %{
  9736   match(Set dst (XorL dst (LoadL src)));
  9737   effect(KILL cr);
  9739   ins_cost(125);
  9740   format %{ "xorq    $dst, $src\t# long" %}
  9741   opcode(0x33);
  9742   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
  9743   ins_pipe(ialu_reg_mem);
  9744 %}
  9746 // Xor Memory with Register
  9747 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
  9748 %{
  9749   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
  9750   effect(KILL cr);
  9752   ins_cost(150);
  9753   format %{ "xorq    $dst, $src\t# long" %}
  9754   opcode(0x31); /* Opcode 31 /r */
  9755   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
  9756   ins_pipe(ialu_mem_reg);
  9757 %}
  9759 // Xor Memory with Immediate
  9760 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
  9761 %{
  9762   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
  9763   effect(KILL cr);
  9765   ins_cost(125);
  9766   format %{ "xorq    $dst, $src\t# long" %}
  9767   opcode(0x81, 0x6); /* Opcode 81 /6 id */
  9768   ins_encode(REX_mem_wide(dst), OpcSE(src),
  9769              RM_opc_mem(secondary, dst), Con8or32(src));
  9770   ins_pipe(ialu_mem_imm);
  9771 %}
  9773 // Convert Int to Boolean
  9774 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
  9775 %{
  9776   match(Set dst (Conv2B src));
  9777   effect(KILL cr);
  9779   format %{ "testl   $src, $src\t# ci2b\n\t"
  9780             "setnz   $dst\n\t"
  9781             "movzbl  $dst, $dst" %}
  9782   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
  9783              setNZ_reg(dst),
  9784              REX_reg_breg(dst, dst), // movzbl
  9785              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
  9786   ins_pipe(pipe_slow); // XXX
  9787 %}
  9789 // Convert Pointer to Boolean
  9790 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
  9791 %{
  9792   match(Set dst (Conv2B src));
  9793   effect(KILL cr);
  9795   format %{ "testq   $src, $src\t# cp2b\n\t"
  9796             "setnz   $dst\n\t"
  9797             "movzbl  $dst, $dst" %}
  9798   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
  9799              setNZ_reg(dst),
  9800              REX_reg_breg(dst, dst), // movzbl
  9801              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
  9802   ins_pipe(pipe_slow); // XXX
  9803 %}
  9805 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
  9806 %{
  9807   match(Set dst (CmpLTMask p q));
  9808   effect(KILL cr);
  9810   ins_cost(400); // XXX
  9811   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
  9812             "setlt   $dst\n\t"
  9813             "movzbl  $dst, $dst\n\t"
  9814             "negl    $dst" %}
  9815   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
  9816              setLT_reg(dst),
  9817              REX_reg_breg(dst, dst), // movzbl
  9818              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
  9819              neg_reg(dst));
  9820   ins_pipe(pipe_slow);
  9821 %}
  9823 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
  9824 %{
  9825   match(Set dst (CmpLTMask dst zero));
  9826   effect(KILL cr);
  9828   ins_cost(100); // XXX
  9829   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
  9830   opcode(0xC1, 0x7);  /* C1 /7 ib */
  9831   ins_encode(reg_opc_imm(dst, 0x1F));
  9832   ins_pipe(ialu_reg);
  9833 %}
  9836 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y,
  9837                          rRegI tmp,
  9838                          rFlagsReg cr)
  9839 %{
  9840   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
  9841   effect(TEMP tmp, KILL cr);
  9843   ins_cost(400); // XXX
  9844   format %{ "subl    $p, $q\t# cadd_cmpLTMask1\n\t"
  9845             "sbbl    $tmp, $tmp\n\t"
  9846             "andl    $tmp, $y\n\t"
  9847             "addl    $p, $tmp" %}
  9848   ins_encode(enc_cmpLTP(p, q, y, tmp));
  9849   ins_pipe(pipe_cmplt);
  9850 %}
  9852 /* If I enable this, I encourage spilling in the inner loop of compress.
  9853 instruct cadd_cmpLTMask_mem( rRegI p, rRegI q, memory y, rRegI tmp, rFlagsReg cr )
  9854 %{
  9855   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
  9856   effect( TEMP tmp, KILL cr );
  9857   ins_cost(400);
  9859   format %{ "SUB    $p,$q\n\t"
  9860             "SBB    RCX,RCX\n\t"
  9861             "AND    RCX,$y\n\t"
  9862             "ADD    $p,RCX" %}
  9863   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
  9864 %}
  9865 */
  9867 //---------- FP Instructions------------------------------------------------
  9869 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
  9870 %{
  9871   match(Set cr (CmpF src1 src2));
  9873   ins_cost(145);
  9874   format %{ "ucomiss $src1, $src2\n\t"
  9875             "jnp,s   exit\n\t"
  9876             "pushfq\t# saw NaN, set CF\n\t"
  9877             "andq    [rsp], #0xffffff2b\n\t"
  9878             "popfq\n"
  9879     "exit:   nop\t# avoid branch to branch" %}
  9880   opcode(0x0F, 0x2E);
  9881   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
  9882              cmpfp_fixup);
  9883   ins_pipe(pipe_slow);
  9884 %}
  9886 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
  9887   match(Set cr (CmpF src1 src2));
  9889   ins_cost(145);
  9890   format %{ "ucomiss $src1, $src2" %}
  9891   ins_encode %{
  9892     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
  9893   %}
  9894   ins_pipe(pipe_slow);
  9895 %}
  9897 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
  9898 %{
  9899   match(Set cr (CmpF src1 (LoadF src2)));
  9901   ins_cost(145);
  9902   format %{ "ucomiss $src1, $src2\n\t"
  9903             "jnp,s   exit\n\t"
  9904             "pushfq\t# saw NaN, set CF\n\t"
  9905             "andq    [rsp], #0xffffff2b\n\t"
  9906             "popfq\n"
  9907     "exit:   nop\t# avoid branch to branch" %}
  9908   opcode(0x0F, 0x2E);
  9909   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
  9910              cmpfp_fixup);
  9911   ins_pipe(pipe_slow);
  9912 %}
  9914 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
  9915   match(Set cr (CmpF src1 (LoadF src2)));
  9917   ins_cost(100);
  9918   format %{ "ucomiss $src1, $src2" %}
  9919   opcode(0x0F, 0x2E);
  9920   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2));
  9921   ins_pipe(pipe_slow);
  9922 %}
  9924 instruct cmpF_cc_imm(rFlagsRegU cr, regF src1, immF src2)
  9925 %{
  9926   match(Set cr (CmpF src1 src2));
  9928   ins_cost(145);
  9929   format %{ "ucomiss $src1, $src2\n\t"
  9930             "jnp,s   exit\n\t"
  9931             "pushfq\t# saw NaN, set CF\n\t"
  9932             "andq    [rsp], #0xffffff2b\n\t"
  9933             "popfq\n"
  9934     "exit:   nop\t# avoid branch to branch" %}
  9935   opcode(0x0F, 0x2E);
  9936   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
  9937              cmpfp_fixup);
  9938   ins_pipe(pipe_slow);
  9939 %}
  9941 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src1, immF src2) %{
  9942   match(Set cr (CmpF src1 src2));
  9944   ins_cost(100);
  9945   format %{ "ucomiss $src1, $src2" %}
  9946   opcode(0x0F, 0x2E);
  9947   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2));
  9948   ins_pipe(pipe_slow);
  9949 %}
  9951 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
  9952 %{
  9953   match(Set cr (CmpD src1 src2));
  9955   ins_cost(145);
  9956   format %{ "ucomisd $src1, $src2\n\t"
  9957             "jnp,s   exit\n\t"
  9958             "pushfq\t# saw NaN, set CF\n\t"
  9959             "andq    [rsp], #0xffffff2b\n\t"
  9960             "popfq\n"
  9961     "exit:   nop\t# avoid branch to branch" %}
  9962   opcode(0x66, 0x0F, 0x2E);
  9963   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
  9964              cmpfp_fixup);
  9965   ins_pipe(pipe_slow);
  9966 %}
  9968 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
  9969   match(Set cr (CmpD src1 src2));
  9971   ins_cost(100);
  9972   format %{ "ucomisd $src1, $src2 test" %}
  9973   ins_encode %{
  9974     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
  9975   %}
  9976   ins_pipe(pipe_slow);
  9977 %}
  9979 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
  9980 %{
  9981   match(Set cr (CmpD src1 (LoadD src2)));
  9983   ins_cost(145);
  9984   format %{ "ucomisd $src1, $src2\n\t"
  9985             "jnp,s   exit\n\t"
  9986             "pushfq\t# saw NaN, set CF\n\t"
  9987             "andq    [rsp], #0xffffff2b\n\t"
  9988             "popfq\n"
  9989     "exit:   nop\t# avoid branch to branch" %}
  9990   opcode(0x66, 0x0F, 0x2E);
  9991   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
  9992              cmpfp_fixup);
  9993   ins_pipe(pipe_slow);
  9994 %}
  9996 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
  9997   match(Set cr (CmpD src1 (LoadD src2)));
  9999   ins_cost(100);
 10000   format %{ "ucomisd $src1, $src2" %}
 10001   opcode(0x66, 0x0F, 0x2E);
 10002   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2));
 10003   ins_pipe(pipe_slow);
 10004 %}
 10006 instruct cmpD_cc_imm(rFlagsRegU cr, regD src1, immD src2)
 10007 %{
 10008   match(Set cr (CmpD src1 src2));
 10010   ins_cost(145);
 10011   format %{ "ucomisd $src1, [$src2]\n\t"
 10012             "jnp,s   exit\n\t"
 10013             "pushfq\t# saw NaN, set CF\n\t"
 10014             "andq    [rsp], #0xffffff2b\n\t"
 10015             "popfq\n"
 10016     "exit:   nop\t# avoid branch to branch" %}
 10017   opcode(0x66, 0x0F, 0x2E);
 10018   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
 10019              cmpfp_fixup);
 10020   ins_pipe(pipe_slow);
 10021 %}
 10023 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src1, immD src2) %{
 10024   match(Set cr (CmpD src1 src2));
 10026   ins_cost(100);
 10027   format %{ "ucomisd $src1, [$src2]" %}
 10028   opcode(0x66, 0x0F, 0x2E);
 10029   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2));
 10030   ins_pipe(pipe_slow);
 10031 %}
 10033 // Compare into -1,0,1
 10034 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
 10035 %{
 10036   match(Set dst (CmpF3 src1 src2));
 10037   effect(KILL cr);
 10039   ins_cost(275);
 10040   format %{ "ucomiss $src1, $src2\n\t"
 10041             "movl    $dst, #-1\n\t"
 10042             "jp,s    done\n\t"
 10043             "jb,s    done\n\t"
 10044             "setne   $dst\n\t"
 10045             "movzbl  $dst, $dst\n"
 10046     "done:" %}
 10048   opcode(0x0F, 0x2E);
 10049   ins_encode(REX_reg_reg(src1, src2), OpcP, OpcS, reg_reg(src1, src2),
 10050              cmpfp3(dst));
 10051   ins_pipe(pipe_slow);
 10052 %}
 10054 // Compare into -1,0,1
 10055 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
 10056 %{
 10057   match(Set dst (CmpF3 src1 (LoadF src2)));
 10058   effect(KILL cr);
 10060   ins_cost(275);
 10061   format %{ "ucomiss $src1, $src2\n\t"
 10062             "movl    $dst, #-1\n\t"
 10063             "jp,s    done\n\t"
 10064             "jb,s    done\n\t"
 10065             "setne   $dst\n\t"
 10066             "movzbl  $dst, $dst\n"
 10067     "done:" %}
 10069   opcode(0x0F, 0x2E);
 10070   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, reg_mem(src1, src2),
 10071              cmpfp3(dst));
 10072   ins_pipe(pipe_slow);
 10073 %}
 10075 // Compare into -1,0,1
 10076 instruct cmpF_imm(rRegI dst, regF src1, immF src2, rFlagsReg cr)
 10077 %{
 10078   match(Set dst (CmpF3 src1 src2));
 10079   effect(KILL cr);
 10081   ins_cost(275);
 10082   format %{ "ucomiss $src1, [$src2]\n\t"
 10083             "movl    $dst, #-1\n\t"
 10084             "jp,s    done\n\t"
 10085             "jb,s    done\n\t"
 10086             "setne   $dst\n\t"
 10087             "movzbl  $dst, $dst\n"
 10088     "done:" %}
 10090   opcode(0x0F, 0x2E);
 10091   ins_encode(REX_reg_mem(src1, src2), OpcP, OpcS, load_immF(src1, src2),
 10092              cmpfp3(dst));
 10093   ins_pipe(pipe_slow);
 10094 %}
 10096 // Compare into -1,0,1
 10097 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
 10098 %{
 10099   match(Set dst (CmpD3 src1 src2));
 10100   effect(KILL cr);
 10102   ins_cost(275);
 10103   format %{ "ucomisd $src1, $src2\n\t"
 10104             "movl    $dst, #-1\n\t"
 10105             "jp,s    done\n\t"
 10106             "jb,s    done\n\t"
 10107             "setne   $dst\n\t"
 10108             "movzbl  $dst, $dst\n"
 10109     "done:" %}
 10111   opcode(0x66, 0x0F, 0x2E);
 10112   ins_encode(OpcP, REX_reg_reg(src1, src2), OpcS, OpcT, reg_reg(src1, src2),
 10113              cmpfp3(dst));
 10114   ins_pipe(pipe_slow);
 10115 %}
 10117 // Compare into -1,0,1
 10118 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
 10119 %{
 10120   match(Set dst (CmpD3 src1 (LoadD src2)));
 10121   effect(KILL cr);
 10123   ins_cost(275);
 10124   format %{ "ucomisd $src1, $src2\n\t"
 10125             "movl    $dst, #-1\n\t"
 10126             "jp,s    done\n\t"
 10127             "jb,s    done\n\t"
 10128             "setne   $dst\n\t"
 10129             "movzbl  $dst, $dst\n"
 10130     "done:" %}
 10132   opcode(0x66, 0x0F, 0x2E);
 10133   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, reg_mem(src1, src2),
 10134              cmpfp3(dst));
 10135   ins_pipe(pipe_slow);
 10136 %}
 10138 // Compare into -1,0,1
 10139 instruct cmpD_imm(rRegI dst, regD src1, immD src2, rFlagsReg cr)
 10140 %{
 10141   match(Set dst (CmpD3 src1 src2));
 10142   effect(KILL cr);
 10144   ins_cost(275);
 10145   format %{ "ucomisd $src1, [$src2]\n\t"
 10146             "movl    $dst, #-1\n\t"
 10147             "jp,s    done\n\t"
 10148             "jb,s    done\n\t"
 10149             "setne   $dst\n\t"
 10150             "movzbl  $dst, $dst\n"
 10151     "done:" %}
 10153   opcode(0x66, 0x0F, 0x2E);
 10154   ins_encode(OpcP, REX_reg_mem(src1, src2), OpcS, OpcT, load_immD(src1, src2),
 10155              cmpfp3(dst));
 10156   ins_pipe(pipe_slow);
 10157 %}
 10159 instruct addF_reg(regF dst, regF src)
 10160 %{
 10161   match(Set dst (AddF dst src));
 10163   format %{ "addss   $dst, $src" %}
 10164   ins_cost(150); // XXX
 10165   opcode(0xF3, 0x0F, 0x58);
 10166   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10167   ins_pipe(pipe_slow);
 10168 %}
 10170 instruct addF_mem(regF dst, memory src)
 10171 %{
 10172   match(Set dst (AddF dst (LoadF src)));
 10174   format %{ "addss   $dst, $src" %}
 10175   ins_cost(150); // XXX
 10176   opcode(0xF3, 0x0F, 0x58);
 10177   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10178   ins_pipe(pipe_slow);
 10179 %}
 10181 instruct addF_imm(regF dst, immF src)
 10182 %{
 10183   match(Set dst (AddF dst src));
 10185   format %{ "addss   $dst, [$src]" %}
 10186   ins_cost(150); // XXX
 10187   opcode(0xF3, 0x0F, 0x58);
 10188   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10189   ins_pipe(pipe_slow);
 10190 %}
 10192 instruct addD_reg(regD dst, regD src)
 10193 %{
 10194   match(Set dst (AddD dst src));
 10196   format %{ "addsd   $dst, $src" %}
 10197   ins_cost(150); // XXX
 10198   opcode(0xF2, 0x0F, 0x58);
 10199   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10200   ins_pipe(pipe_slow);
 10201 %}
 10203 instruct addD_mem(regD dst, memory src)
 10204 %{
 10205   match(Set dst (AddD dst (LoadD src)));
 10207   format %{ "addsd   $dst, $src" %}
 10208   ins_cost(150); // XXX
 10209   opcode(0xF2, 0x0F, 0x58);
 10210   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10211   ins_pipe(pipe_slow);
 10212 %}
 10214 instruct addD_imm(regD dst, immD src)
 10215 %{
 10216   match(Set dst (AddD dst src));
 10218   format %{ "addsd   $dst, [$src]" %}
 10219   ins_cost(150); // XXX
 10220   opcode(0xF2, 0x0F, 0x58);
 10221   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10222   ins_pipe(pipe_slow);
 10223 %}
 10225 instruct subF_reg(regF dst, regF src)
 10226 %{
 10227   match(Set dst (SubF dst src));
 10229   format %{ "subss   $dst, $src" %}
 10230   ins_cost(150); // XXX
 10231   opcode(0xF3, 0x0F, 0x5C);
 10232   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10233   ins_pipe(pipe_slow);
 10234 %}
 10236 instruct subF_mem(regF dst, memory src)
 10237 %{
 10238   match(Set dst (SubF dst (LoadF src)));
 10240   format %{ "subss   $dst, $src" %}
 10241   ins_cost(150); // XXX
 10242   opcode(0xF3, 0x0F, 0x5C);
 10243   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10244   ins_pipe(pipe_slow);
 10245 %}
 10247 instruct subF_imm(regF dst, immF src)
 10248 %{
 10249   match(Set dst (SubF dst src));
 10251   format %{ "subss   $dst, [$src]" %}
 10252   ins_cost(150); // XXX
 10253   opcode(0xF3, 0x0F, 0x5C);
 10254   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10255   ins_pipe(pipe_slow);
 10256 %}
 10258 instruct subD_reg(regD dst, regD src)
 10259 %{
 10260   match(Set dst (SubD dst src));
 10262   format %{ "subsd   $dst, $src" %}
 10263   ins_cost(150); // XXX
 10264   opcode(0xF2, 0x0F, 0x5C);
 10265   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10266   ins_pipe(pipe_slow);
 10267 %}
 10269 instruct subD_mem(regD dst, memory src)
 10270 %{
 10271   match(Set dst (SubD dst (LoadD src)));
 10273   format %{ "subsd   $dst, $src" %}
 10274   ins_cost(150); // XXX
 10275   opcode(0xF2, 0x0F, 0x5C);
 10276   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10277   ins_pipe(pipe_slow);
 10278 %}
 10280 instruct subD_imm(regD dst, immD src)
 10281 %{
 10282   match(Set dst (SubD dst src));
 10284   format %{ "subsd   $dst, [$src]" %}
 10285   ins_cost(150); // XXX
 10286   opcode(0xF2, 0x0F, 0x5C);
 10287   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10288   ins_pipe(pipe_slow);
 10289 %}
 10291 instruct mulF_reg(regF dst, regF src)
 10292 %{
 10293   match(Set dst (MulF dst src));
 10295   format %{ "mulss   $dst, $src" %}
 10296   ins_cost(150); // XXX
 10297   opcode(0xF3, 0x0F, 0x59);
 10298   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10299   ins_pipe(pipe_slow);
 10300 %}
 10302 instruct mulF_mem(regF dst, memory src)
 10303 %{
 10304   match(Set dst (MulF dst (LoadF src)));
 10306   format %{ "mulss   $dst, $src" %}
 10307   ins_cost(150); // XXX
 10308   opcode(0xF3, 0x0F, 0x59);
 10309   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10310   ins_pipe(pipe_slow);
 10311 %}
 10313 instruct mulF_imm(regF dst, immF src)
 10314 %{
 10315   match(Set dst (MulF dst src));
 10317   format %{ "mulss   $dst, [$src]" %}
 10318   ins_cost(150); // XXX
 10319   opcode(0xF3, 0x0F, 0x59);
 10320   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10321   ins_pipe(pipe_slow);
 10322 %}
 10324 instruct mulD_reg(regD dst, regD src)
 10325 %{
 10326   match(Set dst (MulD dst src));
 10328   format %{ "mulsd   $dst, $src" %}
 10329   ins_cost(150); // XXX
 10330   opcode(0xF2, 0x0F, 0x59);
 10331   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10332   ins_pipe(pipe_slow);
 10333 %}
 10335 instruct mulD_mem(regD dst, memory src)
 10336 %{
 10337   match(Set dst (MulD dst (LoadD src)));
 10339   format %{ "mulsd   $dst, $src" %}
 10340   ins_cost(150); // XXX
 10341   opcode(0xF2, 0x0F, 0x59);
 10342   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10343   ins_pipe(pipe_slow);
 10344 %}
 10346 instruct mulD_imm(regD dst, immD src)
 10347 %{
 10348   match(Set dst (MulD dst src));
 10350   format %{ "mulsd   $dst, [$src]" %}
 10351   ins_cost(150); // XXX
 10352   opcode(0xF2, 0x0F, 0x59);
 10353   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10354   ins_pipe(pipe_slow);
 10355 %}
 10357 instruct divF_reg(regF dst, regF src)
 10358 %{
 10359   match(Set dst (DivF dst src));
 10361   format %{ "divss   $dst, $src" %}
 10362   ins_cost(150); // XXX
 10363   opcode(0xF3, 0x0F, 0x5E);
 10364   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10365   ins_pipe(pipe_slow);
 10366 %}
 10368 instruct divF_mem(regF dst, memory src)
 10369 %{
 10370   match(Set dst (DivF dst (LoadF src)));
 10372   format %{ "divss   $dst, $src" %}
 10373   ins_cost(150); // XXX
 10374   opcode(0xF3, 0x0F, 0x5E);
 10375   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10376   ins_pipe(pipe_slow);
 10377 %}
 10379 instruct divF_imm(regF dst, immF src)
 10380 %{
 10381   match(Set dst (DivF dst src));
 10383   format %{ "divss   $dst, [$src]" %}
 10384   ins_cost(150); // XXX
 10385   opcode(0xF3, 0x0F, 0x5E);
 10386   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10387   ins_pipe(pipe_slow);
 10388 %}
 10390 instruct divD_reg(regD dst, regD src)
 10391 %{
 10392   match(Set dst (DivD dst src));
 10394   format %{ "divsd   $dst, $src" %}
 10395   ins_cost(150); // XXX
 10396   opcode(0xF2, 0x0F, 0x5E);
 10397   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10398   ins_pipe(pipe_slow);
 10399 %}
 10401 instruct divD_mem(regD dst, memory src)
 10402 %{
 10403   match(Set dst (DivD dst (LoadD src)));
 10405   format %{ "divsd   $dst, $src" %}
 10406   ins_cost(150); // XXX
 10407   opcode(0xF2, 0x0F, 0x5E);
 10408   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10409   ins_pipe(pipe_slow);
 10410 %}
 10412 instruct divD_imm(regD dst, immD src)
 10413 %{
 10414   match(Set dst (DivD dst src));
 10416   format %{ "divsd   $dst, [$src]" %}
 10417   ins_cost(150); // XXX
 10418   opcode(0xF2, 0x0F, 0x5E);
 10419   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10420   ins_pipe(pipe_slow);
 10421 %}
 10423 instruct sqrtF_reg(regF dst, regF src)
 10424 %{
 10425   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10427   format %{ "sqrtss  $dst, $src" %}
 10428   ins_cost(150); // XXX
 10429   opcode(0xF3, 0x0F, 0x51);
 10430   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10431   ins_pipe(pipe_slow);
 10432 %}
 10434 instruct sqrtF_mem(regF dst, memory src)
 10435 %{
 10436   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF src)))));
 10438   format %{ "sqrtss  $dst, $src" %}
 10439   ins_cost(150); // XXX
 10440   opcode(0xF3, 0x0F, 0x51);
 10441   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10442   ins_pipe(pipe_slow);
 10443 %}
 10445 instruct sqrtF_imm(regF dst, immF src)
 10446 %{
 10447   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
 10449   format %{ "sqrtss  $dst, [$src]" %}
 10450   ins_cost(150); // XXX
 10451   opcode(0xF3, 0x0F, 0x51);
 10452   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immF(dst, src));
 10453   ins_pipe(pipe_slow);
 10454 %}
 10456 instruct sqrtD_reg(regD dst, regD src)
 10457 %{
 10458   match(Set dst (SqrtD src));
 10460   format %{ "sqrtsd  $dst, $src" %}
 10461   ins_cost(150); // XXX
 10462   opcode(0xF2, 0x0F, 0x51);
 10463   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10464   ins_pipe(pipe_slow);
 10465 %}
 10467 instruct sqrtD_mem(regD dst, memory src)
 10468 %{
 10469   match(Set dst (SqrtD (LoadD src)));
 10471   format %{ "sqrtsd  $dst, $src" %}
 10472   ins_cost(150); // XXX
 10473   opcode(0xF2, 0x0F, 0x51);
 10474   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10475   ins_pipe(pipe_slow);
 10476 %}
 10478 instruct sqrtD_imm(regD dst, immD src)
 10479 %{
 10480   match(Set dst (SqrtD src));
 10482   format %{ "sqrtsd  $dst, [$src]" %}
 10483   ins_cost(150); // XXX
 10484   opcode(0xF2, 0x0F, 0x51);
 10485   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, load_immD(dst, src));
 10486   ins_pipe(pipe_slow);
 10487 %}
 10489 instruct absF_reg(regF dst)
 10490 %{
 10491   match(Set dst (AbsF dst));
 10493   format %{ "andps   $dst, [0x7fffffff]\t# abs float by sign masking" %}
 10494   ins_encode(absF_encoding(dst));
 10495   ins_pipe(pipe_slow);
 10496 %}
 10498 instruct absD_reg(regD dst)
 10499 %{
 10500   match(Set dst (AbsD dst));
 10502   format %{ "andpd   $dst, [0x7fffffffffffffff]\t"
 10503             "# abs double by sign masking" %}
 10504   ins_encode(absD_encoding(dst));
 10505   ins_pipe(pipe_slow);
 10506 %}
 10508 instruct negF_reg(regF dst)
 10509 %{
 10510   match(Set dst (NegF dst));
 10512   format %{ "xorps   $dst, [0x80000000]\t# neg float by sign flipping" %}
 10513   ins_encode(negF_encoding(dst));
 10514   ins_pipe(pipe_slow);
 10515 %}
 10517 instruct negD_reg(regD dst)
 10518 %{
 10519   match(Set dst (NegD dst));
 10521   format %{ "xorpd   $dst, [0x8000000000000000]\t"
 10522             "# neg double by sign flipping" %}
 10523   ins_encode(negD_encoding(dst));
 10524   ins_pipe(pipe_slow);
 10525 %}
 10527 // -----------Trig and Trancendental Instructions------------------------------
 10528 instruct cosD_reg(regD dst) %{
 10529   match(Set dst (CosD dst));
 10531   format %{ "dcos   $dst\n\t" %}
 10532   opcode(0xD9, 0xFF);
 10533   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10534   ins_pipe( pipe_slow );
 10535 %}
 10537 instruct sinD_reg(regD dst) %{
 10538   match(Set dst (SinD dst));
 10540   format %{ "dsin   $dst\n\t" %}
 10541   opcode(0xD9, 0xFE);
 10542   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
 10543   ins_pipe( pipe_slow );
 10544 %}
 10546 instruct tanD_reg(regD dst) %{
 10547   match(Set dst (TanD dst));
 10549   format %{ "dtan   $dst\n\t" %}
 10550   ins_encode( Push_SrcXD(dst),
 10551               Opcode(0xD9), Opcode(0xF2),   //fptan
 10552               Opcode(0xDD), Opcode(0xD8),   //fstp st
 10553               Push_ResultXD(dst) );
 10554   ins_pipe( pipe_slow );
 10555 %}
 10557 instruct log10D_reg(regD dst) %{
 10558   // The source and result Double operands in XMM registers
 10559   match(Set dst (Log10D dst));
 10560   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
 10561   // fyl2x        ; compute log_10(2) * log_2(x)
 10562   format %{ "fldlg2\t\t\t#Log10\n\t"
 10563             "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
 10564          %}
 10565    ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
 10566               Push_SrcXD(dst),
 10567               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10568               Push_ResultXD(dst));
 10570   ins_pipe( pipe_slow );
 10571 %}
 10573 instruct logD_reg(regD dst) %{
 10574   // The source and result Double operands in XMM registers
 10575   match(Set dst (LogD dst));
 10576   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
 10577   // fyl2x        ; compute log_e(2) * log_2(x)
 10578   format %{ "fldln2\t\t\t#Log_e\n\t"
 10579             "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
 10580          %}
 10581   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
 10582               Push_SrcXD(dst),
 10583               Opcode(0xD9), Opcode(0xF1),   // fyl2x
 10584               Push_ResultXD(dst));
 10585   ins_pipe( pipe_slow );
 10586 %}
 10590 //----------Arithmetic Conversion Instructions---------------------------------
 10592 instruct roundFloat_nop(regF dst)
 10593 %{
 10594   match(Set dst (RoundFloat dst));
 10596   ins_cost(0);
 10597   ins_encode();
 10598   ins_pipe(empty);
 10599 %}
 10601 instruct roundDouble_nop(regD dst)
 10602 %{
 10603   match(Set dst (RoundDouble dst));
 10605   ins_cost(0);
 10606   ins_encode();
 10607   ins_pipe(empty);
 10608 %}
 10610 instruct convF2D_reg_reg(regD dst, regF src)
 10611 %{
 10612   match(Set dst (ConvF2D src));
 10614   format %{ "cvtss2sd $dst, $src" %}
 10615   opcode(0xF3, 0x0F, 0x5A);
 10616   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10617   ins_pipe(pipe_slow); // XXX
 10618 %}
 10620 instruct convF2D_reg_mem(regD dst, memory src)
 10621 %{
 10622   match(Set dst (ConvF2D (LoadF src)));
 10624   format %{ "cvtss2sd $dst, $src" %}
 10625   opcode(0xF3, 0x0F, 0x5A);
 10626   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10627   ins_pipe(pipe_slow); // XXX
 10628 %}
 10630 instruct convD2F_reg_reg(regF dst, regD src)
 10631 %{
 10632   match(Set dst (ConvD2F src));
 10634   format %{ "cvtsd2ss $dst, $src" %}
 10635   opcode(0xF2, 0x0F, 0x5A);
 10636   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10637   ins_pipe(pipe_slow); // XXX
 10638 %}
 10640 instruct convD2F_reg_mem(regF dst, memory src)
 10641 %{
 10642   match(Set dst (ConvD2F (LoadD src)));
 10644   format %{ "cvtsd2ss $dst, $src" %}
 10645   opcode(0xF2, 0x0F, 0x5A);
 10646   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10647   ins_pipe(pipe_slow); // XXX
 10648 %}
 10650 // XXX do mem variants
 10651 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
 10652 %{
 10653   match(Set dst (ConvF2I src));
 10654   effect(KILL cr);
 10656   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
 10657             "cmpl    $dst, #0x80000000\n\t"
 10658             "jne,s   done\n\t"
 10659             "subq    rsp, #8\n\t"
 10660             "movss   [rsp], $src\n\t"
 10661             "call    f2i_fixup\n\t"
 10662             "popq    $dst\n"
 10663     "done:   "%}
 10664   opcode(0xF3, 0x0F, 0x2C);
 10665   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10666              f2i_fixup(dst, src));
 10667   ins_pipe(pipe_slow);
 10668 %}
 10670 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
 10671 %{
 10672   match(Set dst (ConvF2L src));
 10673   effect(KILL cr);
 10675   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
 10676             "cmpq    $dst, [0x8000000000000000]\n\t"
 10677             "jne,s   done\n\t"
 10678             "subq    rsp, #8\n\t"
 10679             "movss   [rsp], $src\n\t"
 10680             "call    f2l_fixup\n\t"
 10681             "popq    $dst\n"
 10682     "done:   "%}
 10683   opcode(0xF3, 0x0F, 0x2C);
 10684   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10685              f2l_fixup(dst, src));
 10686   ins_pipe(pipe_slow);
 10687 %}
 10689 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
 10690 %{
 10691   match(Set dst (ConvD2I src));
 10692   effect(KILL cr);
 10694   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
 10695             "cmpl    $dst, #0x80000000\n\t"
 10696             "jne,s   done\n\t"
 10697             "subq    rsp, #8\n\t"
 10698             "movsd   [rsp], $src\n\t"
 10699             "call    d2i_fixup\n\t"
 10700             "popq    $dst\n"
 10701     "done:   "%}
 10702   opcode(0xF2, 0x0F, 0x2C);
 10703   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10704              d2i_fixup(dst, src));
 10705   ins_pipe(pipe_slow);
 10706 %}
 10708 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
 10709 %{
 10710   match(Set dst (ConvD2L src));
 10711   effect(KILL cr);
 10713   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
 10714             "cmpq    $dst, [0x8000000000000000]\n\t"
 10715             "jne,s   done\n\t"
 10716             "subq    rsp, #8\n\t"
 10717             "movsd   [rsp], $src\n\t"
 10718             "call    d2l_fixup\n\t"
 10719             "popq    $dst\n"
 10720     "done:   "%}
 10721   opcode(0xF2, 0x0F, 0x2C);
 10722   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src),
 10723              d2l_fixup(dst, src));
 10724   ins_pipe(pipe_slow);
 10725 %}
 10727 instruct convI2F_reg_reg(regF dst, rRegI src)
 10728 %{
 10729   predicate(!UseXmmI2F);
 10730   match(Set dst (ConvI2F src));
 10732   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 10733   opcode(0xF3, 0x0F, 0x2A);
 10734   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10735   ins_pipe(pipe_slow); // XXX
 10736 %}
 10738 instruct convI2F_reg_mem(regF dst, memory src)
 10739 %{
 10740   match(Set dst (ConvI2F (LoadI src)));
 10742   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
 10743   opcode(0xF3, 0x0F, 0x2A);
 10744   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10745   ins_pipe(pipe_slow); // XXX
 10746 %}
 10748 instruct convI2D_reg_reg(regD dst, rRegI src)
 10749 %{
 10750   predicate(!UseXmmI2D);
 10751   match(Set dst (ConvI2D src));
 10753   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 10754   opcode(0xF2, 0x0F, 0x2A);
 10755   ins_encode(OpcP, REX_reg_reg(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10756   ins_pipe(pipe_slow); // XXX
 10757 %}
 10759 instruct convI2D_reg_mem(regD dst, memory src)
 10760 %{
 10761   match(Set dst (ConvI2D (LoadI src)));
 10763   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
 10764   opcode(0xF2, 0x0F, 0x2A);
 10765   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10766   ins_pipe(pipe_slow); // XXX
 10767 %}
 10769 instruct convXI2F_reg(regF dst, rRegI src)
 10770 %{
 10771   predicate(UseXmmI2F);
 10772   match(Set dst (ConvI2F src));
 10774   format %{ "movdl $dst, $src\n\t"
 10775             "cvtdq2psl $dst, $dst\t# i2f" %}
 10776   ins_encode %{
 10777     __ movdl($dst$$XMMRegister, $src$$Register);
 10778     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
 10779   %}
 10780   ins_pipe(pipe_slow); // XXX
 10781 %}
 10783 instruct convXI2D_reg(regD dst, rRegI src)
 10784 %{
 10785   predicate(UseXmmI2D);
 10786   match(Set dst (ConvI2D src));
 10788   format %{ "movdl $dst, $src\n\t"
 10789             "cvtdq2pdl $dst, $dst\t# i2d" %}
 10790   ins_encode %{
 10791     __ movdl($dst$$XMMRegister, $src$$Register);
 10792     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
 10793   %}
 10794   ins_pipe(pipe_slow); // XXX
 10795 %}
 10797 instruct convL2F_reg_reg(regF dst, rRegL src)
 10798 %{
 10799   match(Set dst (ConvL2F src));
 10801   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 10802   opcode(0xF3, 0x0F, 0x2A);
 10803   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10804   ins_pipe(pipe_slow); // XXX
 10805 %}
 10807 instruct convL2F_reg_mem(regF dst, memory src)
 10808 %{
 10809   match(Set dst (ConvL2F (LoadL src)));
 10811   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
 10812   opcode(0xF3, 0x0F, 0x2A);
 10813   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10814   ins_pipe(pipe_slow); // XXX
 10815 %}
 10817 instruct convL2D_reg_reg(regD dst, rRegL src)
 10818 %{
 10819   match(Set dst (ConvL2D src));
 10821   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 10822   opcode(0xF2, 0x0F, 0x2A);
 10823   ins_encode(OpcP, REX_reg_reg_wide(dst, src), OpcS, OpcT, reg_reg(dst, src));
 10824   ins_pipe(pipe_slow); // XXX
 10825 %}
 10827 instruct convL2D_reg_mem(regD dst, memory src)
 10828 %{
 10829   match(Set dst (ConvL2D (LoadL src)));
 10831   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
 10832   opcode(0xF2, 0x0F, 0x2A);
 10833   ins_encode(OpcP, REX_reg_mem_wide(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10834   ins_pipe(pipe_slow); // XXX
 10835 %}
 10837 instruct convI2L_reg_reg(rRegL dst, rRegI src)
 10838 %{
 10839   match(Set dst (ConvI2L src));
 10841   ins_cost(125);
 10842   format %{ "movslq  $dst, $src\t# i2l" %}
 10843   opcode(0x63); // needs REX.W
 10844   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
 10845   ins_pipe(ialu_reg_reg);
 10846 %}
 10848 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
 10849 // %{
 10850 //   match(Set dst (ConvI2L src));
 10851 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
 10852 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
 10853 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
 10854 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
 10855 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
 10856 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
 10858 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
 10859 //   ins_encode(enc_copy(dst, src));
 10860 // //   opcode(0x63); // needs REX.W
 10861 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
 10862 //   ins_pipe(ialu_reg_reg);
 10863 // %}
 10865 // Zero-extend convert int to long
 10866 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
 10867 %{
 10868   match(Set dst (AndL (ConvI2L src) mask));
 10870   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 10871   ins_encode(enc_copy(dst, src));
 10872   ins_pipe(ialu_reg_reg);
 10873 %}
 10875 // Zero-extend convert int to long
 10876 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
 10877 %{
 10878   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
 10880   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
 10881   opcode(0x8B);
 10882   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 10883   ins_pipe(ialu_reg_mem);
 10884 %}
 10886 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
 10887 %{
 10888   match(Set dst (AndL src mask));
 10890   format %{ "movl    $dst, $src\t# zero-extend long" %}
 10891   ins_encode(enc_copy_always(dst, src));
 10892   ins_pipe(ialu_reg_reg);
 10893 %}
 10895 instruct convL2I_reg_reg(rRegI dst, rRegL src)
 10896 %{
 10897   match(Set dst (ConvL2I src));
 10899   format %{ "movl    $dst, $src\t# l2i" %}
 10900   ins_encode(enc_copy_always(dst, src));
 10901   ins_pipe(ialu_reg_reg);
 10902 %}
 10905 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
 10906   match(Set dst (MoveF2I src));
 10907   effect(DEF dst, USE src);
 10909   ins_cost(125);
 10910   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
 10911   opcode(0x8B);
 10912   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
 10913   ins_pipe(ialu_reg_mem);
 10914 %}
 10916 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
 10917   match(Set dst (MoveI2F src));
 10918   effect(DEF dst, USE src);
 10920   ins_cost(125);
 10921   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
 10922   opcode(0xF3, 0x0F, 0x10);
 10923   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10924   ins_pipe(pipe_slow);
 10925 %}
 10927 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
 10928   match(Set dst (MoveD2L src));
 10929   effect(DEF dst, USE src);
 10931   ins_cost(125);
 10932   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
 10933   opcode(0x8B);
 10934   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
 10935   ins_pipe(ialu_reg_mem);
 10936 %}
 10938 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
 10939   predicate(!UseXmmLoadAndClearUpper);
 10940   match(Set dst (MoveL2D src));
 10941   effect(DEF dst, USE src);
 10943   ins_cost(125);
 10944   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
 10945   opcode(0x66, 0x0F, 0x12);
 10946   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10947   ins_pipe(pipe_slow);
 10948 %}
 10950 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
 10951   predicate(UseXmmLoadAndClearUpper);
 10952   match(Set dst (MoveL2D src));
 10953   effect(DEF dst, USE src);
 10955   ins_cost(125);
 10956   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
 10957   opcode(0xF2, 0x0F, 0x10);
 10958   ins_encode(OpcP, REX_reg_mem(dst, src), OpcS, OpcT, reg_mem(dst, src));
 10959   ins_pipe(pipe_slow);
 10960 %}
 10963 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
 10964   match(Set dst (MoveF2I src));
 10965   effect(DEF dst, USE src);
 10967   ins_cost(95); // XXX
 10968   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
 10969   opcode(0xF3, 0x0F, 0x11);
 10970   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 10971   ins_pipe(pipe_slow);
 10972 %}
 10974 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
 10975   match(Set dst (MoveI2F src));
 10976   effect(DEF dst, USE src);
 10978   ins_cost(100);
 10979   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
 10980   opcode(0x89);
 10981   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
 10982   ins_pipe( ialu_mem_reg );
 10983 %}
 10985 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
 10986   match(Set dst (MoveD2L src));
 10987   effect(DEF dst, USE src);
 10989   ins_cost(95); // XXX
 10990   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
 10991   opcode(0xF2, 0x0F, 0x11);
 10992   ins_encode(OpcP, REX_reg_mem(src, dst), OpcS, OpcT, reg_mem(src, dst));
 10993   ins_pipe(pipe_slow);
 10994 %}
 10996 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
 10997   match(Set dst (MoveL2D src));
 10998   effect(DEF dst, USE src);
 11000   ins_cost(100);
 11001   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
 11002   opcode(0x89);
 11003   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
 11004   ins_pipe(ialu_mem_reg);
 11005 %}
 11007 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
 11008   match(Set dst (MoveF2I src));
 11009   effect(DEF dst, USE src);
 11010   ins_cost(85);
 11011   format %{ "movd    $dst,$src\t# MoveF2I" %}
 11012   ins_encode %{ __ movdl($dst$$Register, $src$$XMMRegister); %}
 11013   ins_pipe( pipe_slow );
 11014 %}
 11016 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
 11017   match(Set dst (MoveD2L src));
 11018   effect(DEF dst, USE src);
 11019   ins_cost(85);
 11020   format %{ "movd    $dst,$src\t# MoveD2L" %}
 11021   ins_encode %{ __ movdq($dst$$Register, $src$$XMMRegister); %}
 11022   ins_pipe( pipe_slow );
 11023 %}
 11025 // The next instructions have long latency and use Int unit. Set high cost.
 11026 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
 11027   match(Set dst (MoveI2F src));
 11028   effect(DEF dst, USE src);
 11029   ins_cost(300);
 11030   format %{ "movd    $dst,$src\t# MoveI2F" %}
 11031   ins_encode %{ __ movdl($dst$$XMMRegister, $src$$Register); %}
 11032   ins_pipe( pipe_slow );
 11033 %}
 11035 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
 11036   match(Set dst (MoveL2D src));
 11037   effect(DEF dst, USE src);
 11038   ins_cost(300);
 11039   format %{ "movd    $dst,$src\t# MoveL2D" %}
 11040   ins_encode %{ __ movdq($dst$$XMMRegister, $src$$Register); %}
 11041   ins_pipe( pipe_slow );
 11042 %}
 11044 // Replicate scalar to packed byte (1 byte) values in xmm
 11045 instruct Repl8B_reg(regD dst, regD src) %{
 11046   match(Set dst (Replicate8B src));
 11047   format %{ "MOVDQA  $dst,$src\n\t"
 11048             "PUNPCKLBW $dst,$dst\n\t"
 11049             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11050   ins_encode( pshufd_8x8(dst, src));
 11051   ins_pipe( pipe_slow );
 11052 %}
 11054 // Replicate scalar to packed byte (1 byte) values in xmm
 11055 instruct Repl8B_rRegI(regD dst, rRegI src) %{
 11056   match(Set dst (Replicate8B src));
 11057   format %{ "MOVD    $dst,$src\n\t"
 11058             "PUNPCKLBW $dst,$dst\n\t"
 11059             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
 11060   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
 11061   ins_pipe( pipe_slow );
 11062 %}
 11064 // Replicate scalar zero to packed byte (1 byte) values in xmm
 11065 instruct Repl8B_immI0(regD dst, immI0 zero) %{
 11066   match(Set dst (Replicate8B zero));
 11067   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
 11068   ins_encode( pxor(dst, dst));
 11069   ins_pipe( fpu_reg_reg );
 11070 %}
 11072 // Replicate scalar to packed shore (2 byte) values in xmm
 11073 instruct Repl4S_reg(regD dst, regD src) %{
 11074   match(Set dst (Replicate4S src));
 11075   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
 11076   ins_encode( pshufd_4x16(dst, src));
 11077   ins_pipe( fpu_reg_reg );
 11078 %}
 11080 // Replicate scalar to packed shore (2 byte) values in xmm
 11081 instruct Repl4S_rRegI(regD dst, rRegI src) %{
 11082   match(Set dst (Replicate4S src));
 11083   format %{ "MOVD    $dst,$src\n\t"
 11084             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
 11085   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11086   ins_pipe( fpu_reg_reg );
 11087 %}
 11089 // Replicate scalar zero to packed short (2 byte) values in xmm
 11090 instruct Repl4S_immI0(regD dst, immI0 zero) %{
 11091   match(Set dst (Replicate4S zero));
 11092   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
 11093   ins_encode( pxor(dst, dst));
 11094   ins_pipe( fpu_reg_reg );
 11095 %}
 11097 // Replicate scalar to packed char (2 byte) values in xmm
 11098 instruct Repl4C_reg(regD dst, regD src) %{
 11099   match(Set dst (Replicate4C src));
 11100   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
 11101   ins_encode( pshufd_4x16(dst, src));
 11102   ins_pipe( fpu_reg_reg );
 11103 %}
 11105 // Replicate scalar to packed char (2 byte) values in xmm
 11106 instruct Repl4C_rRegI(regD dst, rRegI src) %{
 11107   match(Set dst (Replicate4C src));
 11108   format %{ "MOVD    $dst,$src\n\t"
 11109             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
 11110   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
 11111   ins_pipe( fpu_reg_reg );
 11112 %}
 11114 // Replicate scalar zero to packed char (2 byte) values in xmm
 11115 instruct Repl4C_immI0(regD dst, immI0 zero) %{
 11116   match(Set dst (Replicate4C zero));
 11117   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
 11118   ins_encode( pxor(dst, dst));
 11119   ins_pipe( fpu_reg_reg );
 11120 %}
 11122 // Replicate scalar to packed integer (4 byte) values in xmm
 11123 instruct Repl2I_reg(regD dst, regD src) %{
 11124   match(Set dst (Replicate2I src));
 11125   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
 11126   ins_encode( pshufd(dst, src, 0x00));
 11127   ins_pipe( fpu_reg_reg );
 11128 %}
 11130 // Replicate scalar to packed integer (4 byte) values in xmm
 11131 instruct Repl2I_rRegI(regD dst, rRegI src) %{
 11132   match(Set dst (Replicate2I src));
 11133   format %{ "MOVD   $dst,$src\n\t"
 11134             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
 11135   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
 11136   ins_pipe( fpu_reg_reg );
 11137 %}
 11139 // Replicate scalar zero to packed integer (2 byte) values in xmm
 11140 instruct Repl2I_immI0(regD dst, immI0 zero) %{
 11141   match(Set dst (Replicate2I zero));
 11142   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
 11143   ins_encode( pxor(dst, dst));
 11144   ins_pipe( fpu_reg_reg );
 11145 %}
 11147 // Replicate scalar to packed single precision floating point values in xmm
 11148 instruct Repl2F_reg(regD dst, regD src) %{
 11149   match(Set dst (Replicate2F src));
 11150   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11151   ins_encode( pshufd(dst, src, 0xe0));
 11152   ins_pipe( fpu_reg_reg );
 11153 %}
 11155 // Replicate scalar to packed single precision floating point values in xmm
 11156 instruct Repl2F_regF(regD dst, regF src) %{
 11157   match(Set dst (Replicate2F src));
 11158   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
 11159   ins_encode( pshufd(dst, src, 0xe0));
 11160   ins_pipe( fpu_reg_reg );
 11161 %}
 11163 // Replicate scalar to packed single precision floating point values in xmm
 11164 instruct Repl2F_immF0(regD dst, immF0 zero) %{
 11165   match(Set dst (Replicate2F zero));
 11166   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
 11167   ins_encode( pxor(dst, dst));
 11168   ins_pipe( fpu_reg_reg );
 11169 %}
 11172 // =======================================================================
 11173 // fast clearing of an array
 11174 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
 11175                   rFlagsReg cr)
 11176 %{
 11177   match(Set dummy (ClearArray cnt base));
 11178   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
 11180   format %{ "xorl    rax, rax\t# ClearArray:\n\t"
 11181             "rep stosq\t# Store rax to *rdi++ while rcx--" %}
 11182   ins_encode(opc_reg_reg(0x33, RAX, RAX), // xorl %eax, %eax
 11183              Opcode(0xF3), Opcode(0x48), Opcode(0xAB)); // rep REX_W stos
 11184   ins_pipe(pipe_slow);
 11185 %}
 11187 instruct string_compare(rdi_RegP str1, rsi_RegP str2, rax_RegI tmp1,
 11188                         rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr)
 11189 %{
 11190   match(Set result (StrComp str1 str2));
 11191   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
 11192   //ins_cost(300);
 11194   format %{ "String Compare $str1, $str2 -> $result    // XXX KILL RAX, RBX" %}
 11195   ins_encode( enc_String_Compare() );
 11196   ins_pipe( pipe_slow );
 11197 %}
 11199 // fast array equals
 11200 instruct array_equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI tmp1, 
 11201                       rbx_RegI tmp2, rcx_RegI result, rFlagsReg cr) %{
 11202   match(Set result (AryEq ary1 ary2));
 11203   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
 11204   //ins_cost(300);
 11206   format %{ "Array Equals $ary1,$ary2 -> $result    // KILL RAX, RBX" %}
 11207   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
 11208   ins_pipe( pipe_slow );
 11209 %}
 11211 //----------Control Flow Instructions------------------------------------------
 11212 // Signed compare Instructions
 11214 // XXX more variants!!
 11215 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
 11216 %{
 11217   match(Set cr (CmpI op1 op2));
 11218   effect(DEF cr, USE op1, USE op2);
 11220   format %{ "cmpl    $op1, $op2" %}
 11221   opcode(0x3B);  /* Opcode 3B /r */
 11222   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 11223   ins_pipe(ialu_cr_reg_reg);
 11224 %}
 11226 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
 11227 %{
 11228   match(Set cr (CmpI op1 op2));
 11230   format %{ "cmpl    $op1, $op2" %}
 11231   opcode(0x81, 0x07); /* Opcode 81 /7 */
 11232   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 11233   ins_pipe(ialu_cr_reg_imm);
 11234 %}
 11236 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
 11237 %{
 11238   match(Set cr (CmpI op1 (LoadI op2)));
 11240   ins_cost(500); // XXX
 11241   format %{ "cmpl    $op1, $op2" %}
 11242   opcode(0x3B); /* Opcode 3B /r */
 11243   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 11244   ins_pipe(ialu_cr_reg_mem);
 11245 %}
 11247 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
 11248 %{
 11249   match(Set cr (CmpI src zero));
 11251   format %{ "testl   $src, $src" %}
 11252   opcode(0x85);
 11253   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 11254   ins_pipe(ialu_cr_reg_imm);
 11255 %}
 11257 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
 11258 %{
 11259   match(Set cr (CmpI (AndI src con) zero));
 11261   format %{ "testl   $src, $con" %}
 11262   opcode(0xF7, 0x00);
 11263   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
 11264   ins_pipe(ialu_cr_reg_imm);
 11265 %}
 11267 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
 11268 %{
 11269   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
 11271   format %{ "testl   $src, $mem" %}
 11272   opcode(0x85);
 11273   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
 11274   ins_pipe(ialu_cr_reg_mem);
 11275 %}
 11277 // Unsigned compare Instructions; really, same as signed except they
 11278 // produce an rFlagsRegU instead of rFlagsReg.
 11279 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
 11280 %{
 11281   match(Set cr (CmpU op1 op2));
 11283   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11284   opcode(0x3B); /* Opcode 3B /r */
 11285   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
 11286   ins_pipe(ialu_cr_reg_reg);
 11287 %}
 11289 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
 11290 %{
 11291   match(Set cr (CmpU op1 op2));
 11293   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11294   opcode(0x81,0x07); /* Opcode 81 /7 */
 11295   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
 11296   ins_pipe(ialu_cr_reg_imm);
 11297 %}
 11299 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
 11300 %{
 11301   match(Set cr (CmpU op1 (LoadI op2)));
 11303   ins_cost(500); // XXX
 11304   format %{ "cmpl    $op1, $op2\t# unsigned" %}
 11305   opcode(0x3B); /* Opcode 3B /r */
 11306   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
 11307   ins_pipe(ialu_cr_reg_mem);
 11308 %}
 11310 // // // Cisc-spilled version of cmpU_rReg
 11311 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
 11312 // //%{
 11313 // //  match(Set cr (CmpU (LoadI op1) op2));
 11314 // //
 11315 // //  format %{ "CMPu   $op1,$op2" %}
 11316 // //  ins_cost(500);
 11317 // //  opcode(0x39);  /* Opcode 39 /r */
 11318 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 11319 // //%}
 11321 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
 11322 %{
 11323   match(Set cr (CmpU src zero));
 11325   format %{ "testl  $src, $src\t# unsigned" %}
 11326   opcode(0x85);
 11327   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
 11328   ins_pipe(ialu_cr_reg_imm);
 11329 %}
 11331 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
 11332 %{
 11333   match(Set cr (CmpP op1 op2));
 11335   format %{ "cmpq    $op1, $op2\t# ptr" %}
 11336   opcode(0x3B); /* Opcode 3B /r */
 11337   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 11338   ins_pipe(ialu_cr_reg_reg);
 11339 %}
 11341 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
 11342 %{
 11343   match(Set cr (CmpP op1 (LoadP op2)));
 11345   ins_cost(500); // XXX
 11346   format %{ "cmpq    $op1, $op2\t# ptr" %}
 11347   opcode(0x3B); /* Opcode 3B /r */
 11348   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11349   ins_pipe(ialu_cr_reg_mem);
 11350 %}
 11352 // // // Cisc-spilled version of cmpP_rReg
 11353 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
 11354 // //%{
 11355 // //  match(Set cr (CmpP (LoadP op1) op2));
 11356 // //
 11357 // //  format %{ "CMPu   $op1,$op2" %}
 11358 // //  ins_cost(500);
 11359 // //  opcode(0x39);  /* Opcode 39 /r */
 11360 // //  ins_encode( OpcP, reg_mem( op1, op2) );
 11361 // //%}
 11363 // XXX this is generalized by compP_rReg_mem???
 11364 // Compare raw pointer (used in out-of-heap check).
 11365 // Only works because non-oop pointers must be raw pointers
 11366 // and raw pointers have no anti-dependencies.
 11367 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
 11368 %{
 11369   predicate(!n->in(2)->in(2)->bottom_type()->isa_oop_ptr());
 11370   match(Set cr (CmpP op1 (LoadP op2)));
 11372   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
 11373   opcode(0x3B); /* Opcode 3B /r */
 11374   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11375   ins_pipe(ialu_cr_reg_mem);
 11376 %}
 11378 // This will generate a signed flags result. This should be OK since
 11379 // any compare to a zero should be eq/neq.
 11380 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
 11381 %{
 11382   match(Set cr (CmpP src zero));
 11384   format %{ "testq   $src, $src\t# ptr" %}
 11385   opcode(0x85);
 11386   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 11387   ins_pipe(ialu_cr_reg_imm);
 11388 %}
 11390 // This will generate a signed flags result. This should be OK since
 11391 // any compare to a zero should be eq/neq.
 11392 instruct testP_reg_mem(rFlagsReg cr, memory op, immP0 zero)
 11393 %{
 11394   match(Set cr (CmpP (LoadP op) zero));
 11396   ins_cost(500); // XXX
 11397   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
 11398   opcode(0xF7); /* Opcode F7 /0 */
 11399   ins_encode(REX_mem_wide(op),
 11400              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
 11401   ins_pipe(ialu_cr_reg_imm);
 11402 %}
 11405 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
 11406 %{
 11407   match(Set cr (CmpN op1 op2));
 11409   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
 11410   ins_encode %{ __ cmpl(as_Register($op1$$reg), as_Register($op2$$reg)); %}
 11411   ins_pipe(ialu_cr_reg_reg);
 11412 %}
 11414 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
 11415 %{
 11416   match(Set cr (CmpN src (LoadN mem)));
 11418   ins_cost(500); // XXX
 11419   format %{ "cmpl    $src, mem\t# compressed ptr" %}
 11420   ins_encode %{
 11421     Address adr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
 11422     __ cmpl(as_Register($src$$reg), adr);
 11423   %}
 11424   ins_pipe(ialu_cr_reg_mem);
 11425 %}
 11427 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
 11428   match(Set cr (CmpN src zero));
 11430   format %{ "testl   $src, $src\t# compressed ptr" %}
 11431   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
 11432   ins_pipe(ialu_cr_reg_imm);
 11433 %}
 11435 instruct testN_reg_mem(rFlagsReg cr, memory mem, immN0 zero)
 11436 %{
 11437   match(Set cr (CmpN (LoadN mem) zero));
 11439   ins_cost(500); // XXX
 11440   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
 11441   ins_encode %{
 11442     Address addr = build_address($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
 11443     __ cmpl(addr, (int)0xFFFFFFFF);
 11444   %}
 11445   ins_pipe(ialu_cr_reg_mem);
 11446 %}
 11448 // Yanked all unsigned pointer compare operations.
 11449 // Pointer compares are done with CmpP which is already unsigned.
 11451 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
 11452 %{
 11453   match(Set cr (CmpL op1 op2));
 11455   format %{ "cmpq    $op1, $op2" %}
 11456   opcode(0x3B);  /* Opcode 3B /r */
 11457   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
 11458   ins_pipe(ialu_cr_reg_reg);
 11459 %}
 11461 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
 11462 %{
 11463   match(Set cr (CmpL op1 op2));
 11465   format %{ "cmpq    $op1, $op2" %}
 11466   opcode(0x81, 0x07); /* Opcode 81 /7 */
 11467   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
 11468   ins_pipe(ialu_cr_reg_imm);
 11469 %}
 11471 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
 11472 %{
 11473   match(Set cr (CmpL op1 (LoadL op2)));
 11475   ins_cost(500); // XXX
 11476   format %{ "cmpq    $op1, $op2" %}
 11477   opcode(0x3B); /* Opcode 3B /r */
 11478   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
 11479   ins_pipe(ialu_cr_reg_mem);
 11480 %}
 11482 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
 11483 %{
 11484   match(Set cr (CmpL src zero));
 11486   format %{ "testq   $src, $src" %}
 11487   opcode(0x85);
 11488   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
 11489   ins_pipe(ialu_cr_reg_imm);
 11490 %}
 11492 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
 11493 %{
 11494   match(Set cr (CmpL (AndL src con) zero));
 11496   format %{ "testq   $src, $con\t# long" %}
 11497   opcode(0xF7, 0x00);
 11498   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
 11499   ins_pipe(ialu_cr_reg_imm);
 11500 %}
 11502 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
 11503 %{
 11504   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
 11506   format %{ "testq   $src, $mem" %}
 11507   opcode(0x85);
 11508   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
 11509   ins_pipe(ialu_cr_reg_mem);
 11510 %}
 11512 // Manifest a CmpL result in an integer register.  Very painful.
 11513 // This is the test to avoid.
 11514 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
 11515 %{
 11516   match(Set dst (CmpL3 src1 src2));
 11517   effect(KILL flags);
 11519   ins_cost(275); // XXX
 11520   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
 11521             "movl    $dst, -1\n\t"
 11522             "jl,s    done\n\t"
 11523             "setne   $dst\n\t"
 11524             "movzbl  $dst, $dst\n\t"
 11525     "done:" %}
 11526   ins_encode(cmpl3_flag(src1, src2, dst));
 11527   ins_pipe(pipe_slow);
 11528 %}
 11530 //----------Max and Min--------------------------------------------------------
 11531 // Min Instructions
 11533 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
 11534 %{
 11535   effect(USE_DEF dst, USE src, USE cr);
 11537   format %{ "cmovlgt $dst, $src\t# min" %}
 11538   opcode(0x0F, 0x4F);
 11539   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 11540   ins_pipe(pipe_cmov_reg);
 11541 %}
 11544 instruct minI_rReg(rRegI dst, rRegI src)
 11545 %{
 11546   match(Set dst (MinI dst src));
 11548   ins_cost(200);
 11549   expand %{
 11550     rFlagsReg cr;
 11551     compI_rReg(cr, dst, src);
 11552     cmovI_reg_g(dst, src, cr);
 11553   %}
 11554 %}
 11556 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
 11557 %{
 11558   effect(USE_DEF dst, USE src, USE cr);
 11560   format %{ "cmovllt $dst, $src\t# max" %}
 11561   opcode(0x0F, 0x4C);
 11562   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
 11563   ins_pipe(pipe_cmov_reg);
 11564 %}
 11567 instruct maxI_rReg(rRegI dst, rRegI src)
 11568 %{
 11569   match(Set dst (MaxI dst src));
 11571   ins_cost(200);
 11572   expand %{
 11573     rFlagsReg cr;
 11574     compI_rReg(cr, dst, src);
 11575     cmovI_reg_l(dst, src, cr);
 11576   %}
 11577 %}
 11579 // ============================================================================
 11580 // Branch Instructions
 11582 // Jump Direct - Label defines a relative address from JMP+1
 11583 instruct jmpDir(label labl)
 11584 %{
 11585   match(Goto);
 11586   effect(USE labl);
 11588   ins_cost(300);
 11589   format %{ "jmp     $labl" %}
 11590   size(5);
 11591   opcode(0xE9);
 11592   ins_encode(OpcP, Lbl(labl));
 11593   ins_pipe(pipe_jmp);
 11594   ins_pc_relative(1);
 11595 %}
 11597 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11598 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
 11599 %{
 11600   match(If cop cr);
 11601   effect(USE labl);
 11603   ins_cost(300);
 11604   format %{ "j$cop     $labl" %}
 11605   size(6);
 11606   opcode(0x0F, 0x80);
 11607   ins_encode(Jcc(cop, labl));
 11608   ins_pipe(pipe_jcc);
 11609   ins_pc_relative(1);
 11610 %}
 11612 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11613 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
 11614 %{
 11615   match(CountedLoopEnd cop cr);
 11616   effect(USE labl);
 11618   ins_cost(300);
 11619   format %{ "j$cop     $labl\t# loop end" %}
 11620   size(6);
 11621   opcode(0x0F, 0x80);
 11622   ins_encode(Jcc(cop, labl));
 11623   ins_pipe(pipe_jcc);
 11624   ins_pc_relative(1);
 11625 %}
 11627 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11628 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 11629   match(CountedLoopEnd cop cmp);
 11630   effect(USE labl);
 11632   ins_cost(300);
 11633   format %{ "j$cop,u   $labl\t# loop end" %}
 11634   size(6);
 11635   opcode(0x0F, 0x80);
 11636   ins_encode(Jcc(cop, labl));
 11637   ins_pipe(pipe_jcc);
 11638   ins_pc_relative(1);
 11639 %}
 11641 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 11642   match(CountedLoopEnd cop cmp);
 11643   effect(USE labl);
 11645   ins_cost(200);
 11646   format %{ "j$cop,u   $labl\t# loop end" %}
 11647   size(6);
 11648   opcode(0x0F, 0x80);
 11649   ins_encode(Jcc(cop, labl));
 11650   ins_pipe(pipe_jcc);
 11651   ins_pc_relative(1);
 11652 %}
 11654 // Jump Direct Conditional - using unsigned comparison
 11655 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 11656   match(If cop cmp);
 11657   effect(USE labl);
 11659   ins_cost(300);
 11660   format %{ "j$cop,u  $labl" %}
 11661   size(6);
 11662   opcode(0x0F, 0x80);
 11663   ins_encode(Jcc(cop, labl));
 11664   ins_pipe(pipe_jcc);
 11665   ins_pc_relative(1);
 11666 %}
 11668 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 11669   match(If cop cmp);
 11670   effect(USE labl);
 11672   ins_cost(200);
 11673   format %{ "j$cop,u  $labl" %}
 11674   size(6);
 11675   opcode(0x0F, 0x80);
 11676   ins_encode(Jcc(cop, labl));
 11677   ins_pipe(pipe_jcc);
 11678   ins_pc_relative(1);
 11679 %}
 11681 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
 11682   match(If cop cmp);
 11683   effect(USE labl);
 11685   ins_cost(200);
 11686   format %{ $$template
 11687     if ($cop$$cmpcode == Assembler::notEqual) {
 11688       $$emit$$"jp,u   $labl\n\t"
 11689       $$emit$$"j$cop,u   $labl"
 11690     } else {
 11691       $$emit$$"jp,u   done\n\t"
 11692       $$emit$$"j$cop,u   $labl\n\t"
 11693       $$emit$$"done:"
 11695   %}
 11696   size(12);
 11697   opcode(0x0F, 0x80);
 11698   ins_encode %{
 11699     Label* l = $labl$$label;
 11700     $$$emit8$primary;
 11701     emit_cc(cbuf, $secondary, Assembler::parity);
 11702     int parity_disp = -1;
 11703     if ($cop$$cmpcode == Assembler::notEqual) {
 11704        // the two jumps 6 bytes apart so the jump distances are too
 11705        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 11706     } else if ($cop$$cmpcode == Assembler::equal) {
 11707        parity_disp = 6;
 11708     } else {
 11709        ShouldNotReachHere();
 11711     emit_d32(cbuf, parity_disp);
 11712     $$$emit8$primary;
 11713     emit_cc(cbuf, $secondary, $cop$$cmpcode);
 11714     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
 11715     emit_d32(cbuf, disp);
 11716   %}
 11717   ins_pipe(pipe_jcc);
 11718   ins_pc_relative(1);
 11719 %}
 11721 // ============================================================================
 11722 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
 11723 // superklass array for an instance of the superklass.  Set a hidden
 11724 // internal cache on a hit (cache is checked with exposed code in
 11725 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
 11726 // encoding ALSO sets flags.
 11728 instruct partialSubtypeCheck(rdi_RegP result,
 11729                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 11730                              rFlagsReg cr)
 11731 %{
 11732   match(Set result (PartialSubtypeCheck sub super));
 11733   effect(KILL rcx, KILL cr);
 11735   ins_cost(1100);  // slightly larger than the next version
 11736   format %{ "cmpq    rax, rsi\n\t"
 11737             "jeq,s   hit\n\t"
 11738             "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 11739             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 11740             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 11741             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
 11742             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
 11743             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 11744     "hit:\n\t"
 11745             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
 11746     "miss:\t" %}
 11748   opcode(0x1); // Force a XOR of RDI
 11749   ins_encode(enc_PartialSubtypeCheck());
 11750   ins_pipe(pipe_slow);
 11751 %}
 11753 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
 11754                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
 11755                                      immP0 zero,
 11756                                      rdi_RegP result)
 11757 %{
 11758   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
 11759   predicate(!UseCompressedOops); // decoding oop kills condition codes
 11760   effect(KILL rcx, KILL result);
 11762   ins_cost(1000);
 11763   format %{ "cmpq    rax, rsi\n\t"
 11764             "jeq,s   miss\t# Actually a hit; we are done.\n\t"
 11765             "movq    rdi, [$sub + (sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes())]\n\t"
 11766             "movl    rcx, [rdi + arrayOopDesc::length_offset_in_bytes()]\t# length to scan\n\t"
 11767             "addq    rdi, arrayOopDex::base_offset_in_bytes(T_OBJECT)\t# Skip to start of data; set NZ in case count is zero\n\t"
 11768             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
 11769             "jne,s   miss\t\t# Missed: flags nz\n\t"
 11770             "movq    [$sub + (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())], $super\t# Hit: update cache\n\t"
 11771     "miss:\t" %}
 11773   opcode(0x0); // No need to XOR RDI
 11774   ins_encode(enc_PartialSubtypeCheck());
 11775   ins_pipe(pipe_slow);
 11776 %}
 11778 // ============================================================================
 11779 // Branch Instructions -- short offset versions
 11780 //
 11781 // These instructions are used to replace jumps of a long offset (the default
 11782 // match) with jumps of a shorter offset.  These instructions are all tagged
 11783 // with the ins_short_branch attribute, which causes the ADLC to suppress the
 11784 // match rules in general matching.  Instead, the ADLC generates a conversion
 11785 // method in the MachNode which can be used to do in-place replacement of the
 11786 // long variant with the shorter variant.  The compiler will determine if a
 11787 // branch can be taken by the is_short_branch_offset() predicate in the machine
 11788 // specific code section of the file.
 11790 // Jump Direct - Label defines a relative address from JMP+1
 11791 instruct jmpDir_short(label labl) %{
 11792   match(Goto);
 11793   effect(USE labl);
 11795   ins_cost(300);
 11796   format %{ "jmp,s   $labl" %}
 11797   size(2);
 11798   opcode(0xEB);
 11799   ins_encode(OpcP, LblShort(labl));
 11800   ins_pipe(pipe_jmp);
 11801   ins_pc_relative(1);
 11802   ins_short_branch(1);
 11803 %}
 11805 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11806 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
 11807   match(If cop cr);
 11808   effect(USE labl);
 11810   ins_cost(300);
 11811   format %{ "j$cop,s   $labl" %}
 11812   size(2);
 11813   opcode(0x70);
 11814   ins_encode(JccShort(cop, labl));
 11815   ins_pipe(pipe_jcc);
 11816   ins_pc_relative(1);
 11817   ins_short_branch(1);
 11818 %}
 11820 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11821 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
 11822   match(CountedLoopEnd cop cr);
 11823   effect(USE labl);
 11825   ins_cost(300);
 11826   format %{ "j$cop,s   $labl\t# loop end" %}
 11827   size(2);
 11828   opcode(0x70);
 11829   ins_encode(JccShort(cop, labl));
 11830   ins_pipe(pipe_jcc);
 11831   ins_pc_relative(1);
 11832   ins_short_branch(1);
 11833 %}
 11835 // Jump Direct Conditional - Label defines a relative address from Jcc+1
 11836 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 11837   match(CountedLoopEnd cop cmp);
 11838   effect(USE labl);
 11840   ins_cost(300);
 11841   format %{ "j$cop,us  $labl\t# loop end" %}
 11842   size(2);
 11843   opcode(0x70);
 11844   ins_encode(JccShort(cop, labl));
 11845   ins_pipe(pipe_jcc);
 11846   ins_pc_relative(1);
 11847   ins_short_branch(1);
 11848 %}
 11850 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 11851   match(CountedLoopEnd cop cmp);
 11852   effect(USE labl);
 11854   ins_cost(300);
 11855   format %{ "j$cop,us  $labl\t# loop end" %}
 11856   size(2);
 11857   opcode(0x70);
 11858   ins_encode(JccShort(cop, labl));
 11859   ins_pipe(pipe_jcc);
 11860   ins_pc_relative(1);
 11861   ins_short_branch(1);
 11862 %}
 11864 // Jump Direct Conditional - using unsigned comparison
 11865 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
 11866   match(If cop cmp);
 11867   effect(USE labl);
 11869   ins_cost(300);
 11870   format %{ "j$cop,us  $labl" %}
 11871   size(2);
 11872   opcode(0x70);
 11873   ins_encode(JccShort(cop, labl));
 11874   ins_pipe(pipe_jcc);
 11875   ins_pc_relative(1);
 11876   ins_short_branch(1);
 11877 %}
 11879 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
 11880   match(If cop cmp);
 11881   effect(USE labl);
 11883   ins_cost(300);
 11884   format %{ "j$cop,us  $labl" %}
 11885   size(2);
 11886   opcode(0x70);
 11887   ins_encode(JccShort(cop, labl));
 11888   ins_pipe(pipe_jcc);
 11889   ins_pc_relative(1);
 11890   ins_short_branch(1);
 11891 %}
 11893 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
 11894   match(If cop cmp);
 11895   effect(USE labl);
 11897   ins_cost(300);
 11898   format %{ $$template
 11899     if ($cop$$cmpcode == Assembler::notEqual) {
 11900       $$emit$$"jp,u,s   $labl\n\t"
 11901       $$emit$$"j$cop,u,s   $labl"
 11902     } else {
 11903       $$emit$$"jp,u,s   done\n\t"
 11904       $$emit$$"j$cop,u,s  $labl\n\t"
 11905       $$emit$$"done:"
 11907   %}
 11908   size(4);
 11909   opcode(0x70);
 11910   ins_encode %{
 11911     Label* l = $labl$$label;
 11912     emit_cc(cbuf, $primary, Assembler::parity);
 11913     int parity_disp = -1;
 11914     if ($cop$$cmpcode == Assembler::notEqual) {
 11915       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 11916     } else if ($cop$$cmpcode == Assembler::equal) {
 11917       parity_disp = 2;
 11918     } else {
 11919       ShouldNotReachHere();
 11921     emit_d8(cbuf, parity_disp);
 11922     emit_cc(cbuf, $primary, $cop$$cmpcode);
 11923     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
 11924     emit_d8(cbuf, disp);
 11925     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
 11926     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
 11927   %}
 11928   ins_pipe(pipe_jcc);
 11929   ins_pc_relative(1);
 11930   ins_short_branch(1);
 11931 %}
 11933 // ============================================================================
 11934 // inlined locking and unlocking
 11936 instruct cmpFastLock(rFlagsReg cr,
 11937                      rRegP object, rRegP box, rax_RegI tmp, rRegP scr)
 11938 %{
 11939   match(Set cr (FastLock object box));
 11940   effect(TEMP tmp, TEMP scr);
 11942   ins_cost(300);
 11943   format %{ "fastlock $object,$box,$tmp,$scr" %}
 11944   ins_encode(Fast_Lock(object, box, tmp, scr));
 11945   ins_pipe(pipe_slow);
 11946   ins_pc_relative(1);
 11947 %}
 11949 instruct cmpFastUnlock(rFlagsReg cr,
 11950                        rRegP object, rax_RegP box, rRegP tmp)
 11951 %{
 11952   match(Set cr (FastUnlock object box));
 11953   effect(TEMP tmp);
 11955   ins_cost(300);
 11956   format %{ "fastunlock $object, $box, $tmp" %}
 11957   ins_encode(Fast_Unlock(object, box, tmp));
 11958   ins_pipe(pipe_slow);
 11959   ins_pc_relative(1);
 11960 %}
 11963 // ============================================================================
 11964 // Safepoint Instructions
 11965 instruct safePoint_poll(rFlagsReg cr)
 11966 %{
 11967   match(SafePoint);
 11968   effect(KILL cr);
 11970   format %{ "testl   rax, [rip + #offset_to_poll_page]\t"
 11971             "# Safepoint: poll for GC" %}
 11972   size(6); // Opcode + ModRM + Disp32 == 6 bytes
 11973   ins_cost(125);
 11974   ins_encode(enc_safepoint_poll);
 11975   ins_pipe(ialu_reg_mem);
 11976 %}
 11978 // ============================================================================
 11979 // Procedure Call/Return Instructions
 11980 // Call Java Static Instruction
 11981 // Note: If this code changes, the corresponding ret_addr_offset() and
 11982 //       compute_padding() functions will have to be adjusted.
 11983 instruct CallStaticJavaDirect(method meth)
 11984 %{
 11985   match(CallStaticJava);
 11986   effect(USE meth);
 11988   ins_cost(300);
 11989   format %{ "call,static " %}
 11990   opcode(0xE8); /* E8 cd */
 11991   ins_encode(Java_Static_Call(meth), call_epilog);
 11992   ins_pipe(pipe_slow);
 11993   ins_pc_relative(1);
 11994   ins_alignment(4);
 11995 %}
 11997 // Call Java Dynamic Instruction
 11998 // Note: If this code changes, the corresponding ret_addr_offset() and
 11999 //       compute_padding() functions will have to be adjusted.
 12000 instruct CallDynamicJavaDirect(method meth)
 12001 %{
 12002   match(CallDynamicJava);
 12003   effect(USE meth);
 12005   ins_cost(300);
 12006   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
 12007             "call,dynamic " %}
 12008   opcode(0xE8); /* E8 cd */
 12009   ins_encode(Java_Dynamic_Call(meth), call_epilog);
 12010   ins_pipe(pipe_slow);
 12011   ins_pc_relative(1);
 12012   ins_alignment(4);
 12013 %}
 12015 // Call Runtime Instruction
 12016 instruct CallRuntimeDirect(method meth)
 12017 %{
 12018   match(CallRuntime);
 12019   effect(USE meth);
 12021   ins_cost(300);
 12022   format %{ "call,runtime " %}
 12023   opcode(0xE8); /* E8 cd */
 12024   ins_encode(Java_To_Runtime(meth));
 12025   ins_pipe(pipe_slow);
 12026   ins_pc_relative(1);
 12027 %}
 12029 // Call runtime without safepoint
 12030 instruct CallLeafDirect(method meth)
 12031 %{
 12032   match(CallLeaf);
 12033   effect(USE meth);
 12035   ins_cost(300);
 12036   format %{ "call_leaf,runtime " %}
 12037   opcode(0xE8); /* E8 cd */
 12038   ins_encode(Java_To_Runtime(meth));
 12039   ins_pipe(pipe_slow);
 12040   ins_pc_relative(1);
 12041 %}
 12043 // Call runtime without safepoint
 12044 instruct CallLeafNoFPDirect(method meth)
 12045 %{
 12046   match(CallLeafNoFP);
 12047   effect(USE meth);
 12049   ins_cost(300);
 12050   format %{ "call_leaf_nofp,runtime " %}
 12051   opcode(0xE8); /* E8 cd */
 12052   ins_encode(Java_To_Runtime(meth));
 12053   ins_pipe(pipe_slow);
 12054   ins_pc_relative(1);
 12055 %}
 12057 // Return Instruction
 12058 // Remove the return address & jump to it.
 12059 // Notice: We always emit a nop after a ret to make sure there is room
 12060 // for safepoint patching
 12061 instruct Ret()
 12062 %{
 12063   match(Return);
 12065   format %{ "ret" %}
 12066   opcode(0xC3);
 12067   ins_encode(OpcP);
 12068   ins_pipe(pipe_jmp);
 12069 %}
 12071 // Tail Call; Jump from runtime stub to Java code.
 12072 // Also known as an 'interprocedural jump'.
 12073 // Target of jump will eventually return to caller.
 12074 // TailJump below removes the return address.
 12075 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
 12076 %{
 12077   match(TailCall jump_target method_oop);
 12079   ins_cost(300);
 12080   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
 12081   opcode(0xFF, 0x4); /* Opcode FF /4 */
 12082   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
 12083   ins_pipe(pipe_jmp);
 12084 %}
 12086 // Tail Jump; remove the return address; jump to target.
 12087 // TailCall above leaves the return address around.
 12088 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
 12089 %{
 12090   match(TailJump jump_target ex_oop);
 12092   ins_cost(300);
 12093   format %{ "popq    rdx\t# pop return address\n\t"
 12094             "jmp     $jump_target" %}
 12095   opcode(0xFF, 0x4); /* Opcode FF /4 */
 12096   ins_encode(Opcode(0x5a), // popq rdx
 12097              REX_reg(jump_target), OpcP, reg_opc(jump_target));
 12098   ins_pipe(pipe_jmp);
 12099 %}
 12101 // Create exception oop: created by stack-crawling runtime code.
 12102 // Created exception is now available to this handler, and is setup
 12103 // just prior to jumping to this handler.  No code emitted.
 12104 instruct CreateException(rax_RegP ex_oop)
 12105 %{
 12106   match(Set ex_oop (CreateEx));
 12108   size(0);
 12109   // use the following format syntax
 12110   format %{ "# exception oop is in rax; no code emitted" %}
 12111   ins_encode();
 12112   ins_pipe(empty);
 12113 %}
 12115 // Rethrow exception:
 12116 // The exception oop will come in the first argument position.
 12117 // Then JUMP (not call) to the rethrow stub code.
 12118 instruct RethrowException()
 12119 %{
 12120   match(Rethrow);
 12122   // use the following format syntax
 12123   format %{ "jmp     rethrow_stub" %}
 12124   ins_encode(enc_rethrow);
 12125   ins_pipe(pipe_jmp);
 12126 %}
 12129 //----------PEEPHOLE RULES-----------------------------------------------------
 12130 // These must follow all instruction definitions as they use the names
 12131 // defined in the instructions definitions.
 12132 //
 12133 // peepmatch ( root_instr_name [preceding_instruction]* );
 12134 //
 12135 // peepconstraint %{
 12136 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12137 //  [, ...] );
 12138 // // instruction numbers are zero-based using left to right order in peepmatch
 12139 //
 12140 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
 12141 // // provide an instruction_number.operand_name for each operand that appears
 12142 // // in the replacement instruction's match rule
 12143 //
 12144 // ---------VM FLAGS---------------------------------------------------------
 12145 //
 12146 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12147 //
 12148 // Each peephole rule is given an identifying number starting with zero and
 12149 // increasing by one in the order seen by the parser.  An individual peephole
 12150 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12151 // on the command-line.
 12152 //
 12153 // ---------CURRENT LIMITATIONS----------------------------------------------
 12154 //
 12155 // Only match adjacent instructions in same basic block
 12156 // Only equality constraints
 12157 // Only constraints between operands, not (0.dest_reg == RAX_enc)
 12158 // Only one replacement instruction
 12159 //
 12160 // ---------EXAMPLE----------------------------------------------------------
 12161 //
 12162 // // pertinent parts of existing instructions in architecture description
 12163 // instruct movI(rRegI dst, rRegI src)
 12164 // %{
 12165 //   match(Set dst (CopyI src));
 12166 // %}
 12167 //
 12168 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
 12169 // %{
 12170 //   match(Set dst (AddI dst src));
 12171 //   effect(KILL cr);
 12172 // %}
 12173 //
 12174 // // Change (inc mov) to lea
 12175 // peephole %{
 12176 //   // increment preceeded by register-register move
 12177 //   peepmatch ( incI_rReg movI );
 12178 //   // require that the destination register of the increment
 12179 //   // match the destination register of the move
 12180 //   peepconstraint ( 0.dst == 1.dst );
 12181 //   // construct a replacement instruction that sets
 12182 //   // the destination to ( move's source register + one )
 12183 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
 12184 // %}
 12185 //
 12187 // Implementation no longer uses movX instructions since
 12188 // machine-independent system no longer uses CopyX nodes.
 12189 //
 12190 // peephole
 12191 // %{
 12192 //   peepmatch (incI_rReg movI);
 12193 //   peepconstraint (0.dst == 1.dst);
 12194 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12195 // %}
 12197 // peephole
 12198 // %{
 12199 //   peepmatch (decI_rReg movI);
 12200 //   peepconstraint (0.dst == 1.dst);
 12201 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12202 // %}
 12204 // peephole
 12205 // %{
 12206 //   peepmatch (addI_rReg_imm movI);
 12207 //   peepconstraint (0.dst == 1.dst);
 12208 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
 12209 // %}
 12211 // peephole
 12212 // %{
 12213 //   peepmatch (incL_rReg movL);
 12214 //   peepconstraint (0.dst == 1.dst);
 12215 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12216 // %}
 12218 // peephole
 12219 // %{
 12220 //   peepmatch (decL_rReg movL);
 12221 //   peepconstraint (0.dst == 1.dst);
 12222 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12223 // %}
 12225 // peephole
 12226 // %{
 12227 //   peepmatch (addL_rReg_imm movL);
 12228 //   peepconstraint (0.dst == 1.dst);
 12229 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
 12230 // %}
 12232 // peephole
 12233 // %{
 12234 //   peepmatch (addP_rReg_imm movP);
 12235 //   peepconstraint (0.dst == 1.dst);
 12236 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
 12237 // %}
 12239 // // Change load of spilled value to only a spill
 12240 // instruct storeI(memory mem, rRegI src)
 12241 // %{
 12242 //   match(Set mem (StoreI mem src));
 12243 // %}
 12244 //
 12245 // instruct loadI(rRegI dst, memory mem)
 12246 // %{
 12247 //   match(Set dst (LoadI mem));
 12248 // %}
 12249 //
 12251 peephole
 12252 %{
 12253   peepmatch (loadI storeI);
 12254   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 12255   peepreplace (storeI(1.mem 1.mem 1.src));
 12256 %}
 12258 peephole
 12259 %{
 12260   peepmatch (loadL storeL);
 12261   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
 12262   peepreplace (storeL(1.mem 1.mem 1.src));
 12263 %}
 12265 //----------SMARTSPILL RULES---------------------------------------------------
 12266 // These must follow all instruction definitions as they use the names
 12267 // defined in the instructions definitions.

mercurial