src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Tue, 08 Feb 2011 16:12:16 -0800

author
kvn
date
Tue, 08 Feb 2011 16:12:16 -0800
changeset 2558
336d17dff7cc
parent 2314
f95d63e2154a
child 2909
2aa9ddbb9e60
permissions
-rw-r--r--

7014874: Incorrect COOPs modes on solaris-{sparcv9,amd64} with ParallelGC
Summary: Align old gen size down to keep specified heap size.
Reviewed-by: ysr

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
    27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
    28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
    29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
    30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
    31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
    32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
    33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
    34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
    35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
    36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
    37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
    38 #include "memory/gcLocker.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "runtime/handles.inline.hpp"
    41 #include "runtime/java.hpp"
    42 #include "runtime/vmThread.hpp"
    43 #include "utilities/vmError.hpp"
    45 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    46 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    47 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    48 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    49 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    50 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    51 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    53 static void trace_gen_sizes(const char* const str,
    54                             size_t pg_min, size_t pg_max,
    55                             size_t og_min, size_t og_max,
    56                             size_t yg_min, size_t yg_max)
    57 {
    58   if (TracePageSizes) {
    59     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    60                   SIZE_FORMAT "," SIZE_FORMAT " "
    61                   SIZE_FORMAT "," SIZE_FORMAT " "
    62                   SIZE_FORMAT,
    63                   str, pg_min / K, pg_max / K,
    64                   og_min / K, og_max / K,
    65                   yg_min / K, yg_max / K,
    66                   (pg_max + og_max + yg_max) / K);
    67   }
    68 }
    70 jint ParallelScavengeHeap::initialize() {
    71   CollectedHeap::pre_initialize();
    73   // Cannot be initialized until after the flags are parsed
    74   // GenerationSizer flag_parser;
    75   _collector_policy = new GenerationSizer();
    77   size_t yg_min_size = _collector_policy->min_young_gen_size();
    78   size_t yg_max_size = _collector_policy->max_young_gen_size();
    79   size_t og_min_size = _collector_policy->min_old_gen_size();
    80   size_t og_max_size = _collector_policy->max_old_gen_size();
    81   // Why isn't there a min_perm_gen_size()?
    82   size_t pg_min_size = _collector_policy->perm_gen_size();
    83   size_t pg_max_size = _collector_policy->max_perm_gen_size();
    85   trace_gen_sizes("ps heap raw",
    86                   pg_min_size, pg_max_size,
    87                   og_min_size, og_max_size,
    88                   yg_min_size, yg_max_size);
    90   // The ReservedSpace ctor used below requires that the page size for the perm
    91   // gen is <= the page size for the rest of the heap (young + old gens).
    92   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    93                                                      yg_max_size + og_max_size,
    94                                                      8);
    95   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    96                                                           pg_max_size, 16),
    97                                  og_page_sz);
    99   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
   100   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
   101   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
   103   // Update sizes to reflect the selected page size(s).
   104   //
   105   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
   106   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
   107   // move to the common code.
   108   yg_min_size = align_size_up(yg_min_size, yg_align);
   109   yg_max_size = align_size_up(yg_max_size, yg_align);
   110   size_t yg_cur_size =
   111     align_size_up(_collector_policy->young_gen_size(), yg_align);
   112   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
   114   og_min_size = align_size_up(og_min_size, og_align);
   115   // Align old gen size down to preserve specified heap size.
   116   assert(og_align == yg_align, "sanity");
   117   og_max_size = align_size_down(og_max_size, og_align);
   118   og_max_size = MAX2(og_max_size, og_min_size);
   119   size_t og_cur_size =
   120     align_size_down(_collector_policy->old_gen_size(), og_align);
   121   og_cur_size = MAX2(og_cur_size, og_min_size);
   123   pg_min_size = align_size_up(pg_min_size, pg_align);
   124   pg_max_size = align_size_up(pg_max_size, pg_align);
   125   size_t pg_cur_size = pg_min_size;
   127   trace_gen_sizes("ps heap rnd",
   128                   pg_min_size, pg_max_size,
   129                   og_min_size, og_max_size,
   130                   yg_min_size, yg_max_size);
   132   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
   133   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
   135   // The main part of the heap (old gen + young gen) can often use a larger page
   136   // size than is needed or wanted for the perm gen.  Use the "compound
   137   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   138   // all gens.
   140   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   141                             og_align, addr);
   143   if (UseCompressedOops) {
   144     if (addr != NULL && !heap_rs.is_reserved()) {
   145       // Failed to reserve at specified address - the requested memory
   146       // region is taken already, for example, by 'java' launcher.
   147       // Try again to reserver heap higher.
   148       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
   149       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
   150                                  og_align, addr);
   151       if (addr != NULL && !heap_rs0.is_reserved()) {
   152         // Failed to reserve at specified address again - give up.
   153         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
   154         assert(addr == NULL, "");
   155         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
   156                                    og_align, addr);
   157         heap_rs = heap_rs1;
   158       } else {
   159         heap_rs = heap_rs0;
   160       }
   161     }
   162   }
   164   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   165                        heap_rs.base(), pg_max_size);
   166   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   167                        og_max_size + yg_max_size, og_page_sz,
   168                        heap_rs.base() + pg_max_size,
   169                        heap_rs.size() - pg_max_size);
   170   if (!heap_rs.is_reserved()) {
   171     vm_shutdown_during_initialization(
   172       "Could not reserve enough space for object heap");
   173     return JNI_ENOMEM;
   174   }
   176   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   177                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   179   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   180   _barrier_set = barrier_set;
   181   oopDesc::set_bs(_barrier_set);
   182   if (_barrier_set == NULL) {
   183     vm_shutdown_during_initialization(
   184       "Could not reserve enough space for barrier set");
   185     return JNI_ENOMEM;
   186   }
   188   // Initial young gen size is 4 Mb
   189   //
   190   // XXX - what about flag_parser.young_gen_size()?
   191   const size_t init_young_size = align_size_up(4 * M, yg_align);
   192   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   194   // Split the reserved space into perm gen and the main heap (everything else).
   195   // The main heap uses a different alignment.
   196   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   197   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   199   // Make up the generations
   200   // Calculate the maximum size that a generation can grow.  This
   201   // includes growth into the other generation.  Note that the
   202   // parameter _max_gen_size is kept as the maximum
   203   // size of the generation as the boundaries currently stand.
   204   // _max_gen_size is still used as that value.
   205   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   206   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   208   _gens = new AdjoiningGenerations(main_rs,
   209                                    og_cur_size,
   210                                    og_min_size,
   211                                    og_max_size,
   212                                    yg_cur_size,
   213                                    yg_min_size,
   214                                    yg_max_size,
   215                                    yg_align);
   217   _old_gen = _gens->old_gen();
   218   _young_gen = _gens->young_gen();
   220   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   221   const size_t old_capacity = _old_gen->capacity_in_bytes();
   222   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   223   _size_policy =
   224     new PSAdaptiveSizePolicy(eden_capacity,
   225                              initial_promo_size,
   226                              young_gen()->to_space()->capacity_in_bytes(),
   227                              intra_heap_alignment(),
   228                              max_gc_pause_sec,
   229                              max_gc_minor_pause_sec,
   230                              GCTimeRatio
   231                              );
   233   _perm_gen = new PSPermGen(perm_rs,
   234                             pg_align,
   235                             pg_cur_size,
   236                             pg_cur_size,
   237                             pg_max_size,
   238                             "perm", 2);
   240   assert(!UseAdaptiveGCBoundary ||
   241     (old_gen()->virtual_space()->high_boundary() ==
   242      young_gen()->virtual_space()->low_boundary()),
   243     "Boundaries must meet");
   244   // initialize the policy counters - 2 collectors, 3 generations
   245   _gc_policy_counters =
   246     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   247   _psh = this;
   249   // Set up the GCTaskManager
   250   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   252   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   253     return JNI_ENOMEM;
   254   }
   256   return JNI_OK;
   257 }
   259 void ParallelScavengeHeap::post_initialize() {
   260   // Need to init the tenuring threshold
   261   PSScavenge::initialize();
   262   if (UseParallelOldGC) {
   263     PSParallelCompact::post_initialize();
   264   } else {
   265     PSMarkSweep::initialize();
   266   }
   267   PSPromotionManager::initialize();
   268 }
   270 void ParallelScavengeHeap::update_counters() {
   271   young_gen()->update_counters();
   272   old_gen()->update_counters();
   273   perm_gen()->update_counters();
   274 }
   276 size_t ParallelScavengeHeap::capacity() const {
   277   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   278   return value;
   279 }
   281 size_t ParallelScavengeHeap::used() const {
   282   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   283   return value;
   284 }
   286 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   287   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   288 }
   291 size_t ParallelScavengeHeap::permanent_capacity() const {
   292   return perm_gen()->capacity_in_bytes();
   293 }
   295 size_t ParallelScavengeHeap::permanent_used() const {
   296   return perm_gen()->used_in_bytes();
   297 }
   299 size_t ParallelScavengeHeap::max_capacity() const {
   300   size_t estimated = reserved_region().byte_size();
   301   estimated -= perm_gen()->reserved().byte_size();
   302   if (UseAdaptiveSizePolicy) {
   303     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   304   } else {
   305     estimated -= young_gen()->to_space()->capacity_in_bytes();
   306   }
   307   return MAX2(estimated, capacity());
   308 }
   310 bool ParallelScavengeHeap::is_in(const void* p) const {
   311   if (young_gen()->is_in(p)) {
   312     return true;
   313   }
   315   if (old_gen()->is_in(p)) {
   316     return true;
   317   }
   319   if (perm_gen()->is_in(p)) {
   320     return true;
   321   }
   323   return false;
   324 }
   326 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   327   if (young_gen()->is_in_reserved(p)) {
   328     return true;
   329   }
   331   if (old_gen()->is_in_reserved(p)) {
   332     return true;
   333   }
   335   if (perm_gen()->is_in_reserved(p)) {
   336     return true;
   337   }
   339   return false;
   340 }
   342 // There are two levels of allocation policy here.
   343 //
   344 // When an allocation request fails, the requesting thread must invoke a VM
   345 // operation, transfer control to the VM thread, and await the results of a
   346 // garbage collection. That is quite expensive, and we should avoid doing it
   347 // multiple times if possible.
   348 //
   349 // To accomplish this, we have a basic allocation policy, and also a
   350 // failed allocation policy.
   351 //
   352 // The basic allocation policy controls how you allocate memory without
   353 // attempting garbage collection. It is okay to grab locks and
   354 // expand the heap, if that can be done without coming to a safepoint.
   355 // It is likely that the basic allocation policy will not be very
   356 // aggressive.
   357 //
   358 // The failed allocation policy is invoked from the VM thread after
   359 // the basic allocation policy is unable to satisfy a mem_allocate
   360 // request. This policy needs to cover the entire range of collection,
   361 // heap expansion, and out-of-memory conditions. It should make every
   362 // attempt to allocate the requested memory.
   364 // Basic allocation policy. Should never be called at a safepoint, or
   365 // from the VM thread.
   366 //
   367 // This method must handle cases where many mem_allocate requests fail
   368 // simultaneously. When that happens, only one VM operation will succeed,
   369 // and the rest will not be executed. For that reason, this method loops
   370 // during failed allocation attempts. If the java heap becomes exhausted,
   371 // we rely on the size_policy object to force a bail out.
   372 HeapWord* ParallelScavengeHeap::mem_allocate(
   373                                      size_t size,
   374                                      bool is_noref,
   375                                      bool is_tlab,
   376                                      bool* gc_overhead_limit_was_exceeded) {
   377   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   378   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   379   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   381   // In general gc_overhead_limit_was_exceeded should be false so
   382   // set it so here and reset it to true only if the gc time
   383   // limit is being exceeded as checked below.
   384   *gc_overhead_limit_was_exceeded = false;
   386   HeapWord* result = young_gen()->allocate(size, is_tlab);
   388   uint loop_count = 0;
   389   uint gc_count = 0;
   391   while (result == NULL) {
   392     // We don't want to have multiple collections for a single filled generation.
   393     // To prevent this, each thread tracks the total_collections() value, and if
   394     // the count has changed, does not do a new collection.
   395     //
   396     // The collection count must be read only while holding the heap lock. VM
   397     // operations also hold the heap lock during collections. There is a lock
   398     // contention case where thread A blocks waiting on the Heap_lock, while
   399     // thread B is holding it doing a collection. When thread A gets the lock,
   400     // the collection count has already changed. To prevent duplicate collections,
   401     // The policy MUST attempt allocations during the same period it reads the
   402     // total_collections() value!
   403     {
   404       MutexLocker ml(Heap_lock);
   405       gc_count = Universe::heap()->total_collections();
   407       result = young_gen()->allocate(size, is_tlab);
   409       // (1) If the requested object is too large to easily fit in the
   410       //     young_gen, or
   411       // (2) If GC is locked out via GCLocker, young gen is full and
   412       //     the need for a GC already signalled to GCLocker (done
   413       //     at a safepoint),
   414       // ... then, rather than force a safepoint and (a potentially futile)
   415       // collection (attempt) for each allocation, try allocation directly
   416       // in old_gen. For case (2) above, we may in the future allow
   417       // TLAB allocation directly in the old gen.
   418       if (result != NULL) {
   419         return result;
   420       }
   421       if (!is_tlab &&
   422           size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
   423         result = old_gen()->allocate(size, is_tlab);
   424         if (result != NULL) {
   425           return result;
   426         }
   427       }
   428       if (GC_locker::is_active_and_needs_gc()) {
   429         // GC is locked out. If this is a TLAB allocation,
   430         // return NULL; the requestor will retry allocation
   431         // of an idividual object at a time.
   432         if (is_tlab) {
   433           return NULL;
   434         }
   436         // If this thread is not in a jni critical section, we stall
   437         // the requestor until the critical section has cleared and
   438         // GC allowed. When the critical section clears, a GC is
   439         // initiated by the last thread exiting the critical section; so
   440         // we retry the allocation sequence from the beginning of the loop,
   441         // rather than causing more, now probably unnecessary, GC attempts.
   442         JavaThread* jthr = JavaThread::current();
   443         if (!jthr->in_critical()) {
   444           MutexUnlocker mul(Heap_lock);
   445           GC_locker::stall_until_clear();
   446           continue;
   447         } else {
   448           if (CheckJNICalls) {
   449             fatal("Possible deadlock due to allocating while"
   450                   " in jni critical section");
   451           }
   452           return NULL;
   453         }
   454       }
   455     }
   457     if (result == NULL) {
   459       // Generate a VM operation
   460       VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
   461       VMThread::execute(&op);
   463       // Did the VM operation execute? If so, return the result directly.
   464       // This prevents us from looping until time out on requests that can
   465       // not be satisfied.
   466       if (op.prologue_succeeded()) {
   467         assert(Universe::heap()->is_in_or_null(op.result()),
   468           "result not in heap");
   470         // If GC was locked out during VM operation then retry allocation
   471         // and/or stall as necessary.
   472         if (op.gc_locked()) {
   473           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   474           continue;  // retry and/or stall as necessary
   475         }
   477         // Exit the loop if the gc time limit has been exceeded.
   478         // The allocation must have failed above ("result" guarding
   479         // this path is NULL) and the most recent collection has exceeded the
   480         // gc overhead limit (although enough may have been collected to
   481         // satisfy the allocation).  Exit the loop so that an out-of-memory
   482         // will be thrown (return a NULL ignoring the contents of
   483         // op.result()),
   484         // but clear gc_overhead_limit_exceeded so that the next collection
   485         // starts with a clean slate (i.e., forgets about previous overhead
   486         // excesses).  Fill op.result() with a filler object so that the
   487         // heap remains parsable.
   488         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   489         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
   490         assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
   491         if (limit_exceeded && softrefs_clear) {
   492           *gc_overhead_limit_was_exceeded = true;
   493           size_policy()->set_gc_overhead_limit_exceeded(false);
   494           if (PrintGCDetails && Verbose) {
   495             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   496               "return NULL because gc_overhead_limit_exceeded is set");
   497           }
   498           if (op.result() != NULL) {
   499             CollectedHeap::fill_with_object(op.result(), size);
   500           }
   501           return NULL;
   502         }
   504         return op.result();
   505       }
   506     }
   508     // The policy object will prevent us from looping forever. If the
   509     // time spent in gc crosses a threshold, we will bail out.
   510     loop_count++;
   511     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   512         (loop_count % QueuedAllocationWarningCount == 0)) {
   513       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   514               " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
   515     }
   516   }
   518   return result;
   519 }
   521 // Failed allocation policy. Must be called from the VM thread, and
   522 // only at a safepoint! Note that this method has policy for allocation
   523 // flow, and NOT collection policy. So we do not check for gc collection
   524 // time over limit here, that is the responsibility of the heap specific
   525 // collection methods. This method decides where to attempt allocations,
   526 // and when to attempt collections, but no collection specific policy.
   527 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
   528   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   529   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   530   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   531   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   533   size_t mark_sweep_invocation_count = total_invocations();
   535   // We assume (and assert!) that an allocation at this point will fail
   536   // unless we collect.
   538   // First level allocation failure, scavenge and allocate in young gen.
   539   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   540   PSScavenge::invoke();
   541   HeapWord* result = young_gen()->allocate(size, is_tlab);
   543   // Second level allocation failure.
   544   //   Mark sweep and allocate in young generation.
   545   if (result == NULL) {
   546     // There is some chance the scavenge method decided to invoke mark_sweep.
   547     // Don't mark sweep twice if so.
   548     if (mark_sweep_invocation_count == total_invocations()) {
   549       invoke_full_gc(false);
   550       result = young_gen()->allocate(size, is_tlab);
   551     }
   552   }
   554   // Third level allocation failure.
   555   //   After mark sweep and young generation allocation failure,
   556   //   allocate in old generation.
   557   if (result == NULL && !is_tlab) {
   558     result = old_gen()->allocate(size, is_tlab);
   559   }
   561   // Fourth level allocation failure. We're running out of memory.
   562   //   More complete mark sweep and allocate in young generation.
   563   if (result == NULL) {
   564     invoke_full_gc(true);
   565     result = young_gen()->allocate(size, is_tlab);
   566   }
   568   // Fifth level allocation failure.
   569   //   After more complete mark sweep, allocate in old generation.
   570   if (result == NULL && !is_tlab) {
   571     result = old_gen()->allocate(size, is_tlab);
   572   }
   574   return result;
   575 }
   577 //
   578 // This is the policy loop for allocating in the permanent generation.
   579 // If the initial allocation fails, we create a vm operation which will
   580 // cause a collection.
   581 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   582   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   583   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   584   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   586   HeapWord* result;
   588   uint loop_count = 0;
   589   uint gc_count = 0;
   590   uint full_gc_count = 0;
   592   do {
   593     // We don't want to have multiple collections for a single filled generation.
   594     // To prevent this, each thread tracks the total_collections() value, and if
   595     // the count has changed, does not do a new collection.
   596     //
   597     // The collection count must be read only while holding the heap lock. VM
   598     // operations also hold the heap lock during collections. There is a lock
   599     // contention case where thread A blocks waiting on the Heap_lock, while
   600     // thread B is holding it doing a collection. When thread A gets the lock,
   601     // the collection count has already changed. To prevent duplicate collections,
   602     // The policy MUST attempt allocations during the same period it reads the
   603     // total_collections() value!
   604     {
   605       MutexLocker ml(Heap_lock);
   606       gc_count      = Universe::heap()->total_collections();
   607       full_gc_count = Universe::heap()->total_full_collections();
   609       result = perm_gen()->allocate_permanent(size);
   611       if (result != NULL) {
   612         return result;
   613       }
   615       if (GC_locker::is_active_and_needs_gc()) {
   616         // If this thread is not in a jni critical section, we stall
   617         // the requestor until the critical section has cleared and
   618         // GC allowed. When the critical section clears, a GC is
   619         // initiated by the last thread exiting the critical section; so
   620         // we retry the allocation sequence from the beginning of the loop,
   621         // rather than causing more, now probably unnecessary, GC attempts.
   622         JavaThread* jthr = JavaThread::current();
   623         if (!jthr->in_critical()) {
   624           MutexUnlocker mul(Heap_lock);
   625           GC_locker::stall_until_clear();
   626           continue;
   627         } else {
   628           if (CheckJNICalls) {
   629             fatal("Possible deadlock due to allocating while"
   630                   " in jni critical section");
   631           }
   632           return NULL;
   633         }
   634       }
   635     }
   637     if (result == NULL) {
   639       // Exit the loop if the gc time limit has been exceeded.
   640       // The allocation must have failed above (result must be NULL),
   641       // and the most recent collection must have exceeded the
   642       // gc time limit.  Exit the loop so that an out-of-memory
   643       // will be thrown (returning a NULL will do that), but
   644       // clear gc_overhead_limit_exceeded so that the next collection
   645       // will succeeded if the applications decides to handle the
   646       // out-of-memory and tries to go on.
   647       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
   648       if (limit_exceeded) {
   649         size_policy()->set_gc_overhead_limit_exceeded(false);
   650         if (PrintGCDetails && Verbose) {
   651           gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
   652             " return NULL because gc_overhead_limit_exceeded is set");
   653         }
   654         assert(result == NULL, "Allocation did not fail");
   655         return NULL;
   656       }
   658       // Generate a VM operation
   659       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   660       VMThread::execute(&op);
   662       // Did the VM operation execute? If so, return the result directly.
   663       // This prevents us from looping until time out on requests that can
   664       // not be satisfied.
   665       if (op.prologue_succeeded()) {
   666         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   667           "result not in heap");
   668         // If GC was locked out during VM operation then retry allocation
   669         // and/or stall as necessary.
   670         if (op.gc_locked()) {
   671           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   672           continue;  // retry and/or stall as necessary
   673         }
   674         // If a NULL results is being returned, an out-of-memory
   675         // will be thrown now.  Clear the gc_overhead_limit_exceeded
   676         // flag to avoid the following situation.
   677         //      gc_overhead_limit_exceeded is set during a collection
   678         //      the collection fails to return enough space and an OOM is thrown
   679         //      a subsequent GC prematurely throws an out-of-memory because
   680         //        the gc_overhead_limit_exceeded counts did not start
   681         //        again from 0.
   682         if (op.result() == NULL) {
   683           size_policy()->reset_gc_overhead_limit_count();
   684         }
   685         return op.result();
   686       }
   687     }
   689     // The policy object will prevent us from looping forever. If the
   690     // time spent in gc crosses a threshold, we will bail out.
   691     loop_count++;
   692     if ((QueuedAllocationWarningCount > 0) &&
   693         (loop_count % QueuedAllocationWarningCount == 0)) {
   694       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   695               " size=%d", loop_count, size);
   696     }
   697   } while (result == NULL);
   699   return result;
   700 }
   702 //
   703 // This is the policy code for permanent allocations which have failed
   704 // and require a collection. Note that just as in failed_mem_allocate,
   705 // we do not set collection policy, only where & when to allocate and
   706 // collect.
   707 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   708   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   709   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   710   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   711   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   712   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   714   // We assume (and assert!) that an allocation at this point will fail
   715   // unless we collect.
   717   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   718   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   719   invoke_full_gc(false);
   720   HeapWord* result = perm_gen()->allocate_permanent(size);
   722   // Second level allocation failure. We're running out of memory.
   723   if (result == NULL) {
   724     invoke_full_gc(true);
   725     result = perm_gen()->allocate_permanent(size);
   726   }
   728   return result;
   729 }
   731 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   732   CollectedHeap::ensure_parsability(retire_tlabs);
   733   young_gen()->eden_space()->ensure_parsability();
   734 }
   736 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   737   return young_gen()->eden_space()->free_in_bytes();
   738 }
   740 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   741   return young_gen()->eden_space()->tlab_capacity(thr);
   742 }
   744 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   745   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   746 }
   748 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   749   return young_gen()->allocate(size, true);
   750 }
   752 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   753   CollectedHeap::accumulate_statistics_all_tlabs();
   754 }
   756 void ParallelScavengeHeap::resize_all_tlabs() {
   757   CollectedHeap::resize_all_tlabs();
   758 }
   760 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
   761   // We don't need barriers for stores to objects in the
   762   // young gen and, a fortiori, for initializing stores to
   763   // objects therein.
   764   return is_in_young(new_obj);
   765 }
   767 // This method is used by System.gc() and JVMTI.
   768 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   769   assert(!Heap_lock->owned_by_self(),
   770     "this thread should not own the Heap_lock");
   772   unsigned int gc_count      = 0;
   773   unsigned int full_gc_count = 0;
   774   {
   775     MutexLocker ml(Heap_lock);
   776     // This value is guarded by the Heap_lock
   777     gc_count      = Universe::heap()->total_collections();
   778     full_gc_count = Universe::heap()->total_full_collections();
   779   }
   781   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   782   VMThread::execute(&op);
   783 }
   785 // This interface assumes that it's being called by the
   786 // vm thread. It collects the heap assuming that the
   787 // heap lock is already held and that we are executing in
   788 // the context of the vm thread.
   789 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   790   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   791   assert(Heap_lock->is_locked(), "Precondition#2");
   792   GCCauseSetter gcs(this, cause);
   793   switch (cause) {
   794     case GCCause::_heap_inspection:
   795     case GCCause::_heap_dump: {
   796       HandleMark hm;
   797       invoke_full_gc(false);
   798       break;
   799     }
   800     default: // XXX FIX ME
   801       ShouldNotReachHere();
   802   }
   803 }
   806 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   807   Unimplemented();
   808 }
   810 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   811   young_gen()->object_iterate(cl);
   812   old_gen()->object_iterate(cl);
   813   perm_gen()->object_iterate(cl);
   814 }
   816 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   817   Unimplemented();
   818 }
   820 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   821   perm_gen()->object_iterate(cl);
   822 }
   824 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   825   if (young_gen()->is_in_reserved(addr)) {
   826     assert(young_gen()->is_in(addr),
   827            "addr should be in allocated part of young gen");
   828     // called from os::print_location by find or VMError
   829     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
   830     Unimplemented();
   831   } else if (old_gen()->is_in_reserved(addr)) {
   832     assert(old_gen()->is_in(addr),
   833            "addr should be in allocated part of old gen");
   834     return old_gen()->start_array()->object_start((HeapWord*)addr);
   835   } else if (perm_gen()->is_in_reserved(addr)) {
   836     assert(perm_gen()->is_in(addr),
   837            "addr should be in allocated part of perm gen");
   838     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   839   }
   840   return 0;
   841 }
   843 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   844   return oop(addr)->size();
   845 }
   847 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   848   return block_start(addr) == addr;
   849 }
   851 jlong ParallelScavengeHeap::millis_since_last_gc() {
   852   return UseParallelOldGC ?
   853     PSParallelCompact::millis_since_last_gc() :
   854     PSMarkSweep::millis_since_last_gc();
   855 }
   857 void ParallelScavengeHeap::prepare_for_verify() {
   858   ensure_parsability(false);  // no need to retire TLABs for verification
   859 }
   861 void ParallelScavengeHeap::print() const { print_on(tty); }
   863 void ParallelScavengeHeap::print_on(outputStream* st) const {
   864   young_gen()->print_on(st);
   865   old_gen()->print_on(st);
   866   perm_gen()->print_on(st);
   867 }
   869 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   870   PSScavenge::gc_task_manager()->threads_do(tc);
   871 }
   873 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   874   PSScavenge::gc_task_manager()->print_threads_on(st);
   875 }
   877 void ParallelScavengeHeap::print_tracing_info() const {
   878   if (TraceGen0Time) {
   879     double time = PSScavenge::accumulated_time()->seconds();
   880     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   881   }
   882   if (TraceGen1Time) {
   883     double time = PSMarkSweep::accumulated_time()->seconds();
   884     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   885   }
   886 }
   889 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent, bool option /* ignored */) {
   890   // Why do we need the total_collections()-filter below?
   891   if (total_collections() > 0) {
   892     if (!silent) {
   893       gclog_or_tty->print("permanent ");
   894     }
   895     perm_gen()->verify(allow_dirty);
   897     if (!silent) {
   898       gclog_or_tty->print("tenured ");
   899     }
   900     old_gen()->verify(allow_dirty);
   902     if (!silent) {
   903       gclog_or_tty->print("eden ");
   904     }
   905     young_gen()->verify(allow_dirty);
   906   }
   907   if (!silent) {
   908     gclog_or_tty->print("ref_proc ");
   909   }
   910   ReferenceProcessor::verify();
   911 }
   913 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   914   if (PrintGCDetails && Verbose) {
   915     gclog_or_tty->print(" "  SIZE_FORMAT
   916                         "->" SIZE_FORMAT
   917                         "("  SIZE_FORMAT ")",
   918                         prev_used, used(), capacity());
   919   } else {
   920     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   921                         "->" SIZE_FORMAT "K"
   922                         "("  SIZE_FORMAT "K)",
   923                         prev_used / K, used() / K, capacity() / K);
   924   }
   925 }
   927 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   928   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   929   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   930   return _psh;
   931 }
   933 // Before delegating the resize to the young generation,
   934 // the reserved space for the young and old generations
   935 // may be changed to accomodate the desired resize.
   936 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   937     size_t survivor_size) {
   938   if (UseAdaptiveGCBoundary) {
   939     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   940       size_policy()->reset_bytes_absorbed_from_eden();
   941       return;  // The generation changed size already.
   942     }
   943     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   944   }
   946   // Delegate the resize to the generation.
   947   _young_gen->resize(eden_size, survivor_size);
   948 }
   950 // Before delegating the resize to the old generation,
   951 // the reserved space for the young and old generations
   952 // may be changed to accomodate the desired resize.
   953 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   954   if (UseAdaptiveGCBoundary) {
   955     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   956       size_policy()->reset_bytes_absorbed_from_eden();
   957       return;  // The generation changed size already.
   958     }
   959     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   960   }
   962   // Delegate the resize to the generation.
   963   _old_gen->resize(desired_free_space);
   964 }
   966 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
   967   // nothing particular
   968 }
   970 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
   971   // nothing particular
   972 }
   974 #ifndef PRODUCT
   975 void ParallelScavengeHeap::record_gen_tops_before_GC() {
   976   if (ZapUnusedHeapArea) {
   977     young_gen()->record_spaces_top();
   978     old_gen()->record_spaces_top();
   979     perm_gen()->record_spaces_top();
   980   }
   981 }
   983 void ParallelScavengeHeap::gen_mangle_unused_area() {
   984   if (ZapUnusedHeapArea) {
   985     young_gen()->eden_space()->mangle_unused_area();
   986     young_gen()->to_space()->mangle_unused_area();
   987     young_gen()->from_space()->mangle_unused_area();
   988     old_gen()->object_space()->mangle_unused_area();
   989     perm_gen()->object_space()->mangle_unused_area();
   990   }
   991 }
   992 #endif

mercurial