src/cpu/x86/vm/templateInterpreter_x86_64.cpp

Fri, 15 Jan 2016 22:33:15 +0000

author
kevinw
date
Fri, 15 Jan 2016 22:33:15 +0000
changeset 8368
32b682649973
parent 6723
0bf37f737702
child 8604
04d83ba48607
child 8877
f04097176542
permissions
-rw-r--r--

8132051: Better byte behavior
Reviewed-by: coleenp, roland

     1 /*
     2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/macroAssembler.hpp"
    27 #include "interpreter/bytecodeHistogram.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "interpreter/interpreterGenerator.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "interpreter/templateTable.hpp"
    32 #include "oops/arrayOop.hpp"
    33 #include "oops/methodData.hpp"
    34 #include "oops/method.hpp"
    35 #include "oops/oop.inline.hpp"
    36 #include "prims/jvmtiExport.hpp"
    37 #include "prims/jvmtiThreadState.hpp"
    38 #include "runtime/arguments.hpp"
    39 #include "runtime/deoptimization.hpp"
    40 #include "runtime/frame.inline.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "runtime/stubRoutines.hpp"
    43 #include "runtime/synchronizer.hpp"
    44 #include "runtime/timer.hpp"
    45 #include "runtime/vframeArray.hpp"
    46 #include "utilities/debug.hpp"
    47 #include "utilities/macros.hpp"
    49 #define __ _masm->
    51 #ifndef CC_INTERP
    53 const int method_offset = frame::interpreter_frame_method_offset * wordSize;
    54 const int bci_offset    = frame::interpreter_frame_bcx_offset    * wordSize;
    55 const int locals_offset = frame::interpreter_frame_locals_offset * wordSize;
    57 //-----------------------------------------------------------------------------
    59 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    60   address entry = __ pc();
    62 #ifdef ASSERT
    63   {
    64     Label L;
    65     __ lea(rax, Address(rbp,
    66                         frame::interpreter_frame_monitor_block_top_offset *
    67                         wordSize));
    68     __ cmpptr(rax, rsp); // rax = maximal rsp for current rbp (stack
    69                          // grows negative)
    70     __ jcc(Assembler::aboveEqual, L); // check if frame is complete
    71     __ stop ("interpreter frame not set up");
    72     __ bind(L);
    73   }
    74 #endif // ASSERT
    75   // Restore bcp under the assumption that the current frame is still
    76   // interpreted
    77   __ restore_bcp();
    79   // expression stack must be empty before entering the VM if an
    80   // exception happened
    81   __ empty_expression_stack();
    82   // throw exception
    83   __ call_VM(noreg,
    84              CAST_FROM_FN_PTR(address,
    85                               InterpreterRuntime::throw_StackOverflowError));
    86   return entry;
    87 }
    89 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(
    90         const char* name) {
    91   address entry = __ pc();
    92   // expression stack must be empty before entering the VM if an
    93   // exception happened
    94   __ empty_expression_stack();
    95   // setup parameters
    96   // ??? convention: expect aberrant index in register ebx
    97   __ lea(c_rarg1, ExternalAddress((address)name));
    98   __ call_VM(noreg,
    99              CAST_FROM_FN_PTR(address,
   100                               InterpreterRuntime::
   101                               throw_ArrayIndexOutOfBoundsException),
   102              c_rarg1, rbx);
   103   return entry;
   104 }
   106 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   107   address entry = __ pc();
   109   // object is at TOS
   110   __ pop(c_rarg1);
   112   // expression stack must be empty before entering the VM if an
   113   // exception happened
   114   __ empty_expression_stack();
   116   __ call_VM(noreg,
   117              CAST_FROM_FN_PTR(address,
   118                               InterpreterRuntime::
   119                               throw_ClassCastException),
   120              c_rarg1);
   121   return entry;
   122 }
   124 address TemplateInterpreterGenerator::generate_exception_handler_common(
   125         const char* name, const char* message, bool pass_oop) {
   126   assert(!pass_oop || message == NULL, "either oop or message but not both");
   127   address entry = __ pc();
   128   if (pass_oop) {
   129     // object is at TOS
   130     __ pop(c_rarg2);
   131   }
   132   // expression stack must be empty before entering the VM if an
   133   // exception happened
   134   __ empty_expression_stack();
   135   // setup parameters
   136   __ lea(c_rarg1, ExternalAddress((address)name));
   137   if (pass_oop) {
   138     __ call_VM(rax, CAST_FROM_FN_PTR(address,
   139                                      InterpreterRuntime::
   140                                      create_klass_exception),
   141                c_rarg1, c_rarg2);
   142   } else {
   143     // kind of lame ExternalAddress can't take NULL because
   144     // external_word_Relocation will assert.
   145     if (message != NULL) {
   146       __ lea(c_rarg2, ExternalAddress((address)message));
   147     } else {
   148       __ movptr(c_rarg2, NULL_WORD);
   149     }
   150     __ call_VM(rax,
   151                CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
   152                c_rarg1, c_rarg2);
   153   }
   154   // throw exception
   155   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   156   return entry;
   157 }
   160 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   161   address entry = __ pc();
   162   // NULL last_sp until next java call
   163   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   164   __ dispatch_next(state);
   165   return entry;
   166 }
   169 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   170   address entry = __ pc();
   172   // Restore stack bottom in case i2c adjusted stack
   173   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
   174   // and NULL it as marker that esp is now tos until next java call
   175   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   177   __ restore_bcp();
   178   __ restore_locals();
   180   if (state == atos) {
   181     Register mdp = rbx;
   182     Register tmp = rcx;
   183     __ profile_return_type(mdp, rax, tmp);
   184   }
   186   const Register cache = rbx;
   187   const Register index = rcx;
   188   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
   190   const Register flags = cache;
   191   __ movl(flags, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
   192   __ andl(flags, ConstantPoolCacheEntry::parameter_size_mask);
   193   __ lea(rsp, Address(rsp, flags, Interpreter::stackElementScale()));
   194   __ dispatch_next(state, step);
   196   return entry;
   197 }
   200 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
   201                                                                int step) {
   202   address entry = __ pc();
   203   // NULL last_sp until next java call
   204   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
   205   __ restore_bcp();
   206   __ restore_locals();
   207   // handle exceptions
   208   {
   209     Label L;
   210     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
   211     __ jcc(Assembler::zero, L);
   212     __ call_VM(noreg,
   213                CAST_FROM_FN_PTR(address,
   214                                 InterpreterRuntime::throw_pending_exception));
   215     __ should_not_reach_here();
   216     __ bind(L);
   217   }
   218   __ dispatch_next(state, step);
   219   return entry;
   220 }
   222 int AbstractInterpreter::BasicType_as_index(BasicType type) {
   223   int i = 0;
   224   switch (type) {
   225     case T_BOOLEAN: i = 0; break;
   226     case T_CHAR   : i = 1; break;
   227     case T_BYTE   : i = 2; break;
   228     case T_SHORT  : i = 3; break;
   229     case T_INT    : i = 4; break;
   230     case T_LONG   : i = 5; break;
   231     case T_VOID   : i = 6; break;
   232     case T_FLOAT  : i = 7; break;
   233     case T_DOUBLE : i = 8; break;
   234     case T_OBJECT : i = 9; break;
   235     case T_ARRAY  : i = 9; break;
   236     default       : ShouldNotReachHere();
   237   }
   238   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
   239          "index out of bounds");
   240   return i;
   241 }
   244 address TemplateInterpreterGenerator::generate_result_handler_for(
   245         BasicType type) {
   246   address entry = __ pc();
   247   switch (type) {
   248   case T_BOOLEAN: __ c2bool(rax);            break;
   249   case T_CHAR   : __ movzwl(rax, rax);       break;
   250   case T_BYTE   : __ sign_extend_byte(rax);  break;
   251   case T_SHORT  : __ sign_extend_short(rax); break;
   252   case T_INT    : /* nothing to do */        break;
   253   case T_LONG   : /* nothing to do */        break;
   254   case T_VOID   : /* nothing to do */        break;
   255   case T_FLOAT  : /* nothing to do */        break;
   256   case T_DOUBLE : /* nothing to do */        break;
   257   case T_OBJECT :
   258     // retrieve result from frame
   259     __ movptr(rax, Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize));
   260     // and verify it
   261     __ verify_oop(rax);
   262     break;
   263   default       : ShouldNotReachHere();
   264   }
   265   __ ret(0);                                   // return from result handler
   266   return entry;
   267 }
   269 address TemplateInterpreterGenerator::generate_safept_entry_for(
   270         TosState state,
   271         address runtime_entry) {
   272   address entry = __ pc();
   273   __ push(state);
   274   __ call_VM(noreg, runtime_entry);
   275   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   276   return entry;
   277 }
   281 // Helpers for commoning out cases in the various type of method entries.
   282 //
   285 // increment invocation count & check for overflow
   286 //
   287 // Note: checking for negative value instead of overflow
   288 //       so we have a 'sticky' overflow test
   289 //
   290 // rbx: method
   291 // ecx: invocation counter
   292 //
   293 void InterpreterGenerator::generate_counter_incr(
   294         Label* overflow,
   295         Label* profile_method,
   296         Label* profile_method_continue) {
   297   Label done;
   298   // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
   299   if (TieredCompilation) {
   300     int increment = InvocationCounter::count_increment;
   301     int mask = ((1 << Tier0InvokeNotifyFreqLog)  - 1) << InvocationCounter::count_shift;
   302     Label no_mdo;
   303     if (ProfileInterpreter) {
   304       // Are we profiling?
   305       __ movptr(rax, Address(rbx, Method::method_data_offset()));
   306       __ testptr(rax, rax);
   307       __ jccb(Assembler::zero, no_mdo);
   308       // Increment counter in the MDO
   309       const Address mdo_invocation_counter(rax, in_bytes(MethodData::invocation_counter_offset()) +
   310                                                 in_bytes(InvocationCounter::counter_offset()));
   311       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rcx, false, Assembler::zero, overflow);
   312       __ jmp(done);
   313     }
   314     __ bind(no_mdo);
   315     // Increment counter in MethodCounters
   316     const Address invocation_counter(rax,
   317                   MethodCounters::invocation_counter_offset() +
   318                   InvocationCounter::counter_offset());
   319     __ get_method_counters(rbx, rax, done);
   320     __ increment_mask_and_jump(invocation_counter, increment, mask, rcx,
   321                                false, Assembler::zero, overflow);
   322     __ bind(done);
   323   } else {
   324     const Address backedge_counter(rax,
   325                   MethodCounters::backedge_counter_offset() +
   326                   InvocationCounter::counter_offset());
   327     const Address invocation_counter(rax,
   328                   MethodCounters::invocation_counter_offset() +
   329                   InvocationCounter::counter_offset());
   331     __ get_method_counters(rbx, rax, done);
   333     if (ProfileInterpreter) {
   334       __ incrementl(Address(rax,
   335               MethodCounters::interpreter_invocation_counter_offset()));
   336     }
   337     // Update standard invocation counters
   338     __ movl(rcx, invocation_counter);
   339     __ incrementl(rcx, InvocationCounter::count_increment);
   340     __ movl(invocation_counter, rcx); // save invocation count
   342     __ movl(rax, backedge_counter);   // load backedge counter
   343     __ andl(rax, InvocationCounter::count_mask_value); // mask out the status bits
   345     __ addl(rcx, rax);                // add both counters
   347     // profile_method is non-null only for interpreted method so
   348     // profile_method != NULL == !native_call
   350     if (ProfileInterpreter && profile_method != NULL) {
   351       // Test to see if we should create a method data oop
   352       __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterProfileLimit));
   353       __ jcc(Assembler::less, *profile_method_continue);
   355       // if no method data exists, go to profile_method
   356       __ test_method_data_pointer(rax, *profile_method);
   357     }
   359     __ cmp32(rcx, ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
   360     __ jcc(Assembler::aboveEqual, *overflow);
   361     __ bind(done);
   362   }
   363 }
   365 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
   367   // Asm interpreter on entry
   368   // r14 - locals
   369   // r13 - bcp
   370   // rbx - method
   371   // edx - cpool --- DOES NOT APPEAR TO BE TRUE
   372   // rbp - interpreter frame
   374   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
   375   // Everything as it was on entry
   376   // rdx is not restored. Doesn't appear to really be set.
   378   // InterpreterRuntime::frequency_counter_overflow takes two
   379   // arguments, the first (thread) is passed by call_VM, the second
   380   // indicates if the counter overflow occurs at a backwards branch
   381   // (NULL bcp).  We pass zero for it.  The call returns the address
   382   // of the verified entry point for the method or NULL if the
   383   // compilation did not complete (either went background or bailed
   384   // out).
   385   __ movl(c_rarg1, 0);
   386   __ call_VM(noreg,
   387              CAST_FROM_FN_PTR(address,
   388                               InterpreterRuntime::frequency_counter_overflow),
   389              c_rarg1);
   391   __ movptr(rbx, Address(rbp, method_offset));   // restore Method*
   392   // Preserve invariant that r13/r14 contain bcp/locals of sender frame
   393   // and jump to the interpreted entry.
   394   __ jmp(*do_continue, relocInfo::none);
   395 }
   397 // See if we've got enough room on the stack for locals plus overhead.
   398 // The expression stack grows down incrementally, so the normal guard
   399 // page mechanism will work for that.
   400 //
   401 // NOTE: Since the additional locals are also always pushed (wasn't
   402 // obvious in generate_method_entry) so the guard should work for them
   403 // too.
   404 //
   405 // Args:
   406 //      rdx: number of additional locals this frame needs (what we must check)
   407 //      rbx: Method*
   408 //
   409 // Kills:
   410 //      rax
   411 void InterpreterGenerator::generate_stack_overflow_check(void) {
   413   // monitor entry size: see picture of stack set
   414   // (generate_method_entry) and frame_amd64.hpp
   415   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   417   // total overhead size: entry_size + (saved rbp through expr stack
   418   // bottom).  be sure to change this if you add/subtract anything
   419   // to/from the overhead area
   420   const int overhead_size =
   421     -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
   423   const int page_size = os::vm_page_size();
   425   Label after_frame_check;
   427   // see if the frame is greater than one page in size. If so,
   428   // then we need to verify there is enough stack space remaining
   429   // for the additional locals.
   430   __ cmpl(rdx, (page_size - overhead_size) / Interpreter::stackElementSize);
   431   __ jcc(Assembler::belowEqual, after_frame_check);
   433   // compute rsp as if this were going to be the last frame on
   434   // the stack before the red zone
   436   const Address stack_base(r15_thread, Thread::stack_base_offset());
   437   const Address stack_size(r15_thread, Thread::stack_size_offset());
   439   // locals + overhead, in bytes
   440   __ mov(rax, rdx);
   441   __ shlptr(rax, Interpreter::logStackElementSize);  // 2 slots per parameter.
   442   __ addptr(rax, overhead_size);
   444 #ifdef ASSERT
   445   Label stack_base_okay, stack_size_okay;
   446   // verify that thread stack base is non-zero
   447   __ cmpptr(stack_base, (int32_t)NULL_WORD);
   448   __ jcc(Assembler::notEqual, stack_base_okay);
   449   __ stop("stack base is zero");
   450   __ bind(stack_base_okay);
   451   // verify that thread stack size is non-zero
   452   __ cmpptr(stack_size, 0);
   453   __ jcc(Assembler::notEqual, stack_size_okay);
   454   __ stop("stack size is zero");
   455   __ bind(stack_size_okay);
   456 #endif
   458   // Add stack base to locals and subtract stack size
   459   __ addptr(rax, stack_base);
   460   __ subptr(rax, stack_size);
   462   // Use the maximum number of pages we might bang.
   463   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
   464                                                                               (StackRedPages+StackYellowPages);
   466   // add in the red and yellow zone sizes
   467   __ addptr(rax, max_pages * page_size);
   469   // check against the current stack bottom
   470   __ cmpptr(rsp, rax);
   471   __ jcc(Assembler::above, after_frame_check);
   473   // Restore sender's sp as SP. This is necessary if the sender's
   474   // frame is an extended compiled frame (see gen_c2i_adapter())
   475   // and safer anyway in case of JSR292 adaptations.
   477   __ pop(rax); // return address must be moved if SP is changed
   478   __ mov(rsp, r13);
   479   __ push(rax);
   481   // Note: the restored frame is not necessarily interpreted.
   482   // Use the shared runtime version of the StackOverflowError.
   483   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
   484   __ jump(ExternalAddress(StubRoutines::throw_StackOverflowError_entry()));
   486   // all done with frame size check
   487   __ bind(after_frame_check);
   488 }
   490 // Allocate monitor and lock method (asm interpreter)
   491 //
   492 // Args:
   493 //      rbx: Method*
   494 //      r14: locals
   495 //
   496 // Kills:
   497 //      rax
   498 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
   499 //      rscratch1, rscratch2 (scratch regs)
   500 void InterpreterGenerator::lock_method(void) {
   501   // synchronize method
   502   const Address access_flags(rbx, Method::access_flags_offset());
   503   const Address monitor_block_top(
   504         rbp,
   505         frame::interpreter_frame_monitor_block_top_offset * wordSize);
   506   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   508 #ifdef ASSERT
   509   {
   510     Label L;
   511     __ movl(rax, access_flags);
   512     __ testl(rax, JVM_ACC_SYNCHRONIZED);
   513     __ jcc(Assembler::notZero, L);
   514     __ stop("method doesn't need synchronization");
   515     __ bind(L);
   516   }
   517 #endif // ASSERT
   519   // get synchronization object
   520   {
   521     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   522     Label done;
   523     __ movl(rax, access_flags);
   524     __ testl(rax, JVM_ACC_STATIC);
   525     // get receiver (assume this is frequent case)
   526     __ movptr(rax, Address(r14, Interpreter::local_offset_in_bytes(0)));
   527     __ jcc(Assembler::zero, done);
   528     __ movptr(rax, Address(rbx, Method::const_offset()));
   529     __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
   530     __ movptr(rax, Address(rax,
   531                            ConstantPool::pool_holder_offset_in_bytes()));
   532     __ movptr(rax, Address(rax, mirror_offset));
   534 #ifdef ASSERT
   535     {
   536       Label L;
   537       __ testptr(rax, rax);
   538       __ jcc(Assembler::notZero, L);
   539       __ stop("synchronization object is NULL");
   540       __ bind(L);
   541     }
   542 #endif // ASSERT
   544     __ bind(done);
   545   }
   547   // add space for monitor & lock
   548   __ subptr(rsp, entry_size); // add space for a monitor entry
   549   __ movptr(monitor_block_top, rsp);  // set new monitor block top
   550   // store object
   551   __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax);
   552   __ movptr(c_rarg1, rsp); // object address
   553   __ lock_object(c_rarg1);
   554 }
   556 // Generate a fixed interpreter frame. This is identical setup for
   557 // interpreted methods and for native methods hence the shared code.
   558 //
   559 // Args:
   560 //      rax: return address
   561 //      rbx: Method*
   562 //      r14: pointer to locals
   563 //      r13: sender sp
   564 //      rdx: cp cache
   565 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
   566   // initialize fixed part of activation frame
   567   __ push(rax);        // save return address
   568   __ enter();          // save old & set new rbp
   569   __ push(r13);        // set sender sp
   570   __ push((int)NULL_WORD); // leave last_sp as null
   571   __ movptr(r13, Address(rbx, Method::const_offset()));      // get ConstMethod*
   572   __ lea(r13, Address(r13, ConstMethod::codes_offset())); // get codebase
   573   __ push(rbx);        // save Method*
   574   if (ProfileInterpreter) {
   575     Label method_data_continue;
   576     __ movptr(rdx, Address(rbx, in_bytes(Method::method_data_offset())));
   577     __ testptr(rdx, rdx);
   578     __ jcc(Assembler::zero, method_data_continue);
   579     __ addptr(rdx, in_bytes(MethodData::data_offset()));
   580     __ bind(method_data_continue);
   581     __ push(rdx);      // set the mdp (method data pointer)
   582   } else {
   583     __ push(0);
   584   }
   586   __ movptr(rdx, Address(rbx, Method::const_offset()));
   587   __ movptr(rdx, Address(rdx, ConstMethod::constants_offset()));
   588   __ movptr(rdx, Address(rdx, ConstantPool::cache_offset_in_bytes()));
   589   __ push(rdx); // set constant pool cache
   590   __ push(r14); // set locals pointer
   591   if (native_call) {
   592     __ push(0); // no bcp
   593   } else {
   594     __ push(r13); // set bcp
   595   }
   596   __ push(0); // reserve word for pointer to expression stack bottom
   597   __ movptr(Address(rsp, 0), rsp); // set expression stack bottom
   598 }
   600 // End of helpers
   602 // Various method entries
   603 //------------------------------------------------------------------------------------------------------------------------
   604 //
   605 //
   607 // Call an accessor method (assuming it is resolved, otherwise drop
   608 // into vanilla (slow path) entry
   609 address InterpreterGenerator::generate_accessor_entry(void) {
   610   // rbx: Method*
   612   // r13: senderSP must preserver for slow path, set SP to it on fast path
   614   address entry_point = __ pc();
   615   Label xreturn_path;
   617   // do fastpath for resolved accessor methods
   618   if (UseFastAccessorMethods) {
   619     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites
   620     //       thereof; parameter size = 1
   621     // Note: We can only use this code if the getfield has been resolved
   622     //       and if we don't have a null-pointer exception => check for
   623     //       these conditions first and use slow path if necessary.
   624     Label slow_path;
   625     // If we need a safepoint check, generate full interpreter entry.
   626     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   627              SafepointSynchronize::_not_synchronized);
   629     __ jcc(Assembler::notEqual, slow_path);
   630     // rbx: method
   631     __ movptr(rax, Address(rsp, wordSize));
   633     // check if local 0 != NULL and read field
   634     __ testptr(rax, rax);
   635     __ jcc(Assembler::zero, slow_path);
   637     // read first instruction word and extract bytecode @ 1 and index @ 2
   638     __ movptr(rdx, Address(rbx, Method::const_offset()));
   639     __ movptr(rdi, Address(rdx, ConstMethod::constants_offset()));
   640     __ movl(rdx, Address(rdx, ConstMethod::codes_offset()));
   641     // Shift codes right to get the index on the right.
   642     // The bytecode fetched looks like <index><0xb4><0x2a>
   643     __ shrl(rdx, 2 * BitsPerByte);
   644     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
   645     __ movptr(rdi, Address(rdi, ConstantPool::cache_offset_in_bytes()));
   647     // rax: local 0
   648     // rbx: method
   649     // rdx: constant pool cache index
   650     // rdi: constant pool cache
   652     // check if getfield has been resolved and read constant pool cache entry
   653     // check the validity of the cache entry by testing whether _indices field
   654     // contains Bytecode::_getfield in b1 byte.
   655     assert(in_words(ConstantPoolCacheEntry::size()) == 4,
   656            "adjust shift below");
   657     __ movl(rcx,
   658             Address(rdi,
   659                     rdx,
   660                     Address::times_8,
   661                     ConstantPoolCache::base_offset() +
   662                     ConstantPoolCacheEntry::indices_offset()));
   663     __ shrl(rcx, 2 * BitsPerByte);
   664     __ andl(rcx, 0xFF);
   665     __ cmpl(rcx, Bytecodes::_getfield);
   666     __ jcc(Assembler::notEqual, slow_path);
   668     // Note: constant pool entry is not valid before bytecode is resolved
   669     __ movptr(rcx,
   670               Address(rdi,
   671                       rdx,
   672                       Address::times_8,
   673                       ConstantPoolCache::base_offset() +
   674                       ConstantPoolCacheEntry::f2_offset()));
   675     // edx: flags
   676     __ movl(rdx,
   677             Address(rdi,
   678                     rdx,
   679                     Address::times_8,
   680                     ConstantPoolCache::base_offset() +
   681                     ConstantPoolCacheEntry::flags_offset()));
   683     Label notObj, notInt, notByte, notBool, notShort;
   684     const Address field_address(rax, rcx, Address::times_1);
   686     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   687     // because they are different sizes.
   688     // Use the type from the constant pool cache
   689     __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
   690     // Make sure we don't need to mask edx after the above shift
   691     ConstantPoolCacheEntry::verify_tos_state_shift();
   693     __ cmpl(rdx, atos);
   694     __ jcc(Assembler::notEqual, notObj);
   695     // atos
   696     __ load_heap_oop(rax, field_address);
   697     __ jmp(xreturn_path);
   699     __ bind(notObj);
   700     __ cmpl(rdx, itos);
   701     __ jcc(Assembler::notEqual, notInt);
   702     // itos
   703     __ movl(rax, field_address);
   704     __ jmp(xreturn_path);
   706     __ bind(notInt);
   707     __ cmpl(rdx, btos);
   708     __ jcc(Assembler::notEqual, notByte);
   709     // btos
   710     __ load_signed_byte(rax, field_address);
   711     __ jmp(xreturn_path);
   713     __ bind(notByte);
   714     __ cmpl(rdx, ztos);
   715     __ jcc(Assembler::notEqual, notBool);
   716     // ztos
   717     __ load_signed_byte(rax, field_address);
   718     __ jmp(xreturn_path);
   720     __ bind(notBool);
   721     __ cmpl(rdx, stos);
   722     __ jcc(Assembler::notEqual, notShort);
   723     // stos
   724     __ load_signed_short(rax, field_address);
   725     __ jmp(xreturn_path);
   727     __ bind(notShort);
   728 #ifdef ASSERT
   729     Label okay;
   730     __ cmpl(rdx, ctos);
   731     __ jcc(Assembler::equal, okay);
   732     __ stop("what type is this?");
   733     __ bind(okay);
   734 #endif
   735     // ctos
   736     __ load_unsigned_short(rax, field_address);
   738     __ bind(xreturn_path);
   740     // _ireturn/_areturn
   741     __ pop(rdi);
   742     __ mov(rsp, r13);
   743     __ jmp(rdi);
   744     __ ret(0);
   746     // generate a vanilla interpreter entry as the slow path
   747     __ bind(slow_path);
   748     (void) generate_normal_entry(false);
   749   } else {
   750     (void) generate_normal_entry(false);
   751   }
   753   return entry_point;
   754 }
   756 // Method entry for java.lang.ref.Reference.get.
   757 address InterpreterGenerator::generate_Reference_get_entry(void) {
   758 #if INCLUDE_ALL_GCS
   759   // Code: _aload_0, _getfield, _areturn
   760   // parameter size = 1
   761   //
   762   // The code that gets generated by this routine is split into 2 parts:
   763   //    1. The "intrinsified" code for G1 (or any SATB based GC),
   764   //    2. The slow path - which is an expansion of the regular method entry.
   765   //
   766   // Notes:-
   767   // * In the G1 code we do not check whether we need to block for
   768   //   a safepoint. If G1 is enabled then we must execute the specialized
   769   //   code for Reference.get (except when the Reference object is null)
   770   //   so that we can log the value in the referent field with an SATB
   771   //   update buffer.
   772   //   If the code for the getfield template is modified so that the
   773   //   G1 pre-barrier code is executed when the current method is
   774   //   Reference.get() then going through the normal method entry
   775   //   will be fine.
   776   // * The G1 code can, however, check the receiver object (the instance
   777   //   of java.lang.Reference) and jump to the slow path if null. If the
   778   //   Reference object is null then we obviously cannot fetch the referent
   779   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   780   //   regular method entry code to generate the NPE.
   781   //
   782   // This code is based on generate_accessor_enty.
   783   //
   784   // rbx: Method*
   786   // r13: senderSP must preserve for slow path, set SP to it on fast path
   788   address entry = __ pc();
   790   const int referent_offset = java_lang_ref_Reference::referent_offset;
   791   guarantee(referent_offset > 0, "referent offset not initialized");
   793   if (UseG1GC) {
   794     Label slow_path;
   795     // rbx: method
   797     // Check if local 0 != NULL
   798     // If the receiver is null then it is OK to jump to the slow path.
   799     __ movptr(rax, Address(rsp, wordSize));
   801     __ testptr(rax, rax);
   802     __ jcc(Assembler::zero, slow_path);
   804     // rax: local 0
   805     // rbx: method (but can be used as scratch now)
   806     // rdx: scratch
   807     // rdi: scratch
   809     // Generate the G1 pre-barrier code to log the value of
   810     // the referent field in an SATB buffer.
   812     // Load the value of the referent field.
   813     const Address field_address(rax, referent_offset);
   814     __ load_heap_oop(rax, field_address);
   816     // Generate the G1 pre-barrier code to log the value of
   817     // the referent field in an SATB buffer.
   818     __ g1_write_barrier_pre(noreg /* obj */,
   819                             rax /* pre_val */,
   820                             r15_thread /* thread */,
   821                             rbx /* tmp */,
   822                             true /* tosca_live */,
   823                             true /* expand_call */);
   825     // _areturn
   826     __ pop(rdi);                // get return address
   827     __ mov(rsp, r13);           // set sp to sender sp
   828     __ jmp(rdi);
   829     __ ret(0);
   831     // generate a vanilla interpreter entry as the slow path
   832     __ bind(slow_path);
   833     (void) generate_normal_entry(false);
   835     return entry;
   836   }
   837 #endif // INCLUDE_ALL_GCS
   839   // If G1 is not enabled then attempt to go through the accessor entry point
   840   // Reference.get is an accessor
   841   return generate_accessor_entry();
   842 }
   844 /**
   845  * Method entry for static native methods:
   846  *   int java.util.zip.CRC32.update(int crc, int b)
   847  */
   848 address InterpreterGenerator::generate_CRC32_update_entry() {
   849   if (UseCRC32Intrinsics) {
   850     address entry = __ pc();
   852     // rbx,: Method*
   853     // r13: senderSP must preserved for slow path, set SP to it on fast path
   854     // c_rarg0: scratch (rdi on non-Win64, rcx on Win64)
   855     // c_rarg1: scratch (rsi on non-Win64, rdx on Win64)
   857     Label slow_path;
   858     // If we need a safepoint check, generate full interpreter entry.
   859     ExternalAddress state(SafepointSynchronize::address_of_state());
   860     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   861              SafepointSynchronize::_not_synchronized);
   862     __ jcc(Assembler::notEqual, slow_path);
   864     // We don't generate local frame and don't align stack because
   865     // we call stub code and there is no safepoint on this path.
   867     // Load parameters
   868     const Register crc = rax;  // crc
   869     const Register val = c_rarg0;  // source java byte value
   870     const Register tbl = c_rarg1;  // scratch
   872     // Arguments are reversed on java expression stack
   873     __ movl(val, Address(rsp,   wordSize)); // byte value
   874     __ movl(crc, Address(rsp, 2*wordSize)); // Initial CRC
   876     __ lea(tbl, ExternalAddress(StubRoutines::crc_table_addr()));
   877     __ notl(crc); // ~crc
   878     __ update_byte_crc32(crc, val, tbl);
   879     __ notl(crc); // ~crc
   880     // result in rax
   882     // _areturn
   883     __ pop(rdi);                // get return address
   884     __ mov(rsp, r13);           // set sp to sender sp
   885     __ jmp(rdi);
   887     // generate a vanilla native entry as the slow path
   888     __ bind(slow_path);
   890     (void) generate_native_entry(false);
   892     return entry;
   893   }
   894   return generate_native_entry(false);
   895 }
   897 /**
   898  * Method entry for static native methods:
   899  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
   900  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
   901  */
   902 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
   903   if (UseCRC32Intrinsics) {
   904     address entry = __ pc();
   906     // rbx,: Method*
   907     // r13: senderSP must preserved for slow path, set SP to it on fast path
   909     Label slow_path;
   910     // If we need a safepoint check, generate full interpreter entry.
   911     ExternalAddress state(SafepointSynchronize::address_of_state());
   912     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
   913              SafepointSynchronize::_not_synchronized);
   914     __ jcc(Assembler::notEqual, slow_path);
   916     // We don't generate local frame and don't align stack because
   917     // we call stub code and there is no safepoint on this path.
   919     // Load parameters
   920     const Register crc = c_rarg0;  // crc
   921     const Register buf = c_rarg1;  // source java byte array address
   922     const Register len = c_rarg2;  // length
   923     const Register off = len;      // offset (never overlaps with 'len')
   925     // Arguments are reversed on java expression stack
   926     // Calculate address of start element
   927     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
   928       __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
   929       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
   930       __ addq(buf, off); // + offset
   931       __ movl(crc,   Address(rsp, 5*wordSize)); // Initial CRC
   932     } else {
   933       __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
   934       __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
   935       __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
   936       __ addq(buf, off); // + offset
   937       __ movl(crc,   Address(rsp, 4*wordSize)); // Initial CRC
   938     }
   939     // Can now load 'len' since we're finished with 'off'
   940     __ movl(len, Address(rsp, wordSize)); // Length
   942     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
   943     // result in rax
   945     // _areturn
   946     __ pop(rdi);                // get return address
   947     __ mov(rsp, r13);           // set sp to sender sp
   948     __ jmp(rdi);
   950     // generate a vanilla native entry as the slow path
   951     __ bind(slow_path);
   953     (void) generate_native_entry(false);
   955     return entry;
   956   }
   957   return generate_native_entry(false);
   958 }
   960 // Interpreter stub for calling a native method. (asm interpreter)
   961 // This sets up a somewhat different looking stack for calling the
   962 // native method than the typical interpreter frame setup.
   963 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   964   // determine code generation flags
   965   bool inc_counter  = UseCompiler || CountCompiledCalls;
   967   // rbx: Method*
   968   // r13: sender sp
   970   address entry_point = __ pc();
   972   const Address constMethod       (rbx, Method::const_offset());
   973   const Address access_flags      (rbx, Method::access_flags_offset());
   974   const Address size_of_parameters(rcx, ConstMethod::
   975                                         size_of_parameters_offset());
   978   // get parameter size (always needed)
   979   __ movptr(rcx, constMethod);
   980   __ load_unsigned_short(rcx, size_of_parameters);
   982   // native calls don't need the stack size check since they have no
   983   // expression stack and the arguments are already on the stack and
   984   // we only add a handful of words to the stack
   986   // rbx: Method*
   987   // rcx: size of parameters
   988   // r13: sender sp
   989   __ pop(rax);                                       // get return address
   991   // for natives the size of locals is zero
   993   // compute beginning of parameters (r14)
   994   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
   996   // add 2 zero-initialized slots for native calls
   997   // initialize result_handler slot
   998   __ push((int) NULL_WORD);
   999   // slot for oop temp
  1000   // (static native method holder mirror/jni oop result)
  1001   __ push((int) NULL_WORD);
  1003   // initialize fixed part of activation frame
  1004   generate_fixed_frame(true);
  1006   // make sure method is native & not abstract
  1007 #ifdef ASSERT
  1008   __ movl(rax, access_flags);
  1010     Label L;
  1011     __ testl(rax, JVM_ACC_NATIVE);
  1012     __ jcc(Assembler::notZero, L);
  1013     __ stop("tried to execute non-native method as native");
  1014     __ bind(L);
  1017     Label L;
  1018     __ testl(rax, JVM_ACC_ABSTRACT);
  1019     __ jcc(Assembler::zero, L);
  1020     __ stop("tried to execute abstract method in interpreter");
  1021     __ bind(L);
  1023 #endif
  1025   // Since at this point in the method invocation the exception handler
  1026   // would try to exit the monitor of synchronized methods which hasn't
  1027   // been entered yet, we set the thread local variable
  1028   // _do_not_unlock_if_synchronized to true. The remove_activation will
  1029   // check this flag.
  1031   const Address do_not_unlock_if_synchronized(r15_thread,
  1032         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1033   __ movbool(do_not_unlock_if_synchronized, true);
  1035   // increment invocation count & check for overflow
  1036   Label invocation_counter_overflow;
  1037   if (inc_counter) {
  1038     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
  1041   Label continue_after_compile;
  1042   __ bind(continue_after_compile);
  1044   bang_stack_shadow_pages(true);
  1046   // reset the _do_not_unlock_if_synchronized flag
  1047   __ movbool(do_not_unlock_if_synchronized, false);
  1049   // check for synchronized methods
  1050   // Must happen AFTER invocation_counter check and stack overflow check,
  1051   // so method is not locked if overflows.
  1052   if (synchronized) {
  1053     lock_method();
  1054   } else {
  1055     // no synchronization necessary
  1056 #ifdef ASSERT
  1058       Label L;
  1059       __ movl(rax, access_flags);
  1060       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1061       __ jcc(Assembler::zero, L);
  1062       __ stop("method needs synchronization");
  1063       __ bind(L);
  1065 #endif
  1068   // start execution
  1069 #ifdef ASSERT
  1071     Label L;
  1072     const Address monitor_block_top(rbp,
  1073                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1074     __ movptr(rax, monitor_block_top);
  1075     __ cmpptr(rax, rsp);
  1076     __ jcc(Assembler::equal, L);
  1077     __ stop("broken stack frame setup in interpreter");
  1078     __ bind(L);
  1080 #endif
  1082   // jvmti support
  1083   __ notify_method_entry();
  1085   // work registers
  1086   const Register method = rbx;
  1087   const Register t      = r11;
  1089   // allocate space for parameters
  1090   __ get_method(method);
  1091   __ movptr(t, Address(method, Method::const_offset()));
  1092   __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
  1093   __ shll(t, Interpreter::logStackElementSize);
  1095   __ subptr(rsp, t);
  1096   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1097   __ andptr(rsp, -16); // must be 16 byte boundary (see amd64 ABI)
  1099   // get signature handler
  1101     Label L;
  1102     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1103     __ testptr(t, t);
  1104     __ jcc(Assembler::notZero, L);
  1105     __ call_VM(noreg,
  1106                CAST_FROM_FN_PTR(address,
  1107                                 InterpreterRuntime::prepare_native_call),
  1108                method);
  1109     __ get_method(method);
  1110     __ movptr(t, Address(method, Method::signature_handler_offset()));
  1111     __ bind(L);
  1114   // call signature handler
  1115   assert(InterpreterRuntime::SignatureHandlerGenerator::from() == r14,
  1116          "adjust this code");
  1117   assert(InterpreterRuntime::SignatureHandlerGenerator::to() == rsp,
  1118          "adjust this code");
  1119   assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1,
  1120           "adjust this code");
  1122   // The generated handlers do not touch RBX (the method oop).
  1123   // However, large signatures cannot be cached and are generated
  1124   // each time here.  The slow-path generator can do a GC on return,
  1125   // so we must reload it after the call.
  1126   __ call(t);
  1127   __ get_method(method);        // slow path can do a GC, reload RBX
  1130   // result handler is in rax
  1131   // set result handler
  1132   __ movptr(Address(rbp,
  1133                     (frame::interpreter_frame_result_handler_offset) * wordSize),
  1134             rax);
  1136   // pass mirror handle if static call
  1138     Label L;
  1139     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  1140     __ movl(t, Address(method, Method::access_flags_offset()));
  1141     __ testl(t, JVM_ACC_STATIC);
  1142     __ jcc(Assembler::zero, L);
  1143     // get mirror
  1144     __ movptr(t, Address(method, Method::const_offset()));
  1145     __ movptr(t, Address(t, ConstMethod::constants_offset()));
  1146     __ movptr(t, Address(t, ConstantPool::pool_holder_offset_in_bytes()));
  1147     __ movptr(t, Address(t, mirror_offset));
  1148     // copy mirror into activation frame
  1149     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize),
  1150             t);
  1151     // pass handle to mirror
  1152     __ lea(c_rarg1,
  1153            Address(rbp, frame::interpreter_frame_oop_temp_offset * wordSize));
  1154     __ bind(L);
  1157   // get native function entry point
  1159     Label L;
  1160     __ movptr(rax, Address(method, Method::native_function_offset()));
  1161     ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
  1162     __ movptr(rscratch2, unsatisfied.addr());
  1163     __ cmpptr(rax, rscratch2);
  1164     __ jcc(Assembler::notEqual, L);
  1165     __ call_VM(noreg,
  1166                CAST_FROM_FN_PTR(address,
  1167                                 InterpreterRuntime::prepare_native_call),
  1168                method);
  1169     __ get_method(method);
  1170     __ movptr(rax, Address(method, Method::native_function_offset()));
  1171     __ bind(L);
  1174   // pass JNIEnv
  1175   __ lea(c_rarg0, Address(r15_thread, JavaThread::jni_environment_offset()));
  1177   // It is enough that the pc() points into the right code
  1178   // segment. It does not have to be the correct return pc.
  1179   __ set_last_Java_frame(rsp, rbp, (address) __ pc());
  1181   // change thread state
  1182 #ifdef ASSERT
  1184     Label L;
  1185     __ movl(t, Address(r15_thread, JavaThread::thread_state_offset()));
  1186     __ cmpl(t, _thread_in_Java);
  1187     __ jcc(Assembler::equal, L);
  1188     __ stop("Wrong thread state in native stub");
  1189     __ bind(L);
  1191 #endif
  1193   // Change state to native
  1195   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1196           _thread_in_native);
  1198   // Call the native method.
  1199   __ call(rax);
  1200   // result potentially in rax or xmm0
  1202   // Verify or restore cpu control state after JNI call
  1203   __ restore_cpu_control_state_after_jni();
  1205   // NOTE: The order of these pushes is known to frame::interpreter_frame_result
  1206   // in order to extract the result of a method call. If the order of these
  1207   // pushes change or anything else is added to the stack then the code in
  1208   // interpreter_frame_result must also change.
  1210   __ push(dtos);
  1211   __ push(ltos);
  1213   // change thread state
  1214   __ movl(Address(r15_thread, JavaThread::thread_state_offset()),
  1215           _thread_in_native_trans);
  1217   if (os::is_MP()) {
  1218     if (UseMembar) {
  1219       // Force this write out before the read below
  1220       __ membar(Assembler::Membar_mask_bits(
  1221            Assembler::LoadLoad | Assembler::LoadStore |
  1222            Assembler::StoreLoad | Assembler::StoreStore));
  1223     } else {
  1224       // Write serialization page so VM thread can do a pseudo remote membar.
  1225       // We use the current thread pointer to calculate a thread specific
  1226       // offset to write to within the page. This minimizes bus traffic
  1227       // due to cache line collision.
  1228       __ serialize_memory(r15_thread, rscratch2);
  1232   // check for safepoint operation in progress and/or pending suspend requests
  1234     Label Continue;
  1235     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
  1236              SafepointSynchronize::_not_synchronized);
  1238     Label L;
  1239     __ jcc(Assembler::notEqual, L);
  1240     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
  1241     __ jcc(Assembler::equal, Continue);
  1242     __ bind(L);
  1244     // Don't use call_VM as it will see a possible pending exception
  1245     // and forward it and never return here preventing us from
  1246     // clearing _last_native_pc down below.  Also can't use
  1247     // call_VM_leaf either as it will check to see if r13 & r14 are
  1248     // preserved and correspond to the bcp/locals pointers. So we do a
  1249     // runtime call by hand.
  1250     //
  1251     __ mov(c_rarg0, r15_thread);
  1252     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1253     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1254     __ andptr(rsp, -16); // align stack as required by ABI
  1255     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
  1256     __ mov(rsp, r12); // restore sp
  1257     __ reinit_heapbase();
  1258     __ bind(Continue);
  1261   // change thread state
  1262   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
  1264   // reset_last_Java_frame
  1265   __ reset_last_Java_frame(true, true);
  1267   // reset handle block
  1268   __ movptr(t, Address(r15_thread, JavaThread::active_handles_offset()));
  1269   __ movl(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
  1271   // If result is an oop unbox and store it in frame where gc will see it
  1272   // and result handler will pick it up
  1275     Label no_oop, store_result;
  1276     __ lea(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
  1277     __ cmpptr(t, Address(rbp, frame::interpreter_frame_result_handler_offset*wordSize));
  1278     __ jcc(Assembler::notEqual, no_oop);
  1279     // retrieve result
  1280     __ pop(ltos);
  1281     __ testptr(rax, rax);
  1282     __ jcc(Assembler::zero, store_result);
  1283     __ movptr(rax, Address(rax, 0));
  1284     __ bind(store_result);
  1285     __ movptr(Address(rbp, frame::interpreter_frame_oop_temp_offset*wordSize), rax);
  1286     // keep stack depth as expected by pushing oop which will eventually be discarde
  1287     __ push(ltos);
  1288     __ bind(no_oop);
  1293     Label no_reguard;
  1294     __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()),
  1295             JavaThread::stack_guard_yellow_disabled);
  1296     __ jcc(Assembler::notEqual, no_reguard);
  1298     __ pusha(); // XXX only save smashed registers
  1299     __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  1300     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1301     __ andptr(rsp, -16); // align stack as required by ABI
  1302     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
  1303     __ mov(rsp, r12); // restore sp
  1304     __ popa(); // XXX only restore smashed registers
  1305     __ reinit_heapbase();
  1307     __ bind(no_reguard);
  1311   // The method register is junk from after the thread_in_native transition
  1312   // until here.  Also can't call_VM until the bcp has been
  1313   // restored.  Need bcp for throwing exception below so get it now.
  1314   __ get_method(method);
  1316   // restore r13 to have legal interpreter frame, i.e., bci == 0 <=>
  1317   // r13 == code_base()
  1318   __ movptr(r13, Address(method, Method::const_offset()));   // get ConstMethod*
  1319   __ lea(r13, Address(r13, ConstMethod::codes_offset()));    // get codebase
  1320   // handle exceptions (exception handling will handle unlocking!)
  1322     Label L;
  1323     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  1324     __ jcc(Assembler::zero, L);
  1325     // Note: At some point we may want to unify this with the code
  1326     // used in call_VM_base(); i.e., we should use the
  1327     // StubRoutines::forward_exception code. For now this doesn't work
  1328     // here because the rsp is not correctly set at this point.
  1329     __ MacroAssembler::call_VM(noreg,
  1330                                CAST_FROM_FN_PTR(address,
  1331                                InterpreterRuntime::throw_pending_exception));
  1332     __ should_not_reach_here();
  1333     __ bind(L);
  1336   // do unlocking if necessary
  1338     Label L;
  1339     __ movl(t, Address(method, Method::access_flags_offset()));
  1340     __ testl(t, JVM_ACC_SYNCHRONIZED);
  1341     __ jcc(Assembler::zero, L);
  1342     // the code below should be shared with interpreter macro
  1343     // assembler implementation
  1345       Label unlock;
  1346       // BasicObjectLock will be first in list, since this is a
  1347       // synchronized method. However, need to check that the object
  1348       // has not been unlocked by an explicit monitorexit bytecode.
  1349       const Address monitor(rbp,
  1350                             (intptr_t)(frame::interpreter_frame_initial_sp_offset *
  1351                                        wordSize - sizeof(BasicObjectLock)));
  1353       // monitor expect in c_rarg1 for slow unlock path
  1354       __ lea(c_rarg1, monitor); // address of first monitor
  1356       __ movptr(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  1357       __ testptr(t, t);
  1358       __ jcc(Assembler::notZero, unlock);
  1360       // Entry already unlocked, need to throw exception
  1361       __ MacroAssembler::call_VM(noreg,
  1362                                  CAST_FROM_FN_PTR(address,
  1363                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  1364       __ should_not_reach_here();
  1366       __ bind(unlock);
  1367       __ unlock_object(c_rarg1);
  1369     __ bind(L);
  1372   // jvmti support
  1373   // Note: This must happen _after_ handling/throwing any exceptions since
  1374   //       the exception handler code notifies the runtime of method exits
  1375   //       too. If this happens before, method entry/exit notifications are
  1376   //       not properly paired (was bug - gri 11/22/99).
  1377   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
  1379   // restore potential result in edx:eax, call result handler to
  1380   // restore potential result in ST0 & handle result
  1382   __ pop(ltos);
  1383   __ pop(dtos);
  1385   __ movptr(t, Address(rbp,
  1386                        (frame::interpreter_frame_result_handler_offset) * wordSize));
  1387   __ call(t);
  1389   // remove activation
  1390   __ movptr(t, Address(rbp,
  1391                        frame::interpreter_frame_sender_sp_offset *
  1392                        wordSize)); // get sender sp
  1393   __ leave();                                // remove frame anchor
  1394   __ pop(rdi);                               // get return address
  1395   __ mov(rsp, t);                            // set sp to sender sp
  1396   __ jmp(rdi);
  1398   if (inc_counter) {
  1399     // Handle overflow of counter and compile method
  1400     __ bind(invocation_counter_overflow);
  1401     generate_counter_overflow(&continue_after_compile);
  1404   return entry_point;
  1407 //
  1408 // Generic interpreted method entry to (asm) interpreter
  1409 //
  1410 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1411   // determine code generation flags
  1412   bool inc_counter  = UseCompiler || CountCompiledCalls;
  1414   // ebx: Method*
  1415   // r13: sender sp
  1416   address entry_point = __ pc();
  1418   const Address constMethod(rbx, Method::const_offset());
  1419   const Address access_flags(rbx, Method::access_flags_offset());
  1420   const Address size_of_parameters(rdx,
  1421                                    ConstMethod::size_of_parameters_offset());
  1422   const Address size_of_locals(rdx, ConstMethod::size_of_locals_offset());
  1425   // get parameter size (always needed)
  1426   __ movptr(rdx, constMethod);
  1427   __ load_unsigned_short(rcx, size_of_parameters);
  1429   // rbx: Method*
  1430   // rcx: size of parameters
  1431   // r13: sender_sp (could differ from sp+wordSize if we were called via c2i )
  1433   __ load_unsigned_short(rdx, size_of_locals); // get size of locals in words
  1434   __ subl(rdx, rcx); // rdx = no. of additional locals
  1436   // YYY
  1437 //   __ incrementl(rdx);
  1438 //   __ andl(rdx, -2);
  1440   // see if we've got enough room on the stack for locals plus overhead.
  1441   generate_stack_overflow_check();
  1443   // get return address
  1444   __ pop(rax);
  1446   // compute beginning of parameters (r14)
  1447   __ lea(r14, Address(rsp, rcx, Address::times_8, -wordSize));
  1449   // rdx - # of additional locals
  1450   // allocate space for locals
  1451   // explicitly initialize locals
  1453     Label exit, loop;
  1454     __ testl(rdx, rdx);
  1455     __ jcc(Assembler::lessEqual, exit); // do nothing if rdx <= 0
  1456     __ bind(loop);
  1457     __ push((int) NULL_WORD); // initialize local variables
  1458     __ decrementl(rdx); // until everything initialized
  1459     __ jcc(Assembler::greater, loop);
  1460     __ bind(exit);
  1463   // initialize fixed part of activation frame
  1464   generate_fixed_frame(false);
  1466   // make sure method is not native & not abstract
  1467 #ifdef ASSERT
  1468   __ movl(rax, access_flags);
  1470     Label L;
  1471     __ testl(rax, JVM_ACC_NATIVE);
  1472     __ jcc(Assembler::zero, L);
  1473     __ stop("tried to execute native method as non-native");
  1474     __ bind(L);
  1477     Label L;
  1478     __ testl(rax, JVM_ACC_ABSTRACT);
  1479     __ jcc(Assembler::zero, L);
  1480     __ stop("tried to execute abstract method in interpreter");
  1481     __ bind(L);
  1483 #endif
  1485   // Since at this point in the method invocation the exception
  1486   // handler would try to exit the monitor of synchronized methods
  1487   // which hasn't been entered yet, we set the thread local variable
  1488   // _do_not_unlock_if_synchronized to true. The remove_activation
  1489   // will check this flag.
  1491   const Address do_not_unlock_if_synchronized(r15_thread,
  1492         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
  1493   __ movbool(do_not_unlock_if_synchronized, true);
  1495   __ profile_parameters_type(rax, rcx, rdx);
  1496   // increment invocation count & check for overflow
  1497   Label invocation_counter_overflow;
  1498   Label profile_method;
  1499   Label profile_method_continue;
  1500   if (inc_counter) {
  1501     generate_counter_incr(&invocation_counter_overflow,
  1502                           &profile_method,
  1503                           &profile_method_continue);
  1504     if (ProfileInterpreter) {
  1505       __ bind(profile_method_continue);
  1509   Label continue_after_compile;
  1510   __ bind(continue_after_compile);
  1512   // check for synchronized interpreted methods
  1513   bang_stack_shadow_pages(false);
  1515   // reset the _do_not_unlock_if_synchronized flag
  1516   __ movbool(do_not_unlock_if_synchronized, false);
  1518   // check for synchronized methods
  1519   // Must happen AFTER invocation_counter check and stack overflow check,
  1520   // so method is not locked if overflows.
  1521   if (synchronized) {
  1522     // Allocate monitor and lock method
  1523     lock_method();
  1524   } else {
  1525     // no synchronization necessary
  1526 #ifdef ASSERT
  1528       Label L;
  1529       __ movl(rax, access_flags);
  1530       __ testl(rax, JVM_ACC_SYNCHRONIZED);
  1531       __ jcc(Assembler::zero, L);
  1532       __ stop("method needs synchronization");
  1533       __ bind(L);
  1535 #endif
  1538   // start execution
  1539 #ifdef ASSERT
  1541     Label L;
  1542      const Address monitor_block_top (rbp,
  1543                  frame::interpreter_frame_monitor_block_top_offset * wordSize);
  1544     __ movptr(rax, monitor_block_top);
  1545     __ cmpptr(rax, rsp);
  1546     __ jcc(Assembler::equal, L);
  1547     __ stop("broken stack frame setup in interpreter");
  1548     __ bind(L);
  1550 #endif
  1552   // jvmti support
  1553   __ notify_method_entry();
  1555   __ dispatch_next(vtos);
  1557   // invocation counter overflow
  1558   if (inc_counter) {
  1559     if (ProfileInterpreter) {
  1560       // We have decided to profile this method in the interpreter
  1561       __ bind(profile_method);
  1562       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1563       __ set_method_data_pointer_for_bcp();
  1564       __ get_method(rbx);
  1565       __ jmp(profile_method_continue);
  1567     // Handle overflow of counter and compile method
  1568     __ bind(invocation_counter_overflow);
  1569     generate_counter_overflow(&continue_after_compile);
  1572   return entry_point;
  1575 // Entry points
  1576 //
  1577 // Here we generate the various kind of entries into the interpreter.
  1578 // The two main entry type are generic bytecode methods and native
  1579 // call method.  These both come in synchronized and non-synchronized
  1580 // versions but the frame layout they create is very similar. The
  1581 // other method entry types are really just special purpose entries
  1582 // that are really entry and interpretation all in one. These are for
  1583 // trivial methods like accessor, empty, or special math methods.
  1584 //
  1585 // When control flow reaches any of the entry types for the interpreter
  1586 // the following holds ->
  1587 //
  1588 // Arguments:
  1589 //
  1590 // rbx: Method*
  1591 //
  1592 // Stack layout immediately at entry
  1593 //
  1594 // [ return address     ] <--- rsp
  1595 // [ parameter n        ]
  1596 //   ...
  1597 // [ parameter 1        ]
  1598 // [ expression stack   ] (caller's java expression stack)
  1600 // Assuming that we don't go to one of the trivial specialized entries
  1601 // the stack will look like below when we are ready to execute the
  1602 // first bytecode (or call the native routine). The register usage
  1603 // will be as the template based interpreter expects (see
  1604 // interpreter_amd64.hpp).
  1605 //
  1606 // local variables follow incoming parameters immediately; i.e.
  1607 // the return address is moved to the end of the locals).
  1608 //
  1609 // [ monitor entry      ] <--- rsp
  1610 //   ...
  1611 // [ monitor entry      ]
  1612 // [ expr. stack bottom ]
  1613 // [ saved r13          ]
  1614 // [ current r14        ]
  1615 // [ Method*            ]
  1616 // [ saved ebp          ] <--- rbp
  1617 // [ return address     ]
  1618 // [ local variable m   ]
  1619 //   ...
  1620 // [ local variable 1   ]
  1621 // [ parameter n        ]
  1622 //   ...
  1623 // [ parameter 1        ] <--- r14
  1625 address AbstractInterpreterGenerator::generate_method_entry(
  1626                                         AbstractInterpreter::MethodKind kind) {
  1627   // determine code generation flags
  1628   bool synchronized = false;
  1629   address entry_point = NULL;
  1630   InterpreterGenerator* ig_this = (InterpreterGenerator*)this;
  1632   switch (kind) {
  1633   case Interpreter::zerolocals             :                                                      break;
  1634   case Interpreter::zerolocals_synchronized: synchronized = true;                                 break;
  1635   case Interpreter::native                 : entry_point = ig_this->generate_native_entry(false); break;
  1636   case Interpreter::native_synchronized    : entry_point = ig_this->generate_native_entry(true);  break;
  1637   case Interpreter::empty                  : entry_point = ig_this->generate_empty_entry();       break;
  1638   case Interpreter::accessor               : entry_point = ig_this->generate_accessor_entry();    break;
  1639   case Interpreter::abstract               : entry_point = ig_this->generate_abstract_entry();    break;
  1641   case Interpreter::java_lang_math_sin     : // fall thru
  1642   case Interpreter::java_lang_math_cos     : // fall thru
  1643   case Interpreter::java_lang_math_tan     : // fall thru
  1644   case Interpreter::java_lang_math_abs     : // fall thru
  1645   case Interpreter::java_lang_math_log     : // fall thru
  1646   case Interpreter::java_lang_math_log10   : // fall thru
  1647   case Interpreter::java_lang_math_sqrt    : // fall thru
  1648   case Interpreter::java_lang_math_pow     : // fall thru
  1649   case Interpreter::java_lang_math_exp     : entry_point = ig_this->generate_math_entry(kind);      break;
  1650   case Interpreter::java_lang_ref_reference_get
  1651                                            : entry_point = ig_this->generate_Reference_get_entry(); break;
  1652   case Interpreter::java_util_zip_CRC32_update
  1653                                            : entry_point = ig_this->generate_CRC32_update_entry();  break;
  1654   case Interpreter::java_util_zip_CRC32_updateBytes
  1655                                            : // fall thru
  1656   case Interpreter::java_util_zip_CRC32_updateByteBuffer
  1657                                            : entry_point = ig_this->generate_CRC32_updateBytes_entry(kind); break;
  1658   default:
  1659     fatal(err_msg("unexpected method kind: %d", kind));
  1660     break;
  1663   if (entry_point) {
  1664     return entry_point;
  1667   return ig_this->generate_normal_entry(synchronized);
  1670 // These should never be compiled since the interpreter will prefer
  1671 // the compiled version to the intrinsic version.
  1672 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1673   switch (method_kind(m)) {
  1674     case Interpreter::java_lang_math_sin     : // fall thru
  1675     case Interpreter::java_lang_math_cos     : // fall thru
  1676     case Interpreter::java_lang_math_tan     : // fall thru
  1677     case Interpreter::java_lang_math_abs     : // fall thru
  1678     case Interpreter::java_lang_math_log     : // fall thru
  1679     case Interpreter::java_lang_math_log10   : // fall thru
  1680     case Interpreter::java_lang_math_sqrt    : // fall thru
  1681     case Interpreter::java_lang_math_pow     : // fall thru
  1682     case Interpreter::java_lang_math_exp     :
  1683       return false;
  1684     default:
  1685       return true;
  1689 // How much stack a method activation needs in words.
  1690 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1691   const int entry_size = frame::interpreter_frame_monitor_size();
  1693   // total overhead size: entry_size + (saved rbp thru expr stack
  1694   // bottom).  be sure to change this if you add/subtract anything
  1695   // to/from the overhead area
  1696   const int overhead_size =
  1697     -(frame::interpreter_frame_initial_sp_offset) + entry_size;
  1699   const int stub_code = frame::entry_frame_after_call_words;
  1700   const int method_stack = (method->max_locals() + method->max_stack()) *
  1701                            Interpreter::stackElementWords;
  1702   return (overhead_size + method_stack + stub_code);
  1705 //-----------------------------------------------------------------------------
  1706 // Exceptions
  1708 void TemplateInterpreterGenerator::generate_throw_exception() {
  1709   // Entry point in previous activation (i.e., if the caller was
  1710   // interpreted)
  1711   Interpreter::_rethrow_exception_entry = __ pc();
  1712   // Restore sp to interpreter_frame_last_sp even though we are going
  1713   // to empty the expression stack for the exception processing.
  1714   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1715   // rax: exception
  1716   // rdx: return address/pc that threw exception
  1717   __ restore_bcp();    // r13 points to call/send
  1718   __ restore_locals();
  1719   __ reinit_heapbase();  // restore r12 as heapbase.
  1720   // Entry point for exceptions thrown within interpreter code
  1721   Interpreter::_throw_exception_entry = __ pc();
  1722   // expression stack is undefined here
  1723   // rax: exception
  1724   // r13: exception bcp
  1725   __ verify_oop(rax);
  1726   __ mov(c_rarg1, rax);
  1728   // expression stack must be empty before entering the VM in case of
  1729   // an exception
  1730   __ empty_expression_stack();
  1731   // find exception handler address and preserve exception oop
  1732   __ call_VM(rdx,
  1733              CAST_FROM_FN_PTR(address,
  1734                           InterpreterRuntime::exception_handler_for_exception),
  1735              c_rarg1);
  1736   // rax: exception handler entry point
  1737   // rdx: preserved exception oop
  1738   // r13: bcp for exception handler
  1739   __ push_ptr(rdx); // push exception which is now the only value on the stack
  1740   __ jmp(rax); // jump to exception handler (may be _remove_activation_entry!)
  1742   // If the exception is not handled in the current frame the frame is
  1743   // removed and the exception is rethrown (i.e. exception
  1744   // continuation is _rethrow_exception).
  1745   //
  1746   // Note: At this point the bci is still the bxi for the instruction
  1747   // which caused the exception and the expression stack is
  1748   // empty. Thus, for any VM calls at this point, GC will find a legal
  1749   // oop map (with empty expression stack).
  1751   // In current activation
  1752   // tos: exception
  1753   // esi: exception bcp
  1755   //
  1756   // JVMTI PopFrame support
  1757   //
  1759   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1760   __ empty_expression_stack();
  1761   // Set the popframe_processing bit in pending_popframe_condition
  1762   // indicating that we are currently handling popframe, so that
  1763   // call_VMs that may happen later do not trigger new popframe
  1764   // handling cycles.
  1765   __ movl(rdx, Address(r15_thread, JavaThread::popframe_condition_offset()));
  1766   __ orl(rdx, JavaThread::popframe_processing_bit);
  1767   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()), rdx);
  1770     // Check to see whether we are returning to a deoptimized frame.
  1771     // (The PopFrame call ensures that the caller of the popped frame is
  1772     // either interpreted or compiled and deoptimizes it if compiled.)
  1773     // In this case, we can't call dispatch_next() after the frame is
  1774     // popped, but instead must save the incoming arguments and restore
  1775     // them after deoptimization has occurred.
  1776     //
  1777     // Note that we don't compare the return PC against the
  1778     // deoptimization blob's unpack entry because of the presence of
  1779     // adapter frames in C2.
  1780     Label caller_not_deoptimized;
  1781     __ movptr(c_rarg1, Address(rbp, frame::return_addr_offset * wordSize));
  1782     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1783                                InterpreterRuntime::interpreter_contains), c_rarg1);
  1784     __ testl(rax, rax);
  1785     __ jcc(Assembler::notZero, caller_not_deoptimized);
  1787     // Compute size of arguments for saving when returning to
  1788     // deoptimized caller
  1789     __ get_method(rax);
  1790     __ movptr(rax, Address(rax, Method::const_offset()));
  1791     __ load_unsigned_short(rax, Address(rax, in_bytes(ConstMethod::
  1792                                                 size_of_parameters_offset())));
  1793     __ shll(rax, Interpreter::logStackElementSize);
  1794     __ restore_locals(); // XXX do we need this?
  1795     __ subptr(r14, rax);
  1796     __ addptr(r14, wordSize);
  1797     // Save these arguments
  1798     __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1799                                            Deoptimization::
  1800                                            popframe_preserve_args),
  1801                           r15_thread, rax, r14);
  1803     __ remove_activation(vtos, rdx,
  1804                          /* throw_monitor_exception */ false,
  1805                          /* install_monitor_exception */ false,
  1806                          /* notify_jvmdi */ false);
  1808     // Inform deoptimization that it is responsible for restoring
  1809     // these arguments
  1810     __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1811             JavaThread::popframe_force_deopt_reexecution_bit);
  1813     // Continue in deoptimization handler
  1814     __ jmp(rdx);
  1816     __ bind(caller_not_deoptimized);
  1819   __ remove_activation(vtos, rdx, /* rdx result (retaddr) is not used */
  1820                        /* throw_monitor_exception */ false,
  1821                        /* install_monitor_exception */ false,
  1822                        /* notify_jvmdi */ false);
  1824   // Finish with popframe handling
  1825   // A previous I2C followed by a deoptimization might have moved the
  1826   // outgoing arguments further up the stack. PopFrame expects the
  1827   // mutations to those outgoing arguments to be preserved and other
  1828   // constraints basically require this frame to look exactly as
  1829   // though it had previously invoked an interpreted activation with
  1830   // no space between the top of the expression stack (current
  1831   // last_sp) and the top of stack. Rather than force deopt to
  1832   // maintain this kind of invariant all the time we call a small
  1833   // fixup routine to move the mutated arguments onto the top of our
  1834   // expression stack if necessary.
  1835   __ mov(c_rarg1, rsp);
  1836   __ movptr(c_rarg2, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1837   // PC must point into interpreter here
  1838   __ set_last_Java_frame(noreg, rbp, __ pc());
  1839   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), r15_thread, c_rarg1, c_rarg2);
  1840   __ reset_last_Java_frame(true, true);
  1841   // Restore the last_sp and null it out
  1842   __ movptr(rsp, Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize));
  1843   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  1845   __ restore_bcp();  // XXX do we need this?
  1846   __ restore_locals(); // XXX do we need this?
  1847   // The method data pointer was incremented already during
  1848   // call profiling. We have to restore the mdp for the current bcp.
  1849   if (ProfileInterpreter) {
  1850     __ set_method_data_pointer_for_bcp();
  1853   // Clear the popframe condition flag
  1854   __ movl(Address(r15_thread, JavaThread::popframe_condition_offset()),
  1855           JavaThread::popframe_inactive);
  1857 #if INCLUDE_JVMTI
  1858   if (EnableInvokeDynamic) {
  1859     Label L_done;
  1860     const Register local0 = r14;
  1862     __ cmpb(Address(r13, 0), Bytecodes::_invokestatic);
  1863     __ jcc(Assembler::notEqual, L_done);
  1865     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1866     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1868     __ get_method(rdx);
  1869     __ movptr(rax, Address(local0, 0));
  1870     __ call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), rax, rdx, r13);
  1872     __ testptr(rax, rax);
  1873     __ jcc(Assembler::zero, L_done);
  1875     __ movptr(Address(rbx, 0), rax);
  1876     __ bind(L_done);
  1878 #endif // INCLUDE_JVMTI
  1880   __ dispatch_next(vtos);
  1881   // end of PopFrame support
  1883   Interpreter::_remove_activation_entry = __ pc();
  1885   // preserve exception over this code sequence
  1886   __ pop_ptr(rax);
  1887   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), rax);
  1888   // remove the activation (without doing throws on illegalMonitorExceptions)
  1889   __ remove_activation(vtos, rdx, false, true, false);
  1890   // restore exception
  1891   __ get_vm_result(rax, r15_thread);
  1893   // In between activations - previous activation type unknown yet
  1894   // compute continuation point - the continuation point expects the
  1895   // following registers set up:
  1896   //
  1897   // rax: exception
  1898   // rdx: return address/pc that threw exception
  1899   // rsp: expression stack of caller
  1900   // rbp: ebp of caller
  1901   __ push(rax);                                  // save exception
  1902   __ push(rdx);                                  // save return address
  1903   __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
  1904                           SharedRuntime::exception_handler_for_return_address),
  1905                         r15_thread, rdx);
  1906   __ mov(rbx, rax);                              // save exception handler
  1907   __ pop(rdx);                                   // restore return address
  1908   __ pop(rax);                                   // restore exception
  1909   // Note that an "issuing PC" is actually the next PC after the call
  1910   __ jmp(rbx);                                   // jump to exception
  1911                                                  // handler of caller
  1915 //
  1916 // JVMTI ForceEarlyReturn support
  1917 //
  1918 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1919   address entry = __ pc();
  1921   __ restore_bcp();
  1922   __ restore_locals();
  1923   __ empty_expression_stack();
  1924   __ load_earlyret_value(state);
  1926   __ movptr(rdx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
  1927   Address cond_addr(rdx, JvmtiThreadState::earlyret_state_offset());
  1929   // Clear the earlyret state
  1930   __ movl(cond_addr, JvmtiThreadState::earlyret_inactive);
  1932   __ remove_activation(state, rsi,
  1933                        false, /* throw_monitor_exception */
  1934                        false, /* install_monitor_exception */
  1935                        true); /* notify_jvmdi */
  1936   __ jmp(rsi);
  1938   return entry;
  1939 } // end of ForceEarlyReturn support
  1942 //-----------------------------------------------------------------------------
  1943 // Helper for vtos entry point generation
  1945 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1946                                                          address& bep,
  1947                                                          address& cep,
  1948                                                          address& sep,
  1949                                                          address& aep,
  1950                                                          address& iep,
  1951                                                          address& lep,
  1952                                                          address& fep,
  1953                                                          address& dep,
  1954                                                          address& vep) {
  1955   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1956   Label L;
  1957   aep = __ pc();  __ push_ptr();  __ jmp(L);
  1958   fep = __ pc();  __ push_f();    __ jmp(L);
  1959   dep = __ pc();  __ push_d();    __ jmp(L);
  1960   lep = __ pc();  __ push_l();    __ jmp(L);
  1961   bep = cep = sep =
  1962   iep = __ pc();  __ push_i();
  1963   vep = __ pc();
  1964   __ bind(L);
  1965   generate_and_dispatch(t);
  1969 //-----------------------------------------------------------------------------
  1970 // Generation of individual instructions
  1972 // helpers for generate_and_dispatch
  1975 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1976   : TemplateInterpreterGenerator(code) {
  1977    generate_all(); // down here so it can be "virtual"
  1980 //-----------------------------------------------------------------------------
  1982 // Non-product code
  1983 #ifndef PRODUCT
  1984 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1985   address entry = __ pc();
  1987   __ push(state);
  1988   __ push(c_rarg0);
  1989   __ push(c_rarg1);
  1990   __ push(c_rarg2);
  1991   __ push(c_rarg3);
  1992   __ mov(c_rarg2, rax);  // Pass itos
  1993 #ifdef _WIN64
  1994   __ movflt(xmm3, xmm0); // Pass ftos
  1995 #endif
  1996   __ call_VM(noreg,
  1997              CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode),
  1998              c_rarg1, c_rarg2, c_rarg3);
  1999   __ pop(c_rarg3);
  2000   __ pop(c_rarg2);
  2001   __ pop(c_rarg1);
  2002   __ pop(c_rarg0);
  2003   __ pop(state);
  2004   __ ret(0);                                   // return from result handler
  2006   return entry;
  2009 void TemplateInterpreterGenerator::count_bytecode() {
  2010   __ incrementl(ExternalAddress((address) &BytecodeCounter::_counter_value));
  2013 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  2014   __ incrementl(ExternalAddress((address) &BytecodeHistogram::_counters[t->bytecode()]));
  2017 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  2018   __ mov32(rbx, ExternalAddress((address) &BytecodePairHistogram::_index));
  2019   __ shrl(rbx, BytecodePairHistogram::log2_number_of_codes);
  2020   __ orl(rbx,
  2021          ((int) t->bytecode()) <<
  2022          BytecodePairHistogram::log2_number_of_codes);
  2023   __ mov32(ExternalAddress((address) &BytecodePairHistogram::_index), rbx);
  2024   __ lea(rscratch1, ExternalAddress((address) BytecodePairHistogram::_counters));
  2025   __ incrementl(Address(rscratch1, rbx, Address::times_4));
  2029 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2030   // Call a little run-time stub to avoid blow-up for each bytecode.
  2031   // The run-time runtime saves the right registers, depending on
  2032   // the tosca in-state for the given template.
  2034   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  2035          "entry must have been generated");
  2036   __ mov(r12, rsp); // remember sp (can only use r12 if not using call_VM)
  2037   __ andptr(rsp, -16); // align stack as required by ABI
  2038   __ call(RuntimeAddress(Interpreter::trace_code(t->tos_in())));
  2039   __ mov(rsp, r12); // restore sp
  2040   __ reinit_heapbase();
  2044 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2045   Label L;
  2046   __ cmp32(ExternalAddress((address) &BytecodeCounter::_counter_value),
  2047            StopInterpreterAt);
  2048   __ jcc(Assembler::notEqual, L);
  2049   __ int3();
  2050   __ bind(L);
  2052 #endif // !PRODUCT
  2053 #endif // ! CC_INTERP

mercurial