src/cpu/sparc/vm/templateInterpreter_sparc.cpp

Tue, 07 May 2019 20:38:26 +0000

author
phh
date
Tue, 07 May 2019 20:38:26 +0000
changeset 9669
32bc598624bd
parent 8368
32b682649973
child 9703
2fdf635bcf28
permissions
-rw-r--r--

8176100: [REDO][REDO] G1 Needs pre barrier on dereference of weak JNI handles
Summary: Add tag bit to all JNI weak handles
Reviewed-by: kbarrett, coleenp, tschatzl

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #ifndef CC_INTERP
    50 #ifndef FAST_DISPATCH
    51 #define FAST_DISPATCH 1
    52 #endif
    53 #undef FAST_DISPATCH
    56 // Generation of Interpreter
    57 //
    58 // The InterpreterGenerator generates the interpreter into Interpreter::_code.
    61 #define __ _masm->
    64 //----------------------------------------------------------------------------------------------------
    67 void InterpreterGenerator::save_native_result(void) {
    68   // result potentially in O0/O1: save it across calls
    69   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    71   // result potentially in F0/F1: save it across calls
    72   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    74   // save and restore any potential method result value around the unlocking operation
    75   __ stf(FloatRegisterImpl::D, F0, d_tmp);
    76 #ifdef _LP64
    77   __ stx(O0, l_tmp);
    78 #else
    79   __ std(O0, l_tmp);
    80 #endif
    81 }
    83 void InterpreterGenerator::restore_native_result(void) {
    84   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
    85   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
    87   // Restore any method result value
    88   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
    89 #ifdef _LP64
    90   __ ldx(l_tmp, O0);
    91 #else
    92   __ ldd(l_tmp, O0);
    93 #endif
    94 }
    96 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
    97   assert(!pass_oop || message == NULL, "either oop or message but not both");
    98   address entry = __ pc();
    99   // expression stack must be empty before entering the VM if an exception happened
   100   __ empty_expression_stack();
   101   // load exception object
   102   __ set((intptr_t)name, G3_scratch);
   103   if (pass_oop) {
   104     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
   105   } else {
   106     __ set((intptr_t)message, G4_scratch);
   107     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
   108   }
   109   // throw exception
   110   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
   111   AddressLiteral thrower(Interpreter::throw_exception_entry());
   112   __ jump_to(thrower, G3_scratch);
   113   __ delayed()->nop();
   114   return entry;
   115 }
   117 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   118   address entry = __ pc();
   119   // expression stack must be empty before entering the VM if an exception
   120   // happened
   121   __ empty_expression_stack();
   122   // load exception object
   123   __ call_VM(Oexception,
   124              CAST_FROM_FN_PTR(address,
   125                               InterpreterRuntime::throw_ClassCastException),
   126              Otos_i);
   127   __ should_not_reach_here();
   128   return entry;
   129 }
   132 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
   133   address entry = __ pc();
   134   // expression stack must be empty before entering the VM if an exception happened
   135   __ empty_expression_stack();
   136   // convention: expect aberrant index in register G3_scratch, then shuffle the
   137   // index to G4_scratch for the VM call
   138   __ mov(G3_scratch, G4_scratch);
   139   __ set((intptr_t)name, G3_scratch);
   140   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
   141   __ should_not_reach_here();
   142   return entry;
   143 }
   146 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
   147   address entry = __ pc();
   148   // expression stack must be empty before entering the VM if an exception happened
   149   __ empty_expression_stack();
   150   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
   151   __ should_not_reach_here();
   152   return entry;
   153 }
   156 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   157   address entry = __ pc();
   159   if (state == atos) {
   160     __ profile_return_type(O0, G3_scratch, G1_scratch);
   161   }
   163 #if !defined(_LP64) && defined(COMPILER2)
   164   // All return values are where we want them, except for Longs.  C2 returns
   165   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   166   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   167   // build even if we are returning from interpreted we just do a little
   168   // stupid shuffing.
   169   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   170   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   171   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   173   if (state == ltos) {
   174     __ srl (G1,  0, O1);
   175     __ srlx(G1, 32, O0);
   176   }
   177 #endif // !_LP64 && COMPILER2
   179   // The callee returns with the stack possibly adjusted by adapter transition
   180   // We remove that possible adjustment here.
   181   // All interpreter local registers are untouched. Any result is passed back
   182   // in the O0/O1 or float registers. Before continuing, the arguments must be
   183   // popped from the java expression stack; i.e., Lesp must be adjusted.
   185   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
   187   const Register cache = G3_scratch;
   188   const Register index  = G1_scratch;
   189   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
   191   const Register flags = cache;
   192   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
   193   const Register parameter_size = flags;
   194   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
   195   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
   196   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
   197   __ dispatch_next(state, step);
   199   return entry;
   200 }
   203 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   204   address entry = __ pc();
   205   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
   206   { Label L;
   207     Address exception_addr(G2_thread, Thread::pending_exception_offset());
   208     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
   209     __ br_null_short(Gtemp, Assembler::pt, L);
   210     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
   211     __ should_not_reach_here();
   212     __ bind(L);
   213   }
   214   __ dispatch_next(state, step);
   215   return entry;
   216 }
   218 // A result handler converts/unboxes a native call result into
   219 // a java interpreter/compiler result. The current frame is an
   220 // interpreter frame. The activation frame unwind code must be
   221 // consistent with that of TemplateTable::_return(...). In the
   222 // case of native methods, the caller's SP was not modified.
   223 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   224   address entry = __ pc();
   225   Register Itos_i  = Otos_i ->after_save();
   226   Register Itos_l  = Otos_l ->after_save();
   227   Register Itos_l1 = Otos_l1->after_save();
   228   Register Itos_l2 = Otos_l2->after_save();
   229   switch (type) {
   230     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
   231     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
   232     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
   233     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   234     case T_LONG   :
   235 #ifndef _LP64
   236                     __ mov(O1, Itos_l2);  // move other half of long
   237 #endif              // ifdef or no ifdef, fall through to the T_INT case
   238     case T_INT    : __ mov(O0, Itos_i);                         break;
   239     case T_VOID   : /* nothing to do */                         break;
   240     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   241     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   242     case T_OBJECT :
   243       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
   244       __ verify_oop(Itos_i);
   245       break;
   246     default       : ShouldNotReachHere();
   247   }
   248   __ ret();                           // return from interpreter activation
   249   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   250   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
   251   return entry;
   252 }
   254 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   255   address entry = __ pc();
   256   __ push(state);
   257   __ call_VM(noreg, runtime_entry);
   258   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
   259   return entry;
   260 }
   263 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   264   address entry = __ pc();
   265   __ dispatch_next(state);
   266   return entry;
   267 }
   269 //
   270 // Helpers for commoning out cases in the various type of method entries.
   271 //
   273 // increment invocation count & check for overflow
   274 //
   275 // Note: checking for negative value instead of overflow
   276 //       so we have a 'sticky' overflow test
   277 //
   278 // Lmethod: method
   279 // ??: invocation counter
   280 //
   281 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   282   // Note: In tiered we increment either counters in MethodCounters* or in
   283   // MDO depending if we're profiling or not.
   284   const Register Rcounters = G3_scratch;
   285   Label done;
   287   if (TieredCompilation) {
   288     const int increment = InvocationCounter::count_increment;
   289     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
   290     Label no_mdo;
   291     if (ProfileInterpreter) {
   292       // If no method data exists, go to profile_continue.
   293       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
   294       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
   295       // Increment counter
   296       Address mdo_invocation_counter(G4_scratch,
   297                                      in_bytes(MethodData::invocation_counter_offset()) +
   298                                      in_bytes(InvocationCounter::counter_offset()));
   299       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
   300                                  G3_scratch, Lscratch,
   301                                  Assembler::zero, overflow);
   302       __ ba_short(done);
   303     }
   305     // Increment counter in MethodCounters*
   306     __ bind(no_mdo);
   307     Address invocation_counter(Rcounters,
   308             in_bytes(MethodCounters::invocation_counter_offset()) +
   309             in_bytes(InvocationCounter::counter_offset()));
   310     __ get_method_counters(Lmethod, Rcounters, done);
   311     __ increment_mask_and_jump(invocation_counter, increment, mask,
   312                                G4_scratch, Lscratch,
   313                                Assembler::zero, overflow);
   314     __ bind(done);
   315   } else {
   316     // Update standard invocation counters
   317     __ get_method_counters(Lmethod, Rcounters, done);
   318     __ increment_invocation_counter(Rcounters, O0, G4_scratch);
   319     if (ProfileInterpreter) {
   320       Address interpreter_invocation_counter(Rcounters,
   321             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
   322       __ ld(interpreter_invocation_counter, G4_scratch);
   323       __ inc(G4_scratch);
   324       __ st(G4_scratch, interpreter_invocation_counter);
   325     }
   327     if (ProfileInterpreter && profile_method != NULL) {
   328       // Test to see if we should create a method data oop
   329       AddressLiteral profile_limit((address)&InvocationCounter::InterpreterProfileLimit);
   330       __ load_contents(profile_limit, G3_scratch);
   331       __ cmp_and_br_short(O0, G3_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
   333       // if no method data exists, go to profile_method
   334       __ test_method_data_pointer(*profile_method);
   335     }
   337     AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
   338     __ load_contents(invocation_limit, G3_scratch);
   339     __ cmp(O0, G3_scratch);
   340     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
   341     __ delayed()->nop();
   342     __ bind(done);
   343   }
   345 }
   347 // Allocate monitor and lock method (asm interpreter)
   348 // ebx - Method*
   349 //
   350 void InterpreterGenerator::lock_method(void) {
   351   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
   353 #ifdef ASSERT
   354  { Label ok;
   355    __ btst(JVM_ACC_SYNCHRONIZED, O0);
   356    __ br( Assembler::notZero, false, Assembler::pt, ok);
   357    __ delayed()->nop();
   358    __ stop("method doesn't need synchronization");
   359    __ bind(ok);
   360   }
   361 #endif // ASSERT
   363   // get synchronization object to O0
   364   { Label done;
   365     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   366     __ btst(JVM_ACC_STATIC, O0);
   367     __ br( Assembler::zero, true, Assembler::pt, done);
   368     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
   370     __ ld_ptr( Lmethod, in_bytes(Method::const_offset()), O0);
   371     __ ld_ptr( O0, in_bytes(ConstMethod::constants_offset()), O0);
   372     __ ld_ptr( O0, ConstantPool::pool_holder_offset_in_bytes(), O0);
   374     // lock the mirror, not the Klass*
   375     __ ld_ptr( O0, mirror_offset, O0);
   377 #ifdef ASSERT
   378     __ tst(O0);
   379     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
   380 #endif // ASSERT
   382     __ bind(done);
   383   }
   385   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
   386   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
   387   // __ untested("lock_object from method entry");
   388   __ lock_object(Lmonitors, O0);
   389 }
   392 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
   393                                                          Register Rscratch,
   394                                                          Register Rscratch2) {
   395   const int page_size = os::vm_page_size();
   396   Label after_frame_check;
   398   assert_different_registers(Rframe_size, Rscratch, Rscratch2);
   400   __ set(page_size, Rscratch);
   401   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
   403   // get the stack base, and in debug, verify it is non-zero
   404   __ ld_ptr( G2_thread, Thread::stack_base_offset(), Rscratch );
   405 #ifdef ASSERT
   406   Label base_not_zero;
   407   __ br_notnull_short(Rscratch, Assembler::pn, base_not_zero);
   408   __ stop("stack base is zero in generate_stack_overflow_check");
   409   __ bind(base_not_zero);
   410 #endif
   412   // get the stack size, and in debug, verify it is non-zero
   413   assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
   414   __ ld_ptr( G2_thread, Thread::stack_size_offset(), Rscratch2 );
   415 #ifdef ASSERT
   416   Label size_not_zero;
   417   __ br_notnull_short(Rscratch2, Assembler::pn, size_not_zero);
   418   __ stop("stack size is zero in generate_stack_overflow_check");
   419   __ bind(size_not_zero);
   420 #endif
   422   // compute the beginning of the protected zone minus the requested frame size
   423   __ sub( Rscratch, Rscratch2,   Rscratch );
   424   __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
   425   __ add( Rscratch, Rscratch2,   Rscratch );
   427   // Add in the size of the frame (which is the same as subtracting it from the
   428   // SP, which would take another register
   429   __ add( Rscratch, Rframe_size, Rscratch );
   431   // the frame is greater than one page in size, so check against
   432   // the bottom of the stack
   433   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
   435   // the stack will overflow, throw an exception
   437   // Note that SP is restored to sender's sp (in the delay slot). This
   438   // is necessary if the sender's frame is an extended compiled frame
   439   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
   440   // adaptations.
   442   // Note also that the restored frame is not necessarily interpreted.
   443   // Use the shared runtime version of the StackOverflowError.
   444   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   445   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
   446   __ jump_to(stub, Rscratch);
   447   __ delayed()->mov(O5_savedSP, SP);
   449   // if you get to here, then there is enough stack space
   450   __ bind( after_frame_check );
   451 }
   454 //
   455 // Generate a fixed interpreter frame. This is identical setup for interpreted
   456 // methods and for native methods hence the shared code.
   458 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   459   //
   460   //
   461   // The entry code sets up a new interpreter frame in 4 steps:
   462   //
   463   // 1) Increase caller's SP by for the extra local space needed:
   464   //    (check for overflow)
   465   //    Efficient implementation of xload/xstore bytecodes requires
   466   //    that arguments and non-argument locals are in a contigously
   467   //    addressable memory block => non-argument locals must be
   468   //    allocated in the caller's frame.
   469   //
   470   // 2) Create a new stack frame and register window:
   471   //    The new stack frame must provide space for the standard
   472   //    register save area, the maximum java expression stack size,
   473   //    the monitor slots (0 slots initially), and some frame local
   474   //    scratch locations.
   475   //
   476   // 3) The following interpreter activation registers must be setup:
   477   //    Lesp       : expression stack pointer
   478   //    Lbcp       : bytecode pointer
   479   //    Lmethod    : method
   480   //    Llocals    : locals pointer
   481   //    Lmonitors  : monitor pointer
   482   //    LcpoolCache: constant pool cache
   483   //
   484   // 4) Initialize the non-argument locals if necessary:
   485   //    Non-argument locals may need to be initialized to NULL
   486   //    for GC to work. If the oop-map information is accurate
   487   //    (in the absence of the JSR problem), no initialization
   488   //    is necessary.
   489   //
   490   // (gri - 2/25/2000)
   493   int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
   495   const int extra_space =
   496     rounded_vm_local_words +                   // frame local scratch space
   497     Method::extra_stack_entries() +            // extra stack for jsr 292
   498     frame::memory_parameter_word_sp_offset +   // register save area
   499     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
   501   const Register Glocals_size = G3;
   502   const Register RconstMethod = Glocals_size;
   503   const Register Otmp1 = O3;
   504   const Register Otmp2 = O4;
   505   // Lscratch can't be used as a temporary because the call_stub uses
   506   // it to assert that the stack frame was setup correctly.
   507   const Address constMethod       (G5_method, Method::const_offset());
   508   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
   510   __ ld_ptr( constMethod, RconstMethod );
   511   __ lduh( size_of_parameters, Glocals_size);
   513   // Gargs points to first local + BytesPerWord
   514   // Set the saved SP after the register window save
   515   //
   516   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
   517   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
   518   __ add(Gargs, Otmp1, Gargs);
   520   if (native_call) {
   521     __ calc_mem_param_words( Glocals_size, Gframe_size );
   522     __ add( Gframe_size,  extra_space, Gframe_size);
   523     __ round_to( Gframe_size, WordsPerLong );
   524     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
   525   } else {
   527     //
   528     // Compute number of locals in method apart from incoming parameters
   529     //
   530     const Address size_of_locals    (Otmp1, ConstMethod::size_of_locals_offset());
   531     __ ld_ptr( constMethod, Otmp1 );
   532     __ lduh( size_of_locals, Otmp1 );
   533     __ sub( Otmp1, Glocals_size, Glocals_size );
   534     __ round_to( Glocals_size, WordsPerLong );
   535     __ sll( Glocals_size, Interpreter::logStackElementSize, Glocals_size );
   537     // see if the frame is greater than one page in size. If so,
   538     // then we need to verify there is enough stack space remaining
   539     // Frame_size = (max_stack + extra_space) * BytesPerWord;
   540     __ ld_ptr( constMethod, Gframe_size );
   541     __ lduh( Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size );
   542     __ add( Gframe_size, extra_space, Gframe_size );
   543     __ round_to( Gframe_size, WordsPerLong );
   544     __ sll( Gframe_size, Interpreter::logStackElementSize, Gframe_size);
   546     // Add in java locals size for stack overflow check only
   547     __ add( Gframe_size, Glocals_size, Gframe_size );
   549     const Register Otmp2 = O4;
   550     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
   551     generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
   553     __ sub( Gframe_size, Glocals_size, Gframe_size);
   555     //
   556     // bump SP to accomodate the extra locals
   557     //
   558     __ sub( SP, Glocals_size, SP );
   559   }
   561   //
   562   // now set up a stack frame with the size computed above
   563   //
   564   __ neg( Gframe_size );
   565   __ save( SP, Gframe_size, SP );
   567   //
   568   // now set up all the local cache registers
   569   //
   570   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
   571   // that all present references to Lbyte_code initialize the register
   572   // immediately before use
   573   if (native_call) {
   574     __ mov(G0, Lbcp);
   575   } else {
   576     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
   577     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
   578   }
   579   __ mov( G5_method, Lmethod);                 // set Lmethod
   580   __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
   581   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
   582 #ifdef _LP64
   583   __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
   584 #endif
   585   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
   587   // setup interpreter activation registers
   588   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
   590   if (ProfileInterpreter) {
   591 #ifdef FAST_DISPATCH
   592     // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
   593     // they both use I2.
   594     assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
   595 #endif // FAST_DISPATCH
   596     __ set_method_data_pointer();
   597   }
   599 }
   601 // Empty method, generate a very fast return.
   603 address InterpreterGenerator::generate_empty_entry(void) {
   605   // A method that does nother but return...
   607   address entry = __ pc();
   608   Label slow_path;
   610   // do nothing for empty methods (do not even increment invocation counter)
   611   if ( UseFastEmptyMethods) {
   612     // If we need a safepoint check, generate full interpreter entry.
   613     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   614     __ set(sync_state, G3_scratch);
   615     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
   617     // Code: _return
   618     __ retl();
   619     __ delayed()->mov(O5_savedSP, SP);
   621     __ bind(slow_path);
   622     (void) generate_normal_entry(false);
   624     return entry;
   625   }
   626   return NULL;
   627 }
   629 // Call an accessor method (assuming it is resolved, otherwise drop into
   630 // vanilla (slow path) entry
   632 // Generates code to elide accessor methods
   633 // Uses G3_scratch and G1_scratch as scratch
   634 address InterpreterGenerator::generate_accessor_entry(void) {
   636   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   637   // parameter size = 1
   638   // Note: We can only use this code if the getfield has been resolved
   639   //       and if we don't have a null-pointer exception => check for
   640   //       these conditions first and use slow path if necessary.
   641   address entry = __ pc();
   642   Label slow_path;
   645   // XXX: for compressed oops pointer loading and decoding doesn't fit in
   646   // delay slot and damages G1
   647   if ( UseFastAccessorMethods && !UseCompressedOops ) {
   648     // Check if we need to reach a safepoint and generate full interpreter
   649     // frame if so.
   650     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
   651     __ load_contents(sync_state, G3_scratch);
   652     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   653     __ cmp_and_br_short(G3_scratch, SafepointSynchronize::_not_synchronized, Assembler::notEqual, Assembler::pn, slow_path);
   655     // Check if local 0 != NULL
   656     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   657     // check if local 0 == NULL and go the slow path
   658     __ br_null_short(Otos_i, Assembler::pn, slow_path);
   661     // read first instruction word and extract bytecode @ 1 and index @ 2
   662     // get first 4 bytes of the bytecodes (big endian!)
   663     __ ld_ptr(G5_method, Method::const_offset(), G1_scratch);
   664     __ ld(G1_scratch, ConstMethod::codes_offset(), G1_scratch);
   666     // move index @ 2 far left then to the right most two bytes.
   667     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   668     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   669                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   671     // get constant pool cache
   672     __ ld_ptr(G5_method, Method::const_offset(), G3_scratch);
   673     __ ld_ptr(G3_scratch, ConstMethod::constants_offset(), G3_scratch);
   674     __ ld_ptr(G3_scratch, ConstantPool::cache_offset_in_bytes(), G3_scratch);
   676     // get specific constant pool cache entry
   677     __ add(G3_scratch, G1_scratch, G3_scratch);
   679     // Check the constant Pool cache entry to see if it has been resolved.
   680     // If not, need the slow path.
   681     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
   682     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::indices_offset(), G1_scratch);
   683     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   684     __ and3(G1_scratch, 0xFF, G1_scratch);
   685     __ cmp_and_br_short(G1_scratch, Bytecodes::_getfield, Assembler::notEqual, Assembler::pn, slow_path);
   687     // Get the type and return field offset from the constant pool cache
   688     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), G1_scratch);
   689     __ ld_ptr(G3_scratch, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), G3_scratch);
   691     Label xreturn_path;
   692     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   693     // because they are different sizes.
   694     // Get the type from the constant pool cache
   695     __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
   696     // Make sure we don't need to mask G1_scratch after the above shift
   697     ConstantPoolCacheEntry::verify_tos_state_shift();
   698     __ cmp(G1_scratch, atos );
   699     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   700     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   701     __ cmp(G1_scratch, itos);
   702     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   703     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   704     __ cmp(G1_scratch, stos);
   705     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   706     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   707     __ cmp(G1_scratch, ctos);
   708     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   709     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   710 #ifdef ASSERT
   711     __ cmp(G1_scratch, btos);
   712     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   713     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   714     __ cmp(G1_scratch, ztos);
   715     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   716     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   717     __ should_not_reach_here();
   718 #endif
   719     __ ldsb(Otos_i, G3_scratch, Otos_i);
   720     __ bind(xreturn_path);
   722     // _ireturn/_areturn
   723     __ retl();                      // return from leaf routine
   724     __ delayed()->mov(O5_savedSP, SP);
   726     // Generate regular method entry
   727     __ bind(slow_path);
   728     (void) generate_normal_entry(false);
   729     return entry;
   730   }
   731   return NULL;
   732 }
   734 // Method entry for java.lang.ref.Reference.get.
   735 address InterpreterGenerator::generate_Reference_get_entry(void) {
   736 #if INCLUDE_ALL_GCS
   737   // Code: _aload_0, _getfield, _areturn
   738   // parameter size = 1
   739   //
   740   // The code that gets generated by this routine is split into 2 parts:
   741   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   742   //    2. The slow path - which is an expansion of the regular method entry.
   743   //
   744   // Notes:-
   745   // * In the G1 code we do not check whether we need to block for
   746   //   a safepoint. If G1 is enabled then we must execute the specialized
   747   //   code for Reference.get (except when the Reference object is null)
   748   //   so that we can log the value in the referent field with an SATB
   749   //   update buffer.
   750   //   If the code for the getfield template is modified so that the
   751   //   G1 pre-barrier code is executed when the current method is
   752   //   Reference.get() then going through the normal method entry
   753   //   will be fine.
   754   // * The G1 code can, however, check the receiver object (the instance
   755   //   of java.lang.Reference) and jump to the slow path if null. If the
   756   //   Reference object is null then we obviously cannot fetch the referent
   757   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   758   //   regular method entry code to generate the NPE.
   759   //
   760   // This code is based on generate_accessor_enty.
   762   address entry = __ pc();
   764   const int referent_offset = java_lang_ref_Reference::referent_offset;
   765   guarantee(referent_offset > 0, "referent offset not initialized");
   767   if (UseG1GC) {
   768      Label slow_path;
   770     // In the G1 code we don't check if we need to reach a safepoint. We
   771     // continue and the thread will safepoint at the next bytecode dispatch.
   773     // Check if local 0 != NULL
   774     // If the receiver is null then it is OK to jump to the slow path.
   775     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   776     // check if local 0 == NULL and go the slow path
   777     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
   780     // Load the value of the referent field.
   781     if (Assembler::is_simm13(referent_offset)) {
   782       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
   783     } else {
   784       __ set(referent_offset, G3_scratch);
   785       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
   786     }
   788     // Generate the G1 pre-barrier code to log the value of
   789     // the referent field in an SATB buffer. Note with
   790     // these parameters the pre-barrier does not generate
   791     // the load of the previous value
   793     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
   794                             Otos_i /* pre_val */,
   795                             G3_scratch /* tmp */,
   796                             true /* preserve_o_regs */);
   798     // _areturn
   799     __ retl();                      // return from leaf routine
   800     __ delayed()->mov(O5_savedSP, SP);
   802     // Generate regular method entry
   803     __ bind(slow_path);
   804     (void) generate_normal_entry(false);
   805     return entry;
   806   }
   807 #endif // INCLUDE_ALL_GCS
   809   // If G1 is not enabled then attempt to go through the accessor entry point
   810   // Reference.get is an accessor
   811   return generate_accessor_entry();
   812 }
   814 //
   815 // Interpreter stub for calling a native method. (asm interpreter)
   816 // This sets up a somewhat different looking stack for calling the native method
   817 // than the typical interpreter frame setup.
   818 //
   820 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   821   address entry = __ pc();
   823   // the following temporary registers are used during frame creation
   824   const Register Gtmp1 = G3_scratch ;
   825   const Register Gtmp2 = G1_scratch;
   826   bool inc_counter  = UseCompiler || CountCompiledCalls;
   828   // make sure registers are different!
   829   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   831   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
   833   const Register Glocals_size = G3;
   834   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   836   // make sure method is native & not abstract
   837   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   838 #ifdef ASSERT
   839   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
   840   {
   841     Label L;
   842     __ btst(JVM_ACC_NATIVE, Gtmp1);
   843     __ br(Assembler::notZero, false, Assembler::pt, L);
   844     __ delayed()->nop();
   845     __ stop("tried to execute non-native method as native");
   846     __ bind(L);
   847   }
   848   { Label L;
   849     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   850     __ br(Assembler::zero, false, Assembler::pt, L);
   851     __ delayed()->nop();
   852     __ stop("tried to execute abstract method as non-abstract");
   853     __ bind(L);
   854   }
   855 #endif // ASSERT
   857  // generate the code to allocate the interpreter stack frame
   858   generate_fixed_frame(true);
   860   //
   861   // No locals to initialize for native method
   862   //
   864   // this slot will be set later, we initialize it to null here just in
   865   // case we get a GC before the actual value is stored later
   866   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
   868   const Address do_not_unlock_if_synchronized(G2_thread,
   869     JavaThread::do_not_unlock_if_synchronized_offset());
   870   // Since at this point in the method invocation the exception handler
   871   // would try to exit the monitor of synchronized methods which hasn't
   872   // been entered yet, we set the thread local variable
   873   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   874   // runtime, exception handling i.e. unlock_if_synchronized_method will
   875   // check this thread local flag.
   876   // This flag has two effects, one is to force an unwind in the topmost
   877   // interpreter frame and not perform an unlock while doing so.
   879   __ movbool(true, G3_scratch);
   880   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   882   // increment invocation counter and check for overflow
   883   //
   884   // Note: checking for negative value instead of overflow
   885   //       so we have a 'sticky' overflow test (may be of
   886   //       importance as soon as we have true MT/MP)
   887   Label invocation_counter_overflow;
   888   Label Lcontinue;
   889   if (inc_counter) {
   890     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   892   }
   893   __ bind(Lcontinue);
   895   bang_stack_shadow_pages(true);
   897   // reset the _do_not_unlock_if_synchronized flag
   898   __ stbool(G0, do_not_unlock_if_synchronized);
   900   // check for synchronized methods
   901   // Must happen AFTER invocation_counter check and stack overflow check,
   902   // so method is not locked if overflows.
   904   if (synchronized) {
   905     lock_method();
   906   } else {
   907 #ifdef ASSERT
   908     { Label ok;
   909       __ ld(Laccess_flags, O0);
   910       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   911       __ br( Assembler::zero, false, Assembler::pt, ok);
   912       __ delayed()->nop();
   913       __ stop("method needs synchronization");
   914       __ bind(ok);
   915     }
   916 #endif // ASSERT
   917   }
   920   // start execution
   921   __ verify_thread();
   923   // JVMTI support
   924   __ notify_method_entry();
   926   // native call
   928   // (note that O0 is never an oop--at most it is a handle)
   929   // It is important not to smash any handles created by this call,
   930   // until any oop handle in O0 is dereferenced.
   932   // (note that the space for outgoing params is preallocated)
   934   // get signature handler
   935   { Label L;
   936     Address signature_handler(Lmethod, Method::signature_handler_offset());
   937     __ ld_ptr(signature_handler, G3_scratch);
   938     __ br_notnull_short(G3_scratch, Assembler::pt, L);
   939     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
   940     __ ld_ptr(signature_handler, G3_scratch);
   941     __ bind(L);
   942   }
   944   // Push a new frame so that the args will really be stored in
   945   // Copy a few locals across so the new frame has the variables
   946   // we need but these values will be dead at the jni call and
   947   // therefore not gc volatile like the values in the current
   948   // frame (Lmethod in particular)
   950   // Flush the method pointer to the register save area
   951   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   952   __ mov(Llocals, O1);
   954   // calculate where the mirror handle body is allocated in the interpreter frame:
   955   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
   957   // Calculate current frame size
   958   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   959   __ save(SP, O3, SP);        // Allocate an identical sized frame
   961   // Note I7 has leftover trash. Slow signature handler will fill it in
   962   // should we get there. Normal jni call will set reasonable last_Java_pc
   963   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   964   // in it).
   966   // Load interpreter frame's Lmethod into same register here
   968   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   970   __ mov(I1, Llocals);
   971   __ mov(I2, Lscratch2);     // save the address of the mirror
   974   // ONLY Lmethod and Llocals are valid here!
   976   // call signature handler, It will move the arg properly since Llocals in current frame
   977   // matches that in outer frame
   979   __ callr(G3_scratch, 0);
   980   __ delayed()->nop();
   982   // Result handler is in Lscratch
   984   // Reload interpreter frame's Lmethod since slow signature handler may block
   985   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
   987   { Label not_static;
   989     __ ld(Laccess_flags, O0);
   990     __ btst(JVM_ACC_STATIC, O0);
   991     __ br( Assembler::zero, false, Assembler::pt, not_static);
   992     // get native function entry point(O0 is a good temp until the very end)
   993     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
   994     // for static methods insert the mirror argument
   995     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   997     __ ld_ptr(Lmethod, Method:: const_offset(), O1);
   998     __ ld_ptr(O1, ConstMethod::constants_offset(), O1);
   999     __ ld_ptr(O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
  1000     __ ld_ptr(O1, mirror_offset, O1);
  1001 #ifdef ASSERT
  1002     if (!PrintSignatureHandlers)  // do not dirty the output with this
  1003     { Label L;
  1004       __ br_notnull_short(O1, Assembler::pt, L);
  1005       __ stop("mirror is missing");
  1006       __ bind(L);
  1008 #endif // ASSERT
  1009     __ st_ptr(O1, Lscratch2, 0);
  1010     __ mov(Lscratch2, O1);
  1011     __ bind(not_static);
  1014   // At this point, arguments have been copied off of stack into
  1015   // their JNI positions, which are O1..O5 and SP[68..].
  1016   // Oops are boxed in-place on the stack, with handles copied to arguments.
  1017   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
  1019 #ifdef ASSERT
  1020   { Label L;
  1021     __ br_notnull_short(O0, Assembler::pt, L);
  1022     __ stop("native entry point is missing");
  1023     __ bind(L);
  1025 #endif // ASSERT
  1027   //
  1028   // setup the frame anchor
  1029   //
  1030   // The scavenge function only needs to know that the PC of this frame is
  1031   // in the interpreter method entry code, it doesn't need to know the exact
  1032   // PC and hence we can use O7 which points to the return address from the
  1033   // previous call in the code stream (signature handler function)
  1034   //
  1035   // The other trick is we set last_Java_sp to FP instead of the usual SP because
  1036   // we have pushed the extra frame in order to protect the volatile register(s)
  1037   // in that frame when we return from the jni call
  1038   //
  1040   __ set_last_Java_frame(FP, O7);
  1041   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
  1042                    // not meaningless information that'll confuse me.
  1044   // flush the windows now. We don't care about the current (protection) frame
  1045   // only the outer frames
  1047   __ flushw();
  1049   // mark windows as flushed
  1050   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1051   __ set(JavaFrameAnchor::flushed, G3_scratch);
  1052   __ st(G3_scratch, flags);
  1054   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
  1056   Address thread_state(G2_thread, JavaThread::thread_state_offset());
  1057 #ifdef ASSERT
  1058   { Label L;
  1059     __ ld(thread_state, G3_scratch);
  1060     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
  1061     __ stop("Wrong thread state in native stub");
  1062     __ bind(L);
  1064 #endif // ASSERT
  1065   __ set(_thread_in_native, G3_scratch);
  1066   __ st(G3_scratch, thread_state);
  1068   // Call the jni method, using the delay slot to set the JNIEnv* argument.
  1069   __ save_thread(L7_thread_cache); // save Gthread
  1070   __ callr(O0, 0);
  1071   __ delayed()->
  1072      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
  1074   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
  1076   __ restore_thread(L7_thread_cache); // restore G2_thread
  1077   __ reinit_heapbase();
  1079   // must we block?
  1081   // Block, if necessary, before resuming in _thread_in_Java state.
  1082   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  1083   { Label no_block;
  1084     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  1086     // Switch thread to "native transition" state before reading the synchronization state.
  1087     // This additional state is necessary because reading and testing the synchronization
  1088     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  1089     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  1090     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  1091     //     Thread A is resumed to finish this native method, but doesn't block here since it
  1092     //     didn't see any synchronization is progress, and escapes.
  1093     __ set(_thread_in_native_trans, G3_scratch);
  1094     __ st(G3_scratch, thread_state);
  1095     if(os::is_MP()) {
  1096       if (UseMembar) {
  1097         // Force this write out before the read below
  1098         __ membar(Assembler::StoreLoad);
  1099       } else {
  1100         // Write serialization page so VM thread can do a pseudo remote membar.
  1101         // We use the current thread pointer to calculate a thread specific
  1102         // offset to write to within the page. This minimizes bus traffic
  1103         // due to cache line collision.
  1104         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  1107     __ load_contents(sync_state, G3_scratch);
  1108     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  1110     Label L;
  1111     __ br(Assembler::notEqual, false, Assembler::pn, L);
  1112     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
  1113     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  1114     __ bind(L);
  1116     // Block.  Save any potential method result value before the operation and
  1117     // use a leaf call to leave the last_Java_frame setup undisturbed.
  1118     save_native_result();
  1119     __ call_VM_leaf(L7_thread_cache,
  1120                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1121                     G2_thread);
  1123     // Restore any method result value
  1124     restore_native_result();
  1125     __ bind(no_block);
  1128   // Clear the frame anchor now
  1130   __ reset_last_Java_frame();
  1132   // Move the result handler address
  1133   __ mov(Lscratch, G3_scratch);
  1134   // return possible result to the outer frame
  1135 #ifndef __LP64
  1136   __ mov(O0, I0);
  1137   __ restore(O1, G0, O1);
  1138 #else
  1139   __ restore(O0, G0, O0);
  1140 #endif /* __LP64 */
  1142   // Move result handler to expected register
  1143   __ mov(G3_scratch, Lscratch);
  1145   // Back in normal (native) interpreter frame. State is thread_in_native_trans
  1146   // switch to thread_in_Java.
  1148   __ set(_thread_in_Java, G3_scratch);
  1149   __ st(G3_scratch, thread_state);
  1151   // reset handle block
  1152   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
  1153   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
  1155   // If we have an oop result store it where it will be safe for any further gc
  1156   // until we return now that we've released the handle it might be protected by
  1159     Label no_oop, store_result;
  1161     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
  1162     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
  1163     // Unbox oop result, e.g. JNIHandles::resolve value in O0.
  1164     __ br_null(O0, false, Assembler::pn, store_result); // Use NULL as-is.
  1165     __ delayed()->andcc(O0, JNIHandles::weak_tag_mask, G0); // Test for jweak
  1166     __ brx(Assembler::zero, true, Assembler::pt, store_result);
  1167     __ delayed()->ld_ptr(O0, 0, O0); // Maybe resolve (untagged) jobject.
  1168     // Resolve jweak.
  1169     __ ld_ptr(O0, -JNIHandles::weak_tag_value, O0);
  1170 #if INCLUDE_ALL_GCS
  1171     if (UseG1GC) {
  1172       __ g1_write_barrier_pre(noreg /* obj */,
  1173                               noreg /* index */,
  1174                               0 /* offset */,
  1175                               O0 /* pre_val */,
  1176                               G3_scratch /* tmp */,
  1177                               true /* preserve_o_regs */);
  1179 #endif // INCLUDE_ALL_GCS
  1180     __ bind(store_result);
  1181     // Store it where gc will look for it and result handler expects it.
  1182     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
  1184     __ bind(no_oop);
  1189   // handle exceptions (exception handling will handle unlocking!)
  1190   { Label L;
  1191     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1192     __ ld_ptr(exception_addr, Gtemp);
  1193     __ br_null_short(Gtemp, Assembler::pt, L);
  1194     // Note: This could be handled more efficiently since we know that the native
  1195     //       method doesn't have an exception handler. We could directly return
  1196     //       to the exception handler for the caller.
  1197     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
  1198     __ should_not_reach_here();
  1199     __ bind(L);
  1202   // JVMTI support (preserves thread register)
  1203   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
  1205   if (synchronized) {
  1206     // save and restore any potential method result value around the unlocking operation
  1207     save_native_result();
  1209     __ add( __ top_most_monitor(), O1);
  1210     __ unlock_object(O1);
  1212     restore_native_result();
  1215 #if defined(COMPILER2) && !defined(_LP64)
  1217   // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1218   // or compiled so just be safe.
  1220   __ sllx(O0, 32, G1);          // Shift bits into high G1
  1221   __ srl (O1, 0, O1);           // Zero extend O1
  1222   __ or3 (O1, G1, G1);          // OR 64 bits into G1
  1224 #endif /* COMPILER2 && !_LP64 */
  1226   // dispose of return address and remove activation
  1227 #ifdef ASSERT
  1229     Label ok;
  1230     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
  1231     __ stop("bad I5_savedSP value");
  1232     __ should_not_reach_here();
  1233     __ bind(ok);
  1235 #endif
  1236   if (TraceJumps) {
  1237     // Move target to register that is recordable
  1238     __ mov(Lscratch, G3_scratch);
  1239     __ JMP(G3_scratch, 0);
  1240   } else {
  1241     __ jmp(Lscratch, 0);
  1243   __ delayed()->nop();
  1246   if (inc_counter) {
  1247     // handle invocation counter overflow
  1248     __ bind(invocation_counter_overflow);
  1249     generate_counter_overflow(Lcontinue);
  1254   return entry;
  1258 // Generic method entry to (asm) interpreter
  1259 //------------------------------------------------------------------------------------------------------------------------
  1260 //
  1261 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1262   address entry = __ pc();
  1264   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1266   // the following temporary registers are used during frame creation
  1267   const Register Gtmp1 = G3_scratch ;
  1268   const Register Gtmp2 = G1_scratch;
  1270   // make sure registers are different!
  1271   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
  1273   const Address constMethod       (G5_method, Method::const_offset());
  1274   // Seems like G5_method is live at the point this is used. So we could make this look consistent
  1275   // and use in the asserts.
  1276   const Address access_flags      (Lmethod,   Method::access_flags_offset());
  1278   const Register Glocals_size = G3;
  1279   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
  1281   // make sure method is not native & not abstract
  1282   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
  1283 #ifdef ASSERT
  1284   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
  1286     Label L;
  1287     __ btst(JVM_ACC_NATIVE, Gtmp1);
  1288     __ br(Assembler::zero, false, Assembler::pt, L);
  1289     __ delayed()->nop();
  1290     __ stop("tried to execute native method as non-native");
  1291     __ bind(L);
  1293   { Label L;
  1294     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
  1295     __ br(Assembler::zero, false, Assembler::pt, L);
  1296     __ delayed()->nop();
  1297     __ stop("tried to execute abstract method as non-abstract");
  1298     __ bind(L);
  1300 #endif // ASSERT
  1302   // generate the code to allocate the interpreter stack frame
  1304   generate_fixed_frame(false);
  1306 #ifdef FAST_DISPATCH
  1307   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1308                                           // set bytecode dispatch table base
  1309 #endif
  1311   //
  1312   // Code to initialize the extra (i.e. non-parm) locals
  1313   //
  1314   Register init_value = noreg;    // will be G0 if we must clear locals
  1315   // The way the code was setup before zerolocals was always true for vanilla java entries.
  1316   // It could only be false for the specialized entries like accessor or empty which have
  1317   // no extra locals so the testing was a waste of time and the extra locals were always
  1318   // initialized. We removed this extra complication to already over complicated code.
  1320   init_value = G0;
  1321   Label clear_loop;
  1323   const Register RconstMethod = O1;
  1324   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
  1325   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
  1327   // NOTE: If you change the frame layout, this code will need to
  1328   // be updated!
  1329   __ ld_ptr( constMethod, RconstMethod );
  1330   __ lduh( size_of_locals, O2 );
  1331   __ lduh( size_of_parameters, O1 );
  1332   __ sll( O2, Interpreter::logStackElementSize, O2);
  1333   __ sll( O1, Interpreter::logStackElementSize, O1 );
  1334   __ sub( Llocals, O2, O2 );
  1335   __ sub( Llocals, O1, O1 );
  1337   __ bind( clear_loop );
  1338   __ inc( O2, wordSize );
  1340   __ cmp( O2, O1 );
  1341   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1342   __ delayed()->st_ptr( init_value, O2, 0 );
  1344   const Address do_not_unlock_if_synchronized(G2_thread,
  1345     JavaThread::do_not_unlock_if_synchronized_offset());
  1346   // Since at this point in the method invocation the exception handler
  1347   // would try to exit the monitor of synchronized methods which hasn't
  1348   // been entered yet, we set the thread local variable
  1349   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1350   // runtime, exception handling i.e. unlock_if_synchronized_method will
  1351   // check this thread local flag.
  1352   __ movbool(true, G3_scratch);
  1353   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
  1355   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
  1356   // increment invocation counter and check for overflow
  1357   //
  1358   // Note: checking for negative value instead of overflow
  1359   //       so we have a 'sticky' overflow test (may be of
  1360   //       importance as soon as we have true MT/MP)
  1361   Label invocation_counter_overflow;
  1362   Label profile_method;
  1363   Label profile_method_continue;
  1364   Label Lcontinue;
  1365   if (inc_counter) {
  1366     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1367     if (ProfileInterpreter) {
  1368       __ bind(profile_method_continue);
  1371   __ bind(Lcontinue);
  1373   bang_stack_shadow_pages(false);
  1375   // reset the _do_not_unlock_if_synchronized flag
  1376   __ stbool(G0, do_not_unlock_if_synchronized);
  1378   // check for synchronized methods
  1379   // Must happen AFTER invocation_counter check and stack overflow check,
  1380   // so method is not locked if overflows.
  1382   if (synchronized) {
  1383     lock_method();
  1384   } else {
  1385 #ifdef ASSERT
  1386     { Label ok;
  1387       __ ld(access_flags, O0);
  1388       __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1389       __ br( Assembler::zero, false, Assembler::pt, ok);
  1390       __ delayed()->nop();
  1391       __ stop("method needs synchronization");
  1392       __ bind(ok);
  1394 #endif // ASSERT
  1397   // start execution
  1399   __ verify_thread();
  1401   // jvmti support
  1402   __ notify_method_entry();
  1404   // start executing instructions
  1405   __ dispatch_next(vtos);
  1408   if (inc_counter) {
  1409     if (ProfileInterpreter) {
  1410       // We have decided to profile this method in the interpreter
  1411       __ bind(profile_method);
  1413       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1414       __ set_method_data_pointer_for_bcp();
  1415       __ ba_short(profile_method_continue);
  1418     // handle invocation counter overflow
  1419     __ bind(invocation_counter_overflow);
  1420     generate_counter_overflow(Lcontinue);
  1424   return entry;
  1428 //----------------------------------------------------------------------------------------------------
  1429 // Entry points & stack frame layout
  1430 //
  1431 // Here we generate the various kind of entries into the interpreter.
  1432 // The two main entry type are generic bytecode methods and native call method.
  1433 // These both come in synchronized and non-synchronized versions but the
  1434 // frame layout they create is very similar. The other method entry
  1435 // types are really just special purpose entries that are really entry
  1436 // and interpretation all in one. These are for trivial methods like
  1437 // accessor, empty, or special math methods.
  1438 //
  1439 // When control flow reaches any of the entry types for the interpreter
  1440 // the following holds ->
  1441 //
  1442 // C2 Calling Conventions:
  1443 //
  1444 // The entry code below assumes that the following registers are set
  1445 // when coming in:
  1446 //    G5_method: holds the Method* of the method to call
  1447 //    Lesp:    points to the TOS of the callers expression stack
  1448 //             after having pushed all the parameters
  1449 //
  1450 // The entry code does the following to setup an interpreter frame
  1451 //   pop parameters from the callers stack by adjusting Lesp
  1452 //   set O0 to Lesp
  1453 //   compute X = (max_locals - num_parameters)
  1454 //   bump SP up by X to accomadate the extra locals
  1455 //   compute X = max_expression_stack
  1456 //               + vm_local_words
  1457 //               + 16 words of register save area
  1458 //   save frame doing a save sp, -X, sp growing towards lower addresses
  1459 //   set Lbcp, Lmethod, LcpoolCache
  1460 //   set Llocals to i0
  1461 //   set Lmonitors to FP - rounded_vm_local_words
  1462 //   set Lesp to Lmonitors - 4
  1463 //
  1464 //  The frame has now been setup to do the rest of the entry code
  1466 // Try this optimization:  Most method entries could live in a
  1467 // "one size fits all" stack frame without all the dynamic size
  1468 // calculations.  It might be profitable to do all this calculation
  1469 // statically and approximately for "small enough" methods.
  1471 //-----------------------------------------------------------------------------------------------
  1473 // C1 Calling conventions
  1474 //
  1475 // Upon method entry, the following registers are setup:
  1476 //
  1477 // g2 G2_thread: current thread
  1478 // g5 G5_method: method to activate
  1479 // g4 Gargs  : pointer to last argument
  1480 //
  1481 //
  1482 // Stack:
  1483 //
  1484 // +---------------+ <--- sp
  1485 // |               |
  1486 // : reg save area :
  1487 // |               |
  1488 // +---------------+ <--- sp + 0x40
  1489 // |               |
  1490 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1491 // |               |
  1492 // +---------------+ <--- sp + 0x5c
  1493 // |               |
  1494 // :     free      :
  1495 // |               |
  1496 // +---------------+ <--- Gargs
  1497 // |               |
  1498 // :   arguments   :
  1499 // |               |
  1500 // +---------------+
  1501 // |               |
  1502 //
  1503 //
  1504 //
  1505 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
  1506 //
  1507 // +---------------+ <--- sp
  1508 // |               |
  1509 // : reg save area :
  1510 // |               |
  1511 // +---------------+ <--- sp + 0x40
  1512 // |               |
  1513 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1514 // |               |
  1515 // +---------------+ <--- sp + 0x5c
  1516 // |               |
  1517 // :               :
  1518 // |               | <--- Lesp
  1519 // +---------------+ <--- Lmonitors (fp - 0x18)
  1520 // |   VM locals   |
  1521 // +---------------+ <--- fp
  1522 // |               |
  1523 // : reg save area :
  1524 // |               |
  1525 // +---------------+ <--- fp + 0x40
  1526 // |               |
  1527 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
  1528 // |               |
  1529 // +---------------+ <--- fp + 0x5c
  1530 // |               |
  1531 // :     free      :
  1532 // |               |
  1533 // +---------------+
  1534 // |               |
  1535 // : nonarg locals :
  1536 // |               |
  1537 // +---------------+
  1538 // |               |
  1539 // :   arguments   :
  1540 // |               | <--- Llocals
  1541 // +---------------+ <--- Gargs
  1542 // |               |
  1544 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  1546   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  1547   // expression stack, the callee will have callee_extra_locals (so we can account for
  1548   // frame extension) and monitor_size for monitors. Basically we need to calculate
  1549   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  1550   //
  1551   //
  1552   // The big complicating thing here is that we must ensure that the stack stays properly
  1553   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  1554   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  1555   // the caller so we must ensure that it is properly aligned for our callee.
  1556   //
  1557   const int rounded_vm_local_words =
  1558        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1559   // callee_locals and max_stack are counts, not the size in frame.
  1560   const int locals_size =
  1561        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  1562   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  1563   return (round_to((max_stack_words
  1564                    + rounded_vm_local_words
  1565                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  1566                    // already rounded
  1567                    + locals_size + monitor_size);
  1570 // How much stack a method top interpreter activation needs in words.
  1571 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1573   // See call_stub code
  1574   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  1575                                  WordsPerLong);    // 7 + register save area
  1577   // Save space for one monitor to get into the interpreted method in case
  1578   // the method is synchronized
  1579   int monitor_size    = method->is_synchronized() ?
  1580                                 1*frame::interpreter_frame_monitor_size() : 0;
  1581   return size_activation_helper(method->max_locals(), method->max_stack(),
  1582                                 monitor_size) + call_stub_size;
  1585 int AbstractInterpreter::size_activation(int max_stack,
  1586                                          int temps,
  1587                                          int extra_args,
  1588                                          int monitors,
  1589                                          int callee_params,
  1590                                          int callee_locals,
  1591                                          bool is_top_frame) {
  1592   // Note: This calculation must exactly parallel the frame setup
  1593   // in InterpreterGenerator::generate_fixed_frame.
  1595   int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
  1597   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1599   //
  1600   // Note: if you look closely this appears to be doing something much different
  1601   // than generate_fixed_frame. What is happening is this. On sparc we have to do
  1602   // this dance with interpreter_sp_adjustment because the window save area would
  1603   // appear just below the bottom (tos) of the caller's java expression stack. Because
  1604   // the interpreter want to have the locals completely contiguous generate_fixed_frame
  1605   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
  1606   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
  1607   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
  1608   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
  1609   // because the oldest frame would have adjust its callers frame and yet that frame
  1610   // already exists and isn't part of this array of frames we are unpacking. So at first
  1611   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
  1612   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
  1613   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
  1614   // add up. It does seem like it simpler to account for the adjustment here (and remove the
  1615   // callee... parameters here). However this would mean that this routine would have to take
  1616   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
  1617   // and run the calling loop in the reverse order. This would also would appear to mean making
  1618   // this code aware of what the interactions are when that initial caller fram was an osr or
  1619   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
  1620   // there is no sense in messing working code.
  1621   //
  1623   int rounded_cls = round_to((callee_locals - callee_params), WordsPerLong);
  1624   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
  1626   int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
  1628   return raw_frame_size;
  1631 void AbstractInterpreter::layout_activation(Method* method,
  1632                                             int tempcount,
  1633                                             int popframe_extra_args,
  1634                                             int moncount,
  1635                                             int caller_actual_parameters,
  1636                                             int callee_param_count,
  1637                                             int callee_local_count,
  1638                                             frame* caller,
  1639                                             frame* interpreter_frame,
  1640                                             bool is_top_frame,
  1641                                             bool is_bottom_frame) {
  1642   // Set up the following variables:
  1643   //   - Lmethod
  1644   //   - Llocals
  1645   //   - Lmonitors (to the indicated number of monitors)
  1646   //   - Lesp (to the indicated number of temps)
  1647   // The frame caller on entry is a description of the caller of the
  1648   // frame we are about to layout. We are guaranteed that we will be
  1649   // able to fill in a new interpreter frame as its callee (i.e. the
  1650   // stack space is allocated and the amount was determined by an
  1651   // earlier call to the size_activation() method).  On return caller
  1652   // while describe the interpreter frame we just layed out.
  1654   // The skeleton frame must already look like an interpreter frame
  1655   // even if not fully filled out.
  1656   assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
  1658   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  1659   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
  1660   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
  1662   intptr_t* fp = interpreter_frame->fp();
  1664   JavaThread* thread = JavaThread::current();
  1665   RegisterMap map(thread, false);
  1666   // More verification that skeleton frame is properly walkable
  1667   assert(fp == caller->sp(), "fp must match");
  1669   intptr_t* montop     = fp - rounded_vm_local_words;
  1671   // preallocate monitors (cf. __ add_monitor_to_stack)
  1672   intptr_t* monitors = montop - monitor_size;
  1674   // preallocate stack space
  1675   intptr_t*  esp = monitors - 1 -
  1676     (tempcount * Interpreter::stackElementWords) -
  1677     popframe_extra_args;
  1679   int local_words = method->max_locals() * Interpreter::stackElementWords;
  1680   NEEDS_CLEANUP;
  1681   intptr_t* locals;
  1682   if (caller->is_interpreted_frame()) {
  1683     // Can force the locals area to end up properly overlapping the top of the expression stack.
  1684     intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
  1685     // Note that this computation means we replace size_of_parameters() values from the caller
  1686     // interpreter frame's expression stack with our argument locals
  1687     int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
  1688     locals = Lesp_ptr + parm_words;
  1689     int delta = local_words - parm_words;
  1690     int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
  1691     *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
  1692     if (!is_bottom_frame) {
  1693       // Llast_SP is set below for the current frame to SP (with the
  1694       // extra space for the callee's locals). Here we adjust
  1695       // Llast_SP for the caller's frame, removing the extra space
  1696       // for the current method's locals.
  1697       *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
  1698     } else {
  1699       assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
  1701   } else {
  1702     assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
  1703     // Don't have Lesp available; lay out locals block in the caller
  1704     // adjacent to the register window save area.
  1705     //
  1706     // Compiled frames do not allocate a varargs area which is why this if
  1707     // statement is needed.
  1708     //
  1709     if (caller->is_compiled_frame()) {
  1710       locals = fp + frame::register_save_words + local_words - 1;
  1711     } else {
  1712       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  1714     if (!caller->is_entry_frame()) {
  1715       // Caller wants his own SP back
  1716       int caller_frame_size = caller->cb()->frame_size();
  1717       *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
  1720   if (TraceDeoptimization) {
  1721     if (caller->is_entry_frame()) {
  1722       // make sure I5_savedSP and the entry frames notion of saved SP
  1723       // agree.  This assertion duplicate a check in entry frame code
  1724       // but catches the failure earlier.
  1725       assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
  1726              "would change callers SP");
  1728     if (caller->is_entry_frame()) {
  1729       tty->print("entry ");
  1731     if (caller->is_compiled_frame()) {
  1732       tty->print("compiled ");
  1733       if (caller->is_deoptimized_frame()) {
  1734         tty->print("(deopt) ");
  1737     if (caller->is_interpreted_frame()) {
  1738       tty->print("interpreted ");
  1740     tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
  1741     tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
  1742     tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
  1743     tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
  1744     tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
  1745     tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
  1746     tty->print_cr("Llocals = 0x%x", locals);
  1747     tty->print_cr("Lesp = 0x%x", esp);
  1748     tty->print_cr("Lmonitors = 0x%x", monitors);
  1751   if (method->max_locals() > 0) {
  1752     assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
  1753     assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
  1754     assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
  1755     assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
  1757 #ifdef _LP64
  1758   assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
  1759 #endif
  1761   *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
  1762   *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
  1763   *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
  1764   *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
  1765   // Llast_SP will be same as SP as there is no adapter space
  1766   *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
  1767   *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
  1768 #ifdef FAST_DISPATCH
  1769   *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
  1770 #endif
  1773 #ifdef ASSERT
  1774   BasicObjectLock* mp = (BasicObjectLock*)monitors;
  1776   assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
  1777   assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
  1778   assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
  1779   assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
  1780   assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
  1782   // check bounds
  1783   intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
  1784   intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
  1785   assert(lo < monitors && montop <= hi, "monitors in bounds");
  1786   assert(lo <= esp && esp < monitors, "esp in bounds");
  1787 #endif // ASSERT
  1790 //----------------------------------------------------------------------------------------------------
  1791 // Exceptions
  1792 void TemplateInterpreterGenerator::generate_throw_exception() {
  1794   // Entry point in previous activation (i.e., if the caller was interpreted)
  1795   Interpreter::_rethrow_exception_entry = __ pc();
  1796   // O0: exception
  1798   // entry point for exceptions thrown within interpreter code
  1799   Interpreter::_throw_exception_entry = __ pc();
  1800   __ verify_thread();
  1801   // expression stack is undefined here
  1802   // O0: exception, i.e. Oexception
  1803   // Lbcp: exception bcx
  1804   __ verify_oop(Oexception);
  1807   // expression stack must be empty before entering the VM in case of an exception
  1808   __ empty_expression_stack();
  1809   // find exception handler address and preserve exception oop
  1810   // call C routine to find handler and jump to it
  1811   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
  1812   __ push_ptr(O1); // push exception for exception handler bytecodes
  1814   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
  1815   __ delayed()->nop();
  1818   // if the exception is not handled in the current frame
  1819   // the frame is removed and the exception is rethrown
  1820   // (i.e. exception continuation is _rethrow_exception)
  1821   //
  1822   // Note: At this point the bci is still the bxi for the instruction which caused
  1823   //       the exception and the expression stack is empty. Thus, for any VM calls
  1824   //       at this point, GC will find a legal oop map (with empty expression stack).
  1826   // in current activation
  1827   // tos: exception
  1828   // Lbcp: exception bcp
  1830   //
  1831   // JVMTI PopFrame support
  1832   //
  1834   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1835   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1836   // Set the popframe_processing bit in popframe_condition indicating that we are
  1837   // currently handling popframe, so that call_VMs that may happen later do not trigger new
  1838   // popframe handling cycles.
  1840   __ ld(popframe_condition_addr, G3_scratch);
  1841   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
  1842   __ stw(G3_scratch, popframe_condition_addr);
  1844   // Empty the expression stack, as in normal exception handling
  1845   __ empty_expression_stack();
  1846   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1849     // Check to see whether we are returning to a deoptimized frame.
  1850     // (The PopFrame call ensures that the caller of the popped frame is
  1851     // either interpreted or compiled and deoptimizes it if compiled.)
  1852     // In this case, we can't call dispatch_next() after the frame is
  1853     // popped, but instead must save the incoming arguments and restore
  1854     // them after deoptimization has occurred.
  1855     //
  1856     // Note that we don't compare the return PC against the
  1857     // deoptimization blob's unpack entry because of the presence of
  1858     // adapter frames in C2.
  1859     Label caller_not_deoptimized;
  1860     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
  1861     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
  1863     const Register Gtmp1 = G3_scratch;
  1864     const Register Gtmp2 = G1_scratch;
  1865     const Register RconstMethod = Gtmp1;
  1866     const Address constMethod(Lmethod, Method::const_offset());
  1867     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
  1869     // Compute size of arguments for saving when returning to deoptimized caller
  1870     __ ld_ptr(constMethod, RconstMethod);
  1871     __ lduh(size_of_parameters, Gtmp1);
  1872     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
  1873     __ sub(Llocals, Gtmp1, Gtmp2);
  1874     __ add(Gtmp2, wordSize, Gtmp2);
  1875     // Save these arguments
  1876     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
  1877     // Inform deoptimization that it is responsible for restoring these arguments
  1878     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
  1879     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
  1880     __ st(Gtmp1, popframe_condition_addr);
  1882     // Return from the current method
  1883     // The caller's SP was adjusted upon method entry to accomodate
  1884     // the callee's non-argument locals. Undo that adjustment.
  1885     __ ret();
  1886     __ delayed()->restore(I5_savedSP, G0, SP);
  1888     __ bind(caller_not_deoptimized);
  1891   // Clear the popframe condition flag
  1892   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
  1894   // Get out of the current method (how this is done depends on the particular compiler calling
  1895   // convention that the interpreter currently follows)
  1896   // The caller's SP was adjusted upon method entry to accomodate
  1897   // the callee's non-argument locals. Undo that adjustment.
  1898   __ restore(I5_savedSP, G0, SP);
  1899   // The method data pointer was incremented already during
  1900   // call profiling. We have to restore the mdp for the current bcp.
  1901   if (ProfileInterpreter) {
  1902     __ set_method_data_pointer_for_bcp();
  1905 #if INCLUDE_JVMTI
  1906   if (EnableInvokeDynamic) {
  1907     Label L_done;
  1909     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
  1910     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
  1912     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1913     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1915     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
  1917     __ br_null(G1_scratch, false, Assembler::pn, L_done);
  1918     __ delayed()->nop();
  1920     __ st_ptr(G1_scratch, Lesp, wordSize);
  1921     __ bind(L_done);
  1923 #endif // INCLUDE_JVMTI
  1925   // Resume bytecode interpretation at the current bcp
  1926   __ dispatch_next(vtos);
  1927   // end of JVMTI PopFrame support
  1929   Interpreter::_remove_activation_entry = __ pc();
  1931   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
  1932   __ pop_ptr(Oexception);                                  // get exception
  1934   // Intel has the following comment:
  1935   //// remove the activation (without doing throws on illegalMonitorExceptions)
  1936   // They remove the activation without checking for bad monitor state.
  1937   // %%% We should make sure this is the right semantics before implementing.
  1939   __ set_vm_result(Oexception);
  1940   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
  1942   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
  1944   __ get_vm_result(Oexception);
  1945   __ verify_oop(Oexception);
  1947     const int return_reg_adjustment = frame::pc_return_offset;
  1948   Address issuing_pc_addr(I7, return_reg_adjustment);
  1950   // We are done with this activation frame; find out where to go next.
  1951   // The continuation point will be an exception handler, which expects
  1952   // the following registers set up:
  1953   //
  1954   // Oexception: exception
  1955   // Oissuing_pc: the local call that threw exception
  1956   // Other On: garbage
  1957   // In/Ln:  the contents of the caller's register window
  1958   //
  1959   // We do the required restore at the last possible moment, because we
  1960   // need to preserve some state across a runtime call.
  1961   // (Remember that the caller activation is unknown--it might not be
  1962   // interpreted, so things like Lscratch are useless in the caller.)
  1964   // Although the Intel version uses call_C, we can use the more
  1965   // compact call_VM.  (The only real difference on SPARC is a
  1966   // harmlessly ignored [re]set_last_Java_frame, compared with
  1967   // the Intel code which lacks this.)
  1968   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
  1969   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
  1970   __ super_call_VM_leaf(L7_thread_cache,
  1971                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1972                         G2_thread, Oissuing_pc->after_save());
  1974   // The caller's SP was adjusted upon method entry to accomodate
  1975   // the callee's non-argument locals. Undo that adjustment.
  1976   __ JMP(O0, 0);                         // return exception handler in caller
  1977   __ delayed()->restore(I5_savedSP, G0, SP);
  1979   // (same old exception object is already in Oexception; see above)
  1980   // Note that an "issuing PC" is actually the next PC after the call
  1984 //
  1985 // JVMTI ForceEarlyReturn support
  1986 //
  1988 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1989   address entry = __ pc();
  1991   __ empty_expression_stack();
  1992   __ load_earlyret_value(state);
  1994   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
  1995   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
  1997   // Clear the earlyret state
  1998   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
  2000   __ remove_activation(state,
  2001                        /* throw_monitor_exception */ false,
  2002                        /* install_monitor_exception */ false);
  2004   // The caller's SP was adjusted upon method entry to accomodate
  2005   // the callee's non-argument locals. Undo that adjustment.
  2006   __ ret();                             // return to caller
  2007   __ delayed()->restore(I5_savedSP, G0, SP);
  2009   return entry;
  2010 } // end of JVMTI ForceEarlyReturn support
  2013 //------------------------------------------------------------------------------------------------------------------------
  2014 // Helper for vtos entry point generation
  2016 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
  2017   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  2018   Label L;
  2019   aep = __ pc(); __ push_ptr(); __ ba_short(L);
  2020   fep = __ pc(); __ push_f();   __ ba_short(L);
  2021   dep = __ pc(); __ push_d();   __ ba_short(L);
  2022   lep = __ pc(); __ push_l();   __ ba_short(L);
  2023   iep = __ pc(); __ push_i();
  2024   bep = cep = sep = iep;                        // there aren't any
  2025   vep = __ pc(); __ bind(L);                    // fall through
  2026   generate_and_dispatch(t);
  2029 // --------------------------------------------------------------------------------
  2032 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  2033  : TemplateInterpreterGenerator(code) {
  2034    generate_all(); // down here so it can be "virtual"
  2037 // --------------------------------------------------------------------------------
  2039 // Non-product code
  2040 #ifndef PRODUCT
  2041 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  2042   address entry = __ pc();
  2044   __ push(state);
  2045   __ mov(O7, Lscratch); // protect return address within interpreter
  2047   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
  2048   __ mov( Otos_l2, G3_scratch );
  2049   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
  2050   __ mov(Lscratch, O7); // restore return address
  2051   __ pop(state);
  2052   __ retl();
  2053   __ delayed()->nop();
  2055   return entry;
  2059 // helpers for generate_and_dispatch
  2061 void TemplateInterpreterGenerator::count_bytecode() {
  2062   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
  2066 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2067   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
  2071 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2072   AddressLiteral index   (&BytecodePairHistogram::_index);
  2073   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
  2075   // get index, shift out old bytecode, bring in new bytecode, and store it
  2076   // _index = (_index >> log2_number_of_codes) |
  2077   //          (bytecode << log2_number_of_codes);
  2079   __ load_contents(index, G4_scratch);
  2080   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
  2081   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
  2082   __ or3( G3_scratch,  G4_scratch, G4_scratch );
  2083   __ store_contents(G4_scratch, index, G3_scratch);
  2085   // bump bucket contents
  2086   // _counters[_index] ++;
  2088   __ set(counters, G3_scratch);                       // loads into G3_scratch
  2089   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
  2090   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
  2091   __ ld (G3_scratch, 0, G4_scratch);
  2092   __ inc (G4_scratch);
  2093   __ st (G4_scratch, 0, G3_scratch);
  2097 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2098   // Call a little run-time stub to avoid blow-up for each bytecode.
  2099   // The run-time runtime saves the right registers, depending on
  2100   // the tosca in-state for the given template.
  2101   address entry = Interpreter::trace_code(t->tos_in());
  2102   guarantee(entry != NULL, "entry must have been generated");
  2103   __ call(entry, relocInfo::none);
  2104   __ delayed()->nop();
  2108 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2109   AddressLiteral counter(&BytecodeCounter::_counter_value);
  2110   __ load_contents(counter, G3_scratch);
  2111   AddressLiteral stop_at(&StopInterpreterAt);
  2112   __ load_ptr_contents(stop_at, G4_scratch);
  2113   __ cmp(G3_scratch, G4_scratch);
  2114   __ breakpoint_trap(Assembler::equal, Assembler::icc);
  2116 #endif // not PRODUCT
  2117 #endif // !CC_INTERP

mercurial